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Abstract: In a simple extension of the standard model (SM), a pair of vector like lepton
doublets (L1 and L2) and a SU(2)L scalar doublet (η) have been introduced to help in
accommodating the discrepancy in determination of the anomalous magnetic moments of
the light leptons, namely, e and µ. Moreover, to make our scenario friendly to a Dirac like
neutrino and also for a consistent dark matter phenomenology, we specifically add a singlet
scalar (S) and a singlet fermion (ψ) in the set-up. However, the singlet states also induce a
meaningful contribution in other charged lepton processes. A discrete symmetry Z2 ×Z ′2
has been imposed under which all the SM particles are even while the new particles may be
assumed to have odd charges. In a bottom-up approach, with a minimal particle content,
we systematically explore the available parameter space in terms of couplings and masses
of the new particles. Here a number of observables associated with the SM leptons have
been considered, e.g., masses and mixings of neutrinos, (g − 2) anomalies of e, µ, charged
lepton flavor violating (cLFV) observables and the dark matter (DM) phenomenology of a
singlet-doublet dark matter. Neutrinos, promoted as the Dirac type states, acquire mass at
one loop level after the discrete Z ′2 symmetry gets softly broken, while the unbroken Z2
keeps the dark matter stable. The mixing between the singlet ψ and the doublet vector
lepton can be constrained to satisfy the electroweak precision observables and the spin
independent (SI) direct detection (DD) cross section of the dark matter. In this analysis,
potentially important LHC bounds have also been discussed.
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1 Introduction

The standard model (SM) of particle physics has been quite successful in explaining the
interactions of elementary particles [1]. The recent discovery of a Higgs boson with a
mass of 125GeV at the Large Hadron Collider [2, 3] has been showing good agreements
with the SM expectations [4, 5]. However, there exists a few experimental and theoretical
issues, which cannot be explained in the SM paradigm, thus, hint towards a more complete
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theory — beyond SM physics (BSM) at the TeV scale. Among these signatures, the precise
measurement of the dark matter (DM) abundance and the non-zero values of the neutrino
masses and mixings are of particular interests to us. Here, one may broadly recall the issues
at hand. (i) Assuming the origin of the dark matter is related to a new kind of particle,
the simplest and most compelling candidate has been considered as a weakly interacting
massive particle (WIMP). The experiments like PLANCK [6] and WMAP [7] have already
provided precise measurements of DM relic density. WIMPs with masses ∼ 1TeV can
lead to the correct relic density through its annihilations to SM particles. Such a mass
scale can be probed at the high-energy collider experiments like the LHC and also at the
dark matter direct detection experiments. (ii) Non-zero neutrino masses and substantial
mixing among the three light neutrino states require specific extensions of the SM. In the
simplest case, one may introduce right handed neutrinos νR and assumes a Dirac mass
term mD for the neutrinos. But, then the neutrino Yukawa couplings are assumed to be
' 10−11 to generate a neutrino mass ∼ 0.1 eV. However, being a singlet under the SM
gauge group, νR can also accommodate a large Majorana mass parameter M which violates
the lepton number by 2 units. Such a mass term leads to an attractive possibility — called
“seesaw mechanism” where the light neutrinos νL obtain an effective small Majorana mass
term [8–10]. The tinyness of neutrino masses can be explained naturally without requiring
a tiny Yukawa coupling. Though seesaw mechanism is more favoured, experimentally, the
searches to probe the Majorana nature of neutrinos through neutrinoless double beta decay
experiments have not yet lead to any conclusive evidence. So the simple idea of considering
neutrino as a Dirac particle has been still quite popular.

There have already been many proposals which may incorporate new particles and
appropriate mixings, thus, explains the masses for neutrinos and the dark matter abundance
in the extensions of the SM. However, it is more natural to consider that there exists
a tie-up between these two important pieces which may lead to a somewhat economical
and an attractive extension of the SM to deal with. Driven by the same pursuit, here we
will also furnish a connection between these two important issues assuming neutrino as
a Dirac particle. Interestingly and more importantly, we will observe that the precision
observables like anomalous magnetic moments of µ (aµ = (g−2)µ

2 ) and e (ae = (g−2)e
2 ) can

be accommodated along with the experimental constraints related to the charged lepton
flavor violations.

The idea of neutrino as a Dirac particle has revived in the recent past when the main
theoretical objection of having a very tiny tree level Yukawa coupling has been addressed
through the radiative generation of neutrino masses [11–24] (for a review see [25]). The
main idea is simple and can be realized through an additional Z2 × Z ′2 symmetry in the
SM set up: (1) one may assume a discrete symmetry (here Z ′2) to forbid a tree-level Dirac
neutrino masses. This symmetry would be finally broken softly to generate a tiny neutrino
mass through a radiative mechanism. (2) New fields may be introduced; in the simplest
case, an inert scalar doublet (η+ η0)T and neutral singlet fermions can be considered (see
below) to radiatively induce neutrino masses in the loop. The new fields may transform odd
under the another Z2 symmetry to prohibit their couplings with the other SM fermions,
thus, offers an interesting possibility where the lightest state (a new Z2 odd fermion or
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a neutral scalar) may become the cold dark matter (CDM) of the universe. This class of
models where neutrinos acquire masses through dark matter in the loop, thereby connects
the two important BSM aspects of the particle physics has been dubbed as “scotogenic”
model [26]. In the original idea, the neutrino masses have been assumed to be of Majorana
type. However, one may employ the same idea to generate the masses for the neutrinos
radiatively considering them as the Dirac particle, if a symmetry like global or gauge U(1)
symmetry is assumed to prohibit the Majorana mass term in the Lagrangian [14].

Assuming the lepton number as a good symmetry of the Lagrangian at the backdrop of
our work we start our discussion with a simple realization.1 We consider new leptons/scalars
at the electroweak (EW) scale in addition to the usual right handed neutrinos νR: singlet
Dirac fermion(s) (N), two scalars — an inert scalar doublet η and a real singlet scalar S in
the particle content of the SM. A perturbative value of the coupling Y`N̄R`η (` ∈ e, µ, τ)
may help to realize tiny nature of the neutrino Yukawa couplings radiatively, if the other
interaction terms YRN̄SνR and µ′η†HS are included in the interacting Lagrangian. Here
the last term µ′ can be regarded as the soft symmetry breaking parameter. As in the case
of a “scotogenic” model, with proper charge assignments under Z2 ×Z ′2 symmetry, Dirac
masses for the SM neutrinos, proportional to the soft breaking scale µ′, would be generated
radiatively through a N − η − S loop. Similarly, observable abundance of the dark matter
N would follow naturally. However, this simple model fall short to account for the BSM
contributions in the measurement of the anomalous magnetic moment of muon aµ [33],
though can help to acclimatize the measurement of ae. Primarily, the non-SM contribution,
controlled by the N − η± loop, comes out to be negative while the discrepancy in the muon
anomalous magnetic moment ∆aµ requires a positive boost, thus, disfavours this simple
set-up (for a generic discussion on the new physics contributions to aµ, see [34–36]).

We next consider the vector like (VL) leptons in place of singlet Dirac like state N
in the SM set-up, without changing the basic structure of the model. For a color singlet
VL, left and right handed components transform similarly under the SM gauge symmetries,
and one may observe that ∆aµ can be accommodated through the mixings with the SM
leptons [37–41]. However, addressing ae along with aµ invites a further modification. We,
thus introduce a pair of SU(2) vector like leptons L1 ≡ (L0

1 L−1 )T , L2 ≡ (L0
2 L−2 )T with

same hypercharge (but charged differently under Z2 ×Z ′2 symmetry) which can be found
to be suitable when coupled to new states; e.g., an inert Higgs doublet η, a real singlet
scalar S and a SM singlet fermion ψ in the present context. As in the previous case, S
acts to realize the soft breaking of Z ′2 symmetry; thus to generate Dirac masses for the
neutrinos while ψ has its role to realize the proper dark matter abundance. In fact, L1 and
ψ can enjoy the same transformation properties under the Z2 × Z ′2 symmetry; thus the
neutral L0

1 and ψ can mix to provide with a suitable candidate for dark matter (χ0) and to
accommodate (g − 2)e anomaly through neutral fermions and charged scalars running in
the loop. The charged components of the new leptons help to explain the other anomaly in
(g − 2)µ. Naturally, neutrino mass as well as cLFV processes receive contributions from
the diagrams that involve both of the VL leptons in the loops. In [40], authors find that a

1For some recent works, see [19, 27–32].
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vector like lepton doublet in presence of a right handed neutrino and inert Higgs doublet
may indeed be helpful in explaining (g − 2)µ deviation while the tiny Majorana masses for
the neutrinos can also be generated in a “scotogenic” model. Here we will try to find if the
both anomalous (g− 2)µ and (g− 2)e can be accommodated with the said particle contents
while neutrinos acquire Dirac masses through dark matter χ0 in the loop.

In dark matter phenomenology, singlet-doublet DM χ0 comprised of L0
1 and singlet

ψ, could just be able to produce the correct relic abundance [42–50]. Admitting only VL
doublet lepton L0

1, one finds a large DM-nucleon elastic cross-section through Z mediated
processes, thus has essentially been ruled out by the experiments such as XENON1T [51]
or LUX [52]. As a natural deviation, one finds that a singlet-doublet fermion dark matter,
through its SM singlet component may escape the stringent direct detection bounds. For
practical purposes, the dark matter particle has to be essentially dominated by the singlet
component, while only a very small doublet part can be allowed. For the same reason, we
purposefully introduce ψ in the particle content.

We organise our paper as follows. In section 2, we explain the details of our model
including the new particles and their charges under the complete gauge group which would
be considered. After electroweak symmetry breaking (EWSB), our model predicts additional
neutral and charged leptons. Consequently, relevant interactions of the new particles with
the SM particles can be realized. Theoretical and experimental bounds on their couplings
and masses have been summarized in 3. These include (i) anomalous magnetic moments
and different charged lepton flavor violating decays of the SM leptons, (ii) vacuum stability
of the tree level scalar potential, (iii) Electroweak precision observables (EWPO) and (iv)
collider physics constraints. In the results sections, we present radiative generation of the
neutrino masses and mixing angles in section 4. As discussed, one of the motivations is to
show that our model can accommodate anomalous magnetic moments of the lighter charged
leptons. We depict the parameter space of our model in section 5, where discrepancies in
aµ/e can simultaneously be satisfied. Subsequently, we probe our model parameters with
different charged lepton flavor violating (cLFV) observables, namely `α → `βγ, `α → 3`β
and flavor violating decays of Z boson. DM phenomenology including the relic density
and the direct detection of a singlet-doublet fermionic DM have been covered in section 6.
Finally, we conclude this work in section 7.

2 The model: relevant Lagrangian and scalar potential at the tree level

As stated, the proposed model is a simple extension of the Standard Model where we
augment two scalars, namely a real singlet (S) and a SU(2)L doublet η ≡ (η+ η0)T , two
vector like lepton doublets L1 ≡ (L0

1 L−1 )T , L2 ≡ (L0
2 L−2 )T , a singlet fermion ψ and

the usual SM singlet right handed neutrinos νR. All the new states are charged under an
additional Z2 ×Z ′2 symmetry (see table 1).

The allowed interactions of the new fields and the SM fields can be read from the
following Lagrangian:

L = LSM + Lnew , (2.1)
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where Lnew, the new physics Lagrangian is given by,

Lnew =

iL̄1��DL1−ML1L̄1L1+iL̄2��DL2−ML2L̄2L2+iψ̄�∂ψ−Mψψ̄ψ−[
Y1(1i)L̄1Lη`Ri+Y2(1i)L̄2Lη̃νRi+Y3(i1) ¯̀

iL2S+Y4(i1) ¯̀
iη̃ψ+Y5L̄1H̃ψ+Y6(1i)Sψ̄LνRi+h.c.

]
+

+(∂µS)†(∂µS)+(Dµη)†(Dµη)−V (η,H,S). (2.2)

Here, Dµ is the SU(2)L × U(1)Y covariant derivative and V (η,H, S) is the scalar potential.
We define field Φ̃ as iτ2Φ∗. We are following the convention QEM = T3 + Y . For clarity, we
refrain from explicit showing of SU(2) contractions. Except for the right handed neutrinos,
single generation of all the other new states would suffice for our purpose (see table 1 for
details). Here we note that, L1 and L2 are assumed to have different charges under Z2×Z ′2
symmetry. Interacting Lagrangian is realized through the new Yukawa couplings Y1 · · · Y6
where in the parenthesis, number of the fermion generations that are involved, are presented.
All the Yukawa couplings are assumed to be real. The new fermion states L1, L2, ψ and
also the RH neutrino νR have one unit of lepton number to preserve the lepton number
conservation. Moreover, in this work, VLs can only couple to the SM leptons through the
new scalar states which do not acquire any vacuum expectation values (VEV); thus the
masses and mixings of the SM charged leptons would remain unaffected. In eq. (2.2), the
interaction between L1 and SM singlet ψ is felicitated through the SM Higgs H which
drives the DM phenomenology.

Finally, we may express the scalar potential V (η,H, S) in eq. (2.2) which adheres the
proposed symmetry as follows:

V (η,H, S) =

µ2
HH

†H + µ2
ηη
†η + µ2

SS
†S + λH

(
H†H

)2
+ λη

(
η†η

)2
+ λS

(
S†S

)2
+ ληH

(
η†η

) (
H†H

)
+ λ′ηH

(
η†H

) (
H†η

)
+
λ′′ηH

2

[(
η†H

)2
+ h.c

]
+ λHS

(
H†H

) (
S†S

)
+ ληS

(
η†η

) (
S†S

)
.

(2.3)

There can be a few additional terms like which are allowed by gauge and Lorentz invariance,
but due to the imposed Z2 ×Z ′2 symmetry these terms transform non-trivially and hence
are forbidden (see e.g., last four terms in table 1(b)). This in turn ensures that the new
scalars S, η do not acquire any induced VEV. As usual µ2

H can take negative values. As
stated, to generate the mass terms for the SM neutrinos, Z ′2 symmetry can be broken
explicitly by introducing a soft breaking term at the scalar potential,

LSB = µ′η†HS . (2.4)

Since µ′ breaks the Z ′2, it may be argued to be very small, thus may be helpful in fitting
neutrino masses. Similarly, L̄1L2 can also accommodate a soft beraking term. The mass
term can also be generated at the two loops (∝ µ′) which we assume to be small for further
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consideration. If the VL states would be considered to transform identically under Z ′2,
then we will have a restricted class of the Yukawa terms and consequently accommodating
the anomalous magnetic momemts of µ and e simultaneously cannot be realized in this
proposed model with the given particle content. However, we may consider a global U(1)
symmetry (the charge assignments could read as L1, S, Ψ, η=1 while L2=-1 with all the
SM particles including νR assume zero charges), then our model and its phenomenology
would be completely unchanged. Infact, it will make the dark matter stable thus Z2 can be
assumed to be replaced.

