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The spherically symmetric deformation of the Schwarzschild solution owing to the quantum corrections 
to gravity is known as Kazakov-Solodukhin black-hole metric. Neglecting non-spherical deformations of 
the background the problem was solved non-perturbatively. Here we analyze the basic characteristics of 
this geometry, such as: quasinormal modes and grey-body factors of fields of various spin and shadow 
cast by this black hole. The WKB approach and time-domain integration method, which we used for 
calculation of quasinormal modes, are in a good concordance. The analytical formula for quasinormal 
modes is deduced in the eikonal regime. The radius of shadow is decreasing when the quantum 
deformation is turned on.
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1. Introduction

According to various approaches to quantization of gravity the 
Schwarzschild solution representing a spherically symmetric black 
hole in General Relativity must acquire quantum corrections. Some 
approaches for finding such quantum corrected black-hole geome-
try are related to the semi-classical perturbative corrections owing 
to the polarization of vacuum by matter fields in the vicinity of 
a black hole [1]. The consequent analysis of the proper oscilla-
tions frequencies of such black holes was done in [2,3]. However, 
this approach does not take into consideration contribution of, ap-
parently, the dominating factor - quantization of the gravitational 
fields itself. Fortunately, when neglecting the non-spherical defor-
mations and using the effective scalar-tensor gravity, the problem 
proved to be renormalizable and the corresponding generalization 
of the Schwarzschild solution was found long time ago by Kaza-
kov and Solodukhin [4]. Thermodynamic properties of these black 
holes were considered in [5–7], and some cosmological applica-
tions in [8].

Here we would like to consider the basic characteristics related 
to potentially observable quantities of the Kazakov-Solodukhin 
black hole. One of such characteristics of the black-hole geometry 
is the set of proper oscillation frequencies (termed “quasinormal 
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modes”) governing the relaxation of perturbations in the vicin-
ity of a black hole at intermediately late times. These frequencies 
are called “the fingerprints” of a black hole, because they do not 
depend on the way of excitation and characterize the black-hole 
geometry itself. The other characteristic is the grey-body factors 
which say how much of the initial flux of Hawking radiation will 
penetrate the potential barrier and reach a distant observer. Fi-
nally, the shadows cast by a black hole is important to determine 
the near horizon geometry (see for example [9–17] and references 
therein). The current experiments related to detection of gravita-
tional waves from black holes as well as observations of the elec-
tromagnetic spectrum in their vicinity [18] leave an ample room 
for interpretation of the near horizon geometry of black holes, be-
cause the parameters of black holes and the models for the matter, 
surrounding them, are known with large uncertainty and freedom 
of interpretation.

One of the above three characteristics, quasinormal spectrum, 
was previously considered in [19,20]. However, the data presented 
in [19,20] is, in our opinion, not complete and fully satisfactory. 
First of all, there were presented quasinormal modes computed by 
the third order WKB formula in the regime when the overtone 
number n is larger than the multipole number �, that is, when 
the WKB method does not work. Then, the lowest (and most im-
portant) multipoles � are not presented there for the scalar and 
Dirac fields, apparently because the third order WKB formula is 
not accurate and lead to meaningless results in this case. Finally, 
no electromagnetic modes and data for the near extremal values 
of the deformation parameter were presented. The gravitational 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2020.135363
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2020.135363&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:roman.konoplya@gmail.com
https://doi.org/10.1016/j.physletb.2020.135363
http://creativecommons.org/licenses/by/4.0/


2 R.A. Konoplya / Physics Letters B 804 (2020) 135363
perturbations considered in [19,20] were treated wrongly, because 
the equation δRμν = 0 was used for the spacetime which is not 
Ricci-flat. Here we will complement and correct these results by 
considering quasinormal spectrum of test scalar, Dirac and electro-
magnetic fields and a conformally coupled scalar field. In addition, 
we will consider the scattering of fields and show the dependence 
of the radius of the black hole shadow on the deformation param-
eter.

