SLAC~PUB-2453
January 1980
(T/E)

*
DYNAMICAL BREAKING OF CHIRAL SYMMETRY IN LATTICE GAUGE THEORIES

Benjamin Svetitsky, Sidney D. Drell,
Helen R. Quinn, and Marvin Weinstein

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

ABSTRACT

We generalize the variational block spin methods developed earlier
to show that spontaneous breaking of chiral symmetries and the associated
massless Goldstone particles arise naturally within the context of
strong-coupling lattice gauge theory. Our calculations show the
importance of preserving continuous chiral symmetry when transcribing
the QCD of massless quarks onto the lattice. The meson sector is
analyzed for both one and three spatial dimensions and the criteria for
recognizing Nambu-Goldstone phenomena are identified. The relation of
these results to continuum QCD and to general properties of observed
hadrons is also discussed. In particular the picture which emerges
from our discussion leads to a natural understanding of SU(6)w results

when three quark flavors are considered.
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1. Introduction

Quantum chromodynamics (QCD) is at present the only attractive
candidate for a fundamental theory of hadrons: it provides a basis for
understanding the approximate scaling behavior observed at short
distances, and recent work strongly suggests that it provides a basis
for understanding color confinement.!?2 However, if QCD is to be a
completely satisfactory theory of hadrons it must also account for the
observed masses and other physical properties of the hadrons; in
particular it must explain the remarkable successes of current algebra
combined with the PCAC hypothesis.3 The study of the emergence of PCAC
in the framework of QCD is the focus of this paper. Our goal is to
demonstrate that the exact chiral symmetry of the theory in the limit
of massless quarks is realized in the hidden, or Nambu-Goldstone (N-G)
mode. ! Specifically we will show that dynamically generated Goldstone
bosons arise naturally in strong coupling lattice gauge theories when
fermions (quarks) are introduced in a way which preserves the continuous
chiral symmetry of continuum QCD. The use of non-perturbative methods
is essential for the analysis of the chiral properties even in the strong
coupling region; our analysis relies upon iterative block spin techniques
developed earlier and successfully applied to a number of simpler problems.s‘8

The relevance of this strong-coupling lattice result to continuum
QCD depends on two properties of non-Abelian lattice gauge theories
which have been demonstrated by other workers. Firstly, in the weak-
coupling limit and for momenta small compared to the cut-off, the lattice
theories reproduce continuum perturbation theory. Secondly, recent

calculations? by Kogut, Pearson, and Shigemitsu, and by Creutz, for the
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theory with no fermions strongly suggest that there is no phase
transition between weak and strong coupling regions of this theory.
The addition of a small number of fermion flavors should not change
this property. Hence we argue that if there are Goldstone bosons in
the spectrum of the Hamiltonian at strong coupling they should also be
present in the weak coupling theory which is commonly envisioned to
contain the continuum limit.

We devote Section 2 of this paper to a review of the physics of
spontaneous symmetry breaking, discussing first the continuum u((L)
Goldstone theory and second the lattice Heisenberg antiferromagnet.

We introduce our calculational technique for detecting spontaneous
symmetry breakdown in the context of the latter simple theory, and
compare it with a straightforward application of the blocking techniques
that we have used previously.

In Section 3 we introduce the lattice QCD Hamiltonian and discuss
the strong coupling limit g2>> 1. We argue that the physics relevant
to the dynamical generation of Goldstone bosons is generic to a larger
class of theories and subsequently limit our discussion to the case of
an Abelian theory. For the sake of simplicity we further restrict our
detailed analysis in 3+l dimensions to the case of a single flavor of
fermion. We present our calculations which show that this theory's

% These calcu-

chiral symmetry is realized in Nambu-Goldstone fashion.
lations are performed first in the nearest-neighbor approximation to
the fermionic gradient operator on the lattice, which has a greater
symmetry and hence greater degeneracy in its spectrum. We discuss the

way in which longer-range terms in our chirally invariant definition

of the gradient lift these degeneracies in the 1+1 dimensional case,
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and then present results which confirm the expected generalization for
3+1 dimensions.

In Section 4 we discuss the problem of dynamical mass generation
for non-Goldstone particles. We find in our calculation that there are
excitations split from the ground state with a gap which is proportional
to the inverse lattice spacing. We present a scenario for QCD which
suggests that the usual renormalization program would lead to an inter-
pretation of such states as particles of finite mass, such as the vector
mesons. We speculate that some interesting properties of hadrons will
be natural consequences of this approach, and we discuss the possibility
nlp

of "seizing of the U(l) Goldstone bosons in a multiflavor theory.

2. Hidden Symmetries Revisited

In later sections of this paper we will introduce a calculational
technique which has proven to be reliable for finding N-G symmetries,
if and when they arise. While the method is straightforward, the
connection of these ideas to the usual treatments merits discussion.

A. What is a Hidden Symmetry?

The symmetries of a quantum Hamiltonian can be realized in the
physics of the theory in either of two ways. The most common situation
(and that which must obtain for a finite number of degrees of freedom)
is a Wigner realization —- the space of states factors into irreducible
representations of the symmetry group. For a system with an infinite
number of degrees of freedom there is a second possibility, known in
the literature as spontaneous or dynamical symmetry breaking, where the
transformations do not exist as unitary operators on the Hilbert space.

If the symmetry group is continuous the spectrum of the theory then
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contains massless particles. These features arise as a consequence of

Goldstone's theorem"

in a system where a local field acquires a vacuum
expectation value which breaks the symmetry. [The existence of a
conserved current associated with the symmetry is also a necessary
condition of the theorem.] The massless particles are called Goldstone
bosons in this event.

This however is not the whole story, for it is possible that this
physics (which we call the N-G realization) will appear in a theory
through mechanisms other than Goldstone's theorem. Indeed, in one
spatial dimension Coleman's theorem!! tells us that a vacuum expectation
value which violates a continuous symmetry can never occur. We will
exploit a more general structure to relate the existence of massless
particles to conserved local currents.

To explain this way of looking at N-G symmetries we will begin by
reviewing some aspects of the physics of such symmetries in the context
first of the U(l) Goldstone model and then of the Heisenberg anti-
ferromagnet. Much of this formalism is well known.12213 We present
it here to stress certain aspects related to the approach to the infinite
volume limit, since the lattice techniques used in the analysis of QCD
in Section #-build up to that limit in a stepwise fashion starting from
subsystems of finite volume.

B. The U(l) Goldstone Model

This prototypical model is a theory of one complex scalar field.

Its Hamiltonian in d spatial dimensions is given by

H = fddx TI‘+'IT + V¢+V¢ + V(¢+¢)

V(z) = x( - —fi)z

(2.1)



Treating H classically, the static field configuration of lowest energy
is
1 i@

->
p(x) = -/—é-fe (2.2)

with 6 an arbitrary space-independent constant.

