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Abstract

The description of nuclear matter at high densities, reached in the cores of
neutron stars, has become one of the major problems in both experimental
and theoretical physics. In this thesis we consider the Skyrme model and its
generalizations to reproduce the state of nuclear matter at such densities and
the macroscopic properties of neutron stars.

We start in the Introduction with a complete and detailed overview about
the physics of neutron stars. First, the concept of a neutron star as one of
the possible final fates of the very massive stars is introduced. Then, a brief
explanation on the consecutive stages of the core-collapse of the progenitor
star is given to present one of the most violent processes in our universe, the
supernova explosions. The entire mechanism of supernovae is not included,
since it mainly involves neutrino physics, which will not be studied in this
thesis. Instead, we rather focus on the general properties of neutron stars. At
this point, we mention the typical masses and sizes of neutron stars to establish
the physical scales of our problem. Further interesting phenomenology of
neutron stars, like rotational velocities or strong magnetic fields, is mentioned
and quantified to show the extreme conditions reached in these objects. To
end this first introductory part, we explain how the URCA processes rapidly
cools down the newly born stellar object to yield a (relatively) cold neutron
star, whose description is one of the main objectives of this thesis.

The following entire subsection is devoted to present the prevailing descrip-
tion of the interior of neutron stars based on five different layers. An extensive
outline on the size and chemical composition of each layer is given, with a com-
plementary scheme depicted in the text. We remark that the outermost parts
are essential for the experimental observations of neutron stars, but they are
already well determined from hadronic physics reproducible in terrestrial ex-
periments. Nevertheless, these regions only represent less than a 1% of the
total neutron star. At the neutron drip density, the matter adopts different
geometries called the nuclear pasta phases, and for larger densities, the equa-
tion of state is mainly determined by theoretical simulations. Deeper inside
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the neutron star, the nuclei dissolve into free neutrons, protons and leptons
in equilibrium under the beta decay and charge neutrality conditions. In the
innermost region, the extreme conditions attained hide the specific state of
nuclear matter within our current knowledge, but the different possible sce-
narios are explained. Among them, the kaon condensation in neutron star
cores will be considered in the last chapter of this work.

In the next subsection, we comment the evolution of neutron stars throughout
the history since their first accepted proposal by Baade and Zwicky in 1934
until the breakthrough discovery of pulsars by J. Bell and A. Hewish. Besides,
soon after the works of Baade and Zwicky, the theoretical contributions of Tol-
man, Oppenheimer and Volkoff (TOV) established the theoretical framework
to obtain neutron star solutions from any equation of state for nuclear mat-
ter. Indeed, the TOV formalism is used several times throughout this thesis,
therefore, it is explained in Appendix B. Eventually, we mention the current
theoretical works on neutron star physics, focused on the description of nu-
clear matter at such high densities and the experimental techniques which are
the source of information for the neutron star observables in the present.

In the second chapter, we present and motivate the Skyrme model and its
generalization as a theory of nuclear matter and, in particular, for the study of
neutron stars. First, we introduce the historical context in which the Skyrme
model was proposed. The main feature of this model is the existence of stable
topological solitons, called skyrmions, which are identified with atomic nuclei.
We present the Lagrangian density, built from two interactions term and a
SU(2) group element field which carries three degrees of freedom identified
with the pions. The mathematical arguments to understand the existence
of the skyrmions are given, but the model is mainly introduced from the
physical and modern point of view of low-energy effective field theory of QCD.
Furthermore, the energetical stability of the solitons is carefully analyzed, from
which the notion of the BPS energy bound is introduced.

The simplest skyrmion is characterized by the topological number B = 1 and
spherical symmetry, it is aimed to represent the classical state of the proton
and neutron. The parametrization of this field configuration is given by the
hedgehog ansatz, and yields a single ordinary differential equation of second
order. The resolution of this field equation is explained in the text, but an
alternative approach based on spectral methods is studied in the Appendix A.
Then, the parametrization of larger B skyrmions, out of spherical symmetry,
is performed through the rational map approximation, however, the result-
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ing solutions yield too large binding energies and unrealistic energy density
configurations. Additionally, since protons and neutrons are spin and isospin
1/2 quantum particles, the inclusion of these effects is an important step
that must be considered in the Skyrme model. The quantization procedure
of skyrmions relies on a semiclassical approximation in which the quantum
corrections to the energy are obtained from the classical configuration, and
the possible quantum states are determined by the symmetries of the specific
solution, as stated by Finkelstein and Rubinstein. The introduction to the
standard Skyrme model ends up with the inclusion of a pion mass potential
term which not only yields a more realistic model, but also improves on some
of the incorrect properties of the previous solutions.

A brief outline on the first attempts to construct neutron star solutions is
presented in subsection 2.1.2. Although the results were completely unre-
alistic, the study of neutron stars within the Skyrme model motivated the
development of a new kind of low-energy crystalline solutions by Klebanov.
Different periodic solutions were proposed and the observables of the neutron
stars computed from Skyrme crystals sharply improved, but still the masses
were small compared with experimental observations.

The next section is aimed at introducing another Skyrme-based model with
a different Lagrangian, composed of a generic potential term and a new term
with six derivatives of the Skyrme field. Skyrmions may be obtained from this
new model too, and the main property is that they saturate the corresponding
BPS energy bound, hence, it is called the BPS model. Despite this model is not
physically motivated, the mathematical structure and the great improvement
on the solutions have crucial phenomenological implications.

We review the computations of neutron stars within the BPS model for differ-
ent potentials and compare them with the low-mass standard Skyrme model
solutions. Besides, due to the BPS model stress-energy tensor, we may com-
pare between the neutron stars obtained from a full theoretical computation
and from the TOV formalism under a mean-field approximation. The high
values for the maximum masses of the BPS neutron stars motivate the com-
bination of the two models for an accurate description of highly dense matter
from a generalized Skyrme model, which is the seed of this research work.

The first novel research work is shown in subsubsection 2.2.1.1, where BPS
neutron stars are coupled to a modification of General Relativity. More specif-
ically, a new term quadratic in the Ricci scalar is introduced in the Einstein-



Hilbert action, motivated as a higher order correction given that the intense
gravitational fields convert neutron stars into ideal scenarios to detect these
high curvature effects. Although this modification is the simplest choice, the
difficulty in the resolution of the problem sharply increases. Nevertheless,
solutions are found and the implications on neutron star observations are dis-
cussed.

The last section of Chapter 2 introduces a generalization of the Skyrme model,
based on the combination of the BPS and standard Skyrme submodels. As a
natural starting point, we compute the B = 1 skyrmion for different values
of the sextic term coupling constant. The pion mass is fixed to the physical
value, but the other parameters are fitted to the proton and A excitation
masses using an iterative method after the quantization of spin and isospin
degrees of freedom. For completeness, we also compute the classical energies
of the firsts four skyrmions to study the impact of the sextic term on isolated
solutions. Finally, the chapter is concluded with an effective analysis about the
neutron stars within the generalized Skyrme model. We construct a complete
EOS consistently from scaling arguments supported by the results from both
submodels explained throughout the entire chapter. The remarkable results
on the mass, radius and tidal deformability of the neutron stars are a great
motivation to study full theoretical crystal solutions in the generalized Skyrme
model.

In Chapter 3, we focus on the construction of Skyrme crystals in order to
establish the basis for the description of neutron stars. First, the concept of
Skyrme crystals is explained, and we remark that topological solitons are still
allowed despite the boundary conditions have changed. The energy of these
solutions is obviously infinite, but the structure may be divided into finite-
size unit cells with well determined energy and baryon number, such that the
energy per baryon number of the whole crystal remains finite.

We follow the Kugler and Shtrikmann approach to construct crystal solutions.
The idea consists in the expansion of the fields in truncated Fourier series,
such that the coefficients are varied in order to minimize the energy func-
tional. In this way, the scenario is directly translated into a finite-dimensional
minimization problem which, indeed, does not require a very large number
of coefficients. However, the centre of the skyrmions is fixed such that they
cannot move freely in this approach, so we still have to find their optimal
distribution and orientation within the unit cell. Different field configurations
were studied since the first simple cubic symmetry proposed by Klebanov, we
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review the symmetries and explain how they can be easily implemented in the
Fourier expansion formalism.

The minimization of the energy functional implies the simultaneous multidi-
mensional variation of the coefficients, so we first consider the simplest case
with two coefficients to develop the numerical algorithm. More coefficients are
gradually added, and a fast convergence in the energy is observed, so we fix
the final number of coefficients (around 30) for each symmetry by comparing
with the original values obtained by Kugler and Shtrikmann. The philosophy
of the minimization algorithm is described and the numerical details are also
given, then, it is applied for different sizes of the unit cell to obtain the values
of the energy. In this way, the energy is obtained as a function of the lattice
length (L) and it is parametrized using scaling arguments for an analytical
treatment which is extremely useful. The energy curve always takes a mini-
mal value, called the equilibrium, and it grows for smaller values of the lattice
length, being equivalent to compress the system. For larger values of L, the
energy also increases, generating an unphysical region with negative pressure,
but this only indicates that our description is still classical and further effects
must be included.

Throughout this study we observe an interesting property of the energy curve,
which becomes crucial for the subsequent fit of the parameters. The accuracy
of the fit proposed for the energy suggests that each term in the Lagrangian
may be actually fitted independently by its own scaling behaviour. Following
this idea, we obtain a simpler and universal parametrization of the energy
curve which also accounts for a wide range of the parameters without per-
forming the minimization explicitly. This “perfect scaling” is indeed quite
accurate at the minimum of energy.

In section 3.2 we introduce the concept of infinite nuclear matter, which is
the physical system that we want to describe using Skyrme crystals. The
identification of the minimum of energy with the nuclear saturation point
fixes the energy and length scales of the crystals. To reproduce these values,
we fit the parameters of the standard Skyrme model for different values of the
sextic term coupling constant using the perfect scaling approximation. Then,
we compute the energy curves for the different crystals in a broad range of
densities (or equivalently lattice lengths). The results are carefully analyzed in
order to find the ground state at the equilibrium, and also the numerical values
at the minimum are given, as well as the coefficients from the parametrization
of the energy curve.
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Additionally, the possible phase transitions between the symmetries are ex-
tensively studied. At high densities we find a transition of the crystal into
a fluid-like behaviour, due to the presence of the sextic term. Another tran-
sition between the FCC and BCC symmetries, already noticed by Kugler
and Shtrikmann, is found, but we extend the study including the impact of
the sextic term on the transition density, and the details to consistently re-
construct the whole energy curve are also given. At low densities we find a
second order phase transition from the FCC crystal to its half-skyrmion ver-
sion. However, it is observed that the FCC crystal is not the true ground state
at low densities, instead, a new kind of crystalline solutions are found to be
the correct low energy solutions. These new lattices are obtained locating a
B = 4 skyrmion in the center of a unit cell and imposing periodic boundary
conditions. In this way, a lower value of the energy in the L — oo limit is
obtained, which is further decreased with the computation of the B = 32 and
B = 108 lattices. The inclusion of these lattices have motivated the study of
a new phase transition from infinite nuclear matter into isolated nuclei within
the Skyrme model. This is, indeed, a unique property of this model and the
final goal of every nuclear model, i.e., a complete description of nuclear matter
in the whole range of densities. Under this assumption we try to reproduce
the surface energy coefficient in the semi-empirical mass formula. In fact, we
construct a consistent argument to identify this contribution in the energy of
Skyrme crystals, and the geometry of these lattices predict the correct scaling
with the baryon number, however, the obtained value is much larger than the
experimentally determined one.

This chapter ends with the construction of the EOS from the Skyrme crystals,
considering the different phase transitions studied before, and the resolution
of the TOV system to obtain neutron stars solutions. The results confirm that
the sextic term is crucial for a correct description of neutron stars, besides, it
also has an interesting impact on the speed of sound. The masses obtained
agree with the experimental observations, but the radii are slightly higher than
the expected values. Therefore, this chapter represents the starting point for a
realistic and consistent description of neutron stars within the Skyrme model.

In Chapter 4, we focus on the introduction of new particle species. The first
step is the inclusion of isospin quantum effects in Skyrme crystals, as we did
with isolated skyrmions in the second chapter. These effects are, actually,
of great importance for neutron stars since they account for the difference
in energy between protons and neutrons. Then, the quantization procedure
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is again reviewed and we obtain the expression of the Hamiltonian for these
quantum effects in the Skyrme crystals. The isospin energy will depend on the
lattice length, through the isospin inertia tensor, and on the specific quantum
state of the crystal. We compute the isospin tensor curve similarly to the
classical energy, and we explain how the possible quantum states of the crystals
are obtained from the Finkelstein-Rubinstein constraints. For this purpose,
an additional approximation is required due to the infinite size of the crystal.
Among the states, we find the charge neutral case, however, it is definitely not
the most realistic case since we expect to have a small proton fraction inside
neutron stars (despite their name). The problem is that the small number of
baryons within the unit cell only allows for some specific number of protons
which are not realistic either.

This fact motivates a further approximation in which a larger chunk of crystal
is considered. In this approximation, we obtain the isospin energy contribution
as a function of the density and proton fraction, from which we identify the
symmetry energy curve. This curve has been extensively studied in nuclear
physics, and it has great implications on the description of neutron stars since
it is responsible for many important effects. The symmetry energy has also
been tightly constrained from theoretical and experimental results, we give
the most fiducial values and compare them with those obtained from Skyrme
crystals. This new observable has important implications since it has never
been determined in the Skyrme model and it may be used to fix the sextic
term parameter. Moreover, it enables the introduction of protons and leptons
in the EOS, imposing charge neutrality and beta equilibrium. We computed
the symmetry energy curve for several values of the parameters and found
that it may be accurately reproduced using Skyrme crystals. Furthermore,
the symmetry energy curve in the FCC crystal presents the transition to
finite nuclear matter since the same asymptotic behaviour is found in the
large L limit. Indeed, the FCC crystal yields remarkable results for the curve
in the whole range of densities, even the asymptotic value is close to the
semi-empirical mass formula coefficient in the asymmetry term contribution.
Additionally, we find the desired behaviour of the isospin energy curve in the
low density regime when realistic neutron star matter is considered, however,
the classical contribution deteriorates the total energy curve.

We end this section with an extensive analysis of the parameters using the
perfect scaling approximation. The introduction of the symmetry energy in
the Skyrme model allows to completely determine all the parameters in the
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model, hence, it is interesting to check the possibility to reproduce all the
observables within the model and still have physically acceptable neutron
stars. From this analysis we find difficulties to satisfy all the conditions with
arbitrary accuracy, but we find some interesting conclusions on the values of
the sextic term coupling constant, the speed of sound and the masses and
radii of the neutron stars.

In the next section we consider the possibility to develop a kaon condensed
core in neutron stars. This task is addressed using the Callan and Klebanov
approach which naturally introduces the strange degrees of freedom perturba-
tively in a SU(3)-extended Skyrme field. The interactions between kaons and
pions are directly given by the model itself, therefore, the final Lagrangian
is purely within the Skyrme model with no ad hoc extra fields. We follow
the standard procedure for the condensation of a scalar field and obtain the
contribution to the energy from the kaon condensed field. Then, the isospin
degrees of freedom of the whole system (including kaons) are quantized in
order to study the impact of kaons on the particle fractions. The quantization
procedure is the same, but an additional term is introduced in the energy
contribution. Given that the system is more complicated than in the previ-
ous section, we must build the thermodynamical grand potential to obtain
the equilibrium conditions. The density at which kaons become energetically
favourable is computed using four different sets of parameters obtained from
the last section, then, the total energy is calculated and we find that the im-
pact of kaons on the Skyrme crystals produces a first order phase transition.
In this case, the presence of two conserved charge requires a Gibbs construc-
tion to reconstruct a physically acceptable energy curve. Finally, the Skyrme
npep with kaon-condensed core EOS is shown and also the mass-radius curves
for the resulting neutron stars.

The last result in this chapter is the impact of p mesons in the Skyrme lat-
tices with the aim of solving one severe problem in the description of nuclear
matter within the Skyrme model, the compression modulus value. We first
motivate the inclusion of vector mesons with similar computations carried
out in the past. Next, we present the compression modulus, how it is mea-
sured, the accepted experimental value and we show the values obtained for
the Skyrme crystals computed in the second chapter. Additionally, we argue
that the deviations from the correct value are not the result of a wrong set of
parameters, but are indeed a problem of the crystal solutions. Then, we moti-
vate the interaction term between p mesons and pions, and obtain the energy



contribution and the corresponding Euler-Lagrange equations. A remarkable
feature of this interaction is that we may still identify an energy bound for the
whole system. Eventually, we show the energy curves of the a-lattice coupled
to p mesons and the great improvement on the compression modulus value.

Finally, we end with some concluding remarks and additional ideas to extend
the research developed throughout this thesis.
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Resumo

A descricion da materia nuclear a altas densidades, alcanzada nos ntcleos
das estrelas de neutréns, converteuse nun dos principais problemas da fisica
tanto experimental como tedrica. Nesta tese consideramos o modelo Skyrme
e as suas xeneralizacions para reproducir o estado da materia nuclear a tales
densidades e as propiedades das estrelas de neutrons resultantes.

Comezamos na introducion con unha vision completa e detallada da fisica
das estrelas de neutréonss. Primeiro introducimos o concepto de estrela de
neutrons. Logo, seguimos cunha curta explicacion das etapas consecutivas do
colapso do nucleo da estrela proxenitora co gallo de presentar un dos procesos
mais violentos do noso universo, as explosions de supernovas. O mecanismo
completo polo que se dan as supernovas non esta incluido, xa que este in-
volucra procesos da fisica de neutrinos, que non seran estudados con detalle
nesta tese. Polo tanto, centrarémonos mais nos aspectos mais xerais das es-
trelas de neutréns, tales como as velocidades de rotacion ou os fortes campos
magnéticos, dos que se falard e os que seran cuantificados para amosar as
condiciéns tan extremas que se acadan nestes obxectos. Para rematar esta
parte introductoria, explicaremos como os procesos URCA arrefrian rapida-
mente o obxecto estelar recén nacido, dando lugar a unha estrela de neutréns
fria (relativamente), cuxa descricién é o obxectivo principal desta tese.

A seguinte subseccién estd enteiramente adicada a presentar a descricién pre-
dominante do interior das estrelas de neutrons, estratificada en cinco capas
distintas. Apdrtase un extenso esquema da composicion quimica e tamano de
cada unha das capas, e adicionalmente un bosquexo ilustrado no propio texto.
Destacamos que as partes mais externas son esenciais para as observacions ex-
perimentais das estrellas de neutrons, pero xa estan ben determinadas pola
fisica hadronica reproducible en experimentos terrestres. Non obstante, estas
rexions representan menos do 1% da estrela de neutréns. A densidade de
goteo de neutrons, a materia conforma diferentes xeometrias nomeadas como
fases de pasta nuclear, e para densidades maiores, a ecuacion de estado esta
principalmente determinada por simulaciéns tedricas. Mais cara o interior da
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estrela de neutrons, os ntucleos disocianse en neutréns, protons e lepténs libres
e en equilibrio, baixo as condiciéns de descaemento beta e neutralidade de
carga. Na rexién madis interna, as condiciéns extremas acadadas ocultan o
estado especifico da materia nuclear no marco do noso conecemento actual,
pero explicanse os distintos escenarios posibles. Emntre eles, a condensacién
de kaons nos nucleos das estrelas de neutrons, sera considerada no ultimo
capitulo deste traballo.

Na seguinte subseccién, comentamos a evolucion histérica das estrelas de
neutréons na ciencia, dende que son propostas e aceptadas por vez primeira,
a partir da observaciéon de explosiéns de supernovas por Baade e Zwicky no
1934, até o revolucionario descubrimento dos pulsares por J. Bell e A. Hewish.
Ademais, pouco despois dos traballos de Baade e Zwicky, as contribuciéns
tedricas de Tolman, Oppenheimer e Volkoff (TOV), fixaron o marco tedrico
para obter soluciéns de estrelas de neutréns a partir de calquera ecuacion de
estado para a materia nuclear. De feito, o formalismo TOV emprégase varias
veces ao longo dsta tese, polo que sera explicado detalladamente no Apéndice
B. Finalmente, mencionamos os traballos tedricos actuais sobre a fisica das
estrelas de neutréns, centrados na descriciéon da materia nuclear, a moi altas
densidades, e as técnicas experimentais que son a dia de hoxe, a principal
fonte de informacion para conecer mellor as cantidades observables respecto
deste tipo de obxectos astrofisicos.

No segundo capitulo, presentamos e motivamos o modelo de Skyrme e a sta
xeralizacion, como unha teoria de materia nuclear e en particular, para o es-
tudo das estrelas de neutréns. Primeiro, introducimos o contexto histérico no
que se propuxo o modelo de Skyrme. A principal caracteristica deste modelo
¢ a existencia de soliténs topoloxicamente estables, chamados skyrmions, que
se identifican cos nucleos atéomicos. Presentamos a densidade lagranxiana,
construida a partir de dous termos e un campo fundamental do grupo SU(2),
con tres graos de liberdade identificados como piéns. Proporcionanse os argu-
mentos matematicos para entender a existencia dos skyrmions, pero o modelo
introdicese principalmente dende o punto de vista fisico e moderno da teoria
de campos efectiva de baixa enerxia da QCD. Ademais, analizase coidadosa-
mente a estabilidade enerxética dos solitons, a partir da cal se introduce a
nocion do limite BPS para as enerxias.

O skyrmion mais sinxelo caracterizase por ter o nimero topoloxico B =1 e
simetria esférica, e representara o estado clasico do protén e do neutrén. A
parametrizacion desta configuracion de campo dase empregando o ansatz do
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ourizo cacho, e produce unha tinica ecuacion diferencial ordinaria de segunda
orde. A resolucion desta ecuacion de campo explicase no texto, pero estu-
darase un enfoque alternativo baseado en métodos espectraies no Apéndice
A. Entén, a parametrizacion de skyrmions con valores de B maiores, féra da
simetria esférica, realizase a través da aproximacion de mapa racional. Porén,
as solucions resultantes producen enerxias de enlace demasiado grandes e con-
figuracions de densidad de enerxia pouco realistas. Ademais, xa que os proténs
e neutréns son particulas cudnticas de espin e isoespin 1/2; a inclusién destes
efectos é un paso importante que debe considerarse no modelo de Skyrme.
O procedemento de cuantizacién dos skyrmions ten como piar unha aprox-
imacion semi-clasica na que se obtenen as correcciéns cuanticas & enerxia a
partir da configuracion clasica, e os posibles estados cudnticos estan determi-
nados polas simetrias da solucion especifica, como afirmaron Finkelstein e Ru-
binstein. A introduciéon ao modelo de Skyrme estandar remata coa inclusion
dun termo potencial de masa para o pion, que non s6 produce un modelo mais
realista, senén que tamén mellora algunhas das propiedades incorrectas das
solucions anteriores.

Na subseccion 2.1.2 preséntase un breve esquema sobre os primeros inten-
tos de construir soluciéns de estrelas de neutréns. Sendo os resultados bas-
tante pouco realistas, o estudo das estrelas de neutrons dentro del modelo de
Skyrme motivou o desenvolvemento dun novo tipo de soluciéns cristalinas de
baixa enerxia por Klebanov. Propuxéronse diferentes solucions periddicas e
os observables para as estrelas de neutréns calculados empregando os cristais
de Skyrme melloraron notablemente. Ainda asi, as masas eran pequenas en
comparacion coas observacions experimentais.

A seguinte secciéon ten como obxectivo introducir outro modelo baseado no
de Skyrme con un lagranxiano diferente, composto por un termo potencial
xenérico e un novo termo con seis derivadas do campo de Skyrme. Tamén se
poden obter skyrmions deste novo modelo, e a propiedade principal, a satu-
racion no correspondente limite de enerxia BPS, continia sendo certa, polo
que se lle chama ao modelo BPS. Ainda que este modelo non estd motivado
fisicamente, a sua estrutura matematica, e a gran mellora 4 hora de obter
solucions, fan del un marco maéis ca valido e con implicaciéns fenomenoléxicas
cruciais.

Revisamos os calculos de estrelas de neutréns dentro do modelo BPS para
diferentes potenciais e comparamolos con soluciéns do modelo de Skyrme
estandar de baixa masa. E madis, por mor do tensor de enerxia momento
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do modelo BPS, podemos comparar as estrelas de neutréns obtidas mediante
un célculo tedrico completo e as obtidas empregando o formalismo TOV baixo
unha aproximacion de campo medio. Os altos valores para as masas maximas
das estrelas de neutréons BPS motivan a combinaciéon dos dous modelos para
unha descricién precisa da materia altamente densa a partir dun modelo de
Skyrme xeralizado, que é o gromo deste traballo de investigacion.

O primeiro resultado novedoso froito da nosa investigacion, amaésase na sub-
subseccion 2.2.1.1, onde as estrelas de neutréns BPS acoplan a unha teoria
de Relatividade Xeral modificada. Especificamente, engddese un novo termo
cadratico no escalar de Ricci na accion de Einstein-Hilbert, motivado como
unha correccién de orde superior, dado que os intensos campos gravitacionais
fan das estrelas de neutréns, escenarios ideais para detectar estes efectos de
alta curvatura. Ainda que esta modificacién é a mais sinxela das eleccions,
a dificultade & hora de resolver o problema aumenta drasticamente. Non
obstante, atopamos solucions e disciitense as implicaciéns en canto as obser-
vacions das estrelas de neutréns.

A dltima seccién do Capitulo 2 introduce unha xeralizacion do modelo de
Skyrme, baseada na combinacién dos submodelos de Skyrme estandar e BPS.
Como punto de partida natural, calculamos o skyrmion B = 1 para diferentes
valores da constante de acoplamento do termo séxtico. A masa do pién fixase
ao valor fisico, pero os outros parametros axuistanse as masas de excitacion
do protén e da A , despois da cuantizacién dos graos de liberdade de espin e
isoespin emmpregando un método iterativo. Por completitude, tamén calcu-
lamos as enerxias clasicas dos primeros catro skyrmions para estudar o impacto
do termo séxtico en skyrmions illados. Finalmente, o capitulo conclie cunha
andlise efectiva sobor das estrelas de neutréns dentro do modelo de Skyrme
xeralizado. Construimos unha EOS completa de xeito consistente a partir
de argumentos de escala resgardados polos resultados de ambos submodelos
explicados ao longo de todo o capitulo. Os notables resultados sobre a masa,
o radio e a deformabilidade de marea das estrelas de neutréns son unha gran
motivacién para estudar soluciéns tedricas completas de cristais no modelo de
Skyrme xeralizado. No Capitulo 3, centrdmonos na construcion de cristais de
Skyrme co obxectivo de establecer as bases para a descricion das estrelas de
neutrons. Primeiro, explicase o concepto de cristal de Skyrme, resaltando que
os soliténs topoldxicos ainda estan permitidos a pesar de que as condicions de
contorno cambiaran. A enerxia destas soluciéns é obviamente infinita, pero
a estrutura pode dividirse en celas unitarias de tamano finito con enerxia e
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numero de bariéns ben determinados, de xeito que a enerxia por nimero de
bariéns do cristal completo permanece finita.

Utilizamos o enfoque de Kugler e Shtrikmann para construir solucions cristali-
nas. A idea consiste en expandir os campos en series de Fourier truncadas, de
xeito que os coeficientes varien para minimizar o funcional de enerxia. Desta
forma, o problema traducese directamente nun problema de minimizacién de
dimension finita que, de feito, non precisa un gran nimero de coeficientes.
Asi e todo, o centro dos skyrmions esta fixado, o que significa que non poden
moverse libremente con este enfoque. Polo tanto, ainda temos que atopar a
sua distribucién e orientaciéon éptimas dentro da cela unitaria. Estudaronse
diferentes configuracions de campo desde a primera simetria cibica simple
proposta por Klebanov; revisamos as simetrias e explicamos de que maneira
poden ser implementadas de xeito sinxelo no formalismo de expansion de
Fourier.

A minimizaciéon do funcional da enerxia leva de seu a variaciéon multidimen-
sional e a un tempo dos coeficientes, asi que primeiro consideramos o caso mas
simple con dous coeficientes para desenvolver o algoritmo numérico. Vanse en-
gadindo pouco a pouco mas coeficientes e obsérvase unha rapida converxencia
na enerxia, polo que fixamos o numero final de coeficientes (arredor de 30)
para cada simetria, comparando cos valores orixinais obtidos por Kugler e
Shtrikmann. Describese a filosofia do algoritmo de minimizacion e tamén
se proporcionan os detalles numéricos. A continucaién, aplicase para difer-
entes tamanos da cela unitaria, para atopar asi os valores da enerxia. Desta
maneira, obtense a enerxia como funcién da lonxitude da rede e parametrizase
empregando argumentos de escalado co gallo de seren empregadas dun xeito
analitico, xa que isto é extremadamente util. A curva de enerxia sempre
encontra un valor minimo, o chamado equilibrio, e medra para valores mais
pequenos da lonxitude da rede, sendo isto equivalente a comprimir o sistema.
Para valores mais grandes de L, a enerxia tamén aumenta, xerando unha
rexion non fisica, con presiéon negativa, pero isto tan so indica que a nosa
descricion segue sendo clésica e que se deben incluir efectos adicionais.

Ao longo deste estudo observamos unha propiedade ben interesante na curva
de enerxia, que se volve principal para o posterior axuste dos parametros.
A precision do axuste proposto para a enerxia suxire que cada termo no la-
granxiano poderia ser axustado de maneira independente polo seu propio com-
portamento de escalado. Seguindo esta idea, obtemos unha parametrizacion
mais simple e universal da curva de enerxia, que tamén ten en conta un am-
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plo rango de parametros, sin realizar a minimizacién explicitamente. Este
“escalado perfecto” é en efecto bastante preciso para o minimo da enerxia.

Na seccion 3.2 introducimos o concepto de materia nuclear infinita, que é o
sistema fisico que queremos describir empregando cristais de Skyrme. A iden-
tificaciéon do minimo de enerxia co punto de saturacion nuclear, fixa as escalas
de enerxia e a lonxitude dos cristais. Para reproducir estes valores, axus-
tamos os parametros do modelo estandar de Skyrme para diferentes valores
da constante de acoplamento do termo séxtico, utilizando a aproximacién de
escalado perfecto. Logo, calculamos as curvas de enerxia para os diferentes
cristais nun amplo rango de densidades (ou equivalentemente lonxitudes de
reixa). Os resultados son analizados cuidadosamente para encontrar o estado
fundamental no equilibrio; tamén se proporcionan os valores numéricos no
minimo, asi coma os coeficientes de parametrizacion da curva de enerxia.

Adicionalmente, estidanse extensamente as posibles transicions de fase en-
tre as simetrias. A altas densidades encontramos unha transicion do cristal
a un comportamento semellante ao dun fluido, debido & presencia do termo
séxtico. Atdpase outra transicién entre as simetrias FCC e BCC, xa ano-
tada por Kugler e Shtrikmann, pero extendemos o estudo incluindo o impacto
do termo séxtico na densidade de transicién, e proporciénanse detalles para
reconstruir consistentemente toda a curva de enerxia. A baixas densidades
encontramos unha transicion de fase de segunda orde do cristal FCC & sta
version de medio skyrmion. Non obstante, observamos que o cristal FCC
non é o verdadeiro estado fundamental a baixas densidades; no seu lugar,
encontranse novas solucions cristalinas que son as correctas e de baixa en-
erxia. Estas novas redes obténense colocando un skyrmion B = 4 no centro
dunha cela unitaria e imponendo condiciéns de contorno periddicas. Desta
maneira, obtense un valor mais baixo da enerxia no limite L — oo, que dis-
minte mais ainda co célculo das redes B = 32 e B = 108. A inclusién destas
redes motivou o estudo dunha nova transicion de fase da materia nuclear in-
finita a ntucleos illados dentro do modelo de Skyrme. Esta é, de feito, unha
propiedade tnica deste modelo asi como tamén o obxectivo final de todo mod-
elo nuclear, é dicir, unha descricion completa da materia nuclear en todo o
rango de densidades. Baixo esta suposicion, intentamos reproducir o coe-
ficiente de enerxia superficial na férmula semi-empirica de masa. De feito,
construimos un argumento coherente para identificar esta contribucién na que
a enerxia dos cristais de Skyrme, e a xeometria destas redes predi o escalado
correcto cun numero de barions; Asi e todo, o valor obtido é moito maior que
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o determinado experimentalmente.

Este capitulo conclie coa construcion da Ecuacién de Estado (EOS) a partir
dos cristais de Skyrme, tendo en conta as diferentes transicions de fase estu-
dadas anteriormente, e a resolucion do sistema TOV para obter solucions de
estrelas de neutrons. Os resultados confirman que o termo séxtico é crucial
para unha descriciéon correcta das estrelas de neutrons; ademais, tamén ten
un impacto interesante na velocidade do son. As masas obtidas concordan
coas observaciéns experimentais, pero os radios son lixeiramente superiores
aos valores agardados. Polo tanto, este capitulo representa o punto de partida
para unha descricion realista e coherente das estrelas de neutréns dentro do
modelo de Skyrme.

No capitulo 4, enfocamonos na introducién de novas especies de particulas.
O primeiro paso ¢ a inclusion de efectos cuanticos de isoespin nos cristais de
Skyrme, como fixemos cos skyrmions illados no segundo capitulo. Estes efec-
tos son de grande importancia para as estrelas de neutrons xa que explican a
diferencia de enerxia entre protons e neutrons. Despois, revisase novamente
o procedemento de cuantizacién e obtemos a expresion para o hamiltoniano
destes efectos cuanticos nos cristais de Skyrme. A enerxia de isoespin de-
pendera da lonxitude da rede, a través do tensor de inercia de isoespin, e do
estado cuantico especifico do cristal.

Calculamos a curva do tensor de isoespin de maneira semellante & enerxia
clasica e explicamos como se obtenen os posibles estados cuanticos dos cristais
a partir das restricions de Finkelstein-Rubinstein. Para tal fin, requirese unha
aproximacion adicional por mor do tamano infinito do cristal. Entre os esta-
dos, atopamos o caso de carga neutra, emporiso, definitivamente non é o caso
mais realista xa que esperamos ter unha pequena fraccién de proténs dentro
das estrelas de neutrons a pesar do seu nome. O problema é que o pequeno
nimero de barions dentro da cela unitaria tan sé permite algins niimeros
especificos de protéons que tampouco son realistas.

Este feito motiva unha aproximacién adicional na que se considera un frag-
mento maior de cristal. Nesta aproximacion, obtemos a contribuciéon da en-
erxia de isoespin como funcién da densidade e a fraccion de protons, a partir da
cal, identificamos a curva de enerxia de simetria. Esta curva foi amplamente
estudada na fisica nuclear, e ten grandes implicaciéns na descricién das estre-
las de neutrons xa que é responsable de moitos efectos importantes. A enerxia
de simetria tamén foi restrinxida rigorosamente a partir de resultados teoricos
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e experimentais; proporcionamos os valores mais confiables e comparamolos
cos obtidos dos cristais de Skyrme. Este novo observable ten importantes
implicacions xa que nunca fora determinado no modelo de Skyrme e pode
ser utilizado para fixar o pardametro do termo séxtico. Ademais, permite a
introducién de protons e leptons na EOS imponendo neutralidade de carga e
equilibrio beta. Calculamos a curva de enerxia de simetria para varios valores
dos parametros e atopamos que pode ser reproducida con precisiéon usando
cristais de Skyrme. O que é mais, a curva de enerxia de simetria no cristal
FCC presenta a transiciéon 4 materia nuclear finita xa que nesta, atépase o
mesmo comportamento asintético no limite de L grande. De feito, o cristal
FCC produce resultados notables para a curva en todo o rango de densidades;
mesmo o valor asintotico esta preto do coeficiente da formula semi-empirica de
masa, na contribucion do termo de asimetria. Adicionalmente, encontramos o
comportamento desexado da curva de enerxia de isoespin no réxime de baixa
densidade cando se considera materia realista de estrela de neutréns, con todo,
a contribucién clasica deteriora a curva de enerxia total.

Concluimos esta seccion cunha andlise extensa dos parametros utilizando a
aproximacion de escalado perfecto. A introduccién da enerxia de simetria no
modelo de Skyrme permite determinar completamente todos os parametros no
modelo, polo tanto, é interesante verificar a posibilidade de reproducir todos
os observables dentro do modelo e ainda ter estrelas de neutrons fisicamente
aceptables. Desta andlise encontramos que non é sinxelo satisfacer todas as
condiciéns con precision arbitraria, pero atopamos algunhas conclusions in-
teresantes sobre os valores da constante de acoplamiento do termo séxtico, a
velocidade do son e as masas e radios das estrelas de neutréons. Na seguinte
seccién consideramos a posibilidade de que se desenvolva un nticleo con con-
densado de kaons nas estrelas de neutréns. Esta tarefa abordase baixo o
enfoque de Callan e Klebanov, quen introduciron naturalmente os graos de
liberdade extranos de forma perturbativa nun campo de Skyrme extendido
a SU(3). As interacciéns entre kadns e piéns son proporcionadas directa-
mente polo propio modelo, e asi, o lagranxiano final estd puramente dentro
do modelo de Skyrme, sin campos extras ad hoc. Seguimos o procedemento
estandar para a condensacién dun campo escalar e obtemos a contribucién &
enerxia do campo de condensado de kaéns. Como seguinte paso, cuantizanse
os graos de liberdade de isoespin de todo o sistema (incluindo kadéns) co fin
de estudar o impacto dos kadns nas fraccions de particulas. O procedemento
de cuantizacion é o mesmo, pero engadese un termo adicional na contribucion
enerxética. Dado que o sistema é mais complicado ca na seccion anterior, debe-
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mos construir o potencial termodinamico grande para obter as condiciéns de
equilibrio. A densidade & que os kadns tornan a ser enerxeticamente favorables
é calculada empregando catro conxuntos de parametros diferentes, obtidos da
seccién anterior, e logo calculamos a enerxia total e atopamos que o impacto
dos kaons nos cristais de Skyrme é o de producir unha transicén de fase de
primeira orde. Neste caso, a presencia de duas cargas conservadas, require
dunha construcion de Gibbs para refacer unha curva de enerxia fiscamente
aceptable. Finalmente, amosamos a fracciéon npeu para o modelo con unha
ecuacién de estado para o ntucleo, que tena en conta o condensado de kadns,
ademais das curvas masa radio para as estrelas de neutréns resultantes.

O derradeiro resultado neste capitulo é o impacto dos mesons p nas redes de
Skyrme co obxectivo de resolver un grave problema na descripcién da mate-
ria nuclear dentro do modelo de Skyrme, o valor do moédulo de compresion.
Primero, motivamos a inclusion dos mesons vectoriais con calculos semellantes
aos realizados no pasado. A continuacién, presentamos o médulo de com-
presién, como se mide, o valor experimental aceptado e amosamos os valores
obtidos para os cristais de Skyrme calculados no segundo capitulo. Ademais,
argumentamos que as desviacions con respecto ao valor correcto non son o
resultado dun conxunto incorrecto de pardmetros, senon que ¢é realmente un
problema das soluciéns cristalinas. A continuacién, motivamos o termo de in-
teraccion entre meséns p e pions, e obtemos a contribucion enerxética e as cor-
respondentes ecuacions de Euler-Lagrange. Unha caracteristica notable desta
interaccion é que ainda podemos identificar un limite de enerxia para todo o
sistema. Finalmente, amosamos as curvas de enerxia da rede a acoplado a
mesons p e a gran mellora para o valor do médulo de compresion.

