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Abstract
With the development of the steady state micro bunching

(SSMB) storage ring, its parameters reveal that the ultra
relativistic assumption which is wildly used is not valid for
the electron beam bunch train, which has length in the 100
nm range, spacing of 1𝜇𝑚 and energy in hundreds 𝑀𝑒𝑉
range. The strength of the interaction between such bunches
and the potential instability may need careful evaluation. At
the same time, the effect of the space charge inside a single
bunch due to space charge effect also needs to be considered.
In this article, we reorganized the lowest-order longitudinal
wakefield under non-ultra relativistic conditions, and the
lowest-order transverse wakefield. We present the modified
theoretical results and analysis. Then based on the result we
have derived, we give a algorithm which is thousands time
faster than direct calculation. It lays foundation in future
research.

INTRODUCTION
Resistive wall wakefield has been studied by [1] [2] [3]

and [4].
We have developed a faster numerical calculation algo-

rithm to calculate the inverse fourier transformation of the
frequency domain result.

Firstly, we will show the reorganized result of the ring
model of the ultrarelativistic resistive wall case. Then, we
will give the accelerate algorithm, which devides the inverse
fourier transformation into two parts — space charge and
resident resistive wall. We will find that the space charge
part can be calculated directly by analytical solution. In the
mean time, we can calculate the resident resistive wall part
quickly by numerical integration.

M=0 RING MODEL
Here we give the ring model of a monopole

𝜌0 = 𝐼0
2𝜋𝑎𝛿 (𝑠 − 𝑣𝑡) 𝛿 (𝑟 − 𝑎)

= −𝑄0
𝑎 𝛿 (𝑠 − 𝑣𝑡) 𝛿 (𝑟 − 𝑎) (1)

𝑗0 = 𝑣𝜌0 ̂𝑠 (2)

Solving Maxwell equation in different area which is 𝑟 < 𝑎,
𝑎 < 𝑟 < 𝑏 and 𝑟 > 𝑏. We express the general solution of the
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vector potential and potential in three region.

𝑟 < 𝑎
𝐴𝑟 = 0
𝐴𝜑 = 0
𝐴𝑠 = 𝑝𝑐

𝑠𝐼0 (𝑘𝑟𝑟) cos 𝜑 𝑒𝑖𝑘𝑧

𝜙 = 𝑝𝑐
0𝐼0 (𝑘𝑟𝑟) cos 𝜑 𝑒𝑖𝑘𝑧 (3)

where Lorentz Gauge requires that

𝑝𝑐
0 = 𝑐2𝑘

𝜔 𝑝𝑐
𝑠 (4)

then

𝑎 < 𝑟 < 𝑏
𝐴𝑟 = 0
𝐴𝜑 = 0
𝐴𝑠 = (𝑝𝑠𝐼0 (𝑘𝑟𝑟) + 𝑞𝑠𝐾0 (𝑘𝑟𝑟)) cos 𝜑 𝑒𝑖𝑘𝑧

𝜙 = (𝑝0𝐼0 (𝑘𝑟𝑟) + 𝑞0𝐾0 (𝑘𝑟𝑟)) cos 𝜑 𝑒𝑖𝑘𝑧 (5)

where Lorentz Gauge requires that

𝑝0 = 𝑐2𝑘
𝜔 𝑝𝑠, 𝑞0 = 𝑐2𝑘

𝜔 𝑞𝑠 (6)

and

𝑟 > 𝑏
𝐴𝑟 = 0
𝐴𝜑 = 0
𝐴𝑠 = 𝑞𝑤

𝑠 𝐾1 (𝜆𝑟) cos 𝜑 𝑒𝑖𝑘𝑧

𝜙 = 𝑞𝑤
0 𝐾1 (𝜆𝑟) cos 𝜑 𝑒𝑖𝑘𝑧 (7)

where Lorentz Gauge requires that

𝑞𝑤
0 = 1

𝜔
𝑘𝑐2 + 𝑖𝜇0𝜎

𝑘
𝑞𝑤

𝑠 (8)

So we have four unknown parameters to determine, which is

𝑝𝑐
𝑠 , 𝑝𝑠, 𝑞𝑠, 𝑞𝑤

𝑠 (9)

we can decide the four parameters via boundary conditions.
Then the four parameters could be solve as

𝑝𝑐
𝑠 = 𝑝𝑠 − 𝜇0𝑄𝑚𝜔𝐾0 (𝑎𝑘𝑟)

𝑘 (10)
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𝑞𝑠 = −𝜇0𝑄𝑚𝜔𝐼0 (𝑎𝑘𝑟)
𝑘 (11)

𝑞𝑤
𝑠 = −𝑘𝑟𝑝𝑠𝐼1 (𝑏𝑘𝑟) + 𝑘𝑟𝑞𝑠𝐾1 (𝑏𝑘𝑟)

𝜆𝐾1 (𝑏𝜆) (12)

𝑝𝑠 = 𝑞𝑠
𝑁𝑝𝑠

𝐷𝑝𝑠

𝑁𝑝𝑠
= 𝜔2𝜆𝐾0 (𝜆𝑏)𝐾1 (𝑏𝑘𝑟) +

𝑘𝑟𝑐2 (𝜆2 − 𝑘2) 𝐾1 (𝑏𝜆) 𝐾0 (𝑏𝑘𝑟)
𝐷𝑝𝑠

= 𝜔2𝜆𝐾0 (𝜆𝑏)𝐼1 (𝑏𝑘𝑟) −
𝑘𝑟𝑐2 (𝜆2 − 𝑘2) 𝐾1 (𝜆𝑏) 𝐼0 (𝑏𝑘𝑟) (13)

It should be noticed that when 𝑎 approaches to zero, the ring
model becomes the point model. By the way, Eq(13) has the
same structure as point model did.

M=1 RING MODEL
We can give a dipole ring model and solve the electromag-

netic field surround it. We explicitly give the source term of
the dipole ring, which is Eq(14)

𝜌1 = 𝐼1
𝜋𝑎2 𝛿 (𝑠 − 𝑣𝑡) 𝛿 (𝑟 − 𝑎) cos 𝜃

= −𝑄1
𝑎 𝛿 (𝑠 − 𝑣𝑡) 𝛿 (𝑟 − 𝑎) cos 𝜃

𝑗1 = 𝑐𝜌1 ̂𝑠 (14)

where 𝐼1 is the dipole moment, 𝑎 is the radius of the ring.
Solving the equation, we give the general solution of vector
potential 𝐴𝑟, 𝐴𝜑, 𝐴𝑠 and potential 𝜙. In different area, we
have

𝑟 < 𝑎

𝐴𝑟 = 1
2 (𝑝𝑐

+𝐼2 (𝑘𝑟𝑟) + 𝑝𝑐
−𝐼0 (𝑘𝑟𝑟)) cos 𝜑 𝑒𝑖𝑘𝑧

𝐴𝜑 = 1
2 (𝑝𝑐

+𝐼2 (𝑘𝑟𝑟) − 𝑝𝑐
−𝐼0 (𝑘𝑟𝑟)) sin 𝜑 𝑒𝑖𝑘𝑧

𝐴𝑠 = 𝑝𝑐
𝑠𝐼1 (𝑘𝑟𝑟) cos 𝜑 𝑒𝑖𝑘𝑧

𝜙 = 𝑝𝑐
0𝐼1 (𝑘𝑟𝑟) cos 𝜑 𝑒𝑖𝑘𝑧 (15)

where Lorentz Gauge requires that

𝑝𝑐
+ = −𝑝𝑐

−, 𝑝𝑐
0 = 𝑐2𝑘

𝜔 𝑝𝑐
𝑠 (16)

then

𝑎 < 𝑟 < 𝑏

𝐴𝑟 = 1
2 (𝑝+𝐼2 (𝑘𝑟𝑟) + 𝑞+𝐾2 (𝑘𝑟𝑟) + 𝑝−𝐼0 (𝑘𝑟𝑟)

+𝑞−𝐾0 (𝑘𝑟𝑟)) cos 𝜑 𝑒𝑖𝑘𝑧

𝐴𝜑 = 1
2 (𝑝+𝐼2 (𝑘𝑟𝑟) + 𝑞+𝐾2 (𝑘𝑟𝑟) − 𝑝−𝐼0 (𝑘𝑟𝑟)

−𝑞−𝐾0 (𝑘𝑟𝑟)) sin 𝜑 𝑒𝑖𝑘𝑧

𝐴𝑠 = (𝑝𝑠𝐼1 (𝑘𝑟𝑟) + 𝑞𝑠𝐾1 (𝑘𝑟𝑟)) cos 𝜑 𝑒𝑖𝑘𝑧

𝜙 = (𝑝0𝐼1 (𝑘𝑟𝑟) + 𝑞0𝐾1 (𝑘𝑟𝑟)) cos 𝜑 𝑒𝑖𝑘𝑧 (17)

where Lorentz Gauge requires that

𝑝− = −𝑝+, 𝑝0 = 𝑐2𝑘
𝜔 𝑝𝑠, 𝑞− = −𝑞+, 𝑞0 = 𝑐2𝑘

𝜔 𝑞𝑠 (18)

and

𝑟 > 𝑏

𝐴𝑟 = 1
2 (𝑞𝑤

+𝐾2 (𝜆𝑟) + 𝑞𝑤
−𝐾0 (𝜆𝑟)) cos 𝜑 𝑒𝑖𝑘𝑧

𝐴𝜑 = 1
2 (𝑞𝑤

+ (𝐾2 (𝜆𝑟) − 𝑞𝑤
−𝐾0 (𝜆𝑟))) sin 𝜑 𝑒𝑖𝑘𝑧

𝐴𝑠 = 𝑞𝑤
𝑠 𝐾1 (𝜆𝑟) cos 𝜑 𝑒𝑖𝑘𝑧

𝜙 = 𝑞𝑤
0 𝐾1 (𝜆𝑟) cos 𝜑 𝑒𝑖𝑘𝑧 (19)

where Lorentz Gauge requires that

𝑞𝑤
− = −𝑞𝑤

+ , 𝑞𝑤
0 = 1

𝜔
𝑘𝑐2 + 𝑖𝜇0𝜎

𝑘
𝑞𝑤

𝑠 (20)

So we have eight unknown parameters to determine, which
is

𝑝𝑐
+, 𝑝𝑐

𝑠 , 𝑝+, 𝑞+, 𝑝𝑠, 𝑞𝑠, 𝑞𝑤
+ , 𝑞𝑤

𝑠 (21)

By linear algebra manipulation we solve eight coefficients
in the end, and we will not list it because it is too long.

SPACE CHARGE CALCULATION
We notice that the resident resistive wall impedance is

constraint in an relatively low frequency domain no matter
how small the radius we are thinking about. This means
the numerical integration will have a relatively low cutoff
frequency. This will significantly save the time consuming.

After we seperate out the resident resistive wall part, we
need to analytically solve the ring dipole space charge in the
free space. First we consider the ring in the rest frame mov-
ing together with the ring. In the rest frame, there will only
exists Electric field. Then, we use Lorentz Transformation
to get the space charge in the laboratory frame. The settings
of relevant parameters are shown in the Fig.1 Take dipole

𝜓
𝑎

𝑅

𝜆 acos ҧ𝜃 𝑑 ҧ𝜃

ҧ𝑟

ҧ𝜃

Figure 1: Dipole Ring Model.

model Fig.1 for example, the derived electric field from the
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potential is given by the following expression

̄𝐸𝑟 ( ̄𝑟, ̄𝜃, ̄𝑧) =

∫
2𝜋

0
1

4𝜋𝜀0

⎛⎜⎜⎜
⎝

−
𝑄𝑚 cos 𝜓 (2 ̄𝑟 − 2𝑎 cos ( ̄𝜃 − 𝜓))

2 ( ̄𝑟2 + 𝑎2 − 2 ̄𝑟𝑎 cos ( ̄𝜃 − 𝜓) + ̄𝑧2)
3
2

⎞⎟⎟⎟
⎠

𝑑𝜓

̄𝐸𝜃 ( ̄𝑟, ̄𝜃, ̄𝑧) =

∫
2𝜋

0
1

4𝜋𝜀0

⎛⎜⎜⎜
⎝

−
𝑎𝑄𝑚 cos 𝜓 sin ( ̄𝜃 − 𝜓)

( ̄𝑟2 + 𝑎2 − 2 ̄𝑟𝑎 cos ( ̄𝜃 − 𝜓) + ̄𝑧2)
3
2

⎞⎟⎟⎟
⎠

𝑑𝜓

̄𝐸𝑧 ( ̄𝑟, ̄𝜃, ̄𝑧) =

∫
2𝜋

0
1

4𝜋𝜀0

⎛⎜⎜⎜
⎝

− ̄𝑧𝑄𝑚 cos 𝜓

( ̄𝑟2 + 𝑎2 − 2 ̄𝑟𝑎 cos ( ̄𝜃 − 𝜓) + ̄𝑧2)
3
2

⎞⎟⎟⎟
⎠

𝑑𝜓

(22)

we explicitly give the Lorentz Transformation in the Cylin-
drical coordinates of our case

𝐸𝑟 = 𝛾 ̄𝐸𝑟, 𝐸𝜃 = 𝛾 ̄𝐸𝜃, 𝐸𝑧 = ̄𝐸𝑧

𝐵𝑟 = −1
𝑐 𝑣𝛾 ̄𝐸𝜃, , 𝐵𝜃 = 1

𝑐2 𝑣𝛾 ̄𝐸𝑟, 𝐵𝑧 = 0 (23)

because the coordinates transformation,

̄𝑟 = 𝑟, ̄𝜃 = 𝜃, ̄𝑧 = 𝛾𝑧

the electromagnetic field in the laboratory frame can be
expressed as

𝐵𝑟 = − 1
𝑐2 𝑣 𝛾

4𝜋𝜀0

∫
2𝜋

0

⎛⎜⎜⎜⎜
⎝

− 𝑎𝑄𝑚 cos 𝜓 𝑠𝑖𝑛 (𝜃 − 𝜓)

(𝑟2 + 𝑎2 − 2𝑟𝑎 cos (𝜃 − 𝜓) + (𝛾𝑧)2)
3
2

⎞⎟⎟⎟⎟
⎠

𝑑𝜓

(24)

𝐵𝜃 = 1
𝑐2 𝑣 𝛾

4𝜋𝜀0

∫
2𝜋

0

⎛⎜⎜⎜⎜
⎝

− 𝑄𝑚 cos 𝜓 (2𝑟 − 2𝑎 cos (𝜃 − 𝜓))

2 (𝑟2 + 𝑎2 − 2𝑟𝑎 cos (𝜃 − 𝜓) + (𝛾𝑧)2)
3
2

⎞⎟⎟⎟⎟
⎠

𝑑𝜓

(25)

𝐵𝑧 = 0 (26)

𝐸𝑟 = 𝛾
4𝜋𝜀0

∫
2𝜋

0

⎛⎜⎜⎜⎜
⎝

− 𝑄𝑚 cos 𝜓 (2𝑟 − 2𝑎 cos (𝜃 − 𝜓))

2 (𝑟2 + 𝑎2 − 2𝑟𝑎 cos (𝜃 − 𝜓) + (𝛾𝑧)2)
3
2

⎞⎟⎟⎟⎟
⎠

𝑑𝜓

(27)

𝐸𝜃 = 𝛾
4𝜋𝜀0

∫
2𝜋

0

⎛⎜⎜⎜⎜
⎝

− 𝑎𝑄𝑚 cos 𝜓 sin (𝜃 − 𝜓)

(𝑟2 + 𝑎2 − 2𝑟𝑎 cos (𝜃 − 𝜓) + (𝛾𝑧)2)
3
2

⎞⎟⎟⎟⎟
⎠

𝑑𝜓

(28)

𝐸𝑧 = 1
4𝜋𝜀0

∫
2𝜋

0

⎛⎜⎜⎜⎜
⎝

− 𝛾𝑧𝑄𝑚 cos 𝜓

(𝑟2 + 𝑎2 − 2𝑟𝑎 cos (𝜃 − 𝜓) + (𝛾𝑧)2)
3
2

⎞⎟⎟⎟⎟
⎠

𝑑𝜓

(29)

Thus, we can derive a faster numerical algorithm to calcu-
late the Lorentz Force in the time domain, the steps of the
algorithm can be explained as follows. On the one hand, we
calculate the Space Charge of the ring model, and give the
Lorentz Force of the Space Charge in the time domain. On
the other hand, we calculate the numerical Inverse Fourier
Transformation of the resident Resistive Wall wake in the
frequency domain. Finally, we combine the result to get the
total effect of the nonultra-relativistic Resistive Wall.

CONCLUSION

We have organized and computed the impedance wall
electromagnetic field models for monopoles and dipoles, and
have accelerated the numerical calculation process involved
in the inverse Fourier transform. After this work, we can
move forward to dynamic analysis.
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