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In this paper, we study the nonlinear sin4(ϕ) system in 1+1 dimensions which exhibits
interesting nonlinear properties. We have categorized the system as radiative, since the
collision of a kink and an antikink with velocities less than a threshold velocity leads to
the complete annihilation of the pair and production of two high-amplitude wave packets
with zero topological charges. Our results show that the individual kinks and antikinks
are stable even against strong (nonlinear) perturbations. Other radiative systems similar to
the sin4(ϕ) system are also studied. Finally, linear perturbations about the kink solution
are examined in relation to the relaxation problem, by looking for the bound states of the
resulting Schrödinger-like equation. Interestingly enough, the sin4(ϕ) system has only one
trivial bound state with the ω2 eigenvalue residing exactly at the top of the potential well.
The significance of this property on the relaxation of the kink in this system is examined
and compared to other nonlinear systems.

Subject Index: 011, 034

§1. Introduction

Nonlinear Klein-Gordon type, field systems in one space and one time dimensions
which possess soliton-like kink (antikink) solutions, have been studied for decades.
The most well-known system in this field is the sine-Gordon (SG) system.1)–4) The
integrable SG system has been under focus in recent investigations and has found
various interesting applications in many branches of physics.5)–11) Another famous,
albeit non-integrable system is the ϕ4 system.1),12)–16) This system, too, has been
used to model the behavior of physical systems in several branches of physics. Beside
the SG and ϕ4 systems, there are many other systems with kink solutions which
are not so well known and well studied as the SG and ϕ4 systems. These include
different versions of the ϕ6 system17),19) and double and multiple-sine-Gordon (DSG
and MSG) systems.20)–22)

One way to compare different nonlinear systems which have kink solutions is
to perturb the dynamical equation about the static kink solution and retain terms
linear in the perturbation term. This leads to a Schrödinger-like equation with an
attractive potential caused by the kink. Such a system has a finite number of bound
states. For integrable systems like the SG equation, there exists only one bound state
with zero frequency (the so-called trivial mode). Non-integrable systems like the φ4

system show extra bound states. These bound states, sometimes called internal
modes, refer to the eigen-solutions of the linearized perturbations around the static
kink solution. It is interesting to note that having just one trivial bound state does
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616 M. Mohammadi, N. Riazi and A. Azizi

not mean that the system is integrable and more restrictive properties like those
considered in 17) are needed to make the system nearly integrable or rigorously
integrable. If a system has extra bound states, the bound states provide internal
channels for the absorption of energy from external triggers.17),18)

In spite of unlimited choices for kink-systems, it is only the SG system which is
integrable. The solitary waves of integrable systems are genuine solitons, in other
words, they reappear without any deformation after collisions with each other. More-
over, the SG kink solutions do not have any internal mode (except for a zero fre-
quency, neutral mode) to absorb small perturbations and its associated Schrödinger
kink-potential is completely reflection-less.17),18) Some of the non-integrable systems
such as ϕ4, DSG and ϕ6, have extra internal modes which cause vibration of the kink
or antikink after collision with other solitons or external perturbations.16),17),19),20)

For the other non-integrable systems, which — like integrable ones — do not have
extra modes, there are no vibrations in solitary waves solutions after collisions, but
we can always detect some small radiative wave packets which are emitted after
collisions.17) Neutral (zero topological charge), radiative wave packets move with
a speed near to that of light and usually appear in all kink-systems after collisions
except the SG system.

In this paper, we investigate — numerically — radiative kink-bearing systems.
A typical example for such a system is the sin4(ϕ) system which was introduced
by Kulagin and Omel’yanov.23),24) They presented mathematical tools to study
the fate of kinks and antikinks in collision using their asymptotic behavior. In the
present paper, we base our study on a comparative investigation of the Schrödinger-
like equations resulting from the perturbations of the kink solution to investigate
radiative kink-bearing systems. We will observe that for radiative kink systems the
kink and antikink with opposite topological charges annihilate each other, creating
two radiative wave packets (with zero topological charges), a process resembling e−e+
annihilation. The created neutral, radiative wave packets have large amplitudes and
move with (nearly) the speed of light. The kink solutions in these systems are
very stable even under the large perturbations. The associated Schrödinger kink-
potentials always have only one trivial bound state whose eigenvalue resides exactly
at the top of their kink-potentials.

