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Abstract

Quantum electrodynamics (QED) is among the most precise theories in physics, with excellent

agreement between theory and experiment in the perturbative regime. However, QED in strong

background fields remains less explored experimentally due to the challenges in generating such

environments. Theoretical studies have proposed various processes and calculation frameworks

in this regime, but experimental validation is essential to improve theoretical understanding. To

this end, experiments using ultra-intense laser fields or strong nuclear fields of crystals have

been proposed, aiming to probe strong-field QED via the detection of emitted particles. These

studies demand advanced detectors capable of withstanding extreme high-energy and high-flux

conditions.

This thesis presents the development of two such detection techniques. Firstly, a gamma-ray

spectrometer, designed to measure the energy spectra of high flux and energy photon beams is

discussed, detailing its operation principles and simulation studies of its expected performance.

A first experimental characterisation of the spectrometer is also presented, which involved the

measurement of a ∼ 1 GeV bremsstrahlung source.

Secondly, an approach to inferring interaction properties from the spatial profile of a

Compton-scattered photon beam is presented. The theory of this method is developed, with

numerical studies for different interaction parameters considered, as well as a range of validity

for applying the technique. This method is applied to a proposed gamma beam profiler for the

LUXE experiment, with simulations demonstrating its effectiveness.

Finally, an experimental setup targeting rare two-photon QED processes, linear Breit-Wheeler

production and elastic photon-photon scattering, is examined. The use of current and next-

generation PW-class laser facilities is shown to significantly enhance signal yields. Simulation

results support order-of-magnitude estimates, suggesting that direct observation and stringent

bounds on these processes are feasible.
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Chapter 1

Introduction

The study of light, matter and their interaction is one of the oldest and most fundamental problems

in Physics. In the modern era, the best description of this interaction is quantum electrodynamics

(QED); an elegant theory that presents light and matter as excitations of all-pervasive fields.

QED is one of the most precise and well-tested physical theories to date, for example, the

agreement of the fine structure constant, 𝛼 ≈ 1/137, between experiment and theory to a precision

of less than one part per billion [1]. Results in QED are typically obtained using perturbative

methods, summing the contributions from successively higher order Feynman diagrams (a useful

technique for diagrammatically producing a series expansion in the aforementioned constant 𝛼,

the coupling constant of QED), with these higher order terms providing radiative and self-energy

corrections for instance. However, in the presence of strong background electromagnetic

fields (∼ 1 × 1016 V cm−1), it is no longer possible to perform such an expansion and the

expansion becomes all-order in 𝛼. This presents a major difficulty in theoretical investigations

of non-perturbative, or strong-field, QED (SFQED) and so, various approximation frameworks

have been developed to extract more tractable solutions [2]. Environments where such intense

fields occur are of prominent interest, for instance, within the fields of magnetars [3, 4, 5], in

aligned crystals [6], in the dynamics of plasmas produced by intense laser pulses [7, 8], and

at the interaction point of next-generation particle colliders [9], therefore, accurate theoretical

predictions are invaluable, particularly for field strengths currently unattainable in a laboratory.

Hence, in order to both validate the results from theory as well as the applicability and
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accuracy of the approximation frameworks, experimental investigation of QED in intense fields

is vital. With advancements in modern technology, probing the non-perturbative regime of

QED is becoming more feasible. In particular, the development of chirped pulse amplification

(CPA) [10] has allowed lasers to reach unprecedented intensities [11], with next-generation

facilities anticipating even higher intensities using PW-class systems [12]. With this advancement,

there has been an invigorated interest in investigating strong-field QED within a laboratory, using

these ultra-intense lasers as the source of the extreme background fields. The E-144 experiment at

SLAC in 1996 [13, 14], which utilised a 46.6 GeV electron beam and a laser beam achieving peak

intensities of ∼ 1 × 1018 W cm−2, is considered the pioneering SFQED experimental campaign

which successfully observed non-linear Compton scattering and Breit-Wheeler pair production

within the perturbative regime. Since then, multiple experiments have been performed with

similar configurations, using electrons generated via laser wakefield acceleration (LWFA) in

plasmas as well as conventional accelerators, investigating quantum effects on the radiation of

accelerating charges and others [15, 16, 17, 18]. As E-144 only probed the perturbative regime

of SFQED, two experiments, SLAC E-320 [19] and LUXE [20, 21], aim to follow the success of

E-144 and not only demonstrate the perturbative regime, but also observe the transition to the

non-perturbative regime of SFQED experimentally for the first time.

As well as needing development of the technology to produce the intense interaction regions

required to probe SFQED, these experiments also require advanced detector systems which can

reliably function within these environments [22, 23]. Not only is there a large dynamic range for

particle rates, but there is also typically a substantial background, necessitating detectors which

can survive such radiation intense environments while maintaining ability to resolve signal.

Hence, much work has been done to develop and improve detection systems for use, particularly

within the context of E-320 and LUXE [24, 25, 26].

In this thesis, we discuss the operating principles of two novel-type detector systems,

which are designed to extract the energy spectrum and spatial profile of high-energy, high-flux

photon beams. Their application to the specific case of LUXE is also considered, highlighting

the significance of their utility for future SFQED experiments. The thesis has the following

structure: a summary of SFQED theory is highlighted in Chapter 2, with details on particular
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processes (Compton scattering, Breit-Wheeler pair production, radiation reaction and elastic

photon-photon scattering) given. A discussion of the interaction of particle beams with solid

targets for the purpose of generating photon and lepton beams is also provided. As the work

on this thesis has been motivated by particular upcoming experiments, these are also discussed

in Chapter 3 with an emphasis on their scope and expectations. Additionally, the numerical

and simulation toolkits used to produce the results presented in this thesis are also detailed.

Chapter 4 describes the operating principles of the gamma ray spectrometer, along with numerical

modelling and testing as well as an experimental implementation. An approach to determine

laser intensity using Compton-scattered photon beams is presented in Chapter 5, detailing the

theoretical justifications of such a method and numerical examples of extracting this information.

In Chapter 6, improvements to a previous experimental setup to investigate linear Breit-Wheeler

pair production and elastic photon-photon scattering are presented using numerical modelling to

provide estimates on the experimental running requirements in order to obtain sufficient statistics

of these rare events. Finally, Chapter 7 discusses the outlook of the work presented here and

potential avenues of further development.

Throughout, natural units are assumed such that ℏ = 𝑐 = 1 and so 𝑒 =
√

4𝜋𝛼 is the fundamental

charge. Additionally, the Minkowski metric is used with the signature 𝑔𝜇𝜈 = diag(+1,−1,−1,−1).
Four-vectors are notated without indices unless stated for emphasis with three-vectors indicated

in bold, e.g. 𝑎 = 𝑎𝜇 = (𝑎0, 𝒂).
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Chapter 2

Theory

2.1 Outline of Strong-Field QED

Strong-field quantum electrodynamics is a theoretical framework which can be used to describe

the interaction of electrons, positrons and photons with strong, background fields [2, 27]. To

define a "strong field", the usual Dirac Lagrangian from quantum electrodynamics is taken, with

the field 𝐴𝜇 separated into two components - 𝐴𝜇, a gauge field which describes photons, and

A𝜇, an external background field [28]:

L = Ψ̄(𝑖 /𝜕 − 𝑚)Ψ − 𝑒Ψ̄( /𝐴 + /A)Ψ − 1
4
𝐹2, (2.1)

where 𝜕𝜇 is the four-gradient operator, 𝛾𝜇 are the Dirac matrices with the Feynman notation

/𝑏 = 𝛾 · 𝑏, Ψ is the fermion wavefunction with Ψ̄ its conjugate and 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 is the

electromagnetic field tensor associated with the gauge field. 𝑒 and 𝑚 are the fermion charge and

mass respectively. With this separation, and the absence of an 𝐹2-like term for A, the external

field is treated classically as a solution of Maxwell’s equations. Rearrangement of Eq. (2.1)

results in

L = Ψ̄
[
𝑖( /𝜕 + 𝑖𝑒 /A) − 𝑚]

Ψ − 𝑒Ψ̄ /𝐴Ψ − 1
4
𝐹2, (2.2)

which leads to a dressed propagator including the presence of the external field in the square

brackets. The separation of the field in this form and introducing the dressed propagator
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2.1. OUTLINE OF STRONG-FIELD QED

in Eq. (2.2) is known as the Furry picture [29]. The result of the Furry picture is that methods for

calculating 𝑆-matrices and hence probability rates or cross sections, for instance the Feynman

rules, in SFQED can be done by replacing the fermion propagator in usual QED calculations

with the dressed propagator. One non-trivial case where the propagator, or equivalently the Dirac

equation, can be solved for exactly is in a plane wave background. For a plane wave of the form

𝐴 = 𝐴(𝜑) where 𝜑 = 𝑘 · 𝑥 is the wave phase with wave four-vector, 𝑘 , and at four-position, 𝑥,

the solution to the Dirac equation produces the well-known Volkov states

Ψ𝑝 (𝑥) =
[
1 + 𝑒/𝑘 /𝐴

2𝑘 · 𝑝

]
𝑢(𝑝)√︁

2𝑝0
e𝑖𝑆, 𝑆 = −𝑝 · 𝑥 −

∫ 𝜑

−∞

[
𝑒𝑝 · 𝐴(𝜙)
𝑘 · 𝑝 − 𝑒2𝐴(𝜙)2

2𝑘 · 𝑝

]
d𝜙 , (2.3)

where 𝑢(𝑝) is a constant Dirac bispinor and 𝑆 coincides with the classical action of a charged

particle of momentum 𝑝 in an electromagnetic field [30]. The Volkov solutions are used

ubiquitously for calculating probability rates and cross sections within SFQED [27, 31, 32].

Interactions within the scope of SFQED are quantified using two key parameters: the classical

non-linearity or normalised potential 𝑎0 (also commonly called 𝜉 or 𝜂 in literature); and the

quantum parameter, 𝜒, which are defined as [27, 33]

𝑎0 ≡ |𝑒 |
√
−𝐴2

𝑚
=

𝒑⊥
𝑚
, 𝜒 ≡ |𝑒 |

√︁
(𝑝𝜈𝐹𝜇𝜈)2

𝑚3 =
𝛾

𝐸cr

√︁
(E + v × B)2 − (v · E)2, (2.4)

where |𝑒 | is the elementary charge and 𝑚 is the electron mass. The first term for each parameter

in Eq. (2.4) gives a gauge and Lorentz invariant definition for the parameters in terms of the

field, 𝐴, the corresponding electromagnetic field tensor, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇, and the particle’s

four-momentum, 𝑝. The second equality in each of Eq. (2.4) provide a more conceptual definition

of these key parameters involving the electric and magnetic components of the background

field, 𝑬 and 𝑩; 𝑎0 can be seen to be proportional to the quiver momentum transverse to the

field’s propagation, 𝒑⊥, of the particle in the field and is an indication of how relativistic this

motion is. Additionally, 𝑎0 describes the multiplicity of the interaction with the background

field, i.e. multiphoton effects on processes, as tree-level processes typically scale as 𝑎2
0 at

leading order, for 𝑎0 ≫ 1. This provides the definition of a strong field - if multiphoton effects

are important and the particle effectively interacts with a large number of photons from the
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2.1. OUTLINE OF STRONG-FIELD QED

background field without depleting its energy, the field can be described classically and so the

Furry picture prescription applies. Hence, a strong field is defined as a field such that 𝑎0 ≫ 1

and these multiphoton, or non-linear, effects are non-negligible. In this regime, the probability

of interacting with 𝑛 background photons scales as 𝑎2𝑛
0 .

The quantum parameter 𝜒, being proportional to the field, has the interpretation of being the

work done by the external field in moving the particle a distance of the Compton wavelength,

𝜆𝐶 = 1/𝑚, in its rest frame, in units of a critical field strength, 𝐸cr. The connection between the

quantum nature of the interaction and 𝜒, as well as the definition of the critical field 𝐸cr, can

be derived from work by Sauter, Heisenberg and Schwinger [34, 35, 36], by considering the

generation of electron-positron pairs in a constant electric field, named the Schwinger effect.

Heuristically, an electron-positron pair can be extracted from the negative energy Dirac sea in a

vacuum by a constant, external electric field, 𝑬, if it is sufficiently strong to separate the virtual

charges by a distance 𝜆𝐶 , hence producing a real pair. The probability rate (per unit volume) for

generation of these pairs has been found through various approaches to be [34, 36, 37]

𝑊 =
2𝑒2𝐸2

(2𝜋)2

∞∑︁
𝑛=1

1
𝑛2 exp

(
−𝑛𝜋𝑚

2

𝑒𝐸

)
. (2.5)

The exponent provides the definition of the critical field strength, known as the Schwinger

limit, 𝐸cr ≡ 𝑚2/𝑒 = 1.32 × 1016 V cm−1. From Eq. (2.5), pair production in a static electric

field is exponentially suppressed for 𝐸 ≪ 𝐸cr; in the opposing limit, pair production increases

quadratically with increasing 𝐸 . Evidently, the ratio 𝐸/𝐸cr is a heuristic measure of the quantum

nature of the background field.

Furthermore, for a plane wave background with wavevector 𝒌 = 𝜔0 𝒏̂, the magnetic field is

orthogonal to the electric field and propagation direction as 𝑩 = 𝒏̂ × 𝑬, which gives a quantum

parameter of 𝜒 = 𝛾𝐸/𝐸𝑐𝑟 (1−cos 𝜃), where 𝜃 is the angle between the wavevector and the particle’s

velocity. Hence, 𝜒 ∼ 𝐸∗/𝐸𝑐𝑟 where 𝐸∗ is the magnitude of the electric field as seen in the particle’s

rest frame. Therefore, 𝜒 ∼ 1 implies that the field strength in the particle’s rest frame is of the

same order as the Schwinger limit and quantum effects on its dynamics are important.

[2, 12, 38] provide comprehensive reviews of the currently accessed areas of (𝑎0, 𝜒) parameter

space in laser-particle experiments at various facilities, as well as potential capabilities of future
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2.1. OUTLINE OF STRONG-FIELD QED

Figure 2.1: Map of current and planned SFQED experiments in (𝑎0, 𝜂 ≈ 𝜒/𝑎0) parameter space. Solid
lines and markers represent reported experimental results and dashed lines and empty markers indicate
future experiments. Reproduced from [2] under the terms of the Creative Commons CC-BY license.

generation laser facilities. Figure 2.1 has been taken from [2], which visualises the experimental

landscape of SFQED investigations, using the parameters 𝜉 (𝑎0) and 𝜂 which is defined such that

in a plane wave background, 𝜒 = 𝜂𝑎0. This map shows that current results have been able to

successfully probe the multiphoton regime with 𝑎0 ≲ 25. However, the quantum regime where

𝜒 ≫ 1 has not been well-explored, with only one previous experiment achieving 𝜒 ∼ 0.5 [13,

14], and on-going/upcoming experiments E-320 and LUXE proposed to reach 𝜒 of a few. Next

generation lasers, particularly future exawatt-scale facilities, will be able to provide conditions

that are both strongly multiphoton and far into the quantum regime, potentially reaching the

Ritus-Narozhny limit where 𝛼𝜒2/3 ≳ 1 [39].

Determining the rates for SFQED processes involves the evaluation of multidimensional

integrals which have the general form

R ∼
∫ ∏

𝑖

d4𝑝𝑖
(2𝜋)4 |𝑆 |

2, (2.6)

where |𝑆 |2 = 𝑆†𝑆 is the square of the 𝑆-matrix for a particular process and 𝑆† denotes its

Hermitian conjugate. These integrals are often intractable for arbitrary background fields,

however some field configurations provide analytical solutions, for instance a monochromatic
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2.1. OUTLINE OF STRONG-FIELD QED

plane wave background [40, 41]. Therefore, specific approximations are often made in order to

extract useful results from Eq. (2.6). Currently, there are two main approximation frameworks

employed in the literature of theoretical investigations of QED; the Locally Constant Field

Approximation (LCFA) [42, 43] and the Locally Monochromatic Approximation (LMA) [2].

The locally constant field approximation, also called the constant crossed field (CCF)

approximation, is the most widely utilised due to its wide applicability [44]. The fundamental

approach to the LCFA is to assume that the probability rate for a process can be determined

by taking the field locally as a constant, crossed field and integrating over this local rate. A

constant, crossed field is one such that 𝑬 ⊥ 𝑩 and 𝑬, 𝑩 have constant and equal magnitude,

- one such configuration is a plane wave, which can be described by two Lorentz invariant

parameters, 𝑎0 and 𝜒. The framework of the LCFA then allows for probability rates to be "built

up" from contributions of these local rates, which are given by the results for a plane wave

background. Such an approximation requires: (a) that 𝑎0 ≫ 1, and (b) that the probe particle is

ultrarelativistic, which ensures that the higher order field invariants are negligible compared to 𝜒

as in a plane wave where the higher order invariants are identically zero. These assumptions are

rather general, and in particular do not depend on the specific structure of the field, making the

LCFA particularly useful is cases where the background field is unknown a priori, such as in

laser-plasma particle-in-cell (PIC) simulations [38, 45]. Further, since the LCFA is so ubiquitous,

substantial effort has been made to increase its range of validity and accuracy [46, 47].

A disadvantage of the LCFA is that, for 𝑎0 ∼ O(1), it fails to capture spectral effects such as

harmonics which arise due to interference of different points of the field. Instead, by describing

the background field as a many-cycle pulse, these interference effects can be accounted for. The

locally monochromatic approximation then combines two established approximations: that the

temporal envelope of the field is slowly varying with respect to some "slow" time-scale; and that

the resulting integrals can be expanded in terms of an interference phase [2, 48]. Since the LMA

has stricter requirements than the LCFA framework, the LMA is better suited for interactions

where the incident particle and laser beams are well-characterised. Moreover, these harmonic

features in spectra that the LCFA fails to capture appear for 𝑎0 ∼ O(1), which corresponds to

the intermediately non-linear regime. For high intensities, 𝑎0 ≫ 1, the LMA rates tend to those

26



2.2. LASER-PARTICLE INTERACTIONS

calculated under the LCFA. As the LMA is derived from a construction of the global probability

from local rate like the LCFA framework, it can be easily implemented in particle simulation

codes of both a PIC and Monte-Carlo (MC) nature.

2.2 Laser-Particle Interactions

2.2.1 Multi-photon Compton Scattering

When a charged particle moves in a background field, it can absorb energy and momentum

from the field and then go on to emit a single photon. In standard linear QED, the process

of a charged particle, henceforth assumed to be an electron for brevity, absorbing and then

re-emitting a photon is inverse Compton scattering, where the recoil due to emission results

in an inelastic scattering of the photon. Due to the dressed states, (2.3), in the presence of the

background field, rather than a one-to-one absorption/emission, the electron can effectively

absorb multiple photons from the field, hence this process is named multi-photon or non-linear

Compton scattering (NLCS).

For a plane wave background, multi-photon Compton emission can be described using the

Volkov states Eq. (2.3). In this case, where the background has a constant wave four-vector 𝑘 ,

the non-linear Compton emission of a single photon with momentum 𝑘′ satisfies the momentum

conservation

𝑞 + ℓ𝑘 = 𝑞′ + 𝑘′, (2.7)

where ℓ is some integer. In more general fields, ℓ can take on non-integer values. Instead of

the (canonical) momentum of the electron, 𝑝, the time averaged kinetic momentum ⟨𝑝 − 𝑒𝐴⟩
appears in the conservation equation due to the presence of the background field. This quantity

is the quasimomentum of the electron, 𝑞, and is defined as

𝑞𝜇 = 𝑝𝜇 −
𝑚2𝑎2

0
2𝑘 · 𝑝 𝑘𝜇 (2.8)

in a plane wave. The square of the quasimomentum gives the effective mass of the electron,

𝑞2 ≡ 𝑚2∗ = 𝑚2(1 + 𝑎2
0), showing that the presence of the background field enhances the rest mass
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2.2. LASER-PARTICLE INTERACTIONS

of the electron; in the absence of a background field, 𝑚★ → 𝑚.

From Eq. (2.7), the energy of the emitted photon for a given ℓ is given by

𝜔′ =
ℓ𝑘 · 𝑝

𝑝 · 𝑛′ +
(
ℓ + 𝑚2𝑎2

0
4𝑝·𝑘

)
𝑘 · 𝑛′

, (2.9)

where 𝑘′𝜇 = 𝜔′𝑛′𝜇 and (𝑛′)2 = 0. The dependency on the value of ℓ shows that the emitted

photons form harmonics, 𝜔′
ℓ, with the effective harmonic order ℓeff ∼ 𝑎3

0 representing the number

of photons absorbed from the background field [27]. Additionally, as ℓ is an integer in the case

of a plane wave background, [40, 49] show that the emission rate can be expanded as a sum over

these harmonics involving Bessel functions, 𝐽𝜈 (𝑧). For example, in a circularly polarised wave,

the emission rate is given by

𝑊 =
𝑒2𝑚2

4𝑞0

∞∑︁
ℓ=1

∫ 𝑢ℓ

0

d𝑢
(1 + 𝑢2)

[
−4𝐽2

ℓ (𝑧) + 𝑎2
0

(
2 + 𝑢2

1 + 𝑢

) (
𝐽2
ℓ+1(𝑧) + 𝐽2

ℓ−1(𝑧) − 2𝐽2
ℓ (𝑧)

)]
, (2.10)

where 𝑢ℓ = 2ℓ(𝑘 · 𝑝)/𝑚2∗ and 𝑧 = 2ℓ𝑚2
√︁
𝜈(1 − 𝜈)

(
𝑎0/√︃1 + 𝑎2

0

)
and 𝜈 = 𝑢/𝑢ℓ. 𝑞0 is the time-

component of the four-vector 𝑞. In the limit of small 𝑎0, the contribution of the partial emission

rate is 𝑊ℓ ∼ 𝑎2ℓ
0 and so for 𝑎0 ≪ 1, the emission rate can be approximated by the ℓ = 1 term

only:

𝑊 ≃ 𝑒2𝑚2𝑎2
0

4𝑝0

[(
1 − 4

𝑢0
− 8
𝑢2

0

)
ln(1 + 𝑢0) + 1

2
+ 8
𝑢0

− 1
2(1 + 𝑢0)2

]
, (2.11)

where 𝑢0 ≈ 2𝑘 · 𝑝/𝑚2. With the correct replacement of 𝑎0 by the normalised four-potential for a

single photon of energy 𝜔, 𝑎2
0 → 4𝜋𝑒2/𝑚𝜔, Eq. (2.11) reproduces the Klein-Nishina formula for

the linear (single-photon) Compton scattering cross section [49]

𝜎 = 2𝜋𝛼2𝜆2 1
𝑥

[(
1 − 4

𝑥 − 1
+ 8
(𝑥 − 1)2

)
ln 𝑥 + 1

2
+ 8
𝑥
− 1

2𝑥2

]
, (2.12)

where 𝑥 ≡ 𝑠/𝑚2 and
√
𝑠 is the centre-of-momentum or zero-momentum-frame (ZMF) energy.

The opposing limit, 𝑎0 ≫ 1, can be obtained directly from Eq. (2.10), however an alternative

approach is detailed in [49]. From its definition in a plane wave, 𝑎0 = 𝑒𝐹/𝑚𝜔, where 𝐹2 = 𝐹𝜇𝜈𝐹𝜇𝜈

is the field amplitude and 𝜔 is the energy (frequency) of the plane wave. Hence, 𝑎0 can be made
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larger by decreasing 𝜔, and the limit 𝑎0 → ∞ corresponds to a constant, crossed background

field. As the total emission intensity is an Lorentz invariant, it can depend only on invariant

combinations of 𝐹𝜇𝜈 and 𝑝𝜇; this restriction results in the three independent and dimensionless

invariants: 

𝜒 = 𝑒
𝑚3

√︃
−(𝐹𝜇𝜈𝑝𝜈)2,

𝑓 = 𝑒2

𝑚4𝐹
2,

𝑔 = 𝑒2

𝑚4 𝜖𝜆𝜇𝜈𝜌𝐹
𝜆𝜇𝐹𝜈𝜌 .

(2.13)

where 𝜖𝜆𝜇𝜈𝜌 is the Levi-Civita permutation symbol, and 𝜒 is the same quantum parameter as

defined previously in Eq. (2.4). In the ultrarelativistic regime, 𝑓 , 𝑔 ≪ 𝜒2 for arbitrary fields and

in a crossed field 𝑓 = 𝑔 = 0 exactly, hence 𝜒 is the important parameter to describe emission

rates. Furthermore, as 𝜒 is an invariant, the determination of the emission rate for a crossed field

will equivalently apply to any constant field and vice versa. Therefore, the 𝑎0 ≫ 1 limit can

be obtained by considering the emission rate for a constant magnetic field as the background;

this corresponds to the phenomenon of synchrotron radiation, and hence, the crossed field limit

is also referred to as the synchrotron limit. Expressed in terms of 𝜒, the spin and polarisation

averaged synchrotron emission rate is given by [33, 43, 32]

d𝑊
d𝜔′ =

𝛼√
3𝜋𝛾2

[(
1 − 𝑥 + 1

1 − 𝑥

)
𝐾2/3(𝜁) −

∫ ∞

𝜁
𝐾1/3(𝑦) d𝑦

]
, (2.14)

where 𝜁 = 2𝑥/3𝜒 (1 − 𝑥 ), 𝜔′ = 𝑥𝛾𝑚 and 𝐾𝜈 (𝑧) are the modified Bessel (MacDonald) functions [50].

The emission rate Eq. (2.14) has the useful asymptotic forms for 𝜒 ≪ 1 and 𝜒 ≫ 1:

d𝑊
d𝜔′ ∼


5𝜒

32
√

3𝜋2 , 𝜒 ≪ 1,

7Γ( 2
3 )

54𝜋 (3𝜒) 2
3 , 𝜒 ≫ 1,

(2.15)

where Γ(𝑧) is the gamma function.

The above conditions on 𝜒, 𝑓 , 𝑔 and 𝑎0 ≫ 1 additionally detail the requirements for the

valid use of the LCFA to calculate emission rates within arbitrary background fields. Figure 2.2

depicts the simulated energy spectra of emitted photons after the interaction of a 10 GeV electron

29



2.2. LASER-PARTICLE INTERACTIONS

0 2 4 6 8
l′ (GeV)

10−4

10−3

10−2

10−1

100

1/
#
3
#
/3
l
′ (
1/
G
eV

)

2 4 6 8 10
00

Figure 2.2: Energy spectra of Compton scattered photons during the interaction of a 10 GeV electron
beam (with 10% energy spread) and a plane wave laser background of wavelength 𝜆 = 800 nm and varying
normalised field amplitude, 𝑎0.

beam with a plane wave background with 𝜔 = 1.55 eV (𝜆 = 800 nm) for various field amplitudes.

For 𝑎0 ≪ 1, the standard Compton-like spectra can be seen with different harmonics ( Eq. (2.9))

appearing and the synchrotron limit is also seen for 𝑎0 ≳ 5, where the LCFA also becomes more

accurate.

The angular distribution of the emitted photons within a plane wave background depends

on polarisation of the field, however its main characteristic is that it is highly directional along

the direction of the electron’s initial momentum. For a linearly polarised field, in the case that

𝑎0 ≫ 1, emission occurs predominantly within an elliptical cone whose size is 𝜃 ∼ 𝑎0/𝛾, 1/𝛾
parallel and perpendicular to the polarisation direction respectively.

Assuming a head-on collision between the electron and the plane wave field, Eq. (2.9) can be

written in the form [51, 52]

𝜔′
ℓ ≃

4ℓ𝛾2𝜔

1 + 𝛾2𝜃2 + 2ℓ𝜂 + 𝑎2
0
≃ 4ℓ𝛾2𝜔

1 + 𝛾2𝜃2 + (2𝜒 + 1)𝑎2
0
, (2.16)

where 𝜂 = 𝜒/𝑎0 = 2𝛾𝜔/𝑚, 𝜃 is the scattering angle between the incident electron and emitted

photon, and the scaling ℓeff ≃ 𝑎3
0 has been used in the denominator. In the limit 𝜃 → 0, the
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emitted photon energy reaches a peak, which assuming 𝜒 ≪ 1, is given by

𝜔′
ℓ ≃

4ℓ𝛾2𝜔

1 + 𝑎2
0
. (2.17)

In the case of ℓ = 1, the harmonic is designated as the Compton edge, which corresponds to the

linear QED Compton edge for 𝑎0 → 0, where the scattered frequency is the Doppler-shifted

result of a relativistic mirror 𝜔′ → 4𝛾2𝜔 [53]. The scaling of the denominator in Eq. (2.17) is the

same as 𝑚2∗, hence this redshifting of the Compton harmonic due to the increasing strength of the

background field can be attributed to the increase in the effective mass of the electron; reducing

the (linear) Compton edge. This redshifting of the Compton edge is also visible in Fig. 2.2 for

𝑎0 ≲ 2, where the first order edge can be seen to be moving to lower energy with increasing 𝑎0

as predicted by Eq. (2.17).

