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ABSTRACT 

We generalize the variational block spin methods developed earlier 

to show that spontaneous breaking of chiral symmetries and the associated 

massless Goldstone particles arise naturally within the context of 

strong-coupling lattice gauge theory. Our calculations show the 

importance of preserving continuous chiral symmetry when transcribing 

the QCD of massless quarks onto the lattice. The meson sector is 

analyzed for both one and three spatial dimensions and the criteria for 

recognizing Nambu-Goldstone phenomena are identified. The relation of 

these results to continuum QCD and to general properties of observed 

hadrons is also discussed. In particular the picture which emerges 

from our discussion leads to a natural understanding of SU(6)w results 

when three quark flavors are considered. 
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1. Introduction 

Quantum chromodynamics (QCD) is at present the only attractive 

candidate for a fundamental theory of hadrons: it provides a basis for 

understanding the approximate scaling behavior observed at short 

distances, and recent work strongly suggests that it provides a basis 

for understanding color confinement.ly2 However, if QCD is to be a 

completely satisfactory theory of hadrons it must also account for the 

observed masses and other physical properties of the hadrons; in 

particular it must explain the remarkable successes of current algebra 

combined with the PCAC hypothesis.3 The study of the emergence of PCAC 

in the framework of QCD is the focus of this paper. Our goal is to 

demonstrate that the exact chiral symmetry of the theory in the limit 

of massless quarks is realized in the hidden, or Nambu-Goldstone (N-G) 

mode.4 Specifically we will show that dynamically generated Goldstone 

bosons arise naturally in strong coupling lattice gauge theories when 

fermions (quarks) are introduced in a way which preserves the continuous 

chiral symmetry of continuum QCD. The use of non-perturbative methods 

is essential for the analysis of the chiral properties even in the strong 

coupling region; our analysis relies upon iterative block spin techniques 

developed earlier and successfully applied to a number of simpler problems.5-8 

The relevance of this strong-coupling lattice result to continuum 

QCD depends on two properties of non-Abelian lattice gauge theories 

which have been demonstrated by other workers. Firstly, in the weak- 

coupling limit and for momenta small compared to the cut-off, the lattice 

theories reproduce continuum perturbation theory. Secondly, recent 

calculations2 by Kogut, Pearson, and Shigemitsu, and by Creutz, for the 
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theory with no fermions strongly suggest that there is no phase 

transition between weak and strong coupling regions of this theory. 

The addition of a small number of fermion flavors should not change 

this property. Hence we argue that if there are Goldstone bosons in 

the spectrum of the Hamiltonian at strong coupling they should also be 

Present in the weak coupling theory which is commonly envisioned to 

contain the continuum limit. 

We devote Section 2 of this paper to a review of the physics of 

spontaneous symmetry breaking, discussing first the continuum U(1) 

Goldstone theory and second the lattice Heisenberg antiferromagnet. 

We introduce our calculational technique for detecting spontaneous 

symmetry breakdown in the context of the latter simple theory, and 

compare it with a straightforward application of the blocking techniques 

that we have used previously. 

In Section 3 we introduce 

the strong coupling limit g2>> 

to the dynamical generation of 

the lattice QCD Hamiltonian and discuss 

1. We argue that the physics relevant 

Goldstone bosons is generic to a larger 

class of theories and subsequently limit our discussion to the case of 

an Abelian theory. For the sake of simplicity we further restrict our 

detailed analysis in 3+1 dimensions to the case of a single flavor of 

fermion. We present our calculations which show that this theory's 

chiral symmetry is realized in Nambu-Goldstone fashion.g These calcu- 

lations are performed first in the nearest-neighbor approximation to 

the fermionic gradient operator on the lattice, which has a greater 

symmetry and hence greater degeneracy in its spectrum. We discuss the 

way in which longer-range terms in our chirally invariant definition 

of the gradient lift these degeneracies in the l+l dimensional case, 
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and then present results which confirm the expected generalization for 

3+1 dimensions. 

In Section 4 we discuss the problem of dynamical mass generation 

for non-Goldstone particles. We find in our calculation that there are 

excitations split from the ground state with a gap which is proportional 

to the inverse lattice spacing. We present a scenario for QCD which 

suggests that the usual renormalization program would lead to an inter- 

pretation of such states as particles of finite mass, such'as the vector 

mesons. We speculate that some interesting properties of hadrons will 

be natural consequences of this approach, and we discuss the possibility 

of "seizing"lO of the U(l) Goldstone bosons in a multiflavor theory. 

2. Hidden Symmetries Revisited 

In later sections of this paper we will introduce a calculational 

technique which has proven to be reliable for finding N-G symmetries, 

if and when they arise. While the method is straightforward, the 

connection of these ideas to the usual treatments merits discussion. 

A. What is a Hidden Symmetry? 

The symmetries of a quantum Hamiltonian can be realized in the 

physics of the theory in either of two ways. The most common situation 

(and that which must obtain for a finite number of degrees of freedom) 

is a Wigner realization -- the space of states factors into irreducible 

representations of the symmetry group. For a system with an infinite 

number of degrees of freedom there is a second possibility, known in 

the literature as spontaneous or dynamical symmetry breaking, ~where the 

transformations do not exist as unitary operators on the Hilbert space. 

If the symmetry group is continuous the spectrum of the theory then 
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contains massless particles. These features arise as a consequence of 

Goldstone's theorem4 in a system where a local field acquires a vacuum 

expectation value which breaks the symmetry. [The existence of a 

conserved current associated with the symmetry is also a necessary 

condition of the theorem.] The massless particles are called Goldstone 

bosons in this event. 

This however is not the whole story, for it is possible that this 

physics (which we call the N-G realization) will appear in a theory 

through mechanisms other than Goldstone's theorem. Indeed, in one 

spatial dimension Coleman's theoremI tells us that a vacuum expectation 

value which violates a continuous symmetry can never occur. We will 

exploit a more general structure to relate the existence of massless 

particles to conserved local currents. 

To explain this way of looking at N-G symmetries we will begin by 

reviewing some aspects of the physics of such symmetries in the context 

first of the U(1) Goldstone model and then of the Heisenberg anti- 

ferromagnet. Much of this formalism is well known.12y13 We present 

it here to stress certain aspects related to the approach to the infinite 

volume limit, since the lattice techniques used in the analysis of QCD 

*build up to that limit in a stepwise fashion starting from 

subsystems of finite volume. - 

B. The U(1) Goldstone Model 

This prototypical model is a theory of one complex scalar field. 

Its Hamiltonian in & spatial dimensions is given by 

H = 
s 

ddx IT+IT + V$+V$ + V($+$) 

(2.1) 

c > 2 
V(z) = A,-$ 
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Treating H classically, the static field configuration of lowest energy 

is 

(p(g) = -& fe i-0 
(2.2) 

with 8 an arbitrary space-independent constant. 

