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We propose a model with a warped extra dimension where the brane distance is stabilized
by a Golberger-Wise mechanism with an exponential potential. The brane distance depends
exponentially on the fixed values of the scalar field at the branes and it is thus naturally
stabilized. The potential generates a naked curvature singularity outside the brane interval.
The vicinity of the singularity can lead to a reduction of the number of degrees of freedom
at the infrared brane in the holographic theory which can in turn reduce the contribution of
KK modes to the precision electroweak observables. We have quantified this phenomenon and
shown it leads to lower bounds on the KK masses as low as O(1) TeV in the presence of a
bulk custodial symmetry.

1 Introduction

Warped extra dimensions are useful to solve long-standing problems: hierarchy, flavor,... In
particular for a five-dimensional (5D) model the metric does not factorizes but it can be written
in proper and conformally flat coordinates as

ds® = 672A(y)nﬂydx“dx” + dy? = ¢ 240) (Nuvdztda” + dz*) (1)

and A(y) = ky is the AdS solution !, where k is the AdS curvature, for which the model is con-
formal invariant. Furthermore the AdS/CFT correspondence? can deal with non-perturbative
theories, as technicolor, QCD,... On top of the ultra-violet (UV) brane at y = 0 which provides
the UV cutoff of the theory, conformal invariance is normally broken by an infra-red (IR) brane
at y = y1 as in the model of Ref. ! (hereafter referred to as RS1). The brane distance can
be stabilized by the Goldberger-Wise (GW) mechanism ® which requires the introduction of a
scalar propagating in the bulk with a quadratic potential in the bulk and backreacting on the
gravitational metric but without generating any singularity.

Another possibility constitute the so-called soft-wall models. The scalar in the bulk with an
exponential potential does generate a singularity at a finite distance and the extra dimension is
non-compact but of finite length:

Ys
/eiA(Z)dz =ys = ; dy < oo (2)

while the metric is AdS near the UV brane. This implies that there is a naked curvature
singularity at y = y, where A(ys) — oco. Soft-walls have been proposed*: for AdS/QCD models,
to describe unparticles as fields propagating in the bulk and as alternatives to RS1 for solving
the EW hierarchy.



2 The model

We will use the superpotential method® to solve the gravitational equations of motion (EOM). Tt
it based upon introducing a superpotential W (¢) such that solving the second order gravitational
EOM is equivalent to solving the set of first order equations

Ally) = W(p), ¢'(y) =W/
V(g) = 3(0W/0¢)* — 1202 (3)

where V(¢) is the bulk potential and the brane potentials A, (¢) satisfy the boundary conditions

€ara(0(¥a) = W (0(ya)),  €alpra(@(ya)) = 605W (¢(ya)) (4)

where ¢, = +1, depending on the Zs boundary conditions.
The model is defined by ¢

W(p) = k(14”9

1 ky
Aly) = ky—ﬁlog(l—ky)

By) = — logly (kys — k) )

We will consider the case where the soft-wall singularity is ”hidden” by a brane at y; < ys.
It may be considered as the case of a RS1 setup stabilized by the previous (super)potential at
two branes located at y = 0 and y = y; where brane dynamics fixes the values of the field ¢:
Ao(P) = ¢ = ¢ @ UV rane band A\ (¢) = ¢ = ¢1 @ IR brane.

The interbrane distance y; as well as the location of the singularity at y; and the warp factor
A(yy) are related to the values of the field ¢ at the branes by the following expressions:

1 —v —v 1 —v
kyp = ﬁ[e b0 _ ¢ ¢1}’ k‘ys=§6 0
1
Aly) = kyi+ (01— ¢o) (6)

which shows that the required large hierarchy can be naturally fixed with

Vol =~ a few, vy > 1 (7)
Moreover the soft-wall is the limit ¢; — oo, y1 — ys [e.g. with a runaway potential V; ~ e™7¢].
3 The Higgs background

We will consider a 5D bulk Higgs as

1 . ze 0
H(z,y) = —= €'% FX(z,y) ]
() =5 ( hy) + €2 ) ) )
and will assume that the dynamics of ¢ fixes y; so that the Higgs background does not perturb
the radion fixing. We will then neglect the back-reaction of the Higgs background.
We will consider the potentials in the bulk and branes for the Higgs ¢

V(H) = [a(a —4) - 4ae”¢} k2| H|?
MN(H) = My|H?
M(H) = M|HP?+v|H* 9)

“For a different (non-tuned) class of bulk potentials see .



The EOM for the Higgs background yield

k(4—a)(y—y1)
) wve , a<?2
h(y) = { vy etW—u1), a>2 (10)
while the boundary conditions yield
(4—a)=yvi+M;, a<?2
BC:{ ak = yv? + My, a>2 (11)

The value of vy should be naturally of order k (to avoid a fine-tuning) and red-shifted to
the TeV by the warp factor. If v; ~ k is consistent with EWSB then the Higgs hierarchy is
solved. Finally we will assume ys —y1 ~ 1/k and consider the case a > 2 (sort of dual to walking
technicolor in the RS1 case)

4 Electroweak symmetry breaking

We will illustrate the mechanism with an abelian example. The action is invariant under 5D
gauge transformations a(z,y) = a(x)f(y) and we will take the 5D gauge condition