Before discussing the phenomenology, let us briefly outline the role of different discrete
symmetries in the present analysis. We assume Z2 to be an exact symmetry which always
ensures that (i) a tree level Dirac like neutrino mass term, e.g., ¯̀H̃ψ would be absent and
(ii) χ0, the singlet like admixture of L0

1 and ψ, a state odd under Z2 may become stable
to form the cold dark matter. On the other hand Z ′2 forbids the usual tree level Yukawa
interaction ¯̀H̃νR, but it needs to be broken softly to generate neutrino masses through
radiative corrections. Additionally, there are a few other couplings among the new fields
and the SM fields which fail to qualify as the valid interactions. For a better understanding,
we list them in table 1 along with their transformations under the proposed symmetry
group. Here

√
and × refer to the occasions when a particular interaction term turns out to

be even or odd under a symmetry operation respectively.

Possible completion of the model at the GUT scale: here we discuss a possibility
to embed our low energy model to a larger gauge group e.g., SO(10). Specific gauge breaking
chains may include, e.g., left-right (LR) symmetric phase at the intermediate scale [53–57],

SO(10) →
MGUT

SU(3)C × SU(2)L × SU(2)R ×U(1)B−L →
MLR

SM (2.5)

withMGUT denoting the breaking scale of SO(10) gauge group which is subsequently broken
to the SM at MLR < MGUT . There are a few reasons for considering the LR models: (i)
the particle content contains automatically the right-handed neutrino, (ii) a TeV scale LR
symmetric intermediate phase may be obtained within a class of renormalizable SO(10)
GUTs with a perfect gauge coupling unification [58]. Here one has to account for a few
copies of one or two types of extra fields; e.g., additioanl triplet and/or doublet scalars
under SU(2)R. However, for different possibitites, we refer the reader to ref. [58]. Of
course, the new scalars can effect the low energy phenomenology e.g., (g − 2)µ through
a gauge invariant interaction at the LR scale. The matter content of the model along
with their possible transformations at each intermediate stage is given in table 2. Here
Q, Qc, L and Lc (we follow the notation in [56]) are the quark and lepton families with
the addition of (three) right-handed neutrino(s) νR. The SM Higgs and the inert doublet
can be included as bidoublets under SU(2)L × SU(2)R. More than a single bidoublet is
required for a correct Yukawa Lagrangian at the low scale [58]. Similarly, transformations
of the VL states L1,2 and the SM singlet states are noted. The electric charges of particles
are calculated through the eigenvalues of the left (T3L) and right (T3R) generators of the
SU(2)L and SU(2)R groups, respectively, as QEM = T3L + T3R + (B − L)/2. The index
c refers to the equivalent SM field which transforms under SU(2)R. All the interaction
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Fields Generation SU(2)L ×U(1)Y Z2 Z ′2
` = (νL eL)T 3 2, -1/2 +1 +1
`R = (eR, µR, τR) 3 1, -1 +1 +1
QL = (uL dL)T 3 2, 1/6 +1 +1
UR = (uR, cR, tR) 3 1, 2/3 +1 +1
DR = (dR, sR, bR) 3 1, -1/3 +1 +1

H =
(
0 1√

2(v + h)
)T 1 2, 1/2 +1 +1

νR 3 1, 0 +1 -1
ψ 1 1, 0 -1 +1

L1 = (L0
1 L−1 )T 1 2, -1/2 -1 +1

L2 = (L0
2 L−2 )T 1 2, -1/2 -1 -1

η =
(
η+ η0)T 1 2, 1/2 -1 +1
S 1 1, 0 -1 -1

(a)

Forbidden terms SU(2)L U(1)Y Z2 Z ′2
¯̀HψR (¯̀H̃ψR)

√
× (
√

) ×
√

¯̀HνR (¯̀H̃νR)
√

× (
√

)
√

×
¯̀ηνR (¯̀̃ηνR)

√
× (
√

) × ×
¯̀
RSψ

√
×

√
×

L̄2Hψ (L̄2H̃ψ)
√

× (
√

)
√

×
¯̀L1S

√ √ √
×

L̄2η`R (L̄2η̃`R)
√ √

(×)
√

×
L̄1ηνR (L̄1η̃νR)

√
× (
√

)
√

×
L̄1L2S

√ √
×

√

ληHSS(η†H)(S†S)
√ √

×
√

λ(η†H)
√ √

×
√

λSSS(S†S)S
√ √

× ×
λ3S

√ √
× ×

(b)

Table 1. (a) Particles and their transformations under SU(2)L ×U(1)Y ×Z2 ×Z ′2. (b) Forbidden
interaction terms and their transformations under different gauge and discrete symmetries.
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Fields Generation 3c2L2R1B−L SO(10)
Q 3 (3, 2, 1, 1/3) 16
Qc 3 (3̄, 1, 2, -1/3) 16
L 3 (1, 2, 1, -1) 16
Lc 3 (1, 1, 2, 1) 16
Φ 2 (1, 2, 2, 0) 10
L1,2 2 (1, 2, 1, -1) 16
L̂1,2 2 (1, 2, 1, 1) 16
ψ 1 (1, 1, 2, -1) 16
ψ̂ 1 (1, 1, 2, 1) 16
S 1 (1, 1, 1, 0) 1

Table 2. One of the Possible completion of the particle content under SO(10).

terms in eq. (2.2) can now be cast under the enlagred gauge symmetry. For example,
Y1(1i)L̄1Lη`Ri can be cast as LT1 ΦLc which, under, SO(10) goes as 16× 10× 16. Similarly,
Y6(1i)Sψ̄LνRi can be cast as SψLc which, under, SO(10) goes as 1 × 16 × 16. Though
the particle contents can easily be accommodated under a unified gauge group, one has
to admit a minor change, e.g., ψ in eq. (2.2) should refer to the neutral component of
SU(2)R doublet in table 2. Alternatively, one may also consider the symmetry breaking
chain as SO(10)→ SU(5)×U(1)X → SU(3)C × SU(2)L ×U(1)Y ×U(1)X which was earlier
considered in refs. [40, 59].

Mixings and couplings of the VL states with bosons and fermions: as can be
seen from eq. (2.2) that lepton phenomenology is primarily governed by the new Yukawa
couplings Yi(i = 1 . . . 6). Apparently, the first four couplings are more important for the
phenomenology in the lepton sector, while Y5 primarily controls the DM physics. The
Yukawa interactions involving the singlet states may contribute to neutrino masses and
also the dark matter relic abundance. For a generic study, we keep all the couplings with
Yi(i = 1 . . . 6) in the flavor space.

Let us first start our discussion with the interactions mediated by Y5 in eq. (2.2). The
Yukawa interaction, Y5L̄1H̃ψ generates a mass matrix,

M =

Mψ
Y5v√

2
Y5v√

2 ML1

 , (2.6)

in the basis of (ψ, L0
1). We can rotate this to the mass basis with the help of (2 × 2)

orthogonal matrix, such thatMD = U †MU , where,

U =
(

cosθ −sinθ
sinθ cosθ

)
. (2.7)

The two mass eigenstates can be defined as,

χ0 = cosθ ψ + sinθ L0
1, (2.8)

χ1 = −sinθ ψ + cosθ L0
1, (2.9)
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with the masses are given by,

Mχ0 = ML1sin2θ +Mψcos2θ + Y5v√
2

sin2θ, (2.10)

Mχ1 = ML1cos2θ +Mψsin2θ − Y5v√
2

sin2θ. (2.11)

The mixing angle is defined as,

tan2θ =
√

2(Y5v)
Mψ −ML1

. (2.12)

If we assume a small mixing angle i.e., θ � 1 then χ1 is dominantly doublet-like with a
small admixture of singlet ψ, while χ0 is mostly singlet-like. Since the direct detection
experiments require DM to be mostly singlet dominated, we can propose χ0 as the DM
candidate with the condition that Mχ0 < Mχ1 , which is further ensured by the choice
Mψ < ML1 . The Yukawa coupling Y5, now being a dependent parameter, can be expressed
in terms of Mχ1 , Mχ0 and θ through the following relation,

Y5 = −(Mχ1 −Mχ0) sin2θ
v
√

2
. (2.13)

At this point we can recast the Yukawa terms in eq. (2.2) in this new basis of (χ0, χ1) as:

Lnew ⊃Y1(1i)
[
cosθχ̄1η

+`Ri+ sinθχ̄0η
+`Ri+L̄−1 η0`Ri

]
+Y2(1i)

[
L̄0

2η
0−L̄−2 η

−
]
νRi

+Y3(i1)
[
ν̄liL

0
2S+ēliL−2 S

]
+Y4(i1)

[
ν̄liη

0
(
cosθχ0−sinθχ1

)
−ēliη−

(
cosθχ0−sinθχ1

)]
+Y6(1i)

[
cosθSχ̄0νRi− sinθSχ̄1νRi

]
+h.c.

+ Y5√
2
h
[
(χ̄0χ0−χ̄1χ1)sin2θ+(χ̄1χ0+χ̄0χ1)cos2θ

]
. (2.14)

All the Yukawa couplings appearing above need to satisfy a generic condition |Y | ≤ 4π so
to remain perturbative at the TeV scale. Similarly, the terms appearing in the covariant
derivative can be collected to write down the couplings with the gauge bosons. Using
Dµ = ∂µ − i g

cos θW

(
T 3 − sin2 θWQ

)
Zµ − ieQAµ, one finds that,

Lnew ⊃
g√
2

[
cosθχ̄1γ

µL−1 +sinθχ̄0γ
µL−1 +L̄0

2γ
µL−2

]
W+
µ +h.c.

+ g

2cosθW

[
cos2θ χ̄1γ

µχ1+sin2θ χ̄0γ
µχ0+ 1

2sin2θ (χ̄1γ
µχ0+χ̄0γ

µχ1)+L̄0
2γ
µL0

2

]
Zµ

+ g

cosθW

(
−1

2 +sin2 θW

)[
L̄−1 γ

µL−1 +L̄−2 γµL−2
]
Zµ−e

[
L̄−1 γ

µL−1 +L̄−2 γµL−2
]
Aµ .

(2.15)

Note that, all the other terms in eq. (2.2) will not be affected by this basis change.

3 Bounds related to different experiments and theories

Here we review different bounds related to experimental searches and theories. We will
use the limits in delineating the parameter space consistent with the anomalous magnetic
moments of leptons, charged lepton flavor violations and the dark matter abundance.
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3.1 Anomalous magnetic moment and different LFV decays

Bounds on anomalous magnetic moment: from the first precision measurement of
the magnetic dipole moment of the muon aµ at BNL (Brookhaven National Laboratory),
the persistent discrepancy in its determination compared to its SM prediction has been
undoubtedly one of the most promising hints towards a new physics signal at the TeV
scale. The discrepancy can be expressed through its experimental measurements (≡ aexpµ )
and the SM prediction (≡ aSMµ ). The difference in the two values can be seen to be
driven by the BSM contributions (≡ ∆aµ). For the last many years, the experimental data
produced a roughly 3.7σ deviation from the standard model (SM) value [60–63]. For a
better understanding of the known physics, it was imperative to resolve the tension related
to the hadronic vacuum polarization (HVP) of aSMµ [64–71] (see also [63] and references
therein). The tension lies in the fact that a recent lattice-QCD [64] estimation of the HVP
may bring the SM prediction of aµ into agreement with experiments which seems to be
in contradiction with e+e− → hadrons cross section data and global fits to electroweak
precision observables [69, 71]. The Fermilab-based Muon g-2 experiment has just reported
a new result [72, 73] which, if combined with the BNL result reads 4.2σ deviation from the
SM value.2

∆aµ = (25.1± 5.9)× 10−10. (3.1)

Thus, as stated earlier, from eq. (3.1) it is clearly visible that one needs a positive BSM
contribution to satisfy the experimental constraint on ∆aµ. In the context of ae, the
experimental value has been updated in 2018 [90] from a precision measurement of the fine-
structure constant [91] that relies on the caesium recoil measurements. This measurement
also shows a possible disagreement between the experimental observation and theory
prediction, though with a less significance ∼ 3σ.

∆ae = −(8.7± 3.6)× 10−13. (3.2)

More importantly, here the measured value is lower than the corresponding SM prediction.
Following the improved estimates, specially in the evaluation of ae, attempts have been
made to link the both discrepancies with a common new physics origin [92–109]. Here
we note that a very recent determination of the fine structure constant [110], obtained
from the measurement of the recoil velocity on rubidium atoms, result into a positive
discrepancy of about 1.6σ. Clearly the discrepancy in the measurement of ae can only be
settled in the future. This work focuses on caesium recoil measurements, thus, eq. (3.2) in
the subsequent sections.

Bounds on charged lepton flavor violating decays: charged lepton flavor violating
processes, specifically `α → `βγ or `α → 3`β through photon penguins may be influenced by
the same dipole operators which provides the BSM contributions to aµ/e. Non observations of
any cLFV processes so far, can potentially constrain the new physics parameters. Currently,
the radiative decay of `α → `βγ, specifically µ→ eγ, is the leading candidate among the
cLFV observables to put a stringent constraint on the parameter space. In the future

2Recent measurement at the Fermilab has drawn some interests to our community [74–89].
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LFV Process Present Bound Future Sensitivity
Br(µ→ eγ) 4.2× 10−13 [117] 6× 10−14 [111]
Br(τ → eγ) 3.3× 10−8 [118] ∼ 3× 10−9 [115]
Br(τ → µγ) 4.4× 10−8 [118] ∼ 3× 10−9 [118]
Br(µ→ 3e) 1.0× 10−12 [114] ∼ 10−16 [112]
Br(τ → 3e) 2.7× 10−8 [119] ∼ 10−9 [115]
Br(τ → 3µ) 3.3× 10−8 [119] ∼ 10−9 [115]

Br(τ− → e−µ+µ−) 2.7× 10−8 [119] ∼ 10−9 [115]
Br(τ− → µ−e+e−) 1.8× 10−8 [119] ∼ 10−9 [115]
Br(τ− → e+µ−µ−) 1.7× 10−8 [119] ∼ 10−9 [115]
Br(τ− → µ+e−e−) 1.5× 10−8 [119] ∼ 10−9 [115]

Table 3. Current Experimental bounds and future sensitivities for the LFV processes.

upgrades, the MEG collaboration can reach a sensitivity of about 6× 10−14 after 3 years of
acquisition time [111]. Similarly, in the near future, µ→ 3e can be probed by the Mu3e
experiment [112, 113] with a branching ratio sensitivity of 10−16. A significant improvement
is expected compared to the present limit, set by the SINDRUM experiment [114]. An
impressive improvement on most of the LFV modes of the rare τ decays can be expected
from searches in B factories [115, 116]. Table 3 includes the present and future sensitivities
of the important cLFV processes which would be considered in this work.