Furthermore, in the 𝜒 ≪ 1 regime where quantum effects can be neglected, the number of

Compton scattered photons emitted per laser cycle per incident electron is given by

𝑁𝛾 ∼


1.53 × 10−2𝑎2
0 𝑎0 < 1,

3.31 × 10−2𝑎0 𝑎0 ≫ 1.
(2.18)

Considering Eqs. (2.9) and (2.18), in the linear regime where 𝑎0 < 1 and so ℓ ∼ ⌈𝑎3
0⌉ = 1, the

energy of the emitted photons scales as 𝜔′ ∝ 𝛾2𝜔 with 𝑁𝛾 ∝ 𝑎2
0. At high intensities where

𝑎0 ≫ 1, 𝜔′ ∼ 𝛾2𝑎0𝜔 and 𝑁𝛾 ∝ 𝑎0, a high-energy and high-yield photon source can be generated

readily in the non-linear regime. As an example, a 15 GeV electron beam containing a charge of

250 pC interacting with a counter-propagating laser of 𝜔 = 1.55 eV (𝜆 = 800 nm) and 𝑎0 = 2

over 10 laser cycles provides ∼ 109 Compton scattered photons with harmonics up to ∼ 10 GeV.

2.2.2 Non-linear Breit-Wheeler Pair Production

In linear QED, the process of pair production by two photons is related to the Compton scattering

process via a crossing symmetry. For the ℓ = 1 limit, which is equivalent to the interaction of

two photons to produce an electron-positron pair, the cross section for the two-photon or linear
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Figure 2.3: Comparison of the cross sections for processes as calculated in linear QED. Compton
scattering (blue) is given by the Klein-Nishina formula Eq. (2.12); linear Breit-Wheeler (green) is given
by Eq. (2.19) and electron-positron pair annihilation (orange) is related to Eq. (2.19) via a crossing
symmetry from the 𝑠-channel to 𝑡-channel [49]. The energy threshold for pair production and annihilation
is repesented by the dashed vertical line.

Breit-Wheeler (LBW) process is given by [54]

𝜎 =
𝜋

2
𝛼2𝜆2(1 − 𝛽2)

[
2𝛽(𝛽2 − 2) + (3 − 𝛽4) ln

1 + 𝛽
1 − 𝛽

]
, (2.19)

where 𝛽 ≡
√︁

1 − 4𝑚2/𝑠.
This crossing symmetry also exists in the presence of a background field and results in the

non-linear Breit-Wheeler pair production (NLBW), where an external photon in the background

field absorbs sufficient energy and momentum from the field to effectively "split" into an

electron-positron pair [55]:

𝑒± + ℓ𝜔 → 𝑒± + 𝛾 (NLC), (2.20)

𝛾 + ℓ𝜔 → 𝑒− + 𝑒+ (NBW). (2.21)

Since an electron-positron pair is created, the Breit-Wheeler process has an energy threshold

which significantly affects the resulting production rate in comparison to non-linear Compton
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scattering. This can also be seen in the linear limit of Eq. (2.19), where the cross section is only

real for 𝛽 ≥ 0 or equivalently
√
𝑠 > 2𝑚; the ZMF energy must be at least the rest mass energy of

the pair. This results in a minimum value for the harmonic ℓ: ℓmin = 2𝑚2∗/𝑘′ · 𝑘 ≤ ℓ, where 𝑘 is the

wavevector of the field and 𝑘′ is the momentum of incident photon. This can be interpreted, in a

plane wave background, as the minimum number of photons that are required to be absorbed

from the background in order to produce the pair [56].

The production rate for NLBW has three distinct regimes of behaviour depending on the field

amplitude 𝑎0 and the photon quantum number 𝜒𝛾 [2]. 𝜒𝛾 is analogous to the (electron) quantum

parameter, 𝜒, defined in Eq. (2.4) but with the replacement 𝑝 → 𝑘′. For 𝑎0 ≪ 1, it is possible

for a single background photon to satisfy the energy threshold and production is described by

linear pair production due to the collision of two photons. A multiphoton regime for 𝑎0 ≲ 1 is

also possible, whereby multiple ℓ ≥ ℓmin photons are absorbed from the background. In both of

these cases, the production rate scales similarly to NLCS with𝑊 ∼ 𝑎2ℓ𝑚𝑖𝑛
0 , with higher ℓ being

suppressed due to 𝑎0 < 1. For the strong field limit, 𝑎0 ≫ 1, a significant number of background

photons can produce an electron-positron pair and the process is strongly non-linear. In this

instance, the production rate also depends on the photon quantum parameter, 𝜒𝛾 , as (in the case

of a plane wave)

𝑊 ∼

𝛼𝜒𝛾e−8/3𝜒𝛾 𝜒𝛾 ≪ 1,

𝛼𝜒
2/3
𝛾 𝜒𝛾 ≫ 1.

(2.22)

In the limit 𝜒𝛾 ≪ 1, the production rate scales similarly to the Schwinger production pro-

cess Eq. (2.5) due to the same quantum tunnelling nature of the process. Additionally, the strong

suppression at small 𝜒𝛾 emphasises that pair production is an inherently quantum process with

no classical analogue. Hence, the production of electron-positrons pairs acts as a benchmark

for the highly quantum regime of SFQED. In the opposite limit of large 𝜒𝛾 , the production rate

scales in the same way as NLCS, leading to the possibility of QED casades forming within

extremely intense laser pulses.
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2.3 Radiation Reaction

It is well-established that accelerating charges emit radiation. From a classical viewpoint, this is

caused by the reconfiguration of the particle’s own electromagnetic field as it moves; within a

quantum description, the radiation is attributed to the emission of photons. In either case, there is

a back-reaction of the radiation on the particle which results from the particle interacting with its

own field (classical) or the recoil from the emission of a photon (quantum). This back-reaction is

termed radiation reaction and a full, fundamental description of this phenomenon has still not yet

been found. Within the regime of classical electrodynamics, Abraham and Lorentz formulated

an equation of motion which includes a term for the reaction force by the radiation field, which

was then generalised to a relativistically covariant form by Dirac, commonly referred to as the

Lorentz-Abraham-Dirac (LAD) equation [57, 58, 59]:

d𝑢𝜇

d𝑠
=
𝑒

𝑚
𝐹𝜇𝜈𝑢𝜈 + 𝑒2

6𝜋𝑚

[
d2𝑢𝜇

d𝑠2 +
(
d𝑢𝜈
d𝑠

d𝑢𝜈

d𝑠

)
𝑢𝜇

]
. (2.23)

Here, 𝑢 is the four-velocity of the particle, 𝑠 is the proper time, 𝑒, 𝑚 are the particle’s charge

and mass respectively, and 𝐹𝜇𝜈 is the electromagnetic field tensor of the externally applied

field. The first term in Eq. (2.23) is the usual Lorentz force and the second term accounts for

the reaction of the particle’s radiation field. Although Eq. (2.23) satisfies both Maxwell’s and

Lorentz’s equations in a self-consistent manner, whereby the current found from the Lorentz

equation of motion is in Maxwell’s equations to determine the consequent self-fields, the second

order derivative d2𝑢𝜇

d𝑠2 introduces problematic features in the solutions of the LAD equation. For

instance, runaway solutions exist where the radiation reaction force exponentially increases

with time, as well as pre-acceleration of the charge where momentum changes precede changes

in the field. Alternative formulations for radiation reaction have been proposed in order to

overcome the issues of the LAD equation. One of the most commonly used within classical

electrodynamics was presented by Landau and Lifshitz, by reducing the order of the LAD

equation [30]. If the radiation reaction forces are much smaller than the force exerted by the

applied field, the acceleration, d𝑢𝜇
d𝑠 , can be replaced by the usual Lorentz force in the radiation

reaction term of Eq. (2.23). The resulting equation, referred to as the Landau-Lifshitz equation, is
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then first order in the particle’s velocity and hence removes the pathological solutions associated

with Eq. (2.23) [60];

d𝑢𝜇

d𝑠
=
𝑒

𝑚
𝐹𝜇𝜈𝑢𝜈 + 𝑒4

6𝜋𝑚

[𝑚
𝑒
(𝜕𝜆𝐹𝜇𝜈)𝑢𝜆𝑢𝜈 + 𝐹𝜇𝜈𝜈𝜆 𝑢𝜆 + (𝐹𝜈𝜆𝑢𝜆)2𝑢𝜇

]
. (2.24)

By virtue of the reduction of order method, all physically meaningful solutions of the LL equation

are also solutions of the LAD equation. For the reduction of order to be valid, the characteristic

length, 𝐿, that the field varies over, and its magnitude, 𝐸 , must satisfy the conditions 𝐿 ≫ 𝛼𝜆𝐶

and 𝐸 ≪ 𝐸𝑐𝑟/𝛼 in the instantaneous rest frame of the particle [27]. Within the regime of classical

electrodynamics, these conditions are automatically met as they coincide with the requirements

for neglecting quantum effects.

The LL equation permits an exact solution for the case of a particle moving in an external

plane wave field. Following the notation of [33], for a field with potential 𝑒𝐴𝜇 = 𝑚𝑎0
∑
𝑖
𝑓𝑖 (𝜑)𝜀𝜇𝑖 ,

where 𝑓𝑖 (𝜑) are the temporal envelopes of the pulse along each of the polarisation axes, 𝜀1, 𝜀2,

the solution of Eq. (2.24) can be expressed concisely in light-front coordinates: 𝑢−, 𝑢+, u⊥. 𝑘𝜇 is

the four-wavevector of the field and satisfies the light-like condition 𝑘2 = 0. From Eq. (2.24), the

solution for the light-front momentum, 𝑚𝑢− = 𝑘 · 𝑝/𝜔0, is [61]

𝑢−(𝜑) = 𝑢−0
1 + 2

3𝑅𝑐 𝐼 (𝜑)
, 𝐼 (𝜑) =

∫ 𝜑

−∞

[
𝑓 ′1 (𝜓)2 + 𝑓 ′2 (𝜓)

]
d𝜓 . (2.25)

The classical radiation reaction parameter is defined as [33] 𝑅𝑐 = 𝑎2
0𝑢

−
0 𝜔0/𝑚, and 𝑢−0 is the initial

light-front momentum. In particular, for an ultrarelativistic particle with 𝛾 ≫ 1, 𝑢− ≈ 2𝛾 and

𝛾(𝜑) = 𝛾𝑖
1 + 𝑅𝛾𝑖 , (2.26)

with 𝑅 = (4𝑎2
0𝜔0/3𝑚)𝐼 (𝜑) and 𝛾𝑖 is the initial gamma factor. The transverse light-front momenta

are given as

u⊥ =
𝑢−

𝑢−0

[
u⊥

0 + 𝑎0 𝑓1,2(𝜑) + 2𝑅𝑐
3
𝐻1,2(𝜑) + 2𝑅𝑐

3𝑎0
𝑓 ′1,2(𝜑)

]
, (2.27)

with 𝐻 𝑗 (𝜑) =
∫ 𝜑

−∞ 𝑓 ′𝑗 (𝜓)𝐼 (𝜓) d𝜓 and the prime denotes differentiation with respect to the

phase 𝜑. The final light-front component can be determined from the on-shell condition
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Figure 2.4: Classical (blue) and quantum (orange) spectra for 𝜒 = 2, given by Eqs. (2.28) and (2.29)
respectively.

𝑢+𝑢− − u⊥ · u⊥ = 1.

The energy spectrum of the emitted radiation can be determined by considering the Larmor

power as the charge accelerates in the external field [33, 55]. Viewing the instantaneous trajectory

as a small arc, the emission exhibits the behaviour of synchrotron radiation in an instantaneously

constant field. Using the parameter 𝜒 as previously defined in terms of the electric and magnetic

fields, the classical emission spectrum in terms of the radiated energy 𝜔 = 𝑥𝛾𝑚 by an electron

with parameter 𝜒 and Lorentz factor 𝛾 is [33, 30, 49]

1
P0

𝑑𝑃𝑐𝑙
𝑑𝜔

=

√
3𝜔

2𝜋(𝛾𝑚)2𝜒2

[
2𝐾2/3(𝜁) −

∫ ∞

𝜁
𝐾1/3(𝑦) d𝑦

]
, 𝜁 =

2𝑥
3𝜒
. (2.28)

with the total radiated power, P0 = 2/3𝛼𝑚2𝜒2. As can be seen in Fig. 2.4, the classical emission

spectrum has no upper cut-off in 𝑥, i.e. the emitted radiation can, in principle, be larger than

the initial particle energy. This is obviously non-physical and is resolved by including quantum

corrections to Eq. (2.28).

By considering the quantisation of the emitted radiation, as well as it’s spin contribution, the
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emission spectrum takes the same form as Eq. (2.14)

1
P0

𝑑𝑃𝑞

𝑑𝜔
=

√
3𝜔

2𝜋(𝛾𝑚)2𝜒2

[(
1 − 𝑥 + 1

1 − 𝑥

)
2𝐾2/3(𝜁) −

∫ ∞

𝜁
𝐾1/3(𝑦) d𝑦

]
, (2.29)

with 𝜁 → 2𝑥/3𝜒 (1 − 𝑥 ). In the limit, 𝑥 ≪ 1, the classical form Eq. (2.28) is obtained. As shown

in Fig. 2.4, the quantum emission spectrum has similar behaviour to the classical case for low 𝑥,

where the emitted radiation carries only a small fraction of the particle’s energy (momentum)

and also has the correct upper bound where the radiation carries all of the particle’s energy at

𝑥 = 1. Furthermore, integration of Eq. (2.29) over emitted energy gives the total radiated power

as [62]

P𝑞
P0

=
9
√

3
8𝜋

∫ ∞

0

8𝑦 d𝑦
27(2/3 + 𝜒𝑦)3

[∫ ∞

𝑦
𝐾5/3(𝑧) d𝑧 + 3

2
𝜒2𝑦2

2/3 + 𝜒𝑦𝐾2/3(𝑦)
]
≡ 𝑔(𝜒), (2.30)

which is the classical power scaled by a factor, 𝑔(𝜒), commonly referred to as the Gaunt factor.

An analytical approximation to Eq. (2.30) which is accurate to within 2% for arbitrary 𝜒 was

presented in [43],

𝑔(𝜒) ≃ 1[
1 + 4.8(1 + 𝜒) ln(1 + 1.7𝜒) + 2.44𝜒2

] 2/3
(2.31)

Hence, with a quantum description of the power spectrum, not only is there a corrected cut-off,

but the instantaneous radiated power is reduced by a quantum multiplicative factor. Utilising a

combination of the LL equation to describe motion between emission events, and the quantum

corrected spectrum, Eq. (2.29), results in a "semiclassical" model of radiation reaction which

is commonly used in simulations of electron-laser beam interactions and electron-plasma

interactions both for benchmarking purposes and when a fully quantum description involving

stochastic effects is not required.

A complete quantum model which also accounts for the stochastic nature of radiation emission

produces a Fokker-Planck-type equation of motion involving emission operators. Incidentally,

as the emission is no longer deterministic as in the classical and semiclassical models, it is

possible for a single emission event to result in a large momentum change for the particle and
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hence the emitted photon carries a significant portion of the initial particle energy. signifying

the breakdown of continuous radiation. The converse is also possible, where the particle does

not radiate at all (quenching) or not significantly resulting in the particle reaching areas of

phase space which would be classically forbidden (straggling) [33]. Moreover, the inclusion of

stochastic effects produces a markedly different behaviour in the final particle energy spectrum

compared to the (semi)classical model. While in both cases the mean particle energy decreases

and, on average, more energetic particles radiate more, the width (variance) of the energy

spectrum broadens in the stochastic quantum case but narrows in the (semi)classical case [63].

[64, 65, 66] attribute this to the diffusion term in the quantum Fokker-Planck equation of motion.

The first and second moments of the energy distribution are shown to evolve as

d⟨𝛾⟩
d𝑡

= −⟨𝑔(𝜒)P0⟩
𝑚

(2.32)

d𝜎2

d𝑡
= −2

Δ𝛾𝑔(𝜒)P0
𝑚

+ ⟨𝑆⟩
𝑚2 , (2.33)

in the stochastic emission model, with Δ𝛾 = 𝛾− ⟨𝛾⟩ and 𝜎2 = ⟨Δ𝛾2⟩ is the variance of the energy

distribution. The evolution of ⟨𝛾⟩ in the semiclassical model is identically given by Eq. (2.32),

while the first term in Eq. (2.33) describes the semiclassical evolution of 𝜎2. The second term

in Eq. (2.33), which has opposite sign to the semiclassical term, is the diffusion contribution

which counteracts the narrowing caused by classical emission. The function, 𝑆, is defined in [66]

as

𝑆(𝜒) = 55𝛼𝑚2

24
√

3𝜆𝑐𝜂
𝜒4𝑔2(𝜒), (2.34)

where 𝑔2(𝜒) ≃ [
1 + (1 + 4.528𝜒) ln(1 + 12.29𝜒) + 4.632𝜒2]−7/6 is the second Gaunt factor.

The classical model without quantum corrections to the energy spectrum evolves in the same way

as the semiclassical model but with 𝑔(𝜒) → 1. This comparison of the energy spectrum for the

example of 500 MeV electrons colliding with a 40 fs laser pulse at 𝑎0 = 5 is shown in Fig. 2.5.

The appropriateness of each model is dependent primarily on the parameter 𝜒. For 𝜒 ≪ 1,

the classical description of radiation reaction as a continuous force acting on the particle applies,

with motion described by the LL equation. The quantum correction to the emission spectrum is

applied when 𝜒 ≲ 1, reducing the radiated power and correcting the maximum fraction of energy
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Figure 2.5: Simulated energy spectrum for electrons which radiate during the interaction of a pencil-like
electron beam and a laser pulse. The electron beam has a central energy 500 MeV (10% RMS spread) and
the laser pulse is modelled as Gaussian with 𝑎0 = 25 and FWHM duration 30 fs.

that can be radiated. In the regime of large 𝜒 ≫ 1, the stochastic effects become important

and in this case the full quantum model is required for an accurate description of the particle’s

dynamics as emission becomes a discrete, probabilistic process.

Despite the various models in different regimes, a completely resolved theory of radiation

reaction remains unfound in part due to the experimental difficulties in detection. Recent

developments in laser technology has reinvigorated investigations into radiation reaction, with

intensities ≳1×1019 W cm−2 achieved routinely as an example. Such a laser was used in [17, 18] to

investigate radiation reaction in an electron-laser beam interaction, with the high-energy (∼2 GeV)

electrons produced via LWFA at the Astra-Gemini facility. These campaigns demonstrated

a successful measurement of the electron energy loss by radiation in a regime where 𝜒 ≲ 1.

Interestingly, it was found that the semiclassical model provided the best match to the measured

results, indicating that the fully stochastic regime had not yet been reached and that the influence

of these effects on electron dynamics requires 𝜒 ≫ 1. This conclusion is also evidence that the

reduced power emission is observable when 𝜒 is no longer non-negligible. One disadvantage
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of the setup in [17, 18] is that shot-to-shot fluctuations in the in initial electron beam make

it difficult to compare the scattered and unscattered electron energy spectra. Some potential

improvements are discussed in [67], including the contemporaneous measurement of the initial

and scattered energy spectra.

An alternative scattering field, provided by the atomic and nuclear fields within an aligned

crystal, was used in [68] and a 178.2 GeV positron beam from the Super-proton-synchrotron

North Area facility at CERN. In this instance, a stochastic quantum model gave the best match to

the experimental results, with emission spectra comparable to Eq. (2.29). However, both [18]

and [68] discuss the limitations of Eq. (2.29) since it is derived under the assumptions of the

LCFA which is not applicable for 𝑎0 ∼ O(1).

2.4 Elastic Photon-Photon Scattering

In classical electrodynamics, due to the linear nature of Maxwell’s equations, electromagnetic

fields do not interact with themselves. From a semiclassical viewpoint, the photon is uncharged

and so is unaffected by the presence of electromagnetic fields. This is not the case in QED,

where photons can scatter due to the production of virtual electron-positron pairs in vacuum as

represented by the Feynman diagrams in Fig. 2.6. Using the standard results of QED, the cross

section for this scattering process can be calculated, for example as done by [49, 69, 70].

An alternative approach involves constructing an effective field theory for the electromagnetic

field [71]. The final term in Eq. (2.1) describes the non-interacting behaviour of electromagnetic

fields and is expressed in terms of the electric and magnetic fields as L0 = 1/2( |𝑬 |2 − |𝑩 |2).
Since the Lagrangian is quadratic in the fields, the resulting equations of motion (Maxwell’s

equations), determined by taking derivatives with respect to the fields, are linear in 𝑬 and 𝑩. By

considering the change in the vacuum energy due to the presence of an electromagnetic field,

corrections containing higher orders of the fields can be obtained; the lowest order correction in

𝛼 for weak fields, |𝑬 | ≪ 𝐸cr, |𝑩 | ≪ 𝐵cr, is given by [28, 35, 72]

L1 =
2𝛼2

45𝑚4

[( |𝑬 |2 − |𝑩 |2)2 + 7(𝑬 · 𝑩)2] . (2.35)
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(a) (b)

(c) (d)

Figure 2.6: Lowest order Feynman diagram of two-photon scattering processes in vacuum: (a) stimulated
or Delbrück scattering, (b) spontaneous scattering or photon splitting, (c) and (d) photon-photon scattering.
Dashed lines represent virtual or background field photons and wavy lines represent real photons.

These non-linear terms describe the polarisation and scattering effects that arise from diagrams

such as Fig. 2.6. Through standard QED techniques such as the LSZ reduction formula [73], the

interaction terms, scattering matrix elements and corresponding cross section for photon-photon

scattering can be derived from Eqs. (2.1) and (2.35). In the zero momentum frame (ZMF), each

incident photon has energy 𝜔, the total photon-photon scattering cross section in the low-energy

limit 𝜔 ≪ 𝑚 has the form [49, 69, 70, 74]

𝜎𝛾𝛾 ≃ 973𝛼4𝜆2

10125𝜋

(𝜔
𝑚

)6
, (2.36)

and 𝜎𝛾𝛾 ∼ 𝜔−2 in the high-energy limit. The cross section, being proportional at lowest order to

𝛼4 due to the four vertices in Fig. 2.6d, is extremely small, having a maximum value of ≈2 µb at

𝜔 ≈ 𝑚 (or ZMF energy
√
𝑠 ≈ 1 MeV).

Due to the size of the cross section, the photon-photon scattering process has not yet been

experimentally observed. Instead, upper bounds have been placed on the cross section at different

ZMF energies for various interaction configurations such as all-optical dual beam [75, 77, 78],

three beam [76] and four beam [84] configurations as depicted in Fig. 2.7. Additional theoretical
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Watt et al. (2024)

Figure 2.7: Dependence of the photon-photon scattering cross section on the ZMF energy. Also shown
are experimental bounds on the value of the cross section from various experimental investigations [75,
76, 77, 78, 79, 80, 81, 82, 83]. Reproduced from [79] under the terms of the Creative Commons CC-BY
license.

and numerical investigations into these configurations have been considered to improve the

interaction rate [85, 86]. Figure 2.7 summarises these measurements from experiments, as well

as experiments involving the collision of one or two virtual photons in the nuclear fields of heavy

ions (Fig. 2.6c) [81, 82, 83]; stimulated/Delbrück scattering (Fig. 2.6a) [80]; and photon splitting

(Fig. 2.6b) [80, 87].

In [79], an alternative approach is used involving a high-energy, broadband bremsstrahlung

source generated by LWFA electrons, and a dense x-ray bath produced by laser-plasma ablation of

a thin foil. This configuration accessed an effective ZMF energy of 1.11±0.06 MeV, anticipating

the maximum value for the scattering cross section. No direct observations of photon-photon

scattering were made, however the closest upper bound on the cross section to date was made,

within 1011 of the theoretical value.
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2.5 Particle-Solid Interactions

As well as producing photons and electrons/positrons via non-linear Compton and Breit-Wheeler

processes within a laser field, it is also possible to generate such particle beams using solid targets.

Particularly, the generation of beams using the well-known bremsstrahlung and Bethe-Heitler

pair productions processes is reviewed here.

2.5.1 Electron-Positron and Photon Generation

Within the field of a nucleus, the dominant interaction process for photons above 1 MeV is

Bethe-Heitler pair production. In the unscreened ultrarelativisitic limit, the cross section for a

photon of energy 𝜔 interacting with a target nucleus of atomic number, 𝑍 , is given by Bethe,

Heitler and Maximon as [88, 89]

d𝜎
d𝑥

= 4𝑍2𝛼𝑟2
𝑒

[
𝑥2 + (1 − 𝑥)2 + 2

3
𝑥(1 − 𝑥)

] [
ln

2𝜔𝑥(1 − 𝑥)
𝑚𝑒

− 1
2

]
, (2.37)

where 𝜖 = 𝑥𝜔 is the energy of the outgoing electron/positron, and 𝑟𝑒 is the classical electron

radius, 𝑟𝑒 = 𝜆/𝛼. Equation (2.37) is symmetric in the electron/positron energy as the Coulomb

interaction with the nucleus is not accounted for. The total cross section is given by integrating

𝑥 ∈ [0, 1] to give

𝜎 =
28
9
𝑍2𝛼𝑟2

𝑒

(
ln

2𝜔
𝑚𝑒

− 109
42

)
. (2.38)

Equation (2.38) is weakly dependent on photon energy and can be assumed to be approx-

imately constant over small energy ranges. In the complete screening regime, valid for

𝜔 ≳ 1 GeV, Eq. (2.37) becomes [90, 91]

d𝜎
d𝑥

=
𝐴

𝑁𝐴𝑋0

[
1 − 4

3
𝑥(1 − 𝑥)

]
. (2.39)

𝑁𝐴 is Avogadro’s constant, 𝑋0 is the radiation length of the target material in g cm−2, with

𝑋−1
0 ∼ 𝛼𝑍2𝑟2

𝑒𝑁𝐴𝐴
−1 and 𝐴 is the atomic number of the target. In this regime, the total cross
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Figure 2.8: Total cross section for Bethe-Heitler pair production as a function of photon energy for
𝑍 = 74. The corrected cross section model used within the simulation software Geant4 is shown in blue,
the unscreened limit Eq. (2.38) (orange) and the completely screened limit Eq. (2.40) (red) are shown as
well. Values have been normalised to the screened limit.

section becomes independent of the photon energy:

𝜎 =
7𝐴

9𝑁𝐴𝑋0
≡ 𝜎∞. (2.40)

Figure 2.8 compares the two limits of screening in Eqs. (2.38) and (2.40) with the corrected

Bethe-Heitler model used within the Geant4 software [92]. The discontinuity in the corrected

cross section arises from a functional change in the parameterisations that underpin the model.

Additionally, the Geant4 model includes corrections for the Coulomb wavefunctions of the

electron and positron, as well as pair conversion in the electron field of the atom. These

corrections are not included in Eq. (2.38) which results in the mismatch of the model even at low

photon energy.

For a single photon traversing a target of thickness 𝑡 radiation lengths (i.e. 𝑇 = 𝑡𝑋0), the

number of pairs generated is

d𝑁pairs =
1 − e−𝜇𝑡

𝜇

𝑁𝐴𝑋0
𝐴

𝜕2𝜎

𝜕𝜖𝜕Ω
d𝜖 dΩ. (2.41)
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The photon attenuation factor, 𝜇 = 7𝜎 (𝜔)/9𝜎∞ = 𝑁𝐴𝑋0𝜎 (𝜔)/𝐴, where 𝜎∞ is the complete screening

limit of the cross section in Eq. (2.40). By integrating over the lepton energy and solid angle, the

total pair yield can be estimated; using Eq. (2.39), the total pair yield for a single photon is

𝑁pairs =
7
9

1 − e−𝜇𝑡

𝜇
. (2.42)

If 𝜇𝑇 ≪ 1, the exponential can be expanded to first order, e−𝜇𝑡 ≈ 1 − 𝜇𝑡. In this limit, the pair

yield is 7𝑡/9, or replacing with true thickness 7𝑇/9𝑋0. Since 𝑋−1
0 ∼ 𝑍2, the number of pairs can

be increased by using targets with a large 𝑍 , hence materials such as tantalum (𝑍 = 73), tungsten

(𝑍 = 74) or even lead (𝑍 = 82) are preferred. For a beam of photons with energy distribution

d𝑁𝛾
/

d𝜔 , the number of pairs produced within an energy range [𝜖, 𝜖 + d𝜖] assuming a thin

target, is obtained from Eq. (2.41) as

d𝑁pairs

d𝜖
=

∫
𝑁𝐴𝑋0𝑡

𝐴

d𝜎
d𝜖

d𝑁𝛾
d𝜔

d𝜔. (2.43)

Since pair production and bremsstrahlung are related processes by crossing symmetry, the

bremsstrahlung cross section has similar forms to Eqs. (2.37) and (2.39) in the unscreened and

screened limits. Within the unscreened limit, the cross section for an electron (positron) of

energy 𝜖 to emit a photon of energy 𝜔 = 𝑦𝜖 is [49]

d𝜎
d𝑦

= 4𝑍2𝛼𝑟2
𝑒

1
𝑦
(1 − 𝑦)

[
1

1 − 𝑦 + (1 − 𝑦) − 2
3

]
ln

[
2𝜔𝑦(1 − 𝑦)

𝑚

]
. (2.44)

One fundamental feature of Eq. (2.44) is the infrared divergence due to the factor of 𝑦−1, which

corresponds to the increased emission of arbitrarily small energy. This divergence results in the

total cross section, and hence the total number of emitted photons, being undefined. However,

the total energy radiated E𝑟𝑎𝑑 ∝
∫ 1

0 𝑦 d𝜎
d𝑦 d𝑦 is finite. In the complete screening limit where

𝜖 ≳ 1 GeV, the bremsstrahlung cross section takes the form

d𝜎
d𝑦

=
𝐴

𝑁𝐴𝑋0

1
𝑦

[
4
3
(1 − 𝑦) + 𝑦2

]
. (2.45)

Similarly to the unscreened limit, the total cross section is infinite due to the infrared divergence
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however the radiated energy is finite.