OFA, — Mix+ (e 45) =0, Ma(y) = gsh(y)e AW (12)

The relevant degrees of freedom are the 5D gauge bosons A, (x,y), the Goldstone boson and the
pseudoscalar defined as

!/
G(xa y) = MiX - (e_ZAAES) ) K(xa y) = X, - A5 (13)

The 4D theory is invariant under the a(z) gauge transformations and contains: as degrees of
freedom

Au(ﬁﬂ,y) _ a,u«(x) i f(y)

Koy — 2000 (14)
with profiles
m%f + (e_QAf/)/ — M3f = 0, Neumann

/!
m%n—k my2 (eQAMfm),] — M3%n = 0, Dirichlet (15)

We can find an approximation for the light gauge boson mode in the limit where the breaking
is small and thus there is a light mode with almost constant profile

faly) = 1—0a+dfa(y)
v d v " "
Sta) = [y A0 ["ay M) -y

A

54 = i /0 " dysfaty) (16)



The light mode mass is then
1 (o
2 2
m5 = M d 17
I R /0 a(y)dy (17)

For the case of the Standard Model SU(2);, x U(1)y of electroweak interactions the gen-
eralization of the previous formalism is straightforward and the 5D, y-dependent gauge boson
masses are

Miv(y) = Lhip)e O Mply) = M), may) =0 (18)

5 Electroweak constraints

In our 5D model (for fixed values of the parameters v, y;,...) we have the free parameters
(95, 95,v1,a) which fix the physical spectrum of light mode masses. Once we have fixed the
condition

m fz = mz (19)
then vy is fixed. For A(y;1) = 35, the values predicted for v; using the condition (17) are plotted
in Fig. 1.
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Figure 1: Left: value of v1 as a function of a fpr v = 1.5. Right: value of v; as a function of v for a = 2.

We can see from Fig. 1 that vy is of order the Planck scale for the considered range 2 < a < 3
and for v > 0.7 and thus the hierarchy requirement is satisfied.

We will be assuming here (not necessarily an assumption) that fermions are localized on the
UV brane in which case

gv = o™ fv(0) = gv[1 = bv(a, mkK)] (20)
The latter changes the definition of the Fermi constant measured in the p-decay and the Z
widths which constrain the electroweak precision test EWPT parameters®: S, T and U.
Assuming the Standard Model SU(2)r x U(1)y gauge fields propagating in the bulk they
can be given the general expressions ':

2 ky1 2
T = 2,02 / <Q —ﬁ) 24 21
o = st [ (0 - L) e (21)
m3 kun y y
aS = s —Zk / (1 - —) (Q - —) 24 22
W [ (1 L) (o) - 2 )
aU = 0(6%) ~0 (23)



where

Q) = s V') = B)e A0 (21)

In the case of the Higgs profile given by Eq. (10) it is given for y; ~ ys by

L1+ %,2(a = 1(ys —y)]
L1+ %)

Qy) ~ (25)

The SM fit on the (S,T) plane, assuming U = 0, for a reference Higgs mass mTHef = 117
GeV, provides*?

T = 0.02+0.09
S = —0.0440.09 (26)

There is here a problem with the large and positive contribution (21) from the KK-modes which
is enhanced by the large volume and put a lower bound on the mass of KK modes ~ 10 TeV.
This problem can be alleviated a bit by considering a heavy Higgs boson which contributes to
the S and T parameters as '

3 my

log i

1
AS = —log

ref’ ref
myy 6m myy

AT = (27)

T2
8Ty,

For instance for my = 500 GeV the extra contribution is AT = —0.19 and AS = 0.06.
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Figure 2: Left: Nyr/Nyv as a function of v for k(ys —y1) = 1 and A(y1) = 35. Right: N;r/Nyv as a function
of k(ys —y1) for v =1 and A(y1) = 35.

Another possibility is to introduce a custodial symmetry in the theory '!. In this case the gauge
symmetry in the bulk is enlarged to SU(2); x SU(2)r x U(1)x. The symmetry is broken to
SU(2)r, x U(1)y by the boundary conditions at the UV brane while it is unbroken at the IR
brane. In this case there is an additional contribution to the T' parameter by which it becomes
volume suppressed (subleading) instead of enhanced and the relevant parameter to be considered
is the S parameter, which has the same general expression as in Eq. (22).

We expect that the bounds on KK masses will go down with v as the number of degrees
of freedom of the holographic theory at the IR brane Njg also go down as a consequence of
the corresponding departure from AdS behaviour. Notice that ¥ — oo corresponds to RS1.



A similar behavior is expected as a function of k(ys — y1). In both cases the influence of the
soft-wall singularity becomes stronger at the IR brane. This behavior is made explicit in the
plots of Fig. 2 where we can see that the number of degrees of freedom becomes one order of
magnitude smaller than for the RS1 case for k(ys —y1) ~ 1 and/or v < 1.

Our numerical results for KK modes are summarized in the following figure

a=2, k(ys—wy1) =1, A(y1) =35
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where we plot, for the set of values of the parameters there indicated, the lower bounds on KK
mode masses consistent with electroweak observables for models with custodial symmetry and
the Higgs profile given by Eq. (10). We can see that for values of v < 1 one can go to masses
for the KK gauge bosons ~ 1 TeV.
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