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Abstract: In a paper published in 1939, Albert Einstein argued that Black Holes (BHs) did not exist “in

the real world”. However, recent astronomical observations indicate otherwise. Does this mean that

we should also expect White Holes (WHs) to exist in the real world? In classical General Relativity

(GR), a WH refers to the time reversed version of a collapsing BH solution that allows the crossing of

the BH event horizon inside out. Such solution has been disputed as not possible because escaping

an event horizon violates causality. Despite such objections, the Big Bang model is often understood

as a WH (the reverse of a BH collapse). Does this mean that the Big Bang breaks causality? Recent

measurements of cosmic acceleration indicate that our Big Bang solution is not really a WH, but a BH.

Events decelerate when the expansion accelerates and this prevents the crossing of the event horizon

from inside out. We present a general explanation of why this happens; the explanation resolves the

above causality puzzle and indicates that such apparent WH solutions have a regular Schwarzschild

BH exterior.

Keywords: cosmology; dark energy; general relativity; black holes

1. Introduction

Decades after Einstein [1] concluded that BHs did not exist, observations have shown
that they are real astronomical objects [2–4]. A Schwarzschild Black Hole (BH) solution:

ds2 = gµνdxµdxν = −[1 − rS/r] dt2 +
dr2

[1 − rS/r]
+ r2dΩ

2, (1)

represents a singular point source of mass M. The gravitational radius rS ≡ 2GM corre-
sponds to an event horizon and prevents us from seeing inside rS. The Schwarszchild
solution applies to the exterior of any BH, no matter what the interior solution is, as long
as we can approximate the outer region as empty space. The Hawking–Penrose’s theo-
rems [5,6] tell us that nothing can come out of rS. This has created the BH information
lost paradox [7,8]. One possible way around this is to introduce the concept of maximally
extended Schwarszchild solution using the Kruskal–Szekeres coordinates T = T(t, r) and
X = X(t, r) (see Figure 1), where the future BH event horizon becomes the past White Hole
(WH) horizon. Information can escape rS in a WH. There are two disconnected exterior
spaces which could be connected inside with an Einstein–Rosen bridge or Schwarszchild
wormhole [9].

If we throw a particle into a BH, the WH solution corresponds to the traveling of that
particle back in time to us (from our past), before the particle was sent. Such trajectory
might be formally possible (because there is no arrow of time at the fundamental level),
but it violates causality, so it makes no physical sense as a classical solution (quantum
mechanics effects might provide some way around this [10]). This is related to the example
of retarded and advanced potentials in classical electrodynamics: both are mathematical
solutions of the wave equations, but only one of them connects cause and effect. The
mirror image of the top quadrant in Figure 1 has the arrow pointing downward and not
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upward. This shows that the time reversed solution (the mirror image) is still a BH (where
the particle falls into the gravitational radius rS) and not a WH (as indicated in the figure).

Figure 1. Relation between the Schwarszchild coordinates (t, r) (in units of rS = 1) and the

Kruskal–Szekeres coordinates (T, X). The top right quadrant (T > 0, X > 0) is the regular BH

solution (the green region is external to rS). Lines of constant r are the cyan hyperbolic dashed lines.

Lines of constant time t are orange dashed straight lines (T = 0 is also t = 0). If we radially throw

a test particle at t = 0, it will follow the continuous yellow arrow. This solution can be formally

extended into the bottom right quadrant, which corresponds to a WH, and is the time reversed

(horizontal flip) of the BH solution. A particle can escape the event horizon of the WH (dashed yellow

arrow), but only before it is thrown! This violates causality and is therefore not a physical solution.

With a vertical flip, the solution could be maximally extended to a negative radius X < 0. But this

generates a disconnected external space (yellow region), which is also not part of the original solution.

