Physics Letters B 804 (2020) 135363

www.elsevier.com/locate/physletb

Contents lists available at ScienceDirect

Physics Letters B

PHYSICS LETTERS B

Quantum corrected black holes: Quasinormal modes, scattering, )

shadows

a,b,*

R.A. Konoplya

Check for
updates

 Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, CZ-746 01

Opava, Czech Republic

b peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation

ARTICLE INFO ABSTRACT

Article history:

Received 29 December 2019
Accepted 10 March 2020
Available online 12 March 2020
Editor: N. Lambert

The spherically symmetric deformation of the Schwarzschild solution owing to the quantum corrections
to gravity is known as Kazakov-Solodukhin black-hole metric. Neglecting non-spherical deformations of
the background the problem was solved non-perturbatively. Here we analyze the basic characteristics of
this geometry, such as: quasinormal modes and grey-body factors of fields of various spin and shadow

cast by this black hole. The WKB approach and time-domain integration method, which we used for
calculation of quasinormal modes, are in a good concordance. The analytical formula for quasinormal
modes is deduced in the eikonal regime. The radius of shadow is decreasing when the quantum

deformation is turned on.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

According to various approaches to quantization of gravity the
Schwarzschild solution representing a spherically symmetric black
hole in General Relativity must acquire quantum corrections. Some
approaches for finding such quantum corrected black-hole geome-
try are related to the semi-classical perturbative corrections owing
to the polarization of vacuum by matter fields in the vicinity of
a black hole [1]. The consequent analysis of the proper oscilla-
tions frequencies of such black holes was done in [2,3]. However,
this approach does not take into consideration contribution of, ap-
parently, the dominating factor - quantization of the gravitational
fields itself. Fortunately, when neglecting the non-spherical defor-
mations and using the effective scalar-tensor gravity, the problem
proved to be renormalizable and the corresponding generalization
of the Schwarzschild solution was found long time ago by Kaza-
kov and Solodukhin [4]. Thermodynamic properties of these black
holes were considered in [5-7], and some cosmological applica-
tions in [8].

Here we would like to consider the basic characteristics related
to potentially observable quantities of the Kazakov-Solodukhin
black hole. One of such characteristics of the black-hole geometry
is the set of proper oscillation frequencies (termed “quasinormal
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modes”) governing the relaxation of perturbations in the vicin-
ity of a black hole at intermediately late times. These frequencies
are called “the fingerprints” of a black hole, because they do not
depend on the way of excitation and characterize the black-hole
geometry itself. The other characteristic is the grey-body factors
which say how much of the initial flux of Hawking radiation will
penetrate the potential barrier and reach a distant observer. Fi-
nally, the shadows cast by a black hole is important to determine
the near horizon geometry (see for example [9-17] and references
therein). The current experiments related to detection of gravita-
tional waves from black holes as well as observations of the elec-
tromagnetic spectrum in their vicinity [18] leave an ample room
for interpretation of the near horizon geometry of black holes, be-
cause the parameters of black holes and the models for the matter,
surrounding them, are known with large uncertainty and freedom
of interpretation.

One of the above three characteristics, quasinormal spectrum,
was previously considered in [19,20]. However, the data presented
in [19,20] is, in our opinion, not complete and fully satisfactory.
First of all, there were presented quasinormal modes computed by
the third order WKB formula in the regime when the overtone
number n is larger than the multipole number ¢, that is, when
the WKB method does not work. Then, the lowest (and most im-
portant) multipoles ¢ are not presented there for the scalar and
Dirac fields, apparently because the third order WKB formula is
not accurate and lead to meaningless results in this case. Finally,
no electromagnetic modes and data for the near extremal values
of the deformation parameter were presented. The gravitational
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perturbations considered in [19,20] were treated wrongly, because
the equation §R;, =0 was used for the spacetime which is not
Ricci-flat. Here we will complement and correct these results by
considering quasinormal spectrum of test scalar, Dirac and electro-
magnetic fields and a conformally coupled scalar field. In addition,
we will consider the scattering of fields and show the dependence
of the radius of the black hole shadow on the deformation param-
eter.