The organization of this paper is as follows. In the next section, we introduce
the Lagrangian density, field equation, the kink and antikink solutions and other
basic properties of the sin4(ϕ) system. In §3, we will examine the kink-antikink col-
lisions at various initial velocities, using a finite difference numerical algorithm. The
Schrödinger kink-potential and the internal mode of the sin4(ϕ) kinks are calculated
in §4. In §5, we introduce similar radiative systems and will compare them to deduce
some general properties of such systems. The last section contains a summary and
conclusions.

§2. Introducing the sin4(ϕ) system

Real nonlinear Klein-Gordon-type field equations in 1+1 dimensions obey the
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Radiative Properties of Kinks in the sin4(ϕ) System 617

following equation:

�ϕ = −dU
dφ

, (2.1)

where natural units � = c = 1 are used, and the the choice of metric is such that
xα = (t;x) and xα = (t;−x). In this PDE, U(ϕ) is the field potential. The general
form of the lagrangian density which yields this PDE is

L =
1
2
∂μϕ∂

μϕ− U(ϕ). (2.2)

Using the Noether theorem and the invariance of the action under the space-time
translation xμ → xμ + aμ, one easily obtains the following expression for the stress-
energy tensor:

Tμν = ∂μϕ∂νϕ− ημν£, (2.3)

where ημν is the (1 + 1) dimensional Minkowski metric. The T 00 component of the
energy-momentum tensor gives the energy density which in general reads:

ε(x, t) = T 00 =
1
2
ϕ′2 +

1
2
ϕ̇2 + U(ϕ). (2.4)

Provided that the potential has at least two degenerate minima, such systems have
at least two types of solitary wave solutions which are named kinks and anti-kinks,
corresponding to every dual consecutive minimum points of U(ϕ). We can define a
topological current for the solutions of these systems according to

Jμ = Cεμν∂νϕ, (2.5)

where εμν is the completely antisymmetric tensor and C is an arbitrary constant.
This current is conserved locally for all dynamic solutions:

∂μJ
μ = Cεμν∂μ∂νϕ = 0. (2.6)

The corresponding topological charge is

Q =
∫
J0dx, (2.7)

which is a constant of motion. For kink solutions Q > 0, and for antikink solutions
Q < 0. Moreover, it can be shown that if ϕo(x) is the static kink solution, the
moving kink solution will be

ϕv(x, t) = ϕo

(
x− vt√
1 − v2

)
= ϕo(γ(x− vt)), (2.8)

in which γ = (1 − v2)−1/2, and v is the kink or antikink velocity. The total energy
is obtained by integrating the energy density over all space:

E =
∫
T 00dx. (2.9)
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Furthermore, it can be shown that a moving kink satisfies the famous relativistic
relation

E2(v) = E2(0) + P 2, (2.10)
where

P =
∫
T 10dx. (2.11)

One of the most well-known kink-bearing systems in 1+1 dimensions is the SG
system. The exceptional property of the SG system which distinguishes it from
other kink-bearing systems is its integrability. Integrability makes its solitary wave
solutions free from any chaotic behavior.25) Perhaps the most important influence of
this property would show up in the kink-antikink collisions. For integrable systems
like the SG system, solitons reappear without any deformation after collisions with
each other. The self-interaction potential of the SG system is in following form

U(ϕ) = 1 − cos(ϕ). (2.12)

For the purposes of this paper, we use another equivalent form (within numerical
factors) of the potential (2.12) in the form

U(ϕ) = sin2(ϕ). (2.13)

Accordingly, we call this system as sin2(ϕ) instead of SG. This potential can be easily
generalized to sinN (ϕ):

U(ϕ) = sinN (ϕ). (2.14)
In this paper, we concentrate our study on the sin4(ϕ) system, although some

of the results can be easily extended to other even values of N . The Lagrangian
density for the sin4(ϕ) system becomes

L =
1
2
∂μϕ∂

μϕ− sin4(ϕ). (2.15)

The Euler-Lagrange equation is easily obtained for this system (2.2):

�ϕ = −4 cos(ϕ) sin3(ϕ). (2.16)

The potential of the system has infinite minima at nπ in which n is an integer number.
These degenerate vacua lead to the appearance of stable kinks and antikinks. The
kink and antikink solutions are easily obtained by directly solving Eq. (2.16) for the
static field ϕ(x) with appropriate boundary conditions:

ϕo = ± cot−1(
√

2(x− x0)), (2.17)

with the − (+) signs corresponding to kink (antikink), respectively. The moving
solutions are easily obtained by a relativistic boost (2.8):