A quantum perturbation theory is formulated by allowing field

fluctuations about (2.2) —— i.e., we define
- 1 - . is
o(x) = 75-(p(x) + ix(x) + fe ) (2.3)

_).
with the vacuum expectation value of ¢(x) given by

olo@ o> = — fe'®

75 (2.4)

where £#0 for d > 1 dimension. In the infinite volume limit we know
that 0 parametrizes an infinite set of equivalent, orthogonal, degenerate
vacua. The generator of the U(1l) group of (phase) transformations under

which the Hamiltonian (2.1) is invariant is

q = i;{}dx (¢<§>n<§) - ¢+<§>W+(§))

(2.5)
U(a) = elmQ
This identifies a conserved current
+
Mo = (6@ - e ) (2.6)
which creates massless y particles from the 6 =0 vacuum:
- - iq" —i+ ;
x(@D;0=0] @ |o=0> = == fe 1 (2.7)

V2

with q2 = mi = 0 by current conservation.



Things are different for finite volume, however. In this case we
know that the eigenstates of H must also be eigenstates of the total
charge Q. The |e> vacua in the infinite volume limit are superpositions

of the eigenstates of different Q

o> = L 2 Yo (2.8)
Vo
These states have the property
U(a)|e> = |8-od> (2.9)

From (2.8) it is evident that the orthogonality and degeneracy of the

-vacua imply that the energy of the lowest eigenstate of each Q,

<Q|H|Q>, is independent of Q in the infinite volume limit. Hence if

we solve for the ground state energy of (2.1) in individual Q sectors

we must find that the energies are equal up to terms that vanish as V-,
This point of view also applies in d=1 dimension where Coleman's

theorem!! requires <¢> =0 in (2.4). 1In this case if we make the

dynamical assumption that the lowest states in sectors of definite Q

become degenerate in the limit V-, we may form the le> vacua via

(2.8).

Since

Qle> = fdx °)|e> # 0

we conclude that Jo(x)‘e> #0 by translation invariance. Then we may

define (unnormalized) states with momentum q

lq,8> = fdx 29X 1°(x) |8> (2.10)

As q+ 0 this becomes Q]e) which is orthogonal to |e>. Defining



<q,6 | H| q,06>

BO = e T, (2.11)
we evaluate
. <o |lquqle> _ <eloqule> _
qli“g Ea) Glaogle> - <elqele> - o (2.12)

which is the vacuum energy. Hence there is a sequence of states ortho-
gonal to |6> with vanishing energy gap.

We have arrived at the existence of massless states by the back
door, via an assumption of degenerate lQ) vacua. Obviously this procedure
applies in any number of dimensions; it describes a N-G structure for a
continuous symmetry irrespective of the existence of a symmetry-breaking
vacuum expectation value for a local field.

C. The Heisenberg Antiferromagnet

We now turn to a discussion of this same physics in the context of
a lattice model which has no explicit scalar boson, i.e., the Heisenberg
antiferromagnet.l3 We will first discuss the physics as it is known
from an exact solution via the Bethe ansatz,l“ and then describe an
extension of the block-spin truncation techniques which allows us to
recognize this physics correctly. From a computational point of view
this extension of the block-spin technique is the important new content
of this paper.

The one-dimensional nearest-neighbor Heisenberg antiferromagnet

is specified by the Hamiltonian
H = J;§i- S (2.13)

where J > 0, the commutation relations



a Lb _ s abc _c
[Si, Sj] = i dij € S; (2.14)

and the restriction gi = 3/4 for all i. This restriction to spin-1/2
on each site makes the model inherently quantum, so no classical action
or conserved current can be defined; Goldstone's theorem is not
applicable. There is however a set of charges which generate rotations

—)
of Si under which H is invariant:

Q? = :;: 5%

(2.15)
eieaQa S? e_ieaQa = R(g)bC S;
where R(8) is a 3 x 3 rotation matrix. Since
[o®.®] = 16, « a6
and
[o®,5] = o (2.17)

-
we may simultaneously diagonalize H, QZ, and Qz.
In the exact solution,lu it turns out that the lowest states in the
_)..
various (QZ,QZ) sectors are all degenerate. Denoting these states by

|2,m>, we may take linear combinations using the spherical harmonics Ylm

ey = D Y’; (8,4) | 2,m> (2.18)
£,m n

in analogy with (2.8). These are the "6-vacua."
The state le,¢> is invariant under rotations in the U(1l) "little
group" of the direction vector with polar angles (6,¢); thus it is

annihilated by a certain linear combination Qe¢ = E:aa(6,¢)Qa. The
a
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two orthogonal linear combinations of Q's generate rotations such that

.. .a.a
e Qg = IR (6,4)> (2.19)

analogously to (2.9); the Fourier components of their densities create
two Goldstone bosons via (2.10).

To be more concrete, say we choose to build our theory on the
|6 = 0,6 = 0> vacuum. Then ¥, (0,0) = /?EEIfiﬁE?sm’o so Q*|0,0> = 0
as promised. Further, QX and Qy change m, so they do not annihilate
the vacuum. Thus a U(l) subgroup of SU(2) is realized in the Wigner
mode, and the massless excitations generated by é;eiqn<é§:tisi) have
the Qz==il quantum numbers of Qxi iQy. Hence the 1+ 1 dimensional
Heisenberg antiferromagnet exhibits a degeneracy structure like that
of the 1+ 1 dimensional U(l) Goldstone model.

In the standard lattice truncation procedure® we would construct a
trial wave function by diagonalizing that part of the Hamiltonian which
refers only to a block of n sites and writing block-to~block recoupling
terms as operators among a restricted set of states -— the lowest few --
on the n site blocks. This method automatically constructs states which
respect the symmetries of the Hamiltonian,!® namely in this case states
of definite |2,m>. Keeping only a few such states makes it difficult to
recognize a spontaneously broken symmetry since as we have shown this is
signalled by an infinite set of degenerate |2,m> eigenstates in infinite
volume. We describe here a variant of the procedure which constructs
the variational wave function by diagonalizing on n sites not the

symmetric Hamiltonian (2.15), but a Hamiltonian to which a symmetry-

breaking perturbation has been added
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> >
He) = 3 Zsi S te Zsf_ S341 (2.20)
i i

and again keeping a restricted set of states on each block. If spontaneous
symmetry breaking occurs then we would expect that the ground state
expectation value of the symmetric Hamiltonian would minimize for dis-
torted states constructed from H(e) with €# 0, and indeed this is exactly
what happens.16 The states constructed by this method are not IZ,m)
eigenstates: rather, the algorithm constructs directly a state of the
l6,¢> type. To see that there is an infinite number of degenerate states
of this type we need only remark that the charges QX and Qy, which commute
with (2.13), generate rotations which change the direction of the pertur-
bation in (2.20). For any such rotated perturbation the truncation

method constructs a trial state degenerate with the one constructed from
(2.20), since the Hamiltonian (2.13) is symmetric. That the states
constructed for different (6,¢), that is, for different directions