The paper is organized as follows. The Sec. 2 is devoted to the
essentials of the Kazakov-Solodukhin metric. Sec. 3 gives the de-
tailed analysis of quasinormal modes of minimally coupled scalar,
electromagnetic and Dirac fields via higher order WKB approach
combined with the Pade approximation and by the time-domain
integration. Sec. 4 we summarize the results of calculations of
quasinormal modes for the conformally coupled scalar field. In
Sec. 5 we solve the scattering problem. In Sec. 5 we find the radius
of the shadow cast by the quantum corrected black hole.

2. Kazakov-Solodukhin metric

The deformation of the Schwarzschild solution in general rel-
ativity due to spherically symmetric quantum fluctuations of the
metric was obtained by Kazakov and Solodukhin in [4]. In that
case, the 4D theory of gravity with Einstein action reduces to the
effective two-dimensional dilaton gravity. The Kazakov-Solodukhin
metric [4] has the form

ds? = — f(rydt? + f~1(r)dr? + r?(d6? + sin®0d¢?), (1)
where the renormalizable potential U(p) has the following form

e P

[o2p _4c.
e—4pP HGR

where Ggr = GnIn(u/mo), Gy is the Newton constant and w is a
scale parameter. Then, the metric function f(r) of the quantum-
corrected Schwarzschild black hole is

Up) = (2)

2M 1 A
f(T)Z—T'F?/U(P)dP, (3)
which gives
2_a2 2M
f= (u - —) . (4)
r r

Here a®> = 4Ggr/m is the deformation parameter. For an empty
space, U(p) =1 and the metric is reduced to the Schwarzschild
one. The spacetime is not Ricci-flat and the curvature is

_3
R(r) = 2 1 ! @ 1 @\ (5
=g\ Tzt r) )
1-3
"
The event horizon ry, is situated at r =r, = ~/4M2 + a2. The singu-
larity is located at r = a, because in the limit a — r the curvature
goes to infinity.

3. Quasinormal modes

The general covariant equation for a massless scalar field has
the form

I (V-gg""d, @) =0, (6)

-

and for an electromagnetic field it has the form

1
I (Fpo 8" 87" /~8) =0, 7)
«/_—g 1 ( po )
where Fy; =0pAs —35Ap and A, is a vector potential.
For the general background spacetime, the massless Dirac equa-
tion is

[yl (8, + )W =0, (8)

where @ is the Dirac matrix, e} is the inverse of the tetrad ei’t
(guv = nabeie’]’, ), Nap is the Minkowski metric. The spin connec-

tions Iy, are defined as follows
T a by
Iy = g[V Y legeby;p (9)

After separation of the variables Eqs. (6), (7) and (8) take the
following general wave-like form
d? W,
dr?

n (a)2 - Vs(r)) W, =0, (10)

where s = 0 corresponds to scalar field, s = +1/2 to Dirac field,
and s =1 to the electromagnetic field. The “tortoise coordinate” r,
is defined by the relation dr, =dr/f(r), and the effective poten-

tials are

Vo) = (1) (w;” + %dj;(r”), (11)
o =Y. (12)
V=Y (a7 29 5 ) (13

where |k| =1,2,3,- is the total angular momentum number [21].
As can be seen from [23] for generic spherically symmetric space-
times, both effective potential V1, and V_1,, are iso-spectral.
Quasinormal modes w, correspond to solutions of the master
wave equation (10) with the requirement of the purely outgoing
waves at infinity and purely incoming waves at the event horizon:

Wy ~ eFO s Lo, (14)

In order to find quasinormal modes we shall use two indepen-
dent methods:

1. the integration of the wave equation (before introduction the
stationary ansatz, that is, with the second derivative in time
instead of w?-term) in time domain at a given point in space
[24]

2. the WKB method suggested by Will and Schutz [25], extended
to higher orders in [26-28] and combined with the usage of
the Pade approximants [28,29].

