EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

ALICE-PUBLIC-2024-003 18 September 2024

Supplemental figures: Measurement of the inclusive isolated-photon production cross section in pp and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration*

Abstract

The following note presents supplemental figures and additional material for the paper: "Measurement of the inclusive isolated-photon production cross section in pp and Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV" [1]. A description of the calorimeter cell clusterization algorithm and cell selection for the shower spread calculation is presented. Supplementary figures are provided: shower shape distributions, including the effect on the variation of the cross-talk emulation parameters in the simulation; the underlying event subtraction with different area definitions; and isolated photon efficiency. Systematic uncertainty summary tables and figures are presented. The purity calculation method is described. The shower shape and isolation momentum correlation effect on the purity calculation is discussed. Purity fit values are provided. Dedicated cross section, ratio data-to-theory, and R = 0.2 over R = 0.4 ratio plots for the Pb–Pb collisions centrality class 50–90% are presented. A comparison to the Z⁰ boson results from CMS is shown. Finally, the ratio of cross sections in Pb–Pb collisions central to semi-central or semi-peripheral is also included.

© 2024 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

^{*}See Appendix A for the list of collaboration members

Contents

1	Clus	Clusterisation algorithm				
2	Sho	wer shape and cross-talk emulation	3			
3	Part	ticle isolation	5			
	3.1	Underlying event estimation with different areas	5			
	3.2	Isolated photon efficiency per selection criterum	8			
	3.3	Cumulative isolation fraction	8			
4	Puri	ity: The ABCD method	11			
	4.1	Method	11			
	4.2	Shower shape–isolation momentum correlation: Shower shape double ratios of isolated to anti-isolated and data over simulation	13			
	4.3	Sigmoid fits	15			
5	Syst	ematic uncertainties	17			
	5.1	Purity, cross section, and normalisation	17			
	5.2	pp collisions cross sections ratio at different centre-of-momentum energies	23			
	5.3	Ratio of yields with different cone radius	23			
	5.4	Nuclear modification factor	23			
6	Rest	ults	26			
	6.1	Nuclear modification factor using pQCD NLO as pp collisions	26			
	6.2	Pb–Pb collisions 50–90% centrality class	27			
	6.3	Nuclear modification factor in ALICE and CMS	30			
	6.4	Comparison of the isolated photon and Z boson cross section and nuclear modification factor as a function of the centrality class: Check of the binary scaling factor	31			
	6.5	Ratio of isolated-photon cross sections in Pb–Pb collisions: central to semi-central or semi-peripheral	32			
A	The	ALICE Collaboration	37			

Particles deposit their energy in several calorimeter cells, forming a cluster. Clusters are obtained by grouping all cells whose energy is above 100 MeV and share common sides, starting from a seed cell, which has an energy deposit of at least 500 MeV. Because of the large particle multiplicity and contribution of the underlying event, contributions from several particles can easily be merged into the same cluster. This is especially important in central heavy-ion collisions. To avoid this, an additional condition has been applied with respect to previous measurements of isolated photons to restrict the growth of the cluster: cells are only added to the cluster if the cell energy decreases when moving away from the seed cell. Although this condition was targeted to Pb–Pb collisions, it has also been applied to the pp measurements presented here for consistency. Unfortunately, reconstructing the clusters this way also prevents the neutral meson decays into two photons from being merged into a single cluster and recognised as meson decays. This results in losing the ability to remove the clusters produced by meson-decay photons when the distance between shower edges is larger than a calorimeter cell size, i.e. when the energy is below 20 GeV for the π^0 , or below 40 GeV for the η . A way to circumvent this problem is presented in Sect. 3.2 of Ref. [1]: the cluster energy spread dispersion (shower shape, σ_{long}^2 [1, 2]) is calculated in a 5×5 window centred at the highest energy cell of the cluster. Figure 1 schematically shows the cell cluster selection in this measurement for the cluster energy and position (V2) and the shower shape calculation (5×5) .

Fig. 1: (colour online) Schematic view of the cell energy repartition of two high-energy decay photons from a neutral meson, each centred in the black-filled cells, on top of a high-multiplicity low-energy particle underlying event environment, the lightest blue cells. The grey lines are the contour of cells selected restricting the growth of the cluster (V2) used here to calculate the cluster energy and position. The orange square is the 5×5 region around the highest-energy cell used for the shower shape calculation, excluding cells that only have a common corner, red crossed. The red dotted lines are the contour of a cluster without growth restriction (V1), as used in previous pp and p–Pb isolated photon analyses [3–5].

2 Shower shape and cross-talk emulation

Figure 2 shows the $\sigma_{\text{long, 5\times5}}^2$ distribution versus p_T for inclusive clusters in the five Pb–Pb collisions centrality bins and in pp collisions with the corresponding selection limits. Additional centrality classes are included here with respect the equivalent figure in Ref. [1]. One can appreciate the photon and π^0 bands in all the frames, even hints of the η band at high p_T .

The cross talk between cells modifies the shower shape distribution, widening the single-photon-cluster peak distribution to $\sigma_{\text{long, 5\times5}}^2$ values larger than 0.25, as discussed in detail in Ref. [2]. This effect was modelled in the simulation by adding, for a given cell, a small fraction of its energy E_{cell} into the surrounding cells with energy $E_{i,j}$ (column *i*, row *j* with respect to the reference cell) in the same T-Card. The induced energy is then $E_{i,j}^{\text{ind}} = F^{\text{ind}}E_{\text{cell}}$, with $F^{\text{ind}} = \mu_1 + \mu_2 E_{\text{cell}}$ where μ_1 and μ_2 depend on the supermodule. If F^{ind} is above or below a given value $F_{\text{max}}^{\text{ind}}$ or $F_{\text{min}}^{\text{ind}}$, respectively, those values are used instead. Each resulting $E_{i,j}^{\text{ind}}$ is smeared by a Gaussian random distribution with width σ_{ind} . Additionally, the amount of induced energy is limited for lower energies in order not to provoke additional cluster nonlinearity, by requiring: $E_{i,j} + E_{i,j}^{\text{ind}} > 100$ MeV, the same limit as the clusterisation minimum cell energy. Finally, the total induced energy after smearing in the nearby T-Card cells is subtracted from the

Fig. 2: (colour online) Inclusive-cluster $\sigma_{\log_2, 5\times 5}^2$ distribution (basic cluster selection plus track–cluster association rejection for Pb–Pb collisions) as a function of p_T in data for pp (lower right frame) and Pb–Pb collisions for five different centrality classes. The dotted line corresponds to the tight value of the upper selection limit for single photon candidate clusters (narrow clusters) and the dashed line corresponds to a looser photon upper selection used in Pb–Pb collisions below 18 GeV/c. The dotted-dashed line corresponds to the narrow cluster's lower limit.

main signal cell, $E_{cell}^{final} = E_{cell} - \Sigma E_{i,j}^{ind}$, so that the energy scale is conserved. The cross-talk parametrisation obtained from pp collisions in Ref. [2] is found to induce a too-strong shape modification in Pb–Pb central collisions. Decreasing the F_{min}^{ind} limit by a factor two with respect to [2] has been found to result in a better agreement between data and simulation for central as well as peripheral Pb–Pb collisions, without worsening the agreement in pp collisions. The final cross-talk emulation parameters used in the simulation are summarised in Table 1.

 Table 1: Parameters used in the cross talk emulation in the simulation (see text), for the different groups of supermodules.

	group 1	group 2	group 3	group 4
SM number	3, 7	1, 10	0, 2, 4, 5, 6, 11	8,9
	-	-	12, 13, 16	14, 15, 17, 18, 19
F_{\min}^{ind}	0.3%	0.25%	0.235%	0.175%
$F_{\rm max}^{\rm ind}$	1.8%	1.6%	1.6%	1.6%
μ_1	1.2%	1.2%	1.15%	0.8%
μ_2 (GeV ⁻¹)	-0.11%	-0.11%	-0.11%	-0.11%
$\sigma_{ m ind}$	0.5%	0.5%	0.5%	0.5%

Figure 3 shows a projection of the inclusive-cluster $\sigma_{long, 5\times 5}^2$ distribution from data in Fig. 2 and simulation (γ -jet plus jet-jet PYTHIA 8) for a low- and a high- p_T interval and for central Pb–Pb collisions and pp collisions: a reasonable description is achieved in simulation after including a modelling at the cell energy level of the electronics cross talk introduced in Sect. 2. This new modelling that is used for this measurement, is compared to the one used in previous ALICE measurements [3, 4, 6] and also compared without the modelling for the full simulation including signal and background or only signal. One can appreciate the better agreement of the new modelling and how the cross talk changes the shower shape distribution width from the ideal case without modelling.

Fig. 3: (colour online) Inclusive-cluster $\sigma_{\log_{2}, 5\times 5}^{2}$ distribution in data (black bullets) and PYTHIA 8 simulation (jet–jet+ γ –jet processes). Three different treatments of cross talk (x-talk) considered in the simulation: "no x-talk" (open red squares); "x-talk high" (open magenta squares), stronger cross talk obtained for the previous isolated-photon measurements [2–4]; and "x-talk" (open blue squares), obtained for this measurement. The four panels display these distributions for two selected cluster $p_{\rm T}$ ranges, $12 < p_{\rm T} < 14$ GeV/*c* on the left and $40 < p_{\rm T} < 60$ GeV/*c* on the right, and two collision systems: pp (top) and Pb–Pb 0–10% central (bottom). The simulation is also shown for signal prompt γ ($\gamma^{\rm prompt}$) for the different x-talk cases (lines with the same colour code as for the full simulation). The tight narrow cluster range maximum value $\sigma_{\log_{2}, 5\times 5}^{2} = 0.3$ or 0.392 (corresponding to $\sigma_{\max}^{2}(13 \text{ GeV/}c)$) is shown on all plots as a dotted or dashed vertical line, respectively.

3 Particle isolation

3.1 Underlying event estimation with different areas

The isolation momentum is the sum of the transverse momenta of all the charged tracks (ch) that fall into the cone, from which an estimation of the underlying event (UE) tracks entering the cone is subtracted

$$p_{\rm T}^{\rm iso, \ ch} = \sum p_{\rm T}^{\rm track} - \pi \times R^2 \times \rho_{\rm UE}.$$
 (1)

where $\rho_{\rm UE}$ is the UE track $p_{\rm T}$ density.

The ρ_{UE} is estimated event-by-event by summing the track p_{T} in a rectangular area called " η -band" centred around the azimuth φ^{γ} of the candidate cluster. Its short side has a width $\Delta \varphi = \varphi^{\text{track}} - \varphi^{\gamma}$ that depends on *R* while its long side covers the full track acceptance: $|\eta| < 0.9$. Other areas were also considered: a φ -band that covers the same η region as the isolation-cone radius but covers $\Delta \varphi = \pi$, limited to avoid the jet emitted in the opposite direction with respect to the photon candidate; perpendicular bands that cover the same area as the φ -band but centred at $\varphi = \pm \pi/2$ from the photon; cones perpen-

dicular to the isolated-photon candidate; and the FASTJET jet area/median package [7]. For the η -band and φ -band, an additional gap between the isolation cone and the UE estimation area is considered, $\Delta R_{\text{UE gap}} = 0.1$, to avoid jet remnants contribution as described in Ref. [1]. See a schematic description of all the areas and the gap in Fig. 3 of Ref. [1].

Figure 4 shows the $p_T^{\text{iso, ch}}$ distribution for the different studied UE estimators for narrow clusters, $0.1 < \sigma_{\log, 5 \times 5}^2 < 0.3$, for PYTHIA 8 [8–10] simulations of γ -jet events embedded into minimum bias data. Figure 5 shows the distributions for wide clusters, $0.4 < \sigma_{\log, 5 \times 5}^2 < 2$ for data and PYTHIA 8 simulations of jet-jet events embedded into Pb–Pb MB data, repectively.

The distributions obtained show that the various methods have similar performances, but the distributions for perpendicular cones and bands are wider, and the mean of the distribution of φ -band, jet-median and the perpendicular methods tends to be lower than zero for narrow clusters in the embedded signal simulation, unlike the η -band. All these methods are also more sensitive to the anisotropy in particle azimuthal distributions induced by the elliptic flow [11] in the area inspected, which could cause the observed differences. For this reason, they are not used as default.

Figure 6 shows the resulting $p_T^{iso, ch}$ distribution in data and embedded signal simulation after subtracting the UE estimated with the η -band for pp and Pb–Pb collisions in five centrality classes. This figure complements Fig. 5 of Ref. [1] by showing the distributions for all centrality classes.

The mean of the distributions for wide clusters in embedded jet–jet simulations (Fig. 5) tends to be larger than zero as expected due to the contribution of jet particles inside the cone since those clusters likely originate from a jet. In data, for narrow clusters (Fig. 6), the distributions are less shifted but the right tail of the distribution is higher also due to the contribution of jet particles, unlike in the γ -jet embedded simulation distributions (Fig. 4) which are symmetric with respect to the maximum of the distribution, as expected.

The width of the distribution is larger for R = 0.4 (lower panels) than for R = 0.2 (upper panels), due to the larger UE fluctuations in the isolation cone. For the same reason, the width decreases when moving to more peripheral collisions. The result of a Gaussian fit over the γ -jet simulation points using the η -band is reported in Table 2.

Table 2: Width of $p_T^{\text{iso, ch}}$ distributions shown in Fig. 6, estimated via the standard deviation σ of a Gaussian parametrisation to the data and PYTHIA 8 γ -jet simulation (embedded to MB data for Pb–Pb collisions), and for R = 0.2 and R = 0.4.