ϕv(x, t) = ± cot−1(
√

2γ(x− vt− x0)). (2.18)

We can define a topological current for solutions of this system according to

Jμ =
1
π
εμν∂νϕ. (2.19)

The corresponding topological charge (2.7) is Q = ±1 for the kink (antikink). The
total energy for the static kink and antikink solutions turn out to be equal to

√
2π
2 .
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Radiative Properties of Kinks in the sin4(ϕ) System 619

§3. Kink-antikink collision dynamics

We now let the kink and antikink collide at various initial velocities and exam-
ine what happens. In order to study the time evolution of the two soliton solutions
of the sin4(ϕ) equation we invoke numerical methods, since the non-trivial, time
dependent solutions for this wave equation cannot be obtained analytically. In the
finite difference method we use here, initial conditions are implemented in which a
kink and an antikink start to move toward each other at the same initial speed. A
code was generated in Matlab to compute the time evolution of the kink-antikink
collision numerically. We used an essentially finite-deference method on a grid con-
taining 800000 nodes. The bi-dimensional space-time is represented by a grid of
spatial and temporal step-sizes h and k, respectively. The initial conditions at t = 0
was imposed according to

u(i, 1) = ϕ(xi, 0) = ϕo

(
xi − a√
1 − v2

1

)
+ ϕo

(
− xi − b√

1 − v2
2

)
, b− a� 1, (3.1)

in which ϕo(x) is the static kink solution. Since this is basically a finite difference
method we need also define the second time step (t = k) as initial condition. This
can be approximately implemented as

u(i, 2) = ϕ(xi, k) = ϕo

(
xi − v1k − a√

1 − v2
1

)
+ ϕo

(
−xi − v2k − b√

1 − v2
2

)
, b− a� 1. (3.2)

Fig. 1. A pyramid mesh is employed in our finite difference method in order to eliminate the effect

of boundaries. To calculate field at each arbitrary mesh point, one needs the field values at four

neighboring nodes in the grid. The field values at the first and second rows are approximated

by the initial conditions (3.1) and (3.2).
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620 M. Mohammadi, N. Riazi and A. Azizi

To ensure the stability of the algorithm, the ratio r = k/h must be smaller than 1.
Moreover, to avoid the perturbing effect of rigid walls, we have adopted a pyramid
grid (see Fig. 1). On this grid, we successively omit two end nodes on the x axis
at each new time step. Finally, we only use results in the x-range of interest. The
energy and other quantities of interest are easily calculated from the field values and
finite-difference estimates for its temporal and spatial partial derivatives.

The results corresponding to different initial velocities, show the following situ-
ations with respect to the fate of the colliding kink and antikink:

1- For initial velocities well below the threshold vth (v � vth = 0.714), the kink
and antikink are captured and quickly annihilate each other to produce two neutral
(zero topological charge) radiative wave packets moving with nearly the speed of
light, keeping their localized form (Fig. 2). It should be noted that pair annihilation
has also been observed in solitary waves of a KdV-like equation.26)

2- For initial velocities near but less than the threshold (v < vth), the kink and
antikink are captured and quickly produce a pair of neutral radiative wave packets
and a pair of kink and antikink which after a short time delay annihilate each other
again and produce another pair of neutral radiative wave packets (Fig. 3).

3- For initial velocities greater than threshold (v > vth), the pair always reappear
together with a pair of neutral radiative wave packets. Obviously, the outgoing kink
antikink pair move with speed less than their initial speed (Fig. 4). In this case, if
the initial velocities tend to the speed of light, the ratio of radiative wave energies
to the total energy tends to zero and the collision process becomes very similar to
the integrable SG system as pointed out in Ref. 24) (Fig. 5). In fact, if the initial
speeds are nearly equal to the light speed, the kinetic kink and antikink energies are

Fig. 2. Kink-antikink annihilation with the initial speed 0.40. The vertical axis in this figure and

other similar figures represents energy density (T 0
0 = ε(x, t)).
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Radiative Properties of Kinks in the sin4(ϕ) System 621

Fig. 3. Kink-antikink annihilation with initial kink speed 0.70.

Fig. 4. Kink-antikink collision for the initial kink speed of 0.75.

so large that they do not change appreciably after the interaction in the collision
process. This behavior seems to be true in general for similar kink bearing systems.