Finalmente, rematamos con algunhas observaciéns finais e ideas adicionais
para ampliar a investigacion desenvolvida ao longo desta tese.
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Scope and Methodology

The study of neutron stars is crucial for the understanding of the behaviour
of nuclear matter at extreme densities (up to ten times the density of atomic
nuclei). This information is encoded in the so-called equation of state, which
is the relation between the pressure applied on a system and its density. At
low densities, the equation of state is completely determined by terrestrial
experiments, but its extension to higher densities must lead to neutron star
observables that agree with astrophysical measurements.

Since the number of neutron star observations, as well as their accuracy, is
still low, it is important to obtain the maximal possible amount of observables
from simulations and the comparison between different theoretical models. In
this thesis, we will extract the results from the Skyrme model because of its
natural and inherent description of nuclear matter.

It is also known that, despite their name, neutron stars are not completely
made up of neutrons, but protons and leptons (electrons and muons) are
present. Indeed, the number of protons is mainly determined by the sym-
metry energy, hence, it is a crucial ingredient for the realistic description of
matter inside neutron stars. Besides, recent progress in the determination
of the symmetry energy from different experiments and theoretical analyses,
therefore, we may find in this observable a new source of information to con-
strain the Skyrme model.

Finally, one of the main problems in neutron stars physics is known as the
hyperon puzzle. This is related to the possible appearance of strange degrees
of freedom inside neutron stars at high densities, implying a sharp reduction
of the masses and radii. This effect rules out many equations of state from
the list of possible candidates to describe nuclear matter at high densities.
Besides, the inclusion of strangeness is highly non-trivial in some models, and
it is interesting to study how they can be included in the Skyrme model.
Furthermore, once these new degrees of freedom are included, the kaon con-
densation in the core of neutron stars has a similar impact, and its formation
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is also of great interest.

The previous physical motivations establish the following main goals for this
thesis:

1. The understanding of the Skyrme model and its generalization as a nuclear
theory and its motivation for the description of neutron stars.

2. Computation of crystal configurations from the generalized Skyrme model
for a first classical description of the mass and radius of neutron stars.

3. Addition of isospin effects and leptons to obtain a realistic description of
nuclear matter inside neutron stars and the computation of the symmetry
energy, which has never been obtained from the Skyrme model.

4. Inclusion of strangeness in the equation of state, without any ad hoc extra
fields but purely within the Skyrme model to predict the density at which
kaons condense inside neutron stars.

5. Extend the Skyrme model with the addition of p mesons to solve the
compression modulus problem in the description of infinite nuclear matter.

The methodology to carry out the goals presented above consists of the fol-
lowing steps:

Bibliographic revision: The study of topological soliton solutions is an
interesting task in many different models due to their properties. To get
familiarized with these solutions and with the aim of obtaining them in ex-
tensions of the Skyrme model, it is important to review the previous works in
which they were obtained in the same context.

Conversely, it is important to understand which observables can be extracted
from nuclear terrestrial experiments and astrophysical events, and how they
are computed from theoretical models. Hence, the study of the nuclear matter
behaviour at low densities as well as how it is extrapolated and constrained
to higher densities is of great importance.

Development of symbolic and numerical codes to setup and solve
the problem: The problems presented in this thesis join two different fields
of study, and it is important to find the optimal way to proceed in each case.
For instance, in General Relativity, the problems are usually translated into
a system of differential equations which must be first obtained from the Ein-
stein equations in some specific system of coordinates. Alternatively, in the
Skyrme model we frequently need first to consider the possible symmetries of



the solutions, with a correct parametrization, and then find the field equa-
tions from the energy functional. Both scenarios require efficient symbolic
algorithms to obtain the expressions that we will finally solve. Besides, it is
also interesting to develop a sufficiently flexible framework to introduce pos-
sible modifications, like extensions of General Relativity or additional terms
in the Skyrme lagrangian.

Once the problem has been translated into a numerical issue, we need to
consider different algorithms to find the solution. Specifically, in the Skyrme
model a shooting method is frequently used to integrate the field equations
for the simplest solution, however this is not the only possibility. For the
rest of solutions, a better choice is to consider a minimization problem rather
than a system of differential equations and implement a gradient flow method.
Besides, it is straightforward to implement periodic boundary conditions on
the solutions using a gradient flow method, however, although this algorithm is
more effective and versatile, it requires a high computational capacity even for
an efficient code, so the development of this framework to obtain the solutions
from the Skyrme model is an important step.

Additionally, we will also consider other solutions which are more efficiently
obtained using other approaches. This is the case of the FCC or BCC Skyrme
crystals, which are better obtained varying the coefficients of the Skyrme
fields expanded in truncated Fourier series to minimize the energy. Despite
this method is basically a minimization as well, the procedure is completely
different.

Analysis of the results and the comparison with experimental data:
Finally, when the solution is obtained it is important to reproduce the results
from previous works to trust our numerical method. Then, the physical ob-
servable of interest must be extracted from the solution. This may not be a
trivial task since it may require accurate integrations or even further minimiza-
tions. Besides, the estimation and consideration of errors both experimentally
and theoretically are essential to accept or disprove the result.






Chapter 1

Introduction

Didn’t know how but I always had a feeling I
was gonna be that one in a million. Always
had high, high hopes.

Panic! at the Disco

1.1 Neutron Stars

Neutron stars (NS) are one of the most compact objects in the universe, such
that matter reaches its most exotic states in their interiors. More specifi-
cally, NS are the remnant cores of very massive stars, typically those with
masses larger than 8 M, during their main-sequence stage [140], where M. =
1.98841 x 10% kg is the mass the Sun. These high masses induce strong grav-
itational interactions, but the stars remain stable under collapse due to the
energy released from the nuclear fusion reactions. An increasing sequence of
nuclei in the baryon number occurs in these reactions until the most stable nu-
clei are achieved in the last stages of the stars. At this point, nuclear fusion is
not energetically favoured anymore and the gravitational collapse takes place.
The outermost layers are so squeezed towards the core, so that the matter
inside the star is greatly compressed until the degeneracy pressure stops the
collapse and bounces, producing one of the most violent events in the universe,
a type II supernova explosion.

The whole mechanism of these type of supernovae may be split in six different
stages [70], in which the different neutrino emissions play a crucial role, but
a detailed description remains unclear [71]. In this process, a large amount of
mass from the star is expelled, leaving a extremely compact object of ~ 2M
and around 10 km of radius, the NS [139,201]. Additionally, the atomic matter
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present in the former star is so compressed in the collapse, that the electrons
and protons combine via electron capture processes. This produces a vast

amount of neutrons, and it is the reason for their name.

Nevertheless, NS are not the only fate of a very massive star. If the grav-
itational attraction is sufficiently strong, so that the degeneracy pressure of
nuclear matter is not enough to stop the collapse, then the final remnant is a
black hole. Recent simulations estimate that stars in the main-sequence with
masses larger than 200, are more likely to produce a black hole [118].

The main characteristic of NS is their high compactness, C' := GM/R ~
0.2 —0.3, being the closest to the maximal values of the spherically symmetric
black holes, Cgg = 0.5. This induces a huge surface gravity, which may be
roughly estimated in the Newtonian limit, g = GM/R?* ~ 10¢,, where g4
is the surface gravity on Earth. The intense gravity present in NS convert
them into unique scenarios where the four fundamental known interactions
are simultaneously important. Moreover, the high curvature effects around
the NS bends the photons trajectory that much, so that we could see the 85%
of the star surface.

Furthermore, the conservation of angular momentum imply that the rotation
of the original star induces high rotational velocities in the much smaller
resulting NS. The largest rotational frequencies observed have reached §2 ~
700 Hz [119], quite close to the maximal Keplerian frequency, Qx ~ 1.4 kHz
[140]. Indeed, the high speed rotations induce measurable deformations in the
NS being, in fact, a valuable source of information. NS are also characterized
for having the strongest detected magnetic fields ~ 10 — 10*® G, the highest
magnetized NS are called magnetars. The origin of such intense magnetic
fields is indeed more intricate than that of the fast rotations, but there exist
some possible justifications [214]. The fast rotations combined with the strong
magnetic fields produce the emission of beams of electromagnetic radiation,
which, when aligned with the Earth, provides an effect analog to a cosmic
lighthouse. These objects are known as pulsars, and they are responsible for
the discovery of NS with the subsequent interest in their study.

Additionally, despite they are called stars, nuclear reactions do not occur in the
NS interiors. Indeed, the temperature of NS reaches the highest values ~ 10"
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K during their formation, but the lack of nuclear reactions and the emission of
neutrinos cools down the NS to ~ 10° K in the next million years [142]. Indeed,
The NS cooling is governed by the direct URCA process in the first seconds
of existence. This mechanism is the result from the combined reactions,

n—pte +0, pte —n-+r,. (1.1)

The name URCA was given by Mario Schenberg referring to a casino in Rio
after telling to Gamow: “The energy in a supernova must disappear as quickly
as the money at the roulette table.” The temperature drops to ~ 10° K,
then neutrinos are emitted by the modified URCA processes, which involve
interactions between the nucleons, and the NS cooling sharply slows down.
Actually, the direct URCA process might continue if the fraction of protons
is larger than 1/9 in the NS, so the accurate description of nuclear at high
densities is crucial to distinguish not only the static properties of NS but also
many dynamical effects. However, already at these temperatures, the energy
associated to thermal fluctuations ~ 0.1 MeV is much smaller than the nuclear
matter binding energies ~ 10 MeV. For this reason, the NS computations with
no interest in the cooling physics are carried out under the zero temperature
assumption.

It is widely accepted that nuclear matter is so compressed inside NS, that the
baryon density in the center might surpass several times the average baryon
density of stable nuclei, which is known as the nuclear saturation density py =
2.68x 1017 kg/m3. Therefore, the extreme conditions reached inside NS convert
them into ideal laboratories to study how nuclear matter behaves at these
regimes which are not reproducible on Earth. Indeed, the complete knowledge
of nuclear matter is encoded in the so-called equation of state (EOS), and its
determination has become one of the most outstanding problems in nuclear
physics in the present [56].

1.1.1 Structure of Neutron Stars

Our current understanding of NS interiors is based on layers [113] as it is
shown in Fig. 1.1.

The outermost part of a NS is a thin layer mainly made of light atoms (1H,
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12C, 118i) of density p ~ 10° kg/m? called the atmosphere, where the thermal
spectrum is created and emitted. The specific thickness ranges from millime-
ters to some ten centimeters, depending on the temperature and the radiation
transports. It is possible to extract valuable information from this external
part about the surface properties of the stars, like the radius, surface temper-
ature, chemical composition and the shape of the surface magnetic field.

The next layer is called the outer crust (or envelope), it extends up to some
hundred meters starting with a very thin layer of a non-degenerate gas of
electrons for p < 107 kg/m? and positive ions from light nuclei. Going deeper,
for densities p < 109 kg/m?, this layer is mainly made of *Fe nuclei [140]
displayed on a lattice [78] surrounded by a degenerate gas of ionized electrons.
At this point, the degeneracy pressure induces electron capture processes,
producing neutrons in the present nuclei. The outer crust ends when the
energy density reaches the neutron drip value pxp ~ 4 x 1014 kg/m?.

For larger densities, we enter the (~ 1 km thick) inner crust (or simply the
crust), where neutrons leak out of nuclei and very large baryon number B 2>
200 clusters are produced. Here, close to the nuclear saturation density, py =
2.5 x 107 kg/m?, the neutron enriched matter starts to deform due to the
competition between the Coulomb and surface energies [186], so that a well-
established sequence of different shapes occurs. Specifically, around p ~ 0.1p
the nuclear matter adopts the shape of gnocchi, spaghetti, waffles, lasagna,
antispaghetti and antignocchi [74]. For obvious reasons, this stage is known
as the nuclear pasta phases [205].

This phase ends at p & py/2, where we enter in the outer core. At these
regimes, the excess of neutrons at high pressures suggest that nuclei dissociate
and a superfluid state of neutrons might occur [207]. Actually, the interaction
of vortices, created due to the superfluid state, with the surface of the NS
could explain the pulsar glitches, in which a fast and momentary acceleration
in their period is observed [31]. In this layer of several kilometers thick, matter
is composed of a small amount of protons, electrons and mainly neutrons
under charge and beta equilibrium. Furthermore, the high energy of electrons
at some point favours the production of muons to ensure charge neutrality,
both lepton species are well described by relativistic ideal Fermi gases.
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Atmosphere: ~ 0.1 — 10 cm.
Plasma of electrons and atoms.

~—_

Inner crust: ~ 1 km.
Large nuclei and free neutrons. | &—
MNuclear pasta phases.

Inner Core: ~ 5 — 10 km
Strange matter, meson condensates, | ¢&——+—
deconfined quarks?

Quter Core: ~ 2 —5 km.

(-equilibrated npep matter
Superfluid neutrons and superconducting protons (?) \

/

Quter crust: ~ 10 — 100 m
Degenerate electrons plus ionized light nuclei
and lattice of *®Fe R

Figure 1.1: Depiction of the internal composition by layers of a neutron star.

Finally, in the beginning of the inner core, the densities surpass p = 2py, but
the value at the centre is still unknown. Different simulations suggest that the
energy density might reach the values p ~ 10 —15p, depending on the model.
The size of this part is still unknown, but it might be of several kilometers as
well. The specific composition is also obscure, but different hypothesis, which
are mainly model dependent, have been proposed. The high densities reached
in the core of NS might be the idoneous conditions to produce condensation of
mesons, like pions or, if the electron degeneracy pressure is sufficiently high,
kaons. Simulations estimate the emergence of kaon condensates around 2 — 3
times the saturation density. Indeed, the presence of strangeness might occur
as well from the baryonic particles production, called hyperons. This possibil-
ity has also been studied, but these particles are expected to appear between
3 — 4 times the saturation density. Moreover, this phenomenon induces a re-
lease of the energy, which sharply decreases the masses of the NS. This effect
may be problematic if the EOS does not reach the values that have been ex-
perimentally determined. Nevertheless, these are purely hadronic phase tran-
sitions, but quark deconfinement has also been suggested to occur at some
point in the cores of very massive NS. All these transitions affect significantly
the properties of the NS, so they have crucial importance to describe the EOS
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correctly.

One last possibility is the strange quark matter hypothesis [55,204,234]. It is
based on the simple bag model, which simulates the quark confinement consid-
ering the system of quarks as a highly compressed Fermi gas in a finite region
of space. To be consistent with the observations, a constant is introduced
ad hoc to penalize energetically the free quark matter at low temperatures.
However, if a strange quark is added to the bag, there is a narrow window of
values for the bag constant that might sharply decrease the energy per baryon
of the three-flavour quark system, implying that strange quark matter is the
absolute stable state of matter. This hypothesis introduced the idea of the
so-called strange stars as the ultimate stable state of matter in compact stars.

1.1.2 History of Neutron Stars

The theoretical prediction of NS is attributed to Baade and Zwicky in 1934,
when they analyzed the enormous amount of energy released in the supernova
explosions. Indeed, the term super-nova was first used in their original work
[38].  Although they correctly identified the supernova with the formation
of a NS, they indicated that the resulting object would be formed by the
accumulation of neutrons falling down from the surface to the core of the star,
due to the almost zero pressure applied on them.

The concept of EOS was soon introduced to predict the chemical composi-
tion of NS at different densities. The first S-equilibrated npe system was
proposed in 1933 by Sterne [217], where the neutronization of nuclear matter
for increasing densities was confirmed. Later, a systematic study of the mass
and radius of a NS was developed independently (in fact in the same day)
by Tolman [223], Oppenheimer and Volkoff [181] in 1939, deriving the stellar
structure equations directly from general relativity (GR). In those studies, the
Mass-Radius (MR) curve is reconstructed for an EOS describing a degenerate
Fermi gas of neutrons, and the concept of maximal mass NS was introduced
with a value of M.x &= 0.7M.. They realized that this small value of M.y
was due to the simplicity of the EOS, but after the Second World War, the
inclusion of nuclear interactions increased the maximal mass up to 2M. The
further development of realistic EOS with additional vector meson interac-
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tions, strangeness, magnetic fields, superfluid cores and the thermal evolution
of NS via neutrino emissions has been an increasing field of study since the

1960s.

The interest in the refinement of the EOS was mainly motivated by the first
experimental X-ray detections in the 60s decade. The first measured X-ray
source of non-solar origin was called Sco X-1, discovered in 1962 by Giacconi
and his collaborators [98], but it was not identified as a NS at that moment.
In the present we know that Sco X-1 is actually a binary system with a NS
accreting matter from the companion.

The next remarkable X-ray source observation was the Crab nebula in 1964,
however, this case was neither identified with a NS given the large size mea-
sured ~ 10'3 km. Surprisingly, the Crab nebula is actually a plerion, i.e., an
active pulsar surrounded by the supernova remnant gas, which is expanding
and radiating due to the interactions with the central NS strong magnetic
fields. Indeed, the observation of the supernova explosion from this specific
stellar object has been dated to the year 1054 by historical records of Chinese
astronomers. It is indicated in these manuscripts that the light emitted in the
explosion would have been visible even during the daylight.

Probably the most famous NS observation was made by Jocelyn Bell in 1967
[120], using a radiotelescope designed by her supervisor, Anthony Hewish. She
discovered a radio source emitting strictly periodic pulses with a very short
and stable period P = 1.3373 s. The identification of this source with an
oscillating star was ruled out since the fast rotational velocity would fly apart
the star, and the stability in the period made them even think of a possible
artificial origin. Indeed, they denoted the source by “LGM” (little green men)
due to the obscure origin of the signals, so the publication was postponed
until the situation was clarified. Finally, the discovery of three more similar
objects suggested that the source might be a pulsating NS. However, over
a hundred of pulsars, some of then in the range of millisecond period, were
observed by the end of 1968, then the idea of Gold [102], that the pulsar
is a fast rotating NS with strong magnetic fields, was finally accepted. The
original object discovered by Bell is now called PSR B1919+21, and Hewish
was awarded in 1974 with the Nobel Prize for the discovery of pulsars, albeit
with some controversy for not considering J. Bell in the award.
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1.2 Current status of Neutron Stars physics

In the present, theoretical computations of NS are focused on the numerical
simulations of the possible scenarios mentioned before in the deepest layers of
NS and their comparison with the current observations. Specifically, the final
goal of every study is the full description of nuclear matter for all densities,
positioning the EOS as the cornerstone in NS physics.

Quantum Chromodynamics (QCD) has been established as the fundamental
theory of strong nuclear interactions. In particular, it is a non-abelian quan-
tum field theory (QFT) which describes the interactions between quarks and
gluons, the fundamental degrees of freedom of nuclear matter. Then, a first
naive thinking would suggest the derivation of the EOS using QCD as the
starting point, but it is not the case. In QFT, the standard description of the
interactions between particles is carried out via the evolution of the coupling
constant as a function of the energy scale. The non-abelian structure of QCD
induces self-interactions between gluons, this triggers an asymptotic decrease
of the coupling constant to at high energies. Hence, quarks and gluons become
weakly coupled in this regime, a phenomenon called asymptotic freedom, and
it is of great importance given that it allows to perform computations in the
perturbative framework of Feynman diagrams.

In the opposite direction, the QCD coupling constant grows arbitrarily as
the energy scale decreases, which causes quarks and gluons to be strongly
bounded. This effect is known as the color confinement, and it is responsible
for the fact that isolated quarks cannot be observed at low energies, instead
they are strongly tied in bound states which are the mesons and baryons.
It also prevents us to compute quark-gluon dynamics in the standard per-
turbative approach, indeed the energy scale at which QCD is not reliable
anymore has been estimated around Aqcp ~ 200 MeV [95]. Therefore, other
approaches are necessary to describe nuclear matter in the low energy scale
regime. Lattice QCD has become an interesting proposal of non-perturbative
formalism to extract information from the fundamental theory at high tem-
peratures and low baryon densities. However, as we have seen, NS are the
prototypical scenarios of very high baryon densities and relatively low tem-
peratures, hence this approach is not a correct choice for our purposes.
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1.2.1 Theoretical approaches

The most frequent approaches to develop an EOS are called many-body in-
teraction methods, which are built from nucleons, as the fundamental degrees
of freedom, and the couplings extracted from the few-body (two or three)
nucleon interactions. The further inclusion of strange degrees of freedom and
deconfined quark matter in the EOS is a more complicated task which requires
additional interactions terms, including strange mesons and hyperons, and ad
hoc hadron-quark phase transitions [48]. The few-body computations extract
the dominant two-body (or higher order) nuclear forces, based on experimen-
tal data or from theoretical approaches, like meson-exchange models [137],
potential models [146, 231] or even from Lattice QCD using high computa-
tional resources. A detailed description of the different few-body techniques
may be found in [68,179] and the references therein. Once the information
of the nucleon-nucleon interactions has been obtained, it is introduced as an
input in the many-body computational methods, which are classified into ab-
initio microscopic methods or phenomenological models.

One of the most used ab-inito methods is the relativistic Dirac-Brueckner-
Hartree-Fock. This method is actually the lowest-order Hartree-Fock approx-
imation of the energy density in the Brueckner-Bethe-Goldstone theory [113].
The basic idea of this theory is the introduction of a self-energy term to split
consistently the single-nucleon Hamiltonian and the interactions terms be-
tween nucleons. This step is crucial to ensure the convergence of the method.
Then, all the interaction diagrams must be considered to compute the energy
of the system [41], but the summation on the whole set of diagrams is replaced
by the so-called G-matrix. Thus, the G-matrix may be regarded as the effec-
tive in-medium interaction between two nucleons. It is obtained as a solution
to an integral equation at different densities, so that the self-energy term is
also determined, and the total energy of the system may be computed. In
this way, the EOS is constructed, however, in this approach, the three body
forces must be included since they are essential to reproduce the properties of
nuclear matter at the saturation point.

Another popular and successful case are the Chiral Effective Field Theo-
ries [150]. These are based on the effective field theory (EFT) philosophy,
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considering only the appropriate degrees of freedom for a specific physical
phenomenon in some energy and length scales, instead of considering the pos-
sibly more complicated underlying fundamental theory. Other fundamental
ingredients in an EFT are the symmetries of the problem and the expansion
parameter, also known as the power counting. The main advantage of EF'T is
the consistent description order by order in the expansion parameter, focusing
on the key physical properties of the scenario. In particular, chiral EFT pro-
vide a model-independent systematic framework to describe the low energy
interactions between hadrons, introduced as external effective fields, through
the interchange of mesons as the fundamental degrees of freedom. These theo-
ries rely on the chiral symmetry, which is the invariance under the interchange
of quarks in the massless Lagrangian of QCD. Thus, the expansion parameter
typically relates the chiral symmetry breaking scale A, with the quarks masses
or the meson momentum transfer. The inclusion of chiral EFT results allowed
to constrain the EOS slightly above the saturation density, ~ 1.1ng [221].

Specifically, the Skyrme model may be enclosed in the chiral EFT paradigm,
but not in the traditional sense, since baryons appear naturally within the
model, in opposition to the other methods explained above. It was already
considered in 2012 to describe NS, but the results did not correspond to the
mass constraints. Nevertheless, the Skyrme model recently gained some inter-
est in the study of dense nuclear, from the promising results using a specific
extension of the model [12]. Then, it is natural, and the aim of this thesis,
the combination of these models to extend the computations for NS.

On the other hand, phenomenological models are often called effective en-
ergy density functionals. Among them, relativistic mean-field theories [100]
are built from an effective Lagrangian of nucleons described by Dirac spinor
fields, which interact through the exchange of different type of mesons. The
coupling constants are usually fitted to some nuclear matter properties, and
each meson is responsible of different effects, for instance, the short and long
range interactions are carried by the ¢ and w mesons respectively, and the
neutron-proton asymmetry contributions are accounted by p mesons. Then,
the whole system of highly coupled nonlinear equations is solved under a
mean-field approximation, in which the mesons are replaced by their spatially
integrated mean value.
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1.2.2 Experimental detections

The multiples approaches explained above produce a wide variety of EOS
(68,69, 183], and each one yields different observables like the mass, radius
and rotational or tidal deformations for NS. Therefore, these results must be
compared with experimental measurements to confirm the reliability of the
EOS. Indeed, the low density regime has already been constrained up to 1 —2
times the saturation density, from heavy ion collisions [125].

Many different observational techniques have been developed to extract the
NS properties [196]. The Shapiro delay method [206] is an effective way to
measure the mass of a NS. In a binary system, in which one of the compact
objects is a pulsar, the strong gravitational effects induce a periodic delay in
the received pulse. The delay is a correction to the classical Newtonian motion,
so it is an example of post-Newtonian (PN) parameter and it is related to the
mass of the companion. Then the NS mass may be extracted from the binary
mass function, which is easier to measure. Many important detections have
been determined using this technique [82,87], indeed, these observations ruled
out some EOS whose maximal mass could not reach the values M 2 2M,.

An additional PN parameter in binary-NS systems may be related to the
moment of inertia [83], which depends directly on the mass and radius of
the compact object. The moment of inertia has already been estimated in
this way, but the current measurements produce large uncertainties, then this
observable does not further constrain the EOS. The reason is that it is obtained
from a second order O(v*/c?) PN parameter in the orbital velocity of the NS,
extracted from the apsidal precession of the orbits. However, it is expected
that longer timing baselines will resolve the accuracy.

Interestingly, the moment of inertia has been recently related to other physical
observables, specifically the deformability and quadrupolar moment of rotat-
ing NS, in the so-called universal relations [237]. Hence, even though different
observables cannot be measured simultaneously for the same NS, the unknown
observables may be estimated from the others using these relations.

X-ray observational techniques represent an important source of information
given that the emitted photons are greatly affected by the mass and radius of
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the NS. The Neutron Star Interior Composition Explorer (NICER) experiment
is now the main responsible for the mass and radius measurements from X-ray
emissions of spinning NS [164,165,197,198]. It is a NASA telescope located in
International Space Station which is collecting the photons in the 0.2 —12 keV
spectrum emitted by pulsars. In this way, the compactness may be constrained
by the flux curve due to the gravitational light-bending effect, besides, there
are promising expectations in the independent constraint of the mass and
radius from the spectroscopy analysis [184].

Finally, from a completely different perspective, gravitational wave (GW) ob-
servations has become an increasing field of study. The propagation of grav-
itational radiation emitted by the accelerated motion of masses is a strong
prediction of GR, and it encodes valuable information from the source. How-
ever, due to the low intensity of gravity, these waves must be emitted from very
massive, compact and rapidly moving sources (mainly binary NS or black hole
mergers), and yet their observation requires an extremely accurate detector.

The first GW detection of a binary neutron stars coalescence is attributed to
the LIGO scientific and Virgo collaborations [2] in 2017. Furthermore, the
combined detection of the GW emission and the electromagnetic counterpart
from this source [1] established the starting point of the new multimessenger
detection era. This event not only allowed to constraint the MR diagram of
NS, but also imposed an upper bound for the tidal deformability. This new
observable may be extracted from the PN expansion of the GW waveform just
before the merging, and it is a direct indication on how much nuclear matter
is compressed inside the NS, also known as the stiffness of the EOS.

The LIGO and Virgo detectors have measured more events since the first GW
observation, imposing tight constraints on the EOS. They have been recently
complemented by other detectors like KAGRA, and extensions of LIGO and
Virgo in other places. Besides, new detectors are expected to be introduced
in the next decade, like LISA or the Einstein Telescope [39].
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The Skyrme model

The outcome of the battle depends on how
you handle weakness and strength.

Gichin Funakoshi

In the beginning of the 1960s, T. H. Skyrme proposes a theory purely built
from mesons to reproduce the nuclear interactions and describe baryonic so-
lutions [210,211]. In this theory, which in the present is commonly known
as The Skyrme model [156,240], baryons naturally appear as nonperturba-
tive collective excitations from the non-linear interactions between mesons.
More specifically, these solutions are topological solitons [154,193] and, in the
context of the Skyrme model, they are called skyrmions. The model was intro-
duced before the appearance of QCD, so it is originally based on the Yukawa’s
idea, prevalent since the 1930s, in which nuclear interactions between baryons
were mediated by mesons. The success of this idea is due to the reasonable
description of long range interactions between nucleons and the discovery of
the pions.

The computational difficulty to obtain solutions from the model at that mo-
ment, together with the advent of QCD in the beginning of the 1970s, induced
a loss of interest in the model for some years. It was in 1983 when Witten [233]
established a relation between QCD in the large N, limit [220] and the Skyrme
model, which drew attention to the model again. In his work, it is shown how
the fundamental theory of strong interactions becomes an effective theory of
weakly interacting mesons, in which the baryons satisfy the typical properties
of solitons [122,149,202]. Hence, the Skyrme model might be understood as
an EFT of QCD at low energies, regime at which results cannot be obtained
from the standard perturbative methods. This result strengthened the basic
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ideas of the Skyrme model, and many analogies between the two theories may
be extracted.

2.1 The standard Skyrme model

The Skyrme model is built from a field, denoted by U, which is an element
of the SU(2) Lie group. This implies that the field satisfies the following
conditions:

UU=UU =1, det{U}=1. (2.1)

In practice, this field is parametrized in terms of other scalar fields. Specifi-
cally, the exponential map establishes a correspondence between the elements
of a Lie group and its associated Lie algebra. Besides, any element of a Lie
algebra may be expanded in terms of the algebra generators, which in the
su(2) case, these are the Pauli matrices,

01 0 —i 10
71:<1 0)’ T2:<z’ 0)’ TS:(O —1)' (2.2)

Then, the Skyrme field may be written in terms of the new fields, 7w, (a =
1,2, 3), which are identified with the pions,

U = exp{im,7,} = cos(m)ly + isin(mw)m,7, := ols + imy 7y, (2.3)
where I is the 2 x 2 identity matrix, and @ = V 72 = /7,7, We also have

defined the o field, which must satisfy the unitary constraint o + w2 = 1.

Hence, the Skyrme model is a scalar field theory of pions which was originally
represented by the following Lagrangian density,

2
L 1 2
Loy=Ly+ L4 = _E Tl"{LuLM} + @ TI’{[LH, LV] } (24)
It is usual to express the Lagrangian in terms of L, = U, U, the left-invariant
Maurer-Cartan form, which is an element of the su(2) Lie algebra. The sub-
script in each term is just a notation to represent the number of derivatives in
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the specific term, for this reason, we will often refer to them as the quadratic
(L2) and the quartic (£4) terms. We remark here that, throughout this thesis,
we will work with different versions of the model, therefore, we will refer to
the previous Lagrangian (2.4) as the standard Skyrme model.

There are two parameters (fr, e) in this theory. The coefficient f,, present
in the quadratic term may be identified with the pion decay constant, which
has the physical value 186 MeV within our convention. The other one is
known as the Skyrme parameter, e, and it has no direct identification with
any observable. However, it is usual to consider both as free parameters and
use them to fit the solutions to nuclear observables.

The Skyrme model is invariant under a SU(2);, x SU(2) g chiral transformation
of the field,

U — LUR'. (2.5)

However, in order to obtain finite energy solutions, we need to impose the
vacuum boundary conditions on the Skyrme field at spatial infinity. There is
no unique choice for the vacuum, but it is standard, and natural, to consider
the limit U == T,. This condition corresponds to the spontaneous chiral
symmetry breaking in the Skyrme model, which modifies the previous internal
invariance to the diagonal symmetry group, SU(2);, x SU(2)p — SU(2)y.
Then, the model is now invariant under the so-called isospin transformation,

U — AUAT, (2.6)

These features of the Skyrme model are also present in QCD, whose La-
grangian for massless quarks is chiral invariant. Besides, it is known that this
symmetry is also spontaneously broken to the isospin symmetry in the fun-
damental theory [149]. Moreover, the Nambu—Goldstone theorem [104, 168]
states that any spontaneously broken symmetry in a relativistic system in-
duces a number of massless Goldstone bosons equal to the number of broken
generators. These bosons are, indeed, the pions [149].

In general, we may extend the symmetry of the Skyrme model to SU(Ny),
where N is the number of flavours that we want to consider. However, we aim
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at describing atomic nuclei and nuclear matter inside NS, hence, we just need
to reproduce protons and neutrons, which are composed by the two lightest
quarks, v and d. The inclusion of strangeness is considered at the end of this
thesis, since it is of huge interest for NS physics, thus, we will maintain Ny = 2
until the last chapter.

For any fixed time, the Skyrme field defines a map from the three dimensional
real space to the SU(2) group. From the unitary condition we see that the
fields (o, m,) lie on a three-sphere, so the SU(2) group may be regarded as
the S manifold. Then, the Skyrme field is the map U : R?® — SU(2) ~ S3.
Furthermore, once the vacuum condition is imposed on the field, the whole
spatial infinite of R? is compactified into a point, becoming the base manifold
the S® too. This implies that the field configurations may be classified by the
third homotopy group which, in this case, satisfies 73(S®) = 7Z. Therefore,
there is an integer number, denoted by B, associated to each field configura-
tion, which is different for topologically distinct configurations. This integer
number was identified by Skyrme with the baryon number of nuclear matter,
and it may be calculated from the topologically conserved current B*:

praf
2472

B = /d% B’ B'= Tr{L,L.Ls}. (2.7)
It is trivial to see that the divergence of the topological current vanishes
(0,B" = 0), therefore, the topological charge is conserved. In addition, the
zero component BY of the current is the pullback of the target space volume
form, so the integer number B counts the number of times the field configu-
ration winds around the target space. For this reason, the topological charge
is also known as the winding number.

For computational purposes, it is usual to work with an adimensional model,
scaling out the energy and length units. Indeed, we may choose these units
such that the two parameters in the Lagrangian (2.4) are eliminated,

B 32 f, 1

B, R 2.8
. = (2.8)
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These are called the Skyrme units, and the Lagrangian is expressed as follows,

1 1

1
= —_— H —
L= -3 WAL} + 7 Te{(Ly, L} (2.9)

In these units, solutions are obtained independently of the parameters, so
that we have the freedom to fit the energy and length scale to some physical
observables, which is translated into the fit of the parameters f; and e.

The quadratic term may be expressed as a kinetic energy term for the Skyrme
field,

1 1
Ly = =5 Tr{L, L'} = §Tr{8MUT8“U}. (2.10)

However, when it is expanded in terms of the pion fields, it yields a kinetic
energy contribution plus self-interaction terms. In fact, this term is also known
as the non-linear o-model (NLSM).

Even though this term already reproduces some long distance phenomenology
of nuclear matter, it is not enough to provide energetically stable solutions.
Under a simple rescaling of the spatial coordinates x — x /o on a field con-
figuration U(z) — U(z/0y), it may be shown that the energy is minimized for
os = 0, i.e., the solution collapses. This is anticipated by the Derrick scaling
theorem [88], which states that stationary localized solutions to a nonlinear
wave equation in three or higher spatial dimensions are unstable.

However, the inclusion of the quartic term in the model avoids the Derrick
theorem restriction and yields stable solutions. Applying the scaling argument
in the static energy functional £ = — [ d*zL of the Skyrme model,

1

E=FE+FE,=
9 1+ Ly 2472

/d% [—%Tr{Lf} - iTr{[Li,Lj]Q} : (2.11)

we find a non-zero size of the minimal energy configuration.

E
E(oy) = 0,Ey + —, (2.12)
o
E
0y FE =0 — 02 =—24£0. (2.13)

Es
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Then, the quartic term is crucial to stabilize the solutions. It was introduced
by Skyrme himself, this is also a reason for which the quartic term is frequently
referred to as the Skyrme term. Given that the Skyrme model is identified as
a low-energy effective field theory of QCD, the quartic term may be seen as a
higher derivative correction to the NLSM. It is not, in fact, the only term that
we can construct with four derivatives that satisfies chiral symmetry, but it is
the only one that yields a Hamiltonian of second order in time derivatives.

Furthermore, a lower energy bound for the field configurations may be ob-
tained in the standard Skyrme model. The energy functional (2.11) may be
written in terms of strictly positive terms using the following relations:

Ll =-L, (2.14)
Te{[Li, L;)*} = 2 Te{(eiuLiL;)?} = —2 Tr{|ez-jkLz-Lj\2}. (2.15)

Then, the perfect square may be reconstructed from the two terms in the
energy to obtain the so-called Bogomol’'nyi-Prasad-Sommerfield (BPS) bound
[57,190].

1 1 1 ,
B=s /d?’x liTr{|Li| }+§Tr{\eijkLiLj| }] _

1 1
247T2/d35'3 [5 Tl"{(\LH - \Gz‘jkLz'LjDQ} +Tr{\€ijkLiLij|}} > |B|  (2.16)

Indeed, the Skyrme units have been defined such that the BPS bound is ex-
actly the topological charge. The equality cannot be saturated in the standard
Skyrme model since no solutions, other than the trivial (vacuum) solution
L; = 0, can be obtained from the BPS equation,

Lk = GijkLiLj. (217)

Solutions to the field equations for different values of B may be obtained
using different approaches. The simplest solution is the B = 1 skyrmion,
which has spherical symmetry, therefore, the field equation is just an ordinary
differential equation (ODE) that only depends on the radial coordinate. This
solution may be parametrized by the hedgehog ansatz: w, = f(r)n,, where
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f(r) is the profile function and n, is the S? unit vector.

U = exp{if(r)n.7.} = sin(f)Is + cos(f)na7a. (2.18)

Inserting the hedgehog ansatz in the Lagrangian we obtain a second order
ODE for the profile function f(r). Recall that we chose Iy to be the vacuum
state of the Skyrme field, hence the topologically non-trivial boundary condi-
tions for the B = 1 skyrmion are: f(r =0) = m, f(r — oo) = 0. However,
in order to solve the field equation, we need to know the value of f and its
derivative at the same value of r. The usual way to solve this issue, is to
integrate the equation starting with an initial seed for f’'(r = 0), using any
standard ODE integrator, like a Runge-Kutta method. The input value for
the first derivative will not produce a solution with the correct boundary con-
dition at infinity, but a shooting method may be implemented to reach the
correct value iteratively.

Nevertheless, the solution may be obtained using other techniques which are
not usually found in the Skyrme model literature, but they are often used in
other studies. Spectral methods [105,106] are a powerful tool to solve many
kinds of differential equations, which are vastly used in numerical relativity
[107], specifically for the study of collisions between compact objects [176,
203] or fast rotating NS [59]. This technique has also been used to solve
other (non-topological) solitonic systems like rotating boson stars [108], but
no applications, to our knowledge, have been found in the Skyrme model.
Then, the B = 1 skyrmion field equation may serve as another interesting
test in which this approach could be implemented to compute skyrmions,
as well as a representative example to show how to solve non-linear ODE
using spectral methods. The resolution of the B = 1 skyrmion is detailed in
appendix A using this technique.

Once the solution for the field profile is found, the energy obtained for the
skyrmion is £ = 1.2315, and it represents the classical state for a nucleon,
i.e., the proton or neutron.

Solutions for higher values of B have been extensively studied. The standard
procedure to obtain the low-B skyrmions consists in the identification of the
symmetries for the field configuration, then the field equations may be solved
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using different approaches. The B = 2 solution was first identified to be
axially symmetric in [153], and then the system of PDE was solved in [62].