3.2 Condition of vacuum stability and the masses of scalars

The scalar potential must be bounded from below i.e., it does not acquire negative infinite
value in any of the field directions for large field values. This physical requirement puts
certain constraints on the scalar couplings. Considering the tree level scalar potential, these
conditions are listed below [120].

λH , λη, λS > 0 ,

ληH + 2
√
ληλH > 0 ,

ληH + λ′ηH −
∣∣∣λ′′ηH ∣∣∣+ 2

√
ληλH > 0 ,

λHS + 2
√
λHλS > 0 ,

ληS + 2
√
ληλS > 0. (3.3)

After the electroweak symmetry breaking only H field gets a VEV, v ' 246GeV. Thus,
scalar fields can be expressed as:

H =
(

0
1√
2(v + h)

)
, η =

(
η+

1√
2(ηR + iηI)

)
, S = S. (3.4)
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Substituting H and η in eq. (2.3) one finds

M2
h = 2λHv2 ,

M2
ηR

= µ2
η + 1

2
(
ληH + λ′ηH + λ′′ηH

)
v2 ,

M2
ηI

= µ2
η + 1

2
(
ληH + λ′ηH − λ′′ηH

)
v2 ,

M2
η± = µ2

η + 1
2ληHv

2 ,

M2
S = µ2

S + 1
2λHSv

2 . (3.5)

We identify h as our SM like Higgs scalar with mass Mh ' 125GeV. Again for simplicity
we assume that the new scalars are heavier to forbid the constraints coming from the
invisible Z and h decays. Similarly the mass splitting between the charged and the neutral
components of the doublet η are considered to be negligible, i.e., MηI = MηR = Mη± ≡Mη.
This is indeed possible (see eq. (3.5)), if the couplings λ′ηH and λ′′ηH can be assumed to be
very small. In fact, λ′′ηH is absent under a global or gauge U(1) symmetry. However, such a
mass splitting may play a significant role for its discovery at the LHC (see e.g., [121]).

3.3 Electroweak precision observables (EWPO)

In the presence of two BSM scalars (η, S), two vector like lepton doublets (L1, L2) and
a singlet fermion (ψ), our model may introduce corrections to the gauge boson vacuum
polarization amplitudes or electroweak precision observables (EWPO). These observables
were initially discussed by Peskin and Takeuchi as S, T and U parameters in ref. [122].
Later Barbieri et al. introduced Ŝ, T̂ , W , Y [123] as the most general parameterization of
the new physics effects. Ŝ and T̂ are related to the original S and T parameters through
the simple relations: Ŝ = αS

4s2
W

and T̂ = αT , where α is the fine structure constant and
sW = sin θW . Among the generalized Peskin-Takeuchi parameters, W and Y are important
at LEP2 energy scale [123, 124], thus will not be considered here. Usually for any generic
model, one can find from the global analysis that the electroweak precision parameters are
much smaller (at the level of 10−3) and this does not depend on the mass of the Higgs
scalar. Our calculations of the precision observables are based upon refs. [124, 125].

The current experimental constraints are [62, 123],

Ŝ = (0.0± 1.3)× 10−3 , (3.6)
T̂ = (0.1± 0.9)× 10−3 . (3.7)

Inert doublet η may particularly effect T or T̂ parameter through λ′ηH and λ′′ηH [125].
But in the limit, MηI = MηR = Mη± ≡Mη, which we assume in the subsequent analysis,
the electroweak parameters seem to be unaffected by the presence of new scalars. Hence
the correction is completely due to the effect of vector like fermions (VLF), i.e., in our
model ∆(Ŝ, T̂ ) = (Ŝ, T̂ )V LF . Therefore, the correction in T̂ parameter appearing due to
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the mixing between L1 and ψ for q2 → 0 limit can be expressed as [124],

T̂ = g2

16π2M2
W

[
Π̃(ML1 ,ML1 , 0) + cos4 θ Π̃(Mχ1 ,Mχ1 , 0) + sin4 θ Π̃(Mχ0 ,Mχ0 , 0)

+ 2 sin2 θ cos2 θ Π̃(Mχ0 ,Mχ1 , 0)− 2 cos2 θ Π̃(ML1 ,Mχ1 , 0)− 2 sin2 θ Π̃(ML1 ,Mχ0 , 0)
]
,

(3.8)

where ML1 is the mass term for L−1 , g is the SU(2)L coupling constant, θ is the mixing
angle between L0

1 and ψ as discussed earlier, MW stands for the mass of W boson and

Π̃(ma,mb,0) =−1
2
(
m2
a+m2

b

)[
Div+ln

(
µ2

mamb

)]
− 1

4
(
m2
a+m2

b

)
−
(
m4
a+m4

b

)
4
(
m2
a−m2

b

) ln
(
m2
b

m2
a

)

+mamb

[
Div+ln

(
µ2

mamb

)
+1+

(
m2
a+m2

b

)
2
(
m2
a−m2

b

) ln
(
m2
b

m2
a

)]
,

(3.9)

is the correction to gauge boson propagators in presence of the new VLF’s. Div =
1
ε + ln(4π)−γ is the usual divergent piece appearing in the dimensional regularisation and µ
denotes the renormalization scale. One can easily see that for ma = mb, eq. (3.9) vanishes.
Hence eq. (3.8) simplifies to

T̂ = g2

16π2M2
W

[
2sin2 θ cos2 θ Π̃(Mχ0 ,Mχ1 ,0)−2cos2 θ Π̃(ML1 ,Mχ1 ,0)−2sin2 θ Π̃(ML1 ,Mχ0 ,0)

]
.

(3.10)

It can be noted that the divergent part of the first term of eq. (3.10) is cancelled by the
divergences encapsulated in the last two terms. Moreover in the limit, when the mass
splitting between ML1 and Mχ1 vanishes, (i.e., sin θ → 0) one finds T̂ → 0.

In our model, the correction in Ŝ can be parameterized as,

Ŝ = g2

16π2

[
Π̃′(ML1 ,ML1 , 0)− cos4 θ Π̃′(Mχ1 ,Mχ1 , 0)− sin4 θ Π̃′(Mχ0 ,Mχ0 , 0)

− 2 sin2 θ cos2 θ Π̃′(Mχ0 ,Mχ1 , 0)
]
, (3.11)

where the ‘′’ signifies derivative with respect to q2. The general expression for Π̃′(ma,mb, 0)
is given as [124, 126],

Π̃′ (ma,mb,0) =

1
3

[
Div+ln

(
µ2

mamb

)]
+m4

a−8m2
am

2
b+m4

b

9
(
m2
a−m2

b

)2 +
(
m2
a+m2

b

)(
m4
a−4m2

am
2
b+m4

b

)
6
(
m2
a−m2

b

)3 ln
(
m2
b

m2
a

)

+mamb

[ (
m2
a+m2

b

)
2
(
m2
a−m2

b

)2 + m2
am

2
b(

m2
a−m2

b

)3 ln
(
m2
b

m2
a

)]
. (3.12)

For ma = mb the above expression reduces to

Π̃′(ma,ma, 0) = 1
3

[
Div + ln

(
µ2

m2
a

)]
. (3.13)
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Figure 1. Constraints on ∆M = (Mχ1 −ML1) coming from the EWPO (a) T̂ and (b) Ŝ with
respective to Mχ1 for three different values of sin θ = 0.01, 0.1 and 0.3 when both Mχ1 and ML1

are varied randomly. Here Mχ0 = 120GeV is assumed. (c) and (d) shows the variation of ∆M as a
function of Mχ0 , when Mχ1 = 800GeV and ML1 is given by eq. (3.14).

It can be directly verified that the divergent parts along with the scaling factor µ get
cancelled when eq. (3.12) or eq. (3.13) is substituted in eq. (3.11).

Numerically, since the oblique parameters are sensitive to the mass splitting ∆M =
(Mχ1−ML1), we depict its variation withMχ1 in figure 1(a) and figure 1(b) for three different
values of sin θ = 0.01, 0.1 and 0.3 keeping DM mass Mχ0 = 120GeV. Clearly, electroweak
precision constraints on Ŝ is much relaxed compared to the oblique parameter T̂ to the new
fermions. For moderate or smaller values of χ1 mass, one finds that ∆M ≤ O(20)GeV is
allowed by the oblique parameter T̂ , which sets an upper bound on sin θ (' 0.1).

The bounds can be used to constrain the bare masses of the new fermions. For example,
one may always cast the bare masses ML1 and Mψ in terms of Mχ0 , Mχ1 and mixing
angle θ.

ML1 = Mχ1 cos2 θ +Mχ0 sin2 θ, (3.14)
Mψ = Mχ1 sin2 θ +Mχ0 cos2 θ. (3.15)

Notably, the change in ∆M is negligible to the variation with Mχ0 for a small mixing angle
(sin θ ≤ 0.1) (see figure 1(c) and (d)). In other words, the EWPOs are insensitive to the
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lightest neutral fermion mass Mχ0 as long as the mixing angle is not much high. In the
subsequent section, we consider sin θ ≤ 0.01, thus, in this regime, the mass of the charged
component of the VL, ML1 can easily be fixed through Mχ1 while satisfying all the bounds
coming from EWPOs.

3.4 Constraints from the collider observables

For vector like quarks, the LHC pair production cross section is determined from QCD, so
model independent bounds can be placed in the parameter space. However, for the vector
like leptons, the pair-production cross section is mediated by the s-channel electroweak
vector boson exchanges, thus depends on the respective SU(2)L and U(1)Y couplings of the
new states. As the cross section would reside on the lower side, much weaker bounds can
be expected. There are several searches by the LHC collaborations [127–129] at

√
s = 8

and 13TeV run at the LHC. As expected, the constraint is much more stringent for a pure
SU(2)L VL pair that mixes with and decays to SM leptons. For example, heavy lepton
mass values in the range 114 − 176GeV are excluded through decay into Z boson and
e, µ. In some recent analysis, the CMS collaboration has published [128, 129] the results of
dedicated searches for doublet-like VLs, based on 41.4 fb−1 and 77.4 fb−1 data samples
at
√
s = 13TeV. The bounds can exclude a VL heavy τ ′ lepton in the mass range of

130− 690GeV or 120 < τ ′ < 790GeV following its decays to tau leptons. The mass of the
VL is the only free parameter both in the production cross section and in the branching
fraction calculations, thus in the estimation of the bound. In a recent analysis [130], using a
CMS search based on 77.4 fb−1 at 13TeV LHC a bound on doublet-like vector leptons has
been presented (∼ 800GeV) mainly focusing on 4` final states. Unlike most of the studies
presented above, in this model, direct couplings of L1, L2 with SM leptons are not allowed.
Similarly, a recent analysis [131], using ATLAS search based on 139 fb−1 at 13TeV LHC
presents the exclusion limits on simplified SUSY models for a direct slepton production.
Here slepton-pair production masses up to 700GeV are excluded assuming three generations
of mass-degenerate sleptons, considering sleptons decaying into final states with two leptons
and missing transverse energy. However, such exclusion limits depend much on the masses
of the lightest neutralino and it has been observed that even a lighter smuon mass is also
allowed depending on the value of mχ̃0

1
(e.g. mµ̃ ∼ 200GeV is allowed for mχ̃0

1
∼ 120GeV).

In the framework that we considered, we shall place ML1(Mχ1) at 800GeV, but the
other VL L2 has to be set at a lower value (e.g.∼ 200GeV) in order to satisfy (g − 2)µ
constraints. Here we may note a few observations which would be detailed in the next
sections. First of all, we will find that, the potentially important contribution in the
evaluation of ∆aµ would be driven by the interaction involving coupling Y3µ and in the
perturbative unitarity regime (will be discussed in section 5) Y3µ can only take ∼ O(1)
values. We will further observe that all other Yukawa couplings of L2 would be orders of
magnitude suppressed either from the neutrino masses and mixings or from (g − 2)e and
cLFV observables. Thus, the dominant decay of L2 can be considered as L2 → µS followed
by S → χ0ν (ML1(Mχ1) > ML2 > MS > Mχ0 would be followed throughout this analysis).
So, naturally, PP → (L±2 L∓2 )→ 2µ+ E/T through Z boson exchange can be considered as
the most useful constraint for the present analysis. Here we may borrow the limits from
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ν̄L L0
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νRY3 Y2

〈H〉

(a)

ν̄L χ1/χ0

η0 S

νRy1/y0 z1/z0

〈H〉

(b)

Figure 2. Radiative mass generation for the neutrinos that adheres lepton number conservation.
In the second diagram, neutral fermions are considered where y1, z1 = −(Y4(i1), Y6(1i))sinθ, y0, z0 =
(Y4(i1), Y6(1i))cosθ have been used.

.

ref. [131] as direct production of sleptons or VL states would have same cross-section. Thus,
based upon our previous discussion, we would consider ML2 = 190 GeV and mχ̃0

1
= 120GeV

respectively for the calculation of different observables in the leptonic sector.
In our model, η couples to leptons, so can only be produced through electroweak

gauge bosons at the LHC. Also, recall that η does not acquire any VEV, thus do not
take part in electroweak symmetry breaking. In a model specific study, one would expect
dilepton +E/T [121, 132] through charged η pair production, or mono-lepton + E/T through
charged and neutral η productions via Z boson or W boson exchanges. An observable
signal may be expected during high luminosity run of LHC through multilepton searches
for Mη ≤ 250GeV [121]. Here, assuming all the charged and neutral components of η are
of similar masses, we consider Mη > 100GeV which is closely based on the exclusions at
LEP [133]. However, our result does not depend much on Mη.