The paper is organized as follows. The Sec. 2 is devoted to the 
essentials of the Kazakov-Solodukhin metric. Sec. 3 gives the de-
tailed analysis of quasinormal modes of minimally coupled scalar, 
electromagnetic and Dirac fields via higher order WKB approach 
combined with the Pade approximation and by the time-domain 
integration. Sec. 4 we summarize the results of calculations of 
quasinormal modes for the conformally coupled scalar field. In 
Sec. 5 we solve the scattering problem. In Sec. 5 we find the radius 
of the shadow cast by the quantum corrected black hole.

2. Kazakov-Solodukhin metric

The deformation of the Schwarzschild solution in general rel-
ativity due to spherically symmetric quantum fluctuations of the 
metric was obtained by Kazakov and Solodukhin in [4]. In that 
case, the 4D theory of gravity with Einstein action reduces to the 
effective two-dimensional dilaton gravity. The Kazakov-Solodukhin 
metric [4] has the form

ds2 = − f (r)dt2 + f −1(r)dr2 + r2(dθ2 + sin2θdϕ2), (1)

where the renormalizable potential U (ρ) has the following form

U (ρ) = e−ρ√
e−2ρ − 4

π G R

, (2)

where G R = G Nln(μ/μ0), G N is the Newton constant and μ is a 
scale parameter. Then, the metric function f (r) of the quantum-
corrected Schwarzschild black hole is

f (r) = −2M

r
+ 1

r

r∫
U (ρ)dρ, (3)

which gives

f (r) =
(√

r2 − a2

r
− 2M

r

)
. (4)

Here a2 = 4G R/π is the deformation parameter. For an empty 
space, U (ρ) = 1 and the metric is reduced to the Schwarzschild 
one. The spacetime is not Ricci-flat and the curvature is

R(r) = 2

r2

⎛
⎜⎝1 − 1√

1 − a2

r2

⎞
⎟⎠ + a2

r4

(
1 − a2

r2

)− 3
2

. (5)

The event horizon rh is situated at r = rh = √
4M2 + a2. The singu-

larity is located at r = a, because in the limit a → r the curvature 
goes to infinity.

3. Quasinormal modes

The general covariant equation for a massless scalar field has 
the form

1√−g
∂μ

(√−g gμν∂ν

) = 0, (6)

and for an electromagnetic field it has the form
1√−g
∂μ

(
Fρσ gρν gσμ√−g

) = 0 , (7)

where Fρσ = ∂ρ Aσ − ∂σ Aρ and Aμ is a vector potential.
For the general background spacetime, the massless Dirac equa-

tion is

[γ aeμ
a (∂μ + 
μ)]� = 0, (8)

where γ a is the Dirac matrix, eμ
a is the inverse of the tetrad ea

μ

(gμν = ηabea
μeb

ν ), ηab is the Minkowski metric. The spin connec-
tions 
μ are defined as follows


μ = 1

8
[γ a, γ b]eν

a ebν;μ. (9)

After separation of the variables Eqs. (6), (7) and (8) take the 
following general wave-like form

d2�s

dr2∗
+

(
ω2 − V s(r)

)
�s = 0, (10)

where s = 0 corresponds to scalar field, s = ±1/2 to Dirac field, 
and s = 1 to the electromagnetic field. The “tortoise coordinate” r∗
is defined by the relation dr∗ = dr/ f (r), and the effective poten-
tials are

V 0(r) = f (r)

(
�(� + 1)

r2
+ 1

r

df (r)

dr

)
, (11)

V 1(r) = f (r)
�(� + 1)

r2
. (12)

V±1/2 =
√

f |k|
r2

(
|k|√ f ± r

2

df

dr
∓ f

)
(13)

where |k| = 1, 2, 3, · is the total angular momentum number [21]. 
As can be seen from [23] for generic spherically symmetric space-
times, both effective potential V+1/2 and V−1/2 are iso-spectral.

Quasinormal modes ωn correspond to solutions of the master 
wave equation (10) with the requirement of the purely outgoing 
waves at infinity and purely incoming waves at the event horizon:

�s ∼ ±e±iωr∗
, r∗ → ±∞. (14)

In order to find quasinormal modes we shall use two indepen-
dent methods:

1. the integration of the wave equation (before introduction the 
stationary ansatz, that is, with the second derivative in time 
instead of ω2-term) in time domain at a given point in space 
[24]

2. the WKB method suggested by Will and Schutz [25], extended 
to higher orders in [26–28] and combined with the usage of 
the Pade approximants [28,29].