The extension to the tetrahedral B = 3 and cubic B = 4 skyrmions [64]
was also performed following this approach [64], but a new method was soon
developed to simplify the resolution of the field equations. The rational map
approximation [124,157] splits the radial and angular dependent parts of the
Skyrme field in the energy functional. In this approach, the skyrmion is
parametrized using (2.18), but with a generic angular distribution,

n(R):—l e(R(z m(R(z — 2))? :
P = R (PReRE). 2mRE) - [REF). (219

where R(z) is the rational map, which is a holomorphic function of the stere-
ographic coordinate z(, ¢) of the S?. Specifically, R(z) is the ratio between
two polynomials, p(z) and ¢(z), which have no common roots. The rational
map is fixed by considering the most general polynomials of degree B, which
is the baryon number of the resulting skyrmion. Then the symmetries are
imposed on R(z), constraining some of the coefficients in the polynomials.

The part that only depends on z in the energy functional is minimized first,
by varying the remaining coefficients of the polynomials p(z) and ¢(z). Thus,
we end up with an expression that only depends on the radial coordinate
through the profile function f(r), which is minimized as we did in the spheri-
cally symmetric case. Recall that skyrmions obtained from rational maps are
not solutions of the field equations, since in this approximation we minimize
different parts individually, but it is a powerful tool to obtain symmetric field
configurations.

Comparisons between the energy of the solutions and the rational map con-
figurations show quite similar results up to B = 8. This encouraged the
computation of higher B-skyrmions to reproduce heavier nuclei. However,
the energy density of these field configurations was concentrated in hollow
and shell-like distributions [47], which does not correspond to the physical
nuclei.

An additional problem in the standard Skyrme model, as pointed out in [63], is
the large difference between the binding energies obtained from the solutions
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[154] and the experimental values, which are not larger than 1%. They are
defined as follows,

Ep — Ep/B

BEB(%) = EB_l

(2.20)
However, these binding energies have been computed from the classical ener-
gies of the skyrmions, hence, this discrepancy might be due to the lack of some
corrections that we are not considering. Indeed, it was recently shown [112]
that the quantum corrections from vibrational modes yield remarkable results
in order to solve this longstanding problem.

Further effects of realistic nuclear matter are the spin and isospin quantum
corrections. Indeed, nucleons are spin % particles, but the higher spin ex-
citation of the proton (A particle), as well as different isospin excitations
(isotopes) of many nuclei, have been observed. Furthermore, it is known that
an important correction to the mass of the nuclei comes from the difference
between the number of protons and neutrons. Hence, it is of great interest to
consider this quantum effects in the Skyrme model.

However, we have seen that nucleons appear as collective excitations from the
nonlinear interactions between pions, which are bosonic particles. Then, the
natural question of how fermionic particles are obtained in a purely bosonic
theory arises. This question was addressed by Finkelstein and Rubinstein
in [92], where they stated that fermionic quantum states may be obtained
since the wave functions may change the sign under a 27 rotation due to the
existence of non-contractible loops in the configuration space of wave functions
[134,156]. This is, indeed, the requirement for the correct quantization of
the Skyrme model or similar low-energy EFT of QCD. Furthermore, they
introduced the constraints that determine the possible quantum states of a
skyrmion depending on the specific symmetries of the solution.

Having said that, a canonical quantization as in standard QFT is not possi-
ble since the Skyrme model is non-renormalizable, therefore, a semi-classical
quantization must be applied. The usual procedure [29,63] considers the quan-
tization of a finite number of collective coordinates which correspond to the
zero modes (symmetries) of the Skyrme Lagrangian i.e., translations, spatial
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rotations and isorotations of the field. This approach is motivated from the
approximate description of slowly moving soliton dynamics using the geodesic
motion on the moduli space of static configurations [152]. It also involves
an approximation in which the skyrmion of baryon number B is transformed
under these symmetries rigidly, such that no deformations are allowed. Trans-
lations of the skyrmion are usually ignored, but the quantization of spin and
isospin has been extensively studied, indeed due to the simplicity of the ra-
tional map, for different values of the baryon number [134,135,151].

Despite the great phenomenological interest of (iso-)spin quantum correction
in the Skyrme model, they are not helpful in the previously mentioned binding
energies problem.

In [29], the B = 1 skyrmion was quantized obtaining from the same classical
solution a splitting in the energy to describe the proton and the A baryon.
Then the parameters were calibrated to reproduce their masses, and the values
obtained are usually referred to as the standard parameters in the Skyrme
model,

fr =129 MeV, = 5.45. (2.21)

The quantization of the B = 1 skyrmion will be briefly explained in the
last section to recalibrate the parameters in a generalization of the Skyrme
model and to compare them with those obtained from NS. Furthermore, in the
upcoming chapters we will show in detail how the quantization of the isospin
in Skyrme crystals opens a broad phenomenology in the Skyrme model.

2.1.1 Introducing the pion mass

So far, we have seen some of the problems of the Skyrme model in which
pions are massless particles. However, it is known that pions have mass,
m, = 138 MeV, which means that chiral symmetry is explicitly broken into
the isospin symmetry. Then, since the model is expected to describe QCD
at low energies, the inclusion of a pion mass term in the Lagrangian seems a
natural requirement.

Additionally, isospin symmetry implies that the pions have the same mass,
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which is also false. Hence, a further isospin symmetry breaking mechanism
would be required in the Skyrme model. However, the difference between
the masses (~ 1 MeV) is rather small in comparison to the energy scales
considered in this work, besides, it is still not clear how isospin symmetry
might be broken in the model. Therefore, we neglect this effects and maintain
the isospin symmetry in this work.

The simplest choice to add a pion mass to the original theory (2.4) is the
following,

m22

Lo = "EETH{U ~ L}, (2.22)

This term explicitly breaks chiral symmetry because now the only possible
vacuum state is precisely U = I,. As well as the quadratic term, this potential
term may also be expanded on the pion fields around the vacuum and we would
obtain the usual mass term of a scalar field.

The solutions obtained from the massive Skyrme model (following our previ-
ous notation we will denote it as Lo49) improve some of their properties. In
the original model the profile function of the B = 1 skyrmion decays to zero at
infinity under a power-law, f ~ 1/r%. However, the inclusion of the pion mass
term introduces a new term in the field equation which induces an exponential
decay on the profile function. This is a standard phenomenon in field theory,
as it occurs, for instance, with the long range interaction of electromagnetism,
mediated by the massless photon, as opposed to the weak interactions, whose
gauge bosons have mass. It is also an important effect from the computa-
tional point of view, since now the exponential decay reduces the size of the
skyrmion and a smaller grid may be used in the numerical resolution of the
field equations.

The major improvement of the pion mass term is the B = 3 and B = 4
clustering effect for some large B > 10 skyrmions. It is known that the a-
particle model correctly describes the properties of some large nuclei with
zero isospin [66]. Fortunately, the pion mass term (2.22) penalizes the hollow
solutions [45,46], and yield solutions with more realistic structures [44].

Additionally, solutions in the massive model have larger energies, however,
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the BPS bound is also expected to increase with the inclusion of the new
term. Indeed, it is possible to redefine a BPS bound [115], but now it will
depend on the parameters (fr, e, m;) given that we cannot erase them from
the Lagrangian with any change of units. The knowledge of these generalized
bounds is important to find the minimal energy configurations, and they will
be specially helpful for the study of Skyrme crystals in the next section.

The quantization of the B = 1 skyrmion was also computed including the
pion mass term [28]. Although potential terms do not directly enter in the
quantization procedure, they modify the classical solution, hence, different
values for the parameters, f, = 108 MeV, e = 4.84, were obtained to reproduce
the masses of the proton and A baryon.

2.1.2 Neutron stars in the standard Skyrme model

From a simple analysis we may see that NS contain the order of My /my ~
10°7 baryons, being my = 939 MeV the mass of the nucleon. Hence, a naive
thinking would suggest that in order to describe a neutron star from the
Skyrme model, we would have to obtain the B ~ 10°7 skyrmion. This is
obviously an impossible task from the computational point of view, however,
some attempts to obtain enormously large-B solutions yield some results in
the description of NS from the standard Skyrme model.

The first studies of self-gravitating skyrmions to describe NS involved the
resolution of the full Einstein—Hilbert—Skyrme (EHS) system using the ra-
tional map approximation for the Skyrme field [188]. In this approach, NS
are obtained for different values of the baryon number until a maximal value
is attained, for which stars are no longer stable under radial oscillations. The
results yield NS with quite small maximal baryon number and unnatural hol-
low shell-like configurations, where the solutions had a step-like behaviour.
Besides, the solutions were obtained using unphysical values for the gravita-
tional constant to facilitate the computations, given that the thickness of the
solutions decreased with the value of G.

Nevertheless, motivated by this effect, they further considered large B rational
map configurations based on N shells of smaller baryon number rational maps,
first introduced in [157]. These multilayer field configurations, combined with
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additional approximations on the profile and metric functions [132,133], al-
lowed to obtain solutions for the physical values of G. Furthermore, the values
of the maximal baryon number increased to ~ 10°%, however, the NS obtained

had small values of the masses and radii [172], compared to the typical values
for a NS.

A much more promising result in the NS description within the Skyrme model
concerns a new type of solutions called Skyrme crystals. A detailed explana-
tion on how these configurations are constructed will be given in the next
chapter, but at this point we will only comment the main results of their
application to NS modelling.

The lowest energy configuration (up to now) in the massless standard Skyrme
model was found almost simultaneously in two different works [77,136] in
1988. This solution is an infinite lattice of unit cells, each one with B = 4,
and its energy is just a 3.8% above the unattainable BPS bound. Hence, it
represents a suitable configuration to describe infinite nuclear matter and to
be a model for NS from the standard Skyrme model.

The energy of this solution depends on the size [ of the unit cell, and it is a
convex function which has a single minimum value Ej at some value [, of the
length. It has been computed for a large range of values of [, and follows the
simple relation [77],

E(l) = E, K% + %0) u ; 2 s} , (2.23)

where Fy = 727.4 MeV, [y = 1.666 fm are precisely the energy and the lattice
length of the minimum respectively, and £ = 0.0515. In this parametrization,
[ is the size of the unit cell with volume V = [3, which has B = 1 within it.

The parameters (f;, e) used to obtain this curve correspond to the standard
values (2.21).

The Skyrme crystal may also be used to obtained NS, but from a different
approach. Rather than solving the full EHS system, an EOS might be obtained
from a mean-field (MF) approximation using the thermodynamical definitions,

E dE B

= - = — 2.24
V, p dv; np V7 ( )

p:
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where V' is the volume of the unit cell. The three variables (p(l), p(1), np(l))
are functions of the lattice length, hence, we may associate a value of the
pressure, energy and baryon densities to each value of [ and find the relations

p(p) and np(p).

Then we assume the stress-energy tensor of a perfect fluid,
™ = (p+p)uu” — pg", (2.25)

where the pressure and the energy density are related by the EOS extracted
from the Skyrme crystal. NS are obtained following the TOV formalism [181,
223,229], which is the standard approach to describe the stellar equilibrium
in GR. The details of the TOV formalism are explained in Appendix B.

The resulting NS yield better values than the previous attempts, leading to
a maximal mass of M., = 1.49M, with a radius of R =~ 10 km and B =~
2 x 10°7 [171]. The whole MR curve has been obtained for comparison with
other Skyrme EOS, and it is shown in Fig. 2.1.

These results have been consistently considered as the minimal energy con-
figuration and they have definitely improved the NS description within the
Skyrme model. However, the maximal mass turns out to be quite small com-
pared to the NS measurements, which require a maximal mass of 2, at least.
Moreover, as we have seen in the Introduction, a crystalline configuration is
an acceptable description in the outer crust of NS, but it is not expected to
be present for the innermost layers.

2.2 The BPS Skyrme model

The perspective of the Skyrme model as an EFT of QCD at low energies
suggest that the Lagrangian (2.4) only considers the first contributions of an
expansion in field derivatives. Therefore, there is no reason not to consider
additional higher derivative terms as corrections to the model to solve the
problems mentioned above.

The most natural extension is a term with six derivatives of the field. Among
the possibilities, as also occurred with L4, the only term that provides a
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Hamiltonian of second order in time derivatives is the following [16,17],
Ls=—N7"B,B". (2.26)

We will refer to this as the sextic term which, when combined with a generic
potential term Ly = — U, yields a special model with very interesting prop-
erties.

The coupling constant \? of the sextic term is a new parameter that may be
used to fit nuclear observables from the solutions. In fact, we may relate this
parameter to the coupling constant between the pions and the w meson in an
extended version of the Skyrme model coupled to vector mesons [27,161-163],
hence, it is possible to give an estimation of its value. More specifically, when
the w meson is integrated out in the extended Lagrangian, the interaction
term yields a sextic term with A = g2/ (27*m?) [7], where m,, and g,, are the
mass and coupling constant of the w meson respectively. For the empirical
values m,, = 783 MeV and ¢2/(4m) ~ 10 — 12 [162], we obtain A\* ~ 8 — 10
MeV fm3.

In this section, we will consider different potential terms, then the parameter
p? will have very different values. For the pion mass potential term (2.22) we
identify pu? = m2f2/4, so it will be interesting to study how the parameters
change when they are used in the standard or in the BPS Skyrme model. We
will also compare them when they are fitted to isolated atomic nuclei or to
infinite nuclear matter and NS.

Despite we are going to study a different Lagrangian in this section, all the
previous topological considerations on the Skyrme field are independent of the
theory. Hence, the L4 model still allows the existence of topological solitons.
Besides, the solitons are also energetically stable in this theory due to the
opposite scaling of the sextic and the potential term:

E
Eqo(04) = —5 + 0} E, (2.27)

S

E
Oy Egy =0 — 0% = Eﬁ) £ 0. (2.28)

The BPS bound, and the corresponding BPS equation, may also be obtained
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in this model as follows,
E= / &’z [A%‘l (B")® + ;ﬁu} = (2.29)
/ Pz [A%ﬁ* (B + pu + 2AM230\/H] =
/d3x [()\7?230 — ,u\/a>2 + zAszO\/H] > \u|B| /volgz\/a. (2.30)

To obtain the bound in the last line we have made use of the following property
of BY:

U* (VOlSS)
0 _
VOI]RLSB = T (231)
Specifically, in cartesian coordinates volgs = d3z.
Then, the BPS equation is:
2B = VU, (2.32)

The main property of this model is the possibility to obtain solutions to the
BPS equation. For this reason, the L4, model is also known as the BPS model.

Moreover, the BPS equation may be solved analytically for any value of B.
The reason for the integrability lies in the infinite amount of symmetries on
the target space [8]. In particular, the sextic term is the pullback of the volume
form on the target space, S® in our case. Therefore, all diffeomorphisms that
preserve the volume form of this manifold will not produce changes on the

topological current, therefore, the sextic term remains invariant.

This volume-preserving diffeomorphisms (VPD) invariance is broken in the
BPS model once the potential term is introduced. However, potential terms
which only depend on the trace of the Skyrme field, U = U(Tr{U}), like
the pion-mass term (2.22), are still invariant under area-preserving diffeomor-
phisms on the S2. This may be checked from the expansion (2.3) of U, such
that any transformation on the pion fields that leaves the norm 7 invariant
has no effect on the trace of the field, given that Tr{U} ~ o ~ 1 — w2, These
infinitely many symmetries are responsible for the integrability of the model
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for any value of B [16].

Furthermore, the static energy functional (2.29) of the BPS model satisfies
a similar set of symmetries as well. Specifically, all volume-preserving diffeo-
morphisms on the base space R? will not affect the energy functional [6]. This
is trivial to see for the potential term, which does not depend on the base
space coordinates. The sextic term, on the other hand, depends on the spa-
tial coordinates, but it is also invariant under these transformations since the
topological current contracts the indices of the derivatives with a Levi-Civita
symbol. Therefore, it has the same structure as the base space volume form,
dBx ~ €;:0;U0;UdU. These symmetries imply that any change of coordi-
nates which remain the volume invariant will have zero cost of energy. As a
consequence, all the solutions of the BPS model may have arbitrary shapes.
This facilitates the resolution of the BPS equation since we may always use
the generalization of the hedgehog ansatz (2.18) to higher topological charges,

U:(r,0,0) = (f=f(r),©=0,= Bo), (2.33)

which is called the axially symmetric ansatz when B > 1.

In addition, the VPD invariance on the base space are precisely the symmetries
of an incompressible ideal fluid. This suggests a close connection to nuclear
matter due to the success of the liquid drop model in the description of atomic
nuclei. Moreover, the spherical symmetry for arbitrarily high B solutions
totally differs from the shapes of the solutions obtained in the standard Skyrme
model, but it is in excellent agreement with the experimentally known shapes
of the large baryon number nuclei.

Besides, solutions to the BPS equation satisfy the E o |B| energy curve,
impliying that the binding energies are exactly zero. Although a realistic
description of nuclear matter requires non-zero binding energies, these are
indeed very small ~ 1%. Then, the BPS model may serve as the starting
point of a more complete model that reproduces the correct binding energies.
One possibility might be to consider small perturbations around the BPS
model, in a kind of near-BPS model [12,49,60].

Another fundamental property of the BPS model lies in the stress-energy
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tensor, which may be extracted from the action [9]

T 2 08 2 5fd4x\/\g\£_
V0919w /lgl 99w
BrBY B*B#
2\2? Nrtgas — U ) g (2.34)
9| 9]

The following variations of the metric are useful to derive the previous result,

1 1
S| — | = ——=5 2.35
(\/9) varl i (239
0/ 19l = =V/1919""6gas. (2.36)

Recall that in a generic (non-flat) spacetime, the topological current is actually
BF = BF/\/|g|, where g is the determinant of the metric and B* is the flat
spacetime (2.7) current. Now, considering the following definitions:

B~
N — (2.37)

/9o BeBP’
B>B# B>B#
— U, p=Nm"gap
9] 9]

the stress-energy tensor has an expression equivalent to a perfect fluid (2.25).

= N1 gag +pU, (238)

The identification of the energy density p yields precisely the integrand of the
energy functional (2.29) for static field configurations. However, the identi-
fication of p is, for the moment, just a mathematical definition, so we still
cannot consider it as the physical pressure of the system.

The conservation of the stress-energy tensor in a flat spacetime for static
solutions implies that p is constant,

T = §909;p =0 — P :=p = const. (2.39)

The pressure definition in (2.38) generalizes the BPS equation (2.32). Indeed,
this generalized equation may be obtained by integrating the field equations
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9], where P is precisely the integration constant:
M2BY = u\/U + P/ (2.40)

We will only consider the positive P case.

The volume and energy of the solutions to the non-BPS equation (2.40) may
be easily obtained:

VU + P/u?

E(P) = 72\ B| < 2U + B/ > | (2.42)
5’3

VU + P/ u?

where we have adopted the notation used in [12] for the integration of a generic

V(P):@B< L > (2.41)
53

function on the S?

1
(F)gs := 52 volgs F\. (2.43)

Interestingly, neither the volume nor the energy depend on the specific solu-
tion. In fact, solutions with the same pressure will occupy the same volume.

It is now easy to show that P actually is the pressure of the system.

OF
ov

_OEfoP _

= VP - —P. (2.44)

Surprisingly, the BPS model yields the standard thermodynamical relation
naturally, although the variables E, V' and p have been introduced from a
pure field theoretical definition. Thus, (2.38) is the generalization of the BPS
equation to the non-zero pressure case in a generic spacetime, where p is not
constant anymore.

Combining the expressions in (2.38), we obtain a relation between the energy
density and the pressure of the system, i.e., the EOS of the BPS model,

p=p+2u°U. (2.45)
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Recall that the potential term depend on the Skyrme field, so the energy
density is not only a function of the pressure. Hence, the BPS Skyrme model
EOS is non-barotropic.

Another relation may be extracted by adding the expressions in (2.38),
p=—p+222%7" (BY)?. (2.46)

Since B is the baryon number in the Skyrme model, it is natural to identify
B" with the baryon density np. Indeed, this expression represents the Euler

thermodynamical relation, from which we may identify the baryon chemical
potential of the BPS model, up = 2X27*BY.

Finally, we have seen that the spin and isospin quantization in the standard
Skyrme model allows to reproduce some interesting phenomenology of nuclear
matter. In the BPS model, the inclusion of these and further effects is much
easier, due to the spherical symmetry, and produces an extremely accurate
reproduction of the nuclear binding energies [13,14].

2.2.1 Neutron stars in the BPS Skyrme model

NS have also been obtained in the BPS model [10, 11}, leading to promising
results for their study within the Skyrme model. The main advantage of the
BPS model is that, owing to the symmetries, the ground state solutions may
be parametrized with the ansatz (2.33) for arbitrarly high B. Indeed, this
is compatible with the spherically symmetric ansatz of the spacetime metric
(B.12), hence, we may solve the full EHS system without MF approxima-
tion. Nonetheless, this fact may also be regarded as an interesting scenario to
compare the results from a MF approximation and the full-theory (FT) [11].

In the MF approximation we use the thermodynamical definitions of the en-
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ergy and baryon densities,

p(p) = Vip) p 1 ; (2.47)
Tp(p) = o = — (2.48)

V(p) ”2A<\/ﬁ>

The dependence on the pressure is naturally introduced from the non-BPS
equation (2.40), however, once the skyrmions are coupled to gravity, the pres-
sure is not constant anymore.

The parameters (A2, %) of the BPS model must be fixed to some values in
order to solve the TOV system. Given that we want to describe NS, instead
of the proton and A masses, we may fit the parameters to reproduce the
saturation energy and baryon density of infinite nuclear matter (INM),

Ey =923 MeV, ng:= L% =0.16 fm 3. (2.49)

my
This choice seems more appropiate for our purpose since nuclear matter inside
NS is more similar to an infinitely extended system than to isolated nuclei. An
extensive explanation of the INM properties will be given in the next chapter.

Different potentials yield different expressions for the densities, specifically,
we will compare between three potentials with their respective value for the
parameters:

e Step-Function potential
U=0=0(Tr{l-U}) (2.50)

From a phenomenological point of view, this is not a correct choice given
that a constant potential term yields a linear EOS in the BPS model,
which is not expected at all in the whole interior of NS. Besides, the
sharp behaviour of this potential in the surface of NS represents the lack
of a crust, which neither is correct. However, this case is interesting (and
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helpful) because the EOS obtained in the MF and FT are the same. The
parameters obtained from this potential are,

2 = 73.8335 MeV/fm®, A? = 29.6083 MeV fm®. (2.51)

e Pion mass potential
U :=U,=1—cos(f) (2.52)

The obvious choice is the pion mass term, which was introduced in the last
section (2.22). This potential has a non-constant behaviour and yields a
nontrivial EOS. The parameters obtained in this case are,

12 =92.2919 MeV/fm®, A2 = 25.6836 MeV fm?®. (2.53)

As mentioned before, the physical constants of the pion may be identify
from p2 = "=lz which yields f, = 385.93 MeV when m, = 138 MeV.
This indicates that the parameters of the BPS model must be significantly
larger than the physical values to describe nuclear matter, however, the
introduction of other terms (Lo, £4) might alleviate this situation.

e Squared pion mass potential

U :=U>= (1 —cos(f))’ (2.54)
This potential has previously been studied for isolated skyrmions, and the
interest lies in its repulsive behaviour [110]. Here, it represents a different
case that yields an interesting EOS to compare. The parameters obtained
differ substantially from the previous values,

(% = 147.6670 MeV/fm®, A2 = 14.8042 MeV fm?. (2.55)

We show in Fig. 2.1 the EOS curves for the different potentials explained
before, and their explicit expressions may be found in [11]. Actually, since the
EOS is non-barotropic in the FT cases, a different curve is obtained for every
value of the baryon number, hence, we first have to solve the Einstein equations
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to extract an EOS. The curves of the FT computations represented in Fig. 2.1
have been obtained for the corresponding maximal mass in each case. For
comparison with the stars obtained from the BPS model, we also consider the
EOS obtained from the crystal solution in the standard Skyrme model using
the standard parameters (2.23) and the same crystal curve when fitted to the
nuclear saturation point (2.49). The specific values of the parameters for this
last fit are f, = 138.17 MeV, e = 4.60.

The whole set of EOS covers a wide range of different possibilities. The first
observed feature is that all the MF cases have a nonzero value of the energy
density in the zero pressure limit. This is directly related to the fact that the
low density regime is not correctly reproduced in these models. For instance,
the Skyrme crystal reaches the p = 0 equilibrium point at a finite value of the
lattice length [y with a nonzero value of the energy FEj.

A correct description for lower densities would not present a minimum value of
the energy, instead the F/(L) curve decreases asymptotically for larger lengths
than the minimum. This, in NS terminology, is translated into the absence
of crust in the resulting NS. On the other hand, the F'T curves seem to have
the correct p — 0 limit for vanishing pressure, as it occurs with the standard
nuclear physics EOS obtained from the different methods explained in the
Introduction. We use for comparison the Barcelona-Catania-Paris-Madrid
(BCPM) [208] EOS, since it reaches the minimal accepted values for the mass
and satisfies the most fiducial radius constraints. This EOS is based on the
combination of the Brueckner-Hartree-Fock approach for the inner parts of
the NS, and the BCPM energy density functional for the inhomogeneities in
the crust.

Additionally, the stiffness of each EOS may be easily compared from the same
plot. It is often said that an EOS is softer o stiffer than other EOS when
the energy density is, in general, larger or smaller for the same values of
the pressure respectively. For instance, in our case we would conclude that
the Skyrme crystal EOS is clearly softer than the BPS EOS in the FT case.
Indeed, a careful analysis on the stiffness may extract valuable information of
the masses and radii of the resulting NS. Specifically, the softer an EOS is in
the range of p > 1 MeV /fm?, the more compressed the nuclear matter will be,
therefore, soft EOS yield NS with smaller radii. Besides, the accumulation of
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nuclear matter in the core of the NS induce an earlier gravitational collapse,

producing much smaller maximal masses.

The TOV equations may be solved for each EOS in the MF case as explained
in Appendix B, and the MR curve is obtained. On the other hand, the res-
olution of the EHS system in the FT case is slightly different. Since the
stress-energy tensor of the BPS model is already a perfect fluid, the expres-
sions of the differential equations obtained from the TOV system apply to
this case too. The energy density and pressure are defined in (2.38), besides,
we also have naturally identified ng = BY. However, these definitions depend
on the Skyrme profile function, hence, in order to close the TOV system of
equations, a further equation must be added to determine the Skyrme field.
We take the definition of the pressure (2.38) as the differential equation for
the profile function.

In the MF case, the pressure in the centre of the star p. determines the solu-
tion, but in the FT the baryon number B of the star is the input parameter,
and determines the solution. Then, the system must be solved using a shoot-
ing method for the value of the pressure in the center of the star, such that
the condition p(R) = 0 is fullfiled.

The MR curves of both the MF and FT cases are shown in the right plot
of Fig. 2.1 for different values of the p. and B respectively. We also added
the MR curve obtained from the crystal configuration in the standard Skyrme
model for the original parameters and the nuclear saturation fit.

The main feature in the MR plot is the wide difference between the maximal
masses attained in the BPS and the standard Skyrme models. Whilst the
smallest mass for the BPS model obtained is ~ 3M, for the squared potential
in the MF case, the standard Skyrme model hardly reaches the values 1.5M.
This completely agrees with the previous analysis on the stiffness of the EOS.
Besides, the small value of the maximal mass in the standard Skyrme model
is a problem of the model itself, given that we obtain quite similar masses for
different choices of the parameters. Although the results obtained from the
BPS model are much higher than the current measurements, this is indeed a
nice result since it is actually really hard for standard nuclear physics EOS
to reach very high masses. Interestingly, these computations motivate the
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Figure 2.1: Left: The EOS for the different models considered so far, in the MF and FT approaches. In the
FT cases we considered the EOS resulting from the maximal mass stars. Right: The MR curves from the
same models.

combination of both submodels given that desirable values for the maximal
masses lie precisely in the middle ~ 2 — 2.5M,.

The next interesting feature concerns the low mass region in the MR curve.
All the Skyrme EOS satisfy the limit M (R — 0) — 0, contrary to the BCPM
case. This, as explained before, is due to the lack of a crust in the Skyrme
EOS, i.e., because of the limit p(p = 0) # 0. Actually, the EOS obtained from
the F'T cases represented in Fig. 2.1 seem to reproduce the correct behaviour
in the zero pressure limit, however, the MR curves do not present the typical
behaviour of NS with crust, like BCPM. Indeed, all the EOS obtained for
every baryon number satisfy the correct zero pressure limit in the F'T cases.
The reason for these apparently contradictory results, is that the FT cases
of the BPS model are actually special cases in which different EOS may be
defined. The relations p(p) of every star are unique EOS that only apply
for the specific solution, but we may associate the values of the pressure and
energy density at the centre of each NS to construct a new global p.(p.) EOS.

We show the new global EOS for the FT cases in Fig. 2.2, which display the
same behaviour as the EOS of the MF cases. Therefore, we conclude that
the correct EOS to study the presence of crust is the p.(p.) relation. The
corresponding EOS obtained from the solutions for different values of mass
are also plotted to show that they all emerge from the global EOS and exhibit
the zero density limit. We remark that the existence of different EOS in
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the BPS model is due to the field-dependent EOS, which is not a frequent
phenomenon, but it is a more general statement that might apply for other
non-barotropic EOS.
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Figure 2.2: Global p.(p.) EOS for the two potentials from the FT cases in the BPS Skyrme model which
determines the presence or not of a crust. We also added three EOS corresponding to NS solutions of different
mass.

Finally, we want to show how the different EOS affect some of the solutions
of the TOV system in Fig. 2.3. For this purpose, we consider the © potential
with nonzero energy density at the surface of the NS, the pion mass potential
U, with the correct zero pressure limit of the energy density but not for the
derivative, and the BCPM and squared potential which both reproduce the
correct limit for the energy density and its derivative. We plot the g, metric
function and the mass, pressure and energy density profiles inside the ~ 1.4M,
NS for each model.

The metric function B(r) is determined by the compactness function of the
star. The BCPM and FT curves show a nontrivial behaviour for this func-
tion with a maximum value in the outer parts (r/R > 0.6), contrary to the
monotonously increasing simple trend in the MF case. The mass and energy
density functions mainly show how the mass is distributed along the radius of
the NS. In the MF case, the energy density profile is almost constant, which is
not a realistic description for a NS and induces the M oc r* mass curve. The
remarkable result is the highly concentrated core of the quadratic potential
with the 90% of the mass reached already at the 67% of the radius of the
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Figure 2.3: Profile functions of the solutions obtained from the TOV system for a single NS. Here we compare
between three extremely different EOS and a realistic nuclear physics EOS.

star, whilst for the BCPM and FT pion mass potential, the same ratio of the
mass is attained at the 85% of the radius. The three different behaviours may
also be seen in the pressure plot, which always reaches the zero value at the
surface of the star.

2.2.1.1 BPS Skyrme neutron stars in modified gravity

NS are affected by intense gravitational fields (namely, by high curvature
effects) more strongly than any other currently observable physical system in
the universe. They are, therefore, perfect natural laboratories to investigate
the consequences of this high curvature. In particular, they allow us to study
deviations from GR and to constrain the free parameters in theories describing
these deviations, or even to discard them by comparing their predictions with
the observed data. Such deviations, or Extended Theories of Gravity (ETG),
are completely natural from an effective field theory point of view, where
quantum gravity corrections should induce further terms in the low-energy
effective action of the gravitational field, in addition to the Einstein—Hilbert
(EH) action. The f(R) theories [76,85,175,213] are a specific class of these
ETG in which the EH action linear in the Ricci scalar R is replaced by a
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generic function f(R). These theories are motivated, first, by their relative
simplicity when it comes to solve the modified Einstein equations and, second,
from a cosmological point of view, by the possibility to explain the acceleration
of the universe (the dark energy problem) or the abundance of non-baryonic
matter in the galaxies (the dark matter problem). These motivations are
based on the presence of an additional degree of freedom, which is usually
related to a scalar field known as the scalaron. Besides, these f(R) theories
lead to modified Einstein equations which are of more than second order, but
they avoid the Ostrogradski instability [182,235].

In particular, we shall consider the theory
f(R) =R — aR? (2.56)

also known as the Starobinsky model [215]. The reason for this choice is
that standard GR is in excellent agreement with all current astrophysical and
cosmological observations. Any extension of GR, therefore, should approach
GR in the limit of small curvature, but the most natural way to achieve this is
by a power series expansion f(R) = R+ ., c¢;R". Then, the term quadratic
in R is the leading-order correction to the EH action.

The f(R) theories consist in the following modification of the EH action,

1

- 4
S = —167TG d T/ \g! f(R) + Shatter; (257)

where f(R) is a generic function of the Ricci scalar R. GR can be recovered
by setting f(R) = R.

The new Einstein equations may be obtained, as we did in Appendix B, by
varying this action with respect to the metric. Following [53],

5 = /d% [5\/Hf+ \/Eéf} -
/ d*z+/g] [_%fguv5gw+fR5R] =

1
/d4l’ ’g| [_§guuf + fRR,uV - (v,uvl/ - guyvava) fR] 59”1/, (258)
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where we have defined fzp = 0f/OR and for the last expression we have made
use of the results (B.5—B.9) from Appendix B. Then, the modified Einstein
equations in f(R) gravity are

~

G = 87GT,, (2.59)

~ 1
G = [rRu — 0w f=(VuVy = g™ V) fr. (2.60)

Since we want to consider static NS we maintain the spherically symmetric
ansatz for the spacetime metric. Besides, since in the BPS model the baryon
number appears explicitly, we will denote it as N only in this section, to avoid
confusion with the metric component B. Additionally, in order to distinguish
between the Ricci scalar and the radius of the stars we will denote, along this
section, as R, the last one.

The first difference with respect to GR is that now the Ricci scalar is not
fixed (algebraically) just by the value of the pressure and the energy den-
sity. Instead, tracing the equation (2.60) we obtain a second order differential
equation for R that we have to solve,

fSR R/Z B

R// —
~ for 3for

/ /
(ArG(p —3p) +2f — frRR) + <_;1_A + E — %) R
(2.61)
The key point is that we now have an additional degree of freedom in compar-
ison to the GR case, precisely provided by the fr(R) term. The components
of the generalized Einstein tensor may be computed, and the equations for the
metric components A and B can be obtained combining the (¢,¢) and (r,r)

components as in the GR case,

A" A’B’ A”? 2B’ 2 B A 2
+ ( 47TGBp—|——f-|- ( ) fZRR’>

A 248 24 B T, > " \2a
(2.62)
. B BR |, 34 343 ,
B = BT 4rGB(p+3p) — Bf — fr N + 5 2A forR
(2.63)

Following our notation we have defined fopr = 0°f/0R?, and we denote d/dr =
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’. Finally an equation for the pressure of the star is obtained from the con-

servation of the stress-energy tensor V,T" = 0, which leads to the same
equation.

We may prove that f(R) theories are completely equivalent to scalar-tensor
theories. This will be important to fix the sign of the parameter o in our
modified gravity.

The Brans-Dicke action [65] takes the form

1 w
Spp = —— [ d’ R—=g"V,V,0—V($)]. 2.64
w0 = 15 | AoVl |0 - 209,50 V) (2.64)
To see the correspondence, we can rewrite the action (2.57) in a new dynam-
ically equivalent form with a new scalar field Yy,

1

5= 167G

d'z/1gl (f(x) + ['0O(R = X)) - (2.65)
From the scalar field equation we find that R = x iff fog(x) # 0, then redefin-

ing the scalar field as ¢ := f'(x) and V(x) = x(¢)¢ — f(¢) we arrive at the
Brans-Dicke action for w = 0.

The mass of the scalar field ¢ may be defined from the action (2.64), by
obtaining its equation of motion and identifying the terms with those of the
Klein-Gordon equation,

Lo — 5 o (87GT + ¢V'(¢) — 2V (¢)) = 0. (2.66)
The equation of motion for the field can be expressed as a Klein-Gordon
equation, defining an effective potential [75,90], dVeg/dp = —575-(oV' —2V).
Then the mass is related to the second derivative of this effective potential, and
equation (2.66) admits the usual Yukawa-like solution ¢(r) o< exp{—m(¢)r}/r
with m defined as explained above. Now we can obtain the mass of the new
degree of freedom in our theory in terms of f(R) and its derivatives. Setting

w = 0 and the potential given above we have for a generic f(R) theory [90]

o fr—Rfsr
m? =18 It

T (2.67)
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In our case f(R) = R — aR?, we obtain that the mass of the field is m? = %,

thus the sign of @ must be positive in order to have a real scalar field.

In order to solve the system of differential equations, we need first to know the
boundary conditions of all the variables and also of their derivatives. These
conditions are obtained analysing the Einstein equations (2.60) and the system
(2.61—2.63) and (B.15). As explained in Appendix B, we expand the field
variables close to the center in even powers of r, but in this case the Ricci
scalar is also added to the system.

From the (0, 0) component of (2.60) we immediately obtain by = 1. In f(R)
gravity we still have the problem of finding the value of a(, because the system
of differential equations can be re-expressed in terms of A’/A. Therefore, ay is
again determined only up to a multiplicative factor, so we give it an arbitrary
value for the integration.

Again in the MF case, the pressure in the centre p. is an input parameter.
This means that for each (not too large) value p. we will find a NS solution.
In the F'T case, on the other hand, the input parameter is the baryon number
N, so for fixed N there is only one correct value for the pressure in the center,
which we have to determine with a shooting method. Recall that we have the
additional differential equation (2.38) of the pressure in the FT case, which
determines the Skyrme profile function.

Finally, we need the initial value Ry of the Ricci scalar. Unlike in GR, the
Ricci scalar is now not determined algebraically but satisfies its own second-
order differential equation and, therefore, we do not know its initial value.
The way to solve this problem is, again, by a shooting method imposing the
Minkowski spacetime condition at large distances, R —— 0. In order to be
able to satisfy this condition, we have to integrate the system up to large
distances, in contrast to the GR case where we just have to integrate until the
radius of the star.

The shooting to determine Ry required by f(R) gravitational theories has
been solved already for cases which are similar to our MF case, ¢.e., with a
barotropic EOS (see for example [37,129]). On the other hand, we have to
solve a double shooting problem for the pressure and the Ricci scalar in the
FT case. To solve this problem, we perform several shootings for the pressure
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until a sufficient accuracy is reached, then we change the value of the Ricci
scalar. Besides, when we change the value of the Ricci scalar we also constrain
the range of values in the shooting of the pressure. Repeating this iteration
we obtain the required solutions.

It is crucial to constrain the pressure after each iteration when solving the sys-
tem because, as we explained, the solutions of the scalar field are Yukawa-like,
i.e., exponential functions. We will have both the positive and the negative
(exp(£mr)) solutions, and as we want a finite solution and the mass is a real
value, the growing exponential must be cancelled, but this can be obtained
only with a very accurate initial condition for R. Another interesting feature
that supports this argument is found when we change the values of . When
a grows we are deviating more from GR, but the mass of the field decreases,
and we find that it is easier to reach a good accuracy in our solutions.

Finally, as we have two second-order equations, we have to start the integra-
tion at a small but nonzero value of r and, therefore, we need the values of a;
and R;. To obtain them, we just have to insert the expansions of the variables
in the equations and take the limit r = 0,

" . . 2 Ry . § 2
A"(0) = 2ay = 90— 2a7y) 167G (2p. + 3pe) + > 4aR0 ,  (2.68)
1
R'(0) = 2R, = —— (167G (pe + 3pe) + Ro). (2.69)

18«

Results and Discussion

We have solved the Einstein equations with a 4th order Runge-Kutta method,
so we can extract now the observables of the NS (the mass and radius) from
the solutions. We find some interesting differences with respect to the GR
case, but before showing the figures we will explain how to calculate the mass.