A quantum perturbation theory is formulated by allowing field 

fluctuations about (2.2) -- i.e., we define 

4&) = k ( 
. 

p(Z) + ix(Z) + feie 
) 

(2.3) 

with the vacuum expectation value of @(z) given by 

<el$(Z>le> = + feie (2.4) 

where f#O for d > 1 dimension. In the infinite volume limit we know 

that 8 parametrizes an infinite set of equivalent, orthogonal, degenerate 

vacua. The generator of the U(1) group of (phase) transformations under 

which the Hamiltonian (2.1) is invariant is 

Q ' = 1 
s ( 

ddx $&IT(;) - 9+Gb .+(4) 

(2.5) 

U(a) = eiuQ 

This identifies a conserved current 

which creates massless x particles from the e =CI vacuum: 

<x(Ti>;e=o ( Jp(3 1 e=o> = 
Q fe-iq*x 
Jz 

(2.6) 

(2.7) 

with q2 
2 

=m 
X 

= 0 by current conservation. 
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Things are different for finite volume, however. In this case we 

know that the eigenstates of H must also be eigenstates of the total 

charge Q. The lo> vacua in the infinite volume limit are superpositions 

of the eigenstates of different Q 

le> = -&- c eeieQIQ> 
IT Q 

(2.8) 

These states have the property 

u(a>Je> = le-a> (2.9) 

From (2.8) it is evident that the orthogonality and degeneracy of the 

&vacua imply that the energy of the lowest eigenstate of each Q, 

<Q(HIQ>, is independent of Q in the infinite volume limit. Hence if 

we solve for the ground state energy of (2.1) in individual Q sectors 

we must find that the energies are equal up to terms that vanish as V-+03. 

This point of view also applies in d=l dimension where Coleman's 

theoremI requires <$>=O in (2.4). In this case if we make the 

dynamical assumption that the lowest states in sectors of definite Q 

become degenerate in the limit V-tm, we may form the lo> vacua via 

(2.8). 

Since 

Qle> 3 fix J’(x)je> # 0 

we conclude that J'(x)lB> # 0 by translation invariance. Then we may 

define (unnormalized) states with momentum q 

he> = s dx eiqx J’(X) I e> (2 .lO) 

As q-t0 this becomes Qlf3> which is orthogonal to lo>. Defining 
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E(q) = .w (2.11) 

we evaluate 

lim E(q) 
q-+-o 

= $z$$$$ = ++/f$#$ = E. (2.12) 

which is the vacuum energy. Hence there is a sequence of states ortho- 

gonal to lo> with vanishing energy gap. 

We have arrived at the existence of massless states by the back 

door, via an assumption of degenerate IQ> vacua. Obviously this procedure 

applies in any number of dimensions; it describes a N-G structure for a 

continuous symmetry irrespective of the existence of a symmetry-breaking 

vacuum expectation value for a local field. 

C. The Heisenberg Antiferromagnet 

We now turn to a discussion of this same physics in the context of 

a lattice model which has no explicit scalar boson, i.e., the Heisenberg 

antiferromagnet.13 We will first discuss the physics as it is known 

from an exact solution via the Bethe ansatz,l4 and then describe an 

extension of the block-spin truncation techniques which allows us to 

recognize this 

this extension 

of this paper. 

physics correctly. From a computational point of view 

of the block-spin technique is the important new content 

- 

The one-dimensional nearest-neighbor Heisenberg antiferromagnet 

is specified by the Hamiltonian 

H = (2.13) 

where J > 0, the commutation relations 
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[S;,Si] = i 6ij cabc Si (2.14) 

+2 and the restriction S i = 3/4 for all i. This restriction to spin-l/2 

on each site 

or conserved 

applicable. 
-t 

makes the model inherently quantum, so no classical action 

current can be defined; Goldstone's theorem is not 

There is however a set of charges which generate rotations 

of Si under which H is invariant: 

eiOaQa Sb e-i8aQa 
i = R(x),= S; 

where R(B) is a 3 x 3 rotation matrix. Since 

[Q" , Qb] = i Ea,,c Qc 

and 

[Q~,H] = 0 

(2.15) 

(2.16) 

(2.17) 

+2 
we may simultaneously diagonalize H, Q , and Qz. 

In the exact solution,14 it turns out that the lowest states in the 

various (G2,Qz) sectors are all degenerate. Denoting these states by 

IWA we may take linear combinations using the spherical harmonics Y Rm 

- lfbdo = C 
R,m 

yam ( %,m> (2.18) 

in analogy with (2.8). These are the "e-vacua." 

The state lo,+> is invariant under rotations in the U(1) "little 

group" of the direction vector with polar angles (e,$); thus it is 

annihilated by a certain linear combination Q Ed = ~aa(e,$)Qa. The 
a 
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,two orthogonal linear combinations of Q's generate rotations such that 

einaQal e,@ = IR,(e,g)> (2.19) 

analogously to (2.9); the Fourier components of their densities create 

two Goldstone bosons via (2.10). 

To be more concrete, say we choose to build our theory on the 

le = O,C$ = 0> vacuum. Then Y&0,0) = 4(2!L+l>/4rr 6m o so Q'IO,O> = 0 
, 

as promised. Further, Qx and Qy change p1, so they do not annihilate -- 

the vacuum. Thus a U(1) subgroup of SU(2) is realized in the Wigner 

mode, and the massless excitations generated by c n eiqn(SE?iSz) have 

the Qz=+l quantum numbers of Qx+ iQy. Hence the l+l dimensional 

Heisenberg antiferromagnet exhibits a degeneracy- structure like that 

of the l+l dimensional U(1) Goldstone model. 

In the standard lattice truncation procedure6 we would construct a 

trial wave function by diagonalizing that part of the Hamiltonian which 

refers only to a block of 2 sites and writing block-to-block recoupling 

terms as operators among a restricted set of states -- the lowest few -- 

on the n site blocks. This method automatically constructs states which 

respect the symmetries of the Hamiltonian,15 namely in this case states 

of definite l%,m>. Keeping only a few such states makes it difficult to 

recognize a spontaneously broken symmetry since as we have shown this is 
- 

signalled by an infinite set of degenerate lR,m> eigenstates in infinite 

volume. We describe here a variant of the procedure which constructs 

the variational wave function by diagonalizing on2 sites not the 

symmetric Hamiltonian (2.15), but a Hamiltonian to which a symmetry- 

breaking perturbation has been added 
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H(E) = J c 
i 

zi l si+l + E 
x 

i 
s; s;+l (2.20) 