4 Radiative Dirac neutrino mass

As discussed, here neutrinos are massless at the tree level due to the imposed Z2 × Z ′2
symmetry while they may receive appropriate radiative corrections through the symmetry
breaking term in eq. (2.4). Thus one may develop a Dirac mass term for the SM neutrinos at
one loop order after the Higgs field acquires a VEV. Additionally, the neutrino loops contain
a stable particle χ0 that could be treated as the cold DM of the universe [see figure 2(b)].
This intrinsically sets up a bridge between the phenomenology of light neutrinos and the
other sectors like dark matter. The (3× 3) neutrino mass matrix can be read as:

Mνij =
∑

f=L2,χ1,χ0

yf i1Mfz
f
1jr

f
1

16π2M2
S

(
rf1 − 1

) ε
 ln

(
rf1/r2

)
rf1 − r2

− lnr2

rf1 (r2 − 1)

 . (4.1)
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Similarly, rf1 =
(
Mf

MS

)2
, r2 =

(
Mη

MS

)2
and ε = µ′〈H〉 is the symmetry breaking term,

with a mass dimension of 2. For each element in f ∈ (L2, χ1, χ0), the vertices y and z take
(3× 1) and (1× 3) elements respectively which can be read as yf = (Y3,−Y4sinθ, Y4cosθ)
and zf = (Y2,−Y6sinθ, Y6cosθ). Just as a measure of simplification, we can consider
ML2 ∼Mχ1 ∼Mχ0 ≡Mf , so that eq. (4.1) becomes,

Mνij = Mf

(
Y3i1Y21j + Y4i1Y61j

) r1
16π2M2

S(r1 − 1) ε
[ ln(r1/r2)
r1 − r2

− lnr2
r1(r2 − 1)

]
. (4.2)

In the above, ε defines the order of the neutrino masses. Thus all the new Yukawa couplings
can be assumed to take O(1) values. The diagonal mass terms diag[mi] which refer to
the masses for the physical neutrino states are related to the flavor states Mνij by the
following equation,

Mνij = UPMNS(diag[mi])U †PMNS ; (4.3)

where the PMNS matrix can be parameterized as [1]:

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


× diag

(
1, eiα21/2, eiα31/2

)
, (4.4)

in which sij ≡ sin θij , cij ≡ cos θij ; δ is the Dirac CP violating phase, and α21,31 are
Majorana CP violating phases. Note that, using the global fit based on the current neutrino
data, one may compute |Mνij | in terms of the different mass hierarchies, namely, normal
hierarchy ∆m2

32 > 0 (NH) and inverted hierarchy ∆m2
32 < 0 (IH) as [134] (∆m2

ij ≡ m2
i −m2

j ).
Taking m1(3) = 0 for NH (IH), and zero values for the Majorana phases (α21(31) = 0) and
the 3σ uncertainties, the magnitudes of the neutrino mass matrix elements in units of eV
for NH and IH can be estimated as:

|Mνij | '

0.11− 0.45 0.12− 0.82 0.12− 0.82
0.12− 0.82 2.4− 3.3 2.0− 2.2
0.12− 0.82 2.0− 2.2 2.2− 3.1

× 10−2 ,

|Mνij | '

 4.8− 5.0 0.41− 0.65 0.39− 0.62
0.41− 0.65 1.9− 2.8 2.4− 2.6
0.39− 0.62 2.4− 2.6 2.2− 3.1

× 10−2 . (4.5)

Here, following eqs. (4.5) and (4.1) we may note a few observations related to the neutrino
masses and mixings. In fact eq. (4.1) can be cast as Mνij = ∑

f=L2,χ1,χ0 yi1Λfz1j and with
all the BSM particles ∼ O(102 − 103)GeV, one may find that Λf ' O(10−1 − 10−2) eV.
Thus, the involved Yukawa couplings may take O(1) values to produce the correct values of
the neutrino mass matrix as obtained in eq. (4.5). Interestingly, out of the four Yukawas,
only Y3(i1) and Y4(i1) (i ∈ 1 . . . 3) appear in most of the low energy phenomenology which
are of interest to us. This includes neutrino masses and their mixings, precision observables
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parameter best fit ± 3σ range
∆m2

21 [10−5eV2] 7.05–8.14

|∆m2
31| [10−3eV2] (NH) 2.41–2.60

|∆m2
31| [10−3eV2] (IH) 2.31–2.51

sin2 θ12 0.273–0.379

sin2 θ23(NH) 0.445–0.599

sin2 θ23 (IH) 0.453–0.598

sin2 θ13 (NH) 0.0196–0.0241
sin2 θ13 (IH) 0.0199–0.0244
δ/π (NH) 0.87–1.94
δ/π (IH) 1.12–1.94

Table 4. Neutrino oscillation parameters summary determined from the global analysis [134].

{Y3i, Y4i} {Y2i, Y6i}
Y3e = 0, Y4e = 0.2 0.001 ≤ Y2e ≤ 0.01, 0.018 ≤ Y6e ≤ 0.04
Y3µ = 2.3, Y4µ = 0 0.034 ≤ Y2µ ≤ 0.048, 0.11 ≤ Y6µ ≤ 0.12
Y3τ = 0.01, Y4τ = 0.6 0.029 ≤ Y2τ ≤ 0.032, 0.12 ≤ Y6τ ≤ 0.14

Table 5. Allowed range of {Y2i, Y6i} as obtained from eq. (4.2) (for MS = 130GeV, Mf = 800GeV
and Mη = 300GeV) within which the magnitudes of the neutrino mass matrix elements for
NH [eq. (4.5)] can be satisfied.

like the anomalous magnetic moment of leptons or the cLFV processes and also the DM
phenomenology. On the other hand, the other two Yukawa couplings Y2(1i) and Y6(1i) (six
in total) related to the singlet state νRi can control the neutrino masses and mixings. Thus,
one may always use the freedom of choosing the free parameters Y2 and Y6 to satisfy the
observed mass square differences and mixing angles while Y3 and Y4 may be tuned to satisfy
the observables related to low energy lepton phenomenology.

To clarify it further numerically, we fix MS = 130GeV, Mf = 800GeV and Mη =
300GeV and use eq. (4.2) to delineate the domain for Y2(1i) and Y6(1i) that may produce
correct values for |Mνij | in eq. (4.5) in the NH scenario. For simplicity, we recast the
parameter as Y2(1i) = Y2i and Y6(1i) = Y6i (see also the discussion in section 5). We also
fix {Y3, Y4} at the given values (see table 5) which would be allowed by (g − 2)` and cLFV
constraints. We would further detail it in section 5. The lower and upper limits in table 5
would refer to the minimum and maximum value of the |Mνij | in eq. (4.5).
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Figure 3. Diagrams contributing to lepton (g − 2) and `α → `βγ processes.

5 Lepton g − 2, cLFV processes and other constraints

In the lepton phenomenology, apart from tuning the µ and e anomaly, new scalars η, S,
charged fermions L±2 , L±1 and neutral leptons χ1 and χ0 may lead to observable signatures
to lepton flavor violating processes such as `α → `βγ, or `α → 3`β through the Yukawa
couplings Y1, Y3 and Y4 that tie the SM leptons to BSM particles. The free parameters can
be listed as:

Mχ1 , Mχ0 , MS , Mη, ML2 , Y1(1i), Y3(i1), Y4(i1) (i ∈ e, µ, τ ), sin θ . (5.1)

The other charged lepton mass ML1 can be expressed in terms of Mχ0 , Mχ1 and θ via
eq. (3.14). Unless otherwise stated, the mixing parameter in the neutral lepton sector
sin θ = 0.01 is being fixed in our analysis. For the sake of clarity, we recast the new Yukawa
couplings of eq. (2.2) (and hence eq. (5.1)) as Yij where i assumes different types of the
couplings e.g., 1, 2, 3, 4, 6 and j takes the different flavors e, µ, τ . As an example, Y1(1e) in
the eq. (2.2) is simply denoted as Y1e. In this set-up i.e., with the minimal contents of new
states, first we survey if the discrepancy between the theoretical and experimental values of
the magnetic moments of muon and electron can be explained. Then we will consider the
charged lepton flavor violating processes. All the radiatively induced processes could be
tested in the present and future generation of experiments; thus a domain for flavor specific
Yukawa couplings can be derived.

5.1 Lepton g − 2

In our model, we would be able to explain ∆aµ/e simultaneously through the loop diagrams,
shown in figure 3. `α and `β are general notations for the SM leptons. The total contribution
for lepton g − 2 process can be given as (`α = `β = `):

∆a` = ∆a(c)
` + ∆a(n)

1` + ∆a(n)
2` , (5.2)

where, the superscripts ‘n’ and ‘c’ correspond to the neutral and the charged lepton
contributions in figure 3(a) and figure 3(b) respectively. The three individual contributions
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of eq. (5.2) can be expressed as,

∆a(c)
` = 1

16π2

[
|Y3`|2

(
m`

MS

)2
F3

(
M2
L2

M2
S

)
+|Y1`|2

(
m`

Mη

)2

F3

(
M2
L1

M2
η

)]
, (5.3)

∆a(n)
1` = 1

16π2

[
−|Y1`|2 cos2 θ

(
m`

Mη

)2

F2

(
M2
χ1

M2
η

)
−2(Y4`)(Y1`)cosθ sinθ (m`Mχ1)

M2
η

F1

(
M2
χ1

M2
η

)

−|Y4`|2 sin2 θ

(
m`

Mη

)2

F2

(
M2
χ1

M2
η

)]
, (5.4)

∆a(n)
2` =∆a(n)

1` (cosθ→−sinθ, sinθ→ cosθ, Mχ1→Mχ0) . (5.5)

The Form factors are defined in appendix B. It is instructive to identify the positive and
negative contributions of ∆a` (` ∈ e, µ) in eq. (5.3)–(5.5).

∆a(+)
` = 1

16π2

[
|Y3`|2

(
m`

MS

)2
F3

(
M2
L2

M2
S

)
+ |Y1`|2

(
m`

Mη

)2

F3

(
M2
L1

M2
η

)
+

(Y4`) (Y1`) sin 2θ (m`Mχ0)
M2
η

F1

(
M2
χ0

M2
η

)]
. (5.6)

∆a(−)
` = − 1

16π2

[
|Y1`|2

(
m`

Mη

)2

F2

(
M2
χ1

M2
η

)
+ |Y4`|2

(
m`

Mη

)2

F2

(
M2
χ0

M2
η

)
+

(Y4`) (Y1`) sin 2θ (m`Mχ1)
M2
η

F1

(
M2
χ1

M2
η

)]
. (5.7)

In the above, sin2 θ → 0 has been taken for illustration. Additionally, we consider
that all the couplings are real and positive. In eq. (5.6), the first two terms arise from
the diagram with a charged fermion and a neutral scalar in the loop. The third term
involves a neutral fermion and a charged scalar in the loop. Here the DM state χ0 may
provide with a positive contribution in ∆aµ, owing to the mixing between L0

1 and ψ. The
negative parts in ∆a` (see eq. (5.7)) involves only a neutral fermion and a charged scalar
in the loop which is shown in figure 3(a). Thus, considering the opposite signs of ∆aµ
and ∆ae in mind, one can easily expect that ∆aµ should have a major contribution from
eq. (5.6) while eq. (5.7) may play the dominant role in determining ∆ae. In terms of the
controlling parameters, ∆aµ (∆ae) are managed by a set of new coupling parameters Y4`,
Y3`, Y1` (` ∈ e, µ) and also by the masses of new scalars and mixing of the neutral leptons.
Electroweak precision observables restrict the mixing in the neutral leptons: cos θ ∼ 1,
and, thus, ML1 ' Mχ1 may be used for illustration (see eq. (3.14)). For the scalar mass
parameters, MS is kept fixed at 130GeV, while Mη = 300 and 1200GeV are considered.
Keeping this in mind, the variation of the flavor dependent couplings Yiµ or Yie (i ∈ 1, 3, 4)
with the mass of new scalars or fermions have been depicted through scattered plots where
points consistent with ∆ai (i ∈ e, µ) within the 2σ allowance in eq. (3.1) and eq. (3.2)
are only shown. For a better understanding of interplay of the different couplings and
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Figure 4. Allowed parameter space satisfying ∆aµ within 2σ bound. Here sin θ = 0.01 is
assumed. Here, red and green dots represent the scenarios corresponding to Mη = 300GeV and
1200GeV respectively.

masses on the ∆aµ(e), we recast the eq. (5.6) and eq. (5.7) in a more convenient form:
∆aµ(e) = ∆aY3µ(e)

µ(e) + ∆aY1µ(e)
µ(e) + ∆aY4µ(e)

µ(e) + ∆aY4µ(e)Y1µ(e)
µ(e) , where,

∆aY3µ(e)
µ(e) = 1

16π2

[
|Y3µ(e)|2

(
mµ(e)
MS

)2
F3

(
M2
L2

M2
S

)]
, (5.8)

∆aY1µ(e)
µ(e) = 1

16π2

[
|Y1µ(e)|2

(
mµ(e)
Mη

)2 {
F3

(
M2
L1

M2
η

)
− F2

(
M2
χ1

M2
η

)}]
, (5.9)

∆aY4µ(e)
µ(e) = 1

16π2

[
− |Y4µ(e)|2

(
mµ(e)
Mη

)2 {
F2

(
M2
χ0

M2
η

)}]
, (5.10)

∆aY4µ(e)Y1µ(e)
µ(e) = 1

16π2

[
Y1µ(e)Y4µ(e) sin 2θ

mµ(e)
M2
η

{
Mχ0F1

(
M2
χ0

M2
η

)
−Mχ1F1

(
M2
χ1

M2
η

)}]
.

(5.11)

We begin our discussion with µ-specific couplings Yiµ and the relevant mass parameters
MS , Mη, ML2 to probe their limits in controlling ∆aµ. Here the role of Y4µ is somewhat
tricky and depends on the choice of other parameters. For example, it can provide an
unhelpful contribution through eq. (5.10). Similarly, unless Y1µ � Y4µ, eq. (5.11) dominates
over the ∆aY4µ

µ . However, the contribution in eq. (5.11) can take both positive and negative
values which can be controlled by the ratio Mχ0/Mχ1 . Truly, a specific ratio of the neutral
fermions, i.e., Mχ0/Mχ1 can boost ∆aµ through an overall positive contribution, driven by
Y4µ. However, at the same time it becomes unfriendly to obtain a correct ∆ae (since the
same bracketed term in eq. (5.11) potentially contributes to e magnetic moment). For a
practical choice, we set Y4µ = 0 as we will see that ∆aY4eY1e

e term would have to be properly
tuned to fit ∆ae. In other words, Mχ0/Mχ1 will be chosen to have a negative contribution
from ∆aY4eY1e

e to have a consistent ∆ae.
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Thus assuming Y4µ = 0, one finds ∆aµ = ∆aY3µ
µ + ∆aY1µ

µ . A prominent cancellation
between the two terms in ∆aY1µ

µ can always be observed irrespective of the value of Y1µ,
and, thus, one finds ∆aµ ' ∆aY3µ

µ . Thus, naturally, we may choose Y1µ at any value within
its perturbative limit while satisfying the experimental bounds on ∆aµ. We will see that a
smaller Y1µ (which will be chosen in the subsequent analysis) would be highly desired to
satisfy µ→ eγ constraint.

Figure 4(a) shows the variation of Y3µ as a function of ML2 when MS = 130GeV,
Mη = 300GeV and Mη = 1200GeV. The other input parameters are Mχ1 = 800GeV,
Mχ0 = 120GeV, Y1µ = 10−4 while Y4µ is fixed at zero. Clearly, the doublet scalar does
not have any influence to the result. As said earlier, only L2 − S loop can manage to
attune ∆aµ, and thus, one requires somewhat larger values for Y3µ. This can be further
verified through figure 4(a). Note that, here mass of the singlet MS needs to be smaller
to make Y3µ within the perturbative bound, and this can only be realized if our model
considers light dark matter (since Mχ0 < MS needs to be satisfied). However, a heavier χ0
can also accommodate ∆aµ without having any difficulties. Recall that setting Y4µ = 0 will
automatically make vanishing contributions from eqs. (5.10) and (5.11), which include Mχ0 .
Thus, because of the choice of our parameters, χ0 can affect ∆aµ only through eq. (5.9),
which can only lead to insignificant contribution. A further confirmation can be made
through figure 4(b), where we show variations of ∆aµ as a function ofMχ0 forMη = 300GeV
and MS = 130GeV. Neutral and charged vector leptons are fixed at masses Mχ1 = 800 and
ML2 = 190GeV. Here we varied the couplings (Y1µ : [0.0001 − 1], Y3µ : [0.0001 − 2]) and
Mχ0 randomly. The resultant ∆aµ can be seen to be consistent over the entire χ0 range. We
note here that, in figure 4(a) and figure 4(b), we refrain from considering LHC bounds based
on with two leptons and missing transverse energy (see section 3.4) on the parameter space.
This helps us to study the dependence of different parameters on the ∆aµ numerically
and to choose a valid parameter space which is consistent with the LHC searches. For
instance, a light L2 accompanied with a light scalar S may easily accommodate ∆aµ with a
perturbative value of Y3µ ∼ 2. We have checked that Y3µ remains perturbative upto TeV
scale even when one includes dominant radiative corrections while at and above TeV scale
beta function of Y3µ may include new gauge interactions. This is in particular true if our
low energy model is embedded in a TeV scale LR model. However, as discussed earlier,
the LHC limits can be managed if one assumes a light χ0 as well. Thus in the following
sections, particularly, in the computation of cLFV and DM observables, we would fix a few
parameters at values ML2 = 190GeV, MS = 130GeV and Mχ0 = 120GeV.

In our next precision calculation, we will now see the role of different parameters
in obtaining a correct value for ∆ae. Note that, here, for practical purposes, one finds
∆ae ' ∆aY4(e)Y1(e)

e . The reasons are as follows. ∆aY1(e)
e becomes insignificant due to

cancellation between different terms. Moreover, ∆aY1(e)
e and ∆aY4(e)

e are ∝ m2
e, thus, are

much suppressed and can be neglected for the parameter space, we are interested in.
Additionally, we choose Y3e = 0 to forbid the positive part in eq. (5.8). So we may re-express
∆ae as follows:

∆ae ' −
(Y1e)(Y4e) sin 2θme

16π2M2
η

[
Mχ1F1

(
M2
χ1

M2
η

)
−Mχ0F1

(
M2
χ0

M2
η

)]
. (5.12)
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Figure 5. Allowed parameter space satisfying ∆ae within 2σ bound. As before sin θ = 0.01 is
taken. Here, red and green dots represent the scenarios corresponding to Mη = 300GeV and
1200GeV respectively.

As before, in the numerical analysis, we fixed MS = 130GeV, Mη = 300 and 1200GeV,
ML2 = 190GeV and Mχ0 = 120GeV. Figure 5(a) depicts the variation of Y1e as a function
of Mχ1 , when Y4e is fixed at 0.2. And similarly for the figure 5(b), where Y4e appears as
the variable and Y1e is fixed at 0.2. In both of these plots red and green dots represent
the scenarios corresponding to Mη = 300GeV and 1200GeV respectively. Note that, for
the smaller values of Mχ1 , there is a difference between the allowed regions corresponding
to Mη = 300GeV and 1200GeV, while at the higher values both the red and green dots
merge [see figure 5(a) and (b)]. In the lighter χ1 regime, where Mχ1 ∼ Mχ0 , a partial
cancellation in the bracketed part of eq. (5.12) can be observed. The suppression is more
for a heavier η, thus, a larger coupling can be helpful to tune ∆ae. On the other hand, for
larger values of Mχ1 , the term Mχ1F1

(
M2
χ1

M2
η

)
may appear to have the leading contribution.

At this large Mχ1 region, for a fixed value of Mχ1 , F1

(
M2
χ1

M2
η

)
increases with the increasing

value of Mη. However, the overall term 1
M2
η
F1

(
M2
χ1

M2
η

)
becomes somewhat insensitive to the
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variation in Mη and hence only a slight increment in Yukawa coupling can be observed for
the lighter Mη value.

Figure 5(c) shows the scaled variation of ∆ae as a function of Mχ0/Mχ1 where we
have again relaxed the potential constraints coming from LHC. All the other masses and
couplings are fixed as before. The grey patch represents the 2σ range of the ∆ae. One can
easily see that, a small mass ratio (< 0.25, < 0.75) for Mη = 1200, 300GeV respectively, can
lead to the desired negative contribution. For larger Mη, to compensate the suppression, a
lighter χ0 is desired to produce the correct value for ∆ae. On the other hand, with increasing
Mχ0/Mχ1 the positive contribution starts to increase for a fixed Mη [see eq. (5.12)] and
hence a correct value of ∆ae would be difficult to obtain.

As a final remark, it is now evident that the presence of the two VL states L1 and L2
are necessary to accommodate the both ∆aµ and ∆ae. The second doublet L2 may provide
the sole contribution to muon magnetic moment, while the other one can be used to tune
the magnitude and sign of the e magnetic moment. Moreover, we will find that, satisfying
different cLFV processes may become much easier in this scenario.

5.2 cLFV constraints

In this model framework, in computing the cLFV observables we closely follow refs. [135, 136].
One-loop effective vertices, relevant for the different two and three body processes `α → `βγ

or `α → 3`β are generated through the interactions among BSM fermions (χa, L±a ), scalars
η and S and the SM leptons.

5.2.1 `α → `βγ

We start with the form factors for `α → `βγ, where the relevant diagrams have been depicted
in figure 3. The details of the calculation are presented in appendix C. Here we recast the
form factors A(n)L,R

2 and A(c)L,R
2 related to neutral and charged fermions in terms of our

model parameters respectively.

A
(n)L
2 = 1

32π2M2
η

[
Y †1βY

†
4α sin θ cos θ

{
2Mχ1

m`α

F1

(
M2
χ1

M2
η

)
− 2Mχ0

m`α

F1

(
M2
χ0

M2
η

)}

+ Y †1βY1α cos2 θ F2

(
M2
χ1

M2
η

)
+ Y4βY

†
4α cos2 θ

m`β

m`α

F2

(
M2
χ0

M2
η

)]
, (5.13)

A
(c)L
2 = 1

32π2M2
S

Y3βY
†

3α
m`β

m`α

F3

(
M2
L2

M2
S

)
+ 1

32π2M2
η

Y †1βY1αF3

(
M2
L1

M2
η

)
,

A
(n)R
2 = A

(n)L
2 |

Y4↔Y †1 , F2

(
M2
χ1
M2
η

)
↔F2

(
M2
χ0
M2
η

) , A
(c)R
2 = A

(c)L
2 |

Y3↔Y †1
. (5.14)

Finally, the coefficients in the above can be clubbed to get the total contributions.

AL,R2 = A
(n)L,R
2 +A

(c)L,R
2 , (5.15)
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Figure 6. γ-penguin diagrams contributing to the `−α → `−β `
−
β `

+
β decay. The index a reads 0, 1

for neutral and 1, 2 for charged fermions and s1 = η0, s2 = S for the charged lepton loops. The
corresponding leg-corrections (not shown) are also taken into account.

The decay width is given by [135, 136]

Γ (`α → `βγ) =
αemm

5
`α

4
(
|AL2 |2 + |AR2 |2

)
.

Br (`α → `βγ) = τα
αemm

5
`α

4
(
|AL2 |2 + |AR2 |2

)
. (5.16)

where αem is the electromagnetic fine structure constant and τα is the lifetime of `α.

5.2.2 `α → 3`β

Here we calculate the decay width for the processes where a heavier SM lepton decays
into three lighter leptons of the same flavor, i.e., `−α → `−β `

−
β `

+
β . We present the relevant

γ-penguin, Z-penguin and Box diagrams contributions to get the complete decay width
and hence the branching ratio for `α → 3`β processes. The details of the calculation can be
found in appendix C.

• Photon penguin contribution: as shown in figure 6, the monopole contributions can
be recast in terms of our model parameters,

A
(n)L
1 = 1

576π2M2
η

[
Y4βY

†
4α cos2 θF4

(
M2
χ0

M2
η

)]
, A

(n)R
1 =A

(n)L
1 |Y4→Y †

1 ,Mχ0→Mχ1
,

(5.17)

A
(c)L
1 =− 1

576π2M2
S

[
Y3βY

†
3αF5

(
M2
L2

M2
S

)]
, A

(c)R
1 =A

(c)L
1 |Y3→Y †

1 ,ML2→ML1 ,MS→Mη
.

(5.18)

The dipole contributions can be read from eq. (5.13) and eq. (5.14).

• Z penguin contribution: dominant Feynman diagrams are shown in figure 7. We have
calculated the coefficients as follows:
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Figure 7. Leading Z penguin diagrams contributing to the `−α → `−β `
−
β `

+
β decay. Leg corrections

are also considered (not shown). Indices a, b = 1, 2 (for L±a,b), 0, 1 (for χa,b) and s1 = η0, s2 = S

as before.

The expressions for the form factors are given below [137–139]:

F
(n)
L = − 1

16π2

∑
a,b=0,1

[
Y4βY

†
4αUbUa

{
E
R(n)
ba

(
2C24(M2

η ,M
2
χa ,M

2
χb

)− 1
2
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−
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2
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}
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†
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}
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(5.19)
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E
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2
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2

)
−

E
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2
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}
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†
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{
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{
g

(`)
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2
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, (5.20)

F
(n)
R = F

(n)
L |Y4→Y †1 ,U→U ′,g

(`)
L →g

(`)
R

,

F
(c)
R = F

(c)
L |Y3→Y †1 ,ML2→ML1 ,MS→Mη ,Q22→Q11,g

(`)
L →g

(`)
R

. (5.21)

As before, FL,R = F
(n)
L,R + F

(c)
L,R. The generic forms of C24, C0 and B1 functions are

listed in appendix B.
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Figure 8. Box diagrams contributing to the `−α → `−β `
−
β `

+
β decay. As before, a, b = 1, 2 (for L±a,b),

0, 1 (for χa,b) and s1 = η0, s2 = S.

• Box diagram contributions: leading contributions are shown in figure 8. The dominant
B-factors can be calculated as,

e2B
(n)L
1 = 1

16π2

[
D̃0
2 Y4βY

†
4αY4βY

†
4β |Ua|

2|Ub|2 +D0MχaMχbY4βY4βY
†

4αY
†

4βU
2
b U
†2
a

]
,

(5.22)

e2B
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16π2
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D0
2 MχaMχbY

†
1βY

†
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′†
b
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4 Y †1βY4βY

†
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bUbU

†
aU
′†
a + D̃0

4 Y4βY
†

1βY
†

4αY1βUbU
′
bU
†
aU
′†
a

]
, (5.23)

e2B
(n)R
1 = e2B

(n)L
1 |

Y4→Y †1 ,U→U ′
, e2B

(n)R
2 = e2B

(n)L
2 |

Y4↔Y †1 ,U↔U ′
. (5.24)

e2B
(c)L
1 = 1

16π2

[
D̃0
2 Y3βY

†
3αY3βY

†
3β

]
, (5.25)

e2B
(c)L
2 = 1

16π2

[
D̃0
4 Y3βY

†
3αY

†
1βY1β −

D0
2 MLaMLaY

†
1βY

†
3αY3βY1β

]
, (5.26)

e2B
(c)R
1 = e2B

(c)L
1 |

Y3→Y †1
, e2B

(c)R
2 = e2B

(c)L
2 |

Y3↔Y †1
. (5.27)

The generic functional forms for these D0 and D̃0 are again available at appendix B.
Though only the dominant terms are mentioned, for numerical purposes, we calculated
all BL,R

i [i = 1, 2, 3, 4]. Finally, there may be Higgs penguin diagrams as well, but
the Higgs couplings to the SM leptons are much suppressed (∼ O(≤ 10−2)) compared
to that of γ and Z, and hence we can ignore them.3

3In some specific models, Higgs penguin may lead to significant contributions [140–142].
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Figure 9. Variation of Br(`α → `βγ) (Red) and Br(`α → 3`β) (Blue) as a function of Yi` [i = 1, 3, 4].
Input parameters are set as Mη = 300GeV, MS = 130GeV, Mχ1 = 800GeV, ML2 = 190GeV and
Mχ0 = 120GeV. In the µ-sector, i.e., for plot (a) the e and µ-specific couplings are fixed at those
values which are mentioned in the text. In the τ -sector, we choose for the plot (b) Y4τ = Y3τ = 0,
(c) Y1τ = Y3τ = 0, (d) Y1τ = 0 & Y4τ = 0.01, (e) Y4τ = 0.01 & Y3τ = 0, (f) Y1τ = Y3τ = 0 and (g)
Y1τ = 0 & Y4τ = 0.01. In the plots (a), (d), (e), (f) the projected future bounds corresponding
to Br(`α → `βγ) and Br(`α → 3`β) have been marked with the black and magenta horizontal
lines respectively.

5.2.3 Numerical results

Here, we will particularly identify the allowed regions of parameter space associated with
free parameters and masses as introduced in eq. (5.1), in regard to different cLFV decays.
Some of the free parameters, as already tuned by ∆ai (i ∈ e, µ), collider or the electroweak
precision searches would be set within their allowed domains. In figures 9 and 10, the
variation of branching ratios for the different cLFV processes with respect to the relevant
couplings have been shown for Mη = 300GeV and 1200GeV respectively. We have followed
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Figure 10. Variation of Br(`α → `βγ) (Red) and Br(`α → 3`β) (Blue) as a function of Yi` [i = 1, 3, 4].
Input parameters are set as Mη = 1200GeV, MS = 130GeV, Mχ1 = 800GeV, ML2 = 190GeV and
Mχ0 = 120GeV. In the µ-sector, i.e., for plot (a) the e and µ-specific couplings are fixed at those
values which are mentioned in the text. In the τ -sector, we chose for the plot (b) Y4τ = Y3τ = 0,
(c) Y1τ = Y3τ = 0, (d) Y1τ = 0 & Y4τ = 0.01, (e) Y4τ = 0.01 & Y3τ = 0, (f) Y1τ = Y3τ = 0 and (g)
Y1τ = 0 & Y4τ = 0.01. In the plots (a), (d), (e), (f) the projected future bounds corresponding
to Br(`α → `βγ) and Br(`α → 3`β) have been marked with the black and magenta horizontal
lines respectively.

a particular color code for all these plots, i.e., the red signifies Br(`α → `βγ) while blue
stands for Br(`α → 3`β). The horizontal lines specify the present experimental bounds [see
table 3] on the respective cLFV processes as indicated by the color code. Moreover, to
have an idea of the future prospects of our results, in the plots (a), (d), (e), (f) [of figures 9
and 10], the projected future bounds corresponding to Br(`α → `βγ) and Br(`α → 3`β)
have been marked with the black and magenta horizontal lines respectively.

For the numerical set-up we have fixed,

• Scalar masses: Mη = 300GeV and 1200GeV, MS = 130GeV. Here, figure 9 considers
Mη = 300GeV and figure 10 assumes Mη = 1200GeV.
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• Vector lepton masses and mixings: Mχ1 = 800GeV, ML2 = 190GeV, Mχ0 = 120GeV,
and sin θ = 0.01.

• µ-specific flavor dependent couplings: Y4µ = 0.0 and Y3µ = 2.3.

• e-specific flavor dependent couplings: Y1e = 0.2, Y4e = 0.2 and Y3e = 0.0.

So, at this point, we are left with only four flavor specific free parameters, i.e., Y1µ, Y1τ ,
Y3τ and Y4τ . Our aim would be to constrain these free couplings using the present and
future limits of the cLFV branching ratios for `α → `βγ and `α → 3`β processes (where
α, β = e, µ, τ). Thus, we have varied the free couplings randomly, and calculated the
corresponding values for Br(`α → `βγ) and Br(`α → 3`β). Focusing on a particular flavor
at a time, in the following, we present the possible 2-body and 3-body decays.

• Br(µ → eγ) and Br(µ → 3e): the first rows of the figures 9 and 10 depict the
variation of µ → e branching fractions. Here the relevant couplings can be read as
Y(1,3,4)i ∼ (i = e, µ). However, only Y1µ can be regarded as the free parameter since
all the other couplings have already been fixed by the precision measurements of µ
and e anomalous magnetic moments. As can be evident from the plot, for Y1µ ≤ 10−4

both the Br(µ→ eγ) and Br(µ→ 3e) can be made satisfied. This explains our choice
for Y1µ in the earlier (g− 2)µ analysis. Thus, to have a simultaneous validation of the
(g − 2)µ and cLFV constraints (i.e. Br(µ→ eγ) and Br(µ→ 3e)) one certainly needs
a much smaller value of Y1µ (∼ 10−4).

• Br(τ → µγ) and Br(τ → 3µ): the second rows of figures 9 and 10 correspond to these
processes. All the µ specific couplings are already fixed: Y3µ and Y4µ have been set
to their earlier values and Y1µ = 10−4 is considered (in accordance with figures 9(a)
and 10(a)). Thus we have varied the τ specific free parameters Yjτ (j = 1, 4, 3)
and calculated the branching ratios. The allowed ranges of these couplings where
Br(τ → µγ) and Br(τ → 3µ) are satisfied, can be seen from figures 9 (b), (c),
(d) and 10 (b), (c), (d) respectively. Clearly, only meaningful constraint can be derived
for Y3τ which reads as Y3τ ≤ 0.04. The bound can be placed using Br(τ → 3µ)
which seems to be much stringent compared to Br(τ → µγ). This is a result of the
Z-penguin dominance in that region of the parameter space.
To illustrate it further, we focus on the dominant parts of γ penguin contributions. In
case of photon initiated 2-body Br(`α → `βγ), or 3-body Br(`α → 3`β) decays, dipole
terms become more important, and specially the most significant parts read as:

A
(n)
2 ⊃ sin θ cos θ

[
Y †1βY

†
4α

{
2Mχ1

m`α

F1

(
M2
χ1

M2
η

)
− 2Mχ0

m`α

F1

(
M2
χ0

M2
η

)}

+ Y4βY1α

{
2Mχ1

m`α

F1

(
M2
χ1

M2
η

)
− 2Mχ0

m`α

F1

(
M2
χ0

M2
η

)}]
. (5.28)

The other terms related to dipole or monopole terms are proportional to the products
of the other flavor specific couplings Y1βY1α, Y4βY4α, Y3βY3α. However, generically,
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considering the couplings for any α, β are of the same size, these terms are few
orders of magnitude smaller compared to A(n)

2 . For τ − µ cLFV processes, A(n)
2 ∝

sin θ cos θ(Y1µY4τ +Y1τY4µ), thus extremely suppressed, unless Y4τ is reasonably large.
This suppression can be attributed to the tinyness of sin θ and our choice of Yukawa
couplings. In fact A(n)

2 may become large if Y4τ is reasonably large or moderate. This
can be verified from figures 9 (c) and 10 (c) where due to the choice of Y1τ = Y3τ = 0,
the 2-body process dominates over the entire range of Y4τ . Similarly, based on
the relative choice of Yukawa couplings the Z-penguin diagrams may become more
important or comparable to the γ initiated ones in some cases. For illustration,
we choose a particular set of τ -specific couplings as mentioned in the captions of
figures 9 and 10. For example, in figures 9 (b), (d) and 10 (b), (d), Y4τ = 0, 0.01
have been chosen respectively, thus, γ penguin is always suppressed which results
in the dominance of Br(τ → 3µ) over Br(τ → µγ). We may note here that, in the
µ− e processes, the choice of parameters (particularly Y4µ = Y3e = 0 and Y1µ = 10−4)
makes the 3-body BR always suppressed in comparison to that of 2-body (see the
first row of the figures 9 and 10).

• Br(τ → eγ) and Br(τ → 3e): third rows of figures 9 and 10 show the plots for these
two processes. Here the only free parameters are Yjτ (j = 1, 4, 3), as the electronic
couplings are fixed by the (g − 2)e results. Indeed, the τ specific parameters are
same as in the τ → µ analysis. The ranges of Yjτ couplings where Br(τ → eγ) and
Br(τ → 3e) can be simultaneously satisfied, have been shown in figures 9 (e), (f) and
(g) and 10 (e), (f) and (g) respectively. We may observe that Z-penguin diagrams
become dominant over photon penguins in figures 9, 10 (f) since Y4τY4e can now
contributes significantly. From these plots (figures 9 (e), (f) and 10 (e), (f)), we are
able to constrain the two τ -specific couplings as: Y1τ ≤ 0.5 and Y4τ ≤ 0.7. Note that,
the variation of BRs with respect to Y3τ has been appearing as two horizontal lines,
implying that the BRs are apparently independent of this coupling. This result is
a sole outcome of the choice Y3e = 0. Since in both Br(τ → eγ) and Br(τ → 3e),
the coupling structure appears as Y3eY3τ , putting Y3e = 0 automatically ensures the
invariance of the BRs with respect to Y3τ .

So finally, collecting all the constraints, i.e., from the anomalous magnetic moment data
and non observation of the cLFV processes, we find that all the flavor specific couplings
Y1,3,4 may assume ∼ O(1− 10−4) values, some of which may be tested in the near future.

5.3 Z and h observables

1) Invisible decays Z, h→ χ0χ0: in this model, a light DM is natural and the parameter
space associated with it can be observed to be consistent with the all low energy
data. It is well known that for a light DM, invisible decays of Z and h which lead to
Z, h→ χ0χ0 can be substantial to constrain the parameter space. The corresponding
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Figure 11. (a) The allowed values of sin θ for different DM masses (≤MZ/2 ' 45GeV) from the
invisible Z decay constraints and (b) from the invisible h (≤Mh/2 ' 62GeV) decay constraints.

decay widths are given by,

Γ(Z → χ0χ0) = 1
48πMZ

(
g2 sin4 θ

cos2 θW

)(
1 +

2M2
χ0

M2
Z

)(
1−

4M2
χ0

M2
Z

)1/2

, (5.29)

Γ(h→ χ0χ0) = (Y5 sin 2θ)2

16π mh

(
1−

4M2
χ0

m2
h

)3/2

,

where, Y5 = − (Mχ1−Mχ0 )
v
√

2 sin 2θ, with Mχ1 fixed at 800GeV. We also plot the valid
regions in sin θ−Mχ0 plane. For depicting our results, we use (i) the observed invisible
partial width of Z boson, ΓinvZ = 499 ± 1.5MeV which is below the SM prediction
ΓinvSM = 501.44 ± 0.04MeV at 1.5σ C.L. [62] and (ii) the experimental bound on
invisible h decay reads as Brinv < 0.26 [143]. Note also that, ΓSM

h = 4.07MeV, has
been taken [62].
Clearly, a more stringent bound on the model parameters comes from the invisible
h decay, compared to that of the Z decay, but for sin θ ' 0.01 the entire parameter
space is allowed.

2) Z → `±i `
∓
i , `
±
i `
∓
j : The new fermions f = χ0, χ1, L1, L2 and the scalars s = η, S can

lead to Z → `i`j decays. Rare charged lepton flavour violating (cLFV) Z decays
also inherit a possible complementarity test with low-energy cLFV searches. The
current LHC limits put stringent bounds compared to the old limits obtained by the
LEP experiments on the three flavor violating decay modes of Z boson. Similarly,
future sensitivity can be estimated from [144] which considers the future e+e− colliders
CEPC/FCC-ee [145, 146] experiments assuming 3×1012 visible Z decays. The present
limits and the future bounds can be read as,

a) Br(Z → e±µ∓) ≤ 7.5× 10−7 [147]; 10−8 − 10−10 [144]
b) Br(Z → e±τ∓) ≤ 5× 10−6 [148, 149]; 10−9 [144]
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Figure 12. Representative diagram for Z → `i`j processes. Here f = χ0, χ1, L1, L2 and s ∈ η, S.
The indices stand for i, j = e, µ, τ and α, β = 1, 3, 4 (see eq. (2.14)).

Y1e Y3e Y4e Y1µ Y3µ Y4µ Y1τ Y3τ Y4τ
0.2 0.0 0.2 10−4 2.3 0.0 0.0 0.01 0.6

Table 6. Values of the Yukawa couplings for the evaluation of Z → `i`j .

c) Br(Z → µ±τ∓) ≤ 6.5× 10−6 [148, 149]; 10−9 [144]

The branching ratio can be expressed as [150, 151],

Br(Z → `±i `
∓
j ) = α

3 sin2 2θW

(
MZ

ΓZ

)(
|FL|2 + |FR|2

)
, (5.30)

where, sin 2θW = 2 sin θW cos θW , FL and FR are defined via eqs. (5.19)−(5.21)
and (C.10). Here, considering the on-shell decay of Z, MZ dependence has been
incorporated in the definitions of FL and FR. The form factors FL and FR control
the loop induced couplings for Z`±i `∓j ; its numerical values (|FL| = |FR| ∼ 10−5) can
be found to be orders of magnitudes suppressed compared to the tree level couplings,
specially in the parameter space where cLFV contraints are satisfied. The total
width ΓZ includes the contributions from all the new BSM modes in addition to
the contributions from SM. For numerical evaluations of the branching fractions,
we consider the parts of the parameter space where all (g − 2)`, cLFV, and DM
abundance are simultaneously satisfied. Thus we fix Mη = 300GeV, MS = 130GeV,
Mχ1 = 800GeV, Mχ0 = 120GeV and ML2 = 190GeV, as chosen in the previous
sections. All the Yukawa couplings are fixed at values, as given in following table 6
which will subsequently be helpful to obtain a correct relic density for the DM.
Substituting these values in eq. (5.30), we get the following branching ratios:

• Br(Z → e±µ∓) = 4.16× 10−16

• Br(Z → e±τ∓) = 7.48× 10−10

• Br(Z → µ±τ∓) = 5.67× 10−11.

The first branching fraction is much supressed due to the choice of the Yukawa
couplings. Thus, the chances of observing the LFV decays of Z bosons even in
the future are not quite attractive. Similarly, we have observed that BSM loop
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Figure 13. Representative diagram for h→ `` processes. Here a, b = 0, 1 and α, β stand for the
flavor specific new couplings = 1, 4 (see eq. (2.14)). Leg corrections are also considered (not shown).

contributions to Br(Z → `±`∓) (` ∈ e, µ, τ ), arising in our framework are lying below
the present limits [62].

3) h→ `±`∓: The radiative corrections to Yukawa couplings of SM leptons (y`) can also
be generated through the new neutral fermions χ0, χ1 in the loop (see figure 13). The
new physics contributions at one loop can be calculated as,

Ỹ h
` ≡

Y5
16π2

∑
a,b=0,1

[
Y a
α`Y

b
β`

{
M2
ηC0

(
0,0,m2

h,M
2
χa ,M

2
η ,M

2
χb

)
+B0

(
m2
h,M

2
χa ,M

2
χb

)
+MχaMχbC0

(
0,0,m2

h,M
2
χa ,M

2
η ,M

2
χb

)}
−(Y a

α`)2B0
(
0,M2

χa ,M
2
η

)]
,

(5.31)

where, in terms of our definitions of Yukawa couplings, we define Y 0
α` = Y4` and

Y 1
α` = Y1` for ` ∈ e, µ, τ . Similarly, Y5 has been recast via eq. (2.13) with sin θ = 0.01.

The corresponding decay width is [62],

Γ(h→ ``) = 1
8πm2

h

|Y h
eff |2

(
m2
h − 4m2

`

)3/2
, (5.32)

where, Y h
eff = Y SM

` + Ỹ h
` . Now, for the same masses and Yukawa couplings as discussed

for the flavor violating Z decays (also see table 6), Γ(h→ ee/µµ) has been found to
be practically unchanged to the corresponding SM value.

4) Contribution to W±`∓ν` vertex: The one-loop correction to W → `ν` process as
shown in figure 14, results in,

Ṽ lν = Y1Y2 g

16
√

2π2 m`

[
Mf2C0

(
0, 0,M2

W ,M
2
s ,M

2
f1 ,M

2
f2

)
+

(Mf2 +Mf1)
M2
W

{(
M2
S −M2

f2

)
C0
(
0, 0,M2

W ,M
2
s ,M

2
f1 ,M

2
f2

)
+B0

(
M2
W ,M

2
f2 ,M

2
f1

)
−B0

(
0,M2

f1 ,M
2
S

)}]
, (5.33)
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Figure 14. Representative diagram for one-loop correction to the W → `ν` vertex.

where, C0, B0 are the standard PV integrals. Mf1 and Mf2 correspond to the masses
of VL leptons f1 and f2 respectively, while m` stands for the mass of SM lepton. We
are assuming the neutrinos to be massless.

Clearly, Ṽ lν will include the desired corrections at one loop to W±`∓ν` vertex due
to presence of the BSM states. However, we find the total contribution to be much
suppressed. For having an estimate about the most significant part in it, we consider
f1 = L±2 , f2 = L0

2, ` = µ and s = S. In this case, the general couplings in eq. (5.33)
can be read as, Y1 = Y2 = Y3µ. We set the masses and couplings in accordance with
our previous discussion i.e., ML2 = 190GeV, MS = 130GeV and Y3µ = 2.3. With
these choice of parameters, one can directly get, Ṽ lν ∼ 10−6, thus smaller than its
tree level values.

As evident from the discussion, in our model, gauge boson-leptonic vertex does not
receive any meaningful contribution at all. In fact, both Z`±`∓ and W±`∓ν` can
be considered at their SM values, thus, processes involving leptonic or semileptonic
decays of mesons, e.g., KL → µµ, KL → πνν, or Bs → µµ, or precisely measured
CKM elements can be completely determined by the SM physics.

6 Dark matter phenomenology

This model may offer a singlet-doublet dark matter; phenomenology of such scenarios have
been studied in detail [42–50]. Here we would simply check that if all the couplings which
are already constrained by the different precision and collider bounds, can provide us with
an acceptable DM relic density, consistent with SI DM-nucleon elastic cross section bounds.
After EWSB, χ0 — a dominantly singlet-like state, odd under Z2 × Z ′2 symmetry can
be considered to be the lightest particle — thus a valid DM candidate while the other
neutral state χ1 carries a strong doublet-like nature for a small mixing angle θ. In general,
the singlet-doublet mixing parameter θ is completely controlled by the SI direct detection
bounds (much stronger than the EWPO constraints); usually, only a very tiny θ is allowed.
We have fixed all other BSM particles (L±1 , L

±,0
2 , η, S) at a heavier mass scale, discussed

as in our previous exercises. Since a small Mχ0 is preferred from cLFV and ∆a`, we may
focus on the parameter space with a light DM.
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Figure 15. The most dominant annihilation channels contributing to the relic density. This is
particularly true when the other input parameters are fixed at the values shown in table 6.

The relic abundance of DM in the universe as obtained from the PLANCK data is
ΩDMh

2 = 0.1198± 0.0012 [152]. The singlet-like fermionic DM χ0, being the lightest odd
particle and stable under the imposed Z2 ×Z ′2 symmetry, was in thermal equilibrium in
the early universe through its interaction with the SM particles. But at a point of time (or
temperature: T ≤ Tfreeze out) it gets decoupled from the thermal bath when the interaction
rate fell shorter than the expansion rate of the universe. The relic density of the DM can
be obtained by solving the Boltzmann equation, given by,

dn

dt
+ 3Hn = −〈σeff v〉

(
n2 − n2

eq

)
(6.1)

where H is the Hubble constant, 〈σeff v〉 is the thermal averaged cross section of the DM
annihilating to the SM particles and n signifies the number of interacting particles, with
the subscript ‘eq’ designating its equilibrium value. Though, for doing the numerical
analysis we have used micrOMEGAs [153, 154]. After implementing the model parameters
in LanHEP [155], the output files have been used as the input for micrOMEGAs, to
solve the Boltzmann equation numerically and for calculating the relic density. Here, the
mass parameters have been fixed at the same values as was done in section 5, with Mη

assuming the lower value, i.e. 300GeV. For the flavor dependent Yukawa couplings, which
are restricted by the cLFV and (g − 2)` bounds, we choose them at the representative
values, shown in table 6. We also note here that though the choices for Y4τ or Y3τ are
somewhat different than the values in figure 9 and in figure 10, we have checked that the
cLFV constraints are completely unaffected.

The other meaningful coupling for DM phenomenology is Y6i (=Y6(1i), as in eq. (2.14)))—
the interaction between DM, singlet scalar S and the right handed neutrinos νRi. The same
coupling controls the calculation of neutrino masses [see section 4]. Here we set Y6 without
affecting the neutrino masses and mixings, e.g., Y6τ = 0.13 is taken.

In this model, there may be a number of annihilation channels which can contribute to
the relic density calculation. The order of dominance of these channels changes with the
choice of the other input parameters. Here, figure 15 shows the most dominant annihilation
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Parameters Mχ0 = 120GeV
Mχ1 = 800GeV χ0χ̄0 → τ τ̄ (49%)
Mη = 300GeV χ0χ̄0 → ντ ν̄τ (49%)
MS = 130GeV χ0χ̄0 → νRνR (2%)
ML2 = 190GeV

sin θ = 0.01
Ωχ0h

2 ⇒ 0.103

Table 7. Dominant (≥ 1%) annihilation channels relevant in determining the relic density at
Mχ0 = 120GeV.
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Figure 16. (a) Variation of Relic density as a function of DM mass Mχ0 , when Mη = 300GeV. (b)
Allowed paramter space projected over the relic density plane.

channel for the chosen parameter space. We have listed the annihilation channels at
Mχ0 = 120GeV in table 7.

Figure 16 (a) depicts the variation of relic density with respect to Mχ0 for sin θ = 0.01.
The horizontal straight line at Ωh2 ∼ 0.12 is the central value for the acceptable DM relic
abundance, while the red line signifies the calculated relic density in this model as one
varies Mχ0 in the range of [1− 125]GeV. Figure 16 (b) represents the allowed parameter
space projected over the relic density plane. Here, the blue dotted region corresponds to
the comeplete parameter space which has been obtained by varying all the parameters
randomly, while the red patch stands for the region which is simultaneously allowed from
the (g − 2)`, cLFV, EWPO and neutrino mass constraints. The parameters have been
varied within the range of Mχ0 → [1 : 125],Mχ1 → [700 : 2000], Y1µ → [10−6 : 10−1], Y1τ →
[10−3 : 2], Y4τ → [10−3 : 2], Y6i → [0.01 : 1], Y1e → [0.01 : 5], Y4e → [0.01 : 5], Y4τ → [0 : 1].

In our model χ0−nucleon SI scattering processes, mediated by the Higgs and Z bosons
are shown in figure 17. The SI scattering cross sections per nucleon corresponding to the
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Figure 17. Feynman diagrams contributing to the SI direct detection cross section.

Z-mediated diagram of figure 17 is given by [156–158],

σSIZ = G2
Fµ

2
r

2πA2

[ (
1− 4 sin2 θW

)
Z − (A− Z)

]2
sin4 θ, (6.2)

where, ‘A’ and ‘Z’ represent the mass number and atomic number of the target nucleus
respectively, GF is the Fermi’s constant, µr =

(
Mχ0mN
Mχ0+mN

)
≈ mN defines the reduced mass,

mN being the mass of nucleon (proton or neutron). The second contribution in direct
detection comes from the h-mediated diagram and the corresponding SI cross section per
nucleon is given as,

σSIh = µ2
r

πA2

[
Zfp + (A− Z)fn

]2
, (6.3)

where the DM-nucleon effective interaction strength can be parameterized as,

fN =
∑

q=u,d,s
f

(N)
Tq αq

mN

mq
+ 2

27f
(N)
TG

∑
q=c,t,b

αq
mN

mq
. (6.4)

Where N = n, p and αq = Y5 sin 2θ√
2m2

h

(mq
v

)
= − (Mχ1−Mχ0 ) sin2 2θ

2vm2
h

(mq
v

)
. f

(N)
Tq is the nuclear

matrix element as determined in the chiral perturbation theory from the pion-nucleon
scattering sigma term, and the gluonic part f (N)

TG is given by,

f
(N)
TG = 1−

∑
q=u,d,s

f
(N)
Tq . (6.5)

Thus for a fixed Mχ1 , the above equation becomes only a function of Mχ0 (DM mass) and
the mixing angle θ. Here we note that, Higgs contribution to SI scattering can be completely
evaded if one considers the light-quark Yukawa couplings to assume non-Standard Model
(non-SM)-like values [159].4 For generating the numerical results we have used the code
“micrOMEGAs”, as was done for studying the relic density, and analysed the variation
of SI scattering cross section as a function of DM mass for sin θ = 0.01. In figure 18 the

4See ref. [160] for radiative generation of such non-SM-like Yukawa couplings.
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Figure 18. Variation of SI scattering cross section as a function of DM mass Mχ0 when Mη =
300GeV.

variation of SI cross section with respect to Mχ0 is shown by the red line. All the other
mass and coupling parameters are fixed at the same values as was done for the relic density
analysis [see table 6]. Mostly, for the entire parameter space, the σSI becomes effectively
independent of the DM mass, since the Z-mediated scattering process (shown in figure 17)
appears as the dominant contributor to the total SI cross section over this mass regime.
From the observational side we have mainly considered the LUX [52], PandaX-II [161]
and XENON 1T [51] limits, which show that the calculated SI cross section, proportional
to sin4 θ, lies much below the present bounds for the entire mass range. However, the
future projected limit coming from LZ collaboration [162] may probe only a parts of the
parameter space [see figure 18]. Further, due to Z-mediation there is a small amount of
SD cross section as well, but it is observed to be far below the existing limits. Moreover,
note that, the direct detection cross section has no dependence on the Y1i, Y3i and Y4i
couplings, which directly govern the (g − 2)` and cLFV phenomenology. Therefore, under
the variation of different Yukawa couplings (as was done in figure 16 (b)), the σSI remains
mostly unchanged.

7 Conclusion

In this paper, we have studied a simple extension where SM is augmented with a pair of
vector like lepton doublets L1 and L2, a SU(2) doublet scalar η in particular. Similarly,
singlet-like states including a scalar S and a singlet fermion ψ are also considered for specific
purposes. An additional Z2 × Z ′2 symmetry has been imposed under which all the SM
fields are even while the new fields may be odd under the transformation. Adopting a
bottom-up approach, in this paper, we systematically scrutinize the parameter space in
terms of the allowed couplings and masses to obtain: (i) the Dirac masses for the SM
neutrinos and mixings through a radiative mechanism, (ii) electron and muon (g − 2)
discrepancy simultaneously while considering the cLFV and EWPO constraints and finally
(iii) a viable DM candidate, consistent with direct detection observations so far.
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We start with our proposed model where the new interactions have been introduced.
Subsequently we discuss about the relevant constraints on the new parameters by reviewing
the different experimental constraints related to the lepton (g−2) observations, cLFV bounds,
vacuum stability conditions, electroweak precision constraints and collider observables. In
our model, L1 and ψ may mix to produce the physical states, and the lightest state χ0 can
be regarded as the dark matter. Electroweak precision parameters and, more importantly,
the null results from the dark matter direct detection experiments require a small mixing
between L1 and ψ; thus we choose sin θ = 0.01.

We have shown that in the absence of a tree-level neutrino mass (being forbidden due
to the imposed symmetry), one can generate the correct neutrino mass matrix at one-loop
level if the Z ′2 is allowed to break softly. The masses and mixings may be controlled by two
free parameters Y2(1i) and Y6(1i) which do not have any effect on the charged lepton flavor
processes, e.g., (g − 2)µ/e or different cLFV processes like `α → `βγ and `α → 3`β. We
have performed a comprehensive study to show the interplay between different charged and
neutral vector like leptons for satisfying (g − 2)e and (g − 2)µ bounds simultaneously. A
moderately large coupling Y3µ is required to tune (g−2)µ while ∆ae can easily be controlled
with other O(1) couplings. Further, the same diagrams are able to generate `α → `βγ

processes when α 6= β. For the 3-body processes like `α → 3`β , we have considered all the
Z and photon penguin diagrams along with the box contributions. Numerically, we have
calculated Br(`α → `βγ) and Br(`α → 3`β) for different lepton generations and shown their
variations as functions of the relevant couplings for two sets of doublet scalar masses (Mη ∼
300GeV and 1200GeV), along with their respective experimental bounds. These cLFV
constraints, in addition to the lepton (g − 2) results set an important exclusion limit or
upper bound for the different Yukawa couplings present in this model. Here, we note that,
larger mass value of η is not at all disfavoured in the context of tuning the charged lepton
flavor conserving or violating processes. However, the vector like leptons, especially L2
has to be light (≤ 200GeV), otherwise, the relevant coupling Y3µ may have to be raised to
accommodate (g − 2)µ. Moreover, in the parts of the parameter space, Z-dominance over
the γ-penguin in the computation of the 3-body charged lepton processes may be observed.
Finally, the dark matter phenomenology of the singlet-doublet χ0 DM has been presented.
As shown, a light DM can comply with (g − 2)µ bound, though in general TeV scale values
of DM are allowed in our model. This minimal model can be tested at the LHC. Presently
a stringent bound can be realized on the mass of vector like leptons L1 and L2, though the
mass difference between the VLs and the inert doublet η can be tuned to evade the strong
bounds on them. The mass splitting does not have any role on the lepton phenomenology
which we have exhaustively studied here.
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A Feynman rules for the leptons and scalars

In this appendix we list all the Feynman rules required for our calculation. These rules have
been expressed in physical eigen basis for particles: neutral scalar sX = (η0, S), charged
scalar η±, neutral VL fermions χa (a = 1, 0) and charged VL fermions L−a (a = 1, 2).

Scalar interactions. The Feynman rules for scalar interactions are given by,

η±

ℓi

χa

i(NR∗
ia PL +NL∗

ia PR)

η±

ℓi

χa

i(NL
iaPL +NR

iaPR)

sX

ℓi

L−
a

i(CR∗
iaXPL + CL∗

iaXPR)

sX

ℓi

L−
a

i(CL
iaXPL + CR

iaXPR)

Where, NR
ia = Y4iUa, with U1 = sin θ , U0 = − cos θ; NL

ia = Y †1iU
′
a, with U ′1 =

cos θ , U ′0 = sin θ and CLi11 = Y †1i, CRi11 = 0, CLi22 = 0, CRi22 = Y3i.

Z boson interactions. The Feynman rules governing the Z boson interactions are
given by,

Zµ

ℓ

ℓ

iγµ(g
ℓ
LPL + gℓRPR)

Zµ

sX(p)

sY (q)

i(p+ q)µQXY

Zµ

χa

χb

iγµ(E
L(n)
ab PL + E

R(n)
ab PR)

Zµ

L−
a

L−
b

iγµ(E
L(c)
ab PL + E

R(c)
ab PR)
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• g
(`)
L = − g

cos θW

(
−1

2 + sin2 θW
)
, g(`)

R = − g
cos θW sin2 θW are the left and right chiral

couplings among two SM leptons and Z boson respectively, g being the SU(2)L
coupling constant.

• Q11 = Qη0η0 = − g
2 cos θW & Qη+η+ = −g cos 2θW

2 cos θW , Q22 = QSS = 0 and Q12 = Q21 = 0
are the Z-scalar-scalar couplings.

• For neutral VL fermions: E
L,R(n)
11 = − g

2 cos θW cos2 θ, EL,R(n)
00 = − g

2 cos θW sin2 θ,
E
L,R(n)
10 = E

L,R(n)
01 = − g

2 cos θW sin θ cos θ and for charged VL fermions: EL,R(c)
11 =

E
L,R(c)
22 = − g

cos θW

(
−1

2 + sin2 θW
)
, EL,R(c)

12 = E
L,R(c)
21 = 0 are the Z-fermion-fermion

couplings.