Once we integrate the system for a given value of the pressure in the center,
we extract the radius of the star as the point R, where the pressure is zero.
Then, we maintain the integration with p = p = 0. In GR, the mass can be
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obtained by solving the differential equation,

M
d 2 — 4nGrip(r), (2.70)

which is obtained from the TOV system by taking the parametrization B(r) =
[1 —2GM(r)/r]"" and by using the field equations of GR which imply M (r) =
M,(r). In the region outside of the star, the spacetime is described by the
Schwarzschild metric (where R = 0 and M = const.), thus, we can identify
the surface mass value My = M (R;) with the mass of the star.

However, in f(R) gravity, we do not have the Schwarzschild solution for r >
R, because R satisfies its own differential equation and, in general, is nonzero
for r > R, approaching zero only in the limit of large distances r — oco. As
a consequence, the mass function

r

M) =4

(1—B(r)), (2.71)
is no longer constant outside the star, and the surface mass My, = M(R;) is
different from the asymptotic or ADM (Arnowitt-Deser-Misner) mass Mapy =
lim, .o M (r) as seen by a distant observer. Mj is also different from M,(R;),
because it receives additional contributions from the curvature scalar inside
the star radius (for a detailed discussion see [200]).

We show the curves of the asymptotic (ADM) mass against the radius Ry for
both the FT and the MF cases in Figs. 2.4 and 2.5. Further, in Figs. 2.6 and
2.7 we plot the same mass against the central energy density. Here « is always

given in units of km?.

We find that for stars with small masses (i.e., for sufficiently small central
pressures or, equivalently, central energy densities), the radius and the value
of the ADM mass for a fixed p. decrease with increasing a so they are smaller
than the GR case. The decrease in Mapy can be directly seen in Figs. 2.6
and 2.7, whereas the corresponding decrease in the star radius follows from
Figs. 2.4 and 2.5. For small masses, the MR curves in Figs. 2.4 and 2.5 are
almost identical for different «, so smaller masses correspond to smaller radii.
For higher values of the central pressure (corresponding to larger masses),
the radii and the masses of the stars for fixed p. increase with increasing «
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MF CASE

U=U, U=1U2
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Figure 2.4: MapumR curve in the MF, for three different potentials, and for different values of « in units of
km?2.
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Figure 2.5: The same MR curve of Fig. 2.4 in the FT cases.

(i.e., stronger deviations from GR). Again, the increase of the masses can be
directly seen in Figs. 2.6 and 2.7, whereas the corresponding increase of the
radii can be inferred from Figs. 2.4 and 2.5. For the maximum ADM masses
we provide the corresponding values also in Tables 2.1 and 2.2.

From Figs. 2.4 and 2.5 it appears as if the MR curves for different o approached
each other for small masses. This is, however, not entirely correct. The
different MR curves for different « for a given model, in fact, always cross each
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MF CASE

U=0 U=U,
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Figure 2.6: The ADM mass as a function of the central energy density, for the MF case. It can be clearly
seen that for a fixed p. the mass decreases with increasing « for small masses, but increases with increasing
« for large masses. The maxima of the curves correspond to the value of p. where the unstable branch starts.
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Figure 2.7: The same curves of Fig. 2.6 for the FT cases. The same conclusions may be extracted, however,
solutions in the unstable branch cannot be found.

other in the region of small M. In particular, for each « there exists a NS mass
M, () which has exactly the same radius as its GR counterpart (o = 0). For
all our models, however, this occurs for very small masses (always smaller than
0.15M). As such small masses are most likely phenomenologically irrelevant,
we did not try to zoom into this region to make this behavior more visible.
The fact that this crossing of different MR curves occurs for very small masses
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is probably related to the very stiff nature of our EOS even for small density.
BPS Skyrme NS, by construction, do not have a crust region, although a crust
can be added without difficulty [15]. Other EOS, which are much softer in
the low-density region, produce pronounced crust regions for small mass NS
and, thus, the crossing happens for much larger masses, see, e.g., [200].

U=U, (FT)
a (km?) 0 1 5 10 20
Mapy (M) | 3.332 | 3.327 | 3.325 | 3.323 | 3.321
R, (km) 16.26 | 16.36 | 16.46 | 16.63 | 16.81
pe (MeV /fm3) | 820.73 | 817.64 | 786.10 | 704.61 | 655.20
U=U?(FT)
a (km?) 0 1 5 10 20
Mapw (Mo) | 2134 | 2130 | 2.128 | 2.126 | 2.124
R (km) 12.84 12.91 13.05 13.13 13.21
pe (MeV /fm?) | 2188.60 | 2116.41 | 1951.95 | 1872.46 | 1807.41

Table 2.1: Exact case: values of the NS radii and the central energy densities for the maximum mass stars
for the two potentials considered, and the corresponding values of a.

Another interesting quantity is the mass at the surface of the star, M, which
in f(R) gravity is a second, independent and invariant mass observable, as
explained in [200]. It may be understood as a sum of the mass contributions
of matter and curvature inside the star. As in [37], we find that its value
decreases when we deviate from GR (i.e., for increasing «), see Figs. 2.8 and
2.9. It turns out, however, that the non-vanishing curvature scalar outside
the star produces a further contribution to the ADM mass which essentially
compensates this decrease. The region outside the star, in which the Ricci
scalar does not vanish, is also referred to as the gravisphere [37], and it can
be seen explicitly in Fig. 2.10. We only include the MF' plots because they are
quite similar to the FT case.

An even further mass definition (the “Newtonian mass” M,, [200]) is provided
by the (t,t) metric function A(r),

M,(r)==(1-A(r)), M,s=M,(R;), (2.72)

o 3
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U =0 (MF)
a (km?) 0 5! 10 20 50 500 5000
Mapy (M) | 4.218 | 4.219 | 4.221 | 4.227 | 4.275 | 4.402 | 4.447
R, (km) 1758 | 17.60 | 17.79 | 17.92 | 18.08 | 18.55 | 18.95
pe (MeV /fm?) | 430.70 | 374.21 | 360.09 | 345.97 | 338.91 | 317.73 | 289.49
U = U, (MF)
a (km?) 0 ! 10 20 50 500 5000
Mapy (M) | 3.018 | 3.919 | 3.921 | 3.944 | 3.990 | 4.113 | 4.170
Rs (km) 16.56 | 16.70 | 16.82 | 16.93 | 17.09 | 17.50 | 17.69
pe (MeV /fm?) | 489.46 | 426.80 | 408.83 | 399.83 | 390.82 | 372.75 | 363.70
U = U2 (MF)
a (km?) 0 5 10 20 50 500 | 5000
Mapm (Mg) | 2.905 | 2.921 | 2.944 | 2.974 | 3.019 | 3.106 | 3.143
R (km) 12.63 | 1290 | 13.00 | 13.12 | 13.29 | 13.61 | 13.69
pe (MeV /fm?) | 825.34 | 705.17 | 689.90 | 674.56 | 659.15 | 628.06 | 596.59

Table 2.2: Mean-field case: values of the NS radii and the central energy densities for the maximum mass
stars for the three potentials considered, with the corresponding values of a.
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Figure 2.8: Mass function vs radius, for the MF case. For each potential, the solutions are for a fixed value
of p. which is sufficiently large to lead to a rather large mass but, at the same time, sufficiently small such
that all solutions belong to the stable branch. The vertical dashed lines indicate the NS radii for different «,
which turn out to be very similar.

and this mass is relevant for the surface redshift,

zs:(l—

R,

2GM )1/2
n,s 1.

(2.73)
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MF CASE
U=U,
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R, (km) R, (km) R, (km)

Figure 2.9: The surface mass as a function of the NS radius, for the MF case. It can be clearly seen that the
surface mass for a given radius shrinks with increasing o.
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Figure 2.10: The Ricci scalar as a function of the radius, for the MF case. The solutions are for the same
fixed values of p. as in Fig. 2.8. The Ricci scalar suddenly jumps from a non-zero value to zero in the GR
case, but is continuous at R for a@ > 0. Again, the vertical dashed lines indicate the NS radii for different «,
which turn out to be very similar.

Interestingly, it turns out that M, , is larger than Mapy such that the value
of z, for a star of a given mass increases in comparison to the one predicted
in GR. This is probably related to the particularly stiff nature of the EOS
of the BPS Skyrme model, because for the soft EOS used in [200] they find
the opposite behavior. In any case, this difference could be important to
discriminate between different extended theories of gravity.

The Ricci scalar curves for the MF case shown in Fig. 2.10 are continuous at
the NS radius for the modified gravity o > 0, but discontinuous for the GR
case. This discontinuity is a consequence of the EOS of the BPS model in the
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Figure 2.11: The Newtonian mass at the surface as a function of the star radius, for the MF case. For a fixed
radius, it grows with « for small stars but shrinks for large stars.

MF case because, in GR, the Ricci scalar obeys a purely algebraic equation
given by the trace of the Einstein equations,

R=87G(3p—p). (2.74)

Therefore, if the EOS leads to a non-vanishing energy density at the NS
surface, the Ricci scalar will also show that discontinuity. In the modified
gravity, on the other hand, the curvature satisfies its own differential equation
until the end of the integration, which results in a continuous curve.

Finally, we remark a possible singularity which, interestingly, is always avoided
by solutions of our system. Indeed, the first derivative of f(R),

fr(R) =1-2aR, (2.75)

may, in principle, become zero for a positive R, which would introduce a
singularity in the equation (2.63). In GR, R is always negative close to the
surface, where p dominates over p, see (2.74). Whether it may become positive
in the center of the star depends on the EOS. It may become positive in our
case, because in the high-pressure limit the EOS of the BPS Skyrme model
approximates the maximally stiff EOS p = p + const. Indeed, it can be
seen in Fig. 2.10 that R(0) takes positive values in the GR case (a = 0).
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On the other hand, we also see that R(0) diminishes with increasing «. In
particular, it seems that R(0) always becomes negative for sufficiently large
a. In any case, fp(R(r)) = 1 —2aR(r) always remains positive for all r for all
solutions considered (even for extremely large «), and the singularity never

occurs. In general, these results are compatible with those obtained in other
investigations [36,37, 86,129,200, 216].

In more detail, our M(R;) curves are quite similar to the curves resulting
from quark stars [36], although the deviations for different values of « are
slightly larger in the quark star case (probably related to the fact that the
quark star EOS for high densities is softer than the BPS Skyrme EOS). The
underlying reason for their similarity is that in both cases (quark stars and
BPS Skyrme stars) the EOS does not become extremely soft in the low-density
region, such that the MR curves always have positive slope for small masses.
In other words, the radius grows with the mass, and light stars do not have a
pronounced tail (or crust). For EOS which approach the very soft EOS of nu-
clear physics for low densities, on the other hand, the resulting M (R;) curves
lead to larger radii for smaller masses (a negative slope) in the low-density
region. For such EOS, the effect of varying o is much stronger, particularly
for small mass NS, there seems to exist an overall tendency that the variation
of a has a stronger effect for softer EOS.

It is interesting to compare the values of a used here, which are similar to
those in [36,37,200], with some observational astrophysical bounds. In [35]
the bound a < 1 km? was suggested, based on NS masses constraints. That
bound, however, was derived within a perturbative approach to the Starobin-
sky model which is not capable of reproducing the gravisphere contribution
to the NS mass and, therefore, underestimates this mass. Taking into account
this correction, the bound becomes much weaker [36]. Other astrophysical
bounds [167] are much weaker, as well, such that the values considered in
the present article are, at this moment, compatible with those astrophysical
bounds. Further, we restricted to positive values of @ to avoid tachyonic in-
stabilities. For a@ < 0 we found solutions of the Ricci scalar that show damped
oscillations outside the stars, see [34] for a detailed investigation.

We find that the radius increases with «, while the maximum mass also slightly
increases in the MF case, see Table 2.2. In the F'T case, instead, the maximum
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ADM mass seems to slightly decrease with increasing «, although the effect
is tiny, as may be seen in Table 2.1. So, in principle, we could constrain the
values of a with observational NS data, however, such data are still not very
precise. Besides, the maximum masses that the NS can reach strongly depend
on the EOS that we are using, hence, those EOS that are slightly below the
minimum accepted value 2M.,, could be reconsidered with these results. A
priori one might think that the maximum mass can be arbitrarily large when
the value of « is increased, but we find that this is not the case. For instance,
for the large value o = 5000 km? we find an increase of about 5%, also found

in [216].

One further interesting result is that the Newtonian surface mass M,, ; rele-
vant for the redshift of radiation emitted from the star surface is larger than
the ADM mass, in contrast to results for softer EOS. This implies that if gen-
eralized gravity turns out to be indeed relevant for NS, then the redshift will
be able to distinguish different EOS and, in particular, their stiffness.

We also find that the Ricci scalar is a smooth function at the surface of the
stars. In the GR case, an EOS leading to a non-vanishing energy density
at the surface of the star leads to a discontinuity in the Ricci scalar, but in
f(R) gravity that discontinuity is cured, because R satisfies its own differ-
ential equation. We required that the Ricci scalar tends to zero at infinity
to recover an asymptotically flat spacetime but, in principle, this would not
be necessary, and we could have imposed the Schwarzschild solutions just at
the surface of the star. This has been done in [96, 178] for some EOS, but
this matching condition cannot be imposed for an arbitrary EOS, therefore
it is highly unnatural. The results shown in here are, thus, a straightforward
violation of the Jebsen-Birkhoff theorem in f(R) gravity.

These results also open a new possibility in the description of NS. It consists
in the study of the differences of these results performed in the Einstein frame
as is done in [129], although they present their final results in the Jordan
frame. Indeed, we have posed the problem and solved the equations in the
Jordan frame, in which GR is usually expressed. However, the introduction of
modified theories of gravity, concretely the scalar-tensor theories, motivates
the introduction of the Einstein frame via a conformal transformation of the
metric.
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In any case, the BPS Skyrme model does yield rather high values for the
maximum mass even in GR, up to ~ 3.5M, for realistic potentials, and the
computations in generalized gravity does not help in this respect. For a more
complete and more reliable description of nuclear matter, the BPS Skyrme
submodel should be combined with the standard Skyrme model, which, as we
have seen in the last section, leads to much smaller values of the maximum
mass.

2.3 The generalized Skyrme model

The properties of the BPS model, concerning isolated nuclei and NS, encour-

ages the generalization of the standard Skyrme model including the contribu-

tion of the sextic term. Therefore, we present the generalized Skyrme model:

oo = 12 T (L, 10} + Tr{[L L ]2} 2B M e ),
16 a 32¢? o : 8

(2.76)

In this model, the stability of the skyrmions is also ensured due to the op-

posite scaling of the terms. Moreover, a generalized BPS bound may be also
extracted [18], with explicit dependence on the parameters.

The starting point and natural procedure is the resolution of the B = 1
skyrmion, which is the simplest solution. We first write the previous La-
grangian in Skyrme units, however, due to the presence of the sextic and
potential terms we cannot completely eliminate the parameters from the La-
grangian,

1
2472

1 1
Losso = 5 Te{L,L"} — 1 Tl"{[L;u LV]Q}

—dntesB,B" — %Tr{]lg - U}} . (2.77)

The parameters have been encompassed into the adimensional coupling con-
stants ¢g = 2A\%f2et and ¢y = 2m2/ (fre)?. Introducing the hedgehog ansatz
(2.18) in the Lagrangian, the field equation of the profile function f(r) is
obtained, and it may be solved for any given values of ¢ and cy.

In order to fix the parameters f, and e, we follow the ideas in [28,29], in which
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the B = 1 skyrmion is quantized to reproduce the masses of the proton and
the A excitation. As mentioned before, for the zero mode quantization, we

perform a time-dependent transformation of the full symmetry group on the
Skyrme field,

U(z) = AU (R(B(t))z + X (1) A (t) (2.78)

The transformed field is introduced in the Lagrangian and we obtain the static
energy term plus additional kinetic energy terms,

L=—-M+ %MX2 + %aivijaj + %biUijbj —~ %aiwijbj. (2.79)
We have identified the static energy functional with the mass M of the skyrmion,
and the different kinetic energies come from translations, rotations, isorota-
tions and a mixed spin-isospin term. We also have defined the corresponding
inertia tensors V;;, U;;, W;; and the angular frequencies a;, b; associated to
rotations and isorotations respectively,

a; = —z‘Tr{nBTB}, b = —z'Tr{nAAT}. (2.80)

We drop the translational kinetic energy contribution, and for the B = 1
skyrmion all the inertia tensors are equal and proportional to the identity due
to the spherical symmetry of the field configuration, U;; = Vi; = W;; = Ad;;.
Their expressions may be easily obtained in terms of the profile function.

The Hamiltonian is obtained via the Legendre transformation of the La-
grangian (2.79), from the angular velocities to the canonical spin and isospin
angular momenta. The possible quantum states, which are characterized by
the spin and isospin quantum numbers |7,4), are found from the Rubinstein-
Finkelstein (FR) constraints in spherical symmetry [151]. Finally, the quan-
1

tum corrections to the B = 1 skyrmion may be obtained for the j =i = 3

ground state and the j =1 = % first excited state, which correspond to the
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proton and A particle respectively,

2
1552 (2.81)
My =M i
A + A

We fix the pion mass to its physical value (m, = 138 MeV) and we compute
the solutions for different values of A? to study the impact of the sextic term on
the skyrmion. For each value of A2, the field equation is solved with an initial
seed of values (fr, e), and the isospin inertia tensor is computed. This process
is repeated iteratively until the values for M, = 939 MeV and Ma = 1232
MeV are satisfied.

The results obtained for the parameters from the B = 1 fit in the general-
ized Skyrme model are shown in Table 2.3. Interestingly, when the sextic
term coupling constant increases, the required Skyrme parameter to fit the
solutions also grows, which implies that the quartic term becomes less impor-
tant. Indeed, the Skyrme parameter rapidly blows up if the sextic term is
present in the massless model, whilst it remains stable when the mass term is
included. The main reasons for this discrepancy between the two models are
the repulsive behaviour of the sextic term and the slow decay of the massless
model. In particular, when the sextic term is included the solution expands,
increasing the value of the inertia tensor, thus, reducing the importance of the
quantum energy in (2.81). However, the difference between the two physical
masses is precisely given by this correction which, after recovering the physi-
cal units, depends proportionally to fre®, whilst the classical contribution is
proportional to f/e. This implies that the Skyrme parameter must increase
to counteract the growth of the inertia tensor in order to maintain the fits.
Additionally, we may see from the definition of cg oc e* that if e increases
so does the presence of the sextic term, which is precisely the main cause of
this effect. Hence, the presence of the sextic term induces a feedback process
that may not have solution for a given maximal value of \? if the size of the
solution is not restricted by an exponential decay.

Conversely, the parameter f, also increases, but much more slowly since the
energy is much less affected by the sextic term than the isospin inertia tensor.
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My =0 my, = 138 (MeV)
fr MeV) | e |22 (MeV fm?) | fr (MeV)| e | A (MeV fm?)
135.97 6.30 1 112.24 | 5.24 1
145.98 9.77 3 118.34 | 6.27 3
149.36 | 39.59 5! 123.18 | 7.99 5

Table 2.3: Sets of parameters that fit the B = 1 solution to the masses of the proton and the A excitation.

In fact, it is still far from its physical value (186 MeV).

The energies of the solution are larger than for the standard fit (2.21), but
also the BPS bound increases. However, the difference in energy between
the solution and the BPS bound broadens for both the massless and massive
models, contrary to a first naive intuition from the BPS model. This indicates
a nontrivial interaction between the sextic and the other terms for these values
of A2, however, for sufficiently high values of both ¢ and ¢ this difference in
energy should decrease, given that we are approaching the BPS model.

We show in Fig. 2.12 the profile function solutions against the radial coordinate
in the massive case for the different values of A\2. There, the expansion of the
solution in space is clearly visible. Indeed, the repulsive behaviour of the
sextic term may have an interesting effect in the » — 0 limit of f(r). In
this region, the profile function has always positive second derivative in the
models without sextic term, see right part of Fig. 2.12. However, if the sextic
term is included, we may find a sufficiently large value of ¢4 for which the
second derivative is negative near the » = 0 region, in which the sextic term
is the most relevant. This effect might have important consequences in the
description of the electric charge density profile functions for the nucleons
within the Skyrme model [89].

Finally, we solve the next skyrmions (up to B = 4) to compute the classical
binding energies (2.20) in the generalized model. The quantization of these
solutions follows the same procedure, and their corresponding quantum states
have also been identified in the standard Skyrme model. However, we will
only be interested in the classical energies. The reason is that the quantum
corrections already increase the energy of the B = 1 ground state an 8% of
the total energy, but the next skyrmions will typically have smaller or even
zero (for the B = 4 ground state) contributions [151]. In conclusion, these
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Figure 2.12: Radial profile function of the B = 1 skyrmion in the generalized Skyrme model for different
values of the sextic term coupling constant in units of MeV fm3.

corrections induce even more bounded isolated skyrmions, hence, they cannot
be considered as a solution for the binding energies problem.

These skyrmions do not have spherical symmetry anymore, hence we obtain
the solutions using an accelerated gradient descent (AGD) minimization al-
gorithm for the fields in the three-dimensional space. This procedure is ex-
tremely useful to obtain minimal energy configurations, so we explain the
details in Appendix C. We start with the rational map field configuration for
each skyrmion [157] and let the algorithm vary the fields in the direction of
maximal decreasing energy. The set of parameters that we are going to con-
sider correspond to the A2 = 3 case of Table 2.3 in the massive model. The
energies of the resulting solutions are shown in Table 2.4.

The skyrmions have inherited the symmetries initially imposed by the rational
map, but the density distributions are more spread in space, due to the repul-
sive behaviour of the sextic term. The energy density distribution is shown
in Fig 2.13 using the Runge colouring convention [91], which turns out to be
quite helpful to see the orientation of the pion fields.

Unfortunately, the binding energies computed are even worse than in the stan-
dard Skyrme model, both values are shown in Table 2.4. Hence, a substantial
decrease of the binding energies purely within the generalized model would re-
quire very large values of ¢g and ¢y simultaneously, however, the computations
become extremely hard numerically in this limit using the AGD.
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B | E/B | BEg (%) | BEg (%) (L24)
1 ]1.541 0 0

2 | 1.451 5.84 4.31

3 | 1.400 9.16 6.98

4 11.362 11.62 9.10

Table 2.4: Energy per baryon number and corresponding binding energies for the first four ground state
skyrmions in the generalized model. We also included the binding energies of the same solutions in the
standard Skyrme model for comparison.

COTO

Figure 2.13: Energy density contour plots in three dimensions of the first four skyrmions. We adopt the
Runge colouring convention to represent the orientations of the pion fields.

Nonetheless, it has been shown that the classical energies should receive sig-
nificant corrections from the quantization of the vibrational modes. This is
still a task ahead, but it is for sure an interesting direction to improve the
results of the Skyrme model for isolated nuclei.

2.3.1 Neutron stars from a Generalized Skyrme EOS

The aim of this final part is to consider a first approximated description of INM
to reproduce NS from the generalized Skyrme model, in which we consider
the contributions from the standard and the BPS submodels from an effective
approach.

As mentioned before, the lowest energy solution of the standard Skyrme model
(2.4), for very large baryon number consist of a crystalline lattice of cubic
unit cells. The energy per baryon of such solution as a function of the lattice
parameter of the unit cell (1) is given by (2.23). The pressure, using the
thermodynamical definition (2.24), is
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This expression vanishes at the finite length [ = [y, which is a well-known
property of INM at the saturation density ng. Further, we shall argue below
that the standard Skyrme crystal should provide the leading contribution to
the nuclear EOS close to the nuclear saturation. This explains the fit of the
Skyrme crystal parameters [y and Ej to the INM values (2.49) that we have
considered in the previous section.

At sufficiently high densities, for instance those at the core of a NS, the sextic
term (2.26) provides the most important contribution to the EOS, related to
the w meson repulsion of nuclear matter [23]. The sextic term alone defines
a barotropic perfect fluid with energy density ps = A\?72(B)? = p, see the
definition (2.38). The EOS pg = p is maximally stiff with a speed of sound
equal to one, which explains its dominance at high density.

In the case of interest here, we will introduce a constant effective potential
U = py, which is supposed to take into account the effects of the subleading
contributions above a certain threshold value ppr for the pressure. This is
equivalent to choosing the © potential (2.50) and implies the barotropic EOS

p=ps+pu=p+2pu (2.83)

already at the full FT level.

It is clear from the previous sections that the true equation of state for Skyrme
matter should take into account both models in a unified fashion. Neverthe-
less, we may still obtain some information of the full description within the
generalized model by scaling arguments of the energy terms for the different
submodels.

Indeed, consider the case of the Skyrme crystal and let o, € (0,1]. A scale
transformation of the space coordinates of the form = — x /0, can be under-
stood as a mapping between crystalline solutions, respectively, with lattice
size [ and o4l. On the other hand, the lattice length is a function of the
pressure, inverting (2.82):

21 2473
MUY (S I S T Y 2.84
2 2( +\/+E0(15)p (2.84)
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Then, we conclude that two solutions at different pressures p and p’ which
have a lattice length of [(p) and I'(p’) respectively, are related through a scale
transformation os(p,p’) such that I'(p') = o4(p,p")l(p). In particular, any
configuration with lattice length [(p) will be related to the zero pressure crystal
(minimum energy configuration) via l(p) = os(p)ly, where o4(p) = 04(0,p)
can be seen as a function relating the pressure of the crystal and the scaling
parameter. Furthermore, taking into account (2.84), we find

2
7s(p) = ) 1 YN
TV T BRaaP

Indeed, this expression has the correct limits o,(p — o00) — 0 and o4(p =
0)=1.

(2.85)

This equivalence between pressure and scaling allows us to write the energy
of the Skyrme crystal at any pressure (i.e. o5 # 1) as a simple function of

Og — l/lo,

(1—¢)

E(os) = Ey | (05 +0,") 5

+e|. (2.86)

Obviously, the contribution from the term proportional to o, becomes negli-
gible for large pressure, whereas the term proportional to ;! dominates in
this regime (o5 < 1).

Next, consider the sextic term contribution to the energy per baryon of a fluid
element ()

Es _ Jod’z/lglps

B [, d+\/|g|B®

which transforms as Fg — o Fg under a scaling of the spacetime coordinates.

(2.87)

This implies that the sextic contribution will dominate the energy per baryon
at sufficiently high pressure. Therefore, we may assume that a solution of the
complete model will provide an EOS which tends to the EOS of the submodel
pe at high pressure, with an asymptotic energy per baryon of Fg/B = pg/B° =
)\27r2\/]_9. This is, therefore, the asymptotic behavior of the energy per baryon
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at high pressure also for the full model.

On the other hand, as the pressure decreases to a certain value, Eg/B becomes
of the order of the energy per baryon of the Skyrme crystal, and the BPS
approximation to the complete solution will start to fail. For even lower p,
the contribution of Fg/B will be subleading in comparison to the Skyrme
crystal. This supports the idea that a transition of some kind must take place
within this generalized model, between the crystalline phase of the standard
Skyrme model and the perfect fluid phase of the BPS model. A quantitative
prediction of the pressure value ppr where this transition occurs, as well as
the determination of its character (first or second order) would require the
knowledge of the full solution. In [10], the BPS submodel was used to model
the full NS core so the parameters A\?> and p? were fitted to match with the
infinite nuclear matter approximation at zero pressure. In the present case,
however, the Skyrme crystal describes the low-pressure region, therefore, it
should be fitted to nuclear matter. In this section, we will propose an EOS
for the generalized model. The value of A? will be determined, instead, by the
behavior of the EOS in the limit of very high pressure, in which, as argued,
it can be approximated by only the sextic term.

From the previous considerations, we can construct a generalized EOS which
takes into account both the standard Skyrme and BPS submodels at different
regimes, based on simple assumptions on the behaviour of the solutions in
the low and high pressure regimes, without knowing these solutions explicitly.
Indeed, we will assume that the low pressure solutions of the complete model
are still Skyrme crystals and the energy is approximately described by (2.23).
In the fluid high-pressure phase, we will assume that the sextic term provides
the most important contribution, and the complete solutions can be well de-
scribed by a BPS Skyrme model. We can model this behaviour by introducing
a certain value of the pressure, ppr, above which the solutions are described
by a BPS fluid. Therefore, the generalized EOS pgen(p) must satisfy

PSk if p<ppr
PGen(p) = . (2.88)
p+ const. if p > ppr

A simple way of parametrizing this behavior that yields a smooth transition
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between these two regimes is to consider an EOS of the form

pcen(p) = (1 — a(p)) psk + a(p) (p + psk(ppr)) | (2.89)

where a(p) is a function that interpolates between the two regimes, v — 0
for p/ppr — 0 and o« — 1 for p/ppr — oo. Specifically, we consider the
interpolating function,

)5

o(p, ppr, B) = (p/prr

1+ (p/per)” (290

as in [15]. Here, smaller values of § produce a more gradual transition, whereas
larger values correspond to a faster transition between the two regimes. For
the transition between the Skyrme crystal and the BPS fluid at ppr, we have
to choose the rather gradual transition § = 0.9, because otherwise the re-
sulting energy density (2.89) would lead to acausal propagation (a speed of
sound larger than one), in some regions inside the star, see Fig. 2.14. As a
result of this interpolation, the energy density contribution from the crystal
becomes less important as p grows, freezing at its value at ppr for sufficiently
high pressures, playing the role of an effective potential energy for the BPS
Skyrme model. The p dependence for p > ppr is taken into account by pg,
which is known to provide the leading contribution for large p. Therefore,
the generalized EOS (2.89) is effectively equivalent to that of a BPS Skyrme
model with a © potential (2.50) for p > ppr. In the following section, we will
see that the value of ppp determines the maximum mass of a NS, so we may
adjust the value of ppy to agree with the current maximum mass limit for NS.

To obtain the baryon density np as a function of the pressure in the generalized
model, we use the well-known Euler relation p = —p + ai—gnB, which yields a
differential equation for n, that we integrate using np(p = 0) = ng = 0.16 fm >
as initial condition. The result, and the corresponding EOS p(p), are shown
in Fig. 2.15, where other EOS have been included for comparison.

Addition of crust: the Hybrid EOS

The generalized Skyrme EOS (2.89) only describes, by construction, nuclear
matter above nuclear saturation. Below saturation density, nuclear matter in
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102 10

Figure 2.14: Speed of sound of the generalized Skyrme EOS (2.90) for different values of the interpolating
parameter. The red curves represent (unphysical) superluminical sound velocities, whilst the green curves
correspond to acceptable curves.

a NS is known to be in a rather inhomogeneous state, resulting from a com-
petition between nuclear and electromagnetic forces (e.g., the nuclear pasta
phases). In principle, the (generalized) Skyrme model can be coupled to the
electromagnetic interaction, so these low-density phases are fundamentally
within its scope. Full field-theoretical calculations for this coupled system
and for large B are, however, not feasible, and a macroscopic treatment is
currently unknown. On the other hand, the standard methods of nuclear
physics, such as many-body techniques, can be used to describe these low-
density NS crust regions and are completely reliable there. This motivates us
to consider a hybrid version of (2.89), in which at a sufficiently low density,
ny (or equivalently p.), a realistic EOS for a NS crust, like ppcpm(p), is glued,

pecem if p << py

(2.91)
PGen lfp > P«

pHyb(p) =

We choose again the BCPM EOS to reproduce the low density regime. For
the crust and the outer core (np < ng), nuclear matter is well understood,
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and standard nuclear physics EOS should provide a precise description of NS
matter. Again, we choose a smooth transition between the two regimes, using
the interpolating function (2.90). Now we choose the faster transition § = 2,
as was done in [15] (replacing ppr by ps).
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Figure 2.15: Comparison of the energy and baryon densities of the Generalized and Hybrid EOS from the
Skyrme model with other standard nuclear physics EOS.

Results

We solve the TOV system of equations to determine the static properties of
the NS resulting from the new generalized and hybrid EOS. In the hybrid EOS,
there are two free parameters, namely the values of p, and ppr corresponding
to the low and high density parts. Here, we show that recent astrophysical and
gravitational wave observations actually tightly constrain the value ranges for
both parameters. For instance, from the MR curves, we find that only the
value of ppr affects the maximum NS mass in the model. Thus, we could
constrain the value of ppr using the maximum mass limit for nonrotating NS
of M /M, = 2.1671! proposed in [195]. However, given the GW observations
of GW190425, with a total mass of 3.47)% and mass ranges of components
varying from 1.12 to 2.52M, [4], and GW190814, a compact binary merger
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between a 22.2 — 24.3M, black hole and a secondary object within the mass
gap (2.50 — 2.67My) [5], we have allowed the range of values of ppr to yields
stars of maximum mass up to ~ 2.5M.

In Fig. 2.16 we show different MR curves of the hybrid model corresponding
to different values of ppp. We can see a good agreement, for any pair (p., ppr)
within the ranges p, € [0.5,2] MeV/fm? and ppr € [25,50] MeV /fm?, with the
most likely MR relation for the NS corresponding to the GW170817 event [2].
We have not included the corresponding data of the second BNS event, namely,
GW190425, since it was less informative on matter effects than GW170817,
although our data is also compatible with this event, specially for lower val-
ues of ppr. In the same figure, we represent the most updated measured
masses of some heavy pulsars, PSR J1614-2230 (1.928 + 0.017M,) [94], PSR
J0348-+0432 (2.01+0.04M,) [33] and PSR J0740+6620 (2.1475:19M) [82], as
well as the most probable MR region from combined observations of GW and
these heavy pulsars [138]. Also, other constraints from NICER, chiral EFT
and multimessenger observations are represented, adapted from [79] and [109].
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Figure 2.16: MR relation for the hybrid model (red curves) for different combinations of values of p, = 0.5,1,2
MeV /fm3 and ppr = 25,40,50 MeV /fm® . The red shaded region corresponds to the accessible region of the
hybrid model with p, and ppr within the given ranges.
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The observed gravitational waveform can also be used to place direct con-
straints on the tidal deformability of NS. Indeed, the waveform produced by
the coalescence of two NS at the early phase of the inspiral depends on the
underlying EOS mostly through the tidal Love number [121]. However, the
individual Love numbers for the two stars cannot be disentangled in the ob-
served gravitational waveform. Instead, what is measured is the so-called
effective tidal deformability K, a mass weighted average of the deformabilities
of the individual stars in the merger [93]. Similarly, the two component masses
are not measured directly, but the chirp mass, M, = (mims)*® /(m + my)/?
where ¢ = my/ms is the mass ratio, can actually be tightly constrained. In
the case of the GW170817 event, the chirp mass was constrained to 1.1887-002
at the 90% confidence level, and the mass ratio was constrained to be in the
range 0.7 — 1 within the same confidence level, whereas the effective tidal
deformability was inferred to be smaller than 800 [3].

16 (my + 12mgo) miAy + (ma + 12my) m3A,
13 (m1 + m2)5

=1

(2.92)

Such measurements allow to reduce the set of Skyrme models able to reproduce
the NS properties. Following [237], we have solved the Einstein equations
for slowly rotating Skyrmion stars with the hybrid EOS using the Hartle-
Thorne formalism [117,222] and obtained the dimensionless tidal deformability
of stars described by this model as a function of their TOV mass. On the
other hand, since the chirp mass of the binary progenitor of GW170817 is
well measured, for any given EOS the effective deformability reduces to a
simple EOS-dependent function of the mass ratio. These curves, together with
the constraints commented above, are represented in Fig. 2.17, from where it
follows that our new EOS is compatible with the data from [3] for the ranges
of p, and ppr considered. Future measurements of the tidal deformability
of NS will allow us to further constrain these ranges, since we find that the
curves K(q) depend on the particular values of both parameters.

For completeness, we also compute the effective deformability for the EOS
considered in the previous section. This observable completely rules out the ©
and pion mass MF potentials in the BPS model due to the huge deformabilties.
The MF quadratic pion mass potential is within the 90% confidence level
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Figure 2.17: A as a function of the mass ratio. The orange shaded regions correspond to the 50% (dark) and
90% (light) credible regions for the joint posterior of A and ¢ as obtained in [3] assuming a low spin prior.
The notation for the curves are: Gen??”, Hybbr?.

with quite similar values to the F'T pion mass potential, contrary to their MR
curves. The BCPM curve lies perfectly in the main region of the inferred tidal
deformability, slightly below the hybrid EOS. At the bottom we find the FT
quadratic pion mass term which has the lowest deformability, but still within
the accepted values.

Interestingly, we find quite extreme differences in the tidal deformability within
the BPS model. On the one hand, we find the maximally stiff EOS, given by
the © potential, which reaches the highest deformabilities, and the quadratic
potential with the lowest values. We find a possible explanation about this dif-
ference in the energy density distribution inside the NS. From Fig. 2.3 we may
see that the F'T quadratic potential concentrates the vast majority of matter
in the core, whilst the MF pion mass potential, which has an almost identical
behaviour to the © potential, nuclear matter is homogeneously distributed
along the star. Then, for two equal mass NS from the different models, the
one with the largest amount of matter concentrated in the core would be the
least deformed since matter in the surface is more gravitationally bounded.
Additionally, it was suggested in [127] that the behaviour of the energy den-
sity profile might also be the origin of some universal relations like the inertia
moment and compactness of the stars, with which the tidal deformability is



Chapter 2. The Skyrme model 69

also related.
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Figure 2.18: A(g) curves for the EOS considered throughout this chapter with the same GW170817 constraints
as in Fig. 2.17.

The A2 coupling constant appearing in front of the sextic term in the general-
ized Lagrangian does not directly show up in the generalized EOS proposed
in this work, whose parameters are constrained by the observations of maxi-
mum mass and deformability. However, the generalized Skyrme model EOS
approaches the EOS of the BPS submodel for sufficiently large pressure, by
assumption. We can, therefore, extract an effective value of A\? by taking the
limit of infinite pressure and using the Euler relation of the BPS model (2.46)
to obtain an effective value of \?,

pro (2.93)

A2, = lim ——
p—o0 2T NG

(0.¢]
For the range of values ppr € [25,50] MeV /fm3, we find that A2 € [8.6,11.9]
MeV fm3. The values so obtained for A2, are, therefore, compatible with the
values obtained by assuming that the sextic term in the generalized Lagrangian
results from integrating out the w vector meson.

Finally, there exists the possibility to consider a quark-hadron phase transi-
tion in the cores of very massive NS [100,201]. Indeed the density at which
deconfinement is expected to occur is around ~ 40n( [32]. In this work we
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have found a correct description of NS observables with the generalized and
hybrid EOS, reaching the highest density of ny.c = 7.7n¢ and ppa.x = 1577
MeV /fm? for ppr = 50 MeV/fm? in the maximal mass NS. Hence the pres-
ence of quark-deconfined matter inside NS is completely dismissed within our

approach.



Chapter 3

Skyrme Crystals

But in the end, it’s only a passing thing, this
shadow. Even darkness must pass. A new day
will come. And when the sun shines it will
shine out the clearer. Those were the stories
that stayed with you. That meant something.
Even if you were too small to understand why.