and again keeping a restricted set of states on each block. If spontaneous 

symmetry breaking occurs then we would expect that the ground state 

expectation value of the symmetric Hamiltonian would minimize for dis- 

torted states constructed from H(E) with E# 0, and indeed this is exactly 

what happens. l6 The states constructed by this method are not IG,m> 

eigenstates: rather, the algorithm constructs directly a state of the 

1 ha> type. To see that there is an infinite number of degenerate states 

of this type we need only remark that the charges Q, and 
Q, 

, which commute 

with (2.13), generate rotations which change the direction of the pertur- 

bation in (2.20). For any such rotated perturbation the truncation 

method constructs a trial state degenerate with the one constructed from 

(2.20), since the Hamiltonian (2.13) is symmetric. That the states 

constructed for different (e,+), that is, for different directions 

selected by the perturbing term in (2.22), are orthogonal will be shown 
4 

in detail for the QCD case in Section 3.17 

3. Goldstone Bosons in the Lattice Gauge Theory 

In this section we will present a discussion of our calculations 

for QCD. We begin with a chirally invariant Hamiltonian for a multi- 

flavored non-Abelian lattice gauge theory. In studying the strong 

coupling limit of this Hamiltonian we simplify to a single flavor, and 

employ the iterative lattice truncation procedure. We examine first the 

l+l dimensional case and then generalize our results to higher 

dimensions. 
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A. Formalism 

In the Hamiltonian approach it is convenient to work in the gauge 

Ao=O. As with Gauss' law in QED, the non-Abelian generalization of 

Gauss' law is not an equation of motion in this gauge. We impose it as 

a condition on the states -- namely that they transform as singlets 

under all local gauge transformations. We follow the Wilson-Kogut- 

Susskind formulation1 of a lattice gauge theory.18 As has been discussed 

at length elsewhere, we introduce fermions in a way which explicitly 

maintains continuous chiral symmetry and gives the correct spectrum for 

a free Dirac particle in the zero coupling limit.5 This is achieved by 

using a long-range form for the derivative 

y4, = + c 6’(n) JI, (3.1) 
3 n j+nj 

where 

N 
1 6'(n) = - 2N+l Iz ik(m) e 

m=-N 

2vrn k(m) = - 2N+l 

The Hamiltonian for coupling strength g and lattice spacing 5 is 

then 

2 
H(g,a) = +g'E: _ - 

JYu 

[ 
. x +af - 1 

5,; 
6’(n) ++ aFl $tf 

j J+n;l 
n>O 



I 

-13- 

af We have introduced here a four component fermion field $+ for each 
j 

color, a, and flavor, f, at each site T. The aS1 are the usual Dirac 

matrices. The operators U+ _ create unit color flux on the link joining 
J~1-1 

the site 3 to the site T+;. The operators E+ n measure this flux 
j,u 

excitation. In our notation the only dimensionful quantity is the 

lattice spacing 2, which thus appears only as an overall scale factor 

for the Hamiltonian. The Hamiltonian (3.3) in the limit g-+0 reduces 

to a massless, chirally invariant, free Dirac theory which has a 

spectrum E+ k = IZI. The Hamiltonian commutes with the chiral charges 

Q; = c lpf (AU) ff’ y5 $tf’ 
j j J 

(3.4) 

where the An are the generator matrices of the flavor group. 

At strong coupling the gauge invariant states of the system 

described by H fall into two classes: those containing flux excitations, 

which all have energy proportional to g2, and those involving no flux 

excitations, which, by Gauss' law, may contain only color-singlet 

fermionic configurations at any individual site. There is a huge 

degenerate set of such states having zero energy (to zeroth order in 

1/g2> * Acting on any such state the fermionic term in (3.3) creates 

at least one excited flux link; however, allowing the fermionic term 

in H to act twice, we can mix states within the zero flux sector and 

split the degeneracy by creating and subsequently annihilating flux 

links, as shown in the examples of Fig. 1. The zeroth-order color- 

singlet excitations thus move through space or exchange flavor by 

passing through intermediate states in the highly excited sector 

containing flux. 
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In order to construct trial wave functions for the low lying 

eigenstates of H we restrict our attention to the fluxless states. 

The above remarks make it clear that degenerate perturbation theory 

leads us to diagonalize an effective second order Hamiltonian. This 

will give the leading term of a l/g2 expansion which has the form 

,Jc2) = it 6'(n>6'(-n) +af 
eff NC f 

c 
+-t. 

+g2Aln\ CF J 
(3.5) 

J d&v 

where Nc = number of colors; CF is the value of the quadratic Casimir 

operator of SU(Nc) in the fundamental representation, and A = l/a. 

The denominator $g2A(nlCF is the energy of an intermediate state 

containing n excited flux links. Were we to discuss the baryon spectrum 

in color SU(3) we would need to keep terms at least up to order l/g4 in 

order to have terms in Heff which could move a qqq excitation. Baryon- 

meson interchange interactions also enter at order l/g4. However, we 

can consistently treat the meson sector of the theory on the basis of 

Hc2) 
eff and hence in the remainder of this paper we discuss a lattice 

truncation calculation of its spectrum. 

It is convenient to rewrite (3.5) by performing a Fierz transfor- 

mation which groups together the operators corresponding to a single 

site. This gives 

Hc2) - A c 6'(n>6'(-n) --- 
eff 

2g2cF !!,n9G 
n 

(3.6) 

where the Mn are the 16 Hermitian 4x4 matrices listed in Table I. 
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Because of our restriction to purely mesonic configurations the last 

term in (3.6) is a trivial constant, and hence can be dropped. It is 

also clear at this point that color enters (3.6) in a totally trivial 

fashion. We may consequently suppress the color indices. The resulting 

Hamiltonian can be viewed as the strong coupling limit of a compact 

lattice formulation of an Abelian gauge theory, the restriction to color 

singlet excitations at each site replaced by a restriction to states 

with fermion number everywhere zero. As a simplification we will discuss 

the case of a single flavor. Then the term involving M 16= I in (3.6) is 

also a constant which can be ignored. After detailed discussion of this 

problem we will make some comments on theories with multiple flavors and 

colors (see Section 4). 

Our discussion will be given in two stages. First, we consider a 

nearest-neighbor theory obtained by 

This fictitious theory has an SU(4) 

dropping all terms n > 1 in (3.6). 

symmetry: not only the axial charge 

\\+ 
95 = *"3 y5 % 

J J 

but the entire set of 15 charges 

(3.7) 

. . . . . . 
Qn = z 4~: a Jx Jy Jz 

3= (I ,A ,jz > j x ay az (3.8) 

Y 
- 

commutes with the Hamiltonian. The six chargeless states which can be 

formed on a single site (listed in Table II) form an irreducible multiplet 

of the SU(4) symmetry: we can write the Q? in the basis of these sextets. 
j 

This additional symmetry means additional degeneracy in the spectrum of 

the nearest neighbor case, since (at least in finite volume) the states 

must fall into multiplets of the SU(4). 
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To study the physics of the Nambu-Goldstone mode and also to learn 

how these extra degeneracies are lifted when long-range terms are 

restored we have studied in detail the l+l dimensional theory. This 

theory is a lattice version of the SU(2) Schwinger model,lg since the 

degrees of freedom which represent spin in a 3+1 dimensional theory 

must be interpreted as an internal (flavor) degree of freedom in the 

l+l dimensional case. The calculations presented in this section study 

first this l+l dimensional theory for the nearest-neighbor case. Then 

longer-range interactions are reintroduced. (In l+l dimensions even 

the long-range theory has an SU(2) x SU(2) xU(1) symmetry, where the U(1) 

is given by the Qx formed using M=ax and the SU(2) x SU(2) are a V+A and 

V-A formed from the six Qn which commute with Qx. This is just the 

chiral symmetry of the SU(2) Schwinger model.) 