Here we will study the more realistic case of classical Lemaitre–Tolman–Bondi (LTB)
solutions, which include the FLRW metric, the Oppenheimer–Snyder BH [11] and the
thin shell BH [12] as particular cases. For some reason, i.e., the difficulty of a black-
to-white hole bounce (see [13,14]), these solutions are usually investigated only as BH
collapsing solutions. As we will show, the same solutions also exist, in principle, as WH
solutions. The most famous of this is the expanding Big Bang model originally proposed
by Friedman in 1922 [15] and Lemaitre in 1927 [16]. However, at closer inspection, these
solutions need to be modified to include a surface term. After that correction, we show
that the WH correspond, in fact, to BH expanding solutions. Our argument is supported
by considering surface terms in the Einstein–Hilbert action of classical GR and also by the
recent observation that our cosmic expansion is accelerating.
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2. LTB Solutions

The most general metric with spherical symmetry in spherical coordinates dxµ =
(dt, dr, dθ, dφ) can be written as [17]:

ds2 = −A(t, r) dt2 + B(t, r) dr2 + R2(t, r)dΩ
2. (2)

Other common notation is: A ≡ eν, B ≡ eλ and R2 ≡ eu [11,18,19]. An alternative to this
uses proper time dxµ = (dτ, dχ, dθ, dφ):

ds2 = −dτ2 + eλ(τ,χ)dχ2 + r2(τ, χ)dΩ
2, (3)

where the radial coordinate χ can be comoving or not (because its evolution can be en-
coded in the λ and r functions). This last metric is sometimes called the Lemaitre–Tolman
metric [16,18] or the Lemaitre–Tolman–Bondi or LTB metric. A metric such as this one, ex-
pressed with g00 = 1 and g0µ = 0 is called synchronous (or in a synchronous frame) because
time lines are geodesics. Either way, it is possible to express the spherical symmetric metric
with two functions. The best form in each case depends on the energy content and the
observer’s frame. In all cases, this is a local metric around a reference central point in space
which we have set to be the origin (~r = 0).

The advantage of using the proper time and an observer moving with a perfect fluid
is that the stress tensor becomes diagonal: Tν

µ = diag[−ρ, p, p, p], where ρ = ρ(τ, χ) is the
energy density and p = p(τ, χ) is the pressure. We will focus here in the matter-dominated
case p = 0 for simplicity, but we expect similar results to apply to more general situations
(see [20]). The solution to the field equation 8πGT1

0 = G1
0 = 0 is λ̇r′ = 2ṙ′, where dots and

primes correspond to time τ and radial χ partial derivatives. This equation can be solved
as eλ = Cr′2, where C = C(χ) is an arbitrary function of χ. The choice C = 1 corresponds
to the particular flat geometry case:

ds2 = −dτ2 + [∂χr]2dχ2 + r(τ, χ)2dΩ
2, (4)

The solution for r in this case is easily found:

H2 ≡ r−2
H ≡

(

ṙ

r

)2

=
2GM

r3
(5)

M ≡ 4π
∫ χ

0
ρ(τ, χ)r′r2dχ = M(χ) (6)

The above expression reproduces the Newtonian energy conservation in free fall: 1
2 ṙ2 =

GM/r [21] and corresponds to an expanding or collapsing relativistic spherical ball.
When ρ = ρ(τ) is uniform, we find r = a(τ)χ so that Equation (4) reproduces the flat
FLRW metric:

ds2 = −dτ2 + a2(τ)
[

dχ2 + χ2dΩ
2
]

, (7)

and Equation (5) reproduces the corresponding solution 3H2 = 8πGρ. The next simplest
solution to Equation (5) is that of the FLRW uniform cloud with a fixed total mass MT :

MT ≡
∫

∞

0
ρ 4πr2(∂χr)dχ (8)

The solution is r = aχ as in the standard FLRW metric but with a boundary at R(τ) ≡
a(τ)χ∗ above which (χ > χ∗) we have empty space: ρ = 0.