Samwise Gamgee

Skyrmions have been extensively studied, and solutions for finite values of
B were found both in the standard and the BPS submodels with different
shapes and properties. The usual procedure to find a minimal energy solution
considers the different possible symmetries for the skyrmion and then, the
solution is the one with the lowest energy. However, it becomes more difficult
to find the minimal energy solutions for increasing B since the number of
possible configurations quickly grows [111].

Skyrme crystals are solutions obtained imposing periodic boundary conditions,
therefore, they are infinitely spatially extended solutions so they formally have
infinite baryon number. For this reason, skyrmion crystals are good candidates
to describe infinite nuclear matter and to reproduce the conditions inside NS.
To obtain these periodic solutions, we split the crystal in finite unit cells where
we construct the skyrmion configuration, then, the main difference between
the crystals and isolated skyrmions lies in the boundary conditions. Now
Skyrme crystals compactify the real space into T3, however, since the T? is
still an oriented and compact manifold, the Hopf’s degree theorem ensures
the existence of topological solitons labelled by an integer number.

From all the possible unit cells in three dimensions that we may use to con-
struct a Skyrme crystal, we will consider cubic unit cells throughout this work,
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but we will allow for different symmetries within them. Additionally, since
the crystal is infinitely extended, it has infinite energy and baryon number,
however, the unit cell is finite in size, hence, it carries a finite amount of en-
ergy and baryon number. Then, the energy per unit cell, as well as the energy
per baryon number of the crystal, are completely well defined and finite,

Ecrystal . NcellsEcell . Ecell

= : 3.1
Bcrystal N, cells Bcell Bcell ( )

The first Skyrme crystal was proposed in 1985 for the standard Skyrme model
by Klebanov [130], motivated by the phenomenological application of crystals
to the interior of NS. He considered the simplest possible crystal with a simple
cubic (SC) unit cell, in which eight B = 1 skyrmions were located in the
corners of the cube in the maximal attractive channel with respect to their
nearest neighbors. Then, he computed the minimal energy field configuration
respecting these conditions for different values of the unit cell side length
and found that the lowest value of the energy was just 8% above the BPS
bound. In the following, we will explain how we construct Skyrme crystals
via the procedure given in [136] with the different symmetries that have been
proposed, and we will compare them within the generalized Skyrme model.

3.1 Construction of Skyrme crystals

The starting point in the construction of the Skyrme crystal proposed in [136]
is the expansion of the fields in the following Fourier series,

- amx by CTZ
o= Zﬁabc CoS (—) CoS <—> cos (—) :
- L L L

- . [ hrx kmy [Tz
™ = Z Op ke S1N T COS T COS T 5

9 — E Qpk1 COS

(3.2)
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Here, the unit cell extends from —L to L (being L an input parameter) in all
three Cartesian directions, so the volume of the unit cell is V' = 8L3. Then,
the symmetries of a given crystal impose some conditions on the Skyrme
field which, in the end, are translated into constraints on the coefficients of
the expansions (.. and ayy;. Finally, the constrained coefficients are varied in
order to obtain the lowest energy configuration. These expansions of the fields
break the normalization condition of the Skyrme field (2.1), a renormalization
is required,

na > e (3.3)

\/?”LBTLB.

Although the expansion series of the fields are infinite, the truncation to the
first coefficients provides a good approximation to the solution. Therefore, the
addition of higher modes produces corrections to the energy, which become
smaller for higher orders. Indeed, we find that the energy converges very fast
with an increasing number of coefficients considered in the expansion. This
conclusion is also seen numerically; while the first coefficients are of order
~ 1, we have calculated that the next orders decay to the ~ 4%, ~ 0.3% and
~ 0.06% of the first-order results. Hence, we may safely truncate the series
to a finite number of coefficients; we take around 30 coefficients to obtain the
solution for each crystal.

The crystal considered by Klebanov has the simplest unit cell. It is invariant

under cubic symmetry transformations:

Al : (l’,y,Z) — (—I‘,y, Z)a
(0-9 T, T2, 7T3) — (0-7 _7T177T277TS)7 (34)
A2 : (f,y,Z) — (y,Z,Z’),

(0,1, 2, m3) — (0, T, T3, 1), (3.5)

and it has an additional periodicity symmetry on the side length of the unit
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cell,

Az:(r,y,2) = (z+ Ly, 2),

(0,1, 70, m3) — (0, =71, Mo, —73), (3.6)

Owing to the translational invariance of Aj, the energy (2.76) and baryon
(2.7) densities are periodical in L, as well as reflection invariant due to the
symmetry A;. Since each skyrmion contributes 1/8 to the baryon number and
the cube has eight corners, the baryon number of this cube is 1. However, the
fields are periodical in 2L (as follows again from the symmetry Aj), hence the
unit cell is a cube of length 2L.

Body Centered Cubic (BCC) Crystal of half-skyrmions

This unit cell was proposed in [103] to be the one with the lowest energy for
small values of L. It introduces an additional symmetry,

By: (z,y,2) = (L/2—2,L/2 —y,L/2 — x),

(0,71, 79, m3) — (—0, W9, 701, 3). (3.7)

to those of the Klebanov crystal (A;, Ay and Az). The motivation of this
new crystal comes from the appearance of an additional symmetry when two
B = 1 skyrmions are brought together and form the lower energy B = 2
field configuration, in which the B = 1 skyrmions have lost their individual
identity. This new symmetry involves an O(4) transformation that produces
a BCC unit cell of half-skyrmions. A half-skyrmion is a solution with o = —1
at the centre until some radius ry for which o = 0. It carries a half of baryon
charge and it is undefined outside ry. This solution is located in the centre of
the cube of side length L. Additionally, a new half-skyrmion solution can be
defined via the transformation (o, 7,) — (—0, —m,). These new solutions are
located in the corners of the cube, connected to the o = 0 value of the central
half-skyrmion at r» = ry, forming a cube of side length L.

As a result, the mean value of the ¢ field in this cube is exactly zero, so
the energy coming from the potential term Ly ~ (o — 1) will scale exactly
as 8coL>. Further, the eight half-skyrmions in the corners contribute a total
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baryon number of 1/2; so the cube of side length L contains a baryon charge
of B=1.

The energy and baryon densities are also periodic in L, but the fields have
again a 2L periodicity, then, we have B,y = 8 within our unit cell of side
length 2L. The energy density iso-contour plots of the unit cell are shown
both in two and threedimensions in Fig. 3.1.

The restrictions imposed on the Fourier coefficients by the last symmetries
are:

e h, k are odd, [ is even.

e a, b and c are even.

® ﬁabc - ﬁbca - ﬂcab-

® (v = _(_1)h+§+l@khl-

a+b+c

b ﬁabc — _(_1)Tﬁbac-
Face Centered Cubic (FCC) Crystal of skyrmions

This symmetry was proposed in [136] in order to have a new solution with
lower energy for very large values of L. It shares symmetries A; and Ay and
also has two additional symmetries,

C3 : (a:,y,z) — (ZC,Z, _y)7
(0,1, T, m3) — (0, —T1, W3, — ), (3.8)
Cy:(z,y,2) > (x+ Lyy+ L, 2),

(o, m1, 0, m3) — (0, =71, —T2, T3). (3.9)

In this case, the energy and baryon number are periodic in 2L, and the unit
cell has the shape of an FCC lattice of skyrmions. We have eight B = 1
skyrmions in the corners of the cube, and symmetry C, locates other six
skyrmions in the centre of the faces and it also isorotates them by 7 with
respect to their nearest neighbours. Thus, this lattice differs from the first in
that each skyrmion is surrounded by 12 nearest neighbours, all of them in the
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Figure 3.1: Top: The 3D energy density plot of the BCC unit cell with B.ey = 8. We adopt the Runge
colouring convention [91] in this figure to represent the pion fields. Bottom: Energy density contour plots in
two dimensions at z = 0, L/4 and L/2 respectively.

maximal attractive channel. Since we have the eight skyrmions in the corners
and other six in the faces of the cube, the total baryon number in this unit
cell is Been = 4. Again, the same energy density contour plots are shown in
Fig 3.2 for this new crystal.

As we mentioned before, these symmetries impose some constraints on the
Fourier coefficients and they can be easily obtained imposing the symmetries
on the field ansitze (3.2). In this case, the non-vanishing coefficients are
determined from the combination of the following restrictions:

e hisodd, £k and [ are even or hiseven, k and [ are odd,

ea, b careall odd or a,b, carealleven.
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Figure 3.2: Top: The 3D energy density plot of the FCC unit cell with Beey = 4. The colours follow the
Runge colouring convention. Bottom: Energy density contour plots in two dimensions at z = 0, L/2 and L
respectively, since the energy density has double the period of the previous crystal.

Face Centered Cubic (FCC,/;) Crystal of half-skyrmions

This crystal configuration was almost simultaneously found, in two different
publications [77,136], to be the one with the lowest energy in the standard
Skyrme model. It may be seen as the half-skyrmion version of the FCC crystal
explained before, since each kind of half-skyrmion (with ¢ = =£1 in their
centre) form a FCC lattice, similar to the NaCl crystal structure. Indeed it
shares the symmetries A;, Ay, C3 plus an additional symmetry,

D4 : (xuya Z) — (.T—I—L,y,Z),

(0,7T1,7T2,7T3) — (—07 —7T177T277T3)7 (3-10)
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then, some of the FCC crystal Fourier coefficients are set to zero in this crystal.

Specifically, this new unit cell only allows the Fourier coefficients which satisfy
the conditions:

e his odd, k£ and [ are even,
e a, b, c are all odd.

As a consequence, the FCCy s, crystal will always have equal or larger energy
than the FCC crystal. This may lead to phase transitions between the crystals
at some length of the unit cell as we will see later.

Equivalently to the FCC crystal, the half-skyrmion solutions with ¢ = —1
in their centre are located at the corners and faces of the unit cell. Further,
the opposite half-skyrmions with ¢ = 1 occupy the body centre and the link
centres of the unit cube. Then, the mean value of the ¢ field is zero, again,
as in the BCC crystal. We show the same contour plots of the half-crystal in
Fig. 3.3.

The energy and baryon densities are periodic in L and they have the appear-
ance of a simple cubic unit cell of half-skyrmions. However, since the fields
are periodic in 2L we take that to be the side length of the unit cell, hence,
the unit cell still has the shape of an FCC crystal with the alternating half-
skyrmion solutions. In this case, the baryon content within our unit cell is
again B, = 4. This crystal is precisely the one studied in the second section
of Chapter 2, where we denoted with [ the size parameter of the B = 1 unit
cell. Therefore, the equivalence between the size parameter [ in (2.23) and the
side length L is [ = 2'/3L.

Numerical procedure

The full minimization of the energy functional becomes a computationally
hard task when the number of coefficients increases. For this reason, in a first
step, we will consider the simplest ansatz with only the first non-vanishing
coefficients for the FCCy /, crystal.

The minimal energy configuration of this crystal in the £94 model has been
found at L = 4.71 with E/B = 1.038. The first nonzero coefficients under
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Figure 3.3: Top: The 3D energy density plot of the FCCy/ unit cell with Been = 4. The pion fields
are represented following the Runge colouring convention. Bottom: Energy density contour plots in two
dimensions at z = 0, L/4 and L/4 respectively, as in the BCC crystal.

the restrictions explained before are (5117 and aqg9. We may impose aqgp =
1 without loss of generality and leave the other coefficient to minimize the
energy. The minimum is attained for f;;; = —1 at L = 4.92 with an energy
per baryon of £/B = 1.071, which is already smaller than the minimum of
the Klebanov crystal.

The minimum is shifted towards the correct values when more coefficients
are included in the minimization. The convergence is indeed quite fast, the
number of coefficients for which we reproduce the values of the minimum is 32.
This number slightly changes for the other crystals, given that the restrictions
change. For instance, the BCC crystal required more modes in the expansion
(3.2) since many of the coefficients vanish due to the high symmetry.

The minimization is performed through the variation of the coefficients via a
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Nelder-Mead algorithm [170], implemented in the GSL library of C++. This
algorithm is also known as the downhill simplex method [192], and it is a nu-
merical method based on a direct comparison of the function at each iteration
for multidimensional minimization. The algorithm maps the n-dimensional
parameter space via a triangulation using the concept of n + 1-simplex, which
is the generalization of the triangle in higher dimensions. The worst vertex
in the simplex is replaced by the centroid of the remaining n points, so that
the algorithm proceeds. The minimization ends when the size of the simplex
reaches some desired tolerance.

Additionally, the ansétze of the Skyrme fields are known analytically, and
they have been fixed to reproduce the properties of the specific crystal, like
the baryon number in the unit cell and the orientations of the skyrmions,
independently on the specific values that yield the minimal energy configu-
ration. Hence, the derivatives of the fields are known analytically as well, so
the integrals of the baryon and energy densities may be accurately estimated
numerically since the expressions may be evaluated at any point in space. We
use a Gaussian quadrature method for the computation of the integrals, which
induces a negligible error. It has been estimated to be less than 1075 for the
baryon number.

Therefore, the main source of error in this minimization comes from the vari-
ations of the coefficients, which we estimate to induce around 1% of error in
the energy. This is contrary to the AGD minimization, where the derivatives
and integrations are estimated using finite differences and Riemann sums re-
spectively. However, in the AGD method, the error is induced in both the
baryon number and energy, hence, a common way to erase this effect is to
compute the ratio between both values.

Once the values of the curve E(L) have been obtained, we fit the points with
the following function,

5 =kt kL + = 4 copg + koL, (3.11)
which is motivated from the scaling behaviour of the different terms that
appear in the Lagrangian.
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This fit reproduces the numerical points with great accuracy, being the largest
difference between the fit and the data point less than 0.5%. Furthermore,
this fit is extremely useful since it allows for the analytical manipulation of the
energy curve in order to compute the important magnitudes, like the pressure,
energy density and speed of sound.

3.1.1 Perfect scaling property

An interesting observation is that the contribution to the energy of each term
can be approximately parametrized as E(L) = ¢ IKGL37, at least for L < Ly
in the FCCyy crystal. Here, K; is a universal constant in the sense that
different parameters will not change its value, and 7 is the scaling dimension
of each term. Then, the energy can be expressed as the sum of the individual
contributions of each term in the Lagrangian. This suggests that at least in
the high density regime (which is the one of interest), there is an approximate
perfect scaling of each term. The accuracy of this approximation is given
by the differences K; # k; and k # 0. This perfect scaling (PS) property at
medium (L ~ Ly;,) densities will be useful to fit the values of the constants f;
and e in the next sections. To obtain the perfect scaling parametrization, we
calculate the energy for a single value of L and we compute the contribution
of the different terms individually to extract the constants K;. Specifically, we
calculate the constants K in the case cg = ¢y = 1 for simplicity and for a value
of the length near the minimum. Then, the curve E(L) can be approximated

by

FEps Ky K 3
— = KoL+ — + ez + @l LY (3.12)

The universal constants K; of the PS approximation are given in Table 3.1.

We show in Fig. 3.4 the comparison between the curves of the energy per
baryon number of the FCC, /, crystal for the four different submodels. We
have considered the standard values of the parameters (2.21) for f; and e and
we just turn on and off the sextic term coupling constant to A = 5 MeV /fm?
and the pion mass to its physical value. The PS curve is also represented in
order to compare this approximation with the fully minimized energy values.
We also consider the energy curve obtained from the approximated ansatz
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Figure 3.4: Energy per baryon number curves against the lattice length L of the FCCy 5 crystal. The circles
are the full-numerically minimized values of the energy, the solid lines are the PS approximation curves, and
the dots were obtained from the Castillejo ansatz for the fields.

for the Skyrme fields given in [77] by Castillejo et al. In this figure, we may
see that the Castillejo ansatz for the Skyrme field is a better approximation
for large values of L whilst the PS deviates more from the numerical values
in that region, but it is more accurate in the large density regime. Both
approximations are quite accurate around the minimum of the curve, and this
fact will be of great importance to describe realistic nuclear matter inside
NS. It is also clearly visible how the different terms that we include in the
Lagrangian have the expected impact on the energy per baryon curve. The
sextic term, due to its repulsive behaviour, shifts the length of the minimum
to larger values, whereas the attractive potential term has the opposite effect.

Model | K, K, K Ky
Lo |0.1108]24373] 0 0
Low | 0.1136 | 2.4080| 0 | 0.0085
Lows | 01111 | 24319 [ 1.2435| 0
Louo | 0.1164 | 2.4042 | 1.0824 | 0.0084

Table 3.1: Fitting constants for the PS approximated curves
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3.2 Infinite nuclear matter from Skyrme crystals

The binding energies of isolated nuclei are a measure of how much a particular
nucleus is bounded to lighter nuclei. They have been experimentally measured
up to very high baryon numbers, and it is know that they are accurately
reproduced by the semi-empirical mass formula:

(N — Np)2 Np (Np _

1)
. _ _ . 2/3 .
BEB = mNB EB CLvB asB ap B ac 1/3 , (313)

where Ep is the mass of the nucleus with baryon number B, and N, NN, are
the number of protons and neutrons respectively.

The first contribution corresponds to a bulk term which just takes into ac-
count the number of baryons that the nucleus has. The second term is the
contribution from the finite-size effects, i.e. a correction from the surface of
the nucleus. The third term is the quantum isospin correction to the energy,
which does not break isospin symmetry but penalizes any asymmetry between
protons and neutrons, it is also called the pairing term. The last term is just
the contribution from the Coulomb energy between protons in the nucleus.

This model is based on theoretical arguments in which nuclei are consid-
ered spherical drops of incompressible fluid, but the values of the coefficients
(av,as,as,ac) are obtained from the fit of the experimental data for physical
nuclei, so this is why it is called semi-empirical. Under these assumptions
the nuclei lie in a constant density curve which is called the nuclear satura-
tion density ng. This value has been measured from the interior of very large
nuclei [123] and the most fiducial value is given by (2.49).

The system that we want to describe using the Skyrme crystals, with the final
aim of reproducing NS, is commonly known as infinite nuclear matter (INM).
It is an idealized system where the surface, Coulomb and isospin contributions
are neglected. Then, we can extract the value of the energy Ey := my — ay
(2.49) of INM at the saturation density from the semi-empirical mass formula.
Hence, we will be interested in the fit of the minimum of the Skyrme crystals,
at which the skyrmions are at zero pressure, to the values of the INM at the
saturation point.
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A remarkable property of the standard Skyrme model without potential term
is that, with a suitable choice of units (2.8), one can factor out all dimensionful
constants from the energy functional, so that the constants remaining inside
it are just dimensionless numbers. As a consequence, one can just forget
about the numerical values of the coupling constants and numerically find the
different crystalline solutions at different unit cell lengths. Once the relation
between the energy and length F(L) is found, the values of the coupling
constants can be adjusted a posteriori in order to fit whatever observable we
are interested in. Unfortunately, the addition of the sextic and mass potential
terms to the energy functional spoils this property, as there is no choice of
units that allows to factor out all coupling constants in the energy functional.
This means that, in order to be able to obtain solutions, one needs first to give
specific values to the coupling constants appearing in the problem. However,
this is problematic if one wants to fit the values of energy and density to
some physical values. In our case, we want to identify the energy and the
density at the minimum of the crystal (Lg := Ly, ) with the nuclear saturation
point, however, one cannot know the value of L, without performing the
numerical simulations, but in order to do so you need to fix the values of
the parameters. Hence, the fitting of the skyrmion crystal parameters in
the generalized model to values at nuclear saturation is, in principle, a very
difficult problem that needs to be solved iteratively until a self consistent
solution is achieved. Given the computational cost of simulating a single unit
cell at a given length, following this naive approach would make it almost
impossible to realize a significant scan of parameters in a reasonable time.
However, due to the PS property at the minimum, we take advantage of
this approximation in order to fit the magnitudes obtained from generalized
Skyrme crystals to their physical values (up to a certain error).

We fix the physical value of the pion mass, and we will use two different values
to the sextic term coupling constant A\2. As we mentioned before, the values
of fr and e which reproduce (2.49) can, in fact, be calculated exactly in the
Loy, since the dimensionless Lagrangian does not depend on them,

f T Bcell

Jr _ _ DPeell g e = (2n9)"? L. 3.14
. 3m2E 05 fre = (2n0) ( )
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My =0 my, = 138 (MeV)
fr MeV) | e | A2 (MeV fm?) | f, MeV) | e | A2 (MeV fm?)
137.81 | 4.59 0 118.76 | 4.32 0
147.75 | 5.51 3 125.33 1 4.90 3
160.30 | 8.59 7 134.80 |6.26 7

Table 3.2: Values for the parameters of the generalized Skyrme model that fit the minimal energy point of
the FCCy /5 crystal to the nuclear saturation point.

where L, and E.,;, denote the values of the length and energy at the mini-
mum, and Beg is the baryon number of the unit cell (recall that we consider
the unit cell with volume 8L3). In the FCC; /2 Phase, Been = 4, and for the
model Lo4 the exact values have been previously shown, f, = 138.17 MeV,
and e = 4.60, being quite close to those obtained from the perfect scaling
approximation. These values are, in fact, not far from those obtained fitting
the hedgehog solution to the proton and the A excitation [29]. For the other
models, we do not attempt to calculate f; and e exactly. Instead, we calculate
them from the coefficients obtained from perfect scaling approximation, and
then use (2.49) to fit the pairs of values (Lpin, Fmin) by varying f, and e.

The results for the fits are given in Table 3.2. Interestingly, we find the same
effect as with the isolated B = 1 skyrmion, where the Skyrme parameter
increases due to the presence of the sextic term, but it is less pronounced.
Besides, the constant f; is more affected in this fit, but sill smaller than its
physical value.

As a first, and interesting, check we also have computed the energy of the
FCCyy crystal with the parameters obtained from the previous chapter to
compare with the energies given in Table 2.4. The minimal value is reached

for Ly = 5.20 with Ey/B = 1.280, being a 6% smaller than the B = 4 isolated
skyrmion.

3.2.1 Comparison between the symmetries

We show the curves F/B for the different symmetries and for different models
in Fig.3.5. The left upper plot (model Ls4) reproduces the known results
described in the Chapter 2. A more detailed discussion of the remaining plots
will be given below, where we describe the resulting phases of skyrmionic



86 3.2. Infinite nuclear matter from Skyrme crystals

matter at different densities. In Fig. 3.5 we also use the fact that for all models,
except for the simplest model L4, there exist topological energy bounds [18]
which are tighter than the Skyrme-Faddeev bound. We plot these topological
energy bounds for each model together with the energy curves for the values
of the parameters specified in Table 3.2. Although the crystals do not reach
the bounds, they are very close to it at the minimum. We show the values of

these bounds and how far the minimal energy of the crystals are above it in
Tables 3.5 and 3.6.

Further, we find that the half-skyrmion phases are well fitted to the proposed
parametrization (3.11) even for L > L. However, this parametrization
breaks down for large L for the FCC phase, and a more complicated behaviour
is observed in this region. Indeed, (o) does not vanish for large L in the FCC
phase, but has a nontrivial dependence on L which requires a different fitting
curve rather than (3.11). A possible choice for the large L regime might
be a hyperbolic tangent, but we cover the whole curve using a spline cubic
interpolation. However, for small L the FCC phase is either exactly equal to
the FCC, , phase (a phase transition occurs) or very close to it. In particular,
the region where the FCC phase differs significantly from the FCC, ), phase
is always beyond the minimum, ¢.e., for L > L.;,. As we shall argue below,
in this region the FCC crystal is not relevant for the nuclear EOS. We will,
therefore, ignore this problem and we will work with the parameters of the fit
k; that reproduce the half-skyrmion curves, which are given in Table 3.3. The
fit for the FCC, /» phase serves as a good approximation for the FCC phase in
the small L region.

Model /{?0 ]{?2 ]{74 kﬁ ]f() Model ]{?0 /{32 ]{?4 kG k()
Loy | 0.0467 | 0.1049 | 2.3448 0 0 Loy 0.0168 | 0.0957 | 2.9876 0 0
Lo | 0.0201 | 0.1094 | 2.3866 0 0.0082 Loy | -0.0760 | 0.1114 | 3.1247 0 0.0034
Lo | 0.0440 | 0.1027 | 3.8966 | 0.8183 0 Lo | 0.1618 | 0.0885 | 3.1918 | 1.6589 0

Losgo | 0.1221 | 0.0956 | 2.6941 | 0.8650 | 0.0087 Losso | 0.1367 | 0.0840 | 3.0337 | 1.6915 | 0.0046

Table 3.3: FCCy /5 crystal fit coefficients. Table 3.4: BCC crystal fit coefficients.

As expected, we conclude that the FCC crystal reaches the lowest energy in
the Lo49 and L6 cases, but the FCC, )5 crystal is the energetically favourable
phase at the minimum when the pion mass term is not included. This conclu-
sion is visible in Fig. 3.5, but the details on which phase is preferable will be
clarified in the next section. Another set of parameters was considered in [22]
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Figure 3.5: Energy per baryon as a function of the lattice length parameter for the three different crystal
symmetries considering the four relevant Skyrme models. The horizontal dashed line represents BPS bound
of each model for the specific choice of parameters in each case. The energy and length are both given in
adimensional units (2.8).

Model | Ly | Ey/B | Bound Model | Ly | Ey/B | Bound
Loy |4.72| 1.04 1 Loy 5.56 | 1.08 1
Loy |3.84| 1.13 1.06 Loy | 4.66 | 1.16 1.06
Losg 1997 1.67 1.57 Lo | 11.76 | 1.73 1.57
Losgo | 6.30 | 1.44 1.34 Logeo | 7.65 | 1.48 1.34

Table 3.5: FCCy/ crystal values at the minimum of
energy.

Table 3.6: BCC crystal values at the minimum of en-
ergy.

and the conclusions were the same as here, however, from Tables 3.5 and 3.6
it may be seen that the difference in energy between the FCC,; and BCC
crystals is significantly smaller when the pion mass term is present. There-
fore, it seems possible to find a set of parameters with sufficiently large ¢y for
which the BCC has lower energy than the FCC crystals, however, a physical
motivation for that choice of parameters is required.

Again, the impact of each term in the F(L) curve is visible in Fig. 3.5, where
the minimal energy configuration is shifted towards larger or smaller values
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of the lattice length. Also the energy increases when new terms are added,
although the energy of the Lo44 is higher than the full generalized Skyrme
model. This effect may seem contradictory, but the comparison in this case
is harder than in Fig. 3.4, where we just turn on and off each term in the
Lagrangian. In this case, the parameters are changed among the different
models in order to fit to the same physical energy and length scales. Then, by
comparing the values of the adimensional coupling constants (cg, ¢y) present
in the energy, we see that the sextic term contribution is much larger in the
Lo46 term than in the full model, producing the larger adimensional energy.

Besides, the energy of the minimum moves away from the BPS bound when
more terms are added in the Lagrangian. This is, again, surprising when the
sextic term is introduced since we are closer to the BPS Skyrme model, then,
the difference should decrease. As stated in the previous chapter, for very large
values of the sextic and potential terms, the difference between the minimum
and the bound will finally decrease. However, for the values considered here,
the non-trivial interaction between the different terms deviates the generalized
Skyrme model from a BPS theory.

We also found larger deviations from the PS constants in Table 3.1 when
large values of the sextic term are considered. This is visible from the fitting
constants in Table 3.3 for the Lo44 case. This reflects a change in the behaviour
of the Skyrme crystal under scale transformations when the sextic term (which
behaves like a fluid) is dominant in the Lagrangian. Indeed, we will see in the
next subsection how a phase transition to a fluid phase may be observed.

3.2.2 Phase transitions

We may anticipate from Fig. 3.5 that even though the FCC, j, crystal reaches
the lowest energy at the minimum, it may not be the crystal with the lowest
energy for all values of L. This is clear in the region with large values of L,
for which the FCC crystal has lower energy than the FCC,; /. We will also
see that there is a phase transition from the FCC to the BCC crystal at small
values of L, however, since they do not have the same baryon content within
the unit cell, a more careful comparison is necessary. We will study in the
following the possible phase transitions that we may have since it may lead to
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an interesting phenomenology of the Skyrme crystals. For simplicity, since L
is a measure of the size of unit cell it is also a measure of the baryon density,
then we will also refer to the region of small values of L as the high density
regime and for large values of L the low density regime.

3.2.2.1 High density phase transitions
Fluid-like phase transition

As stated in the Chapter 2, the BPS model shares the properties of a per-
fect fluid [16]. The inclusion of the sextic term in the Lagrangian should,
therefore, lead to a skyrmionic matter that reflects this fluidity, at least in
the high density regime where the contribution from this term to the energy
becomes relevant. More specifically, we will find that in the range of densities
considered here, a perfect fluid is never reached exactly. Instead, the sextic
term has the effect of homogenizing the energy densities in the unit cell of a
crystal configuration at high densities.

A measure of this homogeneity may be obtained by comparing the exact,
field-theoretic energy density and its mean value over the unit cell, ppean =
FEeel/ Beel. Since the sextic term scales as 1/L3, we expect to have a highly
inhomogeneous crystal at the minimum of the energy, where the skyrmions
are surrounded by regions of vacuum, whereas for decreasing values of L a
more homogeneous energy density (fluid-like behaviour) will appear, i.e., the
field configuration will get closer to a perfect fluid with homogeneous energy
density, without exactly reaching it. We will compare the Lo49 and Logg0 cases,
since we want to consider the more realistic cases in which pions have mass,
however, we remark that the pion mass term is irrelevant for these high-density
effects.

To compare the energy densities within the unit cell we define the radial energy
profile (REP) enclosed within a sphere of radius r,

B(r) = /O " p (3.15)

where p is substituted by the ppean in the case of the constant energy density
unit cell and by the energy density of the generalized Skyrme model (2.76) in
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Figure 3.6: Ratio between the REPs for the crystal and the fluid at different densities with and without sextic
term. The coordinate 7 has been defined as the radial coordinate rescaled by the lattice length.

the full field-theoretical case. We calculate both REPs for each case at the
baryon density of the minimal energy (ng), and at the higher densities 3n,
and 7ng. We show in Fig. 3.6 the ratio x = E(7)/Eyean(r) of the two REP for
each case, since it tells us how far we are from the fluid-like behaviour. For
this concrete calculation, we only consider the BCC phase, because (i) this
is the relevant phase for high densities, and (ii) the effect of homogenization
is stronger for this phase. The resulting REP will grow with the radius until
r = /3L and take a constant value equal to the energy of the unit cell for
larger values.

In Fig. 3.6 we can see that the homogeneity of the energy density strongly
increases with density, 7.e., with decreasing values of the lattice parameter,
when the sextic term is included. For the model Lo49 without the sextic term,
on the other hand, the ratio y between the lattice and the fluid REPs is al-
most independent of the density and strongly deviates from unity. In other
words, without the sextic term skyrmionic matter remains in a crystalline
phase with an essentially unchanged rigidity up to very high densities. When
the sextic term is included, instead, the resulting crystal becomes less rigid
against volume-preserving deformations at high densities, but without com-
pletely losing its crystalline structure.

In contrast to the volume-preserving deformations, the inclusion of the sextic
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term is known to lead to much more resistance against these deformations like
compressions, resulting in a much stiffer EOS for skyrmionic matter at high
densities [23]. The stiffer EOS of the generalized model is important, since
it allows for more realistic NS maximum masses than the standard Skyrme
model. This observation led us to consider an EOS based on an interpolation
between the standard Skyrme crystal at intermediate densities and the perfect
fluid of the BPS model at high densities in the last chapter. On the other
hand, the nature of the transition between the crystalline and the fluid phases
remained undetermined. Our current results imply that the fluid phase is
approached asymptotically rather than via a phase transition.

FCC,/; to BCC phase transition

The energies per baryon number of the FCC,/, and BCC phases have been
compared in Fig. 3.5. An important point here is that whilst the FCC, /5 unit
cell contains 4 baryons, the BCC unit cell has 8 baryon units, so if we want
to compare both crystals we need to do it at the same baryon density.

We find that the different terms that we consider in the Lagrangian have
an important impact on the transition point. Specifically, the sextic term
locates the transition at physically reasonable densities, 7.e., the same order
of magnitude as the density at the energy minimum. Without the sextic term,
we find the transition point at very high densities, and the addition of the
pion-mass term shifts the transition density to even higher values, therefore,
we only plot the cases in which we have the sextic term.

We show in Fig. 3.7 the two phases and the density at which the transition
takes place, and the numerical values for this point are given in Table 3.7.

Since the energy curves have different slopes at the transition point there is
a discontinuity in the derivative of the energy. This implies that the FCC-
to-BCC is a first order phase transition and we must perform a Maxwell
construction (MC) in order to avoid unphysical regions.

The pressure of a system acquires great relevance when phase transitions are
present since it must remain finite and continuous in order to have a physical
transition. The pressure, as well as the energy density of the crystal, can be
obtained from their thermodynamical definition (2.24).
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Figure 3.7: Comparison between the energies of the BCC and FCC, /5 crystals at the same baryon density,
showing the phase transition point, denoted by the red cross in the plots. Both np and E are shown in
Skyrme units.

From these expressions we may conclude that there is a discontinuity in the
pressure of the crystal and this is contradiction with the Gibbs conditions that
must be preserved in every phase transition,

P =p", up=pp (3.16)
For this analysis we will identify the FCC,, crystal as the phase I and the
BCC crystal as the phase II. Besides, in our system the baryon charge is
conserved so we must find the mixed phase which has the associated chemical
potential (xp) common to both phases.

Model TLPT/TLO PpT (MeV/fm3)
Loy 62.21 1321
Loy 46.93 1048
Loy 2.65 30.92
Loso | 2.21 20.14

Table 3.7: Ratio between the transition density and the density at which the minimum of the energy of the
FCCy o crystal is achieved.

The MC introduces a mixed phase which preserves the Gibbs conditions in
this case. The main idea of this construction is to find one point in each of
the energy curves which have the same pressure, we denote it by ppr, and
join them with the curve which has the same value of up for the two phases.
Mathematically this means that we have to find the points (V;, Vi;) of each
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phase that have the same slope in the E(V') diagram and are both tangent
to the straight line with the same slope (which is ppr). We remark that,
although we denote as ppr the pressure at which the phase transition occurs,
it is not related to the effective transition between the Skyrme crystal and the
BPS model considered in the previous chapter.

We must be careful for this calculation since we are dealing now with the
volumes of the unit cells. This means that same volumes have different baryon
content in each crystal, so we need to rescale them in order to have the same
baryon number,

Vi
nlyC = n — Vice = =+ (3.17)

The final energy curve with a physical phase transition starts at low densities
in the FCC,  crystal until we find the mixed phase which joins to the BCC
crystal,

EFCC<V)7 VW
E(V) =14 Ercc(V1) —ppr(V-V1), i 2V >V, (3.18)
EBCC(V)7 V<V

Actually, from the arguments given before and the curves displayed in Fig. 3.5
we would have to compute the transition between the BCC and FCC crystal
of single skyrmions. However, we may use the FCC, /, energy curve for these
calculations since the density at which the transition occurs, the FCC and
FCCyy crystals are the same in the Lo case and the difference between
them in the Lo460 case is negligible. The final curve, with the first order phase
transition, after the MC is applied, may be seen in Fig. 3.12.

3.2.2.2 Low density phase transitions
FCC,/; to FCC phase transition

As we noted in the construction of the crystals, the FCC,/, crystal will al-
ways have larger or equal energy than the FCC. In Fig. 3.5 we see that the
energies of both crystals are indistinguishable at high densities, but at some
value of the length the curves split and the FCC crystal becomes the ground



94 3.2. Infinite nuclear matter from Skyrme crystals

‘624 ‘6240
—_— FCCl/Z

084 —— FCC 0.8 1

0.6 1 0.6 1
P P
) )

~— 04 ~— 04

0.2 A 0.2

0.0 0.0

6 7 8 9 10 11 2 3 a4 5 & 7 8

Figure 3.8: Mean value of the o field within the unit cell shows the second order transition from the FCC
to the FCCy/p crystal when the pion mass term is not included, and the asymptotic approach when it is
included.

state. This behaviour in the F(L) curves suggests a phase transition between
the crystals, but the presence of the pion-mass potential term is crucial in
the understanding of this possible transition. Concretely, this potential term
explicitly breaks chiral invariance, then, it is not compatible with the FCC, )
symmetry ¢ — —o. However, the relevance of the potential term in the en-
ergy decreases at high densities, so both crystals tend to the same energy in
the chiral limit. Hence, when this term is not included in the Lagrangian
both crystals are allowed and we find a FCC to FCC,/, second order phase
transition, but when the potential term is present the FCC crystal is always
the ground state and the energy curves approach asymptotically.

This phase transition has been extensively studied in [143], where the mean
value of the o field was proposed to be the order parameter of the transition.

We show in Fig. 3.8 the curve of the o field mean value in the unit cell
for the cases Loy and Loy to represent the cases without and with pion-
mass potential term respectively. The addition of the sextic term does not
qualitatively change the curves.

Although the FCC, /5 is not the ground state crystal it is a good approximation
to the FCC crystal at large densities. Indeed, for the values of the parameters
that we have considered, the transition point always occurs at densities smaller
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than the minimum of energy in the case without potential term. Besides, even
with potential term the FCC, ), crystal is already a good approximation to the
FCC crystal for densities larger than the minimum.

B = 4N? Skyrme lattices

For the moment, we have mostly focused on the behaviour of Skyrme crystals
under the Kugler and Shtrikman construction procedure. It is the aim of this
section to show that there is a new branch of solutions which have different
energies in the low density regime and tend to the FCC,y crystal at high
densities.

The fact that the Skyrme crystal has a minimum is not a bad behaviour, since
this is expected to occur in symmetric nuclear matter. However, the energy
of the half-crystals seems to diverge with L, but this is due to the Fourier
expansion that we use to construct the Skyrme crystal, in which we impose
the skyrmions to be in fixed positions and we do not allow them to move freely
within the unit cell to find the lowest energy configuration.

This is a correct procedure for small values of L, however, if we increase the
size of the unit cell the skyrmion is only allowed to spread instead of clustering
to form a compact configuration surrounded by vacuum.

This motivated us to find new lower energy configurations with a new numer-
ical minimization method which lets the skyrmions move with no restrictions
within the unit cell. We use the AGD method to find the field configura-
tions with minimal energy, locating the B = 4 skyrmion in the centre of the
unit cell. We use the rational map approximation (2.19) found in [124] as
initial configuration for the minimization, and periodic boundary conditions
are imposed on the faces of box after each iteration. The B = 4 skyrmion has
octahedral symmetry, the rational map with this symmetry and degree four
explicitly reads,

A+ 23iz2 +1
24— 2/3i2+1

R(z) = (3.19)

The motivation for this new lattice starts with the similarities between the
isolated B = 4 skyrmion, which has cubic symmetry, and the FCC, ), crystal.
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Indeed, the energy density contour of the isolated skyrmion is quite similar to
the crystal in the sense that it is composed by eight half-skyrmions located in
the corners of a cube.

Besides, the study of the B = 4 skyrmion in periodic boundary conditions
under different deformations showed the phase transitions it may experiment
[209].  Concretely, the phase transition between the FCC;/, and the B =
4 skyrmion lattice was found at a certain value of L, then the new lattice
becomes a more energetically favourable crystal.

Since the isolated B = 4 skyrmion aims to describe an alpha particle, we
will refer to this configuration as the a-lattice. We calculated the energy of
this new lattice for different values of L in the L£o49 model. The reason for
not considering the sextic term is that the AGD is extremely sensitive to high
values of cg, and we have rather large presence of the sextic term in this specific

case.