As both methods are extensively discussed in the literature (see,
for example, reviews [30,31]), we will not describe them in this
paper, but will show that both methods are in a good agreement
in the common parametric range of applicability.

The maximum of the effective potential in the eikonal regime
occurs at

3
rmaxz\/;\/3M2+,/9M4+2M2p2+p2. (15)

In the eikonal regime (¢ — oo) the WKB formula is correct already
at the first order

1
@ = Vipay — 1 (n + E) V=2V s, (16)
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Table 1

The fundamental quasinormal mode of the scalar field (¢ =0, n=0, r, = 1) for
various values of a. The scalar quasinormal frequencies for £ = 0 cannot be eas-
ily extracted from the time domain profile at large a, because the asymptotic tail
dominates after only a few oscillations, which is not enough for the Prony method.

Table 3
The fundamental quasinormal mode of the electromagnetic field (¢ =1, n =0,
rp = 1) for various values of a.

WKB (7th order, m = 6)

Time-domain

a WKB (7th order, m =6) Time-domain

0.01 0.496530 — 0.184981i 0.49656 — 0.18497i
0.1 0.497119 — 0.185655i 0.49727 — 0.18553i
0.2 0.498927 — 0.187745i 0.49907 — 0.18764i
0.3 0.502026 — 0.191398i 0.50215 — 0.19131i
0.4 0.506553 — 0.196905i 0.50666 — 0.19684i
0.5 0.512725 — 0.204767i 0.51281 — 0.20475i
0.6 0.520870 — 0.215835i 0.52096 — 0.21595i
0.7 0.531267 — 0.231269i 0.53162 — 0.23214i
0.8 0.537418 — 0.257872i 0.54539 — 0.25698i
0.9 0.543220 — 0.314854i 0.56216 — 0.30067i

0.01 0.223624 — 0.210830i 0.22112 — 0.21057i
0.1 0.223962 — 0.211724i 0.22147 — 0.21144i
0.2 0.224992 — 0.214503i 0.22237 — 0.21420i
0.3 0.226730 — 0.219381i 0.22437 — 0.21867i
0.4 0.229239 — 0.226810i 0.22690 — 0.22580i
0.5 0.232801 — 0.237722i 0.23012 — 0.23620i
0.6 0.238824 — 0.254580i 0.23373 — 0.25193i
0.7 0.255035 — 0.287220i ——
0.8 0.355043 — 0.411972i ——
0.9 0.492339 — 0.102714i -
Table 2

The fundamental quasinormal mode of the Dirac field (k=1, n=0, r, = 1) for
various values of a.

Time-domain for V_q,

0.36577 — 0.19444i
0.36627 — 0.19415i
0.36792 — 0.19632i
0.37052 — 0.20047i
0.37448 — 0.20683i
0.38011 — 0.21594i
0.38735 — 0.22921i
0.39722 — 0.24915i
0.41127 — 0.28165i
0.43288 — 0.35007i

a WKB for V1/2, V_1/2 (7th order, m =6)

0.01 0.365864 — 0.193605i, 0.365885 — 0.194079i
0.1 0.366368 — 0.194364i, 0.366386 — 0.194844i
0.2 0.367919 — 0.196723i, 0.367934 — 0.197223i
03 0.370599 — 0.200864i, 0.370607 — 0.201403i
0.4 0.374567 — 0.2071551, 0.374564 — 0.207768i
0.5 0.380095 — 0.216257i, 0.380077 — 0.217022i
0.6 0.387673 — 0.229352i, 0.387768 — 0.230626i
0.7 0.398011 — 0.248958i, 0.399390 — 0.251245i
0.8 0.412694 — 0.2808291, 0.418123 — 0.283572i
0.9 0.340357 — 0.384698i, 0.462018 — 0.350993i

where Vg is the value of the effective potential in the peak
' =Tmax, and V] . is second derivative in the peak. Using the ex-
pansion of the right hand side of this formula in terms of 1/¢ we
can find the exact analytical expression for the quasinormal modes
in the eikonal regime, which is relatively compact for the real os-
cillation frequency