Furthermore, it was observed that the collision between solitary waves with the
same topological charge is elastic and leads to the reappearance of the same solitary
waves as before the collision. Collision between a kink and a radiative wave packet,
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622 M. Mohammadi, N. Riazi and A. Azizi

Fig. 5. Kink-antikink collision for an initial kink speed of 0.999. Since the initial speed is very near

to the speed of light, the outgoing kink-antikink pair reappears almost intact as for genuine

solitons. In this figure, we have used field representation instead of energy density representation

in order to show the fate of the kink and antikink in a more transparent way.

Fig. 6. Kink-radiative wave packet collision in the sin4(ϕ) system. The radiative wave packet

has zero topological charge. Note that part of the wave packet is reflected and part of it is

transmitted. The kink recoils accordingly.
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Radiative Properties of Kinks in the sin4(ϕ) System 623

Fig. 7. Kink-radiative wave packet collision in the SG system. The radiative wave packet has zero

topological charge.

leads to the reappearance of the kink with minor vibration after collision (Fig. 6).
We conclude that the solitary waves in the sin4(ϕ) system are very stable even

against large amplitude perturbations. This is partly due to the fact that the sin4(ϕ)
kinks or antikinks do not have internal modes for the absorbtion of energy via col-
lisions with external perturbation. In Fig. 6 the ratio of the incident radiative wave
energy to energy of the kink before collision is 0.36, which is relatively considerable
and well beyond a linear perturbation. Note that this situation does not hold for
many well-known systems such as the ϕ4 system. Even for the integrable SG system,
despite the nonexistence of any internal modes, we have observed long-lasting oscil-
lations of the kink after large amplitude external perturbations (Fig. 7). In order
to investigate the role of internal modes, we consider them separately in the next
section.

§4. Internal modes of the sin4(ϕ) kink

In order to obtain the internal modes of the sin4(ϕ) kink, we add a small time
dependent perturbation term to the static solution

φ(x, t) = ϕs(x) + ψe−iωt (4.1)

in which ϕs(x) is the static solitary wave solution and ψ is a small perturbation
amplitude. After substituting this ansatz in the wave equation

�φ = −∂U(φ)
∂φ

, (4.2)
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624 M. Mohammadi, N. Riazi and A. Azizi

we expand the potential and keep only the linear terms in ψ. Finally, we obtain an
eigenvalue equation for ψ, which looks like the Schrödinger equation:

−d
2ψ

dx2
+ V (x)ψ = Eψ, (4.3)

where

E = ω2 and V (x) =
d2U(φs)
dφ2

s

, (4.4)

and φs(x) is the static kink solution. One can prove easily that this differential
equation in general has a trivial solution which corresponds to ω = 0,

ψ1(x) =
dφs

dx
. (4.5)

But, this trivial solution is in fact associated with an infinitesimal translation of the
static kink:

φ(x, t) = φs(x) + ε
dφo

dx
= φs(x+ ε), ε→ 0. (4.6)

If we apply this procedure to the integrable SG system, no modes except the
trivial mode with zero frequency would be found. For some non-integrable systems
such as ϕ4 or DSG (double sine-Gordon) systems, there appear extra internal modes.
One can argue that if a solitary wave solution has such extra modes, extra channels
for energy absorption exist. Thus, after a collision, these extra modes can be ex-
cited and the shape of kink (or anti-kink) is deformed accordingly, causing the kink
to vibrate. The necessary energy for these vibrations is taken from the incoming
translational kinetic energy.

If we apply this procedure to the sin4(ϕ) system, we obtain the following
Schrödinger kink-potential:

V (x) =
24x2 − 4

(1 + 2x2)2
(4.7)

which is a symmetric potential with a minimum at x = 0 (Vmin = V (0) = −4).
It must be noticed that the square of bound state frequencies (E = ω2) could lay
anywhere between Vmin and the asymptotic potential Va = V (±∞). For the sin4

system, asymptotic kink-potential is exactly zero Va = 0. Moreover, it is possible
to show numerically that this potential has only one trivial bound state exactly like
the SG system. Therefore, we have found a system which has a single bound state
eigenvalue lying exactly on the top of the kink-potential (E = ω2 = Va). Let us
compare this bound state with the bound states of three famous nonlinear systems
(see Fig. 8). Note that the ω2 = 0 trivial mode is present in all cases. For the sin4(ϕ)
and SG systems, there is only one trivial mode. For the sin4(ϕ) system, however,
the trivial ω2 = 0 eigenvalue coincides with the asymptotic value of the potential.
As expected, ϕ4 and DSG have extra non-trivial modes.