As a result, it turns out that the a-lattice has lower energy than the crystal
at a certain value of L, furthermore, it tends to a constant value at L — oc.
Indeed, the asymptotic constant value is precisely the energy of the isolated
B = 4 skyrmion. This motivates the construction of other cubic lattices with
larger values of B, since it is known that the energy per baryon of skyrmions
decreases for increasing values of the baryon charge [91].

The next simplest cubic skyrmions, which are the N2 multiples of the B = 4
skyrmion, are the B = 32 and B = 108 solutions. The way to construct these
higher B skyrmions is, in fact, by cutting chunks of the Skyrme crystal, an then
joining the fields with appropriate vacuum boundary conditions as explained
in [42]. Once these isolated solutions are obtained they are introduced in
the AGD method with periodic boundary conditions in order to solve the
corresponding 4N3-lattices.

The constant value for L — oo is also found for the FCC crystal, given that
the single skyrmions are moved apart from each other in this limit. However,
it settles much more slowly than the cubic lattices considered in this section.
Besides, all these new lattices have less energy than the FCC crystal at low
densities, since they achieve the more compact and energetically favourable
configuration of B = 4 N3 skyrmion, rather than 4N3 isolated B = 1 skyrmions
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of the asymptotic FCC crystal.

Decreasing the size of the unit cell forces the skyrmion to recover the FCC, )
crystal configuration. The transition in the energy curve for these lattices may
be seen in Fig. 3.9 at a slightly smaller density than the minimum.
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Figure 3.9: Energy per baryon number for the different crystals and lattices considered in this work in the
Lo40 model. The large difference in energy between these lattices and the FCC crystal that indicate the
correct ground state is clearly observed. However, the convergence to the same FCCy/; crystal is observed
slightly above the minimum.

The explicit transition to the half crystal is represented in Fig. 3.10 via the
corresponding energy density contours at different lattice length values.

Transition to finite nuclear matter

In addition to the great improvement in the low density regime of the F(L)
curve with these new lattices, a smooth transition from infinite to finite nu-
clear matter is found. Increasing the value of the lattice length, the neighbour-
ing unit cells are moving apart from each other, ending up with an isolated
skyrmion in the infinite L limit. This is actually the physical reason of the
asymptotic finite value at the end of the energy curve. Furthermore, this fact
has great interest since it is possible to extract an estimation of the surface
term present in (3.13) entirely within the Skyrme model.
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Figure 3.10: Energy density contour of the 4N? lattices at different sizes of the unit cell. The colours represent

the same values as in Fig. 3.3. Here, the transition to the the FCCy 5 crystal is visible, whereas the isolated
skyrmion is recovered for large values of L.

For this purpose, we first assume that the energy of a B-skyrmion is just the
energy at the minimum of the energy curve, and the difference between the
minimum and the asymptotic value (i.e. the energy of the isolated skyrmion)
is the contribution from the surface energy. This is a reasonable assumption
since quantum corrections are not considered, and we can see from Fig. 3.9
that the minimum of the curve is the same for all the lattices, covering a wide
range of baryon numbers, at least up to 108. Then, the surface energy may
be parametrized in terms of the number of faces of each skyrmion and the
number N, of alpha particles. Specifically, due to the cubic symmetry of the
lattices that we are considering, each skyrmion will have six faces covered by
N2 alpha particles, hence, the surface energy and the baryon number may be
easily related,

B =4N?, (3.20)

6ESUI' ace
Ep = EyB + 6 Eqyace N2 = EgB + 42—/;132/3. (3.21)
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From this simple analysis we found the same scaling of the surface contribution
in (3.13) in terms of the baryon number. We remark that this behaviour does
not have to be necessarily true in the Skyrme model since it simply comes
from geometrical arguments, however, we fitted the difference between the
energy of the isolated skyrmion and the minimum of energy and we found a
great agreement with the correct power-law.
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Figure 3.11: Surface energy of the isolated 4N3 skyrmions fitted to the semi-empirical mass formula surface
term expression.

From the fit we can extract a value for ag, though it turns out to be too high
compared to the most fiducial experimental value,

g™ = 78.3 MeV > af™ = 18.3 MeV. (3.22)

This discrepancy may be directly related to the problem of the high binding
energies in the Skyrme model. Correct values for the asymptotic difference
between the isolated skyrmions would yield the precise value for the surface
energy coefficient, hence the resolution of the binding energies problem also
implies great enhancement in the infinite nuclear matter description. Indeed,
we will see in the next section that this problem also prevents the correct
description in the low density regime of the EOS, specifically the region of the
crust.
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3.3 Neutron stars from generalized Skyrme crystals

We have perfomed an exhaustive study of skyrmionic matter at different den-
sities in order to describe nuclear matter. The main result is that Skyrme
crystals are the most appropriate candidates to describe INM in the Skyrme
model not only because they are infinitely extended configurations with the
lowest energy, but also because we found a nontrivial phenomenology at dif-
ferent densities.

In this final section we obtain the EOS from the Skyrme crystals and solve
the TOV system of differential equations to study the impact that the sextic
term has in the NS from a complete field theoretical approach. Despite the
results obtained so far are not a completely realistic description of INM, it
may serve as a first indication for the maximal mass of the NS. Besides, it is
interesting for a direct comparison with the results obtained combining the
two submodels in the previous chapter.

The equation of state may be easily obtained from the crystals using the
definitions (2.24). Besides, since the energy has been parametrized by (3.11),
the pressure and energy density are obtained analytically in terms of L as

well,

1 dE E

p(L) = _md_L’ P(L) = @, (3-23)

where the coefficients of the energy are given in Tables 3.3 and 3.4 for each
crystal. Recall that there is a first order phase transition between the FCC, )
and the BCC crystals which is solved by the piecewise function (3.18). This
produces a discontinuous jump in the EOS since the pressure is required to be
constant during the mixed phase in the MC, but the energy changes along the
p = constant path. The values of the phase transition have also been obtained
from the fit of the energy (3.11), and they are given in Table 3.7.

The EOS are represented in the upper left plot of Fig. 3.12 for the different
models considered. All the curves tend to the same energy density in the zero
pressure limit since we have fixed the parameters in each case in order to fit
the nuclear saturation point. However, the Lo45 case seems to deviate from
the rest of EOS. The reason is that the fit has been obtained from perfect
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scaling approximation, which is not arbitrarily accurate, and we have seen
that the sextic term tends to deviate from the crystal configuration into a
fluid. Besides, the Lo46 case has the largest value of ¢ ~ 250 among the
four sets of parameters, being extremely far from the values ¢4 = ¢g = 1
used to computed the perfect scaling constants. We might have recomputed
the constants for a better accuracy, however, the deviation is around a 5%,
although the logarithmic scale magnifies this effect in the plot.

The phase transitions are present in each curve, but they are only visible in
the cases where the sextic term is included. Furthermore, this figure displays
the stiffening on the EOS when more terms are added in the Lagrangian,
specially the sextic term. This, indeed, produces the increase in the masses
and radii.

The speed of sound is another informative magnitude in the EOS, it is directly
related to the stiffness so it has great implications on the observables of NS [30].
As explained before, it must always be less than one, and it may be computed
analytically as well,

, dp dpdL

= = —— 3.24
dp 1 dFE 1 d&°F
v _ — 2
dL 1213 dL  24L%dL?’ (3.25)
d 1 dE 3FE
P (3.26)

dL ~ 8L3dL 8L*

The speed of sound curve depends on L and on the energy fit constants, but
the asymptotic value at high densities turns out to be a constant value for
each case. In the L — 0 limit we have,

£2460 : Cg — 1, (327)
Log: & —1/3. (3.28)

S
These values also apply for the massless versions since the potential term is
irrelevant at high densities. Interestingly, the speed of sound without sextic
term tends to the conformal value of deconfined quark matter. There is,
indeed, an intense debate on the possibility of surpassing the conformal bound
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inside NS cores [50]. It is known that hadronic matter must deconfine into
quark matter at some point for high densities, hence, the speed of sound must
tend asymptotically to the conformal value. One possibility is that the sound
velocity is always subconformal and it tends to 1/v/3 from below, but this is
in tension with the most massive NS observations and most of simulations,
which suggest that the conformal bound is violated inside NS.

The speed of sound curve as a function of the pressure is shown in the upper
right plot in Fig. 3.12. The main conclusion obtained so far is that the sextic
term is necessary for a correct description of NS using the Skyrme model.
Therefore, it is clearly observed from Fig. 3.12 that if this term is included,
the conformal bound is widely exceeded for reasonable densities. Then, the
best description hitherto for NS purely within the Skyrme model also predict
that the conformal bound is violated.

Additionally, the speed of sound may be affected by other effects previously
to the quark deconfinement. Indeed, the decrease in the speed of sound is
usually a sign for the appearance of new particle species inside NS.

The value of ¢? in the zero pressure limit may also be determined, however,
it explicitly depends on the values of the constants in the energy fit. Besides,
the low density part is not correctly reproduced in the Skyrme crystals due
to the absence of crust, therefore, it requires further development.

The resolution of the TOV system for these EOS yields the MR curves shown
in the lower plot of Fig. 3.12. We have included the MR curve with (dashed
lines) and without (solid lines) MC to clearly see the impact of the phase
transition on the NS. This phase transition is not attained in the models
without sextic term since the NS become unstable earlier. Additionally, we
have also computed the curves for the Loy and Loss0 models with A3 = 3
MeV fm?, where the other parameters have been again fitted to the nuclear
saturation point.

The masses obtained from the crystalline solutions reach the minimal mass
constraints from experimental observations. Interestingly, we obtain values
for the mass similar to the effective description of the generalized EOS in the
previous chapter, even though the values for the sextic term coupling constant
are significantly smaller. This may be interpreted as an underestimation of
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Figure 3.12: Top left: The full Skyrme crystal EOS including the possible phase transitions in the different
submodels. Top right: The speed of sound obtained from each EOS. Bottom: The MR curves obtained solving

the TOV system of equations.

the sextic term in the effective description. Conversely, the radii turn out

substantially larger than the expected values, which suggests that the EOS
might be too stiff. This effect might be attributed to a prominent presence of

the sextic term, however, the large radii already for the low mass NS indicate

that this might be a problem intrinsic to the crystalline solutions near the

minimum. Nonetheless, the radius is highly affected by the low density regime

of the EOS, which is not correctly described for the moment since the energy

curves considered here still present a minimum.






Chapter 4

Neutron Star matter in the Skyrme
model

Happiness can be found, even in the darkest of
times, if one only remembers to turn on the
light.

Albus Dumbledore

4.1 Quantization of Skyrme crystals

The crystalline solutions obtained so far correspond to classical solutions in
which no quantum effects have been considered. Specifically, the isospin cor-
rection to the energy, like the third term in the semi-empirical mass formula
(3.13), is crucial for a realistic description of nuclear matter. Indeed, inside
NS (as the name suggests) a high asymmetry between protons and neutrons
is expected, implying a large contribution to the energy. Hence, since Skyrme
crystals aim to describe NS, the quantum isospin contribution to the energy
needs to be considered.

This is the goal of this section, in which we will extensively explain the stan-
dard isospin quantization procedure in the Skyrme model, showing explicitly
the expressions for the isospin inertia tensors in general. Then, the specific
case of the FCC,/y crystal is considered and the physical implications are
studied.

The quantization of the Skyrme crystal was already discussed by Baskerville
[43] in the massless model. The vacuum boundary conditions of isolated
skyrmions break the chiral symmetry of the Lagrangian (2.4) to the diago-
nal isospin subgroup. However, this does not occur for periodic boundary
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conditions, and there is not natural way to define the isospin subgroup. More
specifically, there is an ambiguity in the reduction of the 4-dimensional rep-
resentation of the crystal symmetry, into a trivial 1-dimensional irrep and
3-dimensional irrep, such that one dimension in isospace is singled out. We
take the o field to transform under the trivial representation, since this is the
natural decomposition when the specific pion mass term (2.22) is introduced.
Therefore, we will only consider the quantization of Skyrme crystals in the
massive model.

The starting point, as we did in the last section of Chapter 2, is the trans-
formation of the Skyrme field under the symmetries of the Lagrangian (2.78).
However, in this section we will only consider the quantization of isospin de-
grees of freedom. The reason is that a global spatial rotation of an infinite
crystal requires infinite energy, however, for a rotation in the isospace a finite
amount of energy per baryon is required [43]. Besides, global isorotations
may be decomposed in the individual isorotations of each unit cell, but that
decomposition does not apply for spin rotations. Then, we only promote the
isospin transformation to be time-dependent,

Ulx) = At)U(x)A'(t), (4.1)
and the transformed field is inserted into the Lagrangian. This produces a
kinetic energy term in the Lagrangian,

1

T —
2472

/d% [—%Tr{Lg}—%Tr{[LO,L¢]2}+47r4c6 (B)’|.  (4.2)

The time component of the Maurer-Cartan current, as well as the spatial com-
ponents of the topological current, are now excited due to the time dependence
of the isospin transformation. The expressions after the transformation (4.1)
are the following:

Lo = AU' [ATA, U} Al (4.3)
Li = AUTQ;U AT, (4.4)

i L
B = @ejkTr{LoLij}. (4.5)
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Recall that the potential term does not explicitly contribute to the kinetic
energy due to the lack of derivative terms. However, the presence of a poten-
tial term changes the classical solution, so it will affect indirectly the isospin
inertia tensor. Nonetheless, the standard range of parameters that we usu-
ally consider in the Skyrme model yields ¢y < 0.5, which produces an almost
negligible difference.

i
2
Then, we may identify the isospin inertia tensor, Ay, from the isorotational

Now, we make use of the isospin angular frequency definition, ATA = L.

kinetic energy definition, T' = %waAabwb, and extract the following expression:

B 1
2472

_% (€iji Te{TL[Lj, L)}) (€itm Te{Tp[ L1, Ln]}) } : (4.6)

Ay, / P [Tr{TaTb} + Te{[T,, Li[Th, L}

where we have defined the su(2)-valued current,
T = 50 [ra, U] (47)

Expanding the three terms in the isospin inertia tensor,

B 1
2472

Aab / &z [Afb) + A A9 (4.8)
we obtain an expression depending on the fields which, in the case of the
Skyrme crystal, are known since the classical solution has already been solved
in the previous chapter. Indeed, due to the symmetries (3.4) and (3.5) that
all Skyrme crystals share, it might be proven that the isospin inertia tensor is
diagonal and proportional to the identity [20], Ay = Adgp, where its eigenvalue
A is the isospin moment of inertia. In general, we can always diagonalize the
isospin inertia tensor, however, the fact that it is proportional to the identity
is a special property of some field configurations, like the Skyrme crystal.
This will not be the case of the B = 4N? lattices studied in the last parts
of the previous chapter, where the third component of the isospin tensor is
different to the others. The reason is that those lattices only have spatial
cubic symmetry, but not in isospace.
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The diagonal components of the isospin inertia tensor are shown below,

A2 (4w, bieta (19
Al =38 (8202 (1—m2) + (Oyma)? (1-0%) + 2077'@82'0'82'7'(@) : (4.10)
AS) = (0,004 — 0j00m,)” (4.11)

We remark that these expressions have been obtained from (4.6) in general,
and no symmetry has been imposed. It is also important to note that in the
last expressions we do not use the Einstein summation convention for repeated
pionic indices (a, b, ¢). Instead we just want to show that the only components
of interest are the diagonal terms, and the others vanish for Skyrme crystals.

We computed the isospin inertia tensor as a function of the lattice length in the
L4 case and compared with the values previously obtained by Baskerville [43].
As we noted before, the inclusion of a potential term does not impact the
isospin inertia tensor directly, however, the sextic term induces a new term.
Following the scaling behaviour of each term we consider the parametrization

AL) = Ae + NoL? + AyL + cﬁ%, (4.12)
to fit the isospin inertia tensor in the generalized Skyrme model, see Fig. 4.3.
The sextic term has, indeed, an important impact since the isospin tensor is
an increasing monotonic function in the L94 theory, vanishing in the infinite
baryon density limit. However the inclusion of the sextic term changes this
behaviour, then, the isospin tensor now diverges in the same limit. On the
other hand, in the zero baryon density limit (or alternatively the L — oo
limit) the sextic term vanishes, and the isospin tensor also diverges. We find
good agreement between the numerical data and the fit (4.12) for a wide range
of densities.

The kinetic energy of the isospinning crystal with N unit cells is the sum
of each unit cell kinetic energy,

N cells N cells

T = wWeAgpwp =

woAw,. (4.13)
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Then, the Hamiltonian for the isospin corrections may be obtained via a Leg-
endre transformation of the Lagrangian between the angular frequency and
the canonical body-fixed angular momentum definition,

oL
© Ow,

Ka = NceusAwa. (414)

The standard quantization procedure promotes the angular momenta to op-
erators (K, — Ka) in the Hamiltonian,

. K?2 I2
Hiso = - )
2NcellsA 2NcellsA

K.K, = K? (4.15)

In the last part, we have made use of the relation between the Casimir invariant
operators (K2 = I2) of the body-fixed (K,) and space-fixed (I,) isospin angular

momentum.

In order to add the contribution of this Hamiltonian to the classical energy of
the crystal, we need to know the quantum state of the whole crystal. This is,
of course, impossible since the crystal is infinitely extended so that the number
of particles is infinite. Therefore, the following assumptions are imposed on
the quantum state of the crystal to simplify the task:

e The quantum state of the full crystal |¥) is strictly written as a superpo-
sition of each individual unit cell quantum state |¢).

e The quantum state of the crystal inherits the point symmetry group of
the classical configuration and it is also shared by the quantum state of
each unit cell.

The first assumption neglects any quantum correlation between neighbouring
unit cells so that the full crystal quantum state may be decomposed in the

tensor product of each unit cell state, |¥) = ® [¢). The second assumption
Ncells

ensures that any isorotation of the crystal occurs equivalently in each unit
cell. Then, the total isospin of the crystal is expressed as the sum of each unit

cell isospin, tor = Zeel1Neells-

Now, the FR constraints resulting from the symmetries of the crystal must
be solved in order to obtain the possible quantum states in the unit cell.
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How these states are obtained will be briefly described in the following, for a
detailed explanation see [20]. In general, the symmetries of the configuration
must be written in terms of the generators of the spin and isospin groups
which act on a state. Then, the FR constraints are imposed,

eihmLitmaK o) (4.16)

where L, K are the body-fixed spin and isospin angular momentum vectors
respectively, and xypr = %1 is the constraint.

In the FCC, o Skyrme crystal, the relevant symmetries that relate spin and
isospin transformations are A, (3.5) and C5 (3.8). They are expressed as

follows,
Ay: ewsFtietis) —pg 12 —n/2), (4.17)
Cy: €M =R(n/2, —71/2,7/2), (4.18)

where the R(«, 3, 7) rotation represents the specific operator in the ZYZ con-
vention of Euler angles. Spin rotations are represented by the same operators,
but we will focus on the quantum isospin states.

The representation in terms of R(«, 3,7) rotations is important since it is
known how these operators act on the states in terms of Wigner D-matrices
[20]. Thus, the problem reduces to finding the eigenstates of the Wigner
D-matrix corresponding to each symmetry for the different possible values
of isospin in the unit cell of By = 4. Additionally, given that the baryon
number in the unit cell is even, we have imposed the constraint xypr = +1
following the results in [135].

We found a unique quantum state for each isospin value, ¢ = 0, 1,2 which
is common to both symmetries. The energy for each of these states may be
computed from the Hamiltonian (4.15). We might think that the ¢ = 0 state
has the lowest energy since it has exactly zero isospin energy. However, since
this state is symmetric in isospin, the presence of protons require the inclusion
of electrostatic interaction in the energy. It has already been noticed in [130]
that if this contribution is taken into account in the infinite crystal, even the
energy per baryon number would diverge due to the long range interaction of
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Coulomb energy. Therefore, we conclude that the charge neutral state, is in
fact the ground state of the Skyrme crystal.

The charge neutral case is made up of B neutrons in each unit cell and it
induces the largest isospin contribution to the energy, since it fixes the highest
%Bcell- In this case, the total isospin of
the full crystal is 74, = %NcellsBcella and the isospin energy of the crystal may

be obtained,

isospin value in the unit cell, 7. =

h2 o h2
Fiso = =0t (tot + 1) NCQIL) A

N B2 4.19
9 Ncells A 11 cell ( )

Again, the energy of the entire crystal diverges, but it does so linearly, such
that the energy per unit cell (or per baryon number) remains finite.

We have explicitly introduced the A factor in the isospin energy since it is a
contribution of quantum origin. In order to be consistent with the Skyrme

units, in which the isospin inertia tensor is computed (4.6), it is important to
62
3?.

know the value of the quantum scale in the same units, A =
It might also be crucial to consider the impact that the isospin contribution
might have on the classical configuration. This possibility has been consid-
ered for the isolated B = 1 skyrmion in [147], but not for skyrmion crystals.
However, we have confirmed in [20] that the isospin effects are always smaller
than the classical energy contribution. Hence, we may safely neglect the back-

reaction due to the isospin effects and include them as a quantum correction.
4.1.1 Symmetry energy

The energy of isospin-asymmetric infinite nuclear matter is often expressed as
N, —N,
— L.
Indeed, isospin-asymmetry is in general parametrized as an expansion of the

a function of the baryon density and the asymmetry parameter 6 =

energy in powers of  up to second order,

E
E(nB, §) = E(np) + S(np)d* + O(5°). (4.20)
The zero order is the energy curve of the symmetric INM, which we identify

with the energy curves F(L), obtained from the classical Skyrme crystals in
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the previous chapter. The function S(np) is known as the symmetry energy
curve [141,199], which measures the change in the energy due to the proton-
neutron difference at a given baryon density.

The symmetry energy may also be defined as the difference between pure
neutron and symmetric nuclear matter. This curve is of great importance
since it affects many different phenomena of nuclear matter. It has been
constrained up to ng ~ ng but, again, it is difficult to experimentally extend
nuclear matter up to much higher densities. Instead, the curve is expanded
in powers of the baryon density,

1 ng — Ng 1 np — ng ’
S =S+ =Lgym | ————— —Kgym | — 4.21
(1) = S+ Lo (P ) 4 G (M) e (a)

and parametrized by the the symmetry energy at the saturation density, .Sj.
The higher multipoles in the expansion,
0S

Lsym = 3”0%

0?8
2
) Ksym = gno—aTLZB , (422)

np=nyo

np=no

are the slope and the curvature of the symmetry energy at saturation respec-
tively.

The three multipoles in the expansion (4.21) have been inferred from the com-
bined theoretical predictions and experimental measurements of the symmetry
energy curve [40]. This curve has been mainly constrained at subsaturation
densities by the Isobaric Analog States (IAS) method [84] for finite nuclei,
however, the extension of the restrictions above the saturation was performed
through the analysis of NS observables. Indeed, the discovery of GW170817
induced an extensive study on the radii of NS in which the symmetry energy
is involved. Here, we shall consider the most fiducial values obtained from
an averaged survey of 53 analysis from nuclear experiments [180] for Sy and
the combination of other analysis extracted from NS observables [144] for the
higher multipoles. The numerical values with their corresponding uncertain-
ties are given in Table 4.1.

Actually, the Lgy,, multipole, which is also called the slope, is directly related
to the neutron skin thickness [227], and it may be determined from terrestrial
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experiments. The neutron skin is the accumulation of neutrons in the surface
of the large baryon number nuclei due to the Pauli pressure from the excess of
neutrons with respect to protons. The thickness of this skin is the result of the
competition between this repulsive behaviour and the symmetry energy (more
specifically to the slope) since large asymmetries increase the energy. However,
the recent determination of the neutron skin thickness of 2*Pb [25] yield
unexpected high values for the slope, LéyPIEEX) = 106 £ 37 MeV. This induced
serious tensions with the rest of estimations [236], which require further studies
on this topic.

So (MeV) | Lagm (MeV) | Ky (MeV)
31.7+32| 57.7+19 | —107 +88

Table 4.1: Experimental values for the symmetry energy curve multipoles at the saturation density.

It may be noticed that our previous result of the isospin energy for the Skyrme

crystal (4.19) naturally follows the same behaviour to the symmetry energy

2

(4.20) since it is proportional to iz,

which is indeed a measure of the isospin
asymmetry. For the computation of the energy, we have imposed the zero
charge condition in the unit cell, where we have fixed the isospin numbers to
1 = 2, 13 = —2, describing a pure neutron crystal. This corresponds to the
highest isospin asymmetry of nuclear matter, similar to what is expected to
occur in the core of NS. However, realistic models of the nuclear matter inside
NS do not predict a totally asymmetric state, but a small fraction of protons
must be allowed. Although the real values are unknown, simulations yield

some estimations of the proton fraction ~ := % ~ 1072 — 107! [158,187].

Since the Skyrme crystal has B..1 = 4, there is a finite number of possible
quantum states which physically correspond to the different combinations of
protons and neutrons within the unit cell. Nonetheless, even the minimal
possible number of protons in the unit cell yields a too high proton fraction
v = 0.25 compared to the expected values. We could consider the total
quantum state resulting from the combination of several unit cell quantum
states, following the standard spin composition procedure in representation
theory. Then, in order to reproduce realistic values of the proton fraction,

a simple estimation indicates that we would need to combine the order of

1
'yBcell

~ 15 unit cells, which becomes an unhandleable task.
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Following the same philosophy, we consider an arbitrary number /N of unit cells
enclosed in a larger chunk of crystal with B = NB.y. Then, we perform a
mean-field approximation in which the third isospin eigenvalue of the quantum
state is generically defined,

N, _Nn Bce
Z.3:13—:_]\[ 11

2 2

J. (4.23)

Now, the proton fraction is not an input, but it is left as an independent
variable introduced by the asymmetry parameter, 6 = 1 — 2. Once the third
isospin component has been established from the mean-field approximation,
the total isospin value of the crystal is fixed by ¢ = i3, given that i* > i3, and
that is the condition that minimizes the isospin energy.

Then, the isospin energy of the Skyrme crystal per unit cell with an arbitrary
proton fraction is:
h? B2
By = S—Ace“(s?. (4.24)
Finally, this energy may be compared with (4.20) and we can extract the
symmetry energy curve,

h2

S(nB) - ﬂ)

(4.25)
where the dependence on the baryon density lies entirely on the isospin inertia
tensor. Indeed, this is precisely the same expression that is obtained from the
difference between pure neutron (4.19) and symmetric nuclear matter energies,
which is an equivalent definition of the symmetry energy [141].

We show in Fig. 4.1 the symmetry energy curves for the Skyrme crystals ob-
tained for the massive model from the previous chapter. However, despite the
energy and baryon density at saturation are correctly fitted, the values for
the symmetry energy multipoles come out too low. Surprisingly, the values
of Sy are indeed quite similar, independently on the model, which might be
a sign of the difficulty on the simultaneous fit of Ej, ng and Sy using Skyrme
crystals.

We have also added a new curve for which we have fixed the standard pa-
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Figure 4.1: Symmetry energy curve of the Skyrme crystals studied in the previous chapter. We also added
a new case (black solid (FCCy/3) and dashed (FCC) lines) which reproduces Sy, Lgym and Ky, using the
standard parameters (2.21) and A\? = 1.5. The red shaded region comes from the IAS constraints for the
symmetry energy obtained from [84], whilst the green area represents the suprasaturation constraints from
the GW170817 event analysis [144].

rameters (2.21) and the sextic term coupling constant has been tuned to fit
the symmetry energy at saturation, with a final value of A2 = 1.5 MeV fm?.
In fact, all the multipoles are quite accurately reproduced with this set of
parameters, however, the energy and baryon density at the minimum deviate
from the correct values, Ey = 822 MeV and ng = 0.22 fm 3.

In general, we find that the sextic term has significant impact in the isospin
inertia tensor already at the minimum of energy. It generally decreases the
values of S(np), which is actually quite hard to fit at saturation if the other
observables are below the 20% of error. Hence, although the results obtained
in this section are highly dependent on the fit of f, and e, small values of the
sextic term, around A2 ~ 1—3 MeV /fm?, seem to be preferred by the symmetry
energy curve. This is indicated not because of the value of Sy itself, but the
sextic term is in particular penalized by the multipole Lgy,,. Nevertheless, the
whole symmetry energy curve obtained from Skyrme crystals is well within
the experimental uncertainties if Sy is well fitted. This is a great result which
is intrinsic to Skyrme crystals and encourages their use to describe INM for
densities above the saturation point.



116 4.1. Quantization of Skyrme crystals

Model A (MeV fm?) | Sy (MeV) | Lyym (MeV) | Kgym (MeV)
Loy 0 22.67 36.03 -71.99
Loye0 3 22.16 30.48 -93.56
Lonco 7 22.26 24.22 2118.43
L

f e 1.5 31.94 46.40 -131.64

Table 4.2: Values of the symmetry energy curve multipoles at saturation for the sets of the parameters given
in Table 3.2 and a new set with the standard parameters of [29].

We may also obtain the symmetry energy curve from the FCC crystal of
skyrmions since it satisfies the symmetries considered for the quantization of
the crystal. The values at the saturation point are the same as those for
the half crystal in Table 4.2, however, an interesting effect is observed in the
L — oo limit.

The asymptotic behaviour of the FCC crystal produced a constant value for
energy in the large L limit, and the same is observed for the symmetry en-
ergy curve. This constant value of the symmetry energy is indeed another
manifestation of the transition to finite nuclear matter explained in the end
of the last chapter. Hence, we may directly compare the asymptotic value of
the symmetry energy with the asymmetry coefficient present in (3.13),

SECO (np = 0) = 24.2 MeV ~ a5 = 23.2 MeV. (4.26)

The value is surprisingly close the experimental fit when the symmetry energy
is well fitted at the saturation point, at least for the FCC crystal. Therefore,
this asymptotic behaviour is an extremely remarkable property of crystalline
configurations in the Skyrme model since it allows to describe symmetric and
asymmetric nuclear matter in the whole range of densities.

4.1.2 Realistic npey matter in Skyrme neutron stars

The inclusion of the symmetry energy in the Skyrme model enables the pres-
ence of an arbitrary number of protons in our system. However, for a consis-
tent description in which protons are present, we must include the Coulomb
electrostatic interaction in the energy. Furthermore, as we mentioned before,
the inclusion of the Coulomb interaction yields an infinite contribution to the
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energy per baryon.

In order to solve this problem, we introduce a negatively charged background
of leptons such that the Coulomb interaction is exponentially suppressed and
we may neglect the electrostatic contribution between neighbouring unit cells
in a first approximation. Additionally, NS are charge neutral objects in which
the system of protons, neutrons and leptons is stabilized via the neutron [
decay and electron capture processes, which is called S-equilibrium,

n—=p+l+7, p+l—=n+uy. (4.27)

Leptons are typically described by a relativistic Fermi gas at zero temperature,
whose energy depends on the number of particles N; and the volume,

4
m; 5
BN V) = S5V [(:c+2x ) — In (x+ 1+:c2>}, (4.28)
where m; is the mass of the corresponding lepton, z = hkpr/m;, and the

dependence on N, is implicit in the Fermi momentum kp = (37r2Nl / V)l/ 5

All thermodynamical properties of interest, like the chemical potential (p;)
and pressure, for the system of leptons may be extracted from the energy

expression,
oF ok
= — =—— . 4.29
Specifically, the chemical potential acquires the simple expression,
=\ (k) +m?. (4.30)

In the outer crust of NS we only expect to have electrons since other lep-
tonic species are unstable under weak interactions. However, since electrons
are fermions, the increase of the density in deeper layers of the NS rises the
chemical potential (4.30) up to p. > m, = 105.658 MeV. At this point muons
become energetically more favourable than electrons, so they start to appear
in the system.

The number of each particle species is solved imposing (-equilibrium and
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charge neutrality, which yield the following conditions,

Hon — Hp == H1 = Hi; l=e,u, (431>
N, =N, + N, (4.32)

respectively. We have introduced in the system the isospin chemical potential
(7 using its thermodynamical definition. The lepton chemical potentials are
already known from (4.30), but the explicit form of 1y may be obtained in two
different, but equivalent, ways from the Skyrme crystal. In one way, one can
introduce a nonzero isospin chemical potential through a covariant derivative
in the Skyrme model, this is formally equivalent to the quantization procedure
explained above [20,212], and p; may be easily related to the isospin energy.
From another thermodynamical point of view, we may rewrite the variables

of our system,

E :ECIaSS(V7 B) + Eiso(‘/y 6) + Ee(va Ne) + E,u(‘/, Nu) - (433)

—pV + ppNp + pinNo + preNe + 1Ny, (4.34)

in terms of other degrees of freedom of interest. Specifically, we may define
N,—N,

the isospin number of particles N; := —=*5—=, which is the same as the third

isospin component 73, and the baryon number B = N, + NN,

E = —pV + upB — pu Ny + preNe 4 1, Ny, (4.35)

Hntip
2

where the definitions up = and gy = p, — pp are satisfied. Then, the

isospin chemical potential is canonically obtained from the isospin energy since

Bé

it is the only one that depends on Ny = —=7,

aEliso h2
Hr = — aNI = —KN]. (436)

Hence, the equilibrium conditions (4.32) become a system of equations, and
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yield the following equation for ~,

hiBee ¥Bee 3
. A”(1—27): [37?2< V“—nuﬂ , (4.37)
3/2
1 FLBCGH 2 my, 2 /
e () ]

which may be solved at every value of the baryon density. For very low
densities, the chemical potential of electrons is too low and we must impose the
condition n, = 0. Besides, electrons quickly become ultrarelativistic particles,
i.e., kp > m, = 0.511 MeV, therefore, we have imposed the condition ., = kg
in the beginning to simplify the expressions.

The main properties of the curve v(np) may be directly extracted from (4.37)
since the main nontrivial behaviour comes from the isospin inertia moment.
As we have seen, in the limit L — 0, the inertia moment vanishes if the sextic
term is not included. From this we conclude that v = 1/2 is the solution in
that limit, implying that we would have symmetric nuclear matter in the inner
core of NS. The sextic term produces a divergence in the isospin moment of
inertia in this limit , then the solution in this case is v = 0, which implies
that all electrons have been captured by the protons and the core is full of
neutrons. This is, indeed, a more plausible situation than without the sextic
term since the increase of the pressure in the center of NS would enhance the
electron capture process. However, it is believed that the proton fraction do
not completely vanishes in the core of NS, due to the appearance of the other
particles. Then, we conclude that the sextic term improves the phenomenology
of Skyrme NS, and for a complete description we need to include other particles
in the system.

In the opposite limit, L. — oo, the isospin inertia tensor always diverges for
the half Skyrme crystals. This yields again a zero proton fraction in the zero
baryon density limit, which is not realistic at all. What we actually expect
in the surface of NS is a lattice of **Fe nuclei 78], since it is the most stable
nucleus, then, the proton fraction in this region of the star is vp, = 0.464.

For this reason, we want to focus in this section on the B = 4N? Skyrme lat-
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tices which reproduces the high density behaviour of Skyrme crystals, but they
have a different description at low densities. The same qualitative arguments
for the proton fraction apply for the FCC crystal of single skyrmions. We first
found that the isospin inertia tensor is not proportional to the identity in the
lattices, but instead it has two eigenvalues, A1 := A3 = Aoy # A3z := Ags.
Therefore, we have to review the previous calculations carried out for an in-
ertia tensor proportional to the identity.

The difference enters in (4.15), where the three components of the isospin
operator are splitted,

. K2+ K2 K2 I2 K2 /1 1
iso — : il 2 5 - + 3 T (439)
2NcellsA1 2NcellsA3 2NcellsA1 2Ncells AS Al

Since the Hamiltonian depends on the third body-fixed isospin angular mo-
mentum, fixing the value of i3 is not enough, and an explicit computation
of the isospin quantum state via the FR constraints is required. However,
the contribution to the energy from this additional term is modulated by
the difference between the two eigenvalues. Then, we propose the relation
A = A3 (1 + ¢€) and expand in perturbation theory to obtain,

) 12 ([A(g — i2>
= . 4.40
2NcellsA3 i 2NcellsA3 ‘ ( )

Moreover, we may find a maximal bound for the contribution to the energy
in this approximation. The third body-fixed isospin eigenvalue takes values
in the interval k3 € [—4,1], then k% < 2. Besides, A3 > A; for all the values
of L considered here, hence € is always negative and it is never larger than
a 20%. Therefore, the linear correction in the Hamiltonian (4.40) is positive,
so it underestimates the symmetry energy, but always strictly smaller than a

20%.

For simplicity in the computations, we neglect the linear correction, therefore,
the main contribution in (4.40), combined with the previous conditions i = i3
and (4.23), in the limit Neys — 00, yields the following expression of the
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isospin energy per unit cell for the Skyrme lattices,

2 192

Fi = 718%;61152' (4.41)
Then, we may study the symmetry energy and the particle fractions for
Skyrme lattices using the third component of the isospin inertia tensor. As
expected, the curve A3(L) settles down to a constant value in the limit L — oo
in the same way as it occurs with the FCC crystal. Furthermore, we may now
conclude that this behaviour implies that the solution to (4.37) is v = 0.5 in
the zero density limit, which is extremely close to the iron proton fraction.
This is an additional impressive result for the Skyrme model since we are still
considering an incomplete description without Coulomb effects. However, this
contribution will slightly suppress the presence of protons, then it would bring
us even closer to the real value.

We consider the set of parameters that fits the symmetry energy for compar-
ison with the FCC crystal,

fr =129 MeV, e=545 A =15MeVim® m; =138 MeV (4.42)

The resulting values for the main observables computed with the a-lattice are
given in Table 4.3. The same values apply for the higher B = 32 and 108
lattices at saturation since they are all the same at the minimum of energy,
but the different asymptotic behaviour of the lattices yield other values for
the asymmetry coefficient. Unfortunately, this coefficient is too high in the
a-lattice, and the smaller isospin inertia tensor of the bigger 108-lattice yields
a larger contribution to the symmetry energy producing an even worse result

for agym.

We show in the left plot of Fig. 4.2 the symmetry energy curve of the Skyrme
crystals and the a-lattice for comparison. The three curves tend to the same
value at high densities, since they finally recover the same half-skyrmion struc-
ture. Although the a-lattice seems to diverge from the crystals curves, this is
an artificial effect due to the logarithmic scale in the x-axis. Indeed, the largest
difference in the symmetry energy for larger densities than the minimum is
smaller than a 2%.
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Ey (MeV) | ng (fm=/3) | Sy (MeV) | Ly (MeV) | Kgm (MeV) | a'?) (MeV)
820 0.21 31.44 43.21 -89.90 27.90

40

30 A

Table 4.3: Values of the INM observables obtained from the a-lattice using the set of parameters (4.42). We
include in the last column the asymptotic value of the symmetry energy curve.

We have also solved the equilibrium equation (4.37) for the three configura-
tions, the results from the a-lattice are shown in the middle plot of Fig. 4.2.

10° 7.0

—— FCCy) /
— FCC
- 6.5
1071 B
=
: L 6.0
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—_— €
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Figure 4.2: Left: Symmetry energy curves for the a-lattice, FCC crystal and its half-skyrmion version. Here,
the transition to finite nuclear matter in the FCC and a-lattice is observed. Middle:. Particle fractions
obtained for the a-lattice, with the limits expected from the analysis of (4.37) Right: The total (classical and
isospin) energy of the three crystalline configurations for realistic npey matter.