" selected by the perturbing term in (2.22), are orthogonal will be shown

&
in detail for the QCD case in Section 3.17

3. Goldstone Bosons in the Lattice Gauge Theory

In this section we will present a discussion of our calculations
for QCD. We begin with a chirally invariant Hamiltonian for a multi-
fiavored non-Abelian lattice gauge theory. In studying the strong
coupling limit of this Hamiltonian we simplify to a single flavor, and
employ the iterative lattice truncation procedure. We examine first the
1+ 1 dimensional case and then generalize our results to higher

dimensions.
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A. Formalism

In the Hamiltonian approach it is convenient to work in the gauge
A0==O. As with Gauss' law in QED, the non-Abelian generalization of
Gauss' law is not an equation of motion in this gauge. We impose it as
a condition on the states -— namely that they transform as singlets
under all local gauge transformations. We follow the Wilson-Kogut-
Susskind formulation! of a lattice gauge theory.18 As has been discussed
at length elsewhere, we introduce fermions in a way which explicitly
maintains continuous chiral symmetry and gives the correct spectrum for
a free Dirac particle in the zero coupling limit.° This is achieved by

using a long-range form for the derivative

1
vy = -a—z §'(n) ¥, . (3.1)
3 n i+nu
where
N (_l)n+1
' - 1 . ik(m)*n =
§'(n) N1 ;Z;& ik(m) e N oo In{
(3.2)
_ 21m
k(m) = 59571

The Hamiltonian for coupling strength g and lattice spacing a is

then
2
s = L1, 125 - 3 L[ 1 wu, .
a . 2 > 2 ye
links JsH loops 8 around J,H
loop
: -1 aB (3.3)
. +af f
- |1 ;Z; §' (n) ¢+a Q wi . TI Uﬂ?ﬂf ~ + h.c.
Jsu A K Jtnujm=0 JTm,

n>0
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We have introduced here a four component fermion field wif for each
J
>
color, o, and flavor, f, at each site j. The au are the usual Dirac

matrices. The operators U create unit color flux on the link joining

i

2

. The operators E, , measure this flux
J>u

excitation. In our notation the only dimensionful quantity is the

=l

3 '+ ' g
the site j to the site j+

lattice spacing a, which thus appears only as an overall scale factor
for the Hamiltonian. The Hamiltonian (3.3) in the limit g- 0 reduces

to a massless, chirally invariant, free Dirac theory which has a

spectrum EE = IE'. The Hamiltonian commutes with the chiral charges
+of f£' £'
Q= 2ufom ™y 48 (3.4)
5 T3 5 g

where the A" are the generator matrices of the flavor group.

At strong coupling the gauge invariant states of the system
described by H fall into two classes: those containing flux excitations,
which all have energy proportional to gz, and those involving no flux
excitations, which, by Gauss' law, may contain only color-singlet
fermionic configurations at any individual site. There is a huge
degenerate set of such states having zero energy (to zeroth order in
l/gz). Acting on any such state the fermionic term in (3.3) creates
at least one excited flux link; however, allowing the fermionic term
in H to act twice, we can mix states within the zero flux sector and
split the degeneracy by creating and subsequently annihilating flux
links, as shown in the examples of Fig. 1. The zeroth-order color-
ginglet excitations thus move through space or exchange flavor by
passing through intermediate states in the highly excited sector

containing flux.
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In order to construct trial wave functions for the low lying
eigenstates of H we restrict our attention to the fluxless states.
The above remarks make it clear that degenerate perturbation theory
leads us to diagonalize an effective second order Hamiltonian. This

will give the leading term of a l/g2 expansion which has the form

H(Z) _ A Z 8! (n)<S (-n) w:af W—Brf X 1p+Bf' 11)—> (3.5)

r L l/zg A‘nl CF 3 U j+ny  j4np M j
where Nc = number of colors;g CF is the value of the quadratic Casimir
operator of SU(NC) in the fundamental representation, and A = 1l/a.

The denominator%g2 AlnlCF is the energy of an intermediate state
containing n excited flux links. Were we to discuss the baryon spectrum
in color SU(3) we would need to keep terms at least up to order l/g4 in
order to have terms in Heff which could move a qqq excitation. Baryon-
meson interchange interactions also enter at order l/ga. However, we
can consistently treat the meson sector of the theory on the basis of

(E% and hence in the remainder of this paper we discuss a lattice
truncation calculation of its spectrum.

It is convenient to rewrite (3.5) by performing a Fierz transfor-
mation which groups together the operators corresponding to a single

site. This gives

16
O N S S U SEIE Z( L of )
‘——‘[_‘]“‘— — IP
fegt ~ ZgZCF Ton,0 n =1 \"N¢ 3 3
1 Bf' o0 +of
~ 3.6

where the M" are the 16 Hermitian 4 x 4 matrices listed in Table I.
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Because of our restriction to purely mesonic configurations the last
term in (3.6) is a trivial constant, and hence can be dropped. It is
also clear at this point that color enters (3.6) in a totally trivial
fashion. We may consequently suppress the color indices. The resulting
Hamiltonian can be viewed as the strong coupling limit of a compact
lattice formulation of an Abelian gauge theory, the restriction to color
singlet excitations at each site replaced by a restriction to states
with fermion number everywhere zero. As a simplification we will discuss
the case of a single flavor. Then the term involving M16= I in (3.6) is
also a constant which can be ignored. After detailed discussion of this
problem we will make some comments on theories with multiple flavors and
colors (see Section 4).

Our discussion will be given in two stages. First, we consider a
nearest-neighbor theory obtained by dropping all terms n > 1 in (3.6).

This fictitious theory has an SU(4) symmetry: mnot only the axial charge
+
Qg = Db vs v, (3.7)
T ] ]
J
but the entire set of 15 charges

D i, 3, 3
n o + "Xy ~z .n Tz Ty X . _ N (3.8)
Q = 5 .:E; . ¢? ux dy az M az ay ax v, jg; Q; !
3= (0 dy03,) 3 E
vz
commutes with the Hamiltonian. The six chargeless states which can be
formed on a single site (listed in Table II) form an irreducible multiplet
of the SU(4) symmetry: we can write the Qg in the basis of these sextets.
J
This additional symmetry means additional degeneracy in the spectrum of

the nearest neighbor case, since (at least in finite volume) the states

must fall into multiplets of the SU(4).
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To study the physics of the Nambu~Goldstone mode and also to learn
how these extra degeneracies are lifted when long-range terms are
restored we have studied in detail the 1+ 1 dimensional theory. This
theory is a lattice version of the SU(2) Schwinger model,19 since the
degrees of freedom which represent spin in a 3+ 1 dimensional theory
must be interpreted as an internal (flavor) degree of freedom in the
1+ 1 dimensional case. The calculations presented in this section study
first this 1+ 1 dimensional theory for the nearest-neighbor case. Then
longer-range interactions are reintroduced. (In 1+ 1 dimensions even
the long-range theory has an SU(2) x SU(2) x U(l) symmetry, where the U(1l)
is given by the QX formed using M==ux and the SU(2) x SU(2) are a V+A and
V-A formed from the six Qn which commute with QX. This is just the
chiral symmetry of the SU(2) Schwinger model.)

We find that the axial symmetries of the 1+ 1 dimensional model are
realized in Nambu-Goldstone mode. In itself, of course, this result is
nothing new, in view of what is known about the SU(2) Schwinger model.
Its importance lies rather in the fact that its extension to 3+1
dimensions is easily conceived and leads to the conclusion that chiral
symmetry in the strong-coupling lattice theory is associated with
Goldstone bosons.

Our iterativg truncation scheme will be reviewed as we apply it to
the nearest-neighbor version of (3.6), from which we will deduce a simple
scenario for symmetry realization in the long-range theory. This
scenario has been verified explicitly both for the 1+ 1 dimensional case

and for the 3+ 1 dimensional case.
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B. Nearest-Neighbor Theory

(i) Block-spin transformation, 1+l dimensions

Keeping only nearest-neighbor terms in (3.6) we get
i - 4 2 : (3.9)

The Q? are SU(4) generators in the 6 representation; the Hamiltonian
is just that of an SU(4) antiferromagnet.

In order to effect a block-spin transformation, we divide the
lattice into blocks of three sites each. (Figure 2; the reason for
blocking in threes will soon be apparent.) We then group the terms in
the Hamiltonian according to whether they act entirely within blocks or

connect adjacent blocks:

2
%r-ﬁii) - jE:Hp Y R

P p
- oz 6 +—> —6
p pl "pz = “pz "p3
-
foupt T Gp37 Gpua (3:10)

Here p indexes blocks and 1, 2, 3 index sites within a block.?? The

idea is to diagonalize the Hp's, which commute with one another, and to
truncate the Hilbert space basis to products of the lowest-lying states
in the blocks. H;,p+l is then rewritten in the truncated basis, yielding

an effective Hamiltonian operating on the low-lying block states.

To accomplish this we rewrite

e 3E - EE) 3G o

where



-18-

~ >
B T L1t s
(3.12)
>T =—+-|- -+
Qp Qp + QpZ

> >
Diagonalization of H_ proceeds in a way reminiscent of L*S coupling in

P
atomic physics. To wit, we note that the operators (-(ST)2 and (Q )" may

Y
+T > 2, -

quantum numbers of Q-. (QZ) is already a c-number, the Casimir operator
, . r re . 2>+, 2
in the sextet. We first couple Q1 and Q3 to states of definite (Q )°,

-
and then we couple a+ and Q2 to definite (aT)Z. The combination of
representations is depiFted in Fig. 3. Now we note that (3.11) demands
that we maximize (3+)2 and minimize (aT)2 -— just the behavior one would
expect in an antiferromagnet. The coupling scheme for the low-lying

states is then

61+63 = -Q)+ : é_X_6_ »~ 20
(3.13)
6++32 = _(ST : 20x6 > 6

The block states of lowest energy form a sextet, just like the states on
each site; this is the reason we blocked together three sites.

The energy per block in the configuration (3.13) is computed from
(3.12) using the values listed in Fig. 3 for the Casimir operator.

We get an energy density (per block)

E = - 6 (3.14)

Taking only the lowest sextet in each block to form our truncated basis,

-5
we evaluate matrix elements of Qpi with the Wigner-Eckart theorem:
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<6m|Q | 6n'> = vi<6n| 32 | 6m'> (3.15)

with Yl='y3==3/5, Y2="1/5- Thus in the truncated Hilbert space each

Hp is replaced by Eo and

-2 .3 9 2T 2T
Boprl ~ 3" Q1 7 25 % G (3.16)
Dropping T superscripts, the truncated Hamiltonian is then
Tr _ N 4 9 > >
R T IR :%; % " Ot (3.17)

and the transformation is complete and ready to be iterated. Writing the

effective Hamiltonian after n iterations as

Tr _ i -> .-+
HT = g <Nan + 8 j;: Q, Qp+1> (3.18)

we deduce the recursion relations

= ——6—-8
®n OLn—l 3n n-1
(3.19)
- 9
By = 25 Bp1

where aq = 0 and BO = 1.

It is now trivial to demonstrate that to the accuracy of this calcu-
lation the nearest-neighbor theory has no mass gap. Suppose that the gap
to the first excited state of (3.9) is A. Then the equivalent gap for
(3.17) is (9/25)A since the two Hamiltonians differ solely in scale.
Because we expect (3.17) to describe the low-energy physics of the theory
fairly well, we equate A = (9/25)A to get A = 0. Possible massive excited

states are probably lost together with high-momentum modes in the truncation.
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To show that the vanishing mass gap is associated with N-G
phenomena, we consider doing some large number of iterations in the
manner described. Our effective Hamiltonian is (3.18), with Bn
exceedingly small. Now we dissect the lattice into blocks of two sites

each and decompose ng in a fashion analogous to (3.10). Then

B = apl ) 31)2 B %(3;)2 B %(apl)z - %<3p2)2 (3.20)
with

(3.21)

We are called upon to minimize the value of (6T)2, and a glance at

Fig. 3(a) shows that the ground state of Hp is the SU(4) singlet. It
is reasonable to attempt to construct a unique vacuum by taking a state
where each block is in this singlet state. Of course Hp,p+l has no

matrix element within this ground state, but if we create an excited

state by putting one block into a member of the 15 then H moves

p,p+l
it around to form a momentum band (and creates more complicated states).
It seems, then, that the ground state of (3.18) is SU(4)-invariant while
low-lying excited states transform as a 15 and have mass of the order
of Bn.

However, if we picture progressively deferring the change-over
from three-site to two-site blocking, Bn may be made arbitrarily small.
Taking it indeed to be zero, we find an infinite set of ground states
consisting of a singlet, a 15, the representations contained in

15x15 D 20+45+45+ ... and so forth. By combining enough of these

representations along the lines of (2.18) the "9-vacua' may be constructed,



which will realize some or all of the symmetry generators in N-G mode.
Some further insight into the nature of the spectrum of this theory
can be gained by considering the effect of adding a small fermion mass

to (3.3). This yields in perturbation theory (assuming m << 1/g2)

H__a_v?? +2T“,__3M
m gzLj.Qj'QjH m/T(—l) Q. (3.22)

L

where Q? is the charge associated with the M = B = Yo generator. The
addition of this term breaks the SU(4) symmetry down to SU(2) x SU(2) x U(1)

as shown in Table III; the set of 6 single-site states consists of a

+ -
&, %)O, a (0,0) 1, and a (0,0) 1 under this symmetry. A truncation
calculation for this Hamiltonian -- keeping one (3, %) multiplet and
two (0,0) multiplets at each step -- has been carried out. As in the

symmetric case the site~to-site coupling term is reduced in strength at
each iteration so that eventually the mass term dominates, even fqr very
small m. The theory has a unique ground state of the (0,0) type; the
lowest excited state is of the (%,%) type and is split from the ground
state. The charges Qn which do not commute with QM (those listed below
the line in Table III) transform as a (%, %) multiplet, and we can write

in analogy to (2.7)

Gsubiqll]o,00 = L og(q) 1Y 3,23
5,%5q] Q| 5 fa) e (3.23)

where g is the momentum of the (%, %) state. As we take m to zero (and
these charges become conserved) the (},%) particles beéome massless?!
-- the symmetry is realized in the Nambu-Goldstone fashion. TIf the
symmetry were Wigner-realized then in this limit the splitting would

remain finite and f would go to zero. The results of our calculation



indicate that this is not the case. We note however that the
SU(2) xSU(2) xU(l) algebra of conserved charges which commute with QM
is Wigner-realized.