This is a consequence of Birkhoff’s theorem [22] (or Gauss’ law in non relativistic me-
chanics), since a sphere cut out of an infinite uniform distribution conserves the same
spherical symmetry and the solutions are independent of what is outside. If the outer
region is empty space, we just recover the static Schwarzschild solution outside and the
FLRW metric inside. Thus, the FLRW metric is both a solution to a global homogeneous
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(i.e., MT = ∞) uniform background and also to the inside of a local (finite MT) uniform
sphere centered around one particular point. The local solution is called the FLRW cloud
(FLRW*) [20]. As we will show next, the LTB solution could in principle be viewed as a BH
or a WH, depending on whether the FLRW metric is expanding or collapsing.

A timelike radial geodesic (dχ = 0) in the FLRW cloud has a mass-energy M inside
χ which is independent of τ. Such fixed comoving coordinate χ = χ∗ corresponds to a
system with a fixed mass MT inside (see also [23]), which expands or collapses following
the Hubble–Lemaitre law of Equation (5).

From Equation (5), we have H = HS(a/aS)
−3/2 = ±1/τ, where HS is just the value at

some arbitrary time (a = aS), when R intersects rS, so that rS = aSχ∗ = 1/HS = ±2GMT .
This solution is time reversible and the evolution can cross rS in both directions. This is a
well known solution which includes the Oppenheimer–Snyder BH collapse [11] and the
thin shell BH [12]. However, note that when R < rS, we have R > rH (or Ṙ > 1), which
creates a region between R > r > rH which is acausal during expansion (this is the well
known horizon problem in the standard Big Bang cosmology). We can also reproduce the
same LTB (or FLRW*) solution using junction conditions to verify that the exterior of rS

is indeed a classical (Schwarszchild) BH despite the looks of Equation (4). The original
derivation [20] is reproduced here in Appendix A (with some typos corrected) for reference.

To show that this solution actually crosses the gravitational radius rS, we can estimate
the event horizon (EH), REH , of the FLRW* metric. This is the maximum distance that a
photon emitted at time τ can travel following an outgoing radial null geodesic [24]:

REH = a(τ)
∫

∞

τ

dτ

a(τ)
= a

∫

∞

a

da

H(a)a2
(9)

For H ∼ a−3/2, we have REH ∼ a3/2, which grows unbounded with a and therefore crosses
rS, as shown by the dashed red line in Figure 2.

The case HS < 0 corresponds to a collapsing solution, and therefore, a BH. This
collapsing solution is protected by the Equivalence principle, as a free fall test particle at
r > R is equivalent to a particle moving in empty space and can therefore cross rS. The case
HS > 0 is expanding and is what we have labeled as a WH solution. It just corresponds to a
fluid expanding inside rS. However, what is strange about this solution is that information
can actually escape from the interior to the exterior of rS, which is contrary to all that we
have learned about BHs and causality. How is that possible?

The standard objection to this paradox is that this expanding configuration can never
be achieved. This is reflected in the fact that R > rH is not causally connected to its past (the
so called horizon problem), which is a similar objection to the one for WH interpretation
of the Schwarzschild solution, as discussed in the introduction. Note that this expanding
solution corresponds to the matter-dominated Big Bang solution, which is very close to

current observations 1. This is why it is often said that the Big Bang is a WH 2.
Here, we argue that this expanding WH solution is not correct. This is not because

it cannot be achieved (as illustrated by the existence of our own observed universe). But
because the gravitational radius rS should be interpreted as a boundary that separates
the interior from the exterior manifold. This is strictly the case if the exterior is empty

space (as we have assumed here) 3. Such boundary requires that we change the GR field
equations. Appendix B reproduces the original calculation in [20,25] that shows that the
Gibbons–Hawking–York (GHY) boundary in the action corresponds to an effective Λ term:
Λ = 3/r2

S. We will show next how this boundary term transforms the WH solution into a
BH solution.
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Figure 2. Event horizon in Equation (9) as a function of cosmic time (given by the scale factor a) for

a matter-dominated FLRW metric (Ωm = 1, ΩΛ = 0, dashed red line) and for one which also has a

Λ = 3/rS term (Ωm = 0.25, ΩΛ = 0.75, continuous red line).

How a WH Turns into a BH

Let us next consider how the derivation presented in Appendix A, which assumed
Λ = 0, changes when including an effective Λ term: Λ = 3/r2

S inside rS (as suggested by
the GHY boundary argument given above). Such Λ term does not change the form of the
FLRW metric itself, but (as it is well known) it changes the field equations and therefore the
solution to expansion rate 3H2 = 8πGρ + Λ. But the Λ term does change the form of the
Schwarszchild solution and metric inside. The solution now is the deSitter—Schwarzschild
metric: F = 1 − rS/R − R2/r2

S. Thus, to find the new junction, we just need to replace F in
the definition of β in Equation (A4). The new second junction condition then becomes:

R =

[

r2
Hr3

S

r2
S − r2

H

]1/3

or H2 =
rS

R3
+

1

r2
S

(10)

which is exactly the new Hubble law with Λ = 3/r2
S and a constant mass M = 4/3πρR3

in Equation (6). This shows that the LTB (or FLRW*) expanding metric is also a solution
to the new field equations with the rS boundary. However, this solution is no longer a
WH, but has become a BH. We can check this by estimating the new EH in Equation (9),
now including the effective Λ term in H. The new estimation for REH is displayed as a red
continuous line in Figure 2. As can be seen, the EH is trapped inside rS, which indicates
that no information can escape. The WH solution has now turn into a BH.

3. Conclusions

We have shown that classical WH solutions in GR can be turned into an expanding
BH solutions once we account for the fact that the gravitational radius rS corresponds to a
boundary condition in the action of GR.

The matter-dominated case study here is a very good approximation for our universe,
because in the later stages of its evolution, it is totally dominated by mater and the effective
Λ = 3/r2

S. This could also be in general a good approximation for stellar or supermassive
BHs with uniform density and pressure because as a → ∞ inside, matter and Λ always
dominate. The characteristic gravitational time is quite short:

τ ∼ GM ≃ 1.1 × 10−13 M

M⊙
yr , (11)
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so, even for a super massive BH (M ∼ 109M⊙), time is measured in seconds or hours.
In astronomical time-scales, the evolution is quickly dominated by the effective Λ = 1/r2

S
term inside. This, by the way, explains the coincidence problem in our Universe [26].

If we think of experimental cosmology before the year 2003 (i.e., ignore cosmic ac-
celeration for a minute), the LTB expanding WH solution in Equation (5) (with H > 0)
agrees very well with all the observations at that time, which favored a matter-dominated
universe (the so called EdS universe with Ωm = 1). This is why some people still say that
the Big Bang is a WH. However, today, we know that the universe has an effective Λ term,
and this indicates that we are inside a BH [20,27]. Here, we interpret the observed Λ to be
an effective term that corresponds to the gravitational radius rS =

√
3/Λ = 2GMT of our

local universe. Such BH Universe (BHU) could be within a larger background that may or
may not be totally empty. In the later case, rS will increase because of accretion from the
outside. This case needs to be studied in more detail, but it could result in an effective Λ

term that slowly decreases with time.
In terms of the proper coordinate radius r in Equation (5), the universe seems to enter

a phase of cosmic acceleration because of the effective Λ = 3/r2
S term. However, this

description is coordinate (or gauge) dependent. In terms of the more physical REH radius
in Equation (9), the effect of rS (or Λ) is, in fact, to decelerate events and bring cosmic
expansion to a halt or frozen state.

This is illustrated in Figure 2. The case with a dashed line (Λ = 0) represents the
always accelerating solution (R̈EH > 0), whereas the case of the continuous line (with
Λ 6= 0) becomes a decelerating solution that asymptotically stops (R̈EH < 0) at REH = rS.
Thus, events in the universe decelerate (and not accelerate) because of Λ. It is therefore
more appropriate to say that our physical universe is decelerating and it is described by
an expanding metric inside a BH and not by a WH solution. This same conclusion also
applies to the most general BH (or time reverse WH) solutions described by the spherically
symmetric metric of Equation (4) with finite mass in Equation (6): the solutions are always
trapped BH and not WH solutions.