We find that the axial symmetries of the l+l dimensional model are 

realized in Nambu-Goldstone mode. In itself, of course, this result is 

nothing new, in view of what is known about the SU(2) Schwinger model. 

Its importance lies rather in the fact that its extension to 3+1 

dimensions is easily conceived and leads to the conclusion that chiral 

symmetry in the strong-coupling lattice theory is associated with 

Goldstone bosons. 

Our iterative truncation scheme will be reviewed as we apply it to - 

the nearest-neighbor version of (3.6), from which we will deduce a simple 

scenario for symmetry realization in the long-range theory. This 

scenario has been verified explicitly both for the l+l dimensional case 

and for the 3+1 dimensional case. 
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B. Nearest-Neighbor Theory 

(i) Block-spin transformation, l+l dimensions 

Keeping only nearest-neighbor terms in (3.6) we get 

(3.9) 

The Qy are SU(4) generators in the 6 representation; the Hamiltonian - 

is just that of an SU(4) antiferromagnet. 

In order to effect a block-spin transformation, we divide the 

lattice into blocks of three sites each. (Figure 2; the reason for 

blocking in threes will soon be apparent.) We then group the terms in 

the Hamiltonian according to whether they act entirely within blocks or 

connect adjacent blocks: 

5 Hnn 2 (2) = FHp + z Hp,p+l 
P 

H = 
P 

H 
P,P+l = 

Here p indexes blocks and 1, 2, 2 index sites within a block.20 The 

i;,, l tip2 + cp2 dp3 

-h P3 l 6p+1,1 (3.10) 

idea is to diagonalize the H 's, 
P 

which commute with one another, and to 

truncate the Hilbert space basis to products of the lowest-lying states 

in the blocks. r 
P,P+l 

is then rewritten in the truncated basis, yielding 

an effective Hamiltonian operating on the low-lying block states. 

To accomplish this we rewrite 

(3.11) 

where 
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(3.12) 
+T 
Q, = q + 6p2 

Diagonalization of Hp proceeds in a way reminiscent of ?*$ coupling in 

atomic physics. To wit, we note that the operators ($T)2 and (T)2 may 

be diagonalized simultaneously, along with the three SlJ(4) "magnetic" 

quantum numbers of F. [ (4,) 2 is already a c-number, the Casimir operator 

in the sextet. 1 We first couple 6, and 6, to states of definite (T)2, 

and then we couple 7 and 6, to definite (y>2. The combination of 

representations is depi,cted in Fig. 3. Now we note that (3.11) demands 

that we maximize (T)2 and minimize (F)' -- just the behavior one would 

expect in an antiferromagnet. The coupling scheme for the low-lying 

states is then 

(3.13) 

The block states of lowest energy form a sextet, just like the states on 

each site; this is the reason we blocked together three sites. 

The energy per block in the configuration (3.13) is computed from 

(3.12) using the values listed in Fig. 3 for the Casimir operator. 

We get an energy density (per block) 

E. = -4.6 

g 

(3.14) 

Taking only the lowest sextet in each block to form our truncated basis, 

we evaluate matrix elements of 7$ 
pi 

with the Wigner-Eckart theorem: 
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<km (3.15) 

with yl =y3=3/5, y,=-l/5. Thus in the truncated Hilbert space each 

HP is replaced by E. and 

H 
P,P+l 

(3.16) 

Dropping T superscripts, the truncated Hamiltonian is then 

HTr = 
1 ;Eo++*& c 

g d 
(3.17) 

and the transformation is complete and ready to be iterated. Writing the 

effective Hamiltonian after n iterations as - 

we deduce the recursion relations 

a = a n 6 B n-l - Y 3 n-l 

B n = & fin-l 

(3.18) 

(3.19) 

where 01 0 = 0 and B. = 1. 

It is now trivial to demonstrate that to the accuracy of this calcu- 

lation the nearest-neighbor theory has no mass gap. Suppose that the gap 

to the first excited state of (3.9) is A. Then the equivalent gap for 

(3.17) is (9/25)A since the two Hamiltonians differ solely in scale. 

Because we expect (3.17) to describe the low-energy physics of the theory 

fairly well, we equate A = (9/25)A to get A = 0. Possible massive excited 

states are probably lost together with high-momentum modes in the truncation. 
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To show that the vanishing mass gap is associated with N-G 

phenomena, we consider doing some large number of iterations in the 

manner described. Our effective Hamiltonian is (3.18), with 8, 

exceedingly small. Now we dissect the lattice into blocks of two sites 

each and decompose Hn Tr in a fashion analogous to (3.10). Then 

H = 
P d,, = Gp2 = #> - +(6pl)2 - +(iip2y (3.20) 

with 

(3.21) 

We are called upon to minimize the value of (?$T)2, and a glance at 

Fig. 3(a) shows that the ground state of H is the SU(4) singlet. It 
P 

is reasonable to attempt to construct a unique vacuum by taking a state 

where each block is in this singlet state. Of course H 
P,P+l 

has no 

matrix element within this ground state, but if we create an excited 

state by putting one block into a member of the 15 then H moves - P,P+l 

it around to form a momentum band (and creates more complicated states). 

It seems, then, that the ground state of (3.18) is SU(4)-invariant while 

low-lying excited states transform as a 15 and have mass of the order - 

of B,. 

However, if we picture progressively deferring the change-over - 

from three-site to two-site blocking, 8, may be made arbitrarily small. 

Taking it indeed to be zero, we find an infinite set of ground states 

consisting of a singlet, a 15, the representations contained in 

15x15 1 20+45+45+... and so forth. By combining enough of these -- __- 

representations along the lines of (2.18) the "0-vacua" may be constructed, 
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which will realize some or all of the symmetry generators in N-G mode. 

Some further insight into the nature of the spectrum of this theory 

can be gained by considering the effect of adding a small fermion mass 

to (3.3). This yields in perturbation theory (assuming m << l/g21 

Hm = 4 

g2 
c 

j 
(-1)j Q; (3.22) 

14 where Q. is the charge associated with the M' = B = y, generator. The 
J 

addition of this term breaks the SU(4) symmetry down to SU(2) x SU(2)xU(l) 

as shown in Table III; the set of 6 single-site states consists of a 

( 4 , 3 O, a (O,O)+l, and a (0,O) -1 under this symmetry. A truncation 

calculation for this Hamiltonian -- keeping one (Q,%) multiplet and 

two (0,O) multiplets at each step -- has been carried out. As in the 

symmetric case the site-to-site coupling term is reduced in strength at 

each iteration so that eventually the mass term dominates, even for very 

small m. - The theory has a unique ground state of the (0,O) type;& the 

lowest excited state is of the (" *,$) type and is split from the ground 

state. The charges Qn which do not commute with QM (those listed below 

the line in Table III) transform as a (%, $) multiplet, and we can write 

in analogy to (2.7) 

<k, %; 9 ( Qy 1 0,0> = -$ f(q) esiqJ 
- 

where q is the momentum of the ($,% state. As we take m to zero (and - 

these charges become conserved) the (%, 2 b) particles become massless2' 

-- the symmetry is realized in the Nambu-Goldstone fashion. If the 

symmetry were Wigner-realized then in this limit the splitting would 

remain finite and f would go to zero. The results of our calculation - 
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indicate that this is not the case. We note however that the 

SU(2) xSU(2)xU(l) algebra of conserved charges which commute with QM 

is Wigner-realized. 

(ii) Higher dimensions 

The extension of the nearest-neighbor analysis to two and three 

dimensions is straightforward. A simple SU(4)-symmetric block-spin 

transformation on jd sites may be constructed by working one dimension 

at a time (see Fig. 4). It is readily demonstrated that the Hamiltonian 

(3.9) still scales, with a factor of 9*19/25*25 in two dimensions and 

9*19*19/25=25*25 in three dimensions. Hence the 3+1 dimensional theory 

is massless and o-vacua may be constructed as before, either by blocking 

23 sites or by perturbing with a mass term. 

While it happens that no x-y-z asymmetry is introduced in the 

effective Hamiltonian by this blocking scheme, for the non-nearest- 

neighbor case this will not be so. We have confirmed the result obtained 

here by an alternate procedure which manifestly respects x-y-z symmetry. 

We will describe this method in some detail for two spatial dimensions 

and then outline the obvious generalization to three spatial dimensions. 

On the block of nine sites in two spatial dimensions we consider 

first the nearest-neighbor Hamiltonian for the five sites enclosed by 

the dotted line in Fig. 5. It is - 

15 
1 

c( > 

2 

H5-site = Z n=l 
Qzo + Q;, + Qiml + Q:,, + Qyo 

n2 
2 

- Qoo - ( Qzl + Q;B1 + Q:, + Qylo > 
(3.24) 

As was the case for the three-site Hamiltonian, one can readily read off 
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from this expression the desired representation content for the lowest- 

lying states on the five sites: it would be a maximal representation, 

namely the totally symmetric 105-dimensional representation, for the 

four outside sites, contracted with the sextet on the center site in 

such a way as to reduce the dimension as much as possible, namely to 

a 50. The relevant Young tableaux are shown in Fig. 6(a). Let us 

deite these states +z" where L indexes the 50 states. 

We truncate to this multiplet and reintroduce the couplings to the 

four corner sites of the nine-site square. We define 

Q ^n = 
( Q;, + Q:, + Q;-l + Qylo ) (3.25) 

and remark that the symmetry of the 105 in $ 50 gives 

(3.26) 

Furthermore we can use the Wigner-Eckart theorem to show that 

(3.27) 

The coefficient 8/7 is simply a ratio of Clebsch-Gordan coefficients. 

The couplings of the corner sites to the 50 can then be written as 

18 
AH =2*1 x ( Qzo Q:, + Q:sl + Q:,, + Q:,-, 

n J 

2 2 
n2 7-3 =--- 

7 w QZO+QZorner ) -Q50 - Qcorner > (3.28) 
rl 
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The lowest lying eigenstates of (3.28) are again obvious -- we must 

form a symmetric 105 from the four corner sites and combine it with the 

50 to form the smallest possible overall representation which is a sextet. - 

Figure 6(b) shows the relevant Young tableaux. We have thus a two-step 

algorithm which produces trial states on nine-site block which have the 

same group structure as the states on a single site and which furthermore 

are obviously invariant under 90' rotations. 

The generalization of this procedure to three dimensions is quite 

obvious and works in a similar fashion. We begin by constructing the 

multiplet on the seven sites (OOO), (OOl), (00-l), (OIO), (O-10), 

(lo@, and (-100) which is represented by the Young tableau in Fig. 

7(a) l Next we truncate to this multiplet and reintroduce the couplings 

to the 12 sites which are at the centers of the edges of the cube. 

We find that the lowest states for this system comprise a completely 

symmetric multiplet on the 12 edge centers coupled as shown in Fig. 7(b) 

to the states described in Fig. 7(a). Finally we take these states and 

reintroduce the couplings to the eight corners of the cube. Again we 

find the lowest multiplet to be a completely symmetric representation 

on these eight sites combined with the state of Fig. 7(b) to give a 

sextet. Clearly this procedure can then be repeated since we have now 

arrived at an effective block Hamiltonian of the same form as the 

Hamiltonian with which we started which acted on the site sextets, 

namely B~Q'($)Q'($+~). To complete the SU(4) calculation we have 

only to calculate the coefficient in front of this new Hamiltonian. 

It is clearly a number less than one, which is sufficient information 

to verify that the nearest-neighbor theory has a massless excitation 

spectrum. 
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C. Long-Pange Interactions 

At attractive picture of symmetry realization in the non-nearest- 

neighbor theory follows from consideration of Table III. We have argued 

that in the EI vacuum selected by the mass term the nearest-neighbor 

theory (in any number of dimensions) exhibits a symmetry pattern wherein 

the SU(4) charges which commute with QM (those above the line) are in 

Wigner mode whereas those which do not (below the line) are in N-G mode. 

Putting in the long-range gradient for d=l breaks eight of the SU(4) 

generators (see Table IV); of the surviving seven, some lie above the 

line in Table III and some below. It is tempting to conclude that those 

above are still Wigner-realized (these are the "VI' generators of Table IV) 

and those below still N-G. Similarly, for d=3, where Q, is the only 

surviving symmetry generator, the fact that it lies below the line in 

Table III suggests that chiral symmetry in three dimensions is found 

in an N-G realization. 

Alternatively, it is quite possible that inclusion of the symmetry- 

breaking long-range terms changes drastically the nature of the vacuum 

and the realization of symmetries in the Fock space. We will check 

explicitly that this does not happen. 

Our long-range Hamiltonian (3.6) in one dimension is 

n>O 

(3.29) 

where s rl =+l for those charges above the line in Table IV and sn =-1 for 

those below. Since it is unlikely that distant interactions weighted 

with l/n3 can affect the physics once we have enough terms to~break 

SU(4), a simplification suggests itself: we will retain interactions 
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only as far as n = 2, (2) approximating Heff with22 

H= C 6, l ~j+l + ~ ~ srl Q; Q~+2 
jl j,rl 

(3.30) 

The Hamiltonians (3.29)-(3.30) are symmetric under the SU(2) x SU(2) xU(1) - 

displayed in Table IV, which is distinct from the SU(2) x SU(2) xU(1) left 

by the mass perturbation of the previous section. However the same 

decomposition applies for the elementary sextet of states on each site. 

A simple blocking scheme would proceed as in the nearest-neighbor 

theory. Grouping three sites together according to 

H 
P = 6pl l cp2 + cp2 l cp3 + $-&, Qzl Qz3 

rl 
(3.31) 

H 
P,P+l = dp3 l cp+l 1+ $ c 49;29;+, 1 + Qn 4' P3 p+1,2 > 

(3.32) 
, n , 

we would diagonalize the block Hamiltonian H and select the lowest 
P 

eigenstates in each of the SU(2) xSU(2) xU(1) sectors of a single site 

SU(4) sextet. Truncation of the operators in the block-block coupling 

term H 
P,P+l 

to these states would yield a new effective Hamiltonian. 

It is our expectation that at least some of the symmetries of 

(3.30) will be realized in N-G mode; in particular, we foresee that the 

8 vacuum which is selected by a mass perturbation will not permit the - 

axial generators-(ox and "A"' in Table IV) to appear in Wigner reali- 

zation. In this light it makes sense to choose block states which result 

from distorting the low-lying eigenstates of H so as to break these 
P 

generators, as discussed for the Heisenberg model in Section 2. 

To distort the eigenstates of H we define a distorted block 
P 

Hamiltonian 
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HE = HP + E QM QM 
( PI P2 + QM QM P2 P3 - $ QFlQF3) (3.33) 

which differs from HP in that the QM term is strengthened; this breaks 

the axial generators. HE is to be used only to define the block states 

to which we will truncate 

Hamiltonian which couples 

elements of the original, 

in the first iteration: the effective 

blocks will be derived by taking matrix 

undeformed block-block Hamiltonian H 
P,P+l 

in the truncated basis. E is a variational parameter. 

Thus for our block states we take the six low-lying eigenstates23 

iC> of H E and evaluate the ground-state energy 

EO 5 <OE 1 HP 1 Oe> 

the local splitting term 

ij 
= <iE 1 HP I je> - E. 6ij 

and matrix elements of the local charges 

ij 

(center) (3.36) 
ij 

f <iE16p2/jE> 
- <iE I dp3 I j,> = ( 6L) (right) 

ij 

(3.34) 

(3.35) 

- 
where the last equality follows from left-right symmetry. Then the 

truncated Hamiltonian takes the form 

2 Tr FH1 = 
f E. + c H; + c{;;Rp l 6Lp+l 

P P 

Q;pQ;p+l -+ QZpQ&4 (3.37) 
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Each of the new sites (old blocks) has two sets of 15 operators associated 

with it: 6 and CL = &* The next iteration proceeds in a like manner, 

without making it necessary to introduce yet more operators per site. 

We note that the distorted He need be used only in the first iteration: 

the asymmetry in the block states introduces an asymmetry in the $ and 

CC matrices through (3.36) when the truncation is performed, and this 

propagates the distortion through further iterations. 

This calculation has been carried out on a computer. Each iteration 

has as input data the explicit 6x 6 matrices representing dL, a,, and HL 

in some basis for the site states; direct products of the basis states 

on three sites are constructed and the matrix elements of H p (and of H E 

in the first iteration) are calculated; finally low-lying eigenstates 

of HP (or HE) are found and matrix elements of 6L, L and H are calcu- 

lated among them. At the same time the variational ground-state energy 

density is accumulated. We find that the energy density is minimized 

for EZO. This confirms the N-G realization of the axial currents as 

follows: 

We have denoted the block states which emerge from the first 

iteration as JiE>; recall that they are eigenstates of H . 
E. 

Truncating 

the Hilbert space basis to these states means that the variational - 

ground state which we will eventually construct is some linear combina- 

tion of products of these block states: 

lo> = c ii 
n 

~ '{in/F lie'n (3.38) 

Here 2 indexes blocks of the lattice and the a's are coefficients deter- 

mined in the iterative process. Consider now an SU(4) rotation operator 
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constructed with one of the axial generators (3.8) 

u = eieQ" (3.39) 

If we use 

He - UHEU -1 
E (3.40) 

to define deformed block states Ii.:> in the first iteration then these 

states are related to the ones in (-3.38) by 

if> = U(ie> (3.41) 

Obviously the variational ground state that will be constructed eventually 

is 

I oe> = 6 a. 
i n j 1 l--l 

'n n 
iz>n = ulo> 

Since U is unitary, we have 

<iE 1 jE> = N..<l 
17 

SO that 

(3.42) 

(3.43) 

(3.44) 

exponentially in the volume.24 SU(2) x SU(2) xU(1) invariance implies 

that 10) and ]oe> have the same energy; thus we have explicitly displayed - 

a variational approximation to the family of e-vacua of the model. The 

"V" generators of Table IV commute with the deformation terms in (3.33) 

and hence with HE. as well as with the real Hamiltonian: they annihilate 

the variational vacua and are Wigner-realized. 

We have performed a similar computer calculation for the three- 

dimensional non-nearest-neighbor problem by executing 3-site blockings 
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in the x, y and z directions, successively. While this is a crude 

approach to the problem it allows us to calculate in a simple fashion. 

Experience has shown that the rotational asymmetries introduced by this 

procedure are reduced by the variational trick we use. 

We diagonalize, at the first step, a distorted Hamiltonian HE of 

the form 

HE = HP+E c Q; (3.45) 
$ J 

where H (In 
P 

is given by (3.6) restricted to a block of 3x 3x 3 sites. 

performing a three-dimensional calculation we expect a priori that it 

will suffice to add a sum over single-site operators to distort the 

states, in contrast to the term used in (3.33) for the one-dimensional 

problem.) In subsequent steps the original Hamiltonian is truncated 

to the lowest six states per block. Keeping six states per site and 

blocking together three sites at a time requires diagonalizing a 126x126 

matrix at each step (acting on the even-parity combinations of the 63 

possible states). The variational ground-state energy density is again 

minimized for E#O. 

This calculation provides a good example of the way the variational 

trick reduces asymmetries introduced by the blocking procedure. For 

E=O the effects of the asymmetric blocking are very evident: in 
- 

particular the gap to the lowest excited state is very unstable as we 

iterate. However as we reach the value of E which minimizes the ground 

state energy density these effects are reduced: the asymmetry (in SU(4) 

space) introduced in the wave function by the additional term in He 

dominates over the asymmetry introduced by the next-nearest-neighbor 
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terms and the gap to the lowest excited state stabilizes. We remark 

that these excited states probably represent massive particles; their 

interpretation is discussed in Section 4. The existence of a Goldstone 

mode is argued as before: The charge Q, (3.7) which commutes with (3.6) 

does not commute with (3.45) and hence generates a rotation of the E 
term. 

The approximate ground state for H formed by using the rotated Hz 

is degenerate with the one from the original HE and is orthogonal to it 

in the infinite volume limit. Thus, as expected, the confining flavorless 

theory seems to produce the physics of an Abelian o-model with a massive 

vector meson. 

D. Summary 

We began by demonstrating the existence of B-vacua and Goldstone 

bosons in the nearest-neighbor theory. We hypothesized that these 

phenomena would persist as non-nearest-neighbor couplings were added 

to break the SU(4) symmetry; an explicit calculation showed this to be 

true. 

A check on our asymmetric blocking procedure is its application to 

the nearest-neighbor model. In this case it is found that for small E 

the energy density does not depend on E. We may interpret this result 

by noting that the SU(4) symmetric calculation had no trouble constructing - 

the degenerate "Q vacua" for us. Thus introduction of the asymmetry served 

merely to combine the Q vacua into a 8 vacuum. As E grows the energy 

eventually goes up, as expected for a large distortion of the trial 

state. 
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4. Renormalization and Particle Masses 

A. Dynamical Mass Generation 

In addition to the observation of the massless particles related to 

the chiral symmetry breaking a further feature of these calculations is 

worth remarking. Although in the nearest-neighbor approximation we find 

only massless particles, the calculations which retain the longer-range 

interactions show that there are also states with a finite splitting 

from the ground state. For example a rotationally symmetric treatment 

of the 3+1 dimensional problem would give a triplet of states which 

transform into each other under 90' rotations, split from the ground 

state by an amount proportional to l/g2a. It is attractive to interpret 

this as a finite-mass spin-one meson. In order to do so we must define 

a renormalization scheme so that the bare quantity g2 can be given a 

continuum interpretation. The proper definition of such a scheme requires 

calculations which we have not done. In this section we describe a 

reasonable scheme which we believe would emerge from a careful block-spin 

treatment of QCD on a lattice, and then discuss the scenario it suggests 

for the origins of many interesting aspects of hadron physics. 

Let us start by considering the Hamiltonian (3.3) for a scale a0 

which is small enough.that the relevant coupling go can be chosen small: 

indeed so small that we can establish the correspondence of this theory 
- 

with the short distance weak-coupling continuum theory. One can interpret 

the lattice Hamiltonian as an effective Hamiltonian which describes 

continuum physics with a spatial resolution greater,than ao. Were we 

to solve this Hamiltonian on a block of sites (say a cube of 33 sites), 

we could then write a new effective Hamiltonian by evaluating H between 
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wave functions spanned by the lowest few states within each block, as 

in the calculations just described. The new Hamiltonian can be viewed 

as an effective lattice Hamiltonian on a lattice with spacing 3aO. We 

define the new coefficient of the operator which measures the flux 

leaving a block through some face as the new effective coupling. By 

repeating this truncation process a number of times we would obtain a 

series of effective Hamiltonians Hn(3na0, g,). On the basis of the 

calculations2 relating coupling strength to lattice size for a theory 

such as (3.3) we expect that the values of gn and an so obtained would 

lie on a curve such as that shown in Fig. 8. The general shape of this 

curve must be correct, since for small g weak-coupling perturbation theory - 

tells us to expect that the coupling grows logarithmically with increasing 

separation, whereas strong-coupling perturbation theory informs us that 

once g n has become large then it increases linearly with increasing a. 

The relatively sharp transition of logarithmic to linear growth shown in 

Fig. 8 is indicated by the calculations of Kogut et al., and of Creutz. 

The shape of the curve is an intrinsic property of the theory 

which is independent of the assumed initial coupling go. Let us denote 

the distance scale at which the sharp turnover occurs as rH and the value 

of gn at that scale as gH. Since for small go the change in gn with each 

iteration is small, the number m of iterations that it takes for gm to 
- 

reach gH is clearly dependent on the starting value go. Thus we can 

write a lattice renormalization group equation of the form 

rH = 3 
m(q)) 

aO (4.1) 

The function m(go) would be defined by carrying out the iteration 

calculation. 
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The scale rH is the physically meaningful scale in this theory. 

Flux excitations of size small compared to rH are quite probable, but 

flux excitations on a scale larger than rH are highly excited states and 

therefore not very probable. Hence, rH is (crudely speaking) a typical 

hadronic radius. To define rH more precisely one should calculate 

physically measurable quantities in terms of rH. However, this dis- 

cussion makes it clear that the dimensional parameter a 0 should be 

defined in terms of the physically meaningful scale rH (rather than vice 

versa) and that (4.1) then allows us to take a continuum limit go + 0, 

a0 + 0 with rH held fixed. 

To relate this discussion to the more familiar renormalization group 

discussion in perturbative continuum QCD we remark that the scale rH 

corresponds to the parameter A which defines the intrinsic scale of QCD 

whereas a o corresponds to the physically meaningless renormalization 

scale n. Thus (4.1) is similar to the first order perturbation theory 

equation 
-b/g2(u) 

A = ue (4.2) 

Once having defined a renormalization procedure which holds rH 

fixed we can then also give an interpretation to the splitting proportional 

to l/gLa which appears in our strong coupling calculation. This quantity 

can be rewrittenas 

L f (g,) 
rH 

(4.3) 

where the function f could also be defined by an iteration calculation. - 

In fact, all dimensionful quantities appearing in this theory 

would take the form (4.3), differing only in the form of the function f - 
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and the power of rH. Once the scale rH is defined by the calculation 

of some physical quantity, such as the mass of the spin one meson, then 

all further dimensionful quantities are calculable. The particle masses 

which appear in such a theory with zero quark masses are known as 

dynamically generated masses. The addition of small quark masses to the 

theory would slightly alter the particle masses from those obtained in 

the massless quark case. 

B. Comments and Speculations 

It is apparent that the ground state which our calculation con- 

structs is highly occupied, containing many <q pairs. We remark that 

this is principally a matter of notation, as we are working in a chiral 

basis (y, is diagonal) and in this basis the vacuum of the free fermion 

theory likewise contains many iq pairs. Were we to change basis to the 

more familiar (y. diagonal) notation we would see that this state is just 

the filled Fermi sea of negative-energy states. The significant 

difference between the massless free fermion case and the QCD case is 

the nature of the long-range fluctuations which occur. In the massless 

free fermion theory, fluctuations in which fermion quantum numbers 

separate over large distances occur easily. In the QCD scenario just 

described, on the other hand, fermion color separation to distances large 

compared to rH costs a large energy (proportional to gL/r ) and hence - HH 

these fluctuations are very unlikely. Our calculations have indicated 

that they are replaced by coherent fluctuations (density waves) in which 

qi pairs move between sites, and that these are the massless (Goldstone) 

particles of the theory. 
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There are further properties of hadrons which seem to have a natural 

explanation within this picture: 

(i) From the point of view of these calculations the effective 

hadronic Hamiltonian contains no coupling constant; the factor of l/g: 

appears only as an overall scale factor. Hence, the relative scale of 

the "kinetic terms" (those parts of Heff which give rise to momentum 

band structure) and the remaining "quark interchange" terms (which give 

rise to interactions among hadrons) is of order unity. Hence the natural 

strength of the strong interactions is one, independent of gH. 

(ii) For 3 flavors of quarks, arguments analogous to those 

presented for the single-flavor theory tell us that Heff will exhibit 

an approximate SU(6)@SU(6) symmetry. This symmetry differs in a crucial 

way from the SU(6)OSU(6) symmetry analyzed by Dashen and Gell-Mann25 

as a relativistic generalization of non-relativistic SU(6) first 

introduced by Beg and Pais. This difference will be discussed in a 

forthcoming paper, where we will show that we are able to obtain good 

SU(6) predictions such as nn/pp = -2/3, but not bad ones such as 

gA/gV B 513. Moreover, since PCAC appears naturally in the context of 

our analysis gA/g, will be obtained from the Adler-Weisberger relation, 

which is known to hold quite well. In addition we find that the sum 

rules for vector meson masses as well as for pseudoscalar masses appear - 

in terms of the squares of the masses. The same discussion will show 

that a version of SU(6)w is a better spectroscopic symmetry for hadrons 

than static SU(6). 