Re(w) _
2041

\/\/i\/31v1 (\/2a2 ToMZ + 3M> +a?—4M

, (17)
3/4
63/4 (M (\/2a2 ToMZ + 31\/1) 4 a2) /

but not for the damping rate. Therefore, a more compact expres-
sion can be obtained when expanding in terms of a small parame-
ter a:

2041 d?2e+1)  11a*@e+1) 6
R = — 0 18
CO=5AM 7 (ﬁM3) BT TV (a) (18)
2 4
Cim@y =2t ae@n+D | aentd |, <a6> (19)

- + +
6v3M 216 (ﬁMS) 5184+/3M5

Strictly speaking, the small dimensionless parameter is a/ry,
which is always smaller than unity. When a — 0 the above eikonal
formulas go over into their Schwarzschild forms [35]. The depen-
dence of the quasinormal frequencies on the deformation parame-
ter a is qualitatively different for lowest and higher multipoles ¢.
As can be seen in Tables 1, 2 and 3, both Re(w) and Im(w) grow
when a is increased up to some near extremal value of a. In the
near extremal regime the damping rate continues growing, while
the real oscillation frequency slightly decreases and approaches a
constant (see Table 4). From the analytical eikonal formulas (18,
19) one can see that the first correction term to the Schwarzschild

Table 4

The fundamental quasinormal mode of the
electromagnetic field (¢ =1, n=0, r, = 1) for
the near extremal black hole.

a  (Time-domain)

0.9 0.56216 — 0.30067i
0.91 0.56383 — 0.30706i
0.92 0.56543 — 0.31405i
0.93 0.56691 — 0.32174i
0.94 0.56821 — 0.33026i
0.95 0.56925 — 0.33995i
0.96 0.56985 — 0.35064i
0.97 0.56981 — 0.36316i
0.98 0.56871 — 0.37814i
0.99 0.56573 — 0.39746i
0.992 0.56452 — 0.40216i
0.994 0.56318 — 0.40751i
0.996 0.56145 — 0.41373i
0.998 0.55899 — 0.42160i
0.999 0.55714 — 0.42699i

value, proportional to a? is negative, so that both real and imag-
inary parts of w are smaller than their Schwarzschild limits at
higher multipoles. This feature is missed in [19,20], because only
the higher multipoles were considered there.

A general approach to finding of the eikonal quasinormal modes
for spherically symmetric black hole can be found in [32]. This
formula is also useful as the eikonal quasinormal modes of test
fields are related to the parameters of the null geodesics [33,34].

The spectrum of the Dirac field deserves a special remark, be-
cause there are two polarizations producing the same quasinormal
spectrum. However, the numerical error for the V1, potential is
larger than for the V_1,;, especially at large a. Therefore, in the Ta-
ble 2 we represent the time-domain integration data for the V_1,;
potential, which also produces better agreement with the WKB
results. In the WKB method we used the 7th order expansion with
the Pade approximants chosen in such a way that m =6 (see the
definition of m and further details in [30]). This produces the best
agreement between the time-domain, WKB and accurate numeri-
cal data in the Schwarzschild limit.

4. Greybody factors

Calculation of grey-body factors are important, first of all for
estimation of the portion of the initial quantum radiation in the
vicinity of the event horizon which is reflected back to it by the
potential barrier. Then the Hawking semi-classical formula can be
used with the grey-body factor in order to estimate the amount
of radiation which will reach the distant observer. In our case
the quantization of the gravitational field implies that the system
cannot be described semi-classically anymore, so that there is no
much sense in using the Hawking formula, but, the meaning of the
grey-body factors remains the same.
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It is also essential that at least for the Schwarzschild case, ra-
diation of test fields dominate over that of gravitons. In the semi-
classical regime gravitons contribute less than two percents in the
total radiation flux (see [36] and a summary on Table I in [37]).
Thus, grey-body factors of test fields are essential not only for
understanding the classical scattering problem, but also for esti-
mation of the intensity of Hawking radiation. Moreover, grey-body
factors can sometimes be more influential than the temperature
[37].

We shall consider the wave equation (10) with the boundary
conditions allowing for incoming waves from infinity. Owing to the
symmetry of the scattering properties this is identical to the scat-
tering of a wave coming from the horizon. The scattering boundary
conditions for (10) have the following form

W = e~ 4 Rel®™ | 1, — +o0,
U = Te '@, Iy — —00,

where R and T are the reflection and transmission coefficients.

The effective potential has the form of the potential barrier
which monotonically decreases at both infinities, so that the WKB
approach [25-27] can be applied for finding R and T. Since w? is
real, the first order WKB values for R and T will be real [25-27]
and

(20)

ITI> + [R>=1. (21)

Once the reflection coefficient is calculated, we can find the trans-
mission coefficient for each multipole number ¢

|Ael2 =1~ [Re|? =T (22)

A number of methods for computation of the transmission and
reflection coefficients exist in the literature. For relatively accurate
estimation of the transmission and reflection coefficients we used
the 6th order WKB formula [27]. The above formula does not work
well when w is very small, but fortunately, this corresponds to
almost complete reflection of the waves and does not contribute
considerably into the total energy emission rate. In order to study
contributions of particles at very small frequencies we used the
first order WKB formula which gives more accurate results in this
regime. According to [25,26] the reflection coefficient can be ex-
pressed as follows:

R=(1+e 27K)=3 (23)
where K can be determined from the following equation:

-V
K— i( max) Z Ai(K) = (24)

V =2V max

Here Vpax is the maximum of the effective potential, V], is the
second derivative of the effective potential in its maximum with
respect to the tortoise coordinate, and A; are higher order WKB
corrections which depend on up to 2ith order derivatives of the
effective potential at its maximum and K.

From Figs. 1, 2 we can see that at low frequencies larger de-
formation a corresponds to a lower grey-body factor, so that the
radiation at low energies is slightly enhanced. This however should
not be important for the total radiation, because this enhance-
ment occurs in the regime of almost complete reflection. At the
same time, at intermediate frequencies the situation is opposite:
larger a corresponds to stronger reflection from the barrier. Finally
at high frequencies quantum deformations again work for lowering
the grey-body factors and enhancement of radiation (see Figs. 1, 2).
Here we show only the first two multipoles, because contribution
of higher ¢ into the total flux of radiation is usually negligible (see,
for instance, fig. 9 in [38]).

AP
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04

L L L W

0.2 0.4 0.6 0.8

Fig. 1. Grey-body factors of the electromagnetic field computed with the sixth order
WKB method: M =1, £ =1, a=0 (the top curve on the right), 1, 1.75 (the bottom
curve on the right).
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Fig. 2. Grey-body factors of the electromagnetic field computed with the sixth order
WKB method: M =1, £ =2, a=0 (the top curve on the right), 1, 1.75 (the bottom
curve on the right).

5. Non-minimally coupled scalar field

As the quantum corrected black-hole spacetime is not Ricci-flat,
the evolution of non-minimally coupled fields will show even more
distinction from the Schwarzschild case. The generalization of the
Klein-Gordon equation to four-dimensional spacetimes with non-
vanishing curvature is [39]:

1
The corresponding effective potential has the form
LE+1)  1df(n)
Vo(r) = f(r)< +o j;r + = R() (26)

where R(r) is given by (5).