2.5.2 Thick Target Effects

If 𝑡 ≳ 1, the thin target approximation no longer holds and Eqs. (2.43) and (4.1) become

inapplicable. To determine the effects from thicker targets, the approach detailed in [93] is

followed, using the complete screening bremsstrahlung and pair production cross sections. The

integro-differential shower equations remain unchanged, however the boundary conditions are

amended to account for an incident mono-energetic photon beam. As in [93], let 𝐼𝛾 (𝑡, 𝜔) d𝜔 be

the intensity of photons at depth 𝑡 within the target in the energy interval [𝜔, 𝜔+d𝜔]. 𝐼𝑒 (𝑡, 𝐸) d𝐸

is the analogous quantity for the electrons and positrons combined. Shower equations are



𝜕𝐼𝛾 (𝑡,𝜔)
𝜕𝑡 = −7

9 𝐼𝛾 (𝑡, 𝜔) +
𝜔0∫
𝜔

𝐼𝑒 (𝑡, 𝐸)
[

4
3
(
1 − 𝜔

𝐸

) + (
𝜔
𝐸

)2
]

d𝐸
𝜔 ,

𝜕𝐼𝑒 (𝑡, 𝐸)
𝜕𝑡

= 2
𝜔0∫
𝐸

𝐼𝛾 (𝑡, 𝜔)
[
4
3

(
1 − 𝜔

𝐸

)
+

(𝜔
𝐸

)2
]
𝐸2 d𝜔
𝜔3

+
𝜔0−𝐸∫
0

𝐼𝑒 (𝑡, 𝐸 + 𝜔)
[
4
3

(
1 − 𝜔

𝐸 + 𝜔
)
+

( 𝜔

𝐸 + 𝜔
)2

]
d𝜔
𝜔

− 𝐼𝑒 (𝑡, 𝐸)
𝐸∫

0

[
4
3

(
1 − 𝜔

𝐸

)
+

(𝜔
𝐸

)2
]

d𝜔
𝜔
,

(2.46)

with corresponding boundary conditions


𝐼𝛾 (0, 𝜔) = 𝛿(𝜔 − 𝜔0),

𝐼𝑒 (0, 𝐸) = 0.
(2.47)

The photon shower equation can be directly integrated using the boundary conditions by assuming

a solution of the form 𝐼𝛾 (𝑡, 𝜔) = 𝐹 (𝑡, 𝜔)e−7𝑡/9, resulting in

𝐼𝛾 (𝑡, 𝜔) = e−7𝑡/9𝛿(𝜔 − 𝜔0) + 1
𝜔

∫ 𝑡

0
e−(7/9) (𝑡−𝑡′)

∫ 𝜔0

𝜔
𝐼𝑒 (𝑡′, 𝐸)

[
4
3

(
1 − 𝜔

𝐸

)
+

(𝜔
𝐸

)2
]

d𝐸 d𝑡′ .

(2.48)
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The first term represents the attenuation of the incident photon beam into electron-positron

pairs, while the second term represents the bremsstrahlung generated by any pairs produced

within the target. The lepton shower equation has no closed form solution, however it can be

solved iteratively. By defining the zeroth generation particles as the incident photons such that

𝐼 (0)𝛾 (𝑡, 𝜔) = 𝛿(𝜔 − 𝜔0), the electrons and positrons generated by these photons, as well as the

bremsstrahlung photons, are then defined as first generation. Hence, by setting 𝐼𝑒 (𝑡, 𝐸) = 0 and

using 𝐼 (0)𝛾 (𝑡, 𝜔), the first generation pairs can be found by direct integration of the lepton shower

equation

𝐼 (1)𝑒 (𝑡, 𝐸) = 2𝑡
𝜔0

[
1 − 4

3

(
𝐸

𝜔0

) (
1 − 𝐸

𝜔0

)]
. (2.49)

The first generation photons can be obtained from Eq. (2.49) by substitution into the integral

term in Eq. (2.48), and separating the integrals over 𝑡′ and 𝐸 .

𝐼 (1)𝛾 (𝑡, 𝜔) = 162
49𝜔

(
7𝑡
9
− 1 + e−7𝑡/9

)
F

(
𝜔

𝜔0

)
F (𝑘) ≡ 4

3
𝑘 (1 + 𝑘) ln 𝑘 + 28

27
(1 − 𝑘)

[
1 + 𝑘

(
𝑘 + 43

28

)] (2.50)

As lim
𝜔→0

𝜔𝐼 (1)𝛾 (𝑡, 𝜔) = 28
27 , the characteristic infrared divergence of the bremsstrahlung can be

seen. Additionally, although the photon number
∫
𝐼𝛾 (𝑡, 𝜔) d𝜔 is divergent, the mean photon

energy,
∫
𝜔𝐼𝛾 (𝑡, 𝜔) d𝜔, is finite.
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Chapter 3

Experimental Programs and Numerical

Modelling

3.1 SFQED Experiments

Within the past decade, multiple experiments have been proposed to investigate previously

unexplored regimes of QED, as shown in Fig. 2.1. Broadly speaking, they can be categorised

by the electron source, generated either by conventional accelerators or via plasma-based

acceleration. Experiments involving laser wakefield accelerated (LWFA) electrons as a source,

also termed "all-optical" in literature, have had much success in investigating QED. Production

of 100’s of MeV-scale x-ray sources using NLCS has been demonstrated at various facilities [94,

95, 96], indicating that it is a viable technique for producing high-brilliance photon beams within

a compact laboratory environment [15]. Additionally, studies on radiation reaction in the 𝜒 ≲ 1

regime have also been carried out using ∼2 GeV LWFA electrons, validating the appropriateness

of the semiclassical model [17, 18]. Further investigation of the NLBW process has also been

analysed using the ATLAS laser at CALA, Germany, which highlights the capability to observe

pair production generated by the interaction of a high-energy bremsstrahlung beam and a high

intensity laser [97].

Of the current experiments represented in Fig. 2.1, three are sourced by conventionally

accelerated electrons: E-144, E-320 and LUXE. Taking advantage of the 13 GeV, 2 nC electron
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Figure 3.1: Schematic diagram of the proposed LUXE setup for the electron-laser (left) and photon-laser
(right) modes. Reproduced from [21] under the terms of the Creative Commons CC-BY license.

beams that can be produced at the FACET-II linear accelerator, the E-320 experiment [19]

follows the premise of the original E-144 experiment. Using a 20 TW NIR laser, E-320 expects

to achieve intensities of 𝑎0 ≲ 7 and 𝜒 ≲ 1, accessing well into the non-perturbative transition

regime, where tunnelling pair production can occur. With this setup, it will be possible to not

only repeat the results of the E-144 experiment, but the departure from the perturbative 𝑎2𝑛
0 will

also be seen experimentally, providing crucial information on scaling laws within the transition

regimes where analytical results are challenging to obtain.

As well as E-320, LUXE (Laser Und XFEL Experiment) [20, 21] is another proposed

experiment that leverages the ∼16.5 GeV, 0.25 nC electron beam from the European XFEL

(Eu-XFEL) and the high intensities of an optical laser up to 350 TW. With this setup it is

possible to achieve parameters of 𝑎0 ≲ 24 and 𝜒 ≲ 4.5; this not only allows investigation of the

non-linear, multi-photon regime of Compton scattering and Breit-Wheeler pair production, but

also the transition regime from a classical to quantum electrodynamical description of radiation

reaction, similarly to E-320.

In contrast to E-320, LUXE has two modes of operation: an electron-laser mode, where

the Eu-XFEL electron beam is collided directly with the intense laser pulse at the designated

interaction point (IP), and will be used to study non-linear Compton scattering, non-linear

Breit-Wheeler production and trident production. In the second mode (photon-laser), the

electron beam is first used to generate a high-energy, broadband bremsstrahlung photon beam as

in Eq. (2.45) using a high-𝑍 converter target. After the electrons and generated positrons are

separated from the bremsstrahlung beam, the photons continue to the IP where they collide with

the laser pulse. This operational mode allows for a purer environment to investigate non-linear
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Breit-Wheeler pair production, and potentially photon-photon scattering, using real photons in

isolation for the first time, compared to, for example, the use of virtual photons in the nuclear

fields of heavy ions [81, 98]. The E-320 experiment has a setup that is comparable to the

electron-laser mode of LUXE [99].

After the IP, LUXE has a series of detectors aimed at measuring the electron, positron and

photon signal generated by the electron-laser or photon-laser interactions, as sketched in Fig. 3.1.

The predicted signal for LUXE is shown in Fig. 3.2, taken from [21], and shows the large range

of particle rates anticipated within the experiment. In particular, the photon signal is especially

challenging to measure due to the combination of high energy (up to ∼16.5 GeV) and high

flux (∼ 1 × 109 s−1), as shown in Fig. 3.2b. Due to the complexity of the experiment and the

consequent challenges in measuring such a signal, the detector systems employed in LUXE

are specifically developed from traditional detection techniques such as a pixel tracker array

for the positron signal ad well as Čerenkov detectors and scintillators for electrons [22, 23].

The intricacies involved in the measurement of the photon signal prompted the development of

three separate but complementary detectors: the gamma-ray spectrometer, whose development

and testing is detailed in Chapter 4; the gamma beam profiler, the principles of which are

outlined as well in Chapter 5; and the gamma flux monitor, details on which can be found in [21]

and is not discussed further here. Additionally, a beyond the Standard Model investigation

into the production of axion-like particles is also possible at LUXE, utilising the high-flux,

high-energy Compton produced photon source [100]. Other facilities have been developed to

investigate other non-linear QED processes, for example, HIBEF in Helmholtz, Germany and the

PVLAS experiment at INFN, Italy aim to study vacuum birefringence in strong electromagnetic

fields [101, 102]; a QED regime that is currently beyond the scope of LUXE and E-320.

While experiments like E-320 and LUXE are designed to investigate non-linear, multiphoton

QED processes, elastic two-photon processes such as linear Breit-Wheeler production and photon-

photon scattering have yet to be observed due to the large ZMF energy required. Additional

difficulty for the measurement of photon-photon scattering is the extremely small cross section,

being an 𝛼4-order process. Previous campaigns aimed at detecting such scattering events using

optical and x-ray beams were unable to detect scattering events directly, instead bounding the
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Fig. 9 A schematic illustration in the LUXE-NPOD concept. Top: the secondary production mechanism realisation in the
experimental setup. Bottom: the relevant background topologies. The charged particles are deflected by a magnet placed
right after the interaction chamber (from [13])

Fig. 10 Left: number of electrons and photons in e-laser collisions as function of ξ. Right: number of positrons in e-laser
and γ-laser collisions as function of ξ. Shown are the expected results based on Ptarmigan for two phases (phase-0 with
a laser power of 40 TW and phase-1 with a laser power of 350 TW) of the experiment that differ by the laser power, see
Sect. 2.3

Fig. 11 Electron and photon energy spectra for the Compton process in the e-laser mode for four values of ξ in phase-0.
The distributions are normalised per bunch crossing

123

(a)

Eur. Phys. J. Spec. Top. (2024) 233:1709–1974 1727

e

γL

γ

Background
Production

e μ π K p

e

γL

γ

Secondary
Production

M
uo

n 
de

t.

EMCalMagnetPhotons 
Dump

e-laser int. 
chamber LD LV

Fig. 9 A schematic illustration in the LUXE-NPOD concept. Top: the secondary production mechanism realisation in the
experimental setup. Bottom: the relevant background topologies. The charged particles are deflected by a magnet placed
right after the interaction chamber (from [13])

Fig. 10 Left: number of electrons and photons in e-laser collisions as function of ξ. Right: number of positrons in e-laser
and γ-laser collisions as function of ξ. Shown are the expected results based on Ptarmigan for two phases (phase-0 with
a laser power of 40 TW and phase-1 with a laser power of 350 TW) of the experiment that differ by the laser power, see
Sect. 2.3
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Figure 3.2: Anticipated (a) positron, and (b) photon rates at LUXE as a function of normalised laser
amplitude 𝑎0, called 𝜉 in the plot. 𝑒− and 𝛾 refer to the electron-laser and photon-laser operating modes
respectively; phase-0 indicates a laser power of 40 TW, and phase-1 occurs after an upgrade to 350 TW.
Reproduced from [21] under the terms of the Creative Commons CC-BY license.

magnitude of the cross section [75, 76, 77, 78]. For these experiments, the ZMF energy was
√
𝑠 ∼ 1 keV which corresponds to a scattering cross section of 𝜎𝛾𝛾 ∼ 1 × 10−42 cm2; c.f. the

Thomson scattering cross section, 𝜎𝑇 = 6.65 × 10−25 cm2 [30, 59]. One configuration utilising

gamma-ray photons produced via Compton-scattering of electrons and an extreme ultraviolet

(XUV) pulse has been detailed in [103], which suggests the possibility of detecting elastic

scattering events within one day of operation by observing the resultant transverse profile of

the gamma beam after collision with the XUV pulse. An alternative approach, using a high

energy (GeV-scale) bremsstrahlung beam and a dense, ∼ 0.1 keV-scale x-ray field generated

within a vacuum hohlraum was proposed in [104] to study linear Breit-Wheeler production. With

this configuration, it is possible to achieve a ZMF energy of
√
𝑠 ≈ 1 MeV. This configuration

could be adapted to also investigate photon-photon scattering, as
√
𝑠 ≈ 1 MeV yields the peak

scattering cross section of ∼ 10−30cm2, as was done at the Gemini laser facility at RAL, UK.

Here, the dual-beam laser capabilities were utilised; one beam to generate the LWFA electron

source, and the other to generate a dense x-ray bath from an exploding germanium foil, rather

than a hohlraum [105]. Using the produced electron beam with energies up to ∼700 MeV, and

a beam charge of 50 pC, a collimated, high energy (up to ∼500 MeV) bremsstrahlung beam is

produced using a bismuth converter target which is then propagated through the dense x-ray field.

It was demonstrated that this compact configuration could be a compelling platform for future
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investigations into photon-photon interactions with the proposed improvements. Furthermore, the

same investigation was also able to place the most stringent bound on the elastic photon-photon

scattering cross section to date [79] as seen in Fig. 2.7, emphasising the potential of further

development of this setup.

3.2 Numerical Modelling Methods

Modelling the signal and noise anticipated within experiments requires the use of Monte-Carlo

(MC) simulations. In short, MC methods can be used to simulate stochastic processes such as

those described in Chapter 2 by sampling particle properties from the differential cross sections

of these processes. Additionally, tracking capabilities are also useful to propagate these particles

through geometries and fields. For the work in this thesis, three main MC simulation software

were utilised: Ptarmigan, Fluka, and Geant4.

The signal that is to be measured at LUXE originates from the (non-linear) Compton scattering

and Breit-Wheeler processes during electron-laser and photon-laser interactions. These SFQED

processes are simulated within the Ptarmigan framework, which is an MC-based code to

simulate the interactions of high-energy particle (electron, positron or photon) beams with strong

laser fields [63, 106]. Ptarmigan has the ability to simulate both non-linear Compton scattering

and non-linear Breit-Wheeler production within background fields of different configurations,

with plane-wave or Gaussian-like spatial structures and flat-top, square cosine and Gaussian type

temporal envelopes. As well as this, processes are polarisation resolved - the background field

can be implemented with linear or circular polarisation, and the spin/polarisation of the emitted

particles is also included. These processes are modelled using rates calculated in both the LCFA

and LMA frameworks, allowing for the use of models appropriate for the simulated 𝑎0 and 𝜒

parameters, as well as for drawing comparisons between the effects captured by either model.

LMA-calculated rates are available only for 𝑎0 ≲ 20 due to necessary pre-tabulation of values,

whereas LCFA rates can be used for arbitrary values.

Another useful feature of Ptarmigan is the potential to use different models for radiation

reaction, which can be disabled if desired. The software implements both a classical RR
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Figure 3.3: Example energy spectra of Compton-scattered photons generated by Ptarmigan for the
interaction of a 16.5 GeV electron beam with a focused laser pulse per bunch crossing (BX) of different
normalised intensities, 𝜉 (equivalent to 𝑎0). Reproduced from [21] under the terms of the Creative
Commons CC-BY license.

model, where the emission is sampled as a deterministic process using the classical synchrotron

spectrum Eq. (2.28) and the particle trajectory is determined from the LL equation Eq. (2.24). A

fully quantum model, incorporating stochastic emission effects non-deterministically with the

trajectory of the particle following the usual Lorentz equation between emission events, and the

quantum synchrotron spectrum Eq. (2.29) is used to generate the radiated photon properties. A

third semiclassical RR model which follows the same deterministic approach as the classical

model for the trajectory and emission, however photon properties are instead sampled using the

Gaunt-corrected emission spectrum. This model is available only in the LCFA framework. With

all of these features, Ptarmigan is highly advantageous for simulating the electron-laser and

photon-laser interactions to be performed at LUXE for various experimental parameters and

configurations. The output from Ptarmigan simulations can also be structured into a phase

space format which can be imported into further simulations involving tracking through full

experimental geometries.

The particle tracking through a geometry is done using both Fluka [107, 108] and

Geant4 [109, 110, 111] here. Both codes are general-purpose MC simulation and tracking

frameworks and are considered industry standard within a wide range of branches of physics. As

such, the general operating principles for both codes is the same and are able to simulate the
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Figure 3.4: Example plots produced using the scoring output of (a) Fluka, and (b) Geant4. (a) depicts
the photon fluence within a specific detector subsection within the LUXE experimental setup and is taken
from [21]. (b) shows resultant positron spectra produced from interacting a monoenergetic photon beam
with a high-𝑍 foil of different fractions of 𝑋0 thick. This is elucidated further in Section 4.1. (a) has been
reproduced from [21] under the terms of the Creative Commons CC-BY license.

behaviour of a large array of particle types, and their antiparticles, as they traverse some defined

geometry. Tracking is done in discrete steps, taking into account the propagation through different

materials as well as the effect of electric and magnetic fields. Within these materials, processes

such as Compton scattering, photoelectric production, ionisation, bremsstrahlung and pair

production are modelled using MC sampling and particle tracks are subject to multiple scattering

also. Furthermore, optical processes like scintillation, Čerenkov and transition radiation can also

be simulated. The extraction of various particle properties such as energy, position or momentum

direction at specified planes or geometry boundaries (known as scoring) is also possible and is

the main method of extracting information from such simulations.

Overall, Fluka and Geant4 are generally equivalent and both have similar capabilities.

Fluka is popular in the field of radiation physics, with its accurate generation of hadronic

events well-documented, but it is also capable of accurately simulating the transport of electrons,

positrons and photons (known as electromagnetic particles within this context, as the do not

engage in strong or weak interactions) over a large energy range from ∼1 keV to ∼1 PeV. On

the other hand, Geant4 is heavily utilised in high energy physics, particularly in the design

and development of particle colliders, as well as medical physics and space radiation physics.

Like Fluka, Geant4 is able to simulate electromagnetic particles from ∼1 eV up to ∼100 TeV.
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Furthermore, Geant4 provides greater customisation of the physics incorporated within the

simulation, including the ability to define additional processes not included within the software.

Throughout the work presented here, a combination of Fluka and Geant4 is used, both for

benchmarking comparisons and due to considerations of geometry description and scoring

techniques. The exact software used is indicated as appropriate in the text.

The increased customisability of Geant4 is particularly useful for the simulations involving

photon-photon scattering, as this is not already implemented in either Geant4 or Fluka. An

external package, developed for modelling linear Breit-Wheeler and photon-photon scattering in

experiments at Gemini, RAL, UK, is used in combination with Geant4 for the work presented

here studying elastic photon scattering [54]. Within this module, it is possible to implement a

static radiation field within which the linear Breit-Wheeler and elastic photon-photon scattering

are available physical processes that photons (designated as gammas within the simulation

architecture) can undergo.
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Chapter 4

Gamma Ray Spectroscopy

Gamma-ray beams with high energies per photon (∼MeV - TeV scale) are of great interest across

a large range of physical disciplines, such as astrophysical [112] and nuclear [113] phenomena.

Typical methods of generating such high-flux and high-energy sources in a laboratory include:

passing an electron beam through a high-𝑍 solid target to generate bremsstrahlung [114, 115,

116]; non-linear Compton emission from the interaction of an electron beam with the focus of an

intense laser [15, 95]; or even direct irradiation of solid targets using next-generation multi-PW

lasers [117, 118].

Conventional methods of photon detection such as gas ionisation detectors, Compton

scattering in semiconductor devices and scintillators have difficulty resolving gamma-ray beams

in this energy range as the dominant photon process above 1 MeV is pair production, and for

high-flux beams, the copious number of electron-positron pairs generated cannot be correlated

to their original photon readily. Alternatives to these have their own limitations, either designed

to operate at high energy but at low flux [114], down to the single particle level [119], or are

capable of resolving a high-flux beam at the MeV scale [120, 121] or within a narrow energy

region [122].

A design similar to that described in [120] has been developed to operate with gamma-rays

at the GeV-scale, with preliminary simulation studies [25] and a first experimental demonstra-

tion [26] highlighting the development of the implementation and diagnostic tools for reproducing

the photon spectrum. The basic operation principle of this novel-style gamma-ray spectrometer
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(GRS) is conceptually simple. The incident high-energy, high-flux photon beam is directed

onto a high-𝑍 solid target which converts a small fraction (≲ 1%) of the gamma-rays into

electron-positron pairs via the well-known Bethe-Heitler pair production process. These pairs

are then separated and diverted out of the unconverted gamma-ray beam using a dipole magnet

which also induces an energetic dispersion of the pairs in a plane transverse to the magnetic

field. These dispersed pairs are then propagated to a scintillator screen where the signal can

be measured using standard techniques. Finally, the original photon spectrum is recovered by

means of a deconvolution algorithm which utilises knowledge of the converted electron/positron

energy spectra and the Bethe-Heitler cross section.

This chapter focuses on the development of this detector design and is structured as follows:

Section 4.1 discusses the key components of the spectrometer - pair generation, magnetic

spectroscopy and the reconstruction algorithm; Section 4.2 shows the results from simulations

with a focus on the GRS implementation at LUXE; and finally, Section 4.3 focuses on the first

experimental characterisation of the spectrometer.

4.1 Principles of Operation

4.1.1 Generation of Electron-Positron Pairs in a Solid Target

In order to spectrally resolve the photon beam, a high-𝑍 target is used to convert a fraction of the

beam into electron-positron pairs via the Bethe-Heitler process as outlined in Section 2.5. As the

GRS is designed to be non-invasive, it is important that the production of the electron-positron

pairs has a negligible influence on the characteristics of the original photon beam such as energy

spectrum and spatial distribution. Hence, it is important to optimise not only the pair yield in

order to have a statistically significant signal to resolve and deconvolve, but the target should be

designed to negligibly interfere with the photon beam.

For modelling purposes, it is interesting to consider the conversion response to a mono-

energetic beam, d𝑁𝛾/d𝜔 = 𝑁0𝛿(𝜔 − 𝜔0). Integrating Eq. (2.43) over both photon and lepton
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Figure 4.1: Percentage yield of positrons from a mono-energetic photon beam incident on tungsten (blue),
iron (orange) and beryllium (green) converters, 1% 𝑋0 thick. The yield predicted by Eq. (2.41) using the
unscreened Eq. (2.38) (dashed line) and the completely screened Eq. (2.40) (dotted line) cross sections
are shown for comparison.

energy gives the number of pairs as

𝑁pairs

𝑁0
=
𝑁𝐴𝑋0𝑡

𝐴
𝜎(𝜔0). (4.1)

This ratio can be used to compare different cross section models, such as Eqs. (2.38) and (2.40),

with simulation in different energy regimes. Particularly, in the complete screening regime

of Eq. (2.40), the yield is predicted to be independent of the material and depends only on the

converter thickness relative to the radiation length, 𝑡. As shown in Fig. 4.1, the unscreened cross

section, Eq. (2.38), is more accurate at lower photon energies ≲ 100 MeV, while the complete

screening limit, Eq. (2.40), is comparable to the advanced Geant4 model above the GeV limit.

Following from the production of showers, Eqs. (2.49) and (2.50), as the converter thickness

increases, electrons and positrons lose energy through bremsstrahlung, which can also produce

additional pairs with lower energy. This straggling results in an energy spectrum which

significantly deviates from Eqs. (2.43) and (4.1) as seen in Fig. 4.2a. Above 𝑡 = 1/2, the

number of positrons (and similarly electrons) in the high energy tail is reduced as they radiate

more. Consequently, there is a higher population of lower energy positrons and a decreased

mean energy. From Eq. (2.49), the mean positron energy in the thin target approximation is
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Figure 4.2: (a) Resultant energy spectra of positrons exiting a tungsten converter of different thicknesses
in % of 𝑋0 for an incident mono-energetic photon beam with 𝜔0 = 5 GeV. (b) Deviation of the mean
positron energy from the thin target limit as a function of converter thickness for tungsten (blue), iron
(orange) and beryllium (green) targets. Two incident photon beams of energy 500 MeV (circles) and
5 GeV (squares).

⟨𝐸⟩ = 𝜔0/2. Fig. 4.2b shows the deviation of the mean positron energy from this limiting value

with increasing thickness. Even at 𝑡 ≈ 0.25, the mean positron energy deviates by over 10% for

𝜔0 = 5 GeV. Therefore, thicknesses up to 10% of 𝑋0 are sufficient to generate a sufficiently

large electron-positron signal without compromising the spectral distribution of the thin-target

approximation.

4.1.2 Magnetic Spectroscopy

The techniques of magnetic spectroscopy for measuring the energy of charged particles are

fairly standard. In the context of the GRS, after the electron-positrons pairs are generated via

Bethe-Heitler pair production, they can be passed through a dipole magnet to not only separate

the particles due to charge, but also transversely disperse them due to their energy. For a particle

of mass, 𝑚, and charge, 𝑒, traversing a dipole field of strength, B, with momentum, p, it makes

a circular trajectory with radius of curvature 𝜌 = |p |2/𝑒 |p × B |. In the ultrarelativistic limit for a

particle of energy 𝜖 , |p| =
√
𝜖2 − 𝑚2 ≈ 𝜖 , and 𝜌 ≈ 𝜖/𝑒 |B |. For a magnetic field of length, 𝑧𝑀 ,

with a detector screen placed a distance 𝑧𝐷 on-axis after the exit of the magnet, it can be shown

from geometrical considerations that the transverse displacement along the plane of B due to
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dispersion of an on-axis particle is given by

𝑥 = 𝜌 − 𝜌2 − 𝑧𝑀 𝑧𝐷 − 𝑧2
𝑀√︃

𝜌2 − 𝑧2
𝑀

. (4.2)

In the case 𝜌 ≫ 𝑧𝑀 or equivalently, 𝜖 ≫ 𝑒 |B|𝑧𝑀 , then

𝑥 ≈ 𝑧𝑀
𝜌

( 𝑧𝑀
2

+ 𝑧𝐷
)
. (4.3)

Hence, given the position of a particle on the screen, Eq. (4.3) can be inverted to give 𝜖 = 𝜖 (𝑥).
The resolution of this method is limited due to two factors: the finite resolution of the detector

screen, and the divergence of the incident particle beam. If the width of a pixel or cell on the

detector, 𝑤, is greater than the separation of two energies 𝜖1, 𝜖2 with 𝜖1 < 𝜖2, then these energies

cannot be resolved. Hence, 𝛿𝑥 ≡ 𝑥(𝜖1) − 𝑥(𝜖2) = 𝑤 is the smallest possible separation that can

be resolved. Assuming 𝜌1,2 ≫ 𝑧𝑀 , then from Eq. (4.2)

𝛿𝑥 ≈ 𝑧𝑀 (𝑧𝑀 + 𝑧𝐷) 𝜌2 − 𝜌1
𝜌1𝜌2

→ 𝑧𝑀 (𝑧𝑀 + 𝑧𝐷) 𝛿𝜌
𝜌2 , (4.4)

as 𝜌1,2 = 𝜌 → ∞ in the limit of small pixel size. Therefore, the energy resolution due to the

granularity of the detector is

𝛿𝜌

𝜌
≡

(
𝛿𝜖

𝜖

)
pixel

=
𝜌𝑤

𝑧𝑀 (𝑧𝑀 + 𝑧𝐷) . (4.5)

The resolution due to the particle divergence is considered in [123], but involves similar

considerations as before. Since the resolutions are independent, the total energy resolution

available is the quadrature sum of the contributions which is (approximately) a linear function of

the lepton energy,

Δ𝜖
𝜖

=
(𝑧𝑆 + 𝑧𝑀 + 𝑧𝐷)Θ𝑆

(𝑧𝐷 + 𝑧𝑀/2)𝑧𝑀 ×
𝜖

𝑒𝐵
⊕ 𝛿𝑥

𝑧𝑀 (𝑧𝑀 + 𝑧𝐷) ×
𝜖

𝑒𝐵
. (4.6)

In the ultrarelativistic limit, for a photon beam with divergence, 𝜃𝛾, to produce a beam of

electrons/positrons with energy 𝜖 = 𝛾𝑚 results in a divergence of Θ𝑆 ∼
√︃
𝜃2
𝛾 + 1/𝛾2.
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4.1.3 Reconstruction of the Photon Spectrum

The problem of determining the original photon spectrum amounts to solving Eq. (2.43) for

d𝑁𝛾/d𝜔, given a measurement of d𝑁pairs/d𝜖 and a model for the differential cross section. Since

a photon of energy 𝜔 cannot produce an electron/positron with energy 𝜖 > 𝜔, the limits of

integration in Eq. (2.43) can be bounded as [𝜖, 𝜔max], where 𝜔max is the maximum energy of the

photon beam. The differential cross section is now strictly positive within this integration range.

Hence, Eq. (2.43) can be written in the form of a Volterra integral equation of the first kind,

d𝑁pairs

d𝜖
=

∫ 𝜔max

𝜖

𝑁𝐴𝑋0𝑇

𝐴

d𝜎
d𝜖

d𝑁𝛾
d𝜔

d𝜔, (4.7)

and the spectral reconstruction of the photon beam is equivalent to solving this Volterra equation.

The principles of solving this equation will be discussed in the context of the general form

𝑦(𝑡) =
∫ 𝑎

𝑡
𝐾 (𝑠, 𝑡) 𝑥(𝑠) d𝑠. (4.8)

𝑥(𝑠) is the unknown function to be solved for, 𝑦(𝑡) is the known or measured response and

𝐾 (𝑠, 𝑡) is the kernel function. It is also assumed here that 𝑎 is a real, positive constant. Applying

the extended trapezium rule to discretise the integral in 𝑠-space into 𝑁 − 1 partitions of width ℎ,

and since 𝑠1 = 𝑡 and 𝑠𝑁 = 𝑎:

𝑦(𝑡) ≈ 1
2
𝐾 (𝑡, 𝑡)𝑥(𝑡)ℎ + 1

2
𝐾 (𝑎, 𝑡)𝑥(𝑎)ℎ + ℎ

𝑁−1∑︁
𝑖=2

𝐾 (𝑠𝑖, 𝑡) 𝑥(𝑠𝑖). (4.9)

Rearranging for 𝑥(𝑡) gives the "back-substitution" solution to Eq. (4.8) [124],

𝑥(𝑡) ≈
[
1
2
𝐾 (𝑡, 𝑡)

]−1
[

1
ℎ
𝑦(𝑡) − 1

2
𝐾 (𝑎, 𝑡)𝑥(𝑎) −

𝑁−1∑︁
𝑖=2

𝐾 (𝑠𝑖, 𝑡) 𝑥(𝑠𝑖)
]
. (4.10)

For a fixed grid in 𝑠-space, only the terms where 𝑠𝑖 > 𝑡 are included in the sum. Then

for 𝑡 = 𝑎, the sum contains no terms and Eq. (4.9) reduces to 𝑦(𝑎) ≈ 𝐾 (𝑎, 𝑎)𝑥(𝑎)ℎ and so
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𝑥(𝑎) ≈ 𝑦(𝑎)/𝐾 (𝑎, 𝑎)ℎ. From this, Eq. (4.10) can be expressed as

𝑥(𝑡) ≈
[
1
2
𝐾 (𝑡, 𝑡)

]−1
[

1
ℎ
𝑦(𝑡) − 1

2ℎ
𝐾 (𝑎, 𝑡)
𝐾 (𝑎, 𝑎) 𝑦(𝑎) −

𝑁−1∑︁
𝑖=2

𝐾 (𝑠𝑖, 𝑡) 𝑥(𝑠𝑖)
]
. (4.11)

Due to dependence of 𝑥(𝑡) on previously calculated terms, error is amplified for each value of

𝑡. This expresses the well-known ill-conditioned nature of Volterra-type problems, which are

typically sensitive to their initial conditions.

This error amplification can be seen even in the simple case that the 𝑦(𝑡) in Eq. (4.11) are

exact and so the error in 𝑥(𝑡) is given by

𝛿𝑥(𝑡) = 2

√√∑︁
𝑖

[
𝐾 (𝑠𝑖, 𝑡)
𝐾 (𝑡, 𝑡) 𝛿𝑥(𝑠𝑖)

]2
, (4.12)

where the sum over 𝑖 is such that all 𝑠𝑖 > 𝑡. Taking 𝜅 = 𝐾 (𝑠𝑖 , 𝑡 )/𝐾 (𝑡 , 𝑡 ) to be approximately constant

and independent of 𝑠, 𝑡, Eq. (4.12) becomes 𝛿𝑥(𝑡)2 ≈ 2𝜅
∑
𝑖
𝛿𝑥(𝑠𝑖)2. From this, it can be seen

that the accumulation of error in Eq. (4.11) depends on the number of gridpoints used, i.e. a

higher resolution will increase the rate of accumulation, and the initial error in the point 𝑥(𝑠𝑁 ),
denoted 𝛿𝑥𝑁 . Figure 4.3 shows an example of this exponential error accumulation for 𝛿𝑥𝑁 = 1

and using the kernel 𝐾 (𝑠, 𝑡) = 1 − 4𝑡/3𝑠(1 − 𝑡/𝑠), which is the form of Eq. (2.39).

Instead, it is more beneficial to formulate Eq. (4.8) in a statistical manner, which then

allows for the regularisation of the problem and to statistically quantify the uncertainty in the

solution [125, 126, 127]. Equation (4.8) can be expressed as an operator equation 𝑦 = K ◦ 𝑥, then

discretisation is equivalent to a matrix representation, y = 𝐾x + 𝜺, where 𝜺 is a term to account

for error in y. If 𝜺 = 0, then the standard solution x = 𝐾−1y is equivalent to Eq. (4.11) for the

appropriate discretisation rule. The ill-condition of the problem means that this direct inversion

is unstable, as mentioned earlier. Instead, we assume that 𝜺 comes from a normal distribution

with zero mean and unknown covariance Σ, i.e. 𝜺 = y − 𝐾x ∼ N(0, Σ). The probability density

function (PDF) is then of multivariate normal form

ℙ(y|x;𝐾, Σ) = 1√︁
(2𝜋)𝑑 detΣ

exp
[
−1

2
(y − 𝐾x)𝑇Σ−1(y − 𝐾x)

]
, (4.13)
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Figure 4.3: Plot of the error propagation in the Volterra solution Eq. (4.11), as given by Eq. (4.12) for
different grid sizes, 𝑁 . The kernel used is specified in text.

where 𝑑 = dim(y) = dim(𝐾x). The dependence of the PDF on 𝐾 and Σ will be dropped and

implicitly assumed for brevity. The solution to Eq. (4.8) can then be generated from the posterior

distribution, ℙ(x|y), which is given by Bayes’ Theorem:

ℙ(x|y) ∝ ℙ(y|x) · ℙ(x). (4.14)

This requires the statement of a prior distribution for x, ℙ(x). To have an analytical solution,

assume a normal distribution with known mean x0 and unknown covariance Σ𝑥 ,

ℙ(x) = 1√︁
(2𝜋)𝑑𝑥 detΣ𝑥

exp
[
−1

2
(x − x0)𝑇Σ−1

𝑥 (x − x0)
]
. (4.15)

To calculate the posterior distribution from Eq. (4.14), the hyperparameters Σ and Σ𝑥 need to

be determined. One approach to hyperparameter estimation is marginal likelihood maximisation

(MLM), where the marginal likelihood distribution is given by

𝔽(y;Σ, Σ𝑥) =
∫

dx ℙ(y|x;Σ) · ℙ(x;Σ𝑥), (4.16)

where the hyperparameter dependence has been shown. The notation 𝔽(y) is used to emphasise
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that, although the marginal likelihood distribution resembles a PDF, it does not, in general, have

unit integral and so is not a true probability density. The hyperparameter estimates, Σ̂, Σ̂𝑥 , are

then defined as

Σ̂, Σ̂𝑥 = arg max
Σ,Σ𝑥

𝔽(y|Σ, Σ𝑥) ≡ arg min
Σ,Σ𝑥

[− ln𝔽(y|Σ, Σ𝑥)], (4.17)

i.e. they maximise 𝔽(y), or equivalently due to the monotonicity of the logarithm, minimise

its negative logarithm. The latter framing of the optimisation problem is particularly useful

numerically, as it removes exponentiation in calculations. For ℙ(y|x) and ℙ(x) given by

Eq. (4.16) and Eq. (4.15) respectively, the marginal likelihood also has a Gaussian form. The

minimising function (the negative logarithm of the marginal likelihood with constants and

common scaling factors removed) is

𝐿 = − ln det 𝐴 + ln detΣ + ln detΣ𝑥 + (y − 𝝁𝑦)𝑇𝐵−1(y − 𝝁𝑦) + x𝑇0𝐶
−1x0, (4.18)

where

𝐴 = (Σ−1
𝑥 + 𝐾𝑇Σ−1𝐾)−1, (4.19)

𝐵 = Σ + 𝐾Σ𝑥𝐾𝑇 , (4.20)

𝐶 = Σ𝑥 + 𝐴𝐾𝑇Σ𝐾𝐴, (4.21)

𝝁𝑦 = 𝐴(Σ−1
𝑥 x0 + 𝐾𝑇Σ−1y). (4.22)

Equation (4.18) can be rather expensive to evaluate so an alternative can be used to approximate

the minimum, with the possibility of using Eq. (4.18) a small number of times in an optimisation

loop to fine-tune the hyperparameter values. By normalising Eq. (4.16) to unit integral (making it

a true PDF), the terms in Eq. (4.18) which do not involve y are cancelled out due to the Gaussian

form of the marginal likelihood. Hence, the reduced minimising function, 𝐿red, takes the form

𝐿red = ln det 𝐵 + (y − 𝝁𝑦)𝑇𝐵−1(y − 𝝁𝑦), (4.23)
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where 𝝁𝑦 and 𝐵 are defined as above. A simple form for the covariance matrices comes from

assuming that the components of 𝜺 and x are mutually independent and of equal variation. Under

this assumption, Σ and Σ𝑥 take the form 1/𝛽 ⊗ 𝟙 and 1/𝜃 ⊗ 𝟙 respectively, where 𝛽, 𝜃 are strictly

positive real values, and 𝟙 is the identity matrix. Hence, the optimisation problem of finding

the 2 × 𝑑 (𝑑−1)/2 components of the two symmetric matrices, Σ, Σ𝑥 , is reduced to finding the two

minimising values of 𝛽 and 𝜃.

Once the hyperparameters have been estimated, the posterior distribution can be determined

from Eq. (4.14). Again, due to the normal likelihood and prior distributions, the posterior is also

a normal distribution in x, with mean 𝝁𝑥 = 𝐴(Σ−1
𝑥 x0 + 𝐾𝑇Σ−1y) and covariance 𝐴 as defined in

Eq. (4.19). The solution to the (discretised) Volterra equation is then chosen to be the maximum

a posteriori (MAP) estimate; for a normal distribution, this coincides with the mean, hence

x̂ = (Σ−1
𝑥 + 𝐾𝑇Σ−1𝐾)−1(Σ−1

𝑥 x0 + 𝐾𝑇Σy). (4.24)

The hat denotes here the estimated solution, not a unit vector. It is educational to consider the

MAP solution for the diagonal covariance case discussed above, and also taking the known prior

mean x0 to be zero. Letting 𝜆 = 𝜃/𝛽, Eq. (4.24) becomes

x̂ = (𝐾𝑇𝐾 + 𝜆𝟙)−1𝐾𝑇y, (4.25)

which is precisely the linear least squares solution to y = 𝐾x with Tikhonov regularisation [128].

The uncertainty in the solution Eq. (4.24) is given by a confidence interval on the MAP.

There are many ways to define this, but the one selected here is the highest posterior density

interval (HPDI). Let 𝑋 be a random variate with PDF 𝑓𝑋 (𝑥). The (1 − 𝛼) level HPDI is then the

interval,

I𝛼 = {𝑥 | 𝑓𝑋 (𝑥) ≥ 𝑓𝛼} ⊆ 𝑋, (4.26)

where 𝑓𝛼 is the largest constant such that ℙ(𝑋 ∈ I𝛼) ≥ 1 − 𝛼. In general, HPDI can be the union

of multiple subsets of 𝑋 . For a univariate normal distribution, which is unimodal and symmetric

about its peak, Eq. (4.26) has an analytical solution for the HPDI. As normal distribution is
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symmetric, so is the HPDI - define it to be the interval 𝑋 ∈ [−ℓ, +ℓ]. Then, for the standard

normal distribution, ℙ(𝑋 ∈ I𝛼) ≥ 1 − 𝛼, has the equivalent requirement

Φ(ℓ) ≥ 1 − 𝛼
2

+Φ(0), (4.27)

where Φ(𝑥) is the cumulative density function (CDF) of the standard normal distribution. Φ(𝑥)
is monotonically increasing by definition, hence the smallest ℓ satisfying Eq. (4.27) will give

the largest 𝑓𝛼 = 𝑓𝑋 (ℓ) in Eq. (4.26). Therefore, the half-width of the 1 − 𝛼 level HPDI for the

standard normal distribution is

ℓ𝑚𝑖𝑛 = Φ−1
[
1 − 𝛼

2
−Φ(0)

]
. (4.28)

For a univariate normal distribution N(𝜇, 𝜎), the HPDI half-width is ℓ± = 𝜇 ± 𝜎ℓ𝑚𝑖𝑛.
It is possible to define the HPDI for a multivariate normal distribution in a similar fashion.

Consider the distribution, 𝑍 ∼ N(0, 𝟙), whose PDF can be expressed as

ℙ(z) = (2𝜋)−𝑛/2 exp
(
−1

2
z𝑇z

)
, (4.29)

where z is 𝑛-dimensional and 𝟙 is the 𝑛 × 𝑛 identity matrix. Due to symmetry, the HPDI

forms a hypersphere in 𝑧-space about the mean (origin). Defining the 𝑧-space radius, 𝑟, as

𝑟2 ≡ ∥z∥2
2 = z𝑇z, the radial CDF ( or probability that the radius of z is less than or equal to a

given value) is given by

𝐹𝑛 (𝑟) = (2𝜋)−𝑛/2Ω𝑛

∫ 𝑟

0
𝜚𝑛−1 exp

(
− 𝜚

2

2

)
d𝜚. (4.30)

Ω𝑛 = 2𝜋𝑛/2/Γ(𝑛/2) is the solid angle in 𝑛-dimensional space and Γ(𝑧) is the gamma function.

The integral in Eq. (4.30) leads to

𝐹𝑛 (𝑟) = 1 − Γ(𝑛/2, 𝑟2/2)
Γ(𝑛/2) = 𝑃

(
𝑛

2
,
𝑟2

2

)
, (4.31)

where Γ(𝑎, 𝑧) is the upper incomplete gamma function and 𝑃(𝑎, 𝑧) is the (lower) regularised
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Figure 4.4: Result of deconvolving an artificial signal using Eq. (2.39) for (a) Gaussian, 𝜇 = 5 and 𝜎 = 2;
(b) a piecewise step function. The 95% HPDI is shown as a shaded blue area. Reproduced from [26]
under the terms of the Creative Commons CC-BY license.

gamma function. Finding the 1 − 𝛼 HPDI amounts to solving 𝐹𝑛 (𝑟) = 1 − 𝛼 for 𝑟 . For a general

distribution, 𝑋 ∼ N(𝜇, Σ), the HPDI forms a hyper-ellipsoid in 𝑥-space, which can be generated

from the standard hypersphere. Let 𝝆̂ be an 𝑛-dimensional unit vector and 𝑅𝑐 be the critical

radius found from solving 𝐹𝑛 (𝑅𝑐) = 1 − 𝛼. This hyper-ellipsoid is then the set of points defined

by

h = 𝝁 + 𝑅𝑐𝐿−1 𝝆̂, (4.32)

where Σ = 𝐿𝐿𝑇 is the Cholesky decomposition of the covariance matrix, which is guaranteed

to exist due to the positive semi-definite nature of Σ. It can also be shown that Eq. (4.31) and

Eq. (4.32) are equivalent to Eq. (4.27) in the case 𝑛 = 1.

The procedure outlined above was tested using two input functions, chosen to determine

the ability of the Bayesian reconstruction to reproduce overall spectral shape and localised

features. Choosing a function 𝑓 (𝑠) as the signal, an input for the deconvolution algorithm is

generated using Eq. (4.8) with the kernel defined by Eq. (2.39). The units of 𝑠 are arbitrary

for this consideration. Poisson generated noise is added to the convolved signal to emulate

the noise present in a full simulation or experiment. Fig. 4.4a shows the reconstruction of a

Gaussian function of the form 𝑓 (𝑠) = exp
[
−1

2
( 𝑠−𝜇
𝜎

)2
]
, which nominal values 𝜇 = 5, 𝜎 = 2,

with the 95% HPDI represented by a shaded region. The deconvolution algorithm reconstructs

the entire spectral shape remarkably well, capturing the characteristic Gaussian bell-shape, as

well as locating the mean and standard deviation. The HPDI band also matches the shape well,
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indicating an acceptable level of uncertainty in the reconstruction of 𝑓 (𝑠).
To determine the performance at reconstructing localised spectral features, a second signal

function was chosen to be a piecewise step function with edges located at 𝑠 = 2 and 𝑠 = 6. The

resulting deconvolved spectrum for this signal is shown in Fig. 4.4b, where the edges in the

signal are clearly reconstructed. The HPDI shows some uncertainty in determining the exact

location of the edges due to the lack of a sharp discontinuity there. However, this uncertainty is

approximately 6% (3%) for the 𝑠 = 2 (6) edge.

Therefore, in conjunction with the current design of the GRS, the deconvolution algorithm

as the capability of reconstructing the incident photon spectra, with a strong fidelity for spectral

shape and is able to reproduce characteristic edge features with almost percent-level accuracy.

Additionally, this algorithm provides a "boilerplate" method for similar physical problems that

reduce to solving a Volterra-type equation. Due to this generality of the problem, developments in

machine learning and neural networks could provide a way to further improve the deconvolution

algorithm in terms of speed, online diagnostic capability and uncertainty consideration.

4.2 Simulation Studies

The performance of gamma ray spectrometer was analysed in the context of LUXE. For this,

Ptarmigan was used to simulate the Compton scattered photons generated by the collision

of a laser pulse and a 16.5 GeV electron beam, for a normalised laser intensity of 𝑎0 = 0.5

and 7. As discussed in Chapter 2, the energy spectrum of photons produced in the 𝑎0 = 0.5

collision shows the Compton edge and a few higher harmonics whereas for 𝑎0 = 7, the spectrum

becomes smoother and more synchrotron-like. The goal is to use these energy spectra as input

for a start-to-end Monte-Carlo simulation of the GRS to determine the efficacy of extracting the

photon spectra using the methods outlined previously, and if the spectral shape can be sufficiently

resolved to determine the location of the Compton edges.

The GRS was modelled in full within Fluka, including: a 10 µm tungsten converter target;

a lead shielding structure and a 50 cm long lead collimator; a dipole magnet with integrated

field strength
∫
𝐵 d𝑥 = 1.68 T m; and two scintillator screens placed either side of the main
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Figure 4.5: Rendering of the simplified LUXE geometry as simulated in Fluka. Reproduced from [21]
under the terms of the Creative Commons CC-BY license.

Optical Properties of LANEX (Gd2O2S:Te)
Peak Emission Wavelength 545 nm

Light Yield (∼ 60 − 80 keV) 6 × 104 𝛾/MeV
Decay Time ∼3 µs

Afterglow (>3 ms) < 0.1%

Table 4.1: Main scintillation properties of LANEX, taken from [129].

gamma beam. Propagation of the gamma beam and produced pairs is encapsulated by an on-axis

vacuum pipe to reduce secondary production and subsequent noise. The geometry as rendered

in Fluka shown in Fig. 4.5. From the thin target approximation of Eq. (2.43), the fraction of

the photon beam that will be converted to 𝑒+𝑒− pairs is 𝑁pairs/𝑁𝛾 = 𝑡/𝜆PP ≈ 0.2% for a 10 µm thick

target, where 𝜆PP = 9𝑋0/7 ≈ 4.5 mm is the mean free path for photon pair production in tungsten.

The shielding structure and collimator, with 4.8 cm bore diameter, act in combination to give

an acceptance angle of 19 mrad for the produced 𝑒+𝑒− pairs and the unconverted gamma beam.

Two scintillator screens, each 50 cm long in the dispersion axis, are placed either side of the

on-axis vacuum pipe, offset by 2.5 cm from the main axis. 𝑒+𝑒− pairs deflected onto screens by a

𝑧𝑀 = 120 cm, 𝐵 = 1.4 T dipole magnet, located ∼2.5 m after the converter. From the orientation

of the magnetic field, electrons are deflected towards positive 𝑥 and positrons towards negative 𝑥.

Hence, in Fig. 4.5, the upper detector screen is designated the "electron-" or "e-side" detector

and the lower screen, the "positron-" or "p-side" detector.

The following analysis focuses on the case 𝑎0 = 0.5, however the same analysis was done for
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the 𝑎0 = 7 case with similar conclusions. The final result of deconvolving the measured positron

spectra is shown for both values of 𝑎0. To look at extracting the electron and positron energy

spectra, hadronic contributions (e.g. neutrons, protons) were not included in the simulations.

The energy deposited in the LANEX screens, which is proportional to the number of scintillation

photons produced as in Table 4.1, was scored as in Fig. 4.6. The entire distribution on the e-side

and p-side is shown in Figs. 4.6a and 4.6d respectively. A clearly defined signal region can be

seen along the dispersion (𝑥) axis, with an approximately one to two orders of magnitude smaller

background outside this region. By integrating the signal along the dispersion axis, a measure

of the signal-to-background can be estimated as shown in Figs. 4.6c and 4.6f. On the e-side

detector, the dominant contribution to the energy deposition and hence scintillation signal is, as

expected, the electrons. This indicates that positron noise is negligible on the electron-side of the

GRS as electrons and positrons would deposit energy identically in the scintillator. Additionally,

although photon fluence could be high through the scintillator, due to their energy, they interact

and negligibly lose energy within the thin scintillator layer. For the positron-side detector, similar

signal is seen. The dominant contribution is the positron energy deposition, however there is a

non-negligble contribution from electron noise within the centre of the signal region.

To extract a profile of the energy deposition along the dispersion axis, the distributions

in Figs. 4.6a and 4.6d are integrated in 𝑦 between −1 cm and 1 cm to produce Figs. 4.6b and 4.6e.

The contributions by particle type are also shown. Again, on the e-side screen, electrons are the

dominant signal and positrons on the p-side as desired. The non-negligible electron noise is still

apparent on the positron-side, however, across the true signal region corresponding to the energy

range 1.4 GeV to 8 GeV (see Fig. 4.9b), the mean signal-to-noise ratio is 4.58. This indicates the

signal can still be meaningfully extracted from Fig. 4.6e.

Calibration of energy deposition by electrons and positrons in scintillator allows for estimation

of the absolute particle number, as well as the spectral shape. The Landau material parameter,

𝜉𝐿 , is defined as [130, 131]

𝜉𝐿 = 2𝜋𝑁𝐴𝑟2
𝑒𝑚

2
𝑒

〈
𝑍

𝐴

〉
𝜌𝐿𝑧

𝛽2 ≈ 0.154
〈
𝑍

𝐴

〉
𝜌𝐿𝑧

𝛽2 MeV, (4.33)

where ⟨𝑍/𝐴⟩ is the average atomic number-mass ratio, 𝜌𝐿𝑧 is the density of the material in g cm−2
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Figure 4.6: Energy deposition by electron, positrons and photons on the scintillator screens. (a), (d) show
the total energy deposited by all particles on the screen on the electron and positron sides respectively.
(b) and (c) show the integrated line outs of the energy deposition in 𝑦 and 𝑥 respectively for the electron
side, and also separated into contribution by particle type. (e) and (f) show the same for the positron side
detector.
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and 𝛽 is the velocity parameter of the incident electron/positron. For 𝐿𝑍 = 1 mm of LANEX

material, the Vavilov parameter is 𝜅 = 𝜉𝐿/𝐸max ∼ 1 × 10−5, hence energy deposition is expected

to follow a Landau distribution. 𝐸max is the maximum possible energy transfer of the electron

during an energy deposition event. The most probable value (MPV) of energy deposition in the

ultrarelativistic limit is [132]

Δ𝑀𝑃𝑉 = 𝜉𝐿

[
ln

2𝑚𝑒𝜉𝐿
E2
𝑝

+ 0.2

]
, (4.34)

where E𝑝 is the plasma energy of the material. The width of the Landau distribution is also

≈ 4𝜉𝐿 . As the incident particle energy increases, 𝜉𝐿 approaches a constant value and energy

deposition in the material from Eq. (4.34) reaches a Fermi plateau of 0.82 MeV. Hence, to

good approximation, for electrons and positrons with energy ≳ 10 MeV, energy deposition

can be taken to be constant. Geant4 simulations of a pencil-like electron beam with energies

≥10 MeV interacting with a 1 mm thick plane of Gd2O2S corroborate this approximation as seen

in Fig. 4.7a. Furthermore, using the photon yield from Table 4.1, the number of scintillation

photons produced per incident electron (identically for positrons) is then ∼4.92 × 104 𝛾/e−.

The estimated particle number (equivalently, fluence for uniformly sized spatial bins) can be

estimated from Figs. 4.6b and 4.6e by scaling by 1/Δ𝑀𝑃𝑉 . The result is shown in Fig. 4.7 (blue)

and compared to the true scored particle count (orange).

For the specified dipole magnet, Eq. (4.3) can be used if 𝜖 ≫ 500 MeV for the electrons

and positrons. The dispersion function is given numerically as 𝜖 [GeV] ≈ 766/𝑥 [mm], as shown

in Fig. 4.8a along with the detection region corresponding to the edges of the screen. In this

configuration, the GRS is able to capture electrons and positrons within the energy range 1.5 GeV

to 30 GeV. As the maximum photon energy, and hence generated 𝑒+/𝑒− energy is 16.5 GeV, the

spectrometer can resolve up to the maximum energy, corresponding to a position of 46 mm.

To estimate the energy resolution, contributions from the pixelation and the source divergence

must be considered as in Eq. (4.5). For a camera containing 2048 pixels each of size 13 µm

along a chip of length 2.6 cm, the optical system capturing the scintillation light produced by

the LANEX screen must have a magnification 𝑀 ∼ 1/20, and hence a spatial resolution of

𝛿𝑥 ≃ 260 µm. Additionally, the photon source has an angular divergence of 𝜃𝛾 ∼ 0.1 mrad.
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Figure 4.7: (a) Distribution of energy deposited by a monoenergetic electron beam for different incident
energies. The theoretical value from Eq. (4.34) is shown as a red dashed line. (b) Electron and positron
number distributions as estimated from the energy deposition distributions in Fig. 4.6 (blue) and as
measured directly from the scintillator boundary (orange).

From these estimates, it can be seen in Fig. 4.8b that the resolution of the spectrometer is limited

by the source divergence. Additionally, the resolution of energies up to 15 GeV is better than 1%.

As Eqs. (4.2) and (4.3) do not take divergent or off-axis particles into account, transforming

the spatial distributions in Fig. 4.7 may produce errors in the energy spectrum. Fig. 4.8c shows

the energy-position phase space of the positrons entering the p-side detector screen. This

distribution is identical to the e-side electrons. The positron signal is highly concentrated around

the contour given by Eq. (4.3), indicating that the influence of off-axis particles is negligible.

Additionally, the energy-position phase space in the non-dispersed axis is shown in Fig. 4.8d. As

expected, this is symmetric about 𝑦 = 0 and also highlights the energy-dependent divergence of

the produced positrons.