As both methods are extensively discussed in the literature (see, 
for example, reviews [30,31]), we will not describe them in this 
paper, but will show that both methods are in a good agreement 
in the common parametric range of applicability.

The maximum of the effective potential in the eikonal regime 
occurs at

rmax =
√

3

2

√
3M2 +

√
9M4 + 2M2 p2 + p2. (15)

In the eikonal regime (� → ∞) the WKB formula is correct already 
at the first order

ω2 = Vmax − i

(
n + 1

)√
−2V ′′

max, (16)

2
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Table 1
The fundamental quasinormal mode of the scalar field (� = 0, n = 0, rh = 1) for 
various values of a. The scalar quasinormal frequencies for � = 0 cannot be eas-
ily extracted from the time domain profile at large a, because the asymptotic tail 
dominates after only a few oscillations, which is not enough for the Prony method.

a WKB (7th order, m̃ = 6) Time-domain

0.01 0.223624 − 0.210830i 0.22112 − 0.21057i
0.1 0.223962 − 0.211724i 0.22147 − 0.21144i
0.2 0.224992 − 0.214503i 0.22237 − 0.21420i
0.3 0.226730 − 0.219381i 0.22437 − 0.21867i
0.4 0.229239 − 0.226810i 0.22690 − 0.22580i
0.5 0.232801 − 0.237722i 0.23012 − 0.23620i
0.6 0.238824 − 0.254580i 0.23373 − 0.25193i
0.7 0.255035 − 0.287220i −−
0.8 0.355043 − 0.411972i −−
0.9 0.492339 − 0.102714i −−

Table 2
The fundamental quasinormal mode of the Dirac field (k = 1, n = 0, rh = 1) for 
various values of a.

a WKB for V+1/2, V−1/2 (7th order, m̃ = 6) Time-domain for V−1/2

0.01 0.365864 − 0.193605i, 0.365885 − 0.194079i 0.36577 − 0.19444i
0.1 0.366368 − 0.194364i, 0.366386 − 0.194844i 0.36627 − 0.19415i
0.2 0.367919 − 0.196723i, 0.367934 − 0.197223i 0.36792 − 0.19632i
0.3 0.370599 − 0.200864i, 0.370607 − 0.201403i 0.37052 − 0.20047i
0.4 0.374567 − 0.207155i, 0.374564 − 0.207768i 0.37448 − 0.20683i
0.5 0.380095 − 0.216257i, 0.380077 − 0.217022i 0.38011 − 0.21594i
0.6 0.387673 − 0.229352i, 0.387768 − 0.230626i 0.38735 − 0.22921i
0.7 0.398011 − 0.248958i, 0.399390 − 0.251245i 0.39722 − 0.24915i
0.8 0.412694 − 0.280829i, 0.418123 − 0.283572i 0.41127 − 0.28165i
0.9 0.340357 − 0.384698i, 0.462018 − 0.350993i 0.43288 − 0.35007i

where Vmax is the value of the effective potential in the peak 
r = rmax , and V ′′

max is second derivative in the peak. Using the ex-
pansion of the right hand side of this formula in terms of 1/� we 
can find the exact analytical expression for the quasinormal modes 
in the eikonal regime, which is relatively compact for the real os-
cillation frequency

Re(ω)

2� + 1
=√

√
2

√
3M

(√
2a2 + 9M2 + 3M

)
+ a2 − 4M

63/4
(

M
(√

2a2 + 9M2 + 3M
)

+ a2
)3/4

, (17)

but not for the damping rate. Therefore, a more compact expres-
sion can be obtained when expanding in terms of a small parame-
ter a:

Re(ω) = 2� + 1

6
√

3M
− a2(2� + 1)

72
(√

3M3
) + 11a4(2� + 1)

5184
√

3M5
+ O

(
a6

)
(18)