System	σ (GeV/ <i>c</i>) for $R = 0.2$	σ (GeV/ <i>c</i>) for $R = 0.4$
0–10% Pb–Pb	4.994 ± 0.004	12.278 ± 0.014
10-30% Pb-Pb	3.628 ± 0.003	9.015 ± 0.007
30-50% Pb-Pb	2.143 ± 0.001	5.466 ± 0.004
50-70% Pb-Pb	0.837 ± 0.002	2.569 ± 0.009
70–90% Pb–Pb	0.322 ± 0.001	1.005 ± 0.002
pp	0.1634 ± 0.0004	0.467 ± 0.002

Fig. 4: (colour online) In γ -jet PYTHIA 8 simulation embedded into MB Pb–Pb data, $p_T^{\text{iso, ch}}$ distribution for different UE estimation areas described in the text, $p_T > 12 \text{ GeV}/c$ and narrow clusters with $0.1 < \sigma_{\text{long, }5\times5}^2 < 0.3$ in Pb–Pb central (left), semi-central (middle) and peripheral (right) collisions for R = 0.2 (top) and R = 0.4 (bottom).

Fig. 5: (colour online) In jet–jet PYTHIA 8 simulation embedded into MB Pb–Pb data, $p_T^{iso, ch}$ distribution for different UE estimation areas described in the text, $p_T > 12 \text{ GeV}/c$ and wide clusters with $0.4 < \sigma_{long, 5\times 5}^2 < 2$ in Pb–Pb central (left), semi-central (middle) and peripheral (right) collisions for R = 0.2 (top) and R = 0.4 (bottom).

Fig. 6: (colour online) $p_{\rm T}^{\rm iso, ch}$ distribution for narrow clusters with $0.1 < \sigma_{\rm long, 5\times5}^2 < 0.3$ for $p_{\rm T} > 16$ GeV/*c*, in pp (lower right frame) and Pb–Pb collisions in five centrality classes, with R = 0.2 (black bullets) and R = 0.4 (blue squares), in data (full markers) and simulated PYTHIA 8 γ –jet processes (open markers), embedded into data in case of Pb–Pb collisions.

3.2 Isolated photon efficiency per selection criterum

The different analysis selection criteria determine the overall efficiency. Different efficiencies can be considered depending on the selection criteria: reconstruction ε^{rec} (inclusive clusters selection), photon identification ε^{id} (shower shape selection), and isolation ε^{iso} . They are calculated as the ratio of p_T^{γ} spectra, where the denominator is the number of generated photons $dN_{\gamma}^{\text{gen}}/dp_T^{\text{gen}}$, and the factors in the numerator are the reconstructed spectra after different selection criteria, $dN_{\text{cut}}^{\text{rec}}/dp_T^{\text{rec}}$. Figure 7 presents the different contributions as a function of p_T^{γ} for pp collisions and Pb–Pb collisions for all the centrality classes. This figure complements Fig. 7 of Ref. [1] where only two Pb–Pb centrality classes are shown, see the discussion on the efficiencies evolution with the selection criteria there. A smooth decrease of the different components of the efficiency can be appreciated from peripheral to central Pb–Pb collisions.

3.3 Cumulative isolation fraction

To decide the value of the isolation $p_T^{iso, ch}$ threshold, one can check how efficient the selection is on a known signal, γ -jet Monte Carlo simulation (MC) narrow clusters, and on background, data and jet-jet MC wide clusters. Figure 8 displays their selection cumulative probability for the two cone radii. The signal is largely accepted compared to the background in all systems if $p_T^{iso, ch}$ is selected smaller than a few GeV/c. However, there is a strong signal rejection in Pb–Pb collisions for the 0–10%, 10–30%, and 30–50% centrality classes. Comparing both cone radii, the discrimination power for the larger cone size (R = 0.4) is similar or a bit worse than that for R = 0.2 in central Pb–Pb collisions, but better in peripheral Pb–Pb and pp collisions at low $p_T^{iso, ch}$. The ratios of the distributions shown at the bottom of each panel, γ -jet simulation signal over the data or jet–jet simulation background, are rather constant until a certain $p_T^{iso, ch}$ value depending on the centrality: for central collisions to approximately 8 GeV/c and for peripheral Pb–Pb and pp collisions up to 2 to 3 GeV/c, above these values the ratio decreases. This indicates that the purity of the measurement will not significantly change below such values, while at higher p_T^{γ} the purity decreases. One can also observe that the distributions for wide clusters in data and background simulation do not match, this is due to the decay photon trigger in the jet-jet simulation.

Fig. 7: (colour online) Contributions from reconstruction, identification, and isolation to the total efficiency calculated using Eq. 7 of Ref. [1], as a function of the reconstructed photon p_T^{γ} for pp (lower right frame) and Pb–Pb collisions for five centrality classes. Green markers: reconstruction efficiency ε^{rec} . Red or brown markers: efficiency additionally due to the photon identification by shower shape selection $\varepsilon^{\text{rec}} \times \varepsilon^{\text{id}}$ or the isolation criterion $\varepsilon^{\text{rec}} \times \varepsilon^{\text{iso}}$. Blue markers: efficiency due to the isolation criterion and shower shape selection $\varepsilon^{\text{rec}} \times \varepsilon^{\text{id}} \times \varepsilon^{\text{iso}}$. Black markers: fraction κ^{iso} of generated photons which are isolated. Efficiency obtained from PYTHIA 8 simulations of γ -jet processes, embedded into Pb–Pb minimum bias data in the Pb–Pb case.

It can be concluded that using a tight $p_T^{iso, ch}$ selection value at $p_T^{iso, ch} < 1.5$ GeV/c like in previous pp and p–Pb analyses for all Pb–Pb centralities and in pp collisions is reasonable. A lower $p_T^{iso, ch}$ selection value would not provide much gain in background rejection power, would decrease the efficiency, and would complicate the comparison with theoretical predictions. Using a higher $p_T^{iso, ch}$ selection in central Pb–Pb collisions is possible, it would increase the efficiency of the measurement, but we prefer to use the same isolation selection criterion for all systems for simplicity.

Fig. 8: (colour online) Fraction of inclusive clusters with $14 < p_T < 16 \text{ GeV}/c$ that pass the isolation selection as a function of the isolation momentum threshold for R = 0.2 (left) and R = 0.4 (right), for data wide clusters, signal γ -jet MC for narrow clusters and background jet-jet MC (with a photon with at least 3.5 GeV/*c* in the calorimeter acceptance) with for wide clusters. For Pb–Pb simulations, MC clusters are embedded into minimum bias Pb–Pb data. From top to bottom, 0–10% Pb–Pb collisions, 30–50% Pb–Pb collisions, 70–90% Pb–Pb collisions and pp collisions. Lower frame in each panel: ratio of the distribution for γ -jet MC clusters over the distributions for wide clusters in data and jet–jet MC. Horizontal dashed line set at $p_T^{iso, ch} = 1.5 \text{ GeV}/c$.

4 Purity: The ABCD method

The isolated-photon candidate sample still contains a sizeable contribution from background clusters, mainly from neutral-meson decay photons. To estimate the background contamination, the same procedure as in Refs. [3, 4] is followed and presented here.

4.1 Method

Different classes of measured clusters were used: (1) classes based on the shower shape $\sigma_{\log_{2}, 5\times 5}^{2}$, i.e. *narrow* (photon-like) or *wide* (most often elongated, i.e. non-circular), and (2) classes defined by the isolation momentum $p_{T}^{iso, ch}$, i.e. *isolated* (iso) and *anti-isolated* (iso). The different classes are denoted by sub- and superscripts, e.g. narrow isolated clusters are denoted X_{n}^{iso} , and wide anti-isolated clusters as X_{w}^{iso} . The corresponding four classes A, B, C and D are represented schematically in Fig. 9 and on the measured distributions of $p_{T}^{iso, ch}$ versus $\sigma_{\log_{2}, 5\times 5}^{2}$ for two cone radii in Figs. 10 and 11.

Fig. 9: (colour online) Illustration of the parametric space of the photon isolation momentum and the shower width parameter (σ_{long}^2), used to estimate the background yield in the signal class (A) from the observed yields in the three control classes (**B**, **C**, **D**). The red regions indicate areas dominated by the background and the blue regions are those that contain the photon signal. The colour gradient between these regions illustrates the presence of a signal contribution in the three background regions. See Figs. 10 and 11 for examples of this in data.

The $\sigma_{\text{long, 5\times5}}^2$ parameter values for narrow and wide clusters correspond to the signal and background clusters introduced in Sect. 3.2 of [1]. The wide clusters (mostly background) correspond to clusters with $0.4 < \sigma_{\text{long, 5\times5}}^2 < 2$ in pp collisions, and Pb–Pb collisions when $p_T < 18$ GeV/c. When $p_T > 18$ GeV/c in Pb–Pb, clusters are considered wide when $0.1 + \sigma_{\text{max}}^2 < \sigma_{\text{long, 5\times5}}^2 < 2$, with p_T dependent limit $\sigma_{\text{max}}^2(p_T) = 0.6 - 0.016 \times p_T$. The narrow clusters (containing most of the signal) are those with $0.1 < \sigma_{\text{long, 5\times5}}^2 < 0.3$ in pp collisions, and Pb–Pb collisions when $p_T < 18$ GeV/c. When $p_T \ge 18$ GeV/c in Pb–Pb, clusters are considered narrow when $0.1 < \sigma_{\text{long, 5\times5}}^2 < \sigma_{\text{max}}^2$. The anti-isolation criterion was set to $4 < p_T^{\text{iso, ch}} < 25$ GeV/c for all systems: the lower limit was placed far from the $p_T^{\text{iso, ch}} < 1.5$ GeV/c signal isolation momentum threshold, to have a gap available for systematic studies.

The yield of isolated-photon candidates in this nomenclature is N_n^{iso} . It consists of signal (S) and background (B) contributions: $N_n^{iso} = S_n^{iso} + B_n^{iso}$. The contamination of the candidate sample is then $C = B_n^{iso}/N_n^{iso}$, and the purity is $P \equiv 1 - C$. It is assumed that the ratios of isolated over anti-isolated background is the same in the narrow clusters range (A and C) and in the wide clusters range (B and D) so that

$$\frac{B_{n}^{\rm iso}/B_{n}^{\rm iso}}{B_{w}^{\rm iso}/B_{w}^{\rm iso}} = 1.$$
(2)

Fig. 10: (colour online) The parametric space of the cluster isolation momentum and the shower width parameter $(\sigma_{\text{long, 5\times5}}^2)$ in data for R = 0.2 and $14 < p_T < 16 \text{ GeV}/c$, used to estimate the background yield in the signal class (A) from the observed yields in the three control classes (B, C, D). The dashed boxes indicate the limits of each class, the lower signal $p_T^{\text{iso, ch}}$ selection is open.

Assuming that the amount of signal in the background-dominated cluster classes is negligible compared to the background, the purity can be derived in a data-driven approach (dd) as

$$P_{\rm dd} = 1 - \frac{B_{\rm n}^{\rm iso}/N_{\rm n}^{\rm iso}}{B_{\rm w}^{\rm iso}/B_{\rm w}^{\rm iso}} = 1 - \frac{N_{\rm n}^{\rm iso}/N_{\rm n}^{\rm iso}}{N_{\rm w}^{\rm iso}/N_{\rm w}^{\rm iso}}.$$
(3)

Unfortunately, both assumptions are valid only approximately, especially Eq. (2). In PYTHIA 8 simulations with two jets imposed in the final state, meaning that there is only background in all of the four classes, an evaluation of Eq. (2) gives double-ratio values between 1 and 2 that strongly depend on $p_{\rm T}$, on the collision system, on the centrality, as well as on the background $p_{\rm T}^{\rm iso, ch}$ range selected for the anti-isolation. Since these deviations from unity are considered to be due to particle kinematics and detector response, the simulation can be used to estimate this bias

$$\left(\frac{B_{n}^{iso}/B_{n}^{iso}}{B_{w}^{iso}/B_{w}^{iso}}\right)_{data} = \left(\frac{B_{n}^{iso}/B_{n}^{iso}}{B_{w}^{iso}/B_{w}^{iso}}\right)_{MC}.$$
(4)

This implies replacing Eq. (2) by the relation given in Eq. (4), which leads to the expression of the MC-corrected purity

$$P = 1 - \left(\frac{N_{n}^{\overline{\text{iso}}}/N_{n}^{\overline{\text{iso}}}}{N_{w}^{\overline{\text{iso}}}/N_{w}^{\overline{\text{iso}}}}\right)_{\text{data}} \times \left(\frac{B_{n}^{\overline{\text{iso}}}/N_{n}^{\overline{\text{iso}}}}{N_{w}^{\overline{\text{iso}}}/N_{w}^{\overline{\text{iso}}}}\right)_{\text{MC}} \equiv 1 - \left(\frac{N_{n}^{\overline{\text{iso}}}/N_{n}^{\overline{\text{iso}}}}{N_{w}^{\overline{\text{iso}}}/N_{w}^{\overline{\text{iso}}}}\right)_{\text{data}} \times \alpha_{\text{MC}}$$
(5)

where the MC contains the combination of jet-jet and γ -jet counts scaled to their respective cross sections.

Fig. 11: (colour online) The parametric space of the cluster isolation momentum and the shower width parameter $(\sigma_{\text{long, 5\times5}}^2)$ in data for R = 0.4 and $14 < p_T < 16 \text{ GeV}/c$, used to estimate the background yield in the signal class (A) from the observed yields in the three control classes (B, C, D). The dashed boxes indicate the limits of each class, the lower signal $p_T^{\text{iso, ch}}$ selection is open.

4.2 Shower shape-isolation momentum correlation: Shower shape double ratios of isolated to anti-isolated and data over simulation

The difference between the degree of the correlation between isolation momentum and shower shape distribution in data and simulation is a potential source of bias, as it influences the validity of Eq. (4). To check this, the dependence of the double ratio

$$\frac{\left(N^{\rm iso}/N^{\rm \overline{iso}}\right)^{\rm data}}{\left(N^{\rm iso}/N^{\rm \overline{iso}}\right)^{\rm MC}} = f\left(\sigma_{\rm long, 5\times 5}^2\right) \tag{6}$$

on the shower shape width $\sigma_{long, 5\times5}^2$ is studied in a region where the signal contribution is expected to be negligible, i.e. large $\sigma_{long, 5\times5}^2$. If the correlation between the two variables is correctly reproduced in the simulation, the double ratio f should be independent of $\sigma_{long, 5\times5}^2$, and therefore, would be the same for wide and narrow background clusters. The double ratio was found to be above unity as shown in Figs. 12 and 13 for two p_T intervals, two isolation cone radii, and in the most extreme multiplicity cases, pp and central Pb–Pb, plus semi-central Pb–Pb to illustrate the evolution. The fact that the value of f exceeds unity indicates a larger isolation probability in data than in simulations. This is mainly due to an imperfect low p_T charged particle tracks MC performance and reconstruction effects leading to some discrepancy between data and simulation. Since the correction introduced by Eq. (5) relies on a narrow-over-wide clusters ratio, the overall normalisation in the double ratio of Eq. (6) is not relevant for this test. Note that the shift above unity in the figures is larger in pp collisions compared to Pb–Pb collisions because for the latter the simulation is embedded into real data and this reduces possible data versus simulation track performance effects. However, in the large $\sigma_{\log_{5},5\times5}^2$ region, $f(\sigma_{\log_{5},5\times5}^2)$ has a slope. Since the slope is a sign of possible bias induced by differences between data and simulation, a correction was estimated by extrapolating to the small $\sigma_{\log_{5},5\times5}^2$ region using a linear fit $p_0 + \sigma_{\log_{5},5\times5}^2 \times p_1$ performed in the range above $\sigma_{\log_{5},5\times5}^2 = 0.3$. This implies replacing the MC correction in Eq. (5) by a modified term

$$\alpha_{\rm MC} \longmapsto \alpha_{\rm MC} \times \left(\frac{p_0 + \sigma_{\rm long,n}^2 \times p_1}{p_0 + \sigma_{\rm long,w}^2 \times p_1} \right),\tag{7}$$

where $\sigma_{\log_n n}^2$ and $\sigma_{\log_n w}^2$ are the median values of the inclusive-cluster $\sigma_{\log_n 5\times 5}^2$ distribution in the narrow and wide ranges, respectively, and p_0 and p_1 are the parameters of the linear fit of the double ratio $f(\sigma_{\log_1 5\times 5}^2)$. These extrapolations have then been used in the estimate of the uncertainties of the purity in Sect. 4 of Ref. [1]. This contribution is called isolation probability uncertainty source in Ref. [1]. The uncertainty is obtained by the difference between the α_{MC} factors obtained without and with the calibration according to Eq. (7), changing the $\sigma_{\log_n 5\times 5}^2$ background region fit range: the average of the differences is used as uncertainty.

Fig. 12: (colour online) For each panel: Top, ratio of isolated and anti-isolated $\sigma_{\text{long, }5\times5}^2$ distribution in data and simulation; Bottom, the ratio of the two, $f(\sigma_{\text{long, }5\times5}^2)$. Top row for $12 < p_T < 14$ GeV/*c* and bottom row for $30 < p_T < 40$ GeV/*c*. Each row reports results for 0–10% (left) and 30–50% (middle) Pb–Pb collisions and pp collisions (right) for R = 0.2.

Fig. 13: (colour online) For each panel: Top, ratio of isolated and anti-isolated $\sigma_{\text{long}, 5\times 5}^2$ distribution in data and simulation; Bottom, the ratio of the two, $f(\sigma_{\text{long}, 5\times 5}^2)$. Top row for $12 < p_T < 14$ GeV/*c* and bottom row for $30 < p_T < 40$ GeV/*c*. Each row reports results for 0–10% (left) and 30–50% (middle) Pb–Pb collisions and pp collisions (right) for R = 0.4.

4.3 Sigmoid fits

To reduce the point-to-point statistical fluctuations in the purity used to correct the isolated-photon raw yield, the data points are fitted by two sigmoid functions to reproduce the shape of the distribution

$$f_{i, \text{ fit-sig}}(p_{\mathrm{T}}) = \frac{a_i}{1 + \exp(-b_i \times (p_{\mathrm{T}} - c_i))},$$
(8)

where *i* indicates two different fitting ranges, whose p_T limits depend on the collision system. The first fit is done from $p_T = 10-14$ to 40–60 GeV/*c* and the second fit from $p_T = 20$ to 80–140 GeV/*c*. This second fit is done only for the 0–10%, 10–30%, and 30–50% centrality classes of Pb–Pb collisions, where there are enough data points to reach above 60 GeV/*c* and obtain a reliable fit. The outcome of the second fit is applied as purity correction only above 60 GeV/*c*. In pp collisions, the fit is only done up to $p_T = 40$ GeV/*c*, but the fit result is extrapolated to $p_T = 80$ GeV/*c* since the last two p_T interval uncertainties are too large to obtain a reliable high- p_T fit. A slow rise with p_T can be expected in this range according to simulation studies and to the measurement in pp collisions at $\sqrt{s} = 13$ TeV, but the estimated size of the rise is covered by the uncertainties assigned.

The fit results are shown in Fig. 6 in Ref. [1]. The fit parameters are summarised in Table 3. The point uncertainties considered in the fit are the total uncertainties calculated as explained in Ref. [1]: The statistical and systematic uncertainty sources are added in quadrature to get an uncertainty σ_P ; Then, the points are moved and down by $1\sigma_P$, and fitted; The total uncertainty results from the average of the fits.

c (GeV/c) System R fit $p_{\rm T}$ range (GeV/c) b (c/GeV)а 0-10% Pb-Pb 0.2 0.65 0.34 9.8 $10 < p_{\rm T} < 60$ 0-10% Pb-Pb 0.4 $10 < p_{\rm T} < 60$ 0.60 0.33 10.2 0.006 -78 0-10% Pb-Pb 0.2 $20 < p_{\rm T} < 140$ 1.0 0-10% Pb-Pb 0.4 $20 < p_{\rm T} < 140$ 0.81 0.007 -106 10-30% Pb-Pb 0.2 $10 < p_{\rm T} < 60$ 0.62 0.35 10.6 10-30% Pb-Pb 0.4 0.56 0.30 10.4 $10 < p_{\rm T} < 60$ 10-30% Pb-Pb 0.2 $20 < p_{\rm T} < 140$ 1.0 0.011 -14.5 12.4 10-30% Pb-Pb 0.4 $20 < p_{\rm T} < 140$ 1.0 0.010 0.2 0.25 30-50% Pb-Pb $10 < p_{\rm T} < 60$ 0.61 11.0 30-50% Pb-Pb 0.4 $10 < p_{\rm T} < 60$ 0.54 0.29 11.1 30-50% Pb-Pb 0.4 $20 < p_{\rm T} < 80$ 1.0 0.007 13.5 13.2 50-90% Pb-Pb 0.2 $14 < p_{\rm T} < 40$ 0.51 0.50 50-90% Pb-Pb 0.4 $10 < p_{\rm T} < 40$ 0.54 0.31 12.4 50-70% Pb-Pb 0.2 $14 < p_{\rm T} < 40$ 0.53 0.50 13.4 50-70% Pb-Pb 0.4 $10 < p_{\rm T} < 40$ 0.58 0.29 12.4 70-90% Pb-Pb 0.2 $14 < p_{\rm T} < 40$ 0.53 0.22 11.4 70-90% Pb-Pb 0.4 0.58 0.18 11.5 $14 < p_{\rm T} < 40$ 0.2 0.40 0.29 14.2 $11 < p_{\rm T} < 40$ pp 0.4 $11 < p_{\rm T} < 40$ 0.44 0.33 13.6 pp

Table 3: Sigmoid function fit range and parameters for R = 0.2 and R = 0.4 from Fig. 6 in Ref. [1].

5 Systematic uncertainties

This section collects summary figures for the different sources of systematic uncertainty estimated for the purity, cross section, and yield ratios in Sect. 5.1. Also, the total uncertainty calculation of yield ratios in pp collisions with different \sqrt{s} is discussed in Sect. 5.2, and the uncertainties for the yield ratios with different *R* are shown in 5.3, and for the *R*_{AA} in Sect. 5.4.

5.1 Purity, cross section, and normalisation

The systematic uncertainties on the normalisation of the cross section, which are the combination of three sources (minimum bias trigger cross section, $\langle N_{coll} \rangle$, and trigger rejection factor, see Ref. [1] for details) are reported in Table 4.

Table 4: Normalisation relative uncertainty sources in per cent of the cross section p_T^{γ} spectra. When two values are given, they relate to p_T^{γ} below or above 12 GeV/c. The last row gives the combination of uncertainties used in the data-over-theory ratio of Figs. 14(b) and 15(b) of Ref. [1] and of Fig. 25 in this note.

Norm. unc. (%)	Pb–Pb	Pb–Pb	Pb–Pb	Pb–Pb	Pb–Pb	Pb–Pb	pp
Source	0–10%	10-30%	30-50%	50-90%	50-70%	70–90%	
$\sigma_{\rm MB}^{\rm col. \ system}$	0.9	0.9	0.9	0.9	0.9	0.9	2.1
$\langle N_{\rm coll} \rangle$	1.1	0.9	1.2	1.6	1.8	1.8	_
$RF_{\mathcal{E}_{ ext{trig}}}$	-, 0.2	-, 0.4	-, 0.6	0.8, 1.0	1.1, 1.4	3.4, 4.5	1.6, 1.6
$\sigma_{\rm MB}^{\rm col. \ system} \times RF_{\varepsilon_{\rm trig}}/\langle N_{\rm coll} \rangle$	1.4, 1.4	1.3, 1.3	1.5, 1.6	2.0, 2.0	2.3, 2.5	3.5, 4.5	2.6, 2.6

The uncertainties on the purity are shown in Figs. 14 (R = 0.2) and 15 (R = 0.4). The contributions of the individual sources of systematic uncertainty are displayed in the table and the figures, along with the statistical uncertainty and the total one. The uncertainties (systematic source-by-source, total systematic, and statistical) on the p_T^{γ} -differential cross section are shown in Figures 16 (R = 0.2) and 17 (R = 0.4). Figs. 18 and 19 show the uncertainties for the 50–90% Pb–Pb centrality class. Figures 16, 17 and 19 include points labelled as "other systematic" that correspond to the quadratic sum of the uncertainty sources with small or no dependence on p_T^{γ} and values at most at 2.5%: material budget, time, trigger efficiency, energy scale, CPV, and distance to masked channels. A detailed discussion on the different sources of systematic uncertainty and the methods used for their estimation can be found in Ref. [1].

because of the smoothening done by the fit variation discussed in the text. frame) and in five Pb-Pb collisions centrality classes. The statistical uncertainty (grey squares) is also shown and may appear larger than the total uncertainty (blue dots) **Fig. 14:** (colour online) Contributions to the systematic uncertainty of the isolated-photon purity and their quadratic sum as a function of p_T^{T} for R = 0.2, in pp (lower right

Total, including fit.

uncertainty (grey squares) is also shown. right frame) and Pb-Pb collisions, the latter in five centrality classes. Total uncertainty (black dots) is calculated as the quadratic sum of all of the inputs. The statistical Fig. 16: (colour online) Contributions to the systematic uncertainty of the isolated-photon cross section and their quadratic sum as a function of p_T^{χ} for R = 0.2 in pp (lower

Fig. 17: (colour online) Contributions to the systematic uncertainty of the isolated-photon cross section and their quadratic sum as a function of p_T^{γ} for R = 0.4 in pp (lower right frame) and Pb-Pb collisions, the latter in five centrality classes. Total uncertainty (black dots) is calculated as the quadratic sum of all of the inputs. The statistical uncertainty (grey squares) is also shown.

Fig. 18: (colour online) Contributions to the systematic uncertainty of the isolated-photon purity and their quadratic sum as a function of p_T^{γ} for R = 0.2 and R = 0.4, in Pb–Pb collisions for the 50–90% centrality class. The statistical uncertainty (grey squares) is also shown.

Fig. 19: (colour online) Contributions to the systematic uncertainty of the isolated-photon cross section and their quadratic sum as a function of p_T^{γ} for R = 0.2 and R = 0.4, in Pb–Pb collisions for the 50–90% centrality class. Total uncertainty (black dots) is calculated as the quadratic sum of all of the inputs. The statistical uncertainty (grey squares) is also shown.

5.2 pp collisions cross sections ratio at different centre-of-momentum energies

Figure 17 of Ref. [1] shows the ratio of the measured isolated-photon production cross sections in pp collisions at $\sqrt{s} = 13$ TeV (from [4]) over $\sqrt{s} = 5.02$ TeV, $f_{\sqrt{s}}(\frac{13}{5.02})$, and of $\sqrt{s} = 7$ TeV (from [3]) over $\sqrt{s} = 5.02$ TeV, $f_{\sqrt{s}}(\frac{7}{5.02})$, in data along with the corresponding ratios from JETPHOX NLO pQCD calculations described in Ref. [1]. All these measurements and calculations were done for a cone radius R = 0.4.

Not all the systematic uncertainties cancel in this ratio: since both the $\sqrt{s} = 7$ and 13 TeV measurements were done without UE subtraction, the full "gap and area UE" uncertainties from the $\sqrt{s} = 5.02$ TeV measurement are used. Also, the clusters were selected depending on their number of local maxima, which is not applicable in this analysis due to the growth restriction when aggregating cells to the cluster that can only generate clusters with one local maximum, so the corresponding uncertainty is taken from those measurements fully. Since there is no CPV selection for the $\sqrt{s} = 5.02$ TeV measurement, both CPV uncertainties from the previous measurements are taken as well. Since the "isolation probability" source uncertainty is expected to cancel partially, we chose to take half of the denominator uncertainty for the ratio. Finally, the "SM dependent" uncertainty does not cancel in the ratio $f_{\sqrt{s}}(\frac{7}{5.02})$, since the SM behaviour can change per running period and the acceptances were very different: no DCal and $|\eta| < 0.27$ for the $\sqrt{s} = 7$ TeV sample. It was taken as the quadratic sum of the SM-dependent uncertainty: $3.5\% \times \sqrt{2} = 4.9\%$. For the ratio $f_{\sqrt{s}}\left(\frac{13}{5.02}\right)$, the data-taking periods were close and it was considered that the SM performance does not change. All these remaining systematic sources are added in quadrature, resulting in an uncertainty on the ratio $f_{\sqrt{s}}\left(\frac{13}{5.02}\right)$ that ranges between 6.4% and 9.2% depending on $p_{\rm T}^{\gamma}$, and in an uncertainty on the ratio $f_{\sqrt{s}}\left(\frac{7}{5.02}\right)$ between 7.7% and 14%. Due to the small size of the $\sqrt{s} = 7$ TeV dataset, the dominant uncertainty in the ratio $f_{\sqrt{s}}\left(\frac{7}{5.02}\right)$ is the statistical one, which ranges from 15% to 40% depending on $p_{\rm T}^{\gamma}$. For the ratio $f_{\sqrt{s}}\left(\frac{13}{5.02}\right)$, the statistical uncertainty is smaller than the systematic uncertainty and ranges from 2–4% at low p_T^{γ} up to 8% in the highest p_T^{γ} interval.

The normalisation scale uncertainty is not added to the systematic uncertainty. It is calculated from the luminosity of the two measurements, and is found to be equal to 3.2% for the ratio $f_{\sqrt{s}}\left(\frac{13}{5.02}\right)$, with a similar contribution from each dataset, and to 10% for the ratio $f_{\sqrt{s}}\left(\frac{7}{5.02}\right)$, again dominated by the $\sqrt{s} = 7$ TeV uncertainty.

The NLO pQCD scale uncertainty decreases with p_T^{γ} from 7% to 3% in the ratio $f_{\sqrt{s}}\left(\frac{13}{5.02}\right)$, and from 2% to 1% in the ratio $f_{\sqrt{s}}\left(\frac{7}{5.02}\right)$. The PDF uncertainty is smaller than the NLO pQCD scale one, decreasing from 2.7% to 1% for the ratio $f_{\sqrt{s}}\left(\frac{13}{5.02}\right)$ and from 1.6% to 0.7% for the ratio $f_{\sqrt{s}}\left(\frac{7}{5.02}\right)$.

5.3 Ratio of yields with different cone radius

Figure 20 compiles all the uncertainties for the ratio of the p_T^{γ} -differential cross sections with different cone radii, $f_{R(\frac{0.4}{0.2})}$. Points in the figures labelled as "other systematic" correspond to the quadratic sum of the uncertainty sources with small or no dependence on p_T^{γ} and values at most at 2.5%: trigger efficiency, CPV, signal range for $\sigma_{\log, 5\times 5}^2$, the variation of F_+ , the spectral shape, the cross talk tuning, and the UE area and gap.

5.4 Nuclear modification factor

Figures 21 (R = 0.2) and 22 (R = 0.4) compile all the relative systematic uncertainties for the R_{AA} . Points in the figures labelled as "other systematic" correspond to the quadratic sum of the uncertainty sources with small or no dependence on p_T^{γ} and values at most at 2.5%: trigger efficiency, CPV, and the background ranges for the $p_T^{iso, ch}$ and $\sigma_{long, 5\times 5}^2$.

all of the sources. The statistical uncertainty (grey squares) is also shown. Fig. 20: for the ratio of cross sections with R = 0.4 and R = 0.2, $f_{R(\frac{0.4}{0.2})}$, in per cent as a function of p_T^{γ} . Total uncertainty (black dots) is calculated as the quadratic sum of

Fig. 21: Compilation of the systematic uncertainties for the calculation of the R_{AA} with R = 0.2. Total uncertainty (black dots) is calculated as the quadratic sum of all of the inputs. The statistical uncertainty (grey squares) is also shown.

Fig. 22: Compilation of the systematic uncertainties for the calculation of the R_{AA} with R = 0.4. Total uncertainty (black dots) is calculated as the quadratic sum of all of the inputs. The statistical uncertainty (grey squares) is also shown.

6 Results

6.1 Nuclear modification factor using pQCD NLO as pp collisions

Figure 23 shows the R_{AA} calculated from the measured cross sections in Pb–Pb collisions using as denominator the cross section calculated with JETPHOX at NLO for pp collisions instead of the measured one. This $R_{AA}^{pp \text{ col.: NLO pQCD}}$ and the ratio of the calculated cross sections with JETPHOX using nPDF (Pb–Pb collisions) over PDF (pp collisions) without centrality selection are closer than in Fig. 16 of Ref. [1] as expected from the reported data over theory ratios in Figs. 12 and 13 of Ref. [1].

Fig. 23: (colour online) Nuclear modification factor R_{AA} for isolated photons at $\sqrt{s_{NN}} = 5.02$ TeV for isolationcone radii R = 0.2 (black) and R = 0.4 (blue). In data, the denominator is replaced by the pp collisions NLO pQCD calculation with JETPHOX. Error bars and boxes are the statistical and systematic uncertainties, respectively. The bands correspond to pQCD calculations with JETPHOX for Pb–Pb collisions (nPDF) for 0–100% centrality over pp collisions (PDF). The width of each band corresponds to the scale and PDF uncertainties. The normalisation uncertainties are represented as a red box centred at unity. The solid line in the most peripheral centrality class 70–90% at $R_{AA} = 0.82$ corresponds to the HG-PYTHIA model expectation [12].

6.2 Pb–Pb collisions 50–90% centrality class

In Ref. [1], the centrality classes 50–70% and 70–90% are shown in most of the figures, but the result for their combination 50–90% is also discussed for the R_{AA} when comparing to the CMS experiment results. Here, we show the main results for the centrality class 50–90% for completeness.

Figure 24 shows the purity and efficiency for both values of the cone radii. The purity values found are very similar for both *R* and compatible with those of the 50–70% and 70–90% centrality class. The efficiency values are in between those of the 50–70% and 70–90% centrality classes as it can be seen by comparing Fig. 24-right with the corresponding panels in Fig. 8 of Ref. [1].

Fig. 24: (colour online) Isolated-photon purity (left) and efficiency (right) as a function of p_T^{γ} for peripheral Pb–Pb collisions in the 50–90% centrality class for R = 0.2 and R = 0.4. The points are shown with systematic and statistical uncertainties discussed in Sect. 4 of Ref. [1] and shown in figures in Sect. 5.1 of this note. The purity is calculated using Eq. (5) and is calculated adding in quadrature all the sources shown in Fig. 18. The lines in the purity plot are the result of the fit with two sigmoid functions, Eq. (8), for each cone radius. The efficiency is obtained as explained in Sect. 3.5 of Ref. [1].

Analogous to Figs. 14 and 15 in Ref. [1], Fig. 25 shows the p_T^{γ} -differential cross section for the 50–90% centrality class. The cross sections for the two cone radii are shown in Fig. 25-left. Table 5 lists the luminosity and trigger normalisation parameters used to obtain the cross sections with the corresponding uncertainties. The ratio data-to-theory is displayed in Fig. 25-right. A fair agreement with theory is seen although most points tend to be below unity like for the 70–90% centrality class in Ref. [1]. The theory calculation is an NLO pQCD calculation from JETPHOX 1.3.1 [13, 14]. The fragmentation function used is BFG II [15], and the nuclear parton distribution function is nNNPDF3.0 [16], which has been calculated for 0–100% centrality. The theory calculation is scaled by $\langle N_{coll} \rangle = 38.4 \pm 0.6$ for the centrality class 50–90%, obtained from Ref. [17].

Table 5: Trigger $RF_{\mathcal{E}_{trig}}^{trig}$ (Eq. (8) of Ref. [1]), \mathscr{L}_{NN}^{trig} , and \mathscr{L}_{int}^{trig} (Eq. (9) of Ref. [1]) for 50–90% Pb–Pb collisions per trigger inclusive cluster p_T range. The \mathscr{L}_{NN}^{trig} uncertainty contains both the AA inelastic cross section σ_{NN}^{INEL} and rejection factor uncertainties. The integrated luminosity uncertainty includes in addition the $\langle N_{coll} \rangle$ uncertainty. See definitions of the different parameters in Ref. [1].

Trigger	$p_{\rm T}~({\rm GeV}/c)$	$RF^{ ext{trig}}_{m{arepsilon}_{ ext{trig}}}$	$\mathscr{L}_{\mathrm{NN}}^{\mathrm{trig}}$ (nb ⁻¹)	\mathscr{L}_{int}^{trig} (nb ⁻¹)
MB+L1-γ-low	$p_{\rm T} < 12$	117.2 ± 1.2	7.02 ± 0.08	270 ± 5
MB+L1-γ-high+low	$p_{\rm T} > 12$	158.4 ± 1.8	9.83 ± 0.12	378 ± 8

Fig. 25: (colour online) Left: Isolated-photon differential cross section measured in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV for the 50–90% centrality class, for R = 0.2 (scaled by a factor 10) and R = 0.4 (not scaled). Error bars and boxes are the statistical and systematic uncertainties, respectively. The bands correspond to NLO pQCD calculations with JETPHOX, for Pb–Pb collisions calculated for the 0–100% centrality class but scaled by $\langle N_{\text{coll}} \rangle$. Right: Ratio of data over JETPHOX NLO pQCD calculations for R = 0.2 (top) and R = 0.4 (bottom). The bands centred at unity correspond to the JETPHOX NLO pQCD calculation uncertainties. The normalisation uncertainty of 2% is not included in the left panel but it is shown as a grey box in the right of each frame around unity.

Figure 26 shows the ratio of the cross sections with different *R*, like Fig. 14 in Ref. [1]. This ratio is at about 0.9 and is in agreement with the pQCD NLO calculation.

Figure 27 shows the modified R_{AA} where the denominator is replaced by the JETPHOX NLO pQCD calculation for pp collisions like in Fig. 23. This ratio is at about 0.8 for most points, but still in agreement with the HG-PYTHIA model that expects a value of 0.91. The results for both R values are in good agreement.

Fig. 26: (colour online) Ratio of isolated-photon $p_{\rm T}^{\gamma}$ -differential cross sections measured with R = 0.4 over R = 0.2, $f_{R(\frac{0.4}{0.2})}$, for Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and for the 50–90% centrality class. Error bars and boxes are the statistical and systematic uncertainties, respectively. The pink band corresponds to pQCD calculations with JETPHOX, the width represents the PDF uncertainty, and the blue vertical bars indicate the statistical uncertainty of the calculations.

Fig. 27: (colour online) Nuclear modification factor R_{AA} for isolated photons at $\sqrt{s_{NN}} = 5.02$ TeV for the 50–90% centrality class, and for isolation-cone radii R = 0.2 (black) and R = 0.4 (blue). In data, the denominator is replaced by the pp collisions NLO pQCD calculation with JETPHOX. Error bars and boxes are the statistical and systematic uncertainties, respectively. The bands correspond to pQCD calculations with JETPHOX for Pb–Pb collisions (nPDF) for 0–100% centrality over pp collisions (PDF). The width of each band corresponds to the scale and PDF uncertainties. The normalisation uncertainties are represented as a red box centred at unity. The solid line in the most peripheral centrality class 70–90% at $R_{AA} = 0.91$ corresponds to the HG-PYTHIA model expectation [12].

6.3 Nuclear modification factor in ALICE and CMS

Figure 28 compares the R_{AA} measured by ALICE and CMS for R = 0.4, equivalent to Fig. 17 of Ref. [1] where the result for R = 0.2 from ALICE is also shown. In addition, the theory R_{AA} is also shown here. The good agreement between CMS and ALICE points is displayed.

Fig. 28: (colour online) Nuclear modification factor R_{AA} for isolated photons measured by ALICE and CMS [18] for isolation-cone radius R = 0.4 at $\sqrt{s_{NN}} = 5.02$ TeV and for four centrality classes. Error bars and boxes are the statistical and systematic uncertainties, respectively. The solid line in the peripheral centrality class 50–90% at $R_{AA} = 0.91$, is the result of the HG-PYTHIA model [12]. The ALICE normalisation uncertainties are represented as a red box centred at unity. For CMS, the normalisation uncertainties are displayed as a violet box for the integrated luminosity and a green box for the nuclear overlap function $\langle T_{AA} \rangle = \langle N_{coll} \rangle / \sigma_{NN}^{INEL}$. The bands correspond to pQCD calculations with JETPHOX for Pb–Pb collisions (nPDF) for 0–100% centrality over pp collisions (PDF). The width of each band corresponds to the scale and PDF uncertainties.

6.4 Comparison of the isolated photon and Z boson cross section and nuclear modification factor as a function of the centrality class: Check of the binary scaling factor

Electroweak particles are not expected to be modified by the quark–gluon plasma produced in Pb–Pb collisions, thus, their measurement is considered a benchmark to validate the nucleon–nucleon binary collision scaling, $\langle N_{coll} \rangle$, calculated via the Glauber model [19]. If the scaling calculated by the Glauber model was adequate, the R_{AA} (see definition in Ref. [1]) of Z⁰ bosons and isolated photons must be at unity. In Ref. [12] where the HG-PYTHIA model is presented, it is discussed that the presence of jets and other geometrical effects in peripheral collisions biases the experimental measurements of the centrality classes via particle multiplicity of the event and needs a correction.

Figure 29-left shows the cross section for isolated photons and Z⁰ bosons from CMS [20] as a function of centrality and scaled by $\langle N_{\text{coll}} \rangle$ (photons) or $\langle T_{AA} \rangle = \langle N_{\text{coll}} \rangle / \sigma_{\text{INEL}}^{AA}$ with $\sigma_{\text{INEL}}^{AA}$ the AA inelastic cross section (Z⁰ bosons). Isolated photons are measured in the range 20 < p_{T}^{γ} < 25 GeV/*c*, which is the p_{T}^{γ} interval with the smallest total systematic plus statistical uncertainty. The points are extracted from Fig 14 and 15 of Ref. [1]. The Z⁰ bosons cross section is reported in Ref. [20] and is integrated over p_{T} .

Figure 29-right shows the R_{AA} for isolated photons (extracted from Fig. 20 of Ref. [1]), together with ratio of the cross sections in each centrality class to the one in 0–90% centrality class for the Z⁰ boson (the systematic uncertainty is taken from the numerator). Both ratios are not strictly the same but should be equally sensitive to the validity of the $\langle N_{coll} \rangle$ scaling.

The figures show that the $\langle N_{\text{coll}} \rangle$ scaling works in the centrality range 0–70%, the scaled cross section is the same for the different centrality classes and the R_{AA} agrees with unity. In the 70–90% centrality class, both the ALICE isolated photon and the CMS Z⁰ boson measurements show a deviation of the ratio with respect to the other Pb–Pb collisions centrality classes. Both deviations are found to agree with the HG-PYTHIA model, see [20] for the CMS Z⁰ bosons measurement ratio to the model.

Fig. 29: (colour online) Left: Cross section of isolated photons with $20 < p_T^{\gamma} < 25$ GeV/*c* for R = 0.2 and 0.4 as a function of the centrality class or collision system, in Pb–Pb and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV from Figs. 14 and 15 of Ref. [1]. Also shown is the p_T^Z -integrated cross section of Z^0 bosons measured by CMS [20] for Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The 0–90% centrality class for isolated photons is calculated as the $\langle N_{coll} \rangle$ weighted average of the other centrality classes. The dotted lines indicate the value of the 0–90% centrality class centre. Right: R_{AA} for isolated photons from Fig. 18 of Ref. [1] and ratio of the Z^0 boson cross sections in each centrality class to the one in 0–90%. The solid line in peripheral centrality class 70–90% at $R_{AA} = 0.82$ corresponds to the expectation from the HG-PYTHIA model [12].

6.5 Ratio of isolated-photon cross sections in Pb–Pb collisions: central to semi-central or semiperipheral

The comparison of the isolated photon production in the different Pb–Pb centrality classes, through the ratios of the yields in (more) central over (more) peripheral collisions, offers experimental advantages: first, because the systematic uncertainty cancellation is stronger than in the R_{AA} , in particular for close centrality classes; and second, because the p_T^{γ} range can be pushed to slightly lower values than for the R_{AA} in some ratios.

Due to the centrality selection bias as well as to the poor statistics and smaller p_T^{γ} range, the 70–90% centrality class was not considered as a reference. The 50–70% class was used as a semi-peripheral reference instead, and 30–50% as a semi-central reference. The following ratios were defined, in which k denotes the centrality class index

$$R_{\rm CSP} = \frac{\langle N_{\rm coll} \rangle^{50-70\%}}{\langle N_{\rm coll} \rangle^k} \frac{d^2 \sigma_{\rm Pb-Pb}^{\gamma \, \rm iso} / (dp_{\rm T} \, d\eta)|_k}{d^2 \sigma_{\rm Pb-Pb}^{\gamma \, \rm iso} / (dp_{\rm T} \, d\eta)|_{50-70\%}}, \qquad R_{\rm CSC} = \frac{\langle N_{\rm coll} \rangle^{30-50\%}}{\langle N_{\rm coll} \rangle^k} \frac{d^2 \sigma_{\rm Pb-Pb}^{\gamma \, \rm iso} / (dp_{\rm T} \, d\eta)|_k}{d^2 \sigma_{\rm Pb-Pb}^{\gamma \, \rm iso} / (dp_{\rm T} \, d\eta)|_{30-50\%}}$$
(9)

Figures 30 and 31 compile all the relative systematic uncertainties for the $R_{\rm CSP}$ and $R_{\rm CSC}$ ratios. Points in the figures labelled as "other systematic" correspond to the quadratic sum of the uncertainty sources with small or no dependence on $p_{\rm T}^{\gamma}$ and values at most at 2.5%: trigger efficiency, CPV, background ranges for the $p_{\rm T}^{\rm iso, \ ch}$ and $\sigma_{\rm long, \ 5\times 5}^2$, signal range for the $\sigma_{\rm long, \ 5\times 5}^2$, and the UE area and gap.

The R_{CSP} and R_{CSC} ratios are shown in Fig. 32 with the systematic and statistical uncertainties, they are compatible with unity as expected, and p_{T}^{γ} independent.

Fig. 30: Compilation of the systematic uncertainties for the calculation of the R_{CSP} (top) and R_{CSC} (bottom) with R = 0.2. Total uncertainty (black dots) is calculated as the quadratic sum of all of the inputs. The statistical uncertainty (grey squares) is also shown.

Fig. 31: Compilation of the systematic uncertainties for the calculation of the R_{CSP} (top) and R_{CSC} (bottom) with R = 0.4. Total uncertainty (black dots) is calculated as the quadratic sum of all of the inputs. The statistical uncertainty (grey squares) is also shown.

Fig. 32: (colour online) Ratio of the Pb–Pb isolated-photon yields, central (0-50%) over semi-peripheral (50-70%) on top, and central (0-30%) over semi-central (30-50%) on bottom, for isolation-cone radii R = 0.2 and 0.4.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education and Science, within the National Roadmap for Research Infrastructures 2020-2027 (object CERN), Bulgaria; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency - BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA) and National Science, Research and Innovation Fund (NSRF via PMU-B B05F650021), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. In addition, individual groups or members have received support from: Czech Science Foundation (grant no. 23-07499S), Czech Republic; FORTE project, reg.

no. CZ.02.01.01/00/22_008/0004632, Czech Republic, co-funded by the European Union, Czech Republic; European Research Council (grant no. 950692), European Union; ICSC - Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, European Union -NextGenerationEU; Academy of Finland (Center of Excellence in Quark Matter) (grant nos. 346327, 346328), Finland.

References

- [1] ALICE Collaboration, S. Acharya *et al.*, "Measurement of the inclusive isolated-photon production cross section in pp and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV." CERN-EP-2024-244, 2024. https://cds.cern.ch/record/2910209.
- [2] ALICE Collaboration, S. Acharya *et al.*, "Performance of the ALICE Electromagnetic Calorimeter", *JINST* 18 (2023) P08007, arXiv:2209.04216 [physics.ins-det].
- [3] ALICE Collaboration, S. Acharya *et al.*, "Measurement of the inclusive isolated photon production cross section in pp collisions at $\sqrt{s} = 7$ TeV", *Eur. Phys. J. C* **79** (2019) 896, arXiv:1906.01371 [nucl-ex].
- [4] ALICE Collaboration, S. Acharya *et al.*, "Measurement of the inclusive isolated-photon production cross section in pp collisions at $\sqrt{s} = 13$ TeV", arXiv:2407.01165 [hep-ex].
- [5] ALICE Collaboration, S. Acharya *et al.*, "Measurement of isolated photon-hadron correlations in $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$ pp and p-Pb collisions", *Phys. Rev. C* **102** (2020) 044908, arXiv:2005.14637 [nucl-ex].
- [6] ALICE EMCal Collaboration, U. Abeysekara *et al.*, "ALICE EMCal Physics Performance Report", arXiv:1008.0413 [physics.ins-det].
- [7] M. Cacciari, G. P. Salam, and S. Sapeta, "On the characterisation of the underlying event", *JHEP* 2010 (2010) 65, arXiv:0912.4926 [hep-ph].
- [8] T. Sjöstrand et al., "An Introduction to PYTHIA 8.2", Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph].
- [9] P. Skands, S. Carrazza, and J. Rojo, "Tuning PYTHIA 8.1: the Monash 2013 tune", *Eur. Phys. J. C* 74 (2014) 3024, arXiv:1404.5630 [hep-ph].
- [10] C. Bierlich, et al., "Codebase release 8.3 for PYTHIA", SciPost Phys. Codebases (2022) 8–r8.3. https://scipost.org/10.21468/SciPostPhysCodeb.8-r8.3.
- [11] ALICE Collaboration, J. Adam *et al.*, "Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$ ", *Phys. Rev. Lett.* **116** (2016) 132302, arXiv:1602.01119 [nucl-ex].
- [12] C. Loizides and A. Morsch, "Absence of jet quenching in peripheral nucleus-nucleus collisions", *Phys. Lett. B* 773 (2017) 408–411, arXiv:1705.08856 [nucl-ex].
- [13] S. Catani, M. Fontannaz, J. Guillet, and E. Pilon, "Cross-section of isolated prompt photons in hadron hadron collisions", JHEP 0205 (2002) 028, arXiv:hep-ph/0204023 [hep-ph].
- [14] P. Aurenche, M. Fontannaz, J.-P. Guillet, E. Pilon, and M. Werlen, "A new critical study of photon production in hadronic collisions", *Phys. Rev. D* 73 (2006) 094007, arXiv:hep-ph/0602133 [hep-ph].
- [15] L. Bourhis, M. Fontannaz, and J. Guillet, "Quarks and gluon fragmentation functions into photons", Eur. Phys. J. C 2 (1998) 529–537, arXiv:hep-ph/9704447 [hep-ph].

- [16] R. A. Khalek, R. Gauld, T. Giani, E. R. Nocera, T. R. Rabemananjara, and J. Rojo, "nNNPDF3.0: Evidence for a modified partonic structure in heavy nuclei", *Eur. Phys. J. C* 82 (2022) 507, arXiv:2201.12363 [hep-ph].
- [17] ALICE Collaboration, S. Acharya *et al.*, "Centrality determination in heavy-ion collisions", 2018. https://cds.cern.ch/record/2636623. ALICE-PUBLIC-2018-011.
- [18] **CMS** Collaboration, A. M. Sirunyan *et al.*, "The production of isolated photons in PbPb and pp collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$ ", *JHEP* **07** (2020) 116, arXiv:2003.12797 [hep-ex].
- [19] C. Loizides, J. Kamin, and D. d'Enterria, "Erratum: Improved Monte Carlo Glauber predictions at present and future nuclear colliders [Phys. Rev. C 97, 054910 (2018)]", *Phys. Rev. C* 99 (2019) 019901.
- [20] **CMS** Collaboration, A. M. Sirunyan *et al.*, "Constraints on the Initial State of Pb–Pb Collisions via Measurements of Z-Boson Yields and Azimuthal Anisotropy at $\sqrt{s_{NN}} = 5.02$ TeV", *Phys. Rev. Lett.* **127** (2021) 102002, arXiv:2103.14089 [hep-ex].

A The ALICE Collaboration

S. Acharya ¹²⁶, A. Agarwal¹³⁴, G. Aglieri Rinella ³², L. Aglietta ²⁴, M. Agnello ²⁹, N. Agrawal ²⁵, Z. Ahammed ¹³⁴, S. Ahmad ¹⁵, S.U. Ahn ⁷¹, I. Ahuja ³⁷, A. Akindinov ¹⁴⁰, V. Akishina³⁸, M. Al-Turany ⁹⁶, D. Aleksandrov ¹⁴⁰, B. Alessandro ⁵⁶, H.M. Alfanda ⁶, R. Alfaro Molina ⁶⁷, B. Ali 15, A. Alici 25, N. Alizadehvandchali 115, A. Alkin 113, J. Alme 20, G. Alocco 24,52, T. Alt 44, A. Alkin 115, A. Alkin 115, A. Alme 113, J. Alme 115, A. Alocco 115, A. Alici 11 B. Ali 6¹⁰, A. Alici 6²⁰, N. Alizadehvandchali 6¹¹⁰, A. Alkin 6¹⁰⁰, J. Alme 6²⁰, G. Alocco 6^{21,92}, I. Alf 6⁶ A.R. Altamura 6⁵⁰, I. Altsybeev 6⁹⁴, J.R. Alvarado 6⁴⁴, C.O.R. Alvarez⁴⁴, M.N. Anaam 6⁶, C. Andrei 6⁴⁵, N. Andreou 6¹¹⁴, A. Andronic 6¹²⁵, E. Andronov 6¹⁴⁰, V. Anguelov 6⁹³, F. Antinori 6⁵⁴, P. Antonioli 6⁵¹, N. Apadula 6⁷³, L. Aphecetche 6¹⁰², H. Appelshäuser 6⁶⁴, C. Arata 6⁷², S. Arcelli 6²⁵, R. Arnaldi 6⁵⁶, J.G.M.C.A. Arneiro 6¹⁰⁹, I.C. Arsene 6¹⁹, M. Arslandok 6¹³⁷, A. Augustinus 6³², R. Averbeck 6⁹⁶, D. Averyanov 6¹⁴⁰, M.D. Azmi 6¹⁵, H. Baba¹²³, A. Badalà 6⁵³, J. Bae 6¹⁰³, Y. Bae¹⁰³, Y.W. Baek 6⁴⁰, X. Bai 6¹¹⁹, R. Bailhache 6⁶⁴, Y. Bailung 6⁴⁸, R. Bala 6⁹⁰, A. Balbino 6²⁹, A. Baldisseri 6¹²⁹, B. Balis 6², Z. Banoo ⁹⁰, V. Barbasova³⁷, F. Barile ³¹, L. Barioglio ⁵⁶, M. Barlou⁷⁷, B. Barman⁴¹, G.G. Barnaföldi ⁹⁴, L.S. Barnely 114 , E. Barreau 102 , V. Barret 126 , L. Barreto 109 , C. Bartels 118 , K. Barth 32 , E. S. Barledo V, E. Barledo V, V. Barleto V, E. Barleto V, C. Barleto V, C. Barleto V, K. Barleto V, K. Barleto V, E. Barleto V, C. Barleto V, C. Barleto V, K. Barleto V, E. Barleto V, C. Barleto V, L. Bergmann ¹⁰ ⁹³, M.G. Besoiu ¹⁰ ⁶³, L. Betev ¹⁰ ³², P.P. Bhaduri ¹³⁴, A. Bhasin ¹⁰ ⁹⁰, B. Bhattacharjee ¹⁴, L. Bianchi [©]²⁴, J. Bielčík [©]³⁵, J. Bielčíková [©]⁸⁵, A.P. Bigot [©]¹²⁸, A. Bilandzic [©]⁹⁴, G. Biro [©]⁴⁶, S. Biswas [©]⁴, N. Bize ¹⁰², J.T. Blair ¹⁰⁷, D. Blau ¹⁴⁰, M.B. Blidaru ⁹⁶, N. Bluhme³⁸, C. Blume ⁶⁴, F. Bock ⁸⁶, T. Bodova ^{© 20}, J. Bok ^{© 16}, L. Boldizsár ^{© 46}, M. Bombara ^{© 37}, P.M. Bond ^{© 32}, G. Bonomi ^{© 133,55}, H. Borel ¹²⁹, A. Borissov ¹⁴⁰, A.G. Borquez Carcamo ⁹³, E. Botta ²⁴, Y.E.M. Bouziani ⁶⁴, L. Bratrud ⁶⁴, P. Braun-Munzinger ⁹⁶, M. Bregant ¹⁰⁹, M. Broz ¹³⁵, G.E. Bruno ^{95,31}, V.D. Buchakchiev ^(a) ³⁶, M.D. Buckland ^(a) ⁸⁴, D. Budnikov ^(b) ¹⁴⁰, H. Buesching ^(b) ⁶⁴, S. Bufalino ^(b) ²⁹, P. Buhler () ¹⁰¹, N. Burmasov () ¹⁴⁰, Z. Buthelezi () ^{68,122}, A. Bylinkin () ²⁰, S.A. Bysiak¹⁰⁶, J.C. Cabanillas Noris 108, M.F.T. Cabrera¹¹⁵, H. Caines 137, A. Caliva 28, E. Calvo Villar 100, J.M.M. Camacho 108, P. Camerini I ²³, F.D.M. Canedo I ¹⁰⁹, S.L. Cantway ¹³⁷, M. Carabas ¹¹², A.A. Carballo ³², P. Camerini 6 25, F.D.M. Canedo 6 157, S.L. Cantway 6 157, M. Carabas 6 112, A.A. Carballo 6 22,
F. Carnesecchi 6 32, R. Caron 6 127, L.A.D. Carvalho 6 109, J. Castillo Castellanos 6 129, M. Castoldi 6 32,
F. Catalano 6 32, S. Cattaruzzi 6 23, R. Cerri 6 24, I. Chakaberia 6 73, P. Chakraborty 6 135, S. Chandra 6 134,
S. Chapeland 6 32, M. Chartier 6 118, S. Chattopadhay¹³⁴, M. Chen³⁹, T. Cheng 6 , C. Cheshkov 6 127,
D. Chiappara²⁷, V. Chibante Barroso 6 32, D.D. Chinellato 6 ¹⁰¹, E.S. Chizzali 6 ^{II,94}, J. Cho 6 58, S. Cho 6 58,
P. Chochula 6 32, Z.A. Chochulska¹³⁵, D. Choudhury⁴¹, S. Choudhury⁹⁸, P. Christakoglou 6 ⁸³,
C. H. Chister 6 28, D. Chister 6 29, C. Cische 6 51, C. Chister C.H. Christensen ⁸², P. Christiansen ⁷⁴, T. Chujo ¹²⁴, M. Ciacco ²⁹, C. Cicalo ⁵², F. Cindolo ⁵¹, M.R. Ciupek⁹⁶, G. Clai^{III,51}, F. Colamaria ⁶⁵⁰, J.S. Colburn⁹⁹, D. Colella ⁶³¹, A. Colelli³¹, M. Colocci ⁶²⁵, M. Concas ³², G. Conesa Balbastre ⁷², Z. Conesa del Valle ¹³⁰, G. Contin ²³, J.G. Contreras ³⁵, M.L. Coquet () 102, P. Cortese () 132,56, M.R. Cosentino () 111, F. Costa () 32, S. Costanza () 21,55, C. Cot () 130, P. Crochet © ¹²⁶, M.M. Czarnynoga¹³⁵, A. Dainese © ⁵⁴, G. Dange³⁸, M.C. Danisch © ⁹³, A. Danu © ⁶³, P. Das © ^{32,79}, S. Das © ⁴, A.R. Dash © ¹²⁵, S. Dash © ⁴⁷, A. De Caro © ²⁸, G. de Cataldo © ⁵⁰, J. de Cuveland³⁸, A. De Falco © ²², D. De Gruttola © ²⁸, N. De Marco © ⁵⁶, C. De Martin © ²³, S. De Pasquale © ²⁸, R. Deb © ¹³³, R. Del Grande ⁹⁴, L. Dello Stritto ³², W. Deng ⁶, K.C. Devereaux¹⁸, P. Dhankher ⁶¹⁸, D. Di Bari ³¹, A. Di Mauro 132, B. Di Ruzza 131, B. Diab 129, R.A. Diaz 141,7, Y. Ding 16, J. Ditzel 16, R. Divià 129, R.A. Diaz 141,7, Y. Ding 141 Ø. Djuvsland²⁰, U. Dmitrieva ¹⁴⁰, A. Dobrin ⁶³, B. Dönigus ⁶⁴, J.M. Dubinski ¹³⁵, A. Dubla ⁹⁶, P. Dupieux [©]¹²⁶, N. Dzalaiova¹³, T.M. Eder [©]¹²⁵, R.J. Ehlers [©]⁷³, F. Eisenhut [©]⁶⁴, R. Ejima [©]⁹¹, D. Elia [©]⁵⁰, B. Erazmus () ¹⁰², F. Ercolessi () ²⁵, B. Espagnon () ¹³⁰, G. Eulisse () ³², D. Evans () ⁹⁹, S. Evdokimov () ¹⁴⁰, L. Fabbietti [©] ⁹⁴, M. Faggin [©] ²³, J. Faivre [©] ⁷², F. Fan [©] ⁶, W. Fan [©] ⁷³, A. Fantoni [©] ⁴⁹, M. Fasel [©] ⁸⁶, G. Feofilov [©] ¹⁴⁰, A. Fernández Téllez [©] ⁴⁴, L. Ferrandi [©] ¹⁰⁹, M.B. Ferrer [©] ³², A. Ferrero [©] ¹²⁹, C. Ferrero O^{IV,56}, A. Ferretti O²⁴, V.J.G. Feuillard O⁹³, V. Filova O³⁵, D. Finogeev O¹⁴⁰, F.M. Fionda O⁵², E. Flatland³², F. Flor (a) ^{137,115}, A.N. Flores (a) ¹⁰⁷, S. Foertsch (b) ⁶⁸, I. Fokin (b) ⁹³, S. Fokin (b) ¹⁴⁰, U. Follo (b) ^{1V,56}, E. Fragiacomo ⁵⁷, E. Frajna ⁴⁶, U. Fuchs ³², N. Funicello ²⁸, C. Furget ⁷², A. Furs ¹⁴⁰, T. Fusayasu ⁹⁷, J.J. Gaardhøje ⁸², M. Gagliardi ²⁴, A.M. Gago ¹⁰⁰, T. Gahlaut⁴⁷, C.D. Galvan ¹⁰⁸, S. Gami⁷⁹, D.R. Gangadharan ¹¹⁵, P. Ganoti ¹⁷⁷, C. Garabatos ⁹⁶, J.M. Garcia⁴⁴, T. García Chávez ¹⁴⁴, S. Gami⁷⁷, D.R. Gangadnaran ¹⁰, P. Ganou¹⁰, C. Garabatos¹⁰, J.M. Gareta¹, I. Gareta¹, G. Gareta¹, G. Gareta¹, M.B. Gay Ducati¹⁰, ⁶⁶, M. Germain¹⁰, R.A. Gernhaeuser⁹⁴, C. Ghosh¹³⁴, M. Giacalone¹⁵¹, G. Gioachin¹²⁹, S.K. Giri¹³⁴, P. Giubellino¹⁰⁰, P. Giubellino¹⁰², A.M.C. Glaenzer¹²⁹, P. Glässel¹⁰⁹³, E. Glimos¹²¹, D.J.Q. Goh⁷⁵, V. Gonzalez 136, P. Gordeev 140, M. Gorgon 2, K. Goswami 48, S. Gotovac³³, V. Grabski 67, L.K. Graczykowski 135, E. Grecka 15, A. Grelli 159, C. Grigoras 127, V. Grigoriev 140, S. Grigoryan 141,1,

F. Grosa () ³², J.F. Grosse-Oetringhaus () ³², R. Grosso () ⁹⁶, D. Grund () ³⁵, N.A. Grunwald ⁹³, G.G. Guardiano ¹¹⁰, R. Guernane ⁷², M. Guilbaud ¹⁰², K. Gulbrandsen ⁸², J.J.W.K. Gumprecht¹⁰¹, T. Gündem ⁶⁴, T. Gunji ¹²³, W. Guo ⁶, A. Gupta ⁹⁰, R. Gupta ⁹⁰, R. Gupta ⁴⁸, K. Gwizdziel ¹³⁵, L. Gyulai ⁶⁴⁶, C. Hadjidakis ⁶¹³⁰, F.U. Haider ⁶⁹⁰, S. Haidlova ⁶³⁵, M. Haldar⁴, H. Hamagaki ⁶⁷⁵, Y. Han 139, B.G. Hanley 136, R. Hannigan 117, J. Hansen 74, M.R. Haque 96, J.W. Harris 137, A. Harton ⁹, M.V. Hartung ⁶⁴, H. Hassan ¹¹⁶, D. Hatzifotiadou ⁵¹, P. Hauer ⁴², L.B. Havener ¹³⁷, E. Hellbär ³², H. Helstrup ³⁴, M. Hemmer ⁴, T. Herman ³⁵, S.G. Hernandez¹¹⁵, G. Herrera Corral ⁸, S. Iurchenko¹⁴⁰, M. Ivanov¹³, M. Ivanov⁹⁶, V. Ivanov⁹⁶, K.E. Iversen⁷⁴, M. Jablonski⁹², M.J. Jakubowska 5135 , M.A. Janik 6135 , T. Janson⁷⁰, S. Ji 616 , S. Jia 610 , T. Jiang 610 , A.A.P. Jimenez 65 , F. Jonas 73 , D.M. Jones 118 , J.M. Jowett $^{632.96}$, J. Jung 64 , M. Jung 64 , A. Junique 32 , A. Jusko 99 , J. Kaewjai¹⁰⁴, P. Kalinak ⁶⁰, A. Kalweit ³², A. Karasu Uysal ^{V,138}, D. Karatovic ⁸⁸, N. Karatzenis⁹⁹, O. Karavichev ¹⁴⁰, T. Karavicheva ¹⁴⁰, E. Karpechev ¹⁴⁰, M.J. Karwowska ¹³⁵, U. Kebschull ⁷⁰, M. Keil ³², B. Ketzer ⁴², J. Keul ⁶⁴, S.S. Khade ⁴⁸, A.M. Khan ¹¹⁹, S. Khan ¹⁵, A. Khanzadeev ¹⁴⁰, Y. Kharlov (140, A. Khatun (117, A. Khuntia (137, Z. Khuranova (164, B. Kileng (134, B. Kim (117), C. Kim (117), C D.J. Kim [©] ¹¹⁶, D. Kim ¹⁰³, E.J. Kim [©] ⁶⁹, J. Kim [©] ¹³⁹, J. Kim [©] ⁵⁸, J. Kim [©] ^{32,69}, M. Kim [©] ¹⁸, S. Kim [©] ¹⁷, T. Kim ¹³⁹, K. Kimura ⁹¹, A. Kirkova³⁶, S. Kirsch ⁶⁴, I. Kisel ³⁸, S. Kiselev ¹⁴⁰, A. Kisiel ¹³⁵, J.L. Klay 0⁵, J. Klein 0³², S. Klein 0⁷³, C. Klein-Bösing 0¹²⁵, M. Kleiner 0⁶⁴, T. Klemenz 0⁹⁴, A. Kluge 0³², C. Kobdaj D¹⁰⁴, R. Kohara¹²³, T. Kollegger⁹⁶, A. Kondratyev D¹⁴¹, N. Kondratyeva D¹⁴⁰, J. Konig D⁶⁴, S.A. Konigstorfer D⁹⁴, P.J. Konopka D³², G. Kornakov D¹³⁵, M. Korwieser D⁹⁴, S.D. Koryciak D², C. Koster⁸³, A. Kotliarov D⁸⁵, N. Kovacic⁸⁸, V. Kovalenko D¹⁴⁰, M. Kowalski D¹⁰⁶, V. Kozhuharov D³⁶, G. Kozlov³⁸, I. Králik D⁶⁰, A. Kravčáková D³⁷, L. Krcal D^{32,38}, M. Krivda D^{99,60}, F. Krizek D⁸⁵, K. Krizkova Gajdosova D³², C. Krug 66, M. Krüger 64, D.M. Krupova 55, E. Kryshen 140, V. Kučera 58, C. Kuhn 128, P.G. Kuijer ⁶⁸³, T. Kumaoka¹²⁴, D. Kumar¹³⁴, L. Kumar ⁶⁸⁹, N. Kumar⁸⁹, S. Kumar ⁶⁵⁰, S. Kundu ⁶³², P. Kurashvili 78 , A.B. Kurepin 140 , A. Kuryakin 140 , S. Kushpil 85 , V. Kuskov 140 , M. Kutyla¹³⁵, A. Kuznetsov¹⁴¹, M.J. Kweon 58 , Y. Kwon 139 , S.L. La Pointe 38 , P. La Rocca 26 , A. Lakrathok¹⁰⁴, M. Lamanna 32 , A.R. Landou 72 , R. Langov 120 , P. Larionov 32 , E. Laudi 32 , L. Lautner 94 , R.A.N. Laveaga¹⁰⁸, R. Lavicka 101 , R. Lea 133,55 , H. Lee 103 , I. Legrand 45 , G. Legras 125 , J. Lehrbach $^{\circ}$ ³⁸, A.M. Lejeune³⁵, T.M. Lelek², R.C. Lemmon $^{\circ}$ ^{1,84}, I. León Monzón $^{\circ}$ ¹⁰⁸, M.M. Lesch $^{\circ}$ ⁹⁴, E.D. Lesser $^{\circ}$ ¹⁸, P. Lévai $^{\circ}$ ⁴⁶, M. Li⁶, P. Li¹⁰, X. Li¹⁰, B.E. Liang-gilman $^{\circ}$ ¹⁸, J. Lien $^{\circ}$ ¹²⁰, R. Lietava $^{\circ}$ ⁹⁹, I. Likmeta ¹¹⁵, B. Lim ²⁴, S.H. Lim ¹⁶, V. Lindenstruth ³⁸, C. Lippmann ⁹⁶, D. Liskova¹⁰⁵, D.H. Liu ⁶, J. Liu ¹¹⁸, G.S.S. Liveraro ¹¹⁰, I.M. Lofnes ²⁰, C. Loizides ⁸⁶, S. Lokos ¹⁰⁶, J. Lömker ⁵⁹, X. Lopez $^{\circ}$ ¹²⁶, E. López Torres $^{\circ}$ ⁷, C. Lotteau¹²⁷, P. Lu $^{\circ}$ ^{96,119}, Z. Lu $^{\circ}$ ¹⁰, F.V. Lugo $^{\circ}$ ⁶⁷, J.R. Luhder $^{\circ}$ ¹²⁵, G. Luparello ⁵⁷, Y.G. Ma ³⁹, M. Mager ³², A. Maire ¹²⁸, E.M. Majerz², M.V. Makariev ³⁶, M. Malaev (140, G. Malfattore (25, N.M. Malik (990, S.K. Malik (990, D. Mallick (130, N. Mallick (116,48, 116,48))) G. Mandaglio (9^{30,53}, S.K. Mandal (9⁷⁸, A. Manea (9⁶³, V. Manko (9¹⁴⁰, F. Manso (9¹²⁶, V. Manzari (9⁵⁰, Y. Mao 6⁶, R.W. Marcjan ², G.V. Margagliotti ²³, A. Margotti ⁵¹, A. Marín ⁹⁶, C. Markert ¹⁰⁷, C.F.B. Marquez³¹, P. Martinengo ³², M.I. Martínez ⁴⁴, G. Martínez García ¹⁰², M.P.P. Martins ¹⁰⁹, S. Masciocchi ⁶ ⁹⁶, M. Masera ⁶ ²⁴, A. Masoni ⁶ ⁵², L. Massacrier ⁶ ¹³⁰, O. Massen ⁶ ⁵⁹, A. Mastroserio ⁶ ^{131,50}, S. Mattiazzo ²⁷, A. Matyja ¹⁰⁶, F. Mazzaschi ^{32,24}, M. Mazzilli ¹¹⁵, Y. Melikyan ⁴³, M. Melo ¹⁰⁹, A. Menchaca-Rocha ⁶⁷, J.E.M. Mendez ⁶⁵, E. Meninno ¹⁰¹, A.S. Menon ¹¹⁵, M.W. Menzel^{32,93}, M. Meres [©] ¹³, L. Micheletti [©] ³², D. Mihai¹¹², D.L. Mihaylov [©] ⁹⁴, K. Mikhaylov [©] ^{141,140}, N. Minafra [©] ¹¹⁷, D. Miśkowiec [©] ⁹⁶, A. Modak [©] ¹³³, B. Mohanty⁷⁹, M. Mohisin Khan [©] ^{VI,15}, M.A. Molander [©] ⁴³, M.M. Mondal [©] ⁷⁹, S. Monira [©] ¹³⁵, C. Mordasini [©] ¹¹⁶, D.A. Moreira De Godoy [©] ¹²⁵, I. Morozov [©] ¹⁴⁰, A. Morsch ¹³², T. Mrnjavac ¹³², V. Muccifora ¹⁴⁹, S. Muhuri ¹³⁴, J.D. Mulligan ¹⁷³, A. Mulliri ¹²², M.G. Munhoz ()¹⁰⁹, R.H. Munzer ()⁶⁴, H. Murakami ()¹²³, S. Murray ()¹¹³, L. Musa ()³², J. Musinsky ()⁶⁰, J.W. Myrcha (135, B. Naik (122, A.I. Nambrath (18, B.K. Nandi (147, R. Nania (15, 17), E. Nappi (15, 17), J. A.F. Nassirpour ¹⁷, V. Nastase¹¹², A. Nath ⁹³, S. Nath¹³⁴, C. Nattrass ¹²¹, M.N. Naydenov ³⁶, A. Neagu¹⁹, A. Negru¹¹², E. Nekrasova¹⁴⁰, L. Nellen ⁶⁵, R. Nepeivoda ⁷⁴, S. Nese ¹⁹, N. Nicassio ⁵⁰, B.S. Nielsen ⁸², E.G. Nielsen $^{\otimes 22}$, S. Nikolaev $^{\otimes 140}$, S. Nikulin $^{\otimes 140}$, V. Nikulin $^{\otimes 140}$, F. Noferini $^{\otimes 51}$, S. Noh $^{\otimes 12}$, P. Nomokonov $^{\otimes 141}$, J. Norman $^{\otimes 118}$, N. Novitzky $^{\otimes 86}$, P. Nowakowski $^{\otimes 135}$, A. Nyanin $^{\otimes 140}$, J. Nystrand $^{\otimes 20}$, S. Oh 17, A. Ohlson 74, V.A. Okorokov 140, J. Oleniacz 135, A. Onnerstad 116, C. Oppedisano 56,

A. Ortiz Velasquez 6⁶⁵, J. Otwinowski ¹⁰⁶, M. Oya⁹¹, K. Oyama ⁷⁵, S. Padhan ⁴⁷, D. Pagano ^{133,55}, G. Paić ⁶⁵, S. Paisano-Guzmán ⁴⁴, A. Palasciano ⁵⁰, I. Panasenko⁷⁴, S. Panebianco ¹²⁹, C. Pantouvakis ¹²⁷, H. Park ¹²⁴, J. Park ¹²⁴, S. Park ¹⁰³, J.E. Parkkila ¹²⁵, Y. Patley ¹⁴⁷, R.N. Patra⁵⁰, B. Paul ¹³⁴, H. Pei ⁶, T. Peitzmann ⁵⁹, X. Peng ¹¹, M. Pennisi ²⁴, S. Perciballi ²⁴, D. Peresunko ¹⁴⁰, G.M. Perez 07 , Y. Pestov¹⁴⁰, M.T. Petersen⁸², V. Petrov 140 , M. Petrovici 645 , S. Piano 57 , M. Pikna 13 , P. Pillot (10¹⁰², O. Pinazza (10^{51,32}, L. Pinsky¹¹⁵, C. Pinto (10⁹⁴, S. Pisano (10⁴⁹, M. Płoskoń (10⁷³, M. Planinic⁸⁸, F. Pliquett⁶⁴, D.K. Plociennik ², M.G. Poghosyan ⁸⁶, B. Polichtchouk ¹⁴⁰, S. Politano ²⁹, N. Poljak ⁸⁸, A. Pop ^{© 45}, S. Porteboeuf-Houssais ^{© 126}, V. Pozdniakov ^{© I,141}, I.Y. Pozos ^{© 44}, K.K. Pradhan ^{© 48}, A. Pop ⁽⁶⁾, S. Porteboeur-Houssais ⁽⁶⁾, V. Pozdniakov ⁽⁶⁾, ⁽¹⁾, I. Y. Pozos ⁽⁶⁾, K.K. Pradhan ⁽⁶⁾, S.K. Prasad ⁽⁶⁾, S. Prasad ⁽⁶⁾, R. Preghenella ⁽⁶⁾, F. Prino ⁽⁶⁾, C.A. Pruneau ⁽⁶⁾, I. Pshenichnov ⁽⁶⁾, ⁽¹⁴⁾, M. Puccio ⁽⁶⁾, S. Pucillo ⁽⁶⁾, S. Qiu ⁽⁶⁾, L. Quaglia ⁽⁶⁾, A. M.K. Radhakrishnan⁴⁸, S. Ragoni ⁽⁶⁾, ⁽¹⁴⁾, A. Rai ⁽⁶⁾, ⁽¹³⁾, A. Rakotozafindrabe ⁽⁶⁾, L. Ramello ^(132,56), M. Rasa ⁽⁶⁾, S.S. Räsänen ⁽⁶⁾, R. Rath ⁽⁶⁾, ⁽¹⁴⁾, M.P. Rauch ⁽⁶⁾, ⁽²⁰⁾, I. Ravasenga ⁽⁶⁾, K.F. Read ⁽⁶⁾, ⁽⁶⁾, C.A. Pruneau ⁽⁶⁾, S.S. Räsänen ⁽⁶⁾, ⁽¹⁴⁾, A. Rath ⁽⁶⁾, ⁽¹⁴⁾, A. Rakotozafindrabe ⁽⁶⁾, ⁽¹²⁾, L. Ramello ⁽⁶⁾, ⁽¹²⁾, M. Rasa ⁽⁶⁾, S.S. Räsänen ⁽⁶⁾, ⁽¹⁴⁾, M.P. Rauch ⁽⁶⁾, ⁽²⁰⁾, I. Ravasenga ⁽⁶⁾, ⁽²⁰⁾, K.F. Read ⁽⁶⁾, ⁽⁶⁾, ⁽¹²⁾, C. Reckziegel ⁽¹¹⁾, A.R. Redelbach ⁽⁶⁾, ⁽³⁸⁾, ⁽²⁰⁾, ⁽² K. Redlich ¹⁰ VII,⁷⁸, C.A. Reetz ¹⁰ ⁹⁶, H.D. Regules-Medel⁴⁴, A. Rehman²⁰, F. Reidt ¹⁰ ³², H.A. Reme-Ness ¹⁰ ³⁴, F. Ronchetti ¹³², E.D. Rosas⁶⁵, K. Roslon ¹³⁵, A. Rossi ⁵⁴, A. Roy ⁴⁸, S. Roy ⁴⁷, N. Rubini ^{51,25}, J.A. Rudolph⁸³, D. Ruggiano ¹³⁵, R. Rui ²³, P.G. Russek ², R. Russo ⁸³, A. Rustamov ⁸⁰, E. Ryabinkin ^[6] ¹⁴⁰, Y. Ryabov ^[6] ¹⁴⁰, A. Rybicki ^[6] ¹⁰⁶, J. Ryu ^[6], W. Rzesa ^[6] ¹³⁵, B. Sabiu⁵¹, S. Sadovsky ^[6] ¹⁴⁰, J. Saetre 10 20, S. Saha 10 79, B. Sahoo 10 48, R. Sahoo 10 48, S. Sahoo 11, D. Sahu 10 48, P.K. Sahu 10 61, J. Saini 10 134, K. Sajdakova³⁷, S. Sakai ¹²⁴, M.P. Salvan ⁹⁶, S. Sambyal ⁹⁰, D. Samitz ¹⁰¹, I. Sanna ^{932,94}, T.B. Saramela¹⁰⁹, D. Sarkar ⁸², P. Sarma ⁴¹, V. Sarritzu ²², V.M. Sarti ⁹⁴, M.H.P. Sas ³², S. Sawan ⁷⁹, E. Scapparone ⁵¹, J. Schambach ⁸⁶, H.S. Scheid ⁶⁴, C. Schiaua ⁴⁵, R. Schicker ⁹³, F. Schlepper ⁹³, A. Schmah⁹⁶, C. Schmidt ¹⁰ ⁹⁶, M.O. Schmidt ¹⁰ ³², M. Schmidt⁹², N.V. Schmidt ¹⁰ ⁸⁶, A.R. Schmier ¹¹ ¹²¹, R. Schotter 101,128, A. Schröter 38, J. Schukraft 32, K. Schweda 96, G. Scioli 25, E. Scomparin 56, J.E. Seger ¹⁴, Y. Sekiguchi¹²³, D. Sekihata ¹²³, M. Selina ⁸³, I. Selyuzhenkov ⁹⁶, S. Senyukov ¹²⁸, J.J. Seo 93 , D. Serebryakov 140 , L. Serkin 65 , L. Šerkšnytė 94 , A. Sevcenco 63 , T.J. Shaba 68 , A. Shabetai © ¹⁰², R. Shahoyan³², A. Shangaraev © ¹⁴⁰, B. Sharma © ⁹⁰, D. Sharma © ⁴⁷, H. Sharma © ⁵⁴, M. Sharma © ⁹⁰, S. Sharma © ⁷⁵, S. Sharma © ⁹⁰, U. Sharma © ⁹⁰, A. Shatat © ¹³⁰, O. Sheibani ^{136,115}, K. Shigaki © ⁹¹, M. Shimomura⁷⁶, J. Shin¹², S. Shirinkin © ¹⁴⁰, Q. Shou © ³⁹, Y. Sibiriak © ¹⁴⁰, S. Siddhanta © ⁵², T. Siemiarczuk 78 , T.F. Silva 109 , D. Silvermyr 74 , T. Simantathammakul¹⁰⁴, R. Simeonov 36 , B. Singh⁹⁰, B. Singh 99 , K. Singh 94 , K. Singh 948 , R. Singh 979 , R. Singh 990 , R. Singh 954,96 , S. Singh 915 , V.K. Singh 134 , V. Singhal ¹³⁴, T. Sinha ⁹⁸, B. Sitar ¹³, M. Sitta ^{132,56}, T.B. Skaali¹⁹, G. Skorodumovs ⁹³, N. Smirnov () ¹³⁷, R.J.M. Snellings () ⁵⁹, E.H. Solheim () ¹⁹, C. Sonnabend () ^{32,96}, J.M. Sonneveld () ⁸³, F. Soramel ²⁷, A.B. Soto-hernandez ⁸⁷, R. Spijkers ⁸³, I. Sputowska ¹⁰⁶, J. Staa ⁷⁴, J. Stachel ⁹³, I. Stan ⁶³, P.J. Steffanic ¹²¹, T. Stellhorn¹²⁵, S.F. Stiefelmaier ⁹³, D. Stocco ¹⁰², I. Storehaug ¹⁹, N.J. Strangmann $^{\circ}$ ⁶⁴, P. Stratmann $^{\circ}$ ¹²⁵, S. Strazzi $^{\circ}$ ²⁵, A. Sturniolo $^{\circ}$ ^{30,53}, C.P. Stylianidis⁸³, A.A.P. Suaide $^{\circ}$ ¹⁰⁹, C. Suire $^{\circ}$ ¹³⁰, A. Suiu^{32,112}, M. Sukhanov $^{\circ}$ ¹⁴⁰, M. Suljic $^{\circ}$ ³², R. Sultanov $^{\circ}$ ¹⁴⁰, V. Sumberia ⁶ ⁹⁰, S. Sumowidagdo ⁸¹, M. Szymkowski ¹³⁵, L.H. Tabares⁷, S.F. Taghavi ⁹⁴, J. Takahashi $^{\circ}$ ¹¹⁰, G.J. Tambave $^{\circ}$ ⁷⁹, S. Tang $^{\circ}$ ⁶, Z. Tang $^{\circ}$ ¹¹⁹, J.D. Tapia Takaki $^{\circ}$ ¹¹⁷, N. Tapus¹¹², L.A. Tarasovicova () 37, M.G. Tarzila () 45, A. Tauro () 32, A. Tavira García () 130, G. Tejeda Muñoz () 44, L. Terlizzi ©²⁴, C. Terrevoli ©⁵⁰, S. Thakur ©⁴, M. Thogersen¹⁹, D. Thomas ©¹⁰⁷, A. Tikhonov ©¹⁴⁰, N. Tiltmann ©^{32,125}, A.R. Timmins ©¹¹⁵, M. Tkacik¹⁰⁵, T. Tkacik ©¹⁰⁵, A. Toia ©⁶⁴, R. Tokumoto⁹¹, S. Tomassini²⁵, K. Tomohiro⁹¹, N. Topilskaya ⁽¹⁴⁰, M. Toppi ⁽⁴⁹⁾, V.V. Torres ⁽¹⁰²⁾, A.G. Torres Ramos ⁽³¹⁾, A. Trifiró ^(30,53), T. Triloki⁹⁵, A.S. Triolo ^(32,30,53), S. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, S. Trogolo ⁽³²⁾, V. Trubnikov ⁽³⁾, W.H. Trzaska ⁽¹¹⁶⁾, T.P. Trzcinski ⁽³¹⁵⁾, C. Tsolanta¹⁹, R. Tu³⁹, A. Tumkin ⁽³¹⁴⁾, R. Turrisi ⁽⁵⁴⁾, T.S. Tveter ⁽³¹⁹⁾, K. Ullaland ⁽³²⁾, B. Ulukutlu ⁽³⁴⁾, S. Upadhyaya ⁽³¹⁶⁾, A. Uras ⁽³²⁾, G.L. Usai ⁽³²⁾, M. Vala³⁷, N. Valle ⁽⁵⁵⁾, I. V.P. van Doromalar⁵⁹, M. van J. S. Tveter ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, R. Turrisi ⁽³²⁾, N. Vala³⁷, N. Valle ⁽⁵⁵⁾, I. V.P. van Doromalar⁵⁹, M. van J. S. Tveter ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, S. Upathyaya ⁽³²⁾, N. Vala³⁷, N. Valle ⁽⁵⁵⁾, I. V.P. van Doromalar⁵⁹, M. van J. S. Tveter ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, T. Tripathy ⁽³²⁾, S. Upathyaya ⁽³²⁾, S. Upathya N. Valle ⁵⁵, L.V.R. van Doremalen⁵⁹, M. van Leeuwen ⁸³, C.A. van Veen ⁹³, R.J.G. van Weelden ⁸³, P. Vande Vyvre ³², D. Varga ⁴⁶, Z. Varga ^{137,46}, P. Vargas Torres⁶⁵, M. Vasileiou ⁷⁷, A. Vasiliev ^{1,140}, O. Vázquez Doce ⁶⁴⁹, O. Vazquez Rueda ⁶¹¹⁵, V. Vechernin ⁶¹⁴⁰, E. Vercellin ⁶²⁴, R. Verma ⁶⁴⁷. R. Vértesi © ⁴⁶, M. Verweij © ⁵⁹, L. Vickovic³³, Z. Vilakazi¹²², O. Villalobos Baillie © ⁹⁹, A. Villani © ²³, A. Vinogradov ¹⁴⁰, T. Virgili ²⁸, M.M.O. Virta ¹¹⁶, A. Vodopyanov ¹⁴¹, B. Volkel ³², M.A. Völkl ⁹³, S.A. Voloshin 136 , G. Volpe 31 , B. von Haller 32 , I. Vorobyev 32 , N. Vozniuk 140 , J. Vrláková 37 , J. Wan³⁹, C. Wang \textcircled{o}^{39} , D. Wang \textcircled{o}^{39} , Y. Wang \textcircled{o}^{39} , Y. Wang \textcircled{o}^{6} , Z. Wang \textcircled{o}^{39} , A. Wegrzynek \textcircled{o}^{32} , F.T. Weiglhofer³⁸, S.C. Wenzel \textcircled{o}^{32} , J.P. Wessels \textcircled{o}^{125} , P. Wiacek \textcircled{o}^2 , J. Wiechula \textcircled{o}^{64} , J. Wikne \textcircled{o}^{19} ,

- G. Wilk ⁶ ⁷⁸, J. Wilkinson ⁶ ⁹⁶, G.A. Willems ⁶ ¹²⁵, B. Windelband ⁶ ⁹³, M. Winn ⁶ ¹²⁹, J.R. Wright ⁶ ¹⁰⁷, W. Wu³⁹, Y. Wu ⁶ ¹¹⁹, Z. Xiong¹¹⁹, R. Xu ⁶, A. Yadav ⁶ ⁴², A.K. Yadav ⁶ ¹³⁴, Y. Yamaguchi ⁶ ⁹¹, S. Yang²⁰, S. Yano ⁶ ⁹¹, E.R. Yeats¹⁸, Z. Yin ⁶, I.-K. Yoo ⁶ ¹⁶, J.H. Yoon ⁵⁸, H. Yu¹², S. Yuan²⁰, A. Yuncu ⁶ ⁹³,
- V. Zaccolo 10 23, C. Zampolli 10 32, F. Zanone 10 93, N. Zardoshti 10 32, A. Zarochentsev 10 140, P. Závada 10 62,
- N. Zaviyalov¹⁴⁰, M. Zhalov 140 , B. Zhang 93,6 , C. Zhang 129 , L. Zhang 39 , M. Zhang 126,6 , M. Zhang 6 , S. Zhang 93,6 , Y. Zhang 6 , Y. Zhang 6 , Y. Zhang 6 , S. Zhang 6 , M. Zhao 6 , M. Zhao 6 , M. Zhao 6 , N. Zherebchevskii 140 , Y. Zhi¹⁰, D. Zhou 6 , Y. Zhou 54,6 , S. Zhu¹¹⁹, Y. Zhu⁶, S.C. Zugravel 56 , N. Zurlo 133,55

Affiliation Notes

- ^I Deceased
- ^{II} Also at: Max-Planck-Institut fur Physik, Munich, Germany
- ^{III} Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
- ^{IV} Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
- ^V Also at: Yildiz Technical University, Istanbul, Türkiye
- ^{VI} Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
- VII Also at: Institute of Theoretical Physics, University of Wroclaw, Poland
- VIII Also at: An institution covered by a cooperation agreement with CERN

Collaboration Institutes

¹ A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

- ² AGH University of Krakow, Cracow, Poland
- ³ Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
- ⁴ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS). Kolkata, India
- ⁵ California Polytechnic State University, San Luis Obispo, California, United States
- ⁶ Central China Normal University, Wuhan, China
- ⁷ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
- ⁸ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
- ⁹ Chicago State University, Chicago, Illinois, United States
- ¹⁰ China Institute of Atomic Energy, Beijing, China
- ¹¹ China University of Geosciences, Wuhan, China
- ¹² Chungbuk National University, Cheongju, Republic of Korea
- ¹³ Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovak Republic
- ¹⁴ Creighton University, Omaha, Nebraska, United States
- ¹⁵ Department of Physics, Aligarh Muslim University, Aligarh, India
- ¹⁶ Department of Physics, Pusan National University, Pusan, Republic of Korea
- ¹⁷ Department of Physics, Sejong University, Seoul, Republic of Korea
- ¹⁸ Department of Physics, University of California, Berkeley, California, United States
- ¹⁹ Department of Physics, University of Oslo, Oslo, Norway
- ²⁰ Department of Physics and Technology, University of Bergen, Bergen, Norway
- ²¹ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
- ²² Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy
- ²³ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy
- ²⁴ Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy
- ²⁵ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy
- ²⁶ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy
- ²⁷ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy
- ²⁸ Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy
- ²⁹ Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
- ³⁰ Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
- ³¹ Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy
- ³² European Organization for Nuclear Research (CERN), Geneva, Switzerland

³³ Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia

³⁴ Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway

³⁵ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

- ³⁶ Faculty of Physics, Sofia University, Sofia, Bulgaria
- ³⁷ Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
- ³⁸ Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany ³⁹ Fudan University, Shanghai, China
- ⁴⁰ Gangneung-Wonju National University, Gangneung, Republic of Korea
- ⁴¹ Gauhati University, Department of Physics, Guwahati, India

⁴² Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn,

Germany

- ⁴³ Helsinki Institute of Physics (HIP), Helsinki, Finland
- ⁴⁴ High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
- ⁴⁵ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
 ⁴⁶ HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
- ⁴⁷ Indian Institute of Technology Bombay (IIT), Mumbai, India

⁴⁸ Indian Institute of Technology Indore, Indore, India

- ⁴⁹ INFN, Laboratori Nazionali di Frascati, Frascati, Italy
- ⁵⁰ INFN, Sezione di Bari, Bari, Italy
- ⁵¹ INFN, Sezione di Bologna, Bologna, Italy
- ⁵² INFN, Sezione di Cagliari, Cagliari, Italy
- ⁵³ INFN, Sezione di Catania, Catania, Italy
- ⁵⁴ INFN, Sezione di Padova, Padova, Italy
- ⁵⁵ INFN, Sezione di Pavia, Pavia, Italy
- ⁵⁶ INFN, Sezione di Torino, Turin, Italy
- ⁵⁷ INFN, Sezione di Trieste, Trieste, Italy
- ⁵⁸ Inha University, Incheon, Republic of Korea
- ⁵⁹ Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
- ⁶⁰ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic
- ⁶¹ Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
- ⁶² Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- ⁶³ Institute of Space Science (ISS), Bucharest, Romania
- ⁶⁴ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁶⁵ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶⁶ Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- ⁶⁷ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶⁸ iThemba LABS, National Research Foundation, Somerset West, South Africa
- ⁶⁹ Jeonbuk National University, Jeonju, Republic of Korea

⁷⁰ Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany

⁷¹ Korea Institute of Science and Technology Information, Daejeon, Republic of Korea

⁷² Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

- ⁷³ Lawrence Berkeley National Laboratory, Berkeley, California, United States
- ⁷⁴ Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
- ⁷⁵ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ⁷⁶ Nara Women's University (NWU), Nara, Japan
- ⁷⁷ National and Kapodistrian University of Athens, School of Science, Department of Physics , Athens, Greece
- ⁷⁸ National Centre for Nuclear Research, Warsaw, Poland
- ⁷⁹ National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
- ⁸⁰ National Nuclear Research Center, Baku, Azerbaijan
- ⁸¹ National Research and Innovation Agency BRIN, Jakarta, Indonesia
- ⁸² Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- ⁸³ Nikhef, National institute for subatomic physics, Amsterdam, Netherlands

⁸⁴ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

- ⁸⁵ Nuclear Physics Institute of the Czech Academy of Sciences, Husinec-Řež, Czech Republic
- ⁸⁶ Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
- ⁸⁷ Ohio State University, Columbus, Ohio, United States
- ⁸⁸ Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
- ⁸⁹ Physics Department, Panjab University, Chandigarh, India
- ⁹⁰ Physics Department, University of Jammu, Jammu, India
- ⁹¹ Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2),
- Hiroshima University, Hiroshima, Japan
- ⁹² Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- ⁹³ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- ⁹⁴ Physik Department, Technische Universität München, Munich, Germany
- ⁹⁵ Politecnico di Bari and Sezione INFN, Bari, Italy
- ⁹⁶ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung
- GmbH, Darmstadt, Germany
- ⁹⁷ Saga University, Saga, Japan
- ⁹⁸ Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
- ⁹⁹ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ¹⁰⁰ Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
- ¹⁰¹ Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
- ¹⁰² SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France
- ¹⁰³ Sungkyunkwan University, Suwon City, Republic of Korea
- ¹⁰⁴ Suranaree University of Technology, Nakhon Ratchasima, Thailand
- ¹⁰⁵ Technical University of Košice, Košice, Slovak Republic
- ¹⁰⁶ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
- ¹⁰⁷ The University of Texas at Austin, Austin, Texas, United States
- ¹⁰⁸ Universidad Autónoma de Sinaloa, Culiacán, Mexico
- ¹⁰⁹ Universidade de São Paulo (USP), São Paulo, Brazil
- ¹¹⁰ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- ¹¹¹ Universidade Federal do ABC, Santo Andre, Brazil
- ¹¹² Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti, Bucharest, Romania
- ¹¹³ University of Cape Town, Cape Town, South Africa
- ¹¹⁴ University of Derby, Derby, United Kingdom
- ¹¹⁵ University of Houston, Houston, Texas, United States
- ¹¹⁶ University of Jyväskylä, Jyväskylä, Finland
- ¹¹⁷ University of Kansas, Lawrence, Kansas, United States
- ¹¹⁸ University of Liverpool, Liverpool, United Kingdom
- ¹¹⁹ University of Science and Technology of China, Hefei, China
- ¹²⁰ University of South-Eastern Norway, Kongsberg, Norway
- ¹²¹ University of Tennessee, Knoxville, Tennessee, United States
- ¹²² University of the Witwatersrand, Johannesburg, South Africa
- ¹²³ University of Tokyo, Tokyo, Japan
- ¹²⁴ University of Tsukuba, Tsukuba, Japan
- ¹²⁵ Universität Münster, Institut für Kernphysik, Münster, Germany
- ¹²⁶ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
- ¹²⁷ Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
- ¹²⁸ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
- ¹²⁹ Université Paris-Saclay, Centre d'Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN),

Saclay, France

- ¹³⁰ Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
- ¹³¹ Università degli Studi di Foggia, Foggia, Italy
- ¹³² Università del Piemonte Orientale, Vercelli, Italy
- ¹³³ Università di Brescia, Brescia, Italy
- ¹³⁴ Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
- ¹³⁵ Warsaw University of Technology, Warsaw, Poland
- ¹³⁶ Wayne State University, Detroit, Michigan, United States

- ¹³⁷ Yale University, New Haven, Connecticut, United States
- ¹³⁸ Yildiz Technical University, Istanbul, Turkey
- ¹³⁹ Yonsei University, Seoul, Republic of Korea
- ¹⁴⁰ Affiliated with an institute covered by a cooperation agreement with CERN
- ¹⁴¹ Affiliated with an international laboratory covered by a cooperation agreement with CERN.