The transformation of the position-space distribution to an energy spectrum is performed as

follows. Using the inverse of Eq. (4.3), the position values are converted to the corresponding

energy and binned onto a linear energy scale. The error associated with each bin is determined

from the available energy resolution, Eq. (4.5), of each data point contained in that bin, i.e.,

𝜎2
𝑖 =

∑︁
𝑗∈𝑖

(
Δ𝜖
𝜖

)2

𝑗

𝜖2
𝑗 , (4.35)
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Figure 4.8: (a) Energy-position dispersion relation for LUXE specifications using Eq. (4.2) (blue)
and Eq. (4.3) (orange) with the detectable region of the scintillator screens is depicted in green. (b) The
energy resolution available to the spectrometer. (c), (d) are simulated energy-position distributions for the
positrons entering the positron-side detector. The dispersion function Eq. (4.3) is represented as a dashed
black line in (c).
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is the squared error of the 𝑖th bin containing all 𝑗 data points. This results in the energy spectra

shown in Fig. 4.9a as solid blue and orange lines for the electrons and positrons respectively.

These are compared to the true energy spectra as measured directly in Fluka (dashed lines).

Only energies above ≈1.4 GeV appear in the constructed energy spectrum as this corresponds to

the edge of the scintillator screen farthest from the main gamma axis. The low energy particles

below this threshold apparent in the true spectra are distributed across the detector and are

evidently not part of the signal. Furthermore, the fictitious signal above ≈10 GeV occurs due

to the presence of noise within the small spatial range 2.5 cm to 7.5 cm when transformed to

energy space. However, within the true signal region, 1.4 GeV to 10.0 GeV, the converted and

true spectra agree remarkably well both in shape and absolute scaling. It is vital to obtain the

correct spectral shape as this contains information on the location of the Compton edge(s) when

deconvolved.

The effect of propagation through the GRS setup can be inferred from Fig. 4.9b by comparing

the energy spectra of the electrons and positrons at the exit of the converter target and incident

on the scintillator screens. Above the detection threshold of the spectrometer (1.4 GeV), the

energy spectra are identical within the statistical fluctuations of the Monte-Carlo simulation.

Hence, the signal is minimally disrupted during propagation and additionally, noise generated

within the set up has a negligible effect on the extraction of the electron and positron signals.

The final step is to reconstruct the incident photon spectrum using the converter positron

spectrum in Fig. 4.9b; the choice between electron and positron is arbitrary due to the symmetry

of the signals. Additionally, the true converter signal was chosen in order to observe the

reconstruction below the threshold of 1.4 GeV. This would not be possible using the measured

spectrum, and instead the deconvolved spectrum would be cut off at this threshold. Figure 4.10a

shows the reconstructed photon signal compared to the input along with the 95% HPDI. As can

be seen, the reconstruction is remarkably accurate, with the edge feature located precisely. At

higher energies, the uncertainty in reconstruction increases due to the decrease in signal over

several orders of magnitude. Furthermore, a similar analysis and reconstruction of the photon

spectrum for the case of 𝑎0 = 7 also results in an extremely similar result.

While the Compton edge can be located by eye from Fig. 4.10a, a more rigorous numerical
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Figure 4.9: (a) Comparison of the electron (blue) and positron (orange) energy spectra found by converting
the position-space distributions in Fig. 4.7 (solid) and that measured directly by Fluka (dashed). (b)
Comparison of the electron and positron spectra generated at the converter and after propagation to the
scintillator screens.
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Figure 4.10: Resulting deconvolved spectra for the (a) 𝑎0 = 0.5 and (b) 𝑎0 = 7 incident photon spectra in
GeV−1. The reconstructed spectra are shown in blue with grey shading representing the 95% HPDI. The
original input spectrum is shown in red. Reproduced from [21] under the terms of the Creative Commons
CC-BY license.
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Figure 4.11: Response of the deconvolved photon spectra (blue, solid) to an FDOG FIR filter for (a)
𝑎0 = 0.5, and (b) 𝑎0 = 7. The response of the lower and upper bounds of the HPDI (red, dashed and
purple, dotted respectively) are also shown. Reproduced from [21] under the terms of the Creative
Commons CC-BY license.

approach is beneficial for more precise quantification of the edge, as well as automating the

process. One method utilises the properties of finite impulse response (FIR) filters, with a rough

argument for their operating principle given below. A more detailed discussion of the application

of FIR filters to edge finding is discussed in [21, 133]. Consider a signal function 𝑔(𝑥) with

some edge-like feature, and a filtering function ℎ(𝑥). The convolution of these functions is

deemed the response function, 𝑅(𝑥), and is given by

𝑅(𝑥) ≡ (ℎ ∗ 𝑔) (𝑥) =
∞∫

−∞
ℎ(𝜁) 𝑔(𝑥 − 𝜁) d𝜁 . (4.36)

Taking the derivative of the response filter and evaluating at a specific point, 𝑥0, introduces

the derivative 𝑔′(𝑥 − 𝜁) into the integrand of Eq. (4.36). If, within the neighbourhood of

an edge at 𝑥 = 𝑎, the function 𝑔(𝑥) behaves like a step function, the derivative will take the

form 𝑔′(𝑥) = 𝛿(𝑥 − 𝑎), a shifted Dirac-delta function. Hence, the integral above evaluates to

𝑅′(𝑥0) = ℎ(𝑥0 − 𝑎). If the filter function is chosen such that ℎ(𝑥) has a root at 𝑥 = 0 only, then

the requirement 𝑅′(𝑥0) = 0 is satisfied only if 𝑥0 = 𝑎. Hence, the response function has an

extremum at the location of the edge in 𝑔(𝑥). This principle applies even to functions with edges

that may not be considered "sharp" - i.e. discontinuous - as in Fig. 4.10a. The use of a discrete

filter rather than a continuous one is from the binned nature of the spectral data.

[133] suggests that an optimal filter choice is the first derivative of a Gaussian (FDOG),
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which satisfies the ℎ(0) = 0 property mentioned above. Figure 4.11 shows the response function,

𝑅(𝑥), when such a filter is applied to the reconstructed photon spectra for 𝑎0 = 0.5 and 𝑎0 = 7

in Fig. 4.10. For the 𝑎0 = 0.5 case, the Compton edge is located at 4.1 ± 0.1 GeV, where the

uncertainty is given by the width of the energy bin as the lower and upper bounds of the HPDI

give the edge location to within the same bin. This value is in agreement with the prediction

of Eq. (2.17). Interestingly, although no edge is discernible to the naked eye in Fig. 4.10b, the

FIR filter produces a minimum value in the response at 1.8 ± 0.1 GeV. This would correspond

to the ℓ = 14 harmonic, according to Eq. (2.17).

4.3 Experimental Testing

The first experimental characterisation of the GRS was performed at Apollon Laser Facility

as part of a laser-wakefield experiment [26]. The facility enabled the delivery of laser pulses

with an on-target energy of 12.5 ± 2.5 J in a 37.6 ± 12.5 fs FWHM pulse duration at a repetition

rate of 1 shot/min. Laser pulses were focused to a 66 µm FWHM waist focal spot, which

contained 37% of the energy, using an 𝑓 /60 spherical mirror, corresponding to a peak intensity

of (2.8± 1.1) × 1018 W cm−2. GeV-scale, high-charge electron beams were generated via LWFA

by focusing the laser onto a gas cell target of variable length between 10 mm and 25 mm. The

resultant beam charge and peak energy were optimised for a plasma composed of 98% H, 2%

N, resulting in an electron density of 1018 cm−3. By directing electron beams onto a wedged

tantalum converter, high-energy and high-flux photons were generated via bremsstrahlung. The

exact properties of the photon beam could be controlled by altering the target thickness by

translating the converter. For the data used to characterise the GRS, the electron density was

kept constant at the stated value and the converter thickness at 1 mm, 69 mm from the rear of the

gas cell.

Two lead walls with 10 cm thickness and on-axis bore diameter of 1 cm were positioned

behind the converter for shielding. The bore dimension was chosen to give an angular acceptance

of 12.6 mrad which minimised noise while not obstructing the gamma-ray beam. A dipole

magnet, with 0.46 T m integrated field strength, was located behind the shielding to deflect
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Figure 4.12: Top-view schematic of the Apollon experimental setup. Reproduced from [26] under the
terms of the Creative Commons CC-BY license.

electrons and positrons out of the main gamma-ray beam path for further analysis. The gamma-ray

beam then exited the vacuum chamber through a 200 µm Kapton window with a 4 mm Perspex

supporting layer, before traversing 𝑥 mm in air and reaching the spectrometer. The thicknesses

of the layers forming the window were less than 1% of radiation length respectively, so minimal

distortion of the the gamma-ray beam was anticipated; this was corroborated by simulation.

For the spectrometer itself, it consisted of a 225 µm tantalum foil, converting ∼ 4% of the

photon beam into electron-positron pairs. Two lead collimators with apertures of 4 mm and

5 mm in the transverse dispersion axis respectively, giving an acceptance angle of 16 mrad, were

placed immediately behind the converter target. Following this, generated electron-positron

pairs were dispersed onto a LANEX scintillator screen using a dipole magnet with integrated

field strength of 4.25 × 10−2 T m. Finally, a scintillator screen placed 650 mm after the rear of

the dipole, along with an Andor camera, was used to image the electron-positron signal within a

light- and radiation-shielded box to reduce noise.

Examples of typical electron spectra are shown in Fig. 4.13. The average spectrum over

the eight shots had a total charge of 207 ± 62 pC above 200 MeV (lowest detectable energy

by the electron dignostics) and a maximum energy of 1.71 ± 0.05 GeV. Additionally, the

average electron divergence was fitted as a function of energy over the eight shots, and found

to be 𝛿 [mrad] = 0.6/(𝐸 [GeV] )1.4. Statistical uncertainties in quoted values were dominated by

shot-to-shot fluctuations in the laser and plasma conditions and are accounted for in following
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Figure 4.13: Examples of spectral intensity of laser-wakefield electrons generated within the gas cell
target for eight consecutive shots (blue, dashed), their mean spectral intensity (orange, solid) and one
standard deviation from the mean (orange, shaded). Reproduced from [26] under the terms of the Creative
Commons CC-BY license.

simulations. The electron spectra were recorded before the converter target was inserted and

bremsstrahlung radiation subsequently generated.

The entirety of the experimental setup in Fig. 4.12 was modelled in Geant4, including the

bremsstrahlung photon spectrum and the 𝑒+𝑒− pairs generated in the spectrometer. The average

electron spectrum from Fig. 4.13 was used to sample 1 × 108 primary particles as input for the

simulations. Primary particle divergence was calculated using the fitted function stated above,

and the azimuthal angle was sampled randomly in [0, 2𝜋).
In order to determine any scattering effects, the photon spectra immediately after the converter

and at the entrance to the spectrometer are compared. As is typical of bremsstrahlung, the

photon spectrum is monotonically decreasing up to a maximum energy of ≈1.7 GeV, containing

(2.21 ± 0.66) × 109 photons with energy greater than 1 MeV and 22 ± 7 mJ of energy.

The scattering effect of the Kapton-Perspex window and the air gap can be identified from

Fig. 4.14. Only photons with energy ≲ 0.6 GeV are scattered away from the main gamma-ray

beam, showing a reduction in the spectrum. Above this energy, the spectra before and after

propagation are identical, with (1.49 ± 0.44) × 109 photons entering the spectrometer, resulting

in a total beam energy of 16 ± 5 mJ.
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Figure 4.14: (a) Simulated energy spectra per pC of electron beam charge of photons exiting the 1 mm
converter (blue, solid) and of photons incident on the gamma spectrometer (orange, dashed). (b) Energy
fluence per pC of electron beam charge of the photons incident on the 225 µm GRS converter. Reproduced
from [26] under the terms of the Creative Commons CC-BY license.

The survivability of the converter target can also be estimated from simulations. For tantalum,

the threshold energy fluence is ∼0.016 J cm−2 for sustained radiation at 30 Hz [134]. Simulations

indicate a peak energy fluence between 0.02 J cm−2 to 0.03 J cm−2 and a mean energy fluence of

0.016 ± 0.005 J cm−2 on the converter. This is between one and two orders of magnitude less

than the quoted threshold, indicating minimal degradation of the converter over course of the

campaign. No evidence of ablation was observed in experimental findings either, corroborating

the simulation results. This is indicative that the GRS is capable of long-term operation on a

shot-to-shot basis at this level of energy fluence.

Electron-positron pairs generated by the 300 µm tantalum converter of the spectrometer were

also simulated. Their energy spectra and energy-position dispersion map are shown in Fig. 4.15.

The energy spectra exhibit a symmetric production of electrons and positrons, except at the high

energy edge. This region is sampled less frequently than the lower energies resulting in the

mismatch. As positrons can only be produced in this energy regime by pair production, their

spectrum is taken as more faithful. The dispersion map shows the relation between the measured

transverse position on the scintillator screen and the particle energy due to the dipole magnet.

Equation (4.3), the dispersion function, for positrons is plotted in red and overlaid as well. The

highest density of positrons can be seen to lie along this curve, with low energy positrons spread

across the entire screen. This is attributed to the divergence imparted by the pair production
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Figure 4.15: (a) Simulated energy spectra of the electrons (green, solid) and positrons (pink, dashed)
produced within the GRS converter which reach the LANEX detector. (b) Positron dispersion map
indicating the energy and transverse position along dispersion axis on LANEX screen. The deflection
function Eq. (4.3) is overlaid in solid red. Reproduced from [26] under the terms of the Creative Commons
CC-BY license.

process, which is larger for lower energy particles. As the highest density of positrons lies along

the dispersion curve, its functional inverse is used to transform the position space to energy space

in the following analysis.

The dispersed electron-positron pairs were incident on a LANEX scintillator screen which

was imaged by an Andor camera. Due to the experimental configuration, a mirror was used to

direct the scintillation photons onto the camera, which was placed off-axis to protect it from

the remaining unconverted gamma beam. To extract the electron and positron spectra from

the image, standard processing and background subtraction techniques were employed. The

spatial scale was calculated such that one image pixel corresponds to 255 µm. To account for

background, five consecutive shots were taken without the GRS converter in place; these data

from these shots were then averaged and subtracted from the eight signal shots. The signal was

defined to be contained in the central region corresponding to depicted in Fig. 4.16.

To obtain the position-space spectra, the images were integrated along the non-dispersion

axis within this defined signal region. Using the inverse of Eq. (4.3), the position values are

converted to the corresponding energy and then binned onto a linear energy scale, as outlined

in Section 4.2.

The resulting energy spectra for each of the eight shots are shown in Fig. 4.17 with the

simulated positron spectrum from Fig. 4.15 also shown for comparison. A monotonically
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Figure 4.16: Example of a single-shot, background-subtracted image recorded by the scintillator/camera
in the gamma-ray spectrometer. The black rectangle defines the signal region, with the integrated lineout
in this region overplotted in blue. Reproduced from [26] under the terms of the Creative Commons
CC-BY license.
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Figure 4.17: Energy spectra of the 𝑒+𝑒− pairs measured at the back of the spectrometer with corresponding
uncertainty (shaded). Experimental results are compared to the positron energy spectrum extracted from
simulations (green). Reproduced from [26] under the terms of the Creative Commons CC-BY license.
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Figure 4.18: Reconstructed photon spectra obtained by applying the deconvolution algorithm to the
experimental (orange) and simulated (green) positron spectra in Fig. 4.17. The overlaid dashed line shows
the photon spectrum incident on the spectrometer from simulation, as in Fig. 4.14(a). Shaded bands
represent the 95% HPDI calculated by the algorithm. Reproduced from [26] under the terms of the
Creative Commons CC-BY license.

decreasing shape for the spectrum is as expected, originating from a bremsstrahlung source. The

lower limit of 200 MeV is the lowest possible energy that can be measured by dispersion, while

the upper limit of 1.1 GeV corresponds to the smallest dispersion on the scintillator screen which

lies outside of the central region containing the unconverted gamma beam and hence be resolved

as signal.

Using the extracted electron and positron signals in Fig. 4.17, the reconstruction of the photon

spectrum follows the procedure outlined in Section 4.1.3. As pair production is symmetric

for electrons and positrons, the analysis focuses on positrons, as electrons are susceptible to

increased noise due to additional potential generation or scattering mechanisms. Electron data

is, however, useful for cross-checking results and ensuring consistency. For the prior mean, x0 in

Eq. (4.24), the "naive" solution to Eq. (4.11) is used. This is then regularised by the statistical

approach.

Figure 4.18 compares the deconvolution of the experimental positron spectra with the

deconvolution of the simulated positron spectra and the simulated bremsstrahlung spectrum. The
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shaded orange region depicts the 95% HPDI of the experimental deconvolution result. The results

agree well and are consistent with simulations within this uncertainty region. Although the

reconstructed spectrum fluctuates, it exhibits the general shape of the bremsstrahlung spectrum

within the energy interval used.

The first experimental test of the spectrometer has been completed, demonstrating promising

results. This GRS design is able to resolve the shape of the photon spectrum within the uncertainty,

while the absolute scaling can be obtained from additional measurements, for instance total

photon flux. A clear algorithm has been developed for analysing the data obtained from the

spectrometer, with the mathematical principles highlighted in Section 4.1.3. Unfortunately,

the full spectral range of photons could not be measured, which consequently affects the

reconstruction. This can be mitigated by improving the energy resolution; which can be done by

using a dipole with larger integrated field strength, since Δ𝐸/𝐸 ∼ 1/𝐵.

4.4 Conclusions

A novel gamma ray spectrometer design for measuring high-flux, high-energy photon beams

which operates on the principle of Bethe-Heitler pair production within a high-𝑍 solid target

has been presented. Necessary characteristics of the converter target, as well as the magnetic

spectroscopy component have been highlighted in order to effectively produce electron and

positron signals which can be measured. A statistically-motivated Bayesian deconvolution

algorithm to reconstruct the incident photon spectrum has also been outlined, with simple toy

models provided as benchmarking of the method.

As the GRS has been developed with the purpose of being a key system in future SFQED

experiments, its implementation within the LUXE experiment to measure the energy spectra

of photons produced by non-linear Compton scattering during the interaction of an intense

laser pulse and a high energy electron beam. Using Ptarmigan, the photon signal is simulated

assuming LUXE parameters, which is then used as input for Fluka simulations of the GRS

implementation envisioned at LUXE. Estimates of the signal-to-noise for the separate electron and

positron detectors are given, as well as a systematic methodology for extracting the electron and
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positron spectra from the magnetically dispersed spatial signal that can be used for experimental

data. After extracting the electron and positron spectra, the deconvolution algorithm was applied

to each, demonstrating its capability to reproduce the spectral features present in the original

photon source such as Compton edges which could be found using an FIR filter technique.

Finally, it was possible to perform the first experimental characterisation of the GRS at a

campaign in Apollon. Here, an LWFA electron beam acted as a source to produce a broadband

bremsstrahlung photon beam after interaction with a solid target. Although there are no structural

features in this bremsstrahlung spectrum like in the LUXE application, the analysis of the

GRS data along with the subsequent application of the deconvolution algorithm demonstrated

that it was possible to reconstruct the archetypal shape of the bremsstrahlung spectrum within

the given energy limits. Unfortunately, due to the experimental setup, it was not possible to

measure the entirety of the electron and positron spectra, which was a source of uncertainty

in the reconstruction. However, in future implementations, this can be overcome by using an

appropriately sized detector and a magnet with higher integrated field strength, which will

provide an increased resolution of the detection system.
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Chapter 5

Characterisation of Angular Profiles of

Gamma Beams

From Chapter 2, it is evident that the parameter 𝑎0, or equivalently the laser intensity, is a crucial

parameter describing the non-linear behaviour of SFQED processes in intense electromagnetic

fields. Since the formulation and calculation of an accurate first-principles theory describing

charged particle dynamics in such fields is still an outstanding problem, experimental investigation

is vastly important for developing insight into these complex interactions. Reliable measurements

of 𝑎0 are therefore required in order to provide a meaningful benchmark between experimental

results and various, sometimes competing, theoretical models.

Typically, the intensity of focused high-power lasers are indirectly inferred from separate

measurements of its energy, pulse duration and focal spot size [135], where the latter is frequently

measured only at reduced power. This method, however, is prone to significant uncertainties

and usually neglects important factors such as the presence of longitudinal fields within the

tight laser focus [136] or potential electron-laser spatiotemporal misalignment. Alternative

approaches utilising photoionisation of low-density gases [137, 138], or measurement of the

spatial profile of Thomson-scattered electrons [139, 140] have also been investigated, but are of

limited applicability for on-shot measurements in SFQED experiments.

A recent proposal discussed the viability of using the characterisation of the transverse

angular profile of Compton-scattered photons as a method to estimate the laser intensity at the
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interaction point [95, 52, 141]. The disadvantage of this approach is the a priori dependency on

a specific model for radiation reaction, the aptness of which is in turn determined by 𝑎0. This

makes this method less applicable in situations where the underlying physics is to be investigated,

for example probing the transition regimes of SFQED. The idea was further developed in [142]

to be model-independent, where the intensity was inferred from the energy-weighted angular

distribution within a few-percent uncertainty. Unfortunately, at high energy and flux, the

direct measurement of this energy-weighted profile is challenging, bearing similarity to the

measurement of the photon spectrum in this regime discussed in Chapter 4. This chapter details

an analogous procedure using the number-weighted profile of the Compton-scattered photons,

which has been published in [143], showing that it is possible to use a single formula involving

only a measurement of the transverse profile size, along with the initial and final electron energy

spectra, to infer the intensity at interaction over a large range of parameters. Additionally,

this method was shown to be valid for different radiation reaction models, adopting the same

model-independent approach as [142].

This chapter focuses on the details of this inference method, along with discussions of its

applicability to focused lasers including spatial misalignment, and its potential limitations for

high-𝜒 dynamical regimes. Going further, the use of the gamma beam profiler, proposed within

the context of LUXE [20, 21], to extract a measurement of the transverse spatial profile of the

Compton-scattered photons is shown and some estimates on its ability to estimate the intensity

at interaction are presented.

5.1 Inference of Laser Intensity

5.1.1 Emission Profile for Electrons in a Plane Wave

An electron colliding head-on with a linearly polarised plane wave electromagnetic field will

undergo fast quiver motion in the direction of the field polarisation. This oscillatory motion

induces the emission of radiation which forms a cone with size proportional to the electric field

and inversely proportional to the electron energy.

More explicitly, consider this case for an electron with energy, 𝛾𝑚, and the plane wave field
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Figure 5.1: Visualisation of an electron bunch (blue) interacting with a linearly polarised laser (red).
Here the laser is veritcally polarised with the electron bunch propagating in the horizontal plane. The
resultant radiation cone and its transverse profile on a detector plane (purple) are shown as well as the
parallel and perpendicular emission angles, 𝜃 ∥ and 𝜃⊥ (marked). Reproduced from [143] under the terms
of the Creative Commons CC-BY license.

given by the normalised potential, 𝑎𝜇 (𝜑) = 𝑎0𝑔(𝜑)𝜀𝜇 sin(𝜑), where 𝑎0 is the peak normalised

amplitude, 𝜑 is the phase, 𝑔(𝜑) is the pulse envelope and 𝜀𝜇 is the polarisation vector. The field

is also monochromatic with frequency, 𝜔0. The electron’s instantaneous momentum makes an

angle 𝜃 (𝜑) = 𝑎0 sin 𝜑/𝛾 with the laser propagation axis and photon emission is assumed to occur

predominantly in this direction [33]. Additionally, from Chapter 2, the photon emission rate is

𝑊𝛾 ∝ 𝑎0 |cos 𝜑 | for 𝜒 ≪ 1. Therefore, the mean square (MS) emission angle for one cycle can

be calculated as

⟨𝜃2⟩ =
∫
C 𝜃

2(𝜑) d𝑊𝛾∫
C d𝑊𝛾

=
𝑎2

0
3𝛾2 , (5.1)

where C is any continuous interval of length 2𝜋. The mean square angle, or variance of the

radiation profile, parallel to the polarisation axis is then defined to be

𝜎2
∥ =

𝑎2
0

3𝛾2 + 𝜎2
⊥. (5.2)

The 𝜎2
⊥ term represents the mean square emission angle in the direction orthogonal to the laser

polarisation and accounts for angular broadening of the beam due to the fact that emission is not

exactly coincident with the electron momentum. This term also accounts for divergence in the

case of an electron beam rather than a single electron.

Including the pulse envelope and the energy loss of the electron due to recoil upon emission
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amounts to replacing Eq. (5.2) with

𝜎2
∥ (𝜑) =

𝑎2
0𝑔

2(𝜑)
3𝛾2(𝜑) + 𝜎2

⊥, (5.3)

where the electron Lorentz factor is now a function of the laser phase. The total difference in the

variances is determined by integrating Eq. (5.3) over the entire pulse weighted by the emission

rate, which is now𝑊𝛾 ∝ 𝑔(𝜑), i.e.

𝜎2
∥ − 𝜎2

⊥ =

(∫ ∞

−∞

𝑎2
0𝑔

2(𝜑)
3𝛾2(𝜑)

d𝑊𝛾

d𝜑
d𝜑

) (∫ ∞

−∞

d𝑊𝛾

d𝜑
d𝜑

)−1
. (5.4)

Using the Landau-Lifshitz solution for 𝛾(𝜑) as in Chapter 2, Eq. (5.4) is generally intractable

however closed-form solutions do exist for flat-top and Gaussian envelopes,

𝜎2
∥ − 𝜎2

⊥ =
𝑎2

0
3𝜅1

[
1
𝛾𝑖𝛾 𝑓

+ 𝜅2

(
1
𝛾𝑖

− 1
𝛾 𝑓

)2
]
, (5.5)

where 𝜅1 = 1 (√3) and 𝜅2 = 1/3 (0.315) for a flat-top (Gaussian) envelope respectively, and

𝛾 𝑓 = 𝛾(𝜑 → ∞) is the final electron Lorentz factor after propagating through the pulse.

For a beam of electrons with an initial energy spectrum, d𝑁𝑒/d𝛾𝑖, the electrons with larger

𝛾𝑖 have a higher emission power and so contribute more to the photon signal. To account for

this, Eq. (5.5) can be weighted by (𝛾𝑖−𝛾 𝑓 )d𝑁𝑒/d𝛾𝑖 and integrated over all 𝛾𝑖. Additionally, Eq. (5.5)

was derived using a classical radiation reaction model however for 𝜒 ≳ 1, quantum effects will

become important. The average energy loss of the electrons become reduced by the Gaunt

correction factor and stochastic emission results in 𝛾 𝑓 not being a single-valued function of 𝛾𝑖.

Under similar assumptions to [142], Eq. (5.5) can be adapted for the initial energy spread and

quantum effects by using an average over the initial and final electron energy distributions,

𝜎2
∥ − 𝜎2

⊥ =
𝑎2

0
3𝜅1

F (𝛾𝑖, 𝛾 𝑓 ; 𝜅2), (5.6)

F (𝛾𝑖, 𝛾 𝑓 ; 𝜅2) ≡ ⟨𝛾−1
𝑖 ⟩⟨𝛾−1

𝑓 ⟩ + 𝜅2

[
⟨𝛾−2
𝑖 ⟩ + ⟨𝛾−2

𝑓 ⟩ − 2⟨𝛾−1
𝑖 ⟩⟨𝛾−1

𝑓 ⟩
]
. (5.7)

F is defined in such a way as to reflect the effects of the electron dynamics on the profile
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Figure 5.2: Difference in the variance parallel and perpendicular to the laser polarisation axis of the
emitted radiation profile by an electron beam with central energy, 𝛾𝑖𝑚, 1% RMS energy spread and
divergence 𝛿 = 1 mrad for: 𝛾𝑖𝑚 = 250 MeV (green); 1 GeV (orange); and 15 GeV (blue) as predicted
by Eq. (5.6) (lines) and calculated from LCFA simulations (points). Different radiation reaction models
are considered: no (dots), classical (crosses), and quantum (squares) radiation reaction. The laser is
modelled as a plane wave with a Gaussian envelope with FWHM duration, 𝜏 = 40 fs and the threshold in
emitted photon energy was 𝜔min = 1 MeV. The inset shows the relative difference between the numerical
and analytical results. Reproduced from [143] under the terms of the Creative Commons CC-BY license.

"ellipticity", 𝜎2
∥ − 𝜎2

⊥.

To determine the accuracy of Eqs. (5.5) and (5.6), the analytical expressions are compared

to numerical simulation results in Fig. 5.2. Using Ptarmigan, the head-on collision of an

electron beam with a plane wave laser field with a Gaussian temporal profile with FWHM

duration 𝜏 = 40 fs, wavelength 𝜆 = 800 nm and a range of intensities, 2 ≤ 𝑎0 ≤ 50. The electron

beam was modelled as cylindrically symmetric with radius 𝑟𝑏 = 0.5 µm, an RMS divergence

𝛿𝑒 = 1 mrad and a 1% energy spread (Δ𝛾𝑖) for different initial energies 𝛾𝑖𝑚 = 250 MeV, 500 MeV

and 15 GeV. No appreciable effects were seen in additional simulations, with Δ𝛾𝑖 ranging

up to 10%. Additionally, different radiation reaction models were considered: no radiation

reaction (electrons do not lose energy upon emission); the classical Landau-Lifshitz model

with continuous energy loss along the electron trajectory; and a fully quantum model including

the reduced emission power and stochastic events along the trajectory. The emission rates are

determined in the LCFA framework here and pair production in the laser field was neglected, the

consequences of which are discussed later.
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A good agreement of the simulated results (points) and the predicted results from Eq. (5.6)

(lines) can be seen in Fig. 5.2 across six orders of magnitude for 𝜎2
∥ −𝜎2

⊥ for each initial electron

energy and radiation reaction model with a relative error of less than ∼ 25%. It should be noted

that errors of this magnitude occur at the more extreme values of 𝑎0 (𝑎0 ≲ 5 and 𝑎0 ≳ 20) for the

no RR and classical RR models, however in the intermediate range, the error is much smaller, on

the order of a few percent. The source of this increased error in the extremes is discussed in

further detail in Section 5.1.3. For 𝛾𝑖𝑚 ≲ 1 GeV, the classical and quantum RR models give

quite similar results but for large electron energies and hence 𝜒, the broadening of the gamma

profile is overestimated by the classical model compared to the quantum. This is due to the

"Gaunt-modified" emission spectrum of the quantum model, where the average radiated energy

is lower by a factor ⟨𝑔(𝜒)⟩ than the classical Landau-Lifshitz prediction. Further, for 𝜒 ≳ 0.1,

the probabilistic nature of RR becomes non-negligible and radiation is no longer continuous,

allowing for both straggling and quenching effects [64, 65, 66].

In order to calculate the variances 𝜎2
∥ − 𝜎2

⊥ from the simulation results, an energy cut,

𝜔min = 𝑓min𝛾(𝜑)𝑚 with 𝑓min ∈ [0, 1], is required to remove the divergent behaviour of the

low-energy, high-angle photons that are emitted, particularly for 𝑎0 ∼ O(1). For the results

shown above, a nominal value of 1 MeV was chosen as representative of an experimentally

imposed threshold. For example, [21] describes a setup with a 0.5 mm aluminium window

crossing the photon beam path resulting in photons with energy 𝜔 ≲ 1 MeV being sufficiently

absorbed or scattered out of the photon cone that is to be measured and negligible effect on high

energy photons (𝜔 ≳ 100 MeV). In general, the precise value of an energy cut is experiment

specific however the results shown here are robust over a wide range of detection thresholds

(four orders of magnitude).

Figure 5.3 shows the application of a range of energy cuts from 0.1 keV to 1 MeV in extracting

the variance information from the transverse photon profile using the 𝛾𝑖𝑚 = 1 GeV electron

beam with a quantum RR model. Without an energy threshold applied (black points), 𝜎2
∥ − 𝜎2

⊥

does not exhibit a well-defined behaviour for 𝑎0 ≲ 20; however, introducing a cut produces a

monotonic trend in 𝜎2
∥ − 𝜎2

⊥ which is independent of the exact value of 𝜔min across the tested

range. Looking at the orthogonal variances separately, applying an energy cut to calculate 𝜎2
⊥
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amounts to multiplying by some factor that is dependent on 𝜔𝑚𝑖𝑛 but not on 𝑎0. Conversely,

𝜎2
∥ has a more complicated dependence on 𝜔min which also varies with 𝑎0; for 𝑎0 ≳ 20, this

dependence becomes independent of 𝜔min.

Figure 5.4 provides insight into this "cancellation" behaviour upon calculating the difference

in these variances. As expected for a linearly polarised field, the shape of the angle-energy

distribution perpendicular to the polarisation is largely independent of 𝑎0, with the maximum

emission angle at a given photon energy
��𝜃⊥,max(𝜔)

�� ∝ 𝜔−𝑙 for some constant 𝑙. As a rough

estimate, 𝜎2
⊥ ∼

��𝜃⊥,max(𝜔)
��2 ∝ 𝜔−2𝑙 , which explains the scaling behaviour of 𝜎2

⊥ with 𝜔min as

seen in Fig. 5.3. In the plane parallel to the polarisation of the field, the angle-energy phase

space distribution changes shape with increasing 𝑎0, such that above a specific energy, 𝜔𝐶 , a

plateau forms with the maximum emission angle remaining constant with increasing photon

energy. For small 𝑎0, this plateau is small and so changing 𝜔min has a similar effect to 𝜎2
⊥. As

𝑎0 becomes larger, the plateau grows and all 𝜔min > 𝜔𝐶 give the same 𝜎2
∥ and for 𝜔 < 𝜔𝐶 ,��𝜃∥,𝑚𝑎𝑥 (𝜔)��2 ∼

��𝜃⊥,max(𝜔)
��2. Hence, upon evaluation of 𝜎2

∥ − 𝜎2
⊥, the similar contributions from

𝜔min < 𝜔 < 𝜔𝐶 cancel and the difference in the variances is independent of the choice of energy

cut.

Moreover, as 𝑎0 increases, the electrons lose more energy as radiation which subsequently

reduces the typical photon emission energy over the interaction, i.e. the peak (instantaneous)

synchrotron energy 𝜔peak = 0.44𝛾𝑚𝜒 [144]. If the energy threshold is comparable to this mean

emission energy, a non-negliglible fraction of the photon distribution is removed by the selection

and the accuracy of Eq. (5.6) is reduced, as can be seen in the lower right pane of Fig. 5.3. An

estimate for the range of 𝑎0 for which the mean emission energy is greater than the energy cut

and hence Eq. (5.6) is accurate can be obtained as follows. Requiring that ⟨𝜔peak⟩ ≳ 2𝜔min and

using the definition of the electron quantum parameter, this is equivalent to 𝛾2𝑎0 ≳ 2.27𝜔min/𝜔0.

Using the Landau-Lifshitz solution to account for RR for a Gaussian envelope with FWHM

duration, 𝜏, with I(∞) = 𝜔0𝜏
√︁
𝜋/4 ln 2, this intensity range depends on the selected energy cut as

𝑎0 ≲ 860
𝜆 [µm]

𝜏2/3 [fs]𝜔2/3

min [MeV]
. (5.8)

For the same parameters as used in the above simulations, a 1 MeV energy cut implies that Eq. (5.6)

93



5.1. INFERENCE OF LASER INTENSITY

101

103
σ

2 ‖
(m

ra
d

2
)

101

103

σ
2 ⊥

(m
ra

d
2
)

0 20 40

100

102

σ
2 ‖
−
σ

2 ⊥
(m

ra
d

2
)

0 20 40

0.6

0.8

1.0

N
>
ω
m
in
/N

γ

10−4 10−3 10−2 10−1 100
ωmin (MeV)

a0

Figure 5.3: Evaluation of the transverse variances, 𝜎2
∥ (top left), 𝜎2

⊥ (top right) and 𝜎2
∥ − 𝜎2

⊥ (bottom left)
implementing different energy thresholds 𝜔min for the interaction case 𝛾𝑖𝑚 = 1 GeV across a range of 𝑎0
compared to the corresponding values without an energy threshold (black points). The fraction of the
photon beam contained within the selection region is also shown (bottom right).

is accurate for 𝑎0 ≲ 70. Above this intensity, Eq. (5.6) is not necessarily invalidated, rather the

measured 𝜎2
∥ − 𝜎2

⊥ value may deviate from its predicted value due to the artificially enhanced

removal of the signal due to the energy cut. Decreasing 𝜔𝑚𝑖𝑛 to 0.01 MeV increases the range to

𝑎0 ≲ 350. It is important to note that, especially for low 𝑎0, the energy cut cannot be decreased

ad infinitum, as per Fig. 5.3, the monotonic behaviour of 𝜎2
∥ − 𝜎2

⊥ is lost as 𝜔min → 0.

The derivation of Eq. (5.5) and subsequently Eq. (5.6) made some tacit assumptions that

are worth addressing. Firstly, the emission rate𝑊𝛾 ∝ 𝑎0 | cos 𝜑| is valid only for 𝜒 ≪ 1 where

𝑊𝛾 ∝ 𝛼𝜒; whereas in the opposing regime, 𝜒 ≫ 1, the emission rate scales as 𝑊𝛾 ∝ 𝛼𝜒
2/3.

However, due to the normalisation factor in Eq. (5.1), the resulting scaling of the mean-square

angle is unaffected except by a constant factor, i.e. 𝜎2
∥ ∼ 𝑎2

0/𝛾2.

A more stringent assumption arises from the neglecting pair production within the field.

For 𝜒 ≪ 1, Breit-Wheeler production is exponentially suppressed and the formation of the

radiation cone occurs as above. If pair pair production becomes non-negligible, this will affect

the dynamics of photon emission. As higher energy photons are more likely to undergo pair

production in the field, there will be a decrease in the high-energy part of the spectrum, resulting
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Figure 5.4: The angle-energy phase spaces in the physical plane parallel (top) and perpendicular (bottom)
to the laser polarisation for 𝑎0 = 2 (left) and 50 (right). A photon energy of 𝜔 = 1 MeV is marcated by a
black, dashed line.

in a shift in the mean energy. Additionally, if the pulse is sufficiently long, these pairs act as new

sources for Compton scattered photons, increasing the size of the radiation cone compared to

that predicted by Eq. (5.6). If the number of positrons becomes significant, their contribution

must also be accounted for by adjusting the definition of F . Due to this complex interaction,

an exact analytical description of the resultant photon profile is currently unattainable; this is

discussed further in Section 5.1.3.

5.1.2 Inference of the Laser Intensity

Since F (𝛾𝑖, 𝛾 𝑓 ; 𝜅2) contains only dynamical information, Eq. (5.6) is a monotonic function of

𝑎0 meaning that it can be inverted, making it possible to infer the laser intensity from the shape

of the photon transverse profile and the electron dynamics:

𝑎2
0 =

3𝜅1
F (𝛾𝑖, 𝛾 𝑓 ; 𝜅2) (𝜎

2
∥ − 𝜎2

⊥) (5.9)
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Under the assumption of a cylindrically symmetric electron beam, the effect of the divergence

𝛿𝑒 is removed upon subtraction of the two variance terms. An additional indirect effect on the

overlap of the electron beam and focal spot of a focused laser beam is considered later.

Using the same electron-laser configuration as in the previous section, the inferred 𝑎0 by

applying Eq. (5.9) to the numerical simulations is compared to the nominal simulations 𝑎0

in Fig. 5.5, again for different initial electron energies and RR models. Across the investigated

range of parameters, Eq. (5.9) works remarkably well as an estimation for the nominal intensity,

in particular, within 10% of the true value across the entire 𝑎0 range and each RR model except

for low intensities (𝑎0 < 5) and high electron energy 𝛾𝑖𝑚 ≳ 10 GeV. The inference is most

precise for the case of no radiation reaction, as expected since the electron dynamics are trivial

with 𝛾 𝑓 = 𝛾𝑖, and reproduces a value of 𝑎0 within ∼ 1% accuracy. For the classical and quantum

RR models, Eq. (5.9) still works extremely well but begins to underpredict the correct value

as the nominal 𝑎0 increases. Furthermore, for large 𝑎0, radiative cooling of the electron beam

may result in sufficient energy loss such that the assumption 𝛾 ≫ 𝑎0 no longer holds. Here, the

inference becomes less accurate as the average emitted photon energy is of the same order as

the employed energy threshold, 𝜔min. The simulations also show that, in order to have accurate

inference, the required detection range for the photon cone is |𝜃 | ≲ 2𝑎0/𝛾 𝑓 . This is critical for the

discussions in Section 5.2.

Since 𝜎2
∥ − 𝜎2

⊥ and F are ultimately quantities that are determined by experimental measure-

ment, it is useful to consider the influence of systematic uncertainties on the inference of 𝑎0.

Applying the standard error propagation formula to Eq. (5.9), the uncertainty in inferring 𝑎0 can

be expressed as

(
𝛿𝑎0
𝑎0

)2
=

(𝜎2
∥ + 𝜎2

⊥)𝛿𝜎2

(𝜎2
∥ − 𝜎2

⊥)2
+ 1

4

(
𝛿F
F

)2
, (5.10)

(𝛿F )2 = (1 − 2𝜅2)2𝐴 + 𝜅2
2𝐵, (5.11)

𝐴 = Γ2
𝑖,1𝛿Γ

2
𝑖,1 + Γ2

𝑓 ,1𝛿Γ
2
𝑓 ,1, (5.12)

𝐵 = 𝛿Γ2
𝑖,2 + 𝛿Γ2

𝑓 ,2, (5.13)

where Γℓ,𝑛 ≡ ⟨𝛾−𝑛ℓ ⟩ are the negative moments of the initial and final electron gamma factors.
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Figure 5.5: Inferred 𝑎0 calculated from the simulation results using Eq. (5.9) vs nominal 𝑎0 (and
percentage error, inset) for different radiation reaction models. Simulations assume an electron beam with
a 𝛿 = 1 mrad RMS divergence, a 1% energy spread, and different initial mean energies: 𝛾𝑖𝑚 = 250 MeV
(green), 1 GeV (yellow) and 15 GeV (blue). Laser pulse was modelled as a plane wave with a Gaussian
envelope of FWHM duration 𝜏 = 40 fs. The inset shows the relative difference between the numerical and
analytical results. The solid black line is shown as a guide for perfect inference. Reproduced from [143]
under the terms of the Creative Commons CC-BY license.

𝛿𝜎 is the uncertainty in measuring the width of the profile and is assumed to be the same in

both orthogonal directions. For 𝑎0 ∼ O(1), the dominant source of uncertainty comes from

the measurement of the transverse variances. In this intensity range, 𝜎2
∥ − 𝜎2

⊥ can become very

small, resulting in the term containing 𝛿𝜎2 diverging. For 𝑎0 ≳ 10, the ellipticity of the profile

becomes more pronounced with increasing intensity and since 𝜎2
∥ − 𝜎2

⊥ ∼ 𝑎2
0 from Eq. (5.6),

𝛿𝑎0/𝑎0 ∼ 𝛿𝜎
𝑎2

0
, i.e. the uncertainty decreases approximately quadratically with 𝑎0. Hence, the

measurement of the initial and final electron energy distributions becomes the limiting factor in

the precision.

So far, the results presented have been for the idealistic case of a plane wave laser with a

Gaussian temporal profile and a pencil-like electron beam. A more realistic scenario requires

the consideration of the more complex spatiotemporal structure of a focused laser as well as the

finite size of the electron beam. This correction to Eq. (5.6) can be determined using geometrical

arguments of the electron-laser configuration. For example, if the laser is focused to a 1/𝑒2 spot

size, 𝑤0, comparable to or smaller than the transverse RMS radius of the electron beam, 𝑟𝑏,
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5.1. INFERENCE OF LASER INTENSITY

the electrons will experience a distribution of intensities. Therefore, the inferred 𝑎0 will be

reduced compared to the true nominal peak value by some geometrical factor as the intensity is

effectively averaged over the electron spatial distribution. To determine this geometrical factor,

𝛽, the laser and electron beam, which is also assumed to be cylindrically symmetric, have the

Gaussian profiles:

𝑎(𝑥, 𝑦) = 𝑎0 exp

(
−𝑥

2 + 𝑦2

𝑤2
0

)
, 𝑓𝑒 (𝑥, 𝑦) = 1

2𝜋𝑟2
𝑏

exp

[
− (𝑥 − 𝑥𝑏)2 + 𝑦2

2𝑟2
𝑏

]
, (5.14)

where the prefactor of 𝑓𝑒 (𝑥, 𝑦) is chosen such that its integral over all space is unity. 𝑥𝑏 represents

a transverse offset that is, without loss of generality, assumed to be along the 𝑥 direction. The

𝑛-th spatial moment, found by averaging over the electron profile, is defined as

⟨𝑎𝑛⟩ =
∫ ∞

−∞
d𝑥

∫ ∞

−∞
d𝑦 𝑎𝑛 (𝑥, 𝑦) 𝑓𝑒 (𝑥, 𝑦) =

𝑎𝑛0
2𝜋

1
1 + 2𝑛𝜌2 exp

(
− 𝑛𝜁2

1 + 2𝑛𝜌2

)
, (5.15)

where 𝜌 = 𝑟𝑏/𝑤0 and 𝜁 = 𝑥𝑏/𝑤0. Since 𝜎2
∥ − 𝜎2

⊥ ∼ 𝑎2 and 𝑊𝛾 ∼ 𝑎, the inferred intensity

from Eq. (5.9), (𝑎inf
0 )2, is given by the average ⟨ (𝜎2

∥ − 𝜎2
⊥ )𝑊𝛾 ⟩/⟨𝑊𝛾 ⟩, i.e. 𝑎inf

0 =
√︁

⟨𝑎3 ⟩/⟨𝑎⟩ to lowest

order in 𝛼. Using Eq. (5.15), the inferred 𝑎0 is then reduced by the geometrical factor 𝛽 = 𝑎inf
0 /𝑎0,

𝛽 =

√︄
𝑃

𝑄
exp

(
− 𝜁2

𝑃𝑄

)
, (5.16)

where 𝑃 = 1 + 2𝜌2 and 𝑄 = 1 + 6𝜌2. This correction is similar in form to that found in [142],

only with differences in the numerical factors of 𝑃 and𝑄 which arise due to the different scalings

in the photon number and power emission rate (proportional to 𝑎0 and 𝑎2
0 respectively). In the

limit of large 𝑟𝑏 and finite 𝑥𝑏, 𝛽 → 1/√3 independently of the transverse misalignment, therefore

the inference of a focused field is predicted to be no worse than ∼ 40% of the true peak value.

The reduction in inferred intensity estimated by Eq. (5.16) was checked against simulations

using the 250 MeV and 1 GeV electron beams used in previous simulation studies, except the

transverse profile is now given by Eq. (5.14) with 0 < 𝑟𝑏 ≤ 2𝑤0 rather than a pencil-like

distribution. This was done for two nominal peak intensities at focus, 𝑎0 = 10 and 𝑎0 = 20, with
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Figure 5.6: Fraction fo the inferred 𝑎0 to the true value as a function of increasing electron beam
size for 𝑥𝑏 = 0 (blue) and 𝑥𝑏 = 𝑤0 (yellow). The simulated electron beam has a mean initial energy
𝛾𝑖𝑚 = 250 MeV (a,b) and 𝛾𝑖 = 1 GeV (c,d) with a 1% RMS spread. The laser pulse was modelled as with
peak intensities 𝑎0 = 10 (a,c) and 𝑎0 = 20 (b,d) and a Gaussian spatiotemporal profile with waist given
by Eq. (5.17) and FWHM duration 𝜏 = 40 fs. Different RR model were also considered. The red dashed
line corresponding to perfect inference is plotted as a guide. Reproduced from [143] under the terms of
the Creative Commons CC-BY license.
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the corresponding focal spot size given by

𝑤0 = 147.839

√︄
E𝐿 [J]
𝜏 [fs]

𝜆

𝑎0
, (5.17)

where E𝐿 is the laser energy (taken here to be 1.2 J) and 𝜏 is the FWHM duration (40 fs) of the

pulse. The head-on collision of the specified electron and laser beams was simulated for the

case of perfect alignment (𝑥𝑏 = 0) and moderate misalignment (𝑥𝑏 = 𝑤0) with the results shown

in Fig. 5.6. It can be seen that increasing the size of the electron beam has an observable effect

on the inference using Eq. (5.9), with a reduction by ∼ 30 − 40% as 𝑟𝑏 becomes large. This is

consistent with the limiting behaviour of Eq. (5.16) for large 𝜌.

In contrast, for beams with a misalignment, increasing 𝑟𝑏 improves the inferred 𝑎0 value as

progressively higher intensity regions of the laser field will be experienced by the electrons. As

𝑟𝑏 becomes large, a larger fraction of the electron beam interacts with the low-intensity fringes

of the laser field where the local, instantaneous 𝜒 will be small resulting in the emission of

low-energy, high-angle photons. These photons will then be removed by the energy threshold

resulting in an under-representation of the angular profile and hence an underestimated value of

𝑎0. For both classical and quantum RR, the increased ponderomotive scattering as electrons lose

energy acts to compensate for this underestimation and the inference is subsequently improved

compared to the no RR case.

The advantage that the misalignment and finite size of the electron beam compared to the

focused laser field can be accounted for by a relatively simple geometrical correction to Eq. (5.9)

is that if the peak laser intensity is measured by some alternative means, any spatial offsets

can be estimated from the reduction in the inferred intensity with respect to the true nominal

value. Additionally, producing a distribution of 𝑎inf
0 over different shots is sufficient to monitor

imperfect pointing stability and systematic effects such as a finite electron beam size can be

extrapolated.
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Figure 5.7: (a) Top: profile variances 𝜎2
∥ , 𝜎

2
⊥ (blue, yellow respectively) of the emitted photon profile

both without (crosses) and with (circles) pair production enabled in the simulation. Bottom: the relative
increase in the profile variances between the disabled and enabled modes. (b) The mean final electron
Lorentz factor without (blue) and with (yellow) pair production across a range of intensities. The
simulation parameters used were identical to that in Fig. 5.2 for the 𝛾𝑖𝑚 = 15 GeV and quantum RR case.

5.1.3 Effect of Pair Production on the Transverse Profile

As discussed at the end of Section 5.1.1, pair production by photons in the laser field was

neglected in both the derivation of Eq. (5.6) and the simulations to validate it. However, for the

𝛾𝑖𝑚 = 15 GeV case, 𝜒 ∼ 1 already for 𝑎0 ∼ 10, and pair production becomes non-negligible. It

is then important to qualify the effect of pair production on the transverse profile and hence the

intensity inference, as an analytical description is not currently possible.

Using identical parameters to the simulation of the 15 GeV electron beam from Section 5.1.1

and using a fully quantum model of radiation reaction, an additional series of simulations was

performed with pair production enabled in Ptarmigan (NLBWe; non-linear Breit-Wheeler

enabled). The variances 𝜎2
∥ and 𝜎2

⊥, with the 1 MeV energy threshold included, were extracted

and are shown in Fig. 5.7a with the no pair-production results also shown for comparison

(NLBWd; non-linear Breit-Wheeler disabled). Over the range of 𝑎0 examined, the profile size

perpendicular to the laser polarisation, 𝜎2
⊥, is only weakly affected by the inclusion of pair

production, with an increase in size of up to 20% compared to the NLBWd result. In contrast,

the NLBWe 𝜎2
∥ deviates from the NLBWd value by as much as 200% at 𝑎0 ≈ 20 with the

deviation decreasing at higher intensities. The disproportionate increase in 𝜎2
∥ compared to 𝜎2

⊥

can be attributed to the preferential emission of radiation along the laser polarisation direction,
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Figure 5.8: (a) Number of photons emitted per primary electron for the same simulation parameters
as Fig. 5.7 both without (blue) and with (yellow) pair production enabled over a range of intensities. (b)
Evolution of the emitted photon spectrum as 𝑎0 increases for the NLBWd (top) and NLBWe (bottom)
cases.

which is increased due the increased presence of electrons and positrons which act as additional

radiators as well as the incident electron beam. As the intensity increases, the energy loss of

the radiators becomes significant, as in Fig. 5.7b, and the local instantaneous 𝜒 value drops,

reducing the quantum effects of both pair production and radiation reaction. Hence, the electrons

and positrons radiatively cool to a quasi-classical state and the emission profile resembles that in

the NLBWd case. Additionally, as the instantaneous 𝜒 decreases, more photons are produced

with lower energies, comparable or less than the energy threshold resulting in an increased

removal of photon signal. However, this is compensated for by the exponential increase in

the photon number due to formation of a QED cascade at large initial 𝜒. This is clearly seen

in Fig. 5.8a, where the photon number increases approximately linearly with 𝑎0 in the absence of

pair production but for 𝑎0 ≳ 20 or equivalently 𝜒 ≳ 2, the photon number rises exponentially

indicating the prolific generation of electron-positron pairs and Compton-scattered photons.

Figure 5.9 shows then the relative error in inferring 𝑎0 for both the NLBWd and NLBWe

cases. As expected, for 𝜒 ≪ 1, pair production is negligible and both simulation modes yield

identical inference capabilities. For 𝜒 above O(1), the inference becomes less accurate both with

and without pair production as discussed in Section 5.1.1 however the effect of pair production

generally increases the relative error by a few percent at most. Evidently, the increase in the

profile size seen in Fig. 5.7a is somewhat counteracted by the enhanced radiative cooling and
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Figure 5.9: Relative error in the inferred 𝑎0 value for the same parameters as Fig. 5.5 with a quantum
RR model. Simulations were performed for 𝛾𝑖𝑚 = 250 MeV (green), 1 GeV (yellow) and 15 GeV (blue),
both with and without non-linear Breit-Wheeler pair production (NBW) enabled. The red, dashed line
represents a nominal relative uncertainty of 10% between the true and inferred 𝑎0. Reproduced from [143]
under the terms of the Creative Commons CC-BY license.

lower ⟨𝛾 𝑓 ⟩ in the NLBWe case compared to the NLBWd. Nonetheless, as the relative error is

only of a few percent order, this is indicative that in this regime, it is difficult to distinguish

effects due to stochastic radiation of the electron beam even without additional electron-positron

pairs being generated.

The three main assumptions in deriving Eq. (5.6) can be visualised as in Fig. 5.10, where

the shaded regions represent the areas of (𝑎0, 𝜒) parameter space where these assumptions are

not met. The emission rates used to derive Eq. (5.6) are calculated using the LCFA framework,

which is applicable when 𝑎0 ≳ O(10) with the commonly referenced criterion, 𝑎0 ≳ 5, depicted

here. Additionally, as discussed in Section 5.1.1 with Eq. (5.8), the choice of energy cut limits

the maximum 𝑎0 that Eq. (5.6) provides an accurate prediction for. Finally, neglecting pair

production, which incurs an uncertainty in inference of a similar order to the quantum stochastic

emission effects, is precluded for 𝜒 ≳ 1. Despite these assumptions not being met in these

parameter regions, Eq. (5.9) still provides a reasonable estimate of the nominal intensity within

∼ 20%. The adequacy of this uncertainty is strongly case-dependent, however having an error of

at most this magnitude over a large parameter range is promising.
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Figure 5.10: Plot showing the regions of (𝑎0, 𝜒) parameter space where the assumptions used to
derive Eq. (5.6) are less accurate due to: the use of LCFA-calculated rates (purple); neglecting pair
production (blue); and introducing an energy cut-off in the photon detection (red). Simulated parameters
are marked as points for 𝛾𝑖𝑚 = 250 MeV (green), 1 GeV (yellow) and 15 GeV (blue). Reproduced
from [143] under the terms of the Creative Commons CC-BY license.

5.2 Measurement of the Transverse Spatial Profile

5.2.1 Propagation of the Photon Profile

In order to measure 𝜎∥ , 𝜎⊥ of the angular profile, the transverse spatial distribution of the photon

beam at a known distance from the source can be used to determine the angular information.

Consider a photon emitted by an electron at a position r0 and with momentum 𝒌 that propagates

without obstruction to a detector plane centered on the main propagation axis (assumed to be the

𝑧 axis), located at 𝑧 = 𝐷. Assuming 𝑘𝑧 ≫ 𝑘𝑥 , 𝑘𝑦 and 𝑧0 ≈ 0, the photon trajectory is almost

parallel to the propagation axis and r ≈ r0 + 𝐷 𝒏̂ is the point at which the photon intersects the

detector plane. 𝒏̂ is a unit vector in the direction of 𝒌. In particular, the position in the plane of

the detector, transverse to the propagation axis, is

r⊥ ≈ r⊥,0 + 𝐷

𝑘𝑧
𝒌⊥, (5.18)
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where the approximation |𝒌 | ≈ 𝑘𝑧 has been used. From a measurement of the transverse location

on the detector screen, and assuming
��r⊥,0�� ≪ 𝐷, the momentum direction can be estimated as


𝑥
𝐷 ≃ 𝑛𝑥

𝑛𝑧
= 𝑘𝑥

𝑘𝑧
≡ tan 𝜃𝑥

𝑦
𝐷 ≃ 𝑛𝑦

𝑛𝑧
=

𝑘𝑦
𝑘𝑧

≡ tan 𝜃𝑦
(5.19)

For large detector distances, the small angle approximation applies and 𝑥/𝐷 ∼ 𝜃𝑥 , 𝑦/𝐷 ∼ 𝜃𝑦.
By measuring the distribution of 𝑥, 𝑦 for the entire photon beam, the variance of the

angular distributions can be determined as Var[𝑋] = 𝐷2Var[Θ𝑥]. Hence, a measurement of the

transverse spatial profile provides sufficient information to extract the angular variances, and,

using Eq. (5.9), the intensity at the interaction can be estimated. This is the principle of the

Gamma Beam Profiler (GBP) to be implemented at LUXE; two sapphire-based spatial detectors

that are segmented into strips in order to measure the transverse profile of the produced gamma

beam in two orthogonal directions [145]. The general functionality of the detector is similar to

that of conventional silicon-strip detectors, however sapphire has a higher radiation resistance

compared to silicon which is critical at LUXE due to the high-energy, high-flux nature of the

photon beam.

With the ultimate aim of using Eq. (5.9) to infer a nominal value for the 𝑎0 of a typical

electron-laser interaction anticipated at LUXE, a start-to-end series of simulations were performed

for three selected intensities: 𝑎0 = 5, 10, and 20 with LUXE parameters for the electron beam

and other laser properties. These values were chosen to be representative of the entire range of

intensities LUXE will be able to achieve, as well as testing the capabilities of both the detector,

at measuring the profile of a high-ellipticity signal, and the intensity inference method, where

quantum effects are influential. It is henceforth assumed that the laser is polarised along the

𝑥 axis, with the laser propagating in the negative 𝑧 direction. Therefore, the 𝑥 axis is referred

to as the parallel plane, containing the laser polarisation and wavevector, with 𝑦 denoted as

the perpendicular plane. The laser propagation axis is still referred to as the 𝑧 axis. Using

Ptarmigan, the electron beam - laser interaction was simulated for these 𝑎0 and the radiated

photons (above an energy threshold of 1 MeV) were recorded and their transverse profiles are

shown in Fig. 5.11, normalised to their maximum value. As expected, the increased elongation
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Figure 5.11: Transverse profiles of the photons generated by Ptarmigan for intensities: 𝑎0 = 5 (top),
𝑎0 = 10 (middle), and 𝑎0 = 20 (bottom) with LUXE interaction parameters. The double-differential
profiles are normalised to their maximum value for comparison.

of the profile in the direction parallel to the polarisation of the laser is clearly visible.

In Fluka, the photon output in Fig. 5.11 is propagated through the LUXE geometry

(see Fig. 4.5) to the GBP plane, located a distance 𝐷 = 11.5 m from the electron-laser interaction

point, centred on the propagation axis. Additionally, the profiler has a transverse size of

2 cm × 2 cm, corresponding to an angular detection range of |𝜃 | ≤ 0.82 mrad from Eq. (5.19).

Figure 5.12 shows the central portion of the profile, expressed as an angle using Eq. (5.19), for

each intensity. Here, the elongation does not seem as prominent as in Fig. 5.11; this is due to

the restricted angular range that the profiler is able to measure. From Fig. 5.11 for 𝑎0 = 20, the

maximum angle of the profile is approximately 4 mrad which is ∼ 5 times larger than the profiler

range. Therefore, the full elongation is not apparent from this profile; the consequences of this

are discussed in Section 5.2.2.

During propagation, the photon beam also passes through the 10 µm tungsten converter

of the GRS and a 200 µm Kapton window which ends the beam pipe. By comparison to the

angular profiles at source, Fig. 5.13 indicates that during the traversal of the LUXE setup, the
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Figure 5.12: Transverse photon profiles as measured in Fluka simulations of the LUXE geometry, using
the distributions from Fig. 5.11 for interaction point intensities: 𝑎0 = 5 (top), 𝑎0 = 10 (middle), and
𝑎0 = 20 (bottom). Double differential profiles are normalised to their maximum values for comparison.

photon beam undergoes minimal distortion with the shape of the profile well maintained. The

overall magnitude of the signal may decrease however due to losses via pair conversion in the

GRS converter for example, however as discussed in Section 4.2, only a fraction of a percent of

the beam is lost to conversion. Additionally, as described in [21], the presence of the Kapton

window acts as a natural implementation of the energy cut used to evaluate the variance from

the angular distributions in Ptarmigan, attenuating or scattering the low energy (𝜔 < 1 MeV)

photons out of the main photon beam.

5.2.2 Extracting the Transverse Variances

From the distributions in Fig. 5.13, the variances can be determined and then application

of Eq. (5.9), along with supplemental information on the electron initial and final spectra, can be

used to infer the laser intensity at interaction. The geometric factor in Eq. (5.16) is also required

to account for the laser focusing. However, as seen by comparing Figs. 5.11 and 5.13, the profiles

measured by the GBP detector are truncated due to the limited detection range. The profiles
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Figure 5.13: Projections of the transverse profile onto the axes parallel (left) and perpendicular (right) to
the laser polarisation for each simulated interaction intensity; 𝑎0 = 5 (top), 𝑎0 = 10 (middle), and 𝑎0 = 20
(bottom). The profiles extracted from Fluka simulations (blue) are compared to the original Ptarmigan
output (orange) and are normalised to their maximum values.

in Fig. 5.13 are strongly peaked at the centre, and dropping off over several orders of magnitude

towards the edges of the profile. Although the tails of the distribution are much smaller than

the central region, they are still considered heavy and have a non-negligible contribution to the

calculation of distribution moments. Therefore, the truncation due to the detector range will

incur some error when used to estimate the variance compared to a full measurement of the

transverse profile. This can be resolved by either increasing the detector size, or placing it closer

to the source.

Therefore, it is prudent to consider how the maximum detection angle affects the extracted

variance of the profile compared to the true maximum angle of the profile, 𝜃max. Let 𝑓 ∈ [0, 1]
be the reduction factor such that 𝜎2( 𝑓 ) is the variance of the profile measured within the angular

limits − 𝑓 𝜃max ≤ 𝜃 ≤ 𝑓 𝜃max. Using the full photon transverse profiles presented in Fig. 5.11,

projected into the parallel and perpendicular axes, Fig. 5.14 shows how well 𝜎2( 𝑓 ) estimates

the true profile variance, 𝜎2
true, when 𝑓 = 1. In each case, it can be seen that at least 50%

of the distribution width must be used in order to estimate the complete variance to within
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20% error. Additionally, almost complete accuracy (to within the percent-level error) can be

achieved by including greater than ∼ 60% of the distribution. It is also worthy to note that

this behaviour is true of each distribution for each intensity and projection axis, indicating

it is a property of the underlying distribution rather than being explicitly dependent on 𝑎0.

Using Fig. 5.11, the approximate 𝜃max in each direction are determined to be: (1 mrad, 1 mrad)
for 𝑎0 = 5; (2 mrad, 1.8 mrad) for 𝑎0 = 10; and (9 mrad, 2 mrad) for 𝑎0 = 20 in the parallel

and perpendicular axes respectively. Taking 0.82 mrad to be the maximum detectable angle

for the GBP, the variance calculated from the 𝑎0 = 5 profiles will be the most accurate, with

approximately 80% of the profile widths included. For the 𝑎0 = 10 case, the coverage reduces

to ∼ 40%, indicating an estimate of the variance which is only accurate to within ≲ 25%. Due

to the extreme elongation in the parallel direction, only a small fraction (approximately 1/10) of

the transverse profile for 𝑎0 = 20 is measured in the axis parallel to the laser polarisation. This

results in computing a variance which is only 10% accurate, therefore the GBP is of limited

utility in this instance for inferring the intensity at interaction as the values of 𝜎2
∥ , 𝜎

2
⊥ will be the

dominant source of error. The estimations of the error are corroborated by the calculated results

shown in Table 5.1, with the variances extracted from the Fluka GBP profiles having a relative

error matching the predicted magnitude, except for 𝜎2
⊥ at 𝑎0 = 20. In this case, due to the large

truncation of the profile in the parallel axis, this affects the resulting projection of the profile

onto the perpendicular axis. However, this can be easily solved in principle, either by using a

larger detector or by decreasing the distance from the source.

𝑎0 = 5 𝑎0 = 10 𝑎0 = 20
Full 𝜎2

∥ (mrad) 0.0164 0.0329 0.0894
GBP 𝜎2

∥ (mrad) 0.0167 0.0280 0.0336
% error -1.95 15.02 62.40

Full 𝜎2
⊥ (mrad) 0.0136 0.0190 0.0229

GBP 𝜎2
⊥ (mrad) 0.0142 0.0177 0.0184

% error -4.31 6.67 19.62

Table 5.1: Summary of the profile variances estimated from projections parallel and perpendicular to
the laser polarisation axes for each simulated interaction intensity, both for the full transverse profile as
generated by Ptarmigan (full) and those measured from Fluka simulations (GBP). The relative error to
the true variance from the full profile is also included.

For LUXE, the electron and laser parameters are such that 𝜒 ≫ 1 even for 𝑎0 ∼ 1, and
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Figure 5.14: Estimation of the profile variances parallel (circles) and perpendicular (squares) to the laser
polarisation for different truncation fractions, 𝑓 , relative to the true variance determined from the entire
distribution. Variances are calculated using the Ptarmigan-generated profiles from Fig. 5.11 for each
simulated intensity: 𝑎0 = 5 (blue), 𝑎0 = 10 (orange), and 𝑎0 = 20 (green).

quantum effects are appreciable. From Fig. 5.10, the inference of intensity using Eq. (5.9) is

expected to be less accurate here. However, since the parameters of LUXE are well-documented,

it is possible to obtain a simulated parameterisation of the behaviour of 𝜎2
∥ and 𝜎2

⊥ which may

improve the intensity retrieval. However, this approach will still suffer from the truncation effect

in measuring the profile variances. In Fig. 5.15, the profile variances are plotted over a range of

𝑎0 and fitted with a power law function of the form 𝑎𝑥𝑏 + 𝑐. The fitting parameters where found

to have the values


𝜎2
∥ = ((1.1300 ± 0.0002) × 10−5)𝑎 (2.23±0.01)

0 + ((1.1500 ± 0.0003) × 10−2),

𝜎2
⊥ = ((8.59 ± 0.05) × 10−3)𝑎 (0.40±0.04)

0 + ((−1.91 ± 0.08) × 10−3).
(5.20)

The predicted intensities using Eq. (5.20) and the variances taken from the Fluka GBP simu-

lations in Table 5.1 are compared with results calculated using the inference technique, Eq. (5.9)

in Fig. 5.16b. In order to utilise the inference formula, the reciprocal moments of the elec-

tron initial and final gamma factors are needed; these are extracted from the spectra depicted

in Fig. 5.16a. For a quantification of the uncertainty in the inference, by Eq. (5.10), the errors in
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Figure 5.15: Variance of the transverse profile for projections parallel (blue) and perpendicular (orange)
to the laser polarisation over a range of 𝑎0 using LUXE simulation parameters. The fitted power laws
(dashed lines) Eq. (5.20) are also depicted.

calculating the moments and the profile variances is required also. This is done using a standard

result from statistics, invoking the "Law of the Unconscious Statistician",

⟨𝑔(𝑋)⟩ = 1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝑔(𝑥𝑖), 𝜎2
𝑔̄ ≡ Var[⟨𝑔(𝑋)⟩] = 1

𝑁
Var[𝑔(𝑋)], Var[𝑔(𝑋)] = ⟨𝑔2(𝑋)⟩−⟨𝑔(𝑋)⟩2,

(5.21)

where the 𝑤𝑖 are respective weights that sum to 𝑁 . Essentially, this defines the error in the

expectation value of some function, 𝑔(𝑥), calculated using a sample of size 𝑁 , as estimated

from the sample mean and variance. From this, the associated uncertainty is 𝛿⟨𝑔⟩ ≡ 𝜎𝑔̄ = 𝛿𝑔/√𝑁.

Going farther, the error in the profile variance, assuming a mean of zero, is calculated following

the definition

𝜎2 =
1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝑥
2
𝑖 ⇒ 𝛿(𝜎2) = 2𝜎𝛿𝑥

𝑁
, (5.22)

where 𝛿𝑥 is the common uncertainty in measuring each 𝑥 value. Furthermore, since 𝛿 (𝜎2 )/𝜎2 =

2𝛿𝜎/𝜎, the uncertainty in measuring the standard deviation is 𝛿𝜎 = 𝛿𝑥/𝑁. These results can also

be verified using the Central Limit Theorem.

In Fig. 5.12, the GBP profiles are measured using 400 bins within the angular range

−0.82 mrad to 0.82 mrad, giving an uncertainty in the standard deviation of 𝛿𝜎 ∼ 1× 10−5 mrad.
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The final result of applying the inference formula, Eq. (5.9), along with the geometrical

correction Eq. (5.16), is shown in Fig. 5.16b with the associated error. Despite the non-negligible

quantum dynamics expected for the LUXE interactions, the inference formula still estimates the

nominal intensity remarkably well, and within the prescribed uncertainty for a nominal 𝑎0 ≲ 10.

For the case of 𝑎0 = 20, two effects limit the accuracy of the inference method. As discussed

in Section 5.1.3, for high 𝜒, the inference model becomes less accurate due to the increased

quantum effects on the electron dynamics such as non-linear pair production. An additional

effect, which also influences the calculation of 𝑎0 from the empirical fitting, is the truncation of

the photon profiles due to the size of the detector screen. Clearly, the error of ∼ 60% will have

a pronounced effect on using the empirical fitting to estimate 𝑎0 due to its monotonic nature,

resulting in it underestimating the nominal 𝑎0 more than the inference method.

The error bars in Fig. 5.16b are calculated without including the truncation error, instead

only representing the uncertainty from the inference method Eq. (5.10), and the uncertainty in

the empirical fitting Eq. (5.20). At 𝑎0 = 10, the uncertainty due to the 15% truncation error

is smaller than the uncertainties in the determination of 𝑎0, however, at 𝑎0 = 20, the ∼ 60%

truncation error becomes the dominant source of error, increasing the depicted uncertainty by a

factor of ∼ 10. Hence, measuring as much of the angular profile within the ∼ 2𝑎0/𝛾 interval is

crucial for accurate inference of the nominal 𝑎0.

5.3 Conclusions

Electrons oscillating in a linearly polarised electromagnetic wave emit Compton radiation with

an angular profile that is characteristic of both the electron’s dynamics and the field configuration.

By extending this theory to include radiation reaction, temporal envelopes and focusing effects

of the spatial distribution of the field, it has been possible to develop a method to infer the 𝑎0 of

the background field using the size of the photon angular profile and the initial and final electron

energies. This technique is analogous to one presented in [142], however the one detailed here

utilises the number-weighted photon profile; this is more readily measured at high energies and

fluxes than the energy-weighted profiles examined in [142].

112



5.3. CONCLUSIONS

0.0 0.2 0.4 0.6 0.8 1.0
W 5 /W8

102

103

104

105

3
#
4
/3
W
5

00 = 5
00 = 10
00 = 20

(a)

5 10 15 20
Nominal 00

0

5

10

15

20

Es
tim

at
ed
0

0

‖ fitting
⊥ fitting
Inference

(b)

Figure 5.16: (a) Final electron energy spectra after the LUXE electron-laser interaction for 𝑎0 = 5 (blue),
𝑎0 = 10 (green) and 𝑎0 = 20 (red) in terms of the electron Lorentz gamma factor, with 𝛾𝑖𝑚 = 16.5 GeV.
(b) Estimation of the interaction intensity for each nominal 𝑎0 using the power law fittings (circles) and
the inference formula Eq. (5.9) (squares) with associated errors. Exact inference of the nominal 𝑎0 is
marked by a dashed, grey line as a guide for the eye.

Here, the rationale behind this technique has been presented, starting with a plane wave model

before considering effects of a focused field, along with supporting simulations to demonstrate

its accuracy for a range of nominal 𝑎0 values and radiation reaction models. We demonstrated

that within the 𝑎0, 𝜒 parameter range that satisfies the undderlying assumptions, this inference

technique is accurate to within 10%. Outside of this range, the inference still performs adequately

with ≲ 20% accuracy. The decreased applicability in these regions of parameter space are

attributed to the inaccuracy of the LCFA at low intensities and the presence of quantum effects

such as pair production at 𝜒 > 1.

By considering a particular implementation of a spatial profiler for the gamma ray beams

that are to be produced within LUXE, we analysed the application of the inference method to this

setup. By using start-to-end simulations of the LUXE geometry, the photon profile measured

by the detector is generated for different nominal 𝑎0; these spatial profiles are then extracted

similarly to a true in situ approach. From this analysis, it was shown that for 𝑎0 up to 10 (above

the range envisioned for LUXE), the inference technique is able to estimate the nominal 𝑎0 with

good accuracy, despite a truncation in the measured profile due to the detector size. This was

compared to an alternative approach mentioned in [21], using simulations to form an empirical
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formula for the profile size, which turned out to be more sensitive to the truncation error than the

inference method.
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Chapter 6

Improving Conditions for Observing

Elastic Photon-Photon Processes

It was demonstrated in [79, 105] that the configuration proposed by [104], adapted to form a

laser-plasma setup, has substantial potential for measuring both linear Breit-Wheeler and elastic

photon-photon scattering events as discussed in Section 3.1. However, for both of these processes,

particularly the much rarer elastic scattering, improvements are needed in order to obtain a

statistically significant number of scattering events. From [79], the number of scattering events

can be approximated as 𝑁𝑠 ≈ 𝑁𝛾𝑛𝑥𝐿eff𝜎, where 𝑛𝑥 is the x-ray density, 𝐿eff is the effective length

of the x-ray field, 𝑁𝛾 is the number of bremsstrahlung photons and 𝜎 is the scattering cross

section. For the parameters used in [79]: 𝑁𝛾 ∼ 4 × 107, 𝑛𝑥 ∼ 1.4 × 1012 mm−3, 𝐿eff ∼ 3 mm

and 𝜎 ∼ 10−30cm2, the approximate number of scattering events per shot is 𝑁𝑠 ∼ 1.7 × 10−8.

Operating at a repetition rate of 1 Hz, a continuous run time of 32 years is required to generate a

single scattering event. This setup is evidently limited in achieving the statistics needed to place

meaningful confidence limits on the photon-photon scattering cross section. With optimisations

to the input beam configuration, it is possible to significantly improve the yield for both elastic

scattering and linear pair production events by up to several orders of magnitude. In this chapter,

an example configuration is presented on how to achieve this increase in yield, demonstrating the

properties of the input beams that are required. This is compared to the original experimental

results presented in [79, 105], indicating that similar setups can be used at current and future
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Figure 6.1: Simplified sketch of the simulation geometry to investigate photon-photon scattering events.
Distances are not to scale and the electron and positron beams after the converter are not shown but are
deflected out of the plane by the dipole magnet.

PW-class facilities to achieve the most stringent upper bound on the photon-photon scattering

cross section to date.

6.1 Simulation of the Scattered Signal

6.1.1 Benchmarking Simulations

As a base case for comparison, the electron and x-ray parameters discussed in [105] are used as

the input for a Geant4 simulation of the setup from the same experiment. A simplified sketch

of the simulation geometry is shown in Fig. 6.1. The bremsstrahlung beam is generated by

interaction of an LWFA electron source with a 1 mm bismuth converter, as detailed in Section 2.5.

The average electron beam achieved during commissioning was broadband; modelled here as a

Gaussian distribution with mean energy 430 MeV and an FWHM energy spread of 220 MeV.

Additionally, the average charge in the electron beam is 22 pC and the average RMS divergence

is 2.3 mrad. From these parameters, the electron beam forms the primary source within the

Geant4 simulation by randomly sampling the Gaussian energy distribution. The momentum
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direction of the primary is generated from the angle pair (𝜃, 𝜙) according to



𝛽𝑥 = sin 𝜃 cos 𝜙,

𝛽𝑦 = sin 𝜃 sin 𝜙,

𝛽𝑧 = cos 𝜃,

(6.1)

where 𝛽𝑖 = 𝑝𝑖/|p | is the corresponding direction cosine. The momentum polar angle, 𝜃, is randomly

sampled from a Gaussian centred on zero with standard deviation equal to the RMS divergence

and the momentum azimuthal angle, 𝜙, is uniformly sampled on the interval [0, 2𝜋). A simplistic

model for the x-ray field is used for convenience here, since the corrections due to inclusion of

spatial gradients in the photon density and a more accurate energy spectrum are expected to

be much smaller than the order of magnitude estimate to be taken from these simulations. The

photon density is implemented as a uniform distribution with 𝑛𝑥 = 1.4 × 1012 mm−3 within a

cylindrical volume of length 3 mm [79]. The radius of the cylinder is not as important as the

effective interaction length and the density, so it is chosen to be sufficiently large to contain

the bremsstrahlung beam. Although the exact x-ray energy spectrum contains multiple peaks,

the simplified model assumes a uniform spectrum within the interval 1.35 keV to 1.55 keV as

from [105], there is no variation of the spectrum significantly greater than half an order of

magnitude in this range. Following the setup of [105], the x-ray field is located 1.05 m after the

converter target.

Using the photon processes extension to Geant4 (see Chapter 3 for details), the yield for

photon scattering and linear pair production processes can be estimated. Since the cross sections

for linear Breit-Wheeler and, particularly, photon-photon scattering are small, they are biased by

a constant factor within the simulation in order to reduce the primary load required to simulate a

statistically significant number of events. For all results shown within this chapter, this weighting

is accounted for in post-processing.

Using 107 primary electrons and a weighting factor of 108 and 1014 for Breit-Wheeler and

photon-photon scattering processes respectively, the results of the simulated photon-photon

events are shown in Figs. 6.2 and 6.3. Specifically, Fig. 6.2 presents the yield of particles as
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Figure 6.2: Number of simulated particles reaching a virtual detection plane according to their creation
process. Count is normalised to the primary electron beam charge in nC. The "primary" creation process
indicates that the particle is a simulation primary.

produced by a specific process, such as bremsstrahlung emission, pair production or photon

scattering, per incident primary electron. The rarity of Breit-Wheeler and elastic scattering

processes in comparison to the other electromagnetic processes is clearly evident. Dividing

by half to account for double-counting (elastic scattering produces two secondary photons

at each occurrence) and scaling by the 22 pC primary beam charge, the simulation predicts

approximately 4 × 10−9 scattering events per shot, in agreement with the earlier estimate from

𝑁𝑠 ≈ 𝑛𝑥𝐿eff𝑁𝛾𝜎. Moreover, the scaling factor of 1014 for the photon-photon scattering cross

section used here aligns with the findings of [79]; that such a biasing factor is required in order to

measure scattering events with statistical significance. Similarly, the number of pair production

events is estimated in the same way as 3 × 10−4 per shot, which is within the range presented

in [105].

Figure 6.3 shows the phase space properties of the scattered photons (a-c) and the positrons

generated by linear Breit-Wheeler production (d-f). Both the scattered photons and the generated

positrons are similarly distributed in angle, exhibiting two peaks centred on 𝛿 = ±5 mrad with

a width of Δ𝛿 ≈ 9 mrad. The presence of the two peaks is due to the symmetry between the
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Figure 6.3: Simulated phase space information for the elastically scattered photons (top row) and
Breit-Wheeler produced positrons (bottom row) using the benchmarking parameters. (a), (d) shows the
energy spectra of the corresponding particles, (b), (e) the energy-angle double differential distribution and
(c), (f) the spatial profile transverse to the bremsstrahlung beam direction.

outgoing particles in both the Breit-Wheeler production and photon-photon scattering processes.

Additionally, the spatial profiles of both photons and positrons are almost identical, with the

signal forming a disk of 1/𝑒2 radius 10 mm. The angle-integrated energy spectra however are

markedly different; the positrons exhibit a distinct peak energy at ≈130 MeV, whereas the photon

spectrum is dominated by the scattering to lower energies.

6.1.2 Optimisation of the Photon Beams

Since the cross section is fixed and the effective length of the x-ray field will remain on the same

order of magnitude, the most viable method of increasing the scattering yield is to increase the

number of bremsstrahlung photons per shot, and also the x-ray density. The bremsstrahlung is

directly tied to the efficiency in producing LWFA electrons within the plasma, and hence to the

driver laser for this interaction. Similarly, the x-ray conversion efficiency and hence density are

determined by the driving laser as well. Table 6.1 shows various facilities that have available

multi-PW and kJ-class lasers. The facilities with dual-beam capabilities are the most appropriate

for the laser-plasma platform to investigate photon-photon processes.
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Bremsstrahlung Beam

It has been demonstrated that PW-scale lasers have been able to produce GeV-scale LWFA

electron beams [149, 150], which will generate a large amount of bremsstrahlung photons as

discussed in Section 2.5. As discussed in Section 2.5, the choice of converter target affects the

quality of the generated bremsstrahlung beam, both in terms of energy content and angular spread.

In order to maximise both the energy contained in the beam and the areal density, the target

material and thickness need to be selected appropriately. If the target is too thin, an insufficient

amount of photons is produced; too thick and the outgoing beam suffers multiple scattering,

which increases the angular size and also reduces the mean energy. Figure 6.4 shows the results

of a set of Geant4 simulations of a monoenergetic 5 GeV pencil-like electron beam interacting

with a converter target of various materials and thicknesses. In order to determine the optimum

material and thickness, the energy density of the outgoing beam is chosen as the figure of merit;

this combines the need for a high energy content and fluence, similar to a previous optimisation

study at lower electron energies [151]. The energy density is calculated by determining the total

energy included within the 1/𝑒2 radius of the beam. From Fig. 6.4, the optimum thickness for

a converter target, regardless of material, is within the range of 5-15% of the radiation length.

Additionally, the choice of converter is largely unimportant, offering at most a 20% increase in

the energy density. In the Kettle et al. experiment [105], a 1 mm bismuth converter was used,

which is consistent with a 15% 𝑋0 thickness.

For the 10 PW beam-line at ELI-NP in Table 6.1, the anticipated properties of generated

LWFA electrons were presented in detail in [152] and are used here as a case study for

bremsstrahlung production. Using quasi-3D PIC simulations, [152] state that it is possible to

produce a quasi-monoenergetic electron beam of central energy 𝐸 = 4.2 GeV (15% FWHM

spread), an RMS divergence 𝛿rms = 3 mrad and a charge 𝑄𝑒 ≳ 12 nC. A Geant4 simulation

using such an electron beam as input and an iron converter target with a thickness of 4.4 mm

(25% of 𝑋0, where the optimum in Fig. 6.4 is seen), the resultant bremsstrahlung beam was

scored as shown in Fig. 6.5.

In Fig. 6.5a, both the energy spectrum of the bremsstrahlung and the complementary

cumulative spectrum (CCS) are shown together with a total number of photons of 1.7 ×
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Figure 6.4: Simulated energy density of a bremsstrahlung beam produced by a monoenergetic 5 GeV
electron beam impinging a target of various thicknesses and tungsten (blue, circle), iron (orange, square),
and beryllium (green, cross) composition. Target thicknesses are given as a percentage of the material
radiation length, 𝑋0.

1011 nC−1. From the CCS, approximately 10% of the photon beam has energy greater than

1 GeV, corresponding to 𝑁𝛾 ≈ 4 × 1011, which is desirable for reaching a ZMF energy,
√
𝑠 ≳ 1 MeV where the photon-photon scattering cross section is maximised. Additionally, the

divergence and size at a distance 1.05 m from the converter of the beam have also been shown

as a function of energy. This was done by partitioning the phase space of the bremsstrahlung

output into discrete energy bins, then determining the corresponding statistic for each bin. As

can be seen from Figs. 6.5b and 6.5c, both the beam size and divergence are uniform across

the energy spectrum, with some statistical fluctuations at the high energy end of the spectrum.

Therefore, the mean value of these distributions can be taken as the representative dimensions

of the beam, resulting in a bremsstrahlung beam of transverse 1/𝑒2 radius 4.3 mm and RMS

divergence 3.5 mrad. A half-block of lead shielding, as in [105], is set into the beam after the

converter, reducing the beam to half-circle. This prevents the bremsstrahlung photons from

interacting with the target used to generate the x-ray field, which would otherwise produce a

significant amount of noise.

Since all energies are, approximately, equally contained within this beam size, a range of
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Figure 6.5: Properties of the bremsstrahlung beam generated using the ELI-NP electron beam incident
on a 4.4 mm iron target. (a) shows the energy spectrum of the photons (blue) and the CCS (orange). (b)
shows the 1/𝑒2 size in 𝑥 (blue) and 𝑦 (orange) for each energy of the beam, at a distance of 1.05 m from the
target. (c) shows the RMS angular divergence for the same energy divisions. For (b) and (c), the mean
values of the quantities are represented by dashed horizontal lines.
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ZMF energies will be possible upon collision with the x-ray field. Therefore, an effective
√
𝑠 can

be defined as

√
𝑠eff ≡ ⟨√𝑠⟩ =

∫
d𝜔1 𝑓1(𝜔1)

∫
d𝜔2 𝑓2(𝜔2)

∫
d𝜃

√︁
2𝜔1𝜔2(1 − cos 𝜃) (6.2)

where the 𝑓 𝑗 (𝜔 𝑗 ) are the energy spectra of the bremsstrahlung ( 𝑗 = 1) and x-rays ( 𝑗 = 2),

normalised to unit integral. A flat distribution is assumed for the x-ray spectrum, 𝑓2(𝜔2),
between 1.3 keV and 1.5 keV; the angular distribution is limited by the extent of the x-ray field,

which is assumed to be constant in the interval 𝜃 ∈ [𝜙, 𝜋 − 𝜙] where 𝜙 = arctan 1/1.5 = 0.58 rad,

the effective ZMF energy using the spectrum shown in Fig. 6.5a is
√
𝑠eff = 1.7 MeV.

X-Ray Field

The x-ray field affects the number of scattering events according, approximately, to the combi-

nation 𝑛𝑥𝐿eff = 𝑁𝑥/𝐴𝐿eff𝐿eff, where 𝐴 is the transverse interaction area. Hence, the quantity to

consider optimising is the areal density of the x-ray field, which is independent of the effective

length. Since the transverse interaction area is determined primarily by the bremsstrahlung beam,

the areal density can be optimised by increasing the produced x-ray yield. A comprehensive

study is provided in [153] of the x-ray emission of irradiated foils which are particularly useful

for extracting some estimates of scaling for the photon density with laser energy and duration.