If one relies upon the time-domain data, it can be seen by com-
paring Table 1 and Table 5 that the conformal scalar field is charac-
terized by slightly higher oscillations frequency and lower damping
rate than the minimally coupled scalar field. The grey-body fac-
tors for conformal coupling differ insignificantly from those for the
minimal ones and, therefore, are not presented here.

At asymptotically late times, both the minimally coupled and
conformally coupled scalar fields decay as

|| ~ 2613, (27)

what coincides with the Schwarzschild limit.
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Table 5

The fundamental quasinormal mode of the conformally scalar field (¢ =0, n =0,
rp = 1) for various values of a. The scalar quasinormal frequencies for £ =0 cannot
be easily extracted from the time domain profile at large a, because the asymp-
totic tail dominates after only a few oscillations, which is not enough for the Prony

method.

WKB (7th order, i = 6)

Time-domain

0.1 0.222623 — 0.209457i 0.22087 — 0.21164i
0.2 0.223720 — 0.212184i 0.22225 — 0.21441i
0.3 0.225647 — 0.216986i 0.22430 — 0.21899i
0.4 0.228572 — 0.224291i 0.22696 — 0.22642i
0.5 0.232779 — 0.234696i 0.22928 — 0.23749i
0.6 0.238626 — 0.249205i 0.23700 — 0.25170i
0.7 0.247631 — 0.271143i 0.24542 — 0.27551i
0.8 0.265972 — 0.307864i 0.26073 — 0.31073i
0.9 0.352638 — 0.405980i 0.29350 — 0.38222i

. . . . L,
0.2 0.4 0.6 0.8 1.0

Fig. 3. The radius of the shadow as a function of a. The parameter a ranges from
zero to 0.99999 on the plot; r, = 1.

6. Shadows

The radius of the photon sphere r,, of a spherically symmetric
black hole is determined by means of the following function: (see,
for example, [9] and references therein)

2 r?
he(=—, (28)
fm
as the solution to the equation
d
—h%*(r)=0. (29)
dr

Then, the radius of the black-hole shadow Ry, as seen by a distant
static observer located at ro will be

h(rpn)ro _ rpny/ f(ro) ~ _ Toh
h(ro) NG

where in the last equation we have assumed that the observer is
located sufficiently far away from the black hole so that f(rp) ~ 1.
On Fig. 3 one can see that when the radius of the black hole is
fixed, the radius of shadow is decreasing, once the quantum cor-
rection is turned on. This can be easily explained by looking at the
form of the metric function f(r): when the radius of the event
horizon ry, is fixed and a approaches r;, the mass of the black
hole decreases and goes to zero, what should correspond to weaker
gravitational attraction and smaller radius of the shadow.

Rgp = (30)

7. Conclusions

Here we have considered some of the basic properties which
tests the geometry of the Schwarzschild black hole with quan-
tum correction obtained by Kazakov and Solodukhin in [4]. This
solution, known for a long time, seems to be the only one for
which the problem was solved exactly and non-perturbatively, and,
neglecting non-spherical deformations, the renormalizability was
provided. However, this result was mainly overlooked in the liter-
ature. Here we have computed quasinormal modes of scalar, Dirac
and electromagnetic fields for such black holes, obtained an ana-
lytical formula in the eikonal regime. In addition, we considered
the spectrum of the conformally coupled scalar field. We also an-
alyzed the behavior of grey-body factors in the presence of the
quantum deformation, which may enhance or suppress radiation,
depending on the frequency regime. The radius of the black hole
shadow is shown to be decreasing, when the deformation param-
eter is increased.

Our paper could be extended in the following ways. The mas-
sive fields in the background of various (but not all) black holes
and wormholes allow for arbitrarily long lived quasinormal modes,
called quasi-resonances [22,40-43]. It would be interesting to see
whether this occurs also for the Kazakov-Solodukhin black hole.
The detailed analysis of massless and massive particle motion in
this spacetime would be useful as well.
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