−Im(ω) = 2n + 1

6
√

3M
− a2(2n + 1)

216
(√

3M3
) + a4(2n + 1)

5184
√

3M5
+ O

(
a6

)
(19)

Strictly speaking, the small dimensionless parameter is a/rh , 
which is always smaller than unity. When a → 0 the above eikonal 
formulas go over into their Schwarzschild forms [35]. The depen-
dence of the quasinormal frequencies on the deformation parame-
ter a is qualitatively different for lowest and higher multipoles �. 
As can be seen in Tables 1, 2 and 3, both Re(ω) and Im(ω) grow 
when a is increased up to some near extremal value of a. In the 
near extremal regime the damping rate continues growing, while 
the real oscillation frequency slightly decreases and approaches a 
constant (see Table 4). From the analytical eikonal formulas (18, 
19) one can see that the first correction term to the Schwarzschild 
Table 3
The fundamental quasinormal mode of the electromagnetic field (� = 1, n = 0, 
rh = 1) for various values of a.

a WKB (7th order, m̃ = 6) Time-domain

0.01 0.496530 − 0.184981i 0.49656 − 0.18497i
0.1 0.497119 − 0.185655i 0.49727 − 0.18553i
0.2 0.498927 − 0.187745i 0.49907 − 0.18764i
0.3 0.502026 − 0.191398i 0.50215 − 0.19131i
0.4 0.506553 − 0.196905i 0.50666 − 0.19684i
0.5 0.512725 − 0.204767i 0.51281 − 0.20475i
0.6 0.520870 − 0.215835i 0.52096 − 0.21595i
0.7 0.531267 − 0.231269i 0.53162 − 0.23214i
0.8 0.537418 − 0.257872i 0.54539 − 0.25698i
0.9 0.543220 − 0.314854i 0.56216 − 0.30067i

Table 4
The fundamental quasinormal mode of the 
electromagnetic field (� = 1, n = 0, rh = 1) for 
the near extremal black hole.

a ω (Time-domain)

0.9 0.56216 − 0.30067i
0.91 0.56383 − 0.30706i
0.92 0.56543 − 0.31405i
0.93 0.56691 − 0.32174i
0.94 0.56821 − 0.33026i
0.95 0.56925 − 0.33995i
0.96 0.56985 − 0.35064i
0.97 0.56981 − 0.36316i
0.98 0.56871 − 0.37814i
0.99 0.56573 − 0.39746i
0.992 0.56452 − 0.40216i
0.994 0.56318 − 0.40751i
0.996 0.56145 − 0.41373i
0.998 0.55899 − 0.42160i
0.999 0.55714 − 0.42699i

value, proportional to a2 is negative, so that both real and imag-
inary parts of ω are smaller than their Schwarzschild limits at 
higher multipoles. This feature is missed in [19,20], because only 
the higher multipoles were considered there.

A general approach to finding of the eikonal quasinormal modes 
for spherically symmetric black hole can be found in [32]. This 
formula is also useful as the eikonal quasinormal modes of test 
fields are related to the parameters of the null geodesics [33,34].

The spectrum of the Dirac field deserves a special remark, be-
cause there are two polarizations producing the same quasinormal 
spectrum. However, the numerical error for the V+1/2 potential is 
larger than for the V−1/2, especially at large a. Therefore, in the Ta-
ble 2 we represent the time-domain integration data for the V−1/2
potential, which also produces better agreement with the W K B
results. In the WKB method we used the 7th order expansion with 
the Pade approximants chosen in such a way that m̃ = 6 (see the 
definition of m̃ and further details in [30]). This produces the best 
agreement between the time-domain, WKB and accurate numeri-
cal data in the Schwarzschild limit.