(ii) Higher dimensions

The extension of the nearest-neighbor analysis to two and three
dimensions is straightforward. A simple SU(4)-symmetric block-spin
transformation on 3d sites may be constructed by working one dimension
at a time (see Fig. 4). It is readily demonstrated that the Hamiltonian
(3.9) still scales, with a factor of 9:19/25:25 in two dimensions and
9:19.19/25.25-25 in three dimensions. Hence the 3+1 dimensional theory
is massless and 9-vacua may be constructed as before, either by blocking
23 sites or by perturbing with a mass term.

While it happens that no x-y-z asymmetry is introduced in the
effective Hamiltonian by this blocking scheme, for the non-nearest-
neighbor case this will not be so. We have confirmed the result obtained
here by an alternate procedure which manifestly respects x-y-z symmetry.
We will describe this method in some detail for two spatial dimensions
and then outline the obvious generalization to three spatial dimensions.

On the block of nine sites in two spatial dimensions we consider
first the nearest-neighbor Hamiltonian for the five sites enclosed by

the dotted line in Fig. 5. It is

15 )
-1 n n n n n
Hy site = 2 :1;1‘ (Qoo T Qp t Qo1 T Ut Q10)
n2 n n n :
n
Qoo - (Q01 Q1 F Qo * Q-lo) (3.24)

As was the case for the three-site Hamiltonian, one can readily read off
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from this expression the desired representation content for the lowest-
lying states on the five sites: it would be a maximal representation,
namely the totally symmetric 105-dimensional representation, for the
four outside sites, contracted with the sextet on the center site in
such a way as to reduce the dimension as much as possible, namely to
a 50. The relevant Young tableaux are shown in Fig. 6(a). Let us
denote these states wio where i indexes the 50 states.

We truncate to this multiplet and reintroduce the couplings to the

four corner sites of the nine-site square. We define

A

n _ n n n n
e = (Q01 T Qo % * Q—lo) (3.25)

and remark that the symmetry of the 105 in wSO gives

50 n 50 _ 50 n 50 _ _ 1 50 4n 50
(3.26)
Furthermore we can use the Wigner-Eckart theorem to show that
50y an 50 _ 8 .50, an n 50, - 8 .50 n 50
i 1> = g Qe by = 5 <y gy vy
(3.27)

The coefficient 8/7 is simply a ratio of Clebsch-Gordan coefficients.

The couplings of the corner sites to the 50 can then be written as
1.8 n (o0 LN n n
M =33 ;Q50<Q11+Q1-1+Q-11+Q-1-1>

2
_ 2 n n ) _an2 _ 4n2 }
-7 Zn: { (QSO *Qcorner Qs _ Qcorner (3.28)

where

n _ n n n n
Qcorner - Qll + Q1—1 + Q—11 + Q—1—1
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The lowest lying eigenstates of (3.28) are again obvious —- we must
form a symmetric 105 from the four corner sites and combine it with the
50 to form the smallest possible overall representation which is a sextet.
Figure 6(b) shows the relevant Young tableaux. We have thus a two-step
algorithm which produces trial states on nine-site block which have the
same group structure as the states on a single site and which furthermore
are obviously invariant under 90° rotationms.

The generalization of this procedure to three dimensions is quite
obvious and works in a similar fashion. We begin by constructing the
multiplet on the seven sites (000), (001), (00-1), (010), (0-10),

(100), and (-100) which is represented by the Young tableau in Fig.
7(a). Next we truncate to this multiplet and reintroduce the couplings
to the 12 sites which are at the centers of the edges of the cube.

We find that the lowest states for this system comprise a completely
symmetric multiplet on the 12 edge centers coupled as shown in Fig. 7(b)
to the states described in Fig. 7(a). Finally we take these states and
reintroduce the couplings to the eight corners of the cube. Again we
find the lowest multiplet to be a completely symmetric representation
on these eight sites combined witﬁ the state of Fig. 7(b) to give a
sextet. Clearly this‘procedure can then be repeated since we have now
arrived at an effective block Hamiltonian of the same form as the
Hamiltonian with which we started which acted on the site sextets,
namely B}:(f%;)Qn(gﬂ-ﬂ). To complete the SU(4) calculation we have
only to calculate the coefficient in front of this new Hamiltonian.

It is clearly a number less than one, which is sufficient information
to verify that the nearest-neighbor theory has a massless excitation

spectrum.
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C. Long-Range Interactions

At attractive picture of symmetry realization in the non-nearest-
neighbor theory follows from consideration of Table ITI. We have argued
that in the 6§ vacuum selected by the mass term the nearest-neighbor
theory (in any number of dimensions) exhibits a symmetry pattern wherein
the SU(4) charges which commute with QM (those above the line) are in
Wigner mode whereas those which do not (below the line) are in N-G mode.
Putting in the long-range gradient for d=1 breaks eight of the SU(4)
generators (see Table IV); of the surviving seven, some lie above the
line in Table III and some below. It is tempting to conclude that those

above are still Wigner-realized (these are the "V'" generators of Table IV)

and those below still N-G. Similarly, for d= 3, where Q5 is the only

surviving symmetry generator, the fact that it lies below the line in

Table III suggests that chiral symmetry in three dimensions is found

in an N-G realization.

Alternatively, it is quite possible that inclusion of the symmetry-
breaking long-range terms changes drastically the nature of the vacuum
and the realization of symmetries in the Fock space. We will check
explicitly that this does not happen.

Qur long-range Hamiltonian (3.6) in one dimension is

(2) = _4_ _1_ n+l n .n
g J,nn
n>0

where sn==+l for those charges above the line in Table IV and sn==—1 for
those below. Since it is unlikely that distant interactions weighted
with l/n3 can affect the physics once we have enough terms to break

SU(4), a simplification suggests itself: we will retain interactions
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(2)

only as far as n = 2, approximating Héff with?22

o= %{Z g, -3 + 120 . J+2} (3.30)

g 31 Jsn

The Hamiltonianﬁv(3.29)—(3.30) are symmetric under the SU(2) x SU(2) x U(1)
displayed in Table IV, which is distinct from the SU(2) x SU(2) xU(1) left
by the mass perturbation of the previous section. However the same
decomposition applies for the elementary sextet of states on each site.

A simple blocking scheme would proceed as in the nearest-neighbor

theory. Grouping three sites together according to

>
Bo = Q1 % T Qo Qs ¥ Ela"; Sh Q1 %3 (33D
Hptl = 6p3 pHL, 1 —18—; (pZQp+l 1 Q;3Qg+1,2) (3.32)
we would diagonalize the block Hamiltonian Hp and select the lowest
eigenstates in each of the SU(2) x SU(2) xU(1l) sectors of a single site
SU(4) sextet. Truncation of the operators in the block-block coupling
term H ptl to these states would yield a new effective Hamiltonian.
It is our expectation that at least some of the symmetries of
(3.30) will be realized in N-G mode; in particular, we foresee that the
¢ vacuum which is sel?cted by a mass perturbation will not permit the
axial generatora_(cxX and "A'" in Table IV) to appear in Wigner reali-
zation. In this light it makes sense to choose block states which result
from distorting the low-lying eigenstates of Hp so as to break these
generators, as discussed for the Heisenberg model in Section 2.
To distort the eigenstates of Hp we define a distorted block

Hamiltonian
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M

He = H_ + €<Qp1

M M M 1 M M )
+
p QP2

which differs from Hp in that the QM term is strengthened; this breaks
the axial generators. H€ is to be used only to define the block states
to which we will truncate in the first iteration: the effective

Hamiltonian which couples blocks will be derived by taking matrix

elements of the original, undeformed block-block Hamiltonian H

p,ptl

in the truncated basis. ¢ is a variational parameter.
Thus for our block states we take the six low-lying eigenstate523

li€> of H€ and evaluate the ground-state energy

E, = <O, alI 0> | (3.34)

the local splitting term
') = i |E |3>-E 6 (3.35)
P 13 € P € o 1ij

and matrix elements of the local charges

(O‘L>.. = A | apl | j€> (left)
13
N
(Qc)ij = <4 | apz | Je? (center) (3.36)

(%),

where the last equality follows from left-right symmetry. Then the

. + .
C= o ldnlio - (9) ) o
J- ij

truncated Hamiltonian takes the form
EEIEE EED DR WM
4 1 370 5 P 5 Rp “Lptl

+ %3— ; Sn<Q2pQEp+l + ngpQgp-l-l) } (3.37)
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Each of the new sites (old blocks) has two sets of 15 operators associated
> -> ->
with it: QC and QL = QR‘ The next iteration proceeds in a like manner,
without making it necessary to introduce yet more operators per site.
We note that the distorted H€ need be used only in the first iteration:
s
the asymmetry in the block states introduces an asymmetry in the QL and
-—>
QC matrices through (3.36) when the truncation is performed, and this
propagates the distortion through further iterations.
This calculation has been carried out on a computer. Each iteration

. . . . . 6 re L
has as input data the explicit 6 x 6 matrices representing , QC, and H
in some basis for the site states; direct products of the basis states
on three sites are constructed and the matrix elements of Hp (and of HE
in the first iteration) are calculated; finally low-lying eigenstates

. > > L

of Hp (or Ha) are found and matrix elements of QL, QC’ and H  are calcu-
lated among them. At the same time the variational ground-state energy

density is accumulated. We find that the energy density is minimized

for e #0. This confirms the N-G realization of the axial currents as
follows:

We have denoted the block states which emerge from the first
iteration as |i€>; recall that they are éigenstates of He' Truncating
the Hilbert space bas%s to these states means that the variational
ground state which we will eventually construct is some linear combina-

tion of products of these block states:

loy = Z a%in%ﬂ 11>, (3.38)
il n
Here n indexes blocks of the lattice and the g's are coefficients deter-

mined in the iterative process. Consider now an SU(4) rotation operator
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constructed with one of the axial generators (3.8)

U = e (3.39)
If we use
= uvn vt (3.40)
e €
to define deformed block states li:) in the first iteration then these
states are related to the ones in (3.38) by

1% = uli (3.41)

Obviously the variational ground state that will be constructed eventually

is
0% = 2 a HIie’>n = ulo> (3.42)
i thta
Since U is unitary, we have
<i|'e>=N <1 (3.43)
elde ij =

so that

% - at a > : .
00" {};;} {JZn:} ok 5l D Ny o> O (3.44)

exponentially in the volume.24 SU(2) x SU(2) xU(1) invariance implies
that ]0) and loe> havg the same energy; thus we have explicitly displayed
a variational approximation to the family of 6-vacua of the model. The
"V" generators of Table IV commute with the deformation terms in (3.33)
and hence with Hs as well as with the real Hamiltonian: they annihilate
the variational vacua and are Wigner-realized.

We have performed a similar computer calculation for the three-

dimensional non-nearest-neighbor problem by executing 3-site blockings
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in the x, y and z directions, successively. While this is a crude
approach to the problem it allows us to calculate in a simple fashion.
Experience has shown that the rotational asymmetries introduced by this
procedure are reduced by the variational trick we use.

We diagonalize, at the first step, a distorted Hamiltonian Hs of

the form
Ho- H +ecp, Ql (3.45)
[} P _‘y j
J

where Hp is given by (3.6) restricted to a block of 3x3%x3 sites. (In
performing a three-dimensional calculation we expect a priori that it
will suffice to add a sum over single-site operators to distort the
states, in contrast to the term used in (3.33) for the one-dimensional
problem.) In subsequent steps the original Hamiltonian is truncated

to the lowest six states per block. Keeping six states per site and
blocking together three sites at a time requires diagonalizing a 126 x 126
matrix at each step (acting on the even-parity combinations of the 63
possible states). The variational ground-state energy density is again
minimized for e # 0.

This calculation provides a good example of the way the variational
trick reduces asymmetries introduced by the blocking procedure. For
e=0 the effects of the asymmetric blocking are very evident: in
particular the g;; to the lowest excited state is very unstable as we
iterate. However as we reach the value of ¢ which minimizes the ground
state energy density these effects are reduced: the asymmetry (in SU(4)
space) introduced in the wave function by the additional term in Hs

dominates over the asymmetry introduced by the next-nearest-neighbor
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terms and the gap to the lowest excited state stabilizes. We remark
that these excited states probably represent massive particles; their
interpretation is discussed in Section 4. The existence of a Goldstone
mode is argued as before: The charge Q5 (3.7) which commutes with (3.6)
does not commute with (3.45) and hence generates a rotation of the €
term.

The approximate ground state for H formed by using the rotated Hz
is degenerate with the one from the original HE and is orthogonal to it
in the infinite volume limit. Thus, as expected, the confining flavorless
theory seems to produce the physics of an Abelian o-model with a massive
vector meson.