The essential ingredients in this analysis parallel the detailed 

discussion already given. One first divides the effective Hamiltonian 
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into two pieces, Heff = Ho+V, where Ho contains all terms connecting 

sites separated by an odd number of links and V contains the remaining 

terms. In general, Ho possesses an exact SU(4 x (# of quark flavors)) 

symmetry, which is SU(12) for the case of 3 quark flavors. Generalizing 

the results of our single-flavor discussion leads us to expect that the 

subalgebra of charges QM = c $+(j)M(j)$(j) -- where the M(j)'s are 
j 

defined as in Eq. (3.8) -- will be realized as a symmetry of the states 

(i.e., in Wigner mode) for matrices M such that [M,ro] = 0 ; the 

remaining charges will be realized in the Goldstone mode. In the case 

of 3 flavors the Wigner symmetry is SU(6)@SU(6) and the crucial 

difference between it and earlier SU(6) symmetry schemes lies in the 

position dependence of the matrices M(j) expressed in Eq. (3.8). 

(iii) We note that this picture suggests that the natural scale 

of gluonic excitations is of order gi in contrast to the natural scale 

of, say, vector meson masses which is of order l/g:. Thus, glueball 

masses could be significantly different from typical hadron masses. 

Finally, we must treat the U(1) problem.27 The analysis in Section 

3 has led us to a picture of the multiflavor theory wherein all axial 

charges, including the flavor-invariant U(1) charge (3,7), are associated 

with Goldstone bosons. It is of course desirable to eliminate the U(1) 
.- 

boson, and we offer a scenario within which it could "seize"lO and 
- 

disappear from the physical spectrum in the continuum limit. 

If seizing were to happen it would show up in the lattice theory 

as follows. Consider the ordinary l+l dimensional Schwinger mode12* 

(with two-component fermions). Applying the same sort of perturbation 

theory5 as in Section 3, one finds a glue excitation (or "photon") with 

mass ngk,) * g$ and an effective Hamiltonian for the zero-flux gauge- 
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invariant states which is a version of the anisotropic SU(.2) Heisenberg 

antiferromagnet, known to possess a massless spectrum. The scale of 

H(2) is A/m 2 
eff (g > B 0 so the boson spectrum is of the form 

E(k) = * k 
mBkf) 

(4.4) 

where k is the momentum. - It is possible to show that for fixed large A, 

for go -f 0. For conventional continuum renormalization one holds mB 

fixed as A becomes infinite; then we tind that the energy-momentum 

relation for the Goldstone bosons, Eq. (4.4), implies that no boson 

states of k/mB # 0 can have finite energy. Therefore the continuum 

limit of the theory which preserves the massive photon loses all but 

the zero-momentum mode of the Goldstone boson.2q This is the phenomenon ‘ 

which is analogous to seizing. 

It is possible that seizing affects some but not all of the 

Goldstone bosons of QCD: although the strong-coupling calculation 

yields Goldstone bosons for the U(1) currents as well as for the SU(Nf) 

currents, there is no symmetry reason for their behaviors in the g -t 0 

limit to be the same.- The U(1) boson can seize independently of the 

SU(Nf) bosons. Verification of this conjecture would require construc- 

tion of the Goldstone bosons in the weak- and intermediate-coupling 

regimes. 

This work is supported by the Department of Energy under contract 

DE-AC03-76SF00515. 
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The 16 Dirac matrices, rendered Hermitian. 

TABLE I 

A common explicit 

representation is shown so that commutators may be readily 

evaluated. 

Lorentz Structure Dirac Matrix M'I Representation 

S 1 1 

B = 
yO p3 

V 
iy 

i --P20i 

a. = -io oi 
1 'loi 

T 1 0. =-& 2 ijk 
Jk 0 

1 i 

iy5yo p2 
A 

Y5Y1 -p30i 

P y5 pl - 
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TABLE II 

The six neutral site states. 

lo> : b+iO> = . . . = d+lO> = 0 

I+> = b;d; 1 O> 

I ++> = b:d; 1 O> 

I 4S> = b;d; 1 O> 

I++-> = b:d; ( O> 

1 f-+4+> = b;b;d;d; 1 O> 
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TABLE III 

Decomposition of the generators of SU(4) with respect to 

SU(2) x SU(2) x U(1)) where the U(1) is generated by yo. 

Matrices labelled V and A, which commute with yo, generate 

SU(2) xSU(2) according to J, = VtA. Multiplet structure 

is indicated on the right in the notation (j+,j-)'. V 

commutes with cx x as well. 

P3 = Yo (om” 

Pl = Y5 

P2 

PZOl 

PIGl = ax 

Pf2 = ay 

P103 = az 

( a , +d 
+1 

+ 

( k , % 
-1 

p2”2 _ ‘2’3 
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TABLE IV 

Same as Table III, but where the U(1) is generated by ~1~. 

V commutes with y. as well as with cxx. 

i 

'3'2 

V= p3"3 

ul 

Ppl = ax om” 

I 
u,o)o A’ = + 
(O,l>O 

p2 

P3 = Y. 
O2 

u3 

P19 = QY 

PfJ3 = az 

P2"l 

P3Ol 

( lb +1 2 , $1 
+ 

( % , +I 
-1 
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FIGURE CAPTIONS 

1. How the fermionic term in H (a) *shifts the energy of the empty 

lattice IO>, (b) moves a "mesonic" configuration, and (c) mixes 

IO> with a "meson," via a typical intermediate state containing 

two flux links. 

2. Dividing the lattice into blocks of three sites each. 
HP acts 

entirely within a block while H 
P,P+l 

connects two adjacent blocks. 

3. Young diagrams showing the representations which arise in (a) 

combining two sites and (b) combining those two with a third. 

Dimensionality is indicated above each diagram, the value of the 

quadratic Casimir operator below. 

4. Schematic picture of how a block-spin transformation is constructed 

in two dimensions, one direction at a time. 

5. A manifestly x-y symmetric blocking scheme in two dimensions first 

couples together the sites within the dotted line and then couples 

in the corner sites. 

6. Young diagrams for the coupling scheme which arises in the truncation 

depicted in Fig. 5: (a) constructing the representation on the 

five central sites, and (b) coupling it to the corners. 

7. Young diagrams for the three-dimensional block-spin transformation: 

(a) coupling-the face centers of the cube to the body center, 

(b) coupling the result to the edge centers, and (c) coupling 

in the corners. 

8. Expected behavior of gauge coupling (coefficient of E2> as a 

function of lattice size [taken from Kogut et al., Ref. 21. 
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