Photon interactions. The Feynman rules for γ interactions are given by,

γµ

ℓ

ℓ

ieγµ

γµ

L−
a

L−
b

ieγµδab

γµ

η±(p)

η±(q)

ie(p+ q)µ

B The Loop functions

In this appendix, we have listed the explicit forms of all the mass functions. The two point
and three functions are defined as,

B1
(
m2

1,m
2
2

)
= −1

2 + 1
2lnm2

2 −
m2

1 −m2
2 + 2m2

1 ln
(
m2

2
m2

1

)
4
(
m2

1 −m2
2
)2 , (B.1)

C0
(
m2

1,m
2
2,m

2
3

)
= − 1

m2
2 −m2

3

[
m2

1lnm2
1 −m2

2lnm2
2

m2
1 −m2

2
− m2

1lnm2
1 −m2

3lnm2
3

m2
1 −m2

3

]
, (B.2)

4C24
(
m2

1,m
2
2,m

2
3

)
= C̃0

(
m2

1,m
2
2,m

2
3

)
+ 1

2

= 3
2 −

1
m2

2 −m2
3

[
m4

1lnm2
1 −m4

2lnm2
2

m2
1 −m2

2
− m4

1lnm2
1 −m4

3lnm2
3

m2
1 −m2

3

]
. (B.3)
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The functional forms for the four point functions relevant in case of Box diagrams are
given by,

D0
(
m2

1,m
2
2,m

2
3,m

2
4

)
=− m2

1 lnm2
1(

m2
1−m2

2
)(
m2

1−m2
3
)(
m2

1−m2
4
)+ m2

2 lnm2
2(

m2
1−m2

2
)(
m2

2−m2
3
)(
m2

2−m2
4
)

− m2
3 lnm2

3(
m2

1−m2
3
)(
m2

2−m2
3
)(
m2

3−m2
4
)+ m2

4 lnm2
4(

m2
1−m2

4
)(
m2

2−m2
4
)(
m2

3−m2
4
) ,

(B.4)

D̃0
(
m2

1,m
2
2,m

2
3,m

2
4

)
=− m4

1 lnm2
1(

m2
1−m2

2
)(
m2

1−m2
3
)(
m2

1−m2
4
)+ m4

2 lnm2
2(

m2
1−m2

2
)(
m2

2−m2
3
)(
m2

2−m2
4
)

− m4
3 lnm2

3(
m2

1−m2
3
)(
m2

2−m2
3
)(
m2

3−m2
4
)+ m4

4 lnm2
4(

m2
1−m2

4
)(
m2

2−m2
4
)(
m2

3−m2
4
) .

(B.5)

The other functions appearing in the expressions of the dipole and monopole terms of the
γ-penguin are defined as:

F1 (r) =1− r2 + 2rln r
2 (1− r)3 ,

F2 (r) =1− 6r + 3r2 + 2r3 − 6r2ln r
6 (1− r)4 ,

F3 (r) =2 + 3r − 6r2 + r3 + 6rln r
6 (1− r)4 ,

F4 (r) =2− 9r + 18r2 − 11r3 + 6r3ln r
(1− r)4 ,

F5 (r) =16− 45r + 36r2 − 7r3 + 6(2− 3r)ln r
(1− r)4 . (B.6)

C Expressions for the charged leptons decays

In this section, we present the general and explicit results for the on-shell and off-shell
decays of the charged leptons.

C.1 `α → `βγ

The on-shell amplitude, mediated by the dipole operators, can be expressed as,

L``γ ⊃ e ūβ
[
im`ασ

µνqν
(
AL2PL +AR2 PR

)]
uαAµ + h.c. (C.1)

Here e is the electric charge, q is the photon momentum, PL,R = 1
2(1∓ γ5) are the usual

chirality projectors and the lepton spinors are denoted by uα,β , where α, β stand for the flavor
indices. The coefficients in eq. (C.1) can be written as, AL,R2 = A

(n)L,R
2 +A

(c)L,R
2 , where ‘n’

and ‘c’ indicate the dipole contributions from neutral and charged fermion loops [shown in
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figure 3] respectively. The general forms for A(n)L,R
2 and A(c)L,R

2 are given below:

A
(n)L
2 = 1

32π2M2
η

[
NL
βaN

R∗
αa

(2Mχa

m`α

)
F1

(
M2
χa

M2
η

)
+NL

βaN
L∗
αa F2

(
M2
χa

M2
η

)

+NR
βaN

R∗
αa

(
m`β

m`α

)
F2

(
M2
χa

M2
η

)]
, (C.2)

A
(n)R
2 = A

(n)L
2 |L↔R, (C.3)

A
(c)L
2 = 1

32π2M2
S

CRβ22C
R∗
α22

m`β

m`α

F3

(
M2
L2

M2
S

)
+ 1

32π2M2
η

CLβ11C
L∗
α11F3

(
M2
L1

M2
η

)
, (C.4)

A
(c)R
2 = 1

32π2M2
η

CLβ11C
L∗
α11

m`β

m`α

F3

(
M2
L1

M2
η

)
+ 1

32π2M2
S

CRβ22C
R∗
α22F3

(
M2
L2

M2
S

)
. (C.5)

C.2 `α → 3`β
The amplitude for such a process like `−α (p)→ `−β (p1)`−β (p2)`+β (p3) can be decomposed into
three major contributions given by,

M
(
`−α → `−β `

−
β `

+
β

)
'Mγ +MZ +MBox. (C.6)

In general there should be a contribution from Higgs penguin diagrams (i.e. MH) as well,
but one can neglect it in most cases, in comparison to the other three contributions of
eq. (C.6). Different contributions can be expressed as follows:

• Photon penguin contribution: the monopole and dipole contributions can be calcu-
lated from,

Mγ = ūβ (p1)
[
q2γµ

(
AL1PL +AR1 PR

)
+ im`ασ

µνqν
(
AL2PL +AR2 PR

)]
uα (p)

× e2

q2 ūβ (p2) γµvβ (p3)− (p1 ↔ p2) . (C.7)

The explicit form of the Wilson coefficients AL2 and AR2 are already described in
eqs. (C.2)−(C.5). The coefficients associated with the monopole operator can be
calculated as,

A
(n)L
1 = 1

576π2M2
η

[
NR
βaN

R∗
αa F4

(
M2
χa

M2
η

)]
, A

(n)R
1 =A

(n),L
1 |L↔R , (C.8)

A
(c)L
1 =− 1

576π2M2
S

[
CRβ22C

R∗
α22F5

(
M2
L2

M2
S

)]
, A

(c)R
1 =− 1

576π2M2
η

[
CLβ11C

L∗
α11F5

(
M2
L1

M2
η

)]
.

(C.9)

• Z penguin contribution: Feynman diagrams are shown in figure 7. We have calculated
the coefficients as follows:

MZ = 1
M2
Z

ūβ(p1)
[
γµ(FLPL+FRPR)

]
uα(p)ūβ(p2)

[
γµ
(
g

(`)
L PL+g(`)

R PR
)]
vβ(p3)−(p1↔ p2),

(C.10)
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where, as before, FL,R = F
(n)
L,R + F

(c)
L,R. The expressions for these form factors are

given below:

F
(n)
L =− 1

16π2

[
NR
βbN

R∗
αa

{
E
R(n)
ba

(
2C24

(
M2
η ,M

2
χa ,M

2
χb

)
− 1

2

)
−EL(n)

ba MχaMχbC0
(
M2
η ,M

2
χa ,M

2
χb

)}
+NR

βaN
R∗
αa

{
2QηηC24

(
M2
χa ,M

2
η ,M

2
η

)}
+NR

βaN
R∗
αa

{
g

(`)
L B1

(
M2
χa ,M

2
η

)}]
,

(C.11)

F
(c)
L =− 1

16π2

[
CRβaXC

R∗
αaX

{
ER(c)
aa

(
2C24

(
M2
X ,M

2
La ,M

2
La

)
− 1

2

)
−EL(c)

aa MLaMLaC0
(
M2
X ,M

2
La ,M

2
La

)}
+CRβaXCR∗αaX

{
2QXXC24

(
M2
La ,M

2
X ,M

2
X

)}
+CRβaXCR∗αaX

{
g

(`)
L B1

(
M2
La ,M

2
X

)}]
,

(C.12)

F
(n)
R =F

(n)
L |L↔R , F

(c)
R =F

(c)
L |L↔R. (C.13)

• Box diagram contribution: leading contributions are shown in figure 8.

MBox ' e2BL
1 [ūβ(p1)(γµPL)uα(p)][ūβ(p2)(γµPL)vβ(p3)]

+ e2BR
1 [ūβ(p1)(γµPR)uα(p)][ūβ(p2)(γµPR)vβ(p3)]

+ e2BL
2 {[ūβ(p1)(γµPL)uα(p)][ūβ(p2)(γµPR)vβ(p3)]− (p1 ↔ p2)}

+ e2BR
2 {[ūβ(p1)(γµPR)uα(p)][ūβ(p2)(γµPL)vβ(p3)]− (p1 ↔ p2)}

+ e2BL
3 {[ūβ(p1)(PL)uα(p)][ūβ(p2)(PL)vβ(p3)]− (p1 ↔ p2)}

+ e2BR
3 {[ūβ(p1)(PR)uα(p)][ūβ(p2)(PR)vβ(p3)]− (p1 ↔ p2)}

+ e2BL
4 {[ūβ(p1)(σµνPL)uα(p)][ūβ(p2)(σµνPL)vβ(p3)]− (p1 ↔ p2)}

+ e2BR
4 {[ūβ(p1)(σµνPR)uα(p)][ūβ(p2)(σµνPR)vβ(p3)]− (p1 ↔ p2)} ,

(C.14)

where, BL,R
i = B

(n)L,R
i + B

(c)L,R
i [i = 1, 2, 3, 4]. The B-factors for the neutral
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fermions (χ1, χ0) can be calculated as,

e2B
(n)L
1 = 1

16π2

[
D̃0
2 NR

βaN
R∗
αaN

R
βbN

R∗
βb +D0MχaMχbN

R
βbN

R
βbN

R∗
αaN

R∗
βa

]
, (C.15)

e2B
(n)L
2 = 1

16π2

[
D̃0
4 NR

βaN
R∗
αaN

L
βbN

L∗
βb −

D0
2 MχaMχbN

L
βaN

R∗
αaN

R
βbN

L∗
βb

− D̃0
4 NL

βbN
R
βbN

R∗
αaN

L∗
βa + D̃0

4 NR
βbN

L
βbN

R∗
αaN

L∗
βa

]
, (C.16)

e2B
(n)L
3 = 1

16π2

[
D0MχaMχbN

L
βaN

R∗
αaN

L
βbN

R∗
βb + D0

2 MχaMχbN
L
βbN

L
βbN

R∗
αaN

R∗
βa

]
,

(C.17)

e2B
(n)L
4 = 1

16π2

[
D0
8 MχaMχbN

R∗
αaN

R∗
βa N

L
βbN

L
βb

]
, (C.18)

B
(n)R
i = B

(n)L
i |L↔R, (C.19)

where,

D0 = D0
(
M2
χa ,M

2
χb
,M2

η ,M
2
η

)
, D̃0 = D̃0

(
M2
χa ,M

2
χb
,M2

η ,M
2
η

)
. (C.20)

And for the charged fermions (L±1 , L±2 ),

e2B
(c)L
1 = 1

16π2

[
D̃0
2 CRβaXC

R∗
αaXC

R
βaXC

R∗
βaX

]
, (C.21)

e2B
(c)L
2 = 1

16π2

[
D̃0
4 CRβaXC

R∗
αaXC

L
βaXC

L∗
βaX −

D0
2 MLaMLaC

L
βaXC

R∗
αaXC

R
βaXC

L∗
βaX

]
,

(C.22)

e2B
(c)L
3 = 1

16π2

[
D0MLaMLaC

L
βaXC

R∗
αaXC

L
βaXC

R∗
βaX

]
, (C.23)

e2B
(c)L
4 = 0, (C.24)

B
(c)R
i = B

(c)L
i |L↔R, (C.25)

where,

D0 = D0
(
M2
La ,M

2
La ,M

2
X ,M

2
X

)
, D̃0 = D̃0

(
M2
La ,M

2
La ,M

2
X ,M

2
X

)
, (C.26)

with M1 = Mη and M2 = MS . The generic functional forms for these D0 and D̃0 are
again available in appendix B.

The decay width for `−α → `−β `
−
β `

+
β can be obtained by considering all the possible

contributions coming from photon and Z penguins in addition to the box diagrams
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and can be expressed as [135, 136],

Γ(`−α → `−β `
−
β `

+
β ) =

e4m5
`α

512π3

[
|AL1 |2 + |AR1 |2 − 2

(
AL1A

R
2
∗ +AL2A

R
1
∗ + h.c.

)
+
(
|AL2 |2 + |AR2 |2

)
×

{
16
3 ln

(
m`α

m`β

)
− 22

3

}
+ 1

6
(
|BL

1 |2 + |BR
1 |2
)

+ 1
3
(
|BL

2 |2 + |BR
2 |2
)

+ 1
24
(
|BL

3 |2 + |BR
3 |2
)

+ 6
(
|BL

4 |2 + |BR
4 |2
)
− 1

2
(
BL

3 B
L
4
∗ +BR

3 B
R
4
∗ + h.c.

)
+ 1

3
(
AL1B

L
1
∗ +AR1 B

R
1
∗ +AL1B

L
2
∗ +AR1 B

R
2
∗ + h.c.

)
− 2

3
(
AR2 B

L
1
∗ +AL2B

R
1
∗ +AL2B

R
2
∗ +AR2 B

L
2
∗ + h.c.

)
+ 1

3

{
2
(
|FLL|2 + |FRR|2

)
+ |FLR|2 + |FRL|2

+
(
BL

1 F
∗
LL +BR

1 F
∗
RR +BL

2 F
∗
LR +BR

2 F
∗
RL + h.c.

)
+ 2

(
AL1F

∗
LL +AR1 F

∗
RR + h.c.

)
+
(
AL1F

∗
LR +AR1 F

∗
RL + h.c.

)
− 4

(
AR2 F

∗
LL +AL2F

∗
RR + h.c.

)
− 2

(
AL2F

∗
RL +AR2 F

∗
LR + h.c.

)}]
, (C.27)

where,

FLL = FLg
(`)
L

g2 sin2 θWM2
Z

, FRR = FLL|L↔R,

FLR = FLg
(`)
R

g2 sin2 θWM2
Z

, FRL = FLR|L↔R. (C.28)

The corresponding branching ratio can be directly calculated as Br(`−α → `−β `
−
β `

+
β ) =

ταΓ(`−α → `−β `
−
β `

+
β ), τα being the lifetime of `α.
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