D. Summary

We began by demonstrating the existence of 6-vacua and Goldstone
bosons in the nearest-neighbor theory. We hypothesized that these
phenomena would persist as non-nearest-neighbor couplings were added
to break the SU(4) symmetry; an explicit calculation showed this to be
true.

A check on our asymmetric blocking procedure is its application to
the nearest-neighbor model. In this case it is found that for small e
the energy density does not depend on e. We may interpret this result
by noting that the SU(4) symmetric calculation had no trouble constructing
the degenerate "Q vacua" for us. Thus introduction of the asymmetry served
merely to combine the Q vacua into a 6 vacuum. As g grows the energy
eventually goes up, as expected for a large distortion of the trial

state.
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4. Renormalization and Particle Masses

A. Dynamical Mass Generation

In addition to the observation of the massless particles related to
the chiral symmetry breaking a further feature of these calculations is
worth remarking. Although in the nearest-neighbor approximation we find
only massless particles, the calculations which retain the longer-range
interactions show that there are also states with a finite splitting
from the ground state. For example a rotationally symmetric treatment
of the 3+1 dimensional problem would give a triplet of states which
transform into each other under 90° rotationms, split from the ground
state by an amount proportional to l/gza. It is attractive to interpret
this as a finite-mass spin-one meson. In order to do so we must define
a renormalization scheme so that the bare quantity g2 can be given a
continuum interpretation. The proper definition of such a scheme requires
calculations which we have not done. In this section we describe a
reasonable scheme which we believe would emerge from a careful block-spin
treatment of QCD on a lattice, and then discuss the scenario it suggests
for the origins of many interesting aspects of hadron physics.

Let us start by considering the Hamiltonian (3.3) for a scale ag
which is small enough that the relevant coupling gg can be chosen small:
indeed so small that we can establish the correspondence of this theory
with the short di;£ance weak-coupling continuum theory. One can interpret
the lattice Hamiltonian as an effective Hamiltonian which describes
continuum physics with a spatial resolution greater  than ag- Were we
to solve this Hamiltonian on a block of sites (say a cube of 33 sites),

we could then write a new effective Hamiltonian by evaluating H between



wave functions spanned by the lowest few states within each block, as
in the calculations just described. The new Hamiltonian can be viewed
as an effective lattice Hamiltonian on a lattice with spacing 3a0. We
define the new coefficient of the operator which measures the flux
leaving a block through some face as the new effective coupling. By
repeating this truncation process a number of times we would obtain a
series of effective Hamiltonians Hn(3nao, gn). On the basis of the

calculations?

relating coupling strength to lattice size for a theory

such as (3.3) we expect that the values of g, and a, so obtained would

lie on a curve such as that shown in Fig. 8. The general shape of this
curve must be correct, since for small g weak-coupling perturbation theory
tells us to expect that the coupling grows logarithmically with increasing
separation, whereas strong-coupling perturbation theory informs us that
once g has become large then it increases linearly with increasing a.

The relatively sharp transition of logarithmic to linear growth shown in
Fig. 8 is indicated by the calculations of Kogut et al., and of Creutz.
The shape of the curve is an intrinsic property of the theory

which is independent of the assumed initial coupling 8g* Let us denote
the distance scale at which the sharp turnover occurs as Ty and the value
of g, at that scale as gy- Since for small &9 the change in & with each
iteration is small, the number m of iterations that it takes for g, to

reach &y is clearly dependent on the starting value 8p* Thus we can

write a lattice renormalization group equation of the form

3m(g0)a

ry = 0 4.1)

The function m(go) would be defined by carrying out the iteration

calculation.
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The scale Ty is the physically meaningful scale in this theory.
Flux excitations of size small compared to Ty are quite probable, but
flux excitations on a scale larger than r, are highly excited states and
therefore not very probable. Hence, Ty is (crudely speaking) a typical
hadronic radius. To define r,, more precisely one should calculate

H

physically measurable quantities in terms of Tye However, this dis-

cussion makes it clear that the dimensional parameter a, should be

0

defined in terms of the physically meaningful scale r_, (rather than vice

H
versa) and that (4.1) then allows us to take a continuum limit 8y 0,
ag > 0 with Ty held fixed.

To relate this discussion to the more familiar renormalization group
discussion in perturbative continuum QCD we remark that the scale Ty
corresponds to the parameter A which defines the intrinsic scale of QCD
whereas ay corresponds to the physically meaningless renormalization

scale py. Thus (4.1) is similar to the first order perturbation theory

equation

~b/g2 (W)
A = qe ‘ (4.2)

Once having defined a renormalization procedure which holds Ty
fixed we can then also give an interpretation to the splitting proportional
to 1/g2a which appears in our strong coupling calculation. This quantity

can be rewritten -as

;;’ £(gy) (4.3)

where the function f could also be defined by an iteration calculation.
In fact, all dimensionful quantities appearing in this theory

would take the form (4.3), differing only in the form of the function f
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and the power of ry- Once the scale Ty is defined by the calculation

of some physical quantity, such as the mass of the spin one meson, then
all further dimensionful quantities are calculable. The particle masses
which appear in such a theory with zero quark masses are known as
dynamically generated masses. The addition of small quark masses to the
theory would slightly alter the particle masses from those obtained in

the massless quark case.

B. Comments and Speculations

It is apparent that the ground state which our calculation con-
structs is highly occupied, containing many qq pairs. We remark that
this is principally a matter of notation, as we are working in a chiral
basis (YS is diagonal) and in this basis the vacuum of the free fermion
theory likewise contains many qq pairs. Were we to change basis to the
more familiar (YO diagonal) notation we would see that this state is just
the filled Fermi sea of negative-energy states. The significant
difference between the massless free fermion case and the QCD case is
the nature of the long-range fluctuations which occur. In the massless
free fermion theory, fluctuations in which fermion quantum numbers
separate over large distances occur easily. In the QCD scenario just
described, on the other hand, fermion color separation to distances large

compared to Ty costs a large energy (proportional to gé/rH) and hence
these fluctuations are very unlikely. Our calculations have indicated
that they are replaced by coherent fluctuations (density waves) in which

qq pairs move between sites, and that these are the massless (Goldstone)

particles of the theory.
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There are further properties of hadrons which seem to have a natural
explanation within this picture:

(i) TFrom the point of view of these calculations the effective
hadronic Hamiltonian contains no coupling constant; the factor of l/gé
appears only as an overall scale factor. Hence, the relative scale of
the "kinetic terms" (those parts of Heff which give rise to momentum
band structure) and the remaining ''quark interchange" terms (which give
rise to interactions among hadrons) is of order unity. Hence the natural
strength of the strong interactions is one, independent of 8-

(ii) For 3 flavors of quarks, arguments analogous to those

presented for the single—flavor theory tell us that He will exhibit

ff
an approximate SU(6) ®SU(6) symmetry. This symmetry differs in a crucial
way from the SU(6) ®SU(6) symmetry analyzed by Dashen and Gell-Mann2®

as a relativistic generalization of non-relativistic SU(6) first

26 This difference will be discussed in a

introduced by Beg and Pais.
forthcoming paper, where we will show that we are able to obtain good
SU(6) predictions such as “n/“p = -2/3, but not bad ones such as

gA/gV ~ 5/3. Moreover, since PCAC appears naturally in the context of
our analysis gA/gV will be obtained from the Adler-Weisberger relation,
which is known to hold quite well. In addition . we find that the sum
rules for vector meson masses as well as for pseudoscalar masses appear
in terms of the squares of the masses. The same discussion will show
that a version of SU(6)w is a better spectroscopic symmetry for hadrons
than static SU(6).

The essential ingredients in this analysis parallel the detailed

discussion already given. One first divides the effective Hamiltonian
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into two pieces, Heff = HO-FV, where HO contains all terms connecting
sites separated by an odd number of links and V contains the remaining

terms. In general, H, possesses an exact SU(4 x (# of quark flavors))

0
symmetry, which is SU(12) for the case of 3 quark flavors. Generalizing
the results of our single-flavor discussion leads us to expect that the
subalgebra of charges QM = z: w+(j)MKj)w(j) ~- where the M(j)'s are
defined as in Eq. (3.8) -- will be realized as a symmetry of the states
(i.e., in Wigner mode) for matrices M such that [M,YO] = 0; the
remaining charges will be realized in the Goldstone mode. In the case
of 3 flavors the Wigner symmetfy is SU(6)®SU(6) and the crucial
difference between it and earlier SU(6) symmetry schemes lies in the
position dependence of the matrices M(j) expressed in Eq. (3.8).

(iii) We note that this picture suggests that the natural scale
of gluonic excitations is of order gé in contrast to the natural scale
of, say, vector meson masses which is of order 1/g§. Thus, glueball
masses could be significantly different from typical hadron masses.

7

Finally, we must treat the U(l) problem.?” The analysis in Section

3 has led us to a picture of the multiflavor theory wherein all axial
charges, including the flavor-invariant U(1) charge (3.7), are associated
with Goldstone bosons. It is of course desirable to eliminate the U(1)

boson, and we offer a scenario within which it could "seize

"10 4nd

disappear from the physical spectrum in the continuum limit.

If seizing were to happen it would show up in the lattice theory
as follows. Consider the ordinary 1+1 dimensional Schwinger model?8
(with two-component fermions). Applying the same sort of perturbation

theory® as in Section 3, one finds a glue excitation (or "photon") with

mass mB(gO) ~ géA and an effective Hamiltonian for the zero-flux gauge-
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invariant states which is a version of the anisotropic SU(2) Heisenberg
antiferromagnet, known to possess a massless spectrum. The scale of

2) | 2
Héf; is A/mB(gO) so the boson spectrum is of the form

E(k) = — k (4.4)

m, (g)
where k is the momentum. It is possible to show that for fixed large A,
2

for 8y ~ 0. For conventional continuum renormalization one holds mp
fixed as A becomes infinite; then we tind that the energy-momentum
relation for the Goldstone bosons, Eq. (4.4), implies that no boson
states of k/mB # 0 can have finite energy. Therefore the continuum
limit of the theory which preserves the massive photon loses all but

the zero-momentum mode of the Goldstone bgson.29 This is the phenomenon
which is analogous to seizing.

It is possible that seizing affects some but not all of the
Goldstone bosons of QCD: although the strong-coupling calculation
yields Goldstone bosons for the U(l) currents as well as for the SU(Nf)
currents, there is no symmetry reason for their behaviors in the g + O
limit to be the same. The U(l) boson can seize independently of the
SU(Nf) bosons. Verification of this conjecture would require construc-

tion of the Goldstone bosons in the weak- and intermediate-coupling

regimes.
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We find that the splitting goes to zero more slowly than m; this
may be an indication, at the crude level of this calculation, of
the vm dependence predicted by current algebra.

A calculation has also been carried out without this restriction;
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TABLE 1

The 16 Dirac matrices, rendered Hermitian. A common explicit

representation is shown so that commutators may be readily

evaluated.
Lorentz Structure Dirac Matrix M" Representation
S 1 1
B = YO 03
v i
Ty 2%
_ _q.0i
@y = 730 £19
T
1 jk
== c
91 T2 %15k i
. o
1YgY 02
A i
YSY -p30i
P B YS Dl
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TABLE II

The six neutral site states.

|0> : b¢|0> = .., = d¢|0>
44> = brd} | o>

[+ = bld | o>

4> = brdy o>

[v4> = bldl | o>

[Aety> = bi_bi-d:d1_| 0>
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TABLE III

Decomposition of the generators of SU(4) with respect to
SU(2) x SU(2) xU(1l), where the U(l) is generated by Yor
Matrices labelled V and A, which commute with Yoo generate
SU(2) x SU(2) according to Ji = VA, Multiplet structure
is indicated on the right in the notation (j+,j_)U. v

commutes with a, as well.

(o]
(0]
P30,y Oy (1,0
vV = p303 A= 03 +
(o]
01 0301 (0,1)
1 = Y5 P191 T % +1
%))
o P.0, = a
2 172 v +
PO 0.0, =
271 173 z s, %)—1
P29 93
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TABLE IV

Same as Table III, but where the U(l) is generated by -

V commutes with Yo 2S well as with o -

- o
PyOy = o (0,0)
[o]
—1 ' i —
\ P304 A Py0y +
_ (o)
Gl p]._YS (0,1)
P2 P192 T %
+1
P3 = Yo P193 7 9y
+
%2 P2%1 1
PR




—46—

FIGURE CAPTIONS

How the fermionic term in H (a) shifts the energy of the empty
lattice ‘0), (b) moves a "mesonic" configuration, and (c) mixes
lO) with a "meson," via a typical intermediate state containing
two flux links.

Dividing the lattice into blocks of three sites each. H_ acts
entirely within a block while H o+l connects two adjacent blocks.
Young diagrams showing the representations which arise in (a)
combining two sites and (b) combining those two with a third.
Dimensionality is indicated above each diagram, the value of the
quadratic Casimir operator below.

Schematic picture of how a block-spin transformation is constructed
in two dimensions, one direction at a time.

A manifestly x-y symmetric blocking scheme in two dimensions first
couples together the sites within the dotted line and then couples

in the corner sites.

Young diagrams for the coupling scheme which arises in the truncation
depicted in Fig. 5: (a) constructing the representation on the

five central sites, and (b) coupling it to the corners.

Young diagrams for the three-dimensional block-spin transformation:
(a) coupling-the face centers of the cube to the body center,

(b) coupling the result to the edge centers, and (c) coupling

in the corners.

Expected behavior of gauge coupling (coefficient of E2) as a

function of lattice size [taken from Kogut et al., Ref. 21.
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