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Abstract
We present a search for neutral resonances using dimuon data corresponding to an integrated
luminosity of 2.3 fb~! collected in pp collisions at /s = 1.96 TeV by the CDF II detector at the
Fermilab Tevatron. No significant excess above the standard model expectation is observed in the
dimuon invariant-mass spectrum. We set 95% confidence level upper limits on o - BR(pp — X —
wi), where X is a boson with spin 0, 1, or 2. Using these cross section limits, we determine lower
mass limits on Z’ bosons, Kaluza-Klein gravitons in the Randall-Sundrum model, and sneutrinos

in R-parity-violating supersymmetric models.

PACS numbers:
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Neutral resonances decaying to muons have historically been a source of major discoveries.
They also occur in a variety of theoretical models which attempt to unify the standard model
(SM) forces or explain the large gap between the SM and gravitational scales. The gauge
group SU(3) x SU(2) x U(1) of the SM can be embedded in larger gauge groups such
as SU(5), SO(10), and Es, to achieve unification in a grand unified theory (GUT) [1-4].
In many schemes of GUT symmetry-breaking, U(1) gauge groups survive to relatively low
energies [2], leading to the prediction of neutral gauge vector bosons, generically referred to
as Z' bosons. Such Z’ bosons typically couple with electroweak strength to SM fermions, thus
appearing at hadron colliders as narrow, spin-1, dimuon resonances from qg — Z' — puji.
Many other models, such as the SU(2), x SU(2)r x U(1) gauge group of the left-right
model [5], and the “little Higgs” models [6, 7], also predict heavy neutral gauge bosons.

Additional spatial dimensions are a possible explanation for the gap between the elec-
troweak symmetry-breaking scale and the gravitational energy scale Mpjanac [8, 9]. In the
Randall-Sundrum (RS) scenario [9], the ground-state wave function of the graviton is lo-
calized on a three-dimensional “brane” separated in a fourth spatial dimension from the
SM brane. The space-time metric varies exponentially in the fourth dimension, causing the
wave-function overlap with the SM brane to be exponentially suppressed and explaining the
apparent weakness of gravity and the large value of Mpjane. This model predicts excited
Kaluza-Klein modes of the graviton which are localized on the SM brane. These modes
appear as spin-2 resonances GG* in the process q¢ — G* — puji, with a narrow intrinsic width
when k/Mpana. < 0.1, where k? is the spacetime curvature in the extra dimension.

Spin-0 resonances such as qq¢ — 7 — uji are predicted by supersymmetric theories with
R-parity violation, where R-parity is a multiplicative quantum number that is conserved
in interactions with an even number of supersymmetric particles. In addition, scalar Higgs
bosons in the SM and its extensions can be produced as resonances and decay to dimuons.

The most sensitive direct searches for high-mass boson resonances, which have previously
been performed at the Tevatron, have set 95% confidence level (C.L.) lower limits on the
masses My, Mg, and M; of Z' bosons, RS gravitons, and sneutrinos, respectively. The
previous dimuon publication from CDF II analysed =~ 200 pb~! of data [10], setting limits
that vary from 170 GeV to 885 GeV depending on the boson spin and couplings to the
SM fermions. Other dilepton and diphoton decay channels have also been explored at the

Tevatron [11, 12]|. In this Letter, we present using an order of magnitude more data, the
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most sensitive direct search to date for Z’, G*, and 7 bosons, over most of the parameter
space.

This analysis uses data corresponding to an integrated luminosity of 2.3 fb™1, collected
in pp collisions at /s = 1.96 TeV by the CDF II detector [13, 14] at the Tevatron. CDF
IT is a magnetic spectrometer surrounded by calorimeters and muon detectors. We use the
central drift chamber (COT) [15], the central calorimeter [16] and the muon detectors [17] for
identification and measurement of muons with |n| < 1 [18]. The online muon event selection
(trigger) requires a COT track with pr > 18 GeV [18], and matching muon detector hits.
In the analysis, we select muons with a COT track with pr > 30 GeV passing quality
requirements, and a minimum-ionization signal in the calorimeter. Cosmic rays are rejected
using COT hit timing [19]. The dimuon signal sample consists of 68150 events in the
dimuon invariant mass control region 70 < my,; < 100 GeV, where the pp — Z — pp

process dominates, and 3804 events in the search region m,; > 100 GeV.

6
-
< 10 —— Data
(&) — —— Total background
'_
L Drell-Yan
™ - Hadron fakes
I, ----- Cosmic rays
")) lO L - WW
b5 — Tt
o C
L -
1 TR TR A
- ‘—f =T
ST
107
S . . . ! . . . . I
0 5 10

-1 1
m (TeV?)

FIG. 1: The distribution of m;l—} (TeV~1) for the data (points), the individual backgrounds (dotted
or dashed histograms) and the summed background (solid histogram). The Z boson peak is
prominently seen. The inverse mass distribution has the useful feature that the detector resolution

is approximately constant over the range shown in the plot.

The alignment of the COT is performed using a pure sample of high-momentum cosmic-
ray muons, in order to obtain the best possible dimuon mass resolution. Each muon’s
complete trajectory is fitted to a single helix [19]. The fits are used to determine the relative

locations of the sense wires, including gravitational and electrostatic displacements, with a
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statistical accuracy of a few microns. We constrain remaining misalignments, which cause
a bias in the track curvature, by comparing (E/p) [18] for electrons and positrons. The
tracker momentum scale and resolution is measured by template-fitting the Z — pjii mass
peak, and calibrating to the world average values [24, 25] of the Z boson mass and width.
For a resonance with electroweak coupling and mass above 200 GeV, the observed width
of the m,; distribution is dominated by the track curvature resolution, resulting in an
approximately constant resolution of (5m;g ~ 0.17 TeV~!. Our search strategy is to construct

templates of the observable m;ﬁ distribution for a range of boson Breit-Wigner pole masses,

-1

add the background distributions to the templates, and compare the templates to the m, ;

distribution from the data in the search region m,; > 100 GeV. The simulated templates
(including backgrounds) are normalized to the data in the 70 GeV < m,,; < 100 GeV region,
thus cancelling several sources of systematic uncertainty.

We determine the most likely number of signal events (Ng), and the corresponding con-
fidence intervals [20], from the binned Poisson likelihood [13] for the data to be produced
by a sum of signal and background templates. The use of the constant-resolution variable
simplifies the optimization of the template binning and the scan over the boson pole

-1
o

masses.

> 4

I 1, 10
My (TeV™)

FIG. 2: The difference between the distributions of m;j (TeV~!) for the data and the summed
background, divided by the expected statistical uncertainty in each bin. All vertical error bars have

unit size. The p-value of the largest deviation (which occurs at m,; ~ 103 GeV as seen above) is

6.6%.
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Signal and SM Drell-Yan background distributions are evaluated using a specially writ-
ten Monte Carlo (MC) simulation [13] of boson production and decay, and of the detector
response to the leptons and the hadronic activity in the event. The kinematics of bo-
son production and decay are obtained from the PYTHIA [21] event generator using the
CTEQG6M [22] set of parton distribution functions. QED radiation is simulated according
to the WGRAD program [23]. The MC performs a detailed hit-level simulation of the lepton
tracks. COT hits are generated according to their resolution (=~ 150 pm) and measured
efficiencies, and a helix fit is performed (as it is in data) to simulate the reconstructed track.
We apply a mass-dependent next-to-next-to-leading order (NNLO) multiplicative correction
(K-factor) [26] to the SM Drell-Yan background.

The SM production processes for W*W ™ [27] and t¢ [28] have small contributions, and are
evaluated using PYTHIA and a detector simulation based on GEANT [29]. Misidentification
backgrounds result from cosmic rays, QCD jets, and 7/ K decays-in-flight (DIF). We evaluate
the shape of the cosmic-ray background from a large sample of cosmic rays identified with
the COT-timing-based algorithm [19], and normalize it to the data using events with large
Atg, where Atg is the difference between the muons’ reconstructed time at the beam axis.
The m;[} shape of the background from misidentified jets is evaluated from a large sample
of inclusive jet events. Decays-in-flight within the COT active volume generate a kink along
the helical trajectory, resulting in a mismeasurement of the track curvature. At the large
reconstructed momenta relevant to this search, the measured DIF curvature distribution is
approximately uniform and leads to a flat m;ﬁ spectrum. The kinks in DIF tracks allow
most of them to be rejected using their abnormal COT-hit pattern and large x? of the track
fit. The jet and DIF backgrounds are normalized using the number of same-charge dimuon
events observed at low and high mass respectively.

Figure 1 shows the m;ﬁ distributions of the data and the expected backgrounds, which are
in good agreement (as shown in Fig. 2). A resonance whose observed width is dominated
by detector resolution would appear as a peak spanning approximately three bins. The
likelihood-based fitter finds no significant excess. We use background-only ensembles of
simulated events, each with the statistics of the data sample, to evaluate the probability
of statistical fluctuations anywhere in the search region generating a discrepancy at least
as significant as the largest discrepancy found in the data. We find this probability (“p-
value”) to be 6.6% and we conclude that the data are statistically consistent with the SM

11



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

expectation.

The likelihood fitter determines the 95% C.L. upper limit on the number of signal events,
for each value of the resonance pole mass. We convert these limits to limits on o - BR(0 —
wii), o- BR(Z'" — pp) and o - BR(G* — pji) using the total acceptance as a function of pole
mass, and dividing by the observed number of Z — pji events. The acceptance is verified
with the detailed GEANT-based simulation of the detector, as well as comparisons to data
distributions. The muon identification efficiency is cross-checked using a pure data sample of
Z bosons triggered by one identified muon. The simulation reproduces the muon efficiency
as a function of muon pr. The total acceptance, including kinematic and fiducial acceptance
and dimuon identification efficiency, increases from ~ 13% at the Z boson pole to ~ 40%
for a Z' pole mass of 1 TeV, and decreases for higher pole masses due to the kinematic
limit of the parton collisions. The lepton 7 [18] distribution obtained from spin-2 graviton
decay is more central than the distribution obtained from spin-1 boson decay. The total
acceptance for the graviton increases from =~ 20% for a pole mass of 90 GeV to ~ 45% for a
pole mass of 1 TeV. The 95% C.L. upper limits on o - BR(v — pji), o - BR(Z' — pj), and
o - BR(G* — puji) are shown in Fig. 3 as functions of M !, where M is the pole mass. The
dominant mass-dependent systematic uncertainties arise from parton distribution functions
(16%), the NNLO K-factor (9%) [26], QED radiative corrections (3%) [30], and acceptance
(3%), all quoted at 1 TeV. These uncertainties are incorporated as functions of dimuon
invariant mass and increase monotonically beyond the normalization region at 100 GeV.
Uncertainties on the momentum scale and resolution, and on the non-Drell-Yan background
predictions, have a negligible effect on the search.

Our signal templates have been generated with a resonance pole width I' = 2.8% x M,
based on the SM Z boson width. Thus our signal scan probes an observed width of ~
[17%(M/TeV)®2.8%] M. In a model where the observed width increases by a multiplicative
factor x, the cross section limits would increase by about a factor of /.

We use PYTHIA to compute the theoretical cross sections for production of Z’ bosons
predicted by Eg models [32] or having the same couplings to SM fermions as the Z boson,
as well as G* production cross sections for various k/Mpjanac values. We apply the NNLO
K-factor to these LO cross sections. The NLO 7 production cross sections are obtained
from [31]. From the intersection of the observed cross section limits and the theoretical

cross section curves, we derive the lower limits on these boson masses shown in Table 1.
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A4 4 RS graviton| graviton 7 17
model |mass limit|| k/Mplanac |mass limit| A% - BR|mass limit

Z;q 754 0.010 293 0.0001 278

Z; 789 0.015 409 0.0002 397

Zyn 861 0.025 493 0.0005 457

ZI/Z) 878 0.035 651 0.001 541

Z;( 892 0.05 746 0.002 662

Z,’7 975 0.07 824 0.005 751
Zly | 1030 0.1 921 0.01 | 810

TABLE I: 95% C.L. lower limits on Z’, graviton, and sneutrino masses (in GeV) for various model
parameters [9, 31, 32]. For the R-parity-violating sneutrino model, A is the ddi coupling and BR

denotes the 7 — up branching ratio.

In conclusion, we have presented a search for high-mass dimuon resonances with spin-0,
1, and 2, using data corresponding to an integrated luminosity of 2.3 fb~! collected by the
CDF II detector at the Tevatron. Our dimuon invariant mass spectrum is consistent with
the SM expectation. From this direct search for heavy neutral bosons, we set the world’s
tightest constraints on Z’ bosons in various models, on Kaluza-Klein graviton modes in the
RS model, and on sneutrinos in R-parity violating supersymmetric models. At 95% C.L.,
we exclude 100 < Mz < 975 GeV for a Z7/7 boson of the Fg model, 100 < Mg+« < 921 GeV
for k/Mpianac = 0.1, and 100 < M; < 810 GeV for \* - BR(v — pji) = 0.01, where X is the
ddp coupling and BR denotes the 7 — i branching ratio.
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FIG. 3: The 95% C.L. upper limits on o - BR(0 — pji) vs M; ' (top), o - BR(Z' — pji) versus
M (middle), and o - BR(G* — pji) versus Mg! (bottom). Also shown are the theoretical cross
sections for various model parameter values [9, 31, 32]. The expected limits and ranges of limits,

as derived from simulated experiments (SE), aye. shown for comparison.