The quantity of interest in [153] is the x-ray conversion efficiency, 𝜉𝑥 , measured in photons

per unit of incident laser energy; an additional normalisation to solid angle is given, however this

amounts to a factor of 4𝜋 as emission is assumed to be isotropic. The number of emitted x-ray

photons is then 𝜉𝑥E𝐿 , where E𝐿 is the laser energy. For laser energies up to 40 J, with the range

increased to 120 J in [154], [153] demonstrates a linear relationship between the conversion

efficiency and the laser energy, and hence 𝜉𝑥E𝐿 ∝ E2
𝐿 .

The laser pulse duration, 𝜏𝐿 , also has been found to influence the x-ray production. Generally,

longer pulses generate a longer plasma which allows for more efficient coupling of the laser

energy via inverse bremsstrahlung [154, 155]. This is shown in Fig. 6.6, where 𝜉𝐿 is highest for a

combination of both higher laser energy and longer duration pulses. For higher intensities, where

𝑎0 ≫ 1, plasma heating by inverse bremsstrahlung becomes less efficient due to the increase in
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Figure 6.6: Conversion efficiency for producing M-L transition x-rays by irradiating palladium targets
for different pulse durations and laser energies for a laser wavelength of 530 nm. Representation of data
extracted from [153].

the relativistic mass of the oscillating electrons and occurrence of non-linear effects. Hence, if

the laser energy is increased with a compensatory increase in the pulse duration to maintain

a non-relativistic intensity (∼ 1015W cm−2), the scaling of the x-ray yield up to E𝐿 ∼ 1 kJ can

be assumed to be at most quadratic. Therefore, scaling from the 10 J to 1 kJ gives an order of

magnitude estimate for a best-case achievable x-ray areal density as 𝑛𝑥𝐿eff ∼ 1016mm−2.

6.1.3 Simulations using Enhanced Sources

Since the ELI-NP electron beam with an optimised converter target can produce a bremsstrahlung

beam with ∼ 1011 photons of energy greater than 1 GeV, this results in a factor of 104 increase

in 𝑁𝛾 compared to the original experiment in [105]. Similarly, assuming the best case scaling

of the x-ray generation with laser energy, a factor of 104 in the combination 𝑛𝑥𝐿eff could be

achieved. Combining these, this gives a new number of scattering events 108 times higher than

the benchmarking case, corresponding to 0.1 events per shot. With this substantial increase in the

event rate, it would be possible to achieve a statistically significant data sample within a typical

experimental time frame. In fact, if the x-ray source remains identical to that in [105] and only the

electron source is upgraded, a factor of 104 increase in the scattering yield reduces the minimum

125



6.1. SIMULATION OF THE SCATTERED SIGNAL

required continuous run time at 0.02 Hz to see a single scattering event to approximately 60 days.

While impractical for current facilities, this is an extremely encouraging advancement for future

QED experiments as such electron sources from LWFA at multi-PW facilities are becoming

more and more routine to produce.

These two cases are simulated as examples of the potential signal that could be generated

with such electron and x-ray parameters. The electron beam discussed in Section 6.1.2 is used

as the primary particle source in the simulations, with the x-ray field modelled similarly to the

benchmarking case. The simplified implementation of a cylinder of radius 10 mm with the areal

density, 𝑛𝑥𝐿eff, scaled by the appropriate amount as in Section 6.1.2. This density is taken to be

the average value within the effective interaction volume, 1 mm from the x-ray source, as for the

benchmarking simulations. For the purposes of these simulations, the same interaction length of

3 mm as in the benchmarking simulations is used, assuming a similar rate of isotropic expansion

for the x-ray field; only the photon density is then scaled by the stated factor.

The number of events are seen in Fig. 6.7, normalised to the incident electron charge. As

predicted from the simplistic order-of-magnitude estimate, there is a factor of 105 · 5× 102 ∼ 108

increase between the fully scaled case and the benchmark for the photon-photon scattering yield,

with a 10 · 5 × 102 ≈ 104 increase in the electron-scaled case. Additionally, the Breit-Wheeler

process benefits from a similar improvement as expected, with ≈ 103 events per shot using the

fully-scaled configuration.

Due to the higher maximum, and hence mean, energy of the bremsstrahlung source, the phase

space distribution of the positrons and photons are consequently different to the benchmarking

case. The energy distribution of both the Breit-Wheeler positrons and scattered photons retains

the broadband bremsstrahlung-like shape up to ≈5 GeV. The angular distribution is also affected,

with the cones of radiation centred on 𝛿 ≈ ±2 mrad with an asymmetric width of Δ𝛿 ≈ 5 mrad.

This narrowing of the radiation cone is typical of QED scattering processes as it is an effect of

the Lorentz contraction when transforming from the ZMF frame to the laboratory frame. The

spatial distribution is also much more confined than the benchmarking case, with Figs. 6.3c

and 6.3f showing a quasi-uniform distribution of the signal within the 10 mm radius circle. With

the higher energy source, the signal is distributed more like a Gaussian within a disk of 1/𝑒2
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radius 5 mm.

6.2 Feasibility of Future Investigations

From the simulations detailed in the previous section, it is evident that with current PW-scale and

higher power future facilities, there is a strong feasibility to measure the rare elastic photon-photon

processes directly in experiment for the first time. While the discussion in Section 6.1 is rather

general, assuming order-of-magnitude scalings for the producible x-ray fields and bremsstrahlung

beams, they demonstrate that experimental run-times to observe these events could be reduced

to the order of a minutes or hours if single-event observation is possible. If a particular facility

with known configuration and parameters is chosen, a more precise modelling of the signal and

background could be achieved, including hydrodynamic simulations of the x-ray generation and

the achievable LWFA electron source.

The value of a few days for the required experimental run time to observe a single event is an

absolute minimum for any particular configuration. Fluctuations in the background, as well as

the capability of the selected detectors to resolve the signal, will generally increase the necessary

run time in order to achieve sufficient statistics. Following the definition of the signal to noise
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Figure 6.8: Simulated phase space information for the elastically scattered photons (top row) and
Breit-Wheeler produced positrons (bottom row) using the ELI-NP electron beam parameters and the x-ray
field described in [105]. (a), (d) shows the energy spectra of the corresponding particles, (b), (e) the
energy-angle double differential distribution and (c), (f) the spatial profile transverse to the bremsstrahlung
beam direction.
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Figure 6.9: Simulated phase space information for the elastically scattered photons (top row) and
Breit-Wheeler produced positrons (bottom row) using the ELI-NP electron beam parameters and best-case
scaling for the x-ray field. (a), (d) shows the energy spectra of the corresponding particles, (b), (e) the
energy-angle double differential distribution and (c), (f) the spatial profile transverse to the bremsstrahlung
beam direction.
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in [99] as the mean-to-variance ratio SNR𝜎 = 𝜇/𝜎, an estimate of number of shots required to

measure the signal with statistical significance can be made. 𝜇 is the mean value for the signal

over the multiple shots and 𝜎2 is the signal variance, which is related to the uncertainty due to

the detector and the background as 𝜎2 = 𝜎2
det +𝜎2

bkg. Since 𝑁det = 𝑁sig +𝑁bkg, 𝜎2
det = 𝜎

2
sig +𝜎2

bkg

as the background and signal are independent. Therefore, the total variance in 𝑁sig = 𝑁det −𝑁bkg

is 𝜎2 = 𝜎2
sig + 2𝜎2

bkg. The background variance, 𝜎2
bkg, requires full-scale simulations in order to

be estimated appropriately, however the signal variance, 𝜎2
sig, can be estimated using the results

of the simulations from the previous section. For the following, the ideal case of a constant,

well-defined background is assumed such that 𝜎2
bkg = 0.

If a simple counting detector is used to observe the elastic scattering or linear Breit-Wheeler

signal (either positrons or electrons), the observed signal obeys Poissonian statistics with a

variance 𝜎2
sig = 𝑁sig; if the detector has an efficiency, 𝜂, then 𝑁sig → 𝜂𝑁sig. In this case, the

mean-to-variance SNR takes the form SNR𝜎 =
√︁
𝜂𝑁sig. Using the values from Fig. 6.7, with the

ELI-NP electron source and scaled laser/x-ray density parameters, the observed signal particles is

2900 for Breit-Wheeler positrons and 0.1 for elastically scattered photons. Hence, for a perfectly

efficient detector, this results in an SNR𝜎 of 53.9 and 0.32. For a detector such as the GBP

discussed in Chapter 5, the response of the detector is proportional to the photon flux incident

on it, and so could be used to infer the number of scattering events by measuring the photon

beam with and without the x-ray field present. [145] estimate an efficiency 𝜂 ≈ 0.14, resulting

in SNR𝜎 ≈ 0.12.

Using a detector that provides resolution in energy, such as the GRS from Chapter 4, the

signal-to-noise ratio becomes a function of energy. For an energy interval of width Δ𝐸 , the

number of particles contained in this interval is then d𝑁
d𝐸Δ𝐸 ; again assuming a Poisson distribution

for the content of each interval, the signal-to-noise is analogously given by

SNR𝜎 (𝐸) =
√︂
𝜂(𝐸)d𝑁

d𝐸
Δ𝐸 (6.3)

For the GRS, the efficiency is determined by several factors: first is the conversion of the

photon beam to electron-positron pairs, which determines how much of the photon spectrum

is sampled and "made known" to the detector and reconstruction algorithm. After conversion,
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Figure 6.10: The (a) SNR𝜎 for a single shot using the GRS and (b) the cumulative SNR𝜎 , calculated
using Eq. (6.3), using the detector efficiency described in the text and the energy spectrum of the elastically
scattered photons as shown in Fig. 6.9a.

the dispersion of the electron-positron pairs, and their collection, in the magnetic spectrometer

component also affects the performance of the reconstruction as a better resolved spectrum

will produce a more faithful reconstruction. Since these latter points are determined by the

precise configuration of the GRS and can, in principle, be optimised to increase efficiency as

much as possible, the conversion of the photon beam is the limiting factor. From Eq. (2.43), the

conversion efficiency, defined to be the ratio of the number of converted photons to those incident,

is 𝜂(𝜔) = 1− e−𝜇(𝜔)𝑡 , where 𝜇 = 𝑁𝐴𝑋0𝜎/𝐴 is the attenuation factor and 𝑡 is the converter thickness

in units of the material radiation length. Using the corrected Bethe-Heitler cross section model

employed by Geant4, and the energy spectrum of the scattered photons from Fig. 6.9a, the SNR𝜎

from Eq. (6.3) is shown in Fig. 6.10 for a tungsten converter target of nominal thickness 𝑡 = 1%

(𝑋0 = 6.76 g cm−2). The SNR𝜎 has a very similar shape to the scattered photon spectrum, due

to the weak logarithmic dependence of the Bethe-Heitler cross section on photon energy up to

𝜔 ∼ 1 GeV, where the cross section becomes approximately constant.

It is also productive to consider what energies in the bremsstrahlung source are most likely

to be scattered in the x-ray field. This can be done by weighting the incident bremsstrahlung

spectrum in Fig. 6.5 with the photon-photon scattering cross section Fig. 6.11a and averaging
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Figure 6.11: (a) The photon scattering cross section, in units of the (reduced) electron Compton
wavelength, as a function of the ZMF photon energy, (b) the normalised scattering likelihood (orange) for
the bremsstrahlung spectrum in Fig. 6.5a (shown for reference in blue), calculated using Eq. (6.4).

over x-ray photon energies and collision angles:

L(𝜔) ∝
∫

d𝐸𝑥 𝑓 (𝐸𝑥)
∫

d𝜃
d𝑁𝛾
d𝜔

𝜎[𝑠(𝜔, 𝐸𝑥 , 𝜃)] . (6.4)

The normalisation of this weighted spectrum, or scattering likelihood, is chosen such that∫
L(𝜔) d𝜔 = 1. 𝑓 (𝐸𝑥) is x-ray energy spectrum, which is assumed here to be uniform in

1.3 keV to 1.5 keV. The resulting likelihood is depicted in Fig. 6.11b, which the bremsstrahlung

spectrum for reference as well. Due to the peak in the scattering cross section at a ZMF

energy 𝜔ZMF =
√
𝑠/2 ≈ 1 MeV, there is a distinct peak in the scattering likelihood; for the given

bremsstrahlung spectrum, this corresponds to an approximate range of 0.8 GeV to 1.6 GeV.

Therefore, photons within this energy range in the bremsstrahlung source are more likely to

undergo elastic scattering in the x-ray field. Since the scattered photons occupy the interval

[0, 𝜔𝛾 + 𝜔𝑥] ≃ [0, 𝜔𝛾], where 𝜔𝛾 is the energy of the bremsstrahlung photon and 𝜔𝑥 the

x-ray photon energy, the signal interval could be focused on photon energies up to ≈1.6 GeV.

Additionally, since the photons are scattered symmetrically into this interval, the range could be

further reduced to 0.8 GeV to 1.6 GeV. This will half the number of signal photons, however the

background count will also be further reduced in this region, in principle improving the SNR𝜎

further.
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The above values of the SNR𝜎 are calculated using the statistics of a single shot. By repeating

measurements over 𝑘 shots, the mean signal is ⟨𝑁sig⟩ ≈ 𝑘𝑁sig/𝑘 = 𝑁sig, with the signal variance

determined by the standard error ⟨𝜎2
sig⟩ = 𝜎2

sig/𝑘; this results in an amended signal-to-noise of

SNR(𝑘)
𝜎 =

√︁
𝑘 · 𝜂𝑁sig. Defining a SNR(𝑘)

𝜎 ≳ 10 as sufficient to statistically resolve signal, only

one shot is required to observe the Breit-Wheeler positron signal assuming the detector has

an efficiency greater than 0.03. If the elastically scattered photons are measured using the

GBP, as an example, approximately 6900 shots must be taken to meet this requirement on the

signal-to-noise. For the GRS, using Fig. 6.10, the cumulative signal-to-noise is calculated by

the quadrature sum of each SNR𝜎 (𝜔); the total integrated SNR𝜎 over all photon energies is

3.0 × 10−2. The number of shots required to achieve a total integrated signal-to-noise greater

than 10 is then ∼ 1.5 × 105; at a repetition rate of a shot per minute, this is equivalent to an

experimental run time of approximately 63 weeks, assuming operation at 8 hours per day, 5 days

a week.

The above estimates for the signal-to-noise have assumed that the background is constant and

well-known with 𝜎2
bkg = 0. We now consider the allowed level of fluctuations in the background

which minimally affect the signal-to-noise. Including the background in the calculation,

𝜎2 = 𝜎2
sig + 2𝜎2

bkg, and so defining SNRtrue as the true signal-to-noise with the background

fluctuations included and SNRopt as the optimum considered previously with 𝜎bkg = 0, their

ratio is given by

𝜀 ≡ SNRtrue
SNRopt

=

[
1 + 2

𝜎2
bkg

𝜎2
sig

]−1/2

. (6.5)

Hence, for a given reduction in the signal-to-noise, 0 < 𝜀 ≤ 1, the allowed variance in the

background is 𝜎2
bkg = 1/2 · (

𝜀−2 − 1
)
𝜎2

sig. This holds for both the signal shot variance and

for the average over 𝑘 shots. As an example, consider an experimental campaign that has

one week of total run time. With a repetition rate of one shot per minute, the signal is then

accumulated over ≈ 104 shots. Using the GBP with 𝜂 = 0.14, the variation in the signal is

𝜎2
sig = 𝜂𝑁sig/𝑘 ≈ 1.4 × 10−6; this results in an optimal signal-to-noise of SNRopt ≈ 12. If the

true signal-to-noise, accounting for the non-constant background, is to be at worst a factor

of ten smaller than the optimal, i.e. 𝜀 = 1/10, the background variance can then be at most

𝜎2
bkg ≈ 7 × 10−5 over the 104 shots. For a single shot, this corresponds to a background variance
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of 0.7. Using the same value of 𝜀, the allowed variation in the positron background to ensure an

SNR(𝑘)
𝜎 ≳ 10 over 104 shots when observing Breit-Wheeler production is 𝜎bkg ∼ 0.27, following

the same calculation as above; 𝜎bkg ∼ 2700 is the corresponding single-shot variation in the

positron background.

Even if the required number of shots or the consistency of the background cannot be reached

to obtain an SNR𝜎 ≳ 10, it is still possible to place a constraint on the magnitude of the cross

section. Since 𝑁sig ∝ 𝜎, then if the cross section is scaled by some bias factor, 𝜆𝐵, then𝜎 → 𝜆𝐵𝜎

and so SNR𝜎 → √
𝜆𝐵SNR𝜎. Then, in order to reach the requirement for the signal-to-noise, the

cross section enhancement needs to be

𝜆𝐵 ≳

(
10

SNR𝜎

)2
. (6.6)

If SNR𝜎 ≥ 10, then clearly the cross section does not need biased. To connect the value of 𝜆𝐵

to an upper bound on the cross section, consider the following: if the true cross section were

larger than 𝜆𝐵𝜎, then the signal-to-noise would be greater than 10 and signal could be resolved.

Hence, 𝜆𝐵𝜎 represents the largest possible value the cross section could have that is consistent

with not observing signal in a statistically significant manner.

Figure 6.12 shows the bounding biasing factor as a function of the number of shots taken,

and for different levels of background fluctuation. In Fig. 6.12a, the single-shot SNR𝜎 is taken

as 0.12, accounting for the efficiency of the GBP. Similarly in Fig. 6.12b, the quoted single-shot

signal-to-noise value is taken as the integrated value up to 1.6 GeV in Fig. 6.10. As is expected,

increasing the number of shots allows for a tighter constraint to be placed on the scattering cross

section. Assuming a constant background, even a single shot is sufficient to bound the scattering

cross section to within a factor of ∼ 104 using the GBP; this is seven orders of magnitude smaller

than the current best bound in [79]. Even with background fluctuations (𝜎2
bkg) that are 106 times

greater than the signal variance, it is still possible to constrain the cross section to the same level

as in [79] with a single shot. The performance of the GRS is similar, however the tightness of

the constraint is reduced due to the comparatively lower efficiency of the spectrometer than the

GBP.
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Figure 6.12: Cross section scaling factor that would give an SNR𝜎 = 10 for (a) the GBP and (b) the GRS,
as in Eq. (6.6), assuming a constant background (blue, circles). The values for the true single-shot SNR𝜎
are shown inset for each. Different amounts of background fluctuation are shown in coloured, dashed
lines as 𝜎bkg/𝜎sig: 2 (orange), 10 (green), 100 (red), and 1000 (purple). The number of shots equivalent to
one day and one week of operation are also marked; assuming a rate of one shot per minute and 8 hours ×
5 days as a standard working week.

6.3 Conclusions

The measurement of rare processes such as linear Breit-Wheeler pair production and elastic photon-

photon scattering present a large challenge, even with modern technology and experimental

means. Here, a configuration detailed and implemented in [104, 105] was considered, using

typical electron beam parameters that could be readily obtained at current and next-generation

PW-scale facilities, such as ELI-NP or NSF OPAL. Additionally, physical arguments were given

to support the use of a kJ-class laser to generate a higher density x-ray scattering field than

that achieved in [79, 105]. By using the high power laser to produce a high-yield, high energy

bremsstrahlung beam via LWFA electrons impinging a solid target, it has been demonstrated

using simulations that it is possible to increase the rate of these rare processes by several orders of

magnitude. With this configuration, it is possible to produce ∼ 103 Breit-Wheeler positrons per

shot and a single elastic photon-photon scattering event within ∼ 10 shots. Under the assumption

of a constant, well-defined background, it is possible to achieve a signal-to-noise ratio (defined

as in terms of the mean-to-variance dispersion index) of ∼ 50 for the Breit-Wheeler positron

signal and ∼ 0.3 for the scattered photon signal, assuming perfect detector efficiency. In order
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to achieve an SNR𝜎 ≳ 10, ∼ 102 − 103 shots are required for analysis of the photon signal; a

signal shot is sufficient for the positron signal. These values represent an absolutely efficient

configuration with constant background; if the background also fluctuates on a shot-to-shot

basis, this increases the number of required shots to achieve the same signal-to-noise level. This

constraint on the background fluctuations is rather strict, with a simple estimate indicating that

the background variance must be 𝜎2
bkg ≲ 1.0 per shot, in order for the signal-to-noise to be

within a factor of ten of its optimal value. Although this may preclude a direct observation

of elastic photon-photon scattering, it could still be used to constrain the cross section within

the smallest bound to date, four orders of magnitude smaller than [79]. Even with significant

fluctuations, it is still possible to constrain the cross section within a single shot to at least the

same magnitude as [79]. By accumulating data over many shots, the upper limit on the cross

section can be greatly reduced.

With a specific choice of facility, and precise knowledge of the laser parameters, it is possible

to perform more detailed simulations, including more accurate modelling of the x-ray scattering

fields to account for spatial gradients and distribution. For instance, from Table 6.1, the most

viable facilities that currently exist are ELI-BL and ELI-NP, where it is possible to have both a

∼ 10 PW and ∼ 1 kJ dual-beam configuration. The NSF OPAL facility at University of Rochester,

USA is currently under development, aiming to provide a dual-25 PW beam as well.

Additionally, it is possible to develop an experimental setup which can further decrease the

background by careful choice of detector systems, configuration and shielding; this knowledge is

also required to more precisely simulate the background levels and its shot-to-shot fluctuations.

The configuration presented in [104, 105] with a source typical of multi-PW facilities is

well-suited to investigating two-photon or linear Breit-Wheeler pair production, with a large

signal-to-noise ratio per shot. In an extended campaign over many shots, while observing

Breit-Wheeler production, measurements of the resultant photons allows for investigation of the

elastic photon-photon scattering process simultaneously. Although the signal is much smaller in

yield than the Breit-Wheeler positrons, inferences on the observations can be made to bound the

scattering cross section tighter than the current best [79]. Hence, the simplified investigation

performed here demonstrates that experimental observation of elastic photon-photon processes
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is becoming increasingly more feasible with next-generation facilities.
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Chapter 7

Outlook and Future Work

7.1 Improvements to the GRS Reconstruction Algorithm

The deconvolution algorithm presented in Section 4.1 was the second iteration of a recon-

struction method designed to retrieve the photon spectrum from the Bethe-Heitler produced

electron/positron spectrum. The first version of this algorithm was based on a back-substitution

approach, mathematically equivalent to matrix inversion. While this was demonstrated in [25] to

reconstruct the photon spectrum and edge-like features with the required accuracy for Compton-

scattered sources, an analysis of the error propagation within the method revealed that the error

would exponentially at each step; a problem that is well-known to occur for ill-conditioned

problems. This lead to the current iteration of the deconvolution algorithm, which utilises a

statistically-motivated Bayesian approach to the reconstruction. As such, error quantification is

better defined and mitigates the exponential explosion the back-substitution approach suffered.

It is envisioned that the algorithm could be further improved, by combining the Bayesian

nature of the method with machine learning (ML) techniques. Within recent years, ML techniques

have grown in popularity for data reconstruction and retrieval problems due to their "black box"

approach; once trained, they can operate on data with minimal supervision [156, 157, 158].

ML has already been successfully utilised in the context of SFQED experiments, for example,

inferring collision parameters in a radiation reaction experiment from electron spectra [159].

In fact, an ML approach has already been discussed for a pair spectrometer at FACET-II,

137



7.2. FURTHER DEVELOPMENTS TO THE GBP

SLAC [160], which is similar in operation the one described here and in [25, 26]. By upgrading

the current deconvolution algorithm to include such ML techniques, it could be possible to have

a live, self-learning diagnostic within experiments that has improved robustness to shot-to-shot

fluctuations.

7.2 Further Developments to the GBP

The gamma beam profiler (GBP) is a sapphire-strip type detector, capable of measuring the

spatial profile of high-energy, high-flux photons in two orthogonal directions. Measurements

from such a detector are designed to be complementary to the intensity inference method detailed

in Chapter 5, extracting the profile size of a Compton-scattered photon beam to estimate the 𝑎0

at the interaction of an electron beam with an intense laser pulse.

The theory developed in Section 5.1 made use of results calculated within the LCFA

framework, particularly the photon emission rate. One limitation of the LCFA is that it is only

valid for 𝑎0 ≫ 1, and for 𝑎0 ∼ O(1), effects such as interference are not included. The LMA

framework circumvents this problem, and has been shown to accurately produce spectral effects

which are present in full QED calculations that the LCFA is unable to capture. This improvement

in modelling is important for 𝑎0 ∼ O(1), tending to the LCFA results as 𝑎0 becomes large.

However, results obtained using the LMA typically have intractable or even non-analytical forms,

meaning it is difficult to directly integrate the LMA into existing theory without numerical or

first-principles approaches.

For low 𝑎0 ≲ 1, the LMA predicts that the emission profile of Compton-scattered photons

produced by electrons in a linearly polarised background has the characteristic shape of dipole

radiation - with emission parallel to the polarisation of the field suppressed compared to the

orthogonal axis; this is the reverse behaviour seen at large 𝑎0 in Chapter 5. Clearly, the inference

method cannot be used in such a regime as the combination 𝜎2
∥ − 𝜎2

⊥ will be negative, resulting

in a non-physical, complex-valued inferred intensity. Hence, there is the challenge of including

LMA effects into the inference technique, so that it can also be used in the 𝑎0 ≲ 1 regime.

Even without the LMA corrections, the intensity inference technique and the GBP have great
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potential in SFQED experiments. This detector has been proposed to be used in an upcoming

experiment at ELI-BP, Czechia to measure photons produced in non-linear QED processes,

with one objective to observe the transition between LMA and LCFA models. As the inference

technique functions under the same assumptions as the LCFA, deviations of the inferred intensity

relative to the nominal value could point to inaccuracy of the LCFA at low 𝑎0. Additionally,

further experimental testing of the detector performance, particularly its response to a photon

source, is also envisioned following the results [145], which utilised an electron beam at CLEAR,

CERN to characterise the charge collection efficiency of the detector over periods of irradiation.

7.3 Next-Generation Facilities for Elastic Two-Photon Pro-

cesses

Direct observation of two-photon processes such as linear Breit-Wheeler pair production and

elastic photon-photon scattering present an outstanding challenge for experimental physics as

outlined in Section 2.4. A recent experiment [79, 105] used an experimental configuration

proposed in [104], involving the interaction of a high-energy bremsstrahlung beam with a dense

x-ray field, to give the tightest bound on the photon-photon scattering cross section to date.

Chapter 6 quantifies the potential gain the same configuration can produce using a high-energy

LWFA electron source typical of a multi-PW facility such as ELI-NP, Romania [152], as well as

the increased x-ray density possible using exploding foils.

At the University of Rochester, the NSF OPAL facility is currently under development to

provide dual 25 PW beam capability, delivering 500 J in 20 fs [161]. This facility aims to study

physics within intense electromagnetic fields, such as SFQED and laser-driven nuclear physics.

With such laser parameters, it will be possible to access regions of (𝑎0, 𝜒) parameter space that

have never been reached before, surpassing even LUXE and E-320, potentially even reaching the

Ritus-Narozhny limit [147]. Another proposed facility that is under construction is the Station

of Extreme Light (SEL), Shanghai, China which aims to deliver beams up to 100 PW [162]. As

evidenced in Section 6.1, frontier facilities such as these are prime candidates for exploring the

rare two-photon processes, as well as strong-field QED in the high 𝜒 regime. The increased
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intensities that are possible will increased the accelerated electron yield from a LWFA source,

increasing the expected yield above that quoted in Section 6.1.

The generation of the x-ray field is also a point of further development. Qualitatively from

the arguments in Section 6.1.2, the increased laser energy and stretching of the pulse duration

can greatly enhance the achievable density using an exploding foil source. However, as 𝜆 ∼ 1 µm

for both NSF OPAL and SEL, this will require frequency doubling to attain the efficient x-ray

conversion discussed in [153]. Recent results show that ∼ 60 − 80% of the laser energy can be

maintained upon 2𝜔 conversion [163, 164]. In [104], hohlraums were proposed as an x-ray

source however their use presented an additional challenge in laser stability and timing for

producing a uniform, high density field.

Other experimental configurations involving the direct interaction of two and three light beams

have also been analysed on a theoretical basis [85, 86] for light-by-light scattering, as well as

using a Compton-produced photon source [103]. While this offers a cleaner environment to study

two-photon processes, without the presence of substantial background as in the bremsstrahlung/x-

ray configuration, synchronising the spatiotemporal overlap of the multiple beams presents a

new challenge. Additionally, due to potential imperfections in the vacuum at the interaction

point, the intense laser pulses can induce competing scattering due to plasma cavitation [165].

However, with further technological development, these challenges could be overcome and the

multi-beam configuration could also be a viable approach to observe photon-photon scattering at

facilities such as NSF OPAL and SEL.
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