4. Greybody factors

Calculation of grey-body factors are important, first of all for 
estimation of the portion of the initial quantum radiation in the 
vicinity of the event horizon which is reflected back to it by the 
potential barrier. Then the Hawking semi-classical formula can be 
used with the grey-body factor in order to estimate the amount 
of radiation which will reach the distant observer. In our case 
the quantization of the gravitational field implies that the system 
cannot be described semi-classically anymore, so that there is no 
much sense in using the Hawking formula, but, the meaning of the 
grey-body factors remains the same.
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It is also essential that at least for the Schwarzschild case, ra-
diation of test fields dominate over that of gravitons. In the semi-
classical regime gravitons contribute less than two percents in the 
total radiation flux (see [36] and a summary on Table I in [37]). 
Thus, grey-body factors of test fields are essential not only for 
understanding the classical scattering problem, but also for esti-
mation of the intensity of Hawking radiation. Moreover, grey-body 
factors can sometimes be more influential than the temperature 
[37].

We shall consider the wave equation (10) with the boundary 
conditions allowing for incoming waves from infinity. Owing to the 
symmetry of the scattering properties this is identical to the scat-
tering of a wave coming from the horizon. The scattering boundary 
conditions for (10) have the following form

� = e−iωr∗ + Reiωr∗ , r∗ → +∞,

� = T e−iωr∗ , r∗ → −∞,
(20)

where R and T are the reflection and transmission coefficients.
The effective potential has the form of the potential barrier 

which monotonically decreases at both infinities, so that the WKB 
approach [25–27] can be applied for finding R and T . Since ω2 is 
real, the first order WKB values for R and T will be real [25–27]
and

|T |2 + |R|2 = 1. (21)

Once the reflection coefficient is calculated, we can find the trans-
mission coefficient for each multipole number �

|A�|2 = 1 − |R�|2 = |T�|2 . (22)

A number of methods for computation of the transmission and 
reflection coefficients exist in the literature. For relatively accurate 
estimation of the transmission and reflection coefficients we used 
the 6th order WKB formula [27]. The above formula does not work 
well when ω is very small, but fortunately, this corresponds to 
almost complete reflection of the waves and does not contribute 
considerably into the total energy emission rate. In order to study 
contributions of particles at very small frequencies we used the 
first order WKB formula which gives more accurate results in this 
regime. According to [25,26] the reflection coefficient can be ex-
pressed as follows:

R = (1 + e−2iπ K )−
1
2 , (23)

where K can be determined from the following equation:

K − i
(ω2 − Vmax)√−2V ′′

max

−
i=6∑
i=2

�i(K ) = 0. (24)

Here Vmax is the maximum of the effective potential, V ′′
max is the 

second derivative of the effective potential in its maximum with 
respect to the tortoise coordinate, and �i are higher order WKB 
corrections which depend on up to 2ith order derivatives of the 
effective potential at its maximum and K .

From Figs. 1, 2 we can see that at low frequencies larger de-
formation a corresponds to a lower grey-body factor, so that the 
radiation at low energies is slightly enhanced. This however should 
not be important for the total radiation, because this enhance-
ment occurs in the regime of almost complete reflection. At the 
same time, at intermediate frequencies the situation is opposite: 
larger a corresponds to stronger reflection from the barrier. Finally 
at high frequencies quantum deformations again work for lowering 
the grey-body factors and enhancement of radiation (see Figs. 1, 2). 
Here we show only the first two multipoles, because contribution 
of higher � into the total flux of radiation is usually negligible (see, 
for instance, fig. 9 in [38]).
Fig. 1. Grey-body factors of the electromagnetic field computed with the sixth order 
WKB method: M = 1, � = 1, a = 0 (the top curve on the right), 1, 1.75 (the bottom 
curve on the right).

Fig. 2. Grey-body factors of the electromagnetic field computed with the sixth order 
WKB method: M = 1, � = 2, a = 0 (the top curve on the right), 1, 1.75 (the bottom 
curve on the right).

5. Non-minimally coupled scalar field

As the quantum corrected black-hole spacetime is not Ricci-flat, 
the evolution of non-minimally coupled fields will show even more 
distinction from the Schwarzschild case. The generalization of the 
Klein-Gordon equation to four-dimensional spacetimes with non-
vanishing curvature is [39]:

�
 + 1

6
R(r)
 = 0. (25)

The corresponding effective potential has the form

V 0(r) = f (r)

(
�(� + 1)

r2
+ 1

r

df (r)

dr
+ 1

6
R(r)

)
, (26)

where R(r) is given by (5).
If one relies upon the time-domain data, it can be seen by com-

paring Table 1 and Table 5 that the conformal scalar field is charac-
terized by slightly higher oscillations frequency and lower damping 
rate than the minimally coupled scalar field. The grey-body fac-
tors for conformal coupling differ insignificantly from those for the 
minimal ones and, therefore, are not presented here.