We already know that systems which have extra non-trivial modes show vi-
brational motion after kink-antikink collisions. However, this general statement is
based on the study of small internal perturbations.17),18) Fortunately, if we use this
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Radiative Properties of Kinks in the sin4(ϕ) System 625

Fig. 8. A, B, C and D represent the kink-potential of the sin4(ϕ), SG, ϕ4 and DSG systems,

respectively. The horizontal lines correspond to the value of the ω2 eigenvalues.

method for systems which have potentials similar to that of the sin4(ϕ) system, we
find many similarities between the behavior of such systems during and after the
collisions. This numerical study has led us to introduce a new group of kink bearing
systems which we call radiative systems. Such interesting systems are studied in the
next section.

§5. Radiative systems

In the previous sections we examined the sin4(ϕ) system as a radiative system.
In this section, we examine such a radiative system in a more general context. The
main aspect of a radiative system is that it exhibits a threshold velocity (vth) in the
kink-antikink collisions. If the velocity of kink (antikink) before collision is less than
the threshold velocity vth, the pair completely annihilate each other and produce two
radiative wave packets with zero topological charge. If the initial velocities are larger
than vth, a new kink-antikink pair is produced, together with a pair of radiative wave
packets which appear just after the collision. Such radiative systems do not show
any windows for velocities less than vth.

There are many radiative systems which behave like the sin4(ϕ) system in colli-
sions. Let us turn to the following version of the ϕ6 system which has the potential:

U(ϕ) =
1
2
|1 − ϕ2|3, (5.1)

where the associated kink solution is

ϕ =
x√

1 + x2
. (5.2)
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626 M. Mohammadi, N. Riazi and A. Azizi

Fig. 9. Kink-antikink collision in the ϕ6 system with the initial speed 0.10. For v < vth, one observes

that the kink and antikink finally annihilate each other after a long series of oscillations. The

outcome is a series of small amplitude radiative waves.

This system shows a threshold velocity vth = 0.28 for kink-antikink collisions.
The kink and antikink reappear after the collision without any vibration with two
radiative wave packets for initial velocities larger than vth = 0.28 similar to the
sin4(ϕ) system. But, there is an important difference between sin4(ϕ) and ϕ6 systems
for initial velocities less than vth = 0.28. In this range of initial velocities, the full
kink-antikink annihilation is completed very smoothly after some vibrations (see
Fig. 9). The kink solutions in the ϕ6 system are also stable under large perturbations
as one expects. The associated Schrödinger kink-potential has only one trivial bound
state exactly equal to asymptotic kink-potential (ω2 = Va = 0) like the sin4(ϕ)
system.

Besides the sin4(ϕ) and ϕ6 systems, we can introduce more systems which are
radiative. We have performed numerical simulations of kink-antikink annihilation for
sinN (ϕ) systems up to N = 10. All sinN (ϕ) systems (N = 2, 4, 6, 8, 10) show similar
behavior. All of these systems have zero asymptotic Schrödinger kink-potentials with
a single trivial bound state which rests on the top of the kink potential (ω2 = Va = 0).
Furthermore, all of them show a threshold velocity and behave closely like the sin4(ϕ)
system in collisions, as far as we could check numerically for various values of N .
We therefore propose that systems which have only one trivial bound state residing
at the top of the kink potential are radiative. This conjecture is supported by
a comparative (numerical) investigation of internal kink (antikink) modes and the
system behavior during collisions for various kink-bearing potentials.
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Radiative Properties of Kinks in the sin4(ϕ) System 627

§6. Summary and conclusions

We studied the nonlinear sin4(ϕ) system in 1+1 dimensions. The kink-antikink
collisions were examined and it was shown that this and similar systems (which we
call radiative systems) exhibit a threshold velocity, beyond which the pair scatter,
leading to the formation of a pair of zero topological charge wave packets. Below
the threshold velocity, the pair annihilate each other, producing two neutral wave
packets. The kink solutions of the proposed system exhibit interesting behavior
when they are fired with large amplitude radiative wave packets. Our simulations
confirmed that kink (antikink) solutions in this system are very stable even against
large amplitude, nonlinear impacts. Even the kink solution of the integrable SG
system was observed to undergo large amplitude oscillations after such a large im-
pact. The Schrödinger kink-potential of the sin4(ϕ) system was found to have only
one trivial bound state exactly like SG system. However, the associated eigenvalue
resides exactly on top of the kink-potential.

Finally, we introduced some other systems which share these interesting prop-
erties with the sin4(ϕ) system.
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