Funding: This work was partially supported by grants from Spain Plan Nacional (PGC2018-102021-

B-100) and Maria de Maeztu (CEX2020-001058-M) and from European Union LACEGAL 734374 and

EWC 776247. IEEC is funded by Generalitat de Catalunya.

Data Availability Statement: No new data are presented.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Timelike Junction

To match the FLRW metric in Equation (7) to the Schwarszchild metric in Equation (1),
we chose a timelike 3D surface Σ that is fixed in comoving coordinates at χ = χ∗. Thus,
Σ corresponds to a spherical shell with radius R = aχ∗ that follows a radial geodesic
trajectory. The interior of such shell corresponds to a FLRW cloud of fixed mass MT that
is expanding or contracting. We use 3D indexes (α, β) to label the matching shell. We can
then take the 3D subset of FLRW coordinates dyα = (dτ, dδ, dθ) as cordinates in the shell,
so that the induced metric, h−αβ, is:

ds2
Σ− = h−αβdyαdyβ = −dτ2 + a2(τ)χ2

∗ dΩ
2 (A1)

Since we have spherical symmetry, we take the solid angle dΩ and the angular coordinates
to be the same in the FLRW and the Schwarszchild metrics. Thus, the only remaining vari-
able is the FLRW comoving time τ. For the outside Schwarszchild frame with coordinates
dxµ = (dt, dr, dδ, dθ) in Equation (1), the same junction Σ

+ is described by some unknown
functions r = R(τ) and t = T(τ), where t and r are the time and radial coordinates in the
physical Schwarszchild frame of Equation (1). We then have:

dr = Ṙdτ ; dt = Ṫdτ, (A2)
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where the dot here refers to τ time derivatives. The induced metric h+ estimated from the
outside BH Schwarszchild metric (in Equation (1)) becomes:

ds2
Σ+ = h+αβdyαdyβ = −Fdt2 +

dr2

F
+ r2dΩ

2

= −(FṪ2 − Ṙ2/F)dτ2 + R2dΩ
2 (A3)

where we have used F ≡ 1 − rS/R to simplify the following equations. Comparing
Equation (A1) with Equation (A3), we can see that the matching condition h− = h+ results
in

R(τ) = a(τ)χ∗ ; FṪ =
√

Ṙ2 + F ≡ β, (A4)

so that given a(τ) and χ∗ in the FLRW metric, we can simply find both R(τ) and β(τ)
from the above equations. The second matching condition is that the derivative of the two
metrics must also be continuous at Σ. This requires that the extrinsic curvature K± normal
to Σ is the same from each side of the hypersurface (Σ±) as

Kαβ = −[∂anb − ncΓ
c
ab]e

a
αeb

β (A5)

where na is the 4D vector normal to Σ and ea
α = ∂xa/∂yα. Thus, ua = ea

τ = (1, 0, 0, 0) is
the outward 4D velocity and n− = (0, a, 0, 0) is the normal to Σ

− on the inside. On the
outside, ua = (Ṫ, Ṙ, 0, 0) and n+ = (−Ṙ, Ṫ, 0, 0). We thus have naua = 0 and nana = +1,
as expected for a timelike surface, from both from the inside n− and from the outside n+.
The extrinsic curvature, K−, estimated for the inside FLRW metric is then:

K−
ττ = −(∂τn−

τ − aΓ
χ
ττ)e

τ
τeτ

τ = 0

K−
θθ = aΓ

χ
θθeθ

θeθ
θ = −aχ∗ = R (A6)

where we have used the Christoffel symbols for the FLRW:

Γ
τ
ττ = Γ

τ
τχ = Γ

χ
ττ = Γ

χ
χχ = 0 ; Γ

τ
θθ = −a2χ2

∗H

Γ
χ
τχ = Γ

τ
χχa−2 = −H ; Γ

χ
θθ = χ∗ (A7)

The extrinsic curvature K+ estimated for the outside Schwarszchild metric:

K+
ττ = R̈Ṫ − ṘT̈ +

ṪrS

2R2F
(Ṫ2F2 − 3Ṙ2) =

β̇

Ṙ

K+
θθ = ṪΓ

r
θθ = ṪFR = βR (A8)

where we have used the definition of β in Equation (A4) and the Christoffel symbols for
the Schwarszchild metric:

Γ
t
tt = Γ

r
tr = Γ

t
θθ = 0 ; Γ

r
θθ = FR ; (A9)

Γ
t
tr = −Γ

r
rr = Γ

r
ttF

−2 =
rS

2FR2

Note how Kδδ = sin2 θKθθ , so that K−
δδ = K+

δδ follows from K−
θθ = K+

θθ . Comparing
Equation (A6) with Equation (A8), the second matching condition: K−

αβ = K+
αβ requires

β = 1, which using Equation (A4), results in

R =
[

r2
HrS

]1/3
(A10)

This just reproduces the LTB (or FLRW*) in Equation (5) with M = MT inside R in
Equation (6). The time equation is Ṫ = (1 − R2H2)−1.
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Appendix B. The GHY Boundary Term

The Einstein–Hilbert action is given by [17,28–30]:

S = S4 ≡
∫

V4

dV4

[

R − 2Λ

16πG
+ L

]

, (A11)

where V4 is the volume of the 4D spacetime manifold, dV4 =
√−gd4x is the invariant

volume element, R = gµνRµν is the Ricci scalar and L is the energy-matter Lagrangian.
Einstein’s field equations can be obtained for the metric field gµν by requiring S to be
stationary (δS = 0) under arbitrary variations of the metric δgµν. The solution is well
known [17,30,31]:

Gµν + Λgµν = 8πG Tµν ≡ −16πG√−g

δ(
√−gL)
δgµν ,

where Gµν ≡ Rµν − 1
2 gµνR. This solution requires that boundary terms vanish (e.g.,

see [17,19,32]). Otherwise, we need to add a Gibbons–Hawking–York (GHY) boundary
term [33–35] to the action S = S4 + SGHY, where:

SGHY =
1

8πG

∮

∂V4

d3y
√
−h K. (A12)

where h is the induced metric and K is the trace of the extrinsic curvature at the boundary
∂V4. Since the expansion inside an isolated BH is bounded by the event horizon r < rS, we
need to add this GHY boundary term SGHY to the action. The integral is over the induced
metric at ∂V4, i.e., Equation (A1) with ∂V4 = Σ

− at R = rS:

ds2
∂V4

= hαβdyαdyβ = −dτ2 + r2
SdΩ

2 (A13)

We use Equation (A6) to estimate K:

K = Kα
α =

Kθθ

R2
+

Kδδ

R2 sin2 θ
= − 2

R
= − 2

rS
. (A14)

We can now estimate SGHY:

SGHY =
1

8πG

∫

dτ 4πr2
S K = − rS

G
τ (A15)

The contribution of Λ to the action in Equation (A11) is

SΛ = − Λ

8πG
V4 = −

r3
SΛ

3G
τ (A16)

where we estimated the 4D volume V4 as that bounded by ∂V4 inside r < rS: V4 = 2V3τ.
The factor of two here accounts for the fact that V3 = 4πr3

S/3 can be covered twice (both
during collapse and during expansion).

We can then see that we need Λ = 3r−2
S , or equivalently, rΛ = rS, to cancel the

boundary term. In other words: a Λ term in the field equations can be induced by the
evolution inside a BH event horizon.

Notes

1 This is the case only if we ignore cosmic acceleration or if we consider an observer in a galaxy far away (say at z = 2), when

matter domination was an excellent approximation.
2 Note that both a WH and a BH require a finite total mass. If MT is infinitely large, then rS = ∞ and there is no WH or BH. This in

fact the standard Big Bang assumption. But this assumption is impossible to implement, even with Inflation: using local laws of

gravity we have to create a uniform space of infinite extend within a finite amount of time.
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3 Even if the exterior is not totally empty and there is some small accretion from the outside, the value of rS will slowly increase as

the BH mass increases. But the rS boundary still needs to be taken into account to evaluate the action inside.
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