At asymptotically late times, both the minimally coupled and 
conformally coupled scalar fields decay as

|�| ∼ t−2�+3, (27)

what coincides with the Schwarzschild limit.
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Table 5
The fundamental quasinormal mode of the conformally scalar field (� = 0, n = 0, 
rh = 1) for various values of a. The scalar quasinormal frequencies for � = 0 cannot 
be easily extracted from the time domain profile at large a, because the asymp-
totic tail dominates after only a few oscillations, which is not enough for the Prony 
method.

a WKB (7th order, m̃ = 6) Time-domain

0.1 0.222623 − 0.209457i 0.22087 − 0.21164i
0.2 0.223720 − 0.212184i 0.22225 − 0.21441i
0.3 0.225647 − 0.216986i 0.22430 − 0.21899i
0.4 0.228572 − 0.224291i 0.22696 − 0.22642i
0.5 0.232779 − 0.234696i 0.22928 − 0.23749i
0.6 0.238626 − 0.249205i 0.23700 − 0.25170i
0.7 0.247631 − 0.271143i 0.24542 − 0.27551i
0.8 0.265972 − 0.307864i 0.26073 − 0.31073i
0.9 0.352638 − 0.405980i 0.29350 − 0.38222i

Fig. 3. The radius of the shadow as a function of a. The parameter a ranges from 
zero to 0.99999 on the plot; rh = 1.

6. Shadows

The radius of the photon sphere rph of a spherically symmetric 
black hole is determined by means of the following function: (see, 
for example, [9] and references therein)

h2(r) ≡ r2

f (r)
, (28)

as the solution to the equation

d

dr
h2(r) = 0 . (29)

Then, the radius of the black-hole shadow Rsh as seen by a distant 
static observer located at rO will be

Rsh = h(rph)rO

h(rO )
= rph

√
f (rO )√

f (rph)
≈ rph√

f (rph)
, (30)

where in the last equation we have assumed that the observer is 
located sufficiently far away from the black hole so that f (rO ) ≈ 1. 
On Fig. 3 one can see that when the radius of the black hole is 
fixed, the radius of shadow is decreasing, once the quantum cor-
rection is turned on. This can be easily explained by looking at the 
form of the metric function f (r): when the radius of the event 
horizon rh is fixed and a approaches rh , the mass of the black 
hole decreases and goes to zero, what should correspond to weaker 
gravitational attraction and smaller radius of the shadow.
7. Conclusions

Here we have considered some of the basic properties which 
tests the geometry of the Schwarzschild black hole with quan-
tum correction obtained by Kazakov and Solodukhin in [4]. This 
solution, known for a long time, seems to be the only one for 
which the problem was solved exactly and non-perturbatively, and, 
neglecting non-spherical deformations, the renormalizability was 
provided. However, this result was mainly overlooked in the liter-
ature. Here we have computed quasinormal modes of scalar, Dirac 
and electromagnetic fields for such black holes, obtained an ana-
lytical formula in the eikonal regime. In addition, we considered 
the spectrum of the conformally coupled scalar field. We also an-
alyzed the behavior of grey-body factors in the presence of the 
quantum deformation, which may enhance or suppress radiation, 
depending on the frequency regime. The radius of the black hole 
shadow is shown to be decreasing, when the deformation param-
eter is increased.

Our paper could be extended in the following ways. The mas-
sive fields in the background of various (but not all) black holes 
and wormholes allow for arbitrarily long lived quasinormal modes, 
called quasi-resonances [22,40–43]. It would be interesting to see 
whether this occurs also for the Kazakov-Solodukhin black hole. 
The detailed analysis of massless and massive particle motion in 
this spacetime would be useful as well.
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