As we had anticipated, the proton fraction (and because of the baryon number
conservation the neutron fractions too) tends to 1/2 in the zero density limit.
Along the curve the number of electrons and protons is the same to ensure
charge neutrality, until muons become energetically favourable at ng/ng ~
0.85. Finally, at high densities, due to the sextic term impact on the inertia
tensor the proton fraction tends to zero.

Lastly, we may compute the total energy resulting from the classical contribu-
tion of the lattice and the other contributions coming the isospin quantization
and lepton Fermi gases (4.33). The energy of symmetric nuclear matter is ex-
pected to have a minimum of energy in the point (Fy, ngy), but once asymmet-
ric f-equilibrated npep matter is considered, the minimum should be sharply
softened or even removed, such that the resulting NS develops a crust. The
Skyrme lattices are great candidates for this to occur given that they have
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the smallest asymptotic value. This is shown in the right plot of Fig. 4.2 for
the three configurations again. However, the difference in energy between the
minimum and the energy in the L. — oo limit is still too high in the a-lattice
to completely erase the minimum from the isospin contribution. Instead, the
minimum is slightly displaced and an interesting effect is observed. Although
we still have a displaced minimum, the energy curve develops a bump which
is above the minimum by a 6%, then the energy asymptotically decreases in
the L — oo limit. This asymptotic behaviour is a great feature of this energy
curves and it is related to the smooth vanishing of the isospin contribution in
the v — 0.5 limit.

The bump in the energy curve may be directly associated to the high binding
energies in the Skyrme model. However, the correct asymptotic behaviour
of the energy curve suggests that the presence of this bump might also be
related to the compression modulus problem, which is a severe problem in the
Skyrme model when it comes to reproduce INM. We will explain in more detail
this problem in the last section of this chapter, where we propose a solution
for it, but the compression modulus is basically related to the curvature of
the energy curve at the minimum. If the compression modulus is too high,
which is the case in the Skyrme model (~ 4 times the experimental value),
the energy curve rapidly increases around the minimum. Thus, the isospin
corrections cannot compete with this growth in the classical energy, so that
the total energy increases. If the curvature around the minimum is, instead,
sufficiently smaller, then the total energy would decrease, erasing the minimum
and developing a crust.

4.1.3 Analysis of the parameters

The computation of the symmetry energy curve with the crystals opens the
possibility to consider this new observable as a source of information to fix the
values of the parameters present in the Skyrme model. In Chapter 3 we used
the energy and baryon density at saturation to fix the pion decay constant
and the Skyrme parameter. The sextic term coupling A\?> was used as a free
parameter to study the effects that it had on the NS maximal masses. In
the previous section, we have seen that A\ may be tuned to fit the symmetry
energy at saturation and the higher multipoles. Then a natural exercise is to
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Figure 4.3: Isospin inertia moment curve of the FCC, /o Skyrme crystal with and without sextic term. We
show the numerical data (dots), fitted via the parametrization (4.12) (dashed lines) and the PS approximated
curve (solid lines). The minima of the energy curves are represented by the crosses, where the PS is still an
accurate approximation.

check if the set of three parameters in the Skyrme Lagrangian can be used to
fit the three observables simultaneosly at the saturation point.

From the results of our numerical simulations we have observed that the
FCC,y crystal displays an almost perfect scaling property [24] with the unit
cell length. Recall that this property is stronger than the fact that each E (L)
curve may be fitted by (3.11), it means that each of the terms in the energy
functional scales with L independently as F; oc L="3, where i is again the
number of spatial derivatives appearing in that particular term. The values of
the perfect scaling constants, which we have labelled by K;, are then universal

in the sense that they will not change for different values of the parameters.

Furthermore, this perfect scaling property is a characteristic of the field con-
figuration, and not only of its energy. It is observed that also the isospin
moment of inertia of the unit cell displays a sufficiently well perfect scaling
for the minimal energy configuration, which we have identified with the sat-
uration point. This is important in our analysis since we also want to fit the
values of the symmetry energy at saturation.

Although the scaling is not perfect, in general the biggest deviations from
the full numerical values of energy start far from the minimum, at which the
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perfect scaling fit is most precise.

Thus, we take advantage of this property in order to fit the magnitudes ob-
tained from generalized Skyrme crystals to their physical values (up to a
certain error). We do so following an iterative process based on five main
steps:

1. Due to the perfect scaling property, the (adimensional) energy follows the
curve (3.12), and the isospin moment of inertia approximately satisfy the
expression (4.12) with A. = 0, see Fig. 4.3. The values of A; are again
"universal”, i.e., they do not depend on the parameters or on L. Hence,
these values are obtained from the contribution of each term indepen-
dently, for the same choice of the parameters and length of the unit cell
length L as we did with the energy constants in Table 3.1. The values of
the new A; universal scaling constants in the generalized Lo450 model are
shown in the table below,

n 2 4 6
A, 1 0.0380 | 1.3931 | 0.8831

Table 4.4: Perfect scaling parametrization constants of the isospin inertia tensor

2. We fix the energy scale E to an arbitrary value in MeV. This is equivalent
to fixing one of the three free parameters of the model, for instance, f;.

3. Then, we calculate Ly by minimizing (3.12), and the values of Ejy, ng, Sy
and Lgyy, for different pairs of values (e, A?).

4. When we find a set of parameters (fy, e, A\?) that fits the nuclear magni-
tudes within their respective errors of at most 15% then we calculate the
corresponding EOS and solve the TOV system to obtain the mass-radius
curve.

5. Finally, we accept the sets of values that satisfy the constraints, M., >
2Mo and Ry 4, < 12.5 km. These constraints are motivated from pulsar
measurements [33, 87, 198]. We find that there is more than one set of
parameters, so there is a residual freedom in the choice of these values that
satisfy the nuclear physics magnitudes at saturation and NS observables.

The scan of parameters underscores the motivation for the generalized Skyrme
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Figure 4.4: Symmetry energy of Skyrme crystals as a function of the density. We show 23 different curves
from the scanned values. The shaded regions constrains the symmetry energy at sub-saturation [84] and
supra-saturation [144] densities.

model. The nuclear physics magnitudes are better fitted for very low or even
null values of A\? since the sextic term reduces the value of the symmetry en-
ergy multipoles, confirming what the result of the previous section suggested.
However, those sets of parameters are not accepted since they do not satisfy
the maximum mass requirement. This reflects the importance of the sextic
term in the extension of the Skyrme model to very high densities as inside

NS.

In Fig. 4.4 we plot 560 symmetry energy curves obtained from a first quick
scan in blue, and in red we plot 23 representative cases from the larger set
which have been fully minimized. We also represent at densities larger than ng
some restrictions obtained from the most recent constraints of the analysis of
neutron star observations, and at densities smaller than the saturation point
which are more restrictive.

We have obtained the EOS from these 23 sets of parameters and compare
them with some constraints obtained from a recent analysis [30]. In that work
they build a huge number of physically well motivated EOS and compare
the resulting NS with pulsars and GW observations. They conclude that the
conformal limit in the speed of sound (¢ = 1/3) is expected to be surpassed
inside NS. In Fig. 4.5 we show the EOS obtained from our analysis and a
good agreement is found with their results. The majority of our EOS exceeds
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Figure 4.5: The EOS for the same 23 values shown before. In black we plot the resulting EOS without isospin
effects, whilst in red we consider npeu matter. We find a good agreement between our EOS and the shaded
regions obtained from the analysis in [30] at high densities. The purple region is an estimation for the range
of the maximum central density inside NS, and the dots represent the maximum central energy densities in
our models.

the conformal bound too, and all of them lie inside the constrained region
in the (p,p) diagram. We have cut the low density region in Fig. 4.5 due to
the absence of a crust in our EOS. However it is remarkable how the Skyrme
model correctly describes the high density regime, which corresponds to the
core of the NS and hence the main responsible for the mass of the star. Also
the BCPM [208] EOS is represented as an accepted candidate to compare with
in the diagram.

In a more extensive analysis of the parameters, we found ~ 10,000 accepted
sets of parameters. In order to obtain these values, we made the scan with
the following steps: AE, = 5 MeV, Ae = 0.01, AX?> = 0.01 MeV fm?. As
briefly mentioned before, the constraints on the symmetry energy yield rather
stringent upper bounds on the sextic term coupling constant, we find that
A2 < 3.4 MeV fm?. Nevertheless, we remark that a lower bound for this
constant can also be obtained from the maximum mass requirement of neutron

star EOS [19]. In this analysis we have found a lower bound of A\? > 0.29 MeV

fm3.

We solved the system for the same 23 cases and in Fig. 4.6 we plot the MR
curves, again with and without isospin effects for each case. The main con-
clusion is that the isospin always increases the radii of the stars. On the other
hand, the isospin increases the masses of the stars with M < 2.3M,, for larger
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values the masses are reduced. This effect is also visible in 4.5, where the red
curves lie below the black lines at lower densities, hence the reds are stiffer,
whilst for very high densities the situation is slightly the opposite. Another
keypoint is that all the sets of parameters obtained in this analysis allow to
have a wide range of maximum masses, M. ~ 2 — 2.5M,. This was an im-
portant feature in the NS obtained in the last section, and it is still possible
using the fully minimized Skyrme crystals. This is of great important for the
Skyrme model since it would be able to describe possible high-mass measure-
ments like [4]. In addition, despite the difference in the maximum masses, the
radii of the stars do not change as much when choosing some parameters or
others, Ry 4, ~ 12— 13 km. However a final comment about the radii of the

NS requires the presence of a crust, since it will affect the radii of low mass
NS.

As can be seen all the black lines satisfy (in good approximation) our My
and Ry 4p, restrictions although they were imposed on the mass-radius curves
resulting from the PS approximation. We have checked that the mass-radius
curves obtained via the PS approximation are indeed quite similar to those of
the fully minimized results for these 23 cases, so it confirms the PS approxi-
mation as a powerful and accurate tool for skyrmion crystals.

We also plot in 4.6 the most likely mass-radius relations for the NS correspond-
ing to GW170817 [2] and GW190425 [4] events. The green regions represent
the estimations for the mass and radius values of J0030+0451 (bottom) [164],
and a more recent analysis of the PSR J07404+-6620 mass and radius from
NICER (top) [198]. The purple region constraints the mass-radius curves
from the statistical analysis done in [30], besides they also give an estimation
for the maximum central energy density that a NS may support. We also
do the comparison in Fig. 4.5 between the range of values that they obtain
(purple region) and our values (dots).

The greatest difference between the NS obtained using the interpolation be-
tween the submodels in the last section and those obtained from the mini-
mization of the generalized Skyrme model using crystal solutions is found in
the radii. Although we still have freedom to reach very high masses ~ 2.5M,
the radius increases when we consider the full model. The low-mass region
(~ 1.4Ms) in the MR curves of Fig. 2.16 and Fig. 4.6 differ due to the pres-
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Figure 4.6: MR curves for the 23 representative sets of parameters considered. The colours of the lines
represent the same as in Fig. 4.5. The shaded regions correspond to GW (blue and orange) and pulsar (green)
constraints.

ence of a crust in the first case. We do not include a crust in the EOS shown
in this section since it would be more interesting to consider an EOS which
already has a crust entirely obtained from the Skyrme model. This is still an
open problem due to the behaviour of the Skyrme crystals at low densities,
but the study of the new lattices presented in the first section may lead to the
correct description of the full EOS within the Skyrme model. Nonetheless we
have seen that the inclusion of a crust via the simple quadratic interpolation
(2.90) increases the radius of the NS around 1 km.

On the other hand, the 2.5M, NS radius in Fig. 2.16 is around 11.5 km, while
the radius for the same mass in Fig. 4.6 reaches 13 km. These high-mass NS
are hardly affected by the presence of a crust, so the numerical simulation of
the Skyrme crystal leads to a stiffer EOS. Nevertheless, the high-mass region
of the last plot may be sharply improved with the inclusion of strangeness
degrees of freedom in the system. Taking into account this effect provides
even more realistic EOS, besides it is known that it will decrease the maximal
mass as well as the radius, leading to a softer EOS at high densities.

4.2 Kaon condensation in Skyrme neutron stars

The computation of the symmetry energy enabled a natural way to include
leptons in Skyrme crystals, which corresponds to a more realistic description of
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NS. However, it is believed that in the deepest layers of NS, new particles like
A resonances [145], strange degrees of freedom [224,228] or even deconfined
quark matter [159,160] would appear similarly as muons, which become more
energetically favourable than electrons.

Specifically, the appeareance of kaons and their subsequent condensation was
firstly proposed in 1987 by Kaplan and Nelson [128], and it has been exten-
sively studied [194], even in the present. The idea is based on the sufficient
reduction of the in-medium mass of the antikaon K, due to the interactions
between the nuclear potential. Besides, the appearance of kaons is a phase
transition which may be of first or second order [101], with great impact on
the masses of NS. Hence, the study of this phenomenon might shed some light
not only in the internal composition of NS, but also in the parametrization of
the nuclear potentials.

Actually, the presence of strange degrees in NS is a wider study in which also
hyperons may be considered. Simulations have inferred that baryonic particles
with strangeness may be produced around 2 — 3 times the saturation density,
whilst kaon condensation is believed to occur at 3 — 4 times ny. However,
both processes provide, as the main effect, the decrease the maximal masses
of the NS, since the EOS gets softened. This, indeed, may be problematic for
some EOS which cannot support NS with maximal masses much larger than
those already measured ~ 2M, and it is commonly known as the hyperon
puzzle [58,225].

In this section we perform a detailed study on the possibility to have condensa-
tion of kaons in the FCC, 5 Skyrme crystal, the order of the phase transition,
and how this affects the resulting NS.

4.2.1 The Bound-State approach of the Skyrme model

Throughout this thesis we have been working with the Skyrme model based on
the N; = 2 isospin symmetry, which is able to describe successfully nucleons
and their spin and isospin excitations. Including strangeness in the model is
translated into adding one more flavour.

First attempts considered the most natural extension, which is the SU(3)
flavour symmetry in the model. However, it seems that treating strangeness
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in the same way as isospin does not produce suitable results [80,191]. This
failure is not quite surprising given that the mass of the s quark, mg; ~ 100
MeV, is much higher than the v and d quarks, m, ~ mg ~ 4 MeV, to consider
the full symmetry. Instead, Callan and Klebanov [72,73,131] introduced the
strangeness as SU(3) perturbations of the non-strange SU(2) solitonic solu-
tions, in the so-called Bound-State model. This approach remains as one of
the simplest and most successful models for hyperons due to the agreements
in the masses and the correct identification in the particles spectrum. The
idea of this procedure is the inclusion of strange mesonic degrees of freedom,
kaons, in the model and construct topologically nontrivial solutions from the
pionic theory with nonzero kaon solutions. We want to develop this formalism
specifically in the FCCy /; Skyrme crystal to derive an EOS in which kaons are
included. This would imply that the Skyrme model is able to produce a quite
complete description of the high density regime of NS matter.

The starting point in the Bound-State model is the inclusion of the kaon fluc-
tuations as the SU(3) extension on top of a purely pionic SU(2) skyrmion
background. Two different ansidtze have been proposed to describe the field
configuration. Although many static properties, studied so far, yield the same
results in both cases, it may be argued that form factors will come out differ-
ently [177]. We will consider the one proposed in [54],

U =/ UxUr\/ Uy, (4.43)

U, = (“ O), Uy = exp{i2\/§D}, (4.44)

0 1 fx

which differs from the original proposal by Callan and Klebanov. In this
parametrization, the pionic field U, is the trivial SU(3) embedding of the
usual SU(2) Skyrme field, here denoted by u. The fundamental kaon field is
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imprinted in the D matrix, which has the form,

0 K
D= (K o)’ (4.45)

K = (I; ;) , K'= (K ,K"). (4.46)

The Lagrangian is extended by a ne potential term which accounts for the of
the pions and kaons,

2

Ly =3 (m2 +2m3) Te{U — I} + (4.47)
Y5 (2 = mi) T (U + U}, (448

where myg = 490 MeV is the kaon mass, and Ag is the eighth component of
the Gell-Mann matrices A4, which are the su(3) Lie algebra generators.

Furthermore, in the SU(3) case, the Wess-Zumino-Witten (WZW) term [230,
232,233] must be included in the total action. Although it was first introduced
to break the C, P and T transformations, this term describes the parity-
violating kaon decay KK~ — 7nta’7r~. Additionally, it also needs to be
included when the Skyrme model is coupled to the electromagnetism since it
accounts for the 7° decay into a pair of photons. Actually, it can only be
expressed in terms of a five-dimensional action term,

N,
24072

Swzw = —i &z P Te{L,L,LoLsL,}, (4.49)
where N. = 3 may be directly identified with the number of QCD colour de-
grees of freedom. Nevertheless, it is finally expressed as an integral in the stan-
dard four-dimensional spacetime integral using the Stokes theorem. As a fur-
ther comment, this term has crucial importance regarding the spin-statistics
of skyrmions, however, this only applies in the exact SU(3) symmetry since
it vanishes in the SU(2) case.

Kaons become energetically favourable when g, is larger than the kaon mass.
If this condition is attained, since kaons are bosons, they occupy the lowest
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energy state in the large pressure regime of NS, forming a condensate. Then,
we follow the standard formalism for the condensation of a scalar field [204]
to describe the kaon field (4.46). We will focus on the condensation of the
electrically charged kaons, hence we impose the conditions K = K° = 0. A
condensed scalar field is determined by the vacuum expectation value (VEV)
(K*), which is constant in space, and has a simple time-dependent phase,

(K=) = geriint, (4.50)

The constant field VEV, ¢, becomes nonzero when the kaon condition is sat-
isfied, it will change for different values of the lattice length, and its specific
value will be determined by the minimization of kaon potential energy. The
phase, ux, is the kaon chemical potential, and it will be fixed by the equilib-
rium condition to the electron chemical potential. We introduce (4.50) in the
generalized SU(3) Skyrme field and use the relation D3 = ¢?D, which is valid
for the specific condensed kaon field. Then, we redefine the field ¢ — *J{—fgb and
obtain,

N ( oS ¢ 0 iei“Ktsingb) (4.51)

ie xktsing 0 cos¢

We assume that the kaon backreaction to the classical configuration of the
Skyrme crystal is negligible. Then, the skyrmion solution and the classical
energy contribution remain unaffected, but there will be additional contri-
bution to the total energy when kaons condense. Introducing the extended
Skyrme field (4.43) in the Lagrangian we obtain the usual Skyrme Lagrangian
and an additional potential term which depend on the kaon field ¢,

SSkyrme(U) + Swzw(U) == /dtd?’l’ £2460(u) — /dt VK(¢) (4.52)

The new term comes from the time dependence of the kaon field (4.50), it
is often called the optical kaon potential, and we will split it in different
contributions,

1

Ve =
K= opn?

/ dx [V}f) IS VAO VACIS vl R AL ) (4.53)
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Each contribution comes from each term in the Skyrme lagragian, introducing
the explicit expression of the field configuration (4.43) and the kaon condensed
field ansatz (4.50) we obtain,

Vi) = 2 sin? ¢[(1 + 0% + m3) sin® ¢ — 2(1 + o cos® )], (4.54)

Vfg) —2,uKs1n2cb{ + 0)0n? cos® o+

+2[9,0%(1 — 73) + 03 (1 — 0°) + 20m30;00;m3) sin® ¢ |, (4.55)
VI({6) = —/ﬁ(% SiIl4 gb(@ﬂg(?ja - 82'0'83'77'3)2, (456)
2
0 m
V[(() f2 —55(1+ o) sin’ ¢, (4.57)
VW) = i N, Bee sin? . (4.58)

The quadratic, quartic and potential terms require lengthy but straightfor-
ward computations. However, for the WZW and sextic terms, the Lie algebra-
valued differential forms formalism is extremely helpful. An extensive deriva-
tion of both terms using this formalism may be found in [21].

Finally, we have to consider quantum isospin corrections as we did in the
previous sections. Since kaons also have isospin quantum number they will
contribute to the isospin inertia moment. We perform the new time-dependent
isospin transformation on the extended Skyrme field,

U — AQUANE),  A(t) = (aét) 2) | (4.59)

where a(t) is the usual SU(2) isospin transformation.

The expressions of the excited currents are equivalent to those obtained before
(4.5), but in this case the time component of the Maurer-Cartan form is sep-
arated into two different contributions, one comes from the time dependence
of the kaon field (which yields the potential term Vi computed before) and
the other from the isospin transformation,

UtaU — ALAT + AU [ATA, U] Al (4.60)
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The angular frequency is now defined in terms of the Gell-Mann matrices
ATA = %wa)\a, where a = 1,2,3. The angular frequency is again a three-
vector since the simple extension (4.59) of A implies that ATA belongs to the
su(2) subalgebra of su(3). Introducing everything in the Lagrangian we obtain
the corresponding kinetic energy contribution,

1

T =
2472

/d% [—% (Tr{L3} + 2 Tr{ LTy }wa + Tr{T, T} }waws)
] . (4.61)
-3 (Tr{[(Lo + Tuwa), Li) [(Lo + Tows), Ly]}) + 4n'es (B') |,

which has an equivalent expression to (4.2), quadratic in the angular frequency,
and an additional contribution linear in w,. We have defined T, = %U f [Aa, U],
equivalently as before.

Again, we identify the kinetic energy with an isorotational energy, from which
we may extract the isospin inertia tensor,

1
T = §wa/\abwb — AWy, (4.62)

and the isospin kaon current A,. Both expressions are rather straightforward
to obtain,

A= [ @ =TI — ([T, LT L}

08—687”“ Te{Ty Loy Lo eirs Tr{TjLTLS}} , (4.63)

A, = / B3 (= Te{ LoT,} — Te{[Ty, L] Lo, Lel}—
%elmn Te{ Lo L Ln }eirs Tr{TaLTLS}] . (4.64)

As before, the symmetries A; (3.4) and Aj (3.5) of the Skyrme crystals produce
an isospin inertia tensor proportional to the identity. However, when the kaon
field is nonzero, this property is lost and the isospin inertia tensor becomes
anisotropic, with two different eigenvalues, A := Aj;; = Ay and As. Besides,
the operator A, is also excited, but the only non-vanishing component is A :=
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Az and the others, A; 9 are zero. This produces a different third component

of the isospin angular momentum,
K3 = Asws + A, (465)

which yields the following Hamiltonian,

N n 2 2
g ke (K-
2A 2A\3 '

(4.66)

This Hamiltonian is similar to the one obtained from the Skyrme lattices
(4.39) with an additional scalar term. Following the same arguments we finally
obtain the quantum energy of the Skyrme crystal with kaons,

h?B? A?
E uantum — —cell52 - 4.67
quant 8A; 2A3’ (4.67)

where the first term is the isospin energy obtained previously, but now the
isospin moment of inertia depend on the kaon field.

The derivation of the explicit expressions for A3 and A requires a careful treat-
ment, and the group properties of the Skyrme field must be used several times
in some key points. We finally obtained the following simplified expressions,

2 2 in2
AP =T ; 201+ cos? §)2 + (1 + o) i%) : (4.68)
Agl) = 2(1 4 cos? @) [(1 — 13)0i0” + om30,00;m3) + (0 > 773)} +
.2
+0m>(1+ o) = f(b) :
(6) M%(% 2 2 2
A3 = A (1 + cos (qb)) (8@7’(’3(%‘0’ — (%aaﬂrg) (469)
.9 9
A®) = —iK (W% + ﬂg)(cos4 o—1)+ (1+ U)sm 2( ?) ; (4.70)
AW = 21 [2(1 - cos’ ¢) (W%@ﬂ% + M0 — 2m madym O
N 2 2
—om* (i + 73)) + +om*(1 + U)M], (4.71)

4
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A©) = z”u[;CG(l + cos? ¢) sin® ¢ (030,00 — 9;00;m3)? (4.72)
AWZW) — _ NocheH sin? (¢) (4.73)

4.2.2 Kaon condensation in neutron star cores

When the kaon field develops a nonzero VEV, apart from the neutron decay
and lepton capture processes of (4.27), additional processes involving kaons
may occur:

n—-p+K, | -K 4y (4.74)
such that the chemical equilibrium conditions

fin = Py + [, = [ (4.75)

are satisfied. The last expressions are the extension of (4.32) to the condensate
phase.

The total energy within the unit cell may be obtained as the sum of the
baryon, lepton and kaon contributions:

E = Eclass + Eiso(fya ¢) + Ee(Ne) + EM(NM) + QK(MKa ¢) (476)

We remark that the above expression does not fully correspond to the (rel-
ativistic version of the) internal thermodynamical energy for nonzero kaon
condensate. The reason is that the kaon chemical potential ux has been in-
troduced as the independent variable in the system, whereas the chemical
potentials p; of the remaining particles are functions of the corresponding
particle numbers, N;, as must be the case for an internal energy. We have
combined the contributions coming from the optical potential and the quan-
tum energy in the same term,

A2

clpre, 0) = Vie = 55 (4.77)

which depends on the condensed kaon field ¢ and on the kaon chemical po-
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tential through the explicit dependence on ux of both Vi and A.

Now we want to determine the values of the proton fraction and the kaon
condensate that minimize the total energy for a given baryon density np
(or equivalently, fixed L) under the modified S-equilibrium (4.74). For this
purpose, we perform the systematic thermodynamical derivation of the equa-
tions. We first define the new degrees of freedom, Ng = N, — N, — N, and
B = N, + N,,, and we perform a Legendre transformation to define the ther-
modynamical grand potential,

Q(B, 1. ) = E(B, No, ¢) + 1. No, (4.78)

where we have already imposed the equilibrium conditions (4.75) implying
pr = pe = p, = pg. Recall that the isospin chemical potential is related to
the proton fraction through (4.36), and therefore p, too. The grand potential
must now be minimized with respect to its variables, i.e. ¢ and .,

o9
Ote

_ o0
o

= 0. (4.79)

np,te

ng,¢

Using (4.76) we have:

2 232 4 (42 — m2)3/2 r
g e T M)t Ut Z M) | mg OBk =0, (4.80)
3m2h3 4 8uK e

Ve AOA 0Ny (A2 2
A _ N\ 181
96 As 06 00 <2A§ onz) = (4.81)

The first expression is precisely the charge neutrality condition, where we have
partially recovered the proton fraction in the first term for clarity. The second
one is the minimization of the grand canonical potential with respect to the
kaon field. We note here that we drop the ultrarrelativistic consideration
for electrons since the appearance of kaons may decrease hugely the electron
fraction. By solving the system of equations (4.80) and (4.81) for u. and ¢ we
obtain all the needed information for the new kaon condensed phase. Then we
may compare the particle fractions and energies between both phases, which
we will denote by npeu and npepk .
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Before solving the full system for different values of the lattice length L, we
must obtain the value of the length L.,q at which kaons condense. This value
is indeed important since it will determine whether or not a condensate of
kaons will appear at some point in the interior of NS. This is accomplished
with the same system of (4.80) and (4.81) by factoring the sin¢ from the
second equation and setting ¢ = 0. Then we may see the system as a pair
of equations to obtain the values of v.onq and Lcong, the values of the proton
fraction and the length parameter for which the kaons condense.

We show in Table 4.5 the density at which kaons condense for different values
of the parameters. All the values are given in units of MeV and fm, respec-
tively.

label f7r € >\2 EO no SO Lsym ncond/nO
set 1 |133.71|5.72|5.00 | 920 | 0.165 | 23.5 | 29.1 2.3
set 2| 138.11 | 6.34 | 5.78 | 915 | 0.175 | 24.5 | 28.3 2.2
set 3| 120.96 | 5.64 | 2.68 | 783 | 0.175 | 28.7 | 38.7 1.6
set 4 1139.26 | 5.61 | 2.74 | 912 | 0.22 | 28.6 | 38.9 1.6

Table 4.5: Sets of parameter values obtained from the extensive analysis in the last subsection and their
corresponding observables at nuclear saturation.

We choose some representative parameter values such that, for the parame-
ter sets 1 and 2, the energy per baryon and baryon density at saturation are
reasonably close to their experimental values, whereas the sets 3 and 4 rea-
sonably fit the symmetry energy and slope at saturation. The aim is to study
the impact that the different observables have on the condensation density.

In Fig. 4.7, we show the F(L) curves both without and with kaon condensa-
tion, in dimensionless Skyrme units. It is clearly visible that for sufficiently
small L a nonzero kaon condensate is preferred. In the same figure, we also
show the resulting particle fractions, where a significant increase in the num-
ber of protons is clearly visible when kaons appear. In Fig. 4.8 we plot the
symmetry energy as a function of np with and without condensed kaons.

Finally the interest of this work is to study the impact that kaon conden-
sation have on the Skyrme NS, for which the EOS must be obtained. The
npep matter case is easy to obtain using (4.34) for different values of L after
solving the [-equilibrium and charge neutrality conditions for v. However,
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Figure 4.7: Left: Energy vs lattice length for the set 1 of parameters. The energy is shown for the classical
crystal without isopin contributions (green), isospin asymmetric (npep) matter with (black) and without
(blue) kaons. We also plot the completely asymmetric neutron matter (magenta) which lies slightly above the
blue curve. Right: Particle fractions as a function of baryon density for the set 1 of parameters, both with
(solid lines) and without (discontinuous lines) kaon condensate.

once we include kaons, the change in the energy curve Fig. 4.7 may lead to a
first or second order phase transition. To distinguish the order of the phase
transition in our case, we need to know accurately the pressure near the con-
densation point. Therefore, we computed more points for the energy near the
condensation value with higher accuracies, and we obtained the pressure using
a numerical derivative. We conclude that the kaon condensation produces a
first order phase transition for our choices of parameters in the Skyrme model.
This can be seen in the right plot of Fig. 4.9, where we show the EOS for our
best accuracy and for the set 1 of parameters. Clearly, there is a non-physical
region which must be bridged by a first order phase transition. Similar results,
indicating a first-order transition, are found for the other parameter sets.

The phase transition to kaon condensation has been investigated previously,
e.g., within a relativistic mean field theory framework [101,189]. The kaon
optical potential, which is the relevant parameter for the phase transition, was
allowed to vary within a rather large range in these investigations. This lead
to a large variety of possible situations, from a second order phase transition
for a weak optical potential to a strongly first-order transition for a strong one,
where the number of protons outweighs the number of neutrons at sufficiently
high density. For intermediate optical potentials, their results are similar to

ours.
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Figure 4.8: Symmetry energy of nuclear matter as a function of baryon density for the sets of parameters
considered in this work. The thick line represents the symmetry energy when kaons are considered in the
system and the dashed line does not include kaons.
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Figure 4.9: Left: Energy per baryon against the side length of the unit cell and their interpolations. Right:
pressure against the energy density, from which we conclude that there is a first order phase transition. Both
plots are for the set 1 of parameters.

Maxwell construction vs Gibbs construction

The Maxwell construction (MC) is typically used to obtain a physical equa-
tion of state when a first order transition is present. Indeed, the MC has been
already studied in the Skyrme crystals context to describe the transition be-
tween crytals with different symmetries [24]. This construction is based on a
mixed phase of constant pressure which connects the two solutions. However,
the MC is only correct when there is a single conserved charge (in this case,
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the baryon number) for which the associated chemical potential is enforced to
be common for both phases in the mixed phase [99]. If, instead, an additional
charge is conserved, like the electric charge in the case of npeu matter, the
Gibbs conditions for the phase equilibrium,

pt=p" ui=u', i=DBgq (4.82)

cannot be both satisfied in a standard MC. In the last expression pp and g,
represent the chemical potentials associated to the conserved baryon and elec-
tric charges, respectively. Instead, one should perform a Gibbs construction

(GC) [99,101]. Indeed, the GC has also been proven useful in the context of
a hadron-to-quark phase transition inside NS [51].

We may write the chemical potential of each particle species as a linear com-
bination of the chemical potentials associated to the conserved charges of our
system:

pi = Bipp + qifig, (4.83)

where B; and ¢; are the baryon number and electric charge of the particle
species 7. Then we might identify the baryon and electric charge chemical
potentials with the neutron and electron chemical potentials respectively. The
main difference between MC and GC is that, in the mixed phase, the first one
imposes charge neutrality locally, 7.e. both phases are neutral independently,
however in the GC it is imposed globally in the mixed phase. Considering a

volume fraction x of the kaon condensed phase, charge neutrality is imposed
in the GC as:

ny" = (1—x)ny +xn,; =0. (4.84)
The mixed phase in the GC is calculated by identifying first the contributions
to the pressure and charge densities in each phase separately. Then we have
to solve the system of equations composed by (4.82), (4.84) and (4.81). We
use the unit cell length parameter of the first (npeu) phase Ly as the variable
defining our position in the phase diagram, then the unknowns are the length
in the second (npepK) phase Ly, the proton fractions 71, v, the kaon field ¢
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and the volume fraction Yy.

We remark that we assumed in our calculations of the kaon condensate that
the backreaction of the condensate on the crystal is negligible, such that our
two phases are always considered in the same classical crystal background,
and the energies per baryon of the two phases are compared for the same
length L. As a result, we always should have L; = Lj; and, consequently,

nly = nll by construction. On the other hand, the relation between L and

the thermodynamical variables p, p; and ¢ used in (4.82), (4.84) and (4.81)
is quite nontrivial in both phases. We, therefore, treat L;; as an independent
variable in our numerical calculations. We find that always L; = Ly within our
numerical precision, which provides us with an additional consistency check
both for our numerics and for the thermodynamical transformations we used.

The results are shown in Fig. 4.10. Specifically, in the left plot of Fig. 4.10
the energy per baryon is shown as a function of the lattice parameter L both
for the two pure phases and for the mixed phases resulting from a MC and
a GC, respectively. We find that the mixed phase of the GC, and hence the
values at which the kaon field becomes non-zero, starts at a smaller density
than the value obtained in Table 4.5. This is also found in [101], for which the
GC mixed phase extends to a larger region than the one obtained from the
MC, because the mixed phase in the GC no longer is for constant pressure.
In our case, even the minimum of E(L) is shifted to slightly lower values and,
hence, the use of the GC affects the low density regime of the EOS.

Once the energy is computed, the EOS is obtained in the standard procedure
and the TOV system of equations may be solve to study the impact that kaons
have in the Skyrme NS. The results of this computation are plotted in the right
panel of Fig. 4.10 for the 4 sets of parameters. We compare the results obtained
between the MC and GC as well as with the EOS without kaons but we also
include the same GW and pulsar constraints from the previous section in the
MR diagram. The first observation is that the addition of kaons to the EOS
agrees with the expectation, reducing the achievable maximum mass. This
represents the hyperon puzzle, in which the appearance of new strange degrees
of freedom softens the EOS such that it may not lead to sufficiently massive
NS (~ 2M). As can be seen, this is not the case in the generalized Skyrme
model since we may obtain very high masses easily due to the contribution of
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Figure 4.10: Left: FE(L) curves for the two phases and the two different constructions, for set 1 of the
parameter values. Right: MR curves of NS with a kaon condensed core. The different sets of parameters
that we consider are shown with different colors. Solid lines represent npep matter, dashed-dotted lines are
obtained with a MC and the dashed with the GC.

the sextic term. Furthermore the radii of NS are also reduced, which benefits
our concrete model since the radii for skyrmion crystals are in some cases too
large.

The main difference between the two different constructions is that the MC
starts at a given density, hence it deviates from the npep EOS at a certain
mass. On the other hand, since the GC changes the location of the minimum,
it leads to different results also in the low mass region. However, both con-
structions practically merge in the high masses region, in which they follow
the same npepK EOS.

As already explained, the thermodynamically stable region of the E(L) curves
and the corresponding EOS based on Skyrme crystals is L < L, or, equiva-
lently, ng > ngy. As a consequence, NS based on Skyrme crystals have ng = ng
at the NS surface or, in other words, Skyrme crystal NS have no low-density
region (outer core and crust).

It is possible to add a low-density region to the NS by joining the GC equa-
tions of state of the Skyrme crystal with a standard nuclear physics EOS for
low densities as we explained in the second chapter of this thesis. This compu-
tation is performed in [21] using the same smooth interpolation between our

kaon condensed Skyrme crystal EOS and the BCPM [208] EOS, with the value
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of p, as the point where both EOS cut. In terms of the baryon density, the
joining occurs at nj ~ 1.1ng for the parameter sets 1-3, and for nj ~ 1.2ng
for the set 4. Nevertheless, we do not show the results from this effective
construction since the goal of this section was the correct description of the
high density regime in the EOS, which is the region affected by the presence
of kaons.

4.3 The inclusion of p mesons in the Skyrme model

Throughout this chapter we have improved the description of matter inside NS
by introducing new particle species in a consistent fashion entirely within the
Skyrme model. However, even more particles are expected to be important
in nuclear interactions and specially inside NS. Specifically, the inclusion of
other higher-mass mesons to mediate the interactions between nucleons is
crucial in many theoretical approaches for nuclear matter. Indeed, it was
argued by Witten that the deviations in the nuclear observables computed
from the Skyrme model may be due to an incomplete theory of mesons.

Many extensions of the Skyrme model with vector mesons were proposed to
improve the results of the solutions [26,27,161,163]. Specifically, the inclusion
of p mesons as an additional field with a particular interaction term with
the pions in the Skyrme model was first proposed by Adkins in [26]. This
is, indeed, the most natural choice since these are the next lightest mesons
(m, = 775 MeV) after the pions, however, the results obtained in this work
were not so promising.

The inclusion of vector mesons in the Skyrme model gained substantial interest
again from a BPS theory of skyrmions coupled to vector mesons proposed by
Sutcliffe in [218]. Although this theory is obtained in the holographic approach
it definitely suggested that the binding energies problem in the Skyrme model
might be solved by the inclusion of vector mesons, besides, the interactions
terms and coupling constants are naturally fixed by the theory. Indeed, even
the inclusion of just the p mesons yielded remarkable results in the binding
energies [219].

Later, the full numerical minimization of the solutions carried out by Naya
and Sutcliffe [169] confirmed the improvement on the binding energies for the
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first B = 1 — 8 skyrmions. Moreover, the p mesons also influence the shapes
of the minimal energy configurations, inducing a clustered structure which is
closer to physical nuclei. This effect is actually observed even for the very
small baryon number skyrmions B > 5.

In this final section we want to study, for the first time, the impact of the p
mesons on the Skyrme a-lattice solution, to show the physical implications
that they have on the other main longstanding problem in the Skyrme model,
the compression modulus.

4.3.1 The compression modulus problem

The energy curve E(np) of symmetric nuclear matter in (4.20) is also ex-
panded in power series of the baryon density,
1 (ng —ng)®

E(TLB> = Fy+ =Ky

3
4.

equivalently to the symmetry energy curve (4.21).

The first multipole in this expansion is the energy per baryon Ej, of symmet-
ric nuclear matter at the saturation density. There is no linear term since
symmetric nuclear matter reaches a minimum of the energy at saturation.
The next multipole, K is known as the compression modulus, it enters at
second order in the energy curve, and it is directly related to the compress-
ibility of nuclear matter, hence it determines the softness of the EOS near the

minimum.

The compression modulus is not directly measured, but it may be extracted
from the Isoscalar Giant Monopole Resonance (ISGMR) [97, 114, 239] fre-
quency, wys. This resonance is a collective excitation of the nucleus, in which
both protons and neutrons vibrate spherically in phase. It is measured through
the low-momentum transfer in inelastic scattering collisions between isoscalar
particles (like a particles or deuterons) and medium-heavy nuclei, B > 90.
The frequency of this resonance for a given nucleus may be related to its
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compression modulus K [67],

K

— 4.
— (4.56)

W2 =
where R is the radius of the nucleus and my is the mass of the nucleon. The
value of this frequency was experimentally determined for different nuclei,
such that the following dependence on the baryon number was found,

hwys ~ 80B7H3 MeV. (4.87)

Then, from the well-known relation between the radius of a nucleus and its
baryon number, R ~ 1.25B'/3 fm, we find the B-independent value for the
compression modulus,

K = Ky ~ 240 & 20 MeV. (4.88)

Further numerical simulations from theoretical approaches yield a range of
values for K which confirmed this value [52]. Nevertheless, given that we usu-

ally work in Skyrme units, we have the freedom to fit the energy at saturation,

so it is more informative for us to consider the adimensional ratio, [E(—g ~ 0.25.

It is possible to compute the compression modulus from Skyrme crystals using
the definition from the Taylor expansion (4.85),

— 2| =9V _—
Oﬁn%

K
0 V2

(4.89)

Nno LO

The last derivation of the compression modulus in terms of the unit cell volume
(or equivalently, the lattice length L) is equivalent, given that Ly is defined as
the point at which the energy is minimal.

The numerical values are given in Table 4.6 for the crystals obtained in Chap-
ter 3. Although we have fitted the parameters to reproduce the saturation
point, the compression modulus is much larger than the experimental value.
This is also a well-known problem in the Skyrme model, which seems to yield
too stiff energy curves. This might be a problem of the specific solutions con-
sidered here, however, a simple derivation of the compression modulus, again



148 4.3. The inclusion of p mesons in the Skyrme model

under the perfect scaling approximation, is much more clarifying and shows
that the ratio K(/Ey is quite far from the desired value.

Model | A2 (MeV fm?) | K, (MeV)
Loy 0 882
Loy 0 1340
Layg 3 1321
Loyg 7 1831
Loys0 3 1794
Lo460 7 2333

Table 4.6: Values for the compression modulus for the crystals studied in Chapter 3.

The energy of Skyrme crystals has been shown to follow with great accuracy,
at least around the minimum, the PS approximation (3.12). Under a Derrick
scaling transformation of the Skyrme field at the minimal energy configuration
U(Ly) — U(ALy), the PS parametrization yields,

E(2) E0)

E(AN) = —— + AEW + N3O 4 = 4.
(A) T + + 53 (4.90)
Then, the compression modulus may be related to the second derivative of

the energy with respect to the Derrick factor A,

E(1)=FE, E'(1)=0, E"(1)=Ey+8 (E<6> n E(0)>

, PF

‘}2 l
—_— —2

L=ALg

L 0

Koy=9

L 0

This result explains why we find Ky/Ey = 1 in the standard massless Skyrme
model, and the inclusion of further terms increases even more this ratio. Nev-
ertheless, this argument is based on the PS approximated energy curve, which
is expected to fail for very high values of ¢ and ¢y, for which we would recover
the BPS model. In this model, the compression modulus is exactly zero for a
wide variety of potential terms [9], hence a near-BPS model may be a solution
for the compression modulus problem. However, the values of the parameters
c¢ and ¢y to reach the BPS model must be extremely large, so that numerical
computations become difficult in this regime.

We propose in this section to include the next lightest mesons in the model,
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motivated from previous studies, in order to find crystalline solutions with
realistic values of K,/ Ej.

4.3.2 Skyrme a-lattice coupled to p mesons

The inclusion of p mesons in the Skyrme model requires the extension of the
Lagrangian with the standard kinetic and mass terms for a vector field,

1 2
£, = =5 Tr{R}, R} + % Tr{R! R"}, (4.91)

where R* = phly + iph7, is the SU(2) representation of the p mesons, but it
is not an element of the group, and R,, = 0,R, — 0, R, is the corresponding
field strength tensor.

The theory is completed with the coupling between pions and p mesons
through the following interaction term,

Lr= %Tr{RW[L”, L]} = a Tr{0,R"[L", L,]}. (4.92)

We propose this interaction term which differs from the one proposed by
Adkins in [26], since it leads to much simpler computations, specially out of
spherical symmetry. The motivation for the interaction term considered by
Adkins is to reproduce the p — 77 decay which does not produce a quartic
term L, after integrating out the p mesons from the theory. We do not find
the last restriction mandatory, so we may consider a different interaction term
which also yields the same decay reaction. Besides, the interaction term (4.92)
always decouples the pfj field from the system, since R* is coupled to a su(2)
element. This property only occurs in the spherically symmetric case for
the Adkins term, then a further constraint must be imposed to erase the
unphysical component of the p mesons. In addition to these motivations for
using this interaction term, the proposal arose from other studies that included
vector mesons in chiral perturbation theory, in which this term is used [126].

Furthermore, a BPS bound may be defined in the full Skyrme — p theory if
this specific coupling is considered. As we did in (2.16), we must express the
energy as a combination of positive definite terms. We first write down the
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static energy functional,

E = ESkyrrne + /d?’x

1 9 m2 ) o

ST{ R )+ L { IR} - ETr{RZ-j[Li,LA}]
(4.93)

The kinetic and mass terms are always positive definite, but for the interaction

term we must realize that it may be used to complete the perfect square

between the kinetic energy of the p mesons and a quartic Skyrme term with
a new different coupling constant.

" {<le] gl (G5 f[L”LjDT} i
Tr{élRijF @ (RylLp L] + B (L 1)) + S L Lj”Q} N

1 9 a? 9
QIR - SR(L L)+ S L (4.04)
Then, the energy of the p mesons plus the interaction term yield positive
terms and a remaining quartic Skyrme term, which may be absorbed into the
Skyrme energy part. Then, in the £54 model, we recover the same BPS bound
(2.16), but with a redefined Skyrme parameter,

p>2 f B, (4.95)
2
_9 €
S — 4.96
1 — 16a2e? (4.96)

From this result, it is clear that larger values of the coupling constant «
increase the Skyrme parameter, which reduces the importance of the quartic
term. Indeed there is a limiting value for which the Skyrme term completely
vanishes,

ee>0— ¢y =ae< (4.97)

This feature has great importance since the energy curve of Skyrme crystals
increase for L < Ly due to the quartic term in the L£o4 and L949 models. How
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fast the energy increases depends on the importance of £, with respect to the
other terms, and we have seen from the too high values of K that the curve
must be flattened near the minimum. Therefore, the o coupling constant may
be tuned to yield a smaller quartic term and to obtain better values for the
compression modulus.

Then, we compute the static energy functional in Skyrme units,

1 . o . )
E = Eskymme + —— / B [4 ((&p{l)2 - 8ipé8jpg) +2ch(pL)? + 3204681-%5%} .

2472
(4.98)
where we have defined the adimensional field, R* — % and its adimensional
2 .
mass constant ¢y = 2;”’;. The p{ fields have been erased since they are not
0= T 0

coupled to the pions, so that they only contribute positively to the energy,
hence, the minimal static energy solution is trivially pj = 0. At this point,
we see that the constant of interest is the adimensional coupling constant c,,
which cannot be larger than 1/4, otherwise the Skyrme term vanishes and we
do not have stable skyrmions anymore.

We have also defined the .S, tensor in the interaction term,
L, L) = —2i(0,00,m. — 0,00,Tc + €40, a0, T, = —2iS},Te. (4.99)

The field equations for the p mesons and their contribution to the Skyrme part
are obtained. Then, the minimal energy configuration of the a-lattice coupled
to p mesons is computed for different values of L using the AGD algorithm.

We will consider the L1490 model since the gradient flow method is quite sensi-
tive to the sextic term for small values of L and, given that the quartic term
is reduced by the p mesons, it becomes numerically difficult to converge into
the solution. The results for energy curve are shown in Fig. 4.11. In the left
plot we show the adimensional total energy of the system against the lattice
length, for different values of the coupling constant c¢,. In this plot we see that
the minimal energy configuration (Fu,, Liin) shifts towards smaller values of
the unit cell when the coupling is increased. The reason is that the quartic is a
repulsive term, hence, smaller energy configurations are preferred if this term
is reduced. Besides, the quartic term prevents the collapse of the skyrmion,
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Figure 4.11: Left: Adimensional energy of the a-lattice for different values of the coupling with the p mesons.
Right: The same curves when the minimum of each curve is fitted to the nuclear saturation point.

therefore, in the limit ¢, — 1/4 the minimum is shifted towards the point
(E'=0,L =0). Indeed, since the skyrmion becomes unstable in this limit, an

accurate convergence in the numerical computations is harder to achieve.

Furthermore, the numerical difficulty to compute the solutions with high cou-
pling constant values may be also attributed to the different scales developed
between the mesons. For increasing «, the p mesons accumulate in the cen-
tre of the box whilst the skyrmions remains practically unchanged in size.
Therefore, a really accurate grid is needed to compute the small-size contri-
butions from the p mesons, but it must be sufficiently large to contain the
whole skyrmion.

In order to see the decrease in the K/ Ej ratio due to the increasing presence of
the p mesons, we show in the right plot of Fig. 4.11 the same E(L) curves but
now in physical units. All the minima from each curve have been manually
shifted to the saturation point (FEp,ng), so that the curvature around the
minimum may be easily compared. In this plot we clearly see the decrease of
the second derivative of the energy, the numerical values for the ratio Ky/Ej
are given in Table 4.7.

Additionally, we may also observe from the same plot that the binding en-
ergies, defined as the difference between the asymptotic energy and the min-
imum, also become smaller. Indeed, as we mentioned before, it was shown
in [218] that the Skyrme model coupled to an infinite tower of vector mesons
yields a BPS theory, implying that the binding energies are exactly zero. Al-
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though the BPS theory is only achieved with an infinite number of mesons,
even the truncation to the first order, which are the p mesons, significantly
enhances the binding energies [169]. Actually, the binding energies that we
are considering here are not exactly those of the isolated nuclei, however, in
the Skyrme model context, the minimum of the Skyrme crystal may be seen
as the energy of the B = oo skyrmion, which is the lowest. Therefore, if the
difference between the B = 4 skyrmion and the crystal decreases, the rest of
the finite B isolated skyrmion binding energies will, by definition, decrease as
well.

The specific values of the binding energies in our computations are given in
Table 4.7, from where we confirm that the p mesons decrease this difference.
This is also a great feature of this combined theory, since a sufficient reduction
of this binding energy will allow the development of a crust for Skyrme NS.
In addition, smaller values of this binding energy will also improve the surface
term coefficient ag obtained from the Skyrme lattices.

Cq K()/EO K() (MGV) BE (%) a

0 1.170 1080 5.54 0
0.125 | 0.985 909 5.36 | 0.031
0.166 | 0.778 718 5.00 | 0.046
0.208 | 0.461 425 4.25 |0.075
0.220 | 0.381 351 3.80 | 0.095

Table 4.7: Values of the adimensional coupling constant between p mesons and pions with the corresponding
values of the compression modulus and energy ratio. In the third column we show the value of the compression
modulus once the minimum has been shifted to the saturation point. In the last two columns we compute
the difference between the minimum and the L — oo asymptotic energy and the corresponding value of the
physical coupling constant, respectively.

As mentioned before we may extract from (4.92) the interaction vertex which
describes the p meson decay into two pions. Then, it is possible to obtain the
decay width, I', in terms of a via standard QFT, and compute the physical
value of the coupling from the experimental value of I',. The derivation is quite
straightforward and requires the field equation of the p field. The interaction
vertex obtained is,

2 € b a0, . (4.100)

£Vertex = QOfmp
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Hence, from the most fiducial value of the decay width, I', = 147.4 MeV, and
the physical pion decay constant f, = 186 MeV we obtain,

Qexp, = 0.0427. (4.101)

This value is smaller than those considered here in order to obtain a reasonable
value of the ratio K,/FE,. However, we have only considered one physically
motivated interaction term between pion and p mesons, but we know that this
is not the only possibility. In fact, we may find in the Lagrangian obtained
from the holographic approach [219] an extensive list of the interaction terms
which may be considered order by order in the p mesons. Hence, it may be
argued that the inclusion of further terms will definitely contribute to the
improvement of the compression modulus value, then, the value of o will
approach the physical coupling constant. In this sense, we have shown the
results at the first order, although there is an additional interaction term of
the same order, besides, it may be identified with the p — 37 decay, although
this process is highly suppressed.

As a final comment, the computation of NS is not performed in this section
given that the absence of the sextic term will not produce maximal masses
according to the experimental requirements. Furthermore, the inclusion of
p mesons softens the EOS, which decrease even more the maximal masses.
The inclusion of the sextic term will contend this effect, moreover, it allows to
increase the value of ¢, to reach the physical value of the compression modulus
since the skyrmions will always remain stable. However, larger values of the p
mesons coupling constant will require more presence of the sextic term, which
may complicate the numerical computations using the AGD method.



Chapter 5

Conclusions and Outlook

Country roads, take me home. To the place 1
belong.

John Denver

The research work carried out throughout this thesis combines our most re-
cent understanding about NS with the theoretical framework provided by the
Skyrme model to develop an alternative description of ultra-dense nuclear mat-
ter. We conclude with some final remarks, including the best achievements
and open problems, and further ideas to improve the results obtained.

The main conclusion that may be extracted is that the sextic term is necessary
in the Skyrme model for a correct description of the high density regime in
the EOS. This term does not only produce sufficiently high masses, but also
induces interesting phenomenology, like the homogeneous fluid-like behaviour,
which is expected in the internal regions of NS. Furthermore, when this term
is combined with the standard Skyrme model, the properties of symmetric
INM may be reproduced and the resulting NS are significantly improved in
the sense that the MR curves get closer to the experimentally constrained
region. However, we observe that the radii are slightly larger (between 1 — 2
km) than the expected values, which suggests a still high stiffness in the EOS
obtained from the Skyrme crystals.

The quantization of the crystals enabled the computation, for the first time, of
the symmetry energy curve within the Skyrme model. In fact, this curve may
be accurately fitted in the whole range of densities and yields realistic particle
fractions inside the NS. Besides, the contribution of these effects induces an
interesting asymptotic decay in the energy curve in the zero density limit,



156

which may be crucial for the construction of a crust. The masses of the NS
are hardly affected by this contribution and the radii increase in the whole
MR curve, but less than some hundred meters. Therefore, the introduction of
isospin-asymmetry effects yields a great improvement in the phenomenology
of dense nuclear matter.

Additionally, the computation of the energy, baryon density and symmetry
energy of INM at saturation opens the possibility to completely determine
the free parameters in the generalized Skyrme model. Following this idea, we
performed an extensive analysis on the nuclear observables mentioned before
and the MR curves of the resulting NS in the pure neutron-matter case. In
conclusion, we find difficulties in the simultaneous fit of the three observables
with arbitrary accuracy, but we were able to establish upper and lower bounds
for the sextic term coupling constant from the nuclear and NS observables
respectively. Interestingly, even though the parameters are fixed by the nuclear
saturation point, we still find a wide range of maximal masses for the NS
between 2 and 2.5 solar masses. This is, indeed, a remarkable property of the
Skyrme model, which may bring severe problems to other nuclear models if a
sufficiently high mass NS is observed.

The Skyrme model also provides a natural extension to consider strange de-
grees of freedom. In particular, the kaon condensation is predicted at accept-
able densities and it mainly reduces both the mass and radius of the NS, as
expected. This effect has great implications since it shifts the MR curve closer
to the experimental constraints. The condensation density is mainly affected
by the symmetry energy, unfortunately, we find better values when the values
at saturation are smaller than the experimental measurements.

Finally, motivated by the previous computations of isolated skyrmions includ-
ing p mesons, we considered an interaction term between pions and p mesons
in the lattice of a particles. This coupling is well motivated and it directly
affects the two main problems found in the Skyrme model, i.e., the compres-
sion modulus and the binding energies. Although our computations are just
the first steps to approach this problem, the impressive results encourage the
further development on the inclusion of vector mesons to achieve our final
goal, the complete description of nuclear matter for all densities.
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The main open problem which is present in many of the computations per-
formed in this work is the absence of a crust in the low density regime of the
EOS. Although this issue is localized in the zero pressure limit, it affects the
radius in the whole MR curve. The addition of a crust by hand, as we did in
Chapter 2, typically enlarges the radii in 1 km, which is not a desirable effect.
However, this may not be the final answer since we do not actually know how
a crust purely constructed from the Skyrme model would affect the radius of
the NS. As explained in the text, this problem may be traced back to the high
binding energies of isolated skyrmions, hence, any progress on the binding
energies problem will favour the development of a crust. Nevertheless, as we
have seen in the Introduction, the outer layers of NS are rather complicated
systems in which different contributions are involved, therefore, the realistic
description of the low density regime requires the inclusion of further effects.

Specifically, the Coulomb interaction is expected to have a significant impact
at low densities, indeed, it is crucial for the shape of the nuclear pasta phases.
This contribution may also be considered within the Skyrme model once the
charge density is computed from the Gell-Mann—Nishijima formula [148]. The
electrostatic contribution is usually added to the energy as a correction, how-
ever, in order to obtain the nuclear pasta shapes, the backreaction on the
classical configuration must be taken into account.

Furthermore, the perturbative SU(3) extension of the Skyrme model consid-
ered to compute the kaon condensation allows to obtain hyperon solutions
as well [73]. Indeed, hyperons are expected to be produced even before the
kaon condensation, but they would induce the same effect on the NS, so this
is another source of improvement in the large values of the radii. Therefore,
it is of great interest to compute the effects of hyperons in Skyrme crystals
to study the impact on the particle fractions, on the NS and on the kaon
condensation density, where the strange matter is completely determined by
the Bound-State approach.

As a further suggestion, the inclusion of the sextic term in the Skyrme lattice
coupled to p mesons is the most natural extension of this work. The NS
masses will definitely grow if this term is added, but the compression modulus
will deviate from the experimental value. Nevertheless, additional interaction
terms between pions and p mesons may compete with this deviation. Isospin
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quantum corrections may be also considered in the full Skyrme—p mesons
system, but the time-dependence will excite the p¥ fields, implying a further
minimization after the classical configuration has been obtained.

Additionally, all these computations may be reproduced in a new crystalline
configuration recently proposed from the combined minimization of the Skyrme
field and the geometry of space [116]. We want to remark this work since this
configuration has the smallest asymptotic energy at the zero density limit and,
therefore, it corresponds to the actual ground state of the Skyrme model in
this regime.

We hope to have illustrated the importance on the physics of ultra-dense
nuclear matter and NS with this thesis, and we motivate the reader to develop
the computations here exposed to achieve a complete and realistic description
of the nuclear matter in the whole range of densities based on the Skyrme
model.



Appendix A

B =1 skyrmion from Spectral Methods

Spectral methods were originally introduced in the context of numerical hy-
drodynamics, however, they were extensively developed in order to solve the
highly non-linear Einstein equations within the Numerical Relativity frame-
work. The main difference with respect to finite differences numerical meth-
ods is that spectral methods obtain a numerical approximation to the desired
solution globally, rather than using local low degree approximations. This
produces, in many cases, significantly better accuracies with moderate com-
putational resources. In general, they can be used to solve any system of time-
independent PDE, like in our case of interest, the Skyrme field equations. This
appendix is not intended to be a rigorous mathematical and general presenta-
tion of spectral methods, but a practical and clarifying example. Specifically,
we show the resolution of the B = 1 skyrmion using this numerical technique.

The main idea in which spectral methods are based is that any function f(z)
can be approximately interpolated by truncated series of a set of N.. orthogonal
polynomials,

f@)~ ) i), (A1)

where the coefficients f; are the proyection of the function f on each polyno-
mial 7T;.

In this case, the system of differential equations is converted into a system of
algebraic equations in which the unknowns are the coefficients of the expan-
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sion. This is due to the fact that we know how different operators act on the
polynomials, T;.

The two most frequent choices of polynomials are the Chebyshev and Leg-
endre sets. Legendre polynomials are commonly used to expand the angular
dependent part of the functions in some PDEs with axial symmetry. Since
the angular variables will not enter in our specific problem we will focus on
the Chebyshev polynomials, but the extension to other sets of polynomials is
rather straightforward.

Then, we fix {T;} to be the set of Chebyshev polynomials, which are defined
on a grid z € [—1,1]. We compute the coefficients f; numerically on a discrete
space grid via weighted Gaussian quadratures, which are a fast and accurate
way to solve integrals,

W@ S e,
/_1 Jl(j—fia:?mxm(x) > Ti(z)Ti(z)w;

—0

=

/1 dx f
f = o V1 — a2

~~
~

(A.2)

<

where z; and w; are the collocation points of the discrete grid and the weights
of the Chebyshev-Gauss-Lobatto (CGL) integral, respectively. The collocation
points and weights for the Chebyshev polynomials are calculated as follows,

gm s s
L= — = -, : = =, A3
X Ccos (Nc — 1) , Wy = WN,—1 N, W N. ( )
We denote with j the indices of the grid parameters since the number of points
may be completely different to the number of polynomials, listed by 1.

Chebyshev polynomials can also be classified by parity on the interval [—1, 1]:
Toi(—x) = Toi(x), Tohip1(—x) = —To11(x). Then, if we want to interpolate
a function f(z) with a definite parity, even or odd, on that interval we may
directly use the polynomials with the same parity of f(x).

We construct the polynomials from the recurrence relation, for Chebyshev
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polynomials we have,
To(x) =1, Ti(z) =z, Ty(x) = 22T;_1(x) — T;_o, (A.4)

It is quite useful to define the orthogonality condition by hand, since it is faster
than computing the discrete integrals, and an additional source of numerical

errors is also erased,

[ neme = s (A5
——— 1\ X i = 04iT—=—. .
1vV1— 2?2 ’ 71+ 6o

The Skyrme field equation in the hedgehog ansatz reduces to an ODE for the
profile function f(r),

r2f" 4+ 2r [ —sin(2f)+8sin?(f) f 44 sin(2f) (f/)2_4 sin® fw =0. (A.6)

Given that the profile function extends up to infinity, the divergence of the
radial coordinate requires a special treatment of the equation. To solve this
issue, the space must be split in two different domains, D; : r; € 0,7, and
Dy : 19 € [r.,00), where 7. is a free choice. The number of coefficients N1
and NP2 associated to each domain do not necessarily have to be equal.

Since the polynomials are defined on the interval [—1,1], we change the ra-
dial coordinate to an adimensional, well-behaved spatial coordinate for each

domain,
Di: 1= %(1+x1), v €[-1,1], (A7)
1 2r 1
Dy: py— b 2 ~.0 ~1,1]. A8
2 ) U 1_1:27 ue[rca ]7 1'26[ ) ] ( )

As mentioned before, the main advantage of spectral methods is the expansion
of the functions in polynomials, since we analytically know how some operators
act on the polynomials. We show the three main linear operators that may
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be written as linear combinations of the polyonomials,

dT; . i dlio d

dx le+i—2 dx Z A (A.9)
1

1T; = 5 (Tin + Ti) ZL (A.10)

1

T =2T1 — ZLW . (A.11)

We denote the linear operators with the superindices d, z and 1/x to distin-
guish them. The size of these operators depend on the number of polynomials
considered, but the entries for a few number of coefficients may be found

in [106]. Obviously, more complex computations may be obtained from the

d>

combinations of these operators, for instance, 7

5 is equivalent to L§f = L§ L.

Then, the field equation (A.6) is divided into a linear part in f and a source
term, written in terms of the new coordinate. In the first domain we have,

i f" 4+ 2z, f = s, (A.12)
sin(2f).

/r'2

sy = sin(2f) — 8sin? f — 4sin(2f)(f')? + 4sin*(f) (A.13)

Note that all the non-linear terms in f are grouped in the source part. The
field equations in the second domain becomes,

(1= z9)?f" = 52, (A.14)
so = sin(2f) (1 — 4u*(f)?) — 4u’sin® f (2u — sin(2f)) — 4sin® f (2f + uf").
(A.15)

The next step is to obtain the interpolation coefficients of the source term
function, s = ), s;Ti(x). However, the non-linearities of the Skyrme field
equation introduces the function f, which is unknown, in the source term,
therefore, an initial guess for the profile function is required to compute the
coefficients s;. Regarding the boundary conditions, f(0) = w and f(r — o0) ~
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r~2, we take the test function,

/s

fr) = 1+ 72

(A.16)

Then, the equations are generically written in this simple form, ). ; fiLiiTj(x) =
> siTi(z), where L;; is the total linear operator resulting from the left part
of the equations (A.12) and (A.14).

Now, the boundary conditions must be implemented in the problem to ensure
that the solution will always satisfy them. In this framework we adopt the
tau-method, in which the last rows of the linear operators are used to fix the
boundary conditions, given that these are the least relevant. For notational
purposes, we use negative indices to refer to the last rows of the operator, so
that the index —1 := N, — 1, corresponds to the last row, and —2 := N, — 2
is the previous one. Each condition belongs to a single domain, then, in the
first domain we have,

fr=0=n— f™ Zf PIT(-1) =3 1Py (AaT)
LS = (-1, s%=n. (A.18)

Similarly, for the second domain we obtain,
flr=o00)=0—=fP)(z=1) ZfDQ (1) =Y 1, (A.19)

%=1, % =0 (A.20)
Actually, we have not used the last row of the linear operators, but the previous
one to impose the boundary conditions. The reason is that we still need
to impose continuity on the profile function and its first derivative between
both domains. For this purpose, both operators are brought together in a
larger square block-diagonal matrix, L(®), in which the matching conditions
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are imposed. The total operator is schematically represented below,

L(Dl) 0

LD —

0 L(D2)

The matching condition fPV(z = 1) = fP2)(x = —1) is easily imposed in the
entire row of the total operator with index Nc(Dl) —1, whilst the condition on the
first derivative requires the corresponding L? operators, and it is imposed in
the last Nc(Dl) +NC(D2) — 1 row. The total linear operator for Nc(Dl) = NC(DQ) =5

is explicitly shown,

(0 2 10 30 680 0 0 0 0 )
2 16 54 1280 0 0 0 0
0 0 6 3 1040 0 0 0 0
1 -1 1 -1 100 0 0 0
I e A e B e I e A (A21)
00 0 0 0 00 6 —24 60
0 0 0 0 0 0 0 -8 42 —112
00 0 0 0 0 0 2 —24 88
00 0 0 0 1 1 1 1
\0 1 4 9 16 0-1 4 -9 16

The final step, the resolution of the problem, consists in the computation of
the coeffcients f; such that the residuals R, = LZ(»]»D) fj — s; are nearly zero. This
is achieved iteratively using a Newton-Rapshon algorithm, starting from the
initial seed (A.16).

The Newton-Raphson method proceeds as follows:

T(f") = 812](({ ) g - 8f”’ Z ) (A.22)

fitt == X7 (A.23)

It states that the vector of coefficients f" = {f'}, calculated after n iterations,

makes R; tend to zero, so that we will get closer to the true solution after each
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iteration.

The Jacobian matrix J;; may be obtained analytically, however, if the source
is sufficiently complicated, the numerical calculation of J is a more efficient
choice. Using the discrete definition of the derivative we have,

R+ ef?) — RS — ef?)

Jij ~ - . (A.24)

We take the value € ~ 1% for a stable convergence of the method.

The profile function solution f(r) in the L£o4 model may be found in [154] as
well as the resulting energy for the B = 1 skyrmion.






Appendix B

The TOV formalism

The TOV formalism is the standard procedure to describe stellar equilibrium
in GR. It yields a system of ODEs for the spacetime metric functions and the
pressure of a perfect fluid which is minimally coupled to gravity. Therefore, it
solves the structure of a static, isotropic compact object under gravitational
equilibrium. This formalism was developed by Oppenheimer and Volkoff [181]
when they obtained and solved the system of differential equations, based on
the previous works of Tolman [223] in the analysis of spherically symmetric
spacetime metrics.

The starting point is the derivation of the field equations in GR from the EH
action [166] in the presence of an energy distribution,

1
S = Spi + Smatter = —— [ d*x/|g|R + Smatter- B.1

EH T Omatt 167TG/ T\ 9| R + Swatt (B.1)
We will not consider the cosmological constant in this thesis, since it does not
have an important impact on NS observables due its tiny value (A ~ 10752
m~?2) [61,238].

In the EH action we find the determinant of the metric tensor, g,,, which
encodes the whole spacetime information. The Ricci scalar, denoted by R, is
the trace of the Ricci curvature tensor, R = R,,,g"”, and the Ricci tensor may
be computed from the metric,

Ry = 0\, — 0,1\ + T3, 10, =T T8, (B.2)
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where '}, are the Christoftel symbols,

(6% 1 o
F,uu - 59 ’ (augl/ﬁ + ayguﬁ - aﬁguu) . (B3)

Variations with respect to the metric on the EH action yield a system of field
equations for each component of g,,. We have,

_ 1 4
5Sen = r—= [ d'z [5\/@3 + \/E(SR} . (B.4)

To proceed, the following results are used [53],

1
0V lgl = =5 V1919 09", (B.5)

OR = R,,09" + 0R,, 9", (B.6)
OR,, = V0T, — V6T, (B.7)

where V,a" = J,a"” + I'/, ,a® represents the covariant derivative in a generic
spacetime. The variations of the Christoffel symbols become easier to compute
by expanding first the relation §(Vyg,,) =0,

1
5FZV - égp)\ (VM(SQV/\ =+ vuégu)\ - V)\(Sguy) . (B8>
Then, they are introduced in the last expression to obtain the final result,

g"OR =V (¢"6T),) — V. (¢"0Ty,) =
(VIVY = VNV ¢") 09 = — (V,V, — VVq gu) 6" (B.9)
This final expression exactly vanishes, given that the covariant derivative ei-

ther applied on a constant or on the metric function is zero. Hence, the result
of the variations on the EH action is obtained computing the ratio 0 Sgn/dg"” .

Finally, the variational principle on the matter action yields, by definition, the
stress-energy tensor 7),,. Then, the field equations obtained from the total EH
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and matter actions give rise to the so-called Einstein equations,

1
Ry = 59uwR = 87GT,,. (B.10)

These equations relate the spacetime properties, in the left part, with the
matter content which is described by the stress-energy tensor.

In the TOV formalism, the matter inside the star is assumed to be described
by a perfect fluid stress-energy tensor,

™ = (p + p)u'u” — pg"”, (B.11)
where u# is the four-velocity, which satisfies g, u/u” =1 in the mostly minus
metric convention.
Additionally, static and spherical symmetry conditions are imposed, then we
use the standard spacetime metric parametrization,

gudatdr” = ds* = A(r)dt* — B(r)dr® — r*df* — r*sin® 0 d¢?, (B.12)

Both the metric and the stress-energy tensor are introduced in the Einstein
equations (B.10) and the system of ODEs is obtained from the (¢,¢) and (r, )
components [100],

r

B—-1
A=A (87TGB?“]? + ) : (B.13)

B'=B (SWGBrp b= 1) : (B.14)
r

Additional equations to describe how matter is affected by the gravitational
field are required. A simple equation for the pressure may be obtained from
the r component in the conservation of the stress-energy tensor,
+pA
VIl =0—p =222 (B.15)
2 A
Conversely, the energy density is fixed by the EOS, which directly relates p
and p. At this point we may argue that the EOS previously obtained in a flat
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spacetime is not the correct choice to solve the TOV equations. However, the
equivalence principle ensures that a local Lorentz invariance frame exists in
the neighbourhood of any point in spacetime. The metric change factor over
a entire NS near the gravitational collapse may be computed, resulting in the
tiny value of < 1071 factor in the metric over the space between nucleons.
This negligible correction justifies the so-called bulk approximation to solve
the TOV equations using the flat spacetime EOS [100]. Therefore, the system
of ODEs is closed and ready to be solved once the correct initial conditions

are given.

All the variables are expanded in power series of r up to quadratic order, but
the linear order is suppresed by the smoothness condition around the origin,

A~ ag+ar®+ . (B.16)
B~ by + b1 + ... (B.17)
p~petpirt+ .. (B.18)
p o~ petpirt+ . (B.19)

We find from inserting the previous expansions into the equations that B(0) =
1, and A(0) is irrelevant in the system. The reason is that A always appears
in the combination A’/A, which is zero at r = 0, therefore we set A(0) = 1.
Finally, the pressure at the origin, p(0) = p., is the input value that fixes the
properties of the static spherically symmetric NS.

We use a 4th order Runge-Kutta method, with a constant step of Ar = 1073
km, to obtain the solutions for the metric functions and the pressure. The
equation (B.15) indicates that the pressure is always a decreasing function
inside the star, hence, the integration is stopped when the condition p(r =
R) = 0 is satisfied, and R is defined as the radius of the star. Although we
have used the same notation for the Ricci scalar and the radius of the star,
we maintain R from now on to denote the radius since the Ricci scalar is not
relevant in the TOV system.

The mass of the star is usually computed from the B(r) function evaluated at
the radius of the star. The reason is that for » > R, there is no star anymore,
so that the Einstein equation reduces to the vacuum field equations, for which
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the Schwarzschild metric [166] is the only solution. The Schwarzschild solution
describes the spacetime surrounding an object with mass M and radius R.
Specifically, the (r,7) component of the metric

2GM\ !
B(r) = (1 — ) , >R (B.20)
r
In this way, we may extract the mass of our NS from this solution evaluated
at the radius of the star.

Different NS are obtained from the one-parameter family of p. values, such
that the curves M (p.), M (R) are built. Small values of p. yield smaller masses,
but the radii will strongly depend of the EOS. Specifically, the presence of a
crust in the EOS, i.e., the p(p — 0) — 0 limit, implies that the small mass
region in the M(R) curve develops a tail of increasing radius for decreasing
mass. If there is not crust in the EOS, we obtain the opposite behaviour, in
which both mass and radius increase together in the whole M (R) curve. This
effect is expected to occur in quark matter EOS [81,185].

Increasing the value of p. we obtain larger masses until we reach a maximal
mass NS. Beyond this maximal mass, the resulting NS are unstable under
radial perturbations. There is, indeed a theorem which states that the stability
of the NS change if the condition,

M
dp.

0, (B.21)

is attained. See [229] for a proof of this theorem, using a detailed perturbative
study on the stability of the solutions under radial perturbation.






Appendix C

Gradient Flow methods in the Skyrme
model

,Numerical methods are fundamental in the Skyrme model due to the com-
plexity of the solutions. We saw that already for the simplest B = 1 skyrmion,
either a shooting or spectral methods must be implemented to obtain the so-
lution. Higher topological charge solutions do not share spherical symmetry,
which implies that the angular variables appear in the field equations, there-
fore the problem is converted into a system of nonlinear PDEs.

A different approach might be considered in order to obtain solutions from
the Skyrme model. The solutions in a field theory are actually minimizers
of the energy functional. Hence, all the numerical techniques conceived for
optimization problems may be applied to solutions in our context.

The gradient flow is a simple, but effective, minimization procedure to find
the critical points of a scalar vector-valued function f(x), and it is widely
used, for instance, in machine learning algorithms training. It is based on the
evolution of the coordinates x; in the maximally decreasing direction, which
is given by the partial derivatives,

starting from an initial seed. Here, z; are the components of the x vector.

The discrete version of the gradient flow is the gradient descent method, which
solves the previous differential equation numerically, using the simplest dis-
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crete time evolution, :L’Z(-nﬂ) = xgn) — €0, f(x™). The convergence rate of this
method mainly depends on the value of 0;f, then, despite it is an effective
method, it is not the most efficient choice to minimize a function given that
the convergence soon slows down. The parameter € is the time step in the
gradient descent evolution, it is called learn rate in the machine learning con-
text. Large values of the learn rate slightly speed up the minimization, but
if the value is too high, the time evolution might diverge, hence, small values

are usually taken for a stable convergence.

In 1983, Yuri Nesterov applied the concept of acceleration in convex opti-
mization to find the optimal minimization algorithm. The accelerated gra-
dient descent (AGD) [173,226] was proposed as the optimal first-order (i.e.,
only based on the gradient V f) minimization algorithm in convex optimiza-
tion [174] when an upper bound for the velocity in the optimization was found.
This method requires the introduction of an auxiliary variable y;, it is explic-
itly implemented below,

2" =y — e, f(y ™), (C.2)
(n) _ (n) n < (n—l) o (n—2)>
yl 'CU’L + n _|_ 3 :CZ 'CE’L : (Cg>

Note that the AGD is not a relaxation sequence in the sense that the next
iteration is always better than the previous one, but it converges in a faster
rate, therefore, we must be careful when the algorithm evolves into a worse
iteration.

The AGD method is implemented in order to find solutions from the Skyrme
model with B > 1. However, solutions are minimal energy configurations of
the energy functional, which are infinitely extended in the three dimensional
space. Then, the AGD algorithm must be applied on a functional, where the
fields must be varied in the maximal decreasing energy direction. In this case,
the gradient of the function f(x) is substituted by the variations of the fields
¢, on the energy functional E [¢, 0¢],

OF [¢p, 0]
(n+1) _ p(n) _ 2 P
) R W, € 7 o , (C.4)
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where 1), is the auxiliar field in the AGD algorithm, which is updated equiv-
alently to (C.3).

The starting point for the implementation of the AGD is the Skyrme model
energy functional F = [ d®z €. We expand the integrand, and express the
result in terms of the chiral vector ns = (o, m,),

1

&= 2472

{(82‘7114)2 + (8mA8jnB — 8Z~n38jnA)2 +
+cg (eABCDnAﬁlngagncﬁgnD)Q + ¢o (1 — 0)} , (05)

where A = 0, 1, 2, 3. Computations are carried out much faster with the vector
field n4 notation since the Lagrangian, except for the potential term, is chiral
invariant. Therefore, the four fields are treated equivalently in almost all the
mathematical and numerical computations, we identify ¢, :=n4 in (C.4).

Variations of the energy functional with respect to the fields yields the Euler-
Lagrange field equations,

0E [n,0n]  0& . o€
ona  Ong g (8(&;7@4)) ' (C.6)

The chiral notation of the energy in terms of ny4 becomes even more helpful
when it comes to obtain the field equations. The expressions are given below,
o0&

——— = 2¢6 B’ (€ctmnO1mi0am,,031,) — 05, (C.7)
GnE

Os & = 20°np + 8 (2858inA8inA85nE + (Oma)?0°np — 0;0,nE0ma0sma

—@nEai@SnA&’mA — aan&nA@mE) + QCGWS‘/; — 6C6BO(€egmn81n162nm63nn),
(C.8)

where we have defined Wy and V¢ separately to speed up the numerical com-
putations,

Wy = €apcopna (0s01npOencdsnp + 0s0ancOinpdsnp + 0s03npOinpdne) ,
(C.9)
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V: = €eabcN A (—5518272383710 + 558171383710 — 528171382710) . (C.lO)

Additionally, since the Skyrme field is unitary, this condition must be also
imposed in the minimization, then the problem becomes a constrained mini-
mization. For this purpose the energy density is redefined with the following
Lagrange multiplier, £ — & + A(1 — nan4). The value for A may be solved
using the equation of motion (C.1) and the unitary condition again,

_ _SElndn oy > ona A (C-11)

nana =1-—2nans =0 16E[n, on]
— >\ g ———
nA o 5nA

The minimization is performed on a finite size box of discrete space with
step Az. The energy and baryon number is computed in each iteration using
Riemann sum definition to check the correct convergence of the algorithm.
The typical value of the learn rate is e ~ 107 for a grid spacing Az = 0.2.
For a better accuracy in the solution, we may decrease the grid spacing to
Az = 0.1, then a smaller € ~ 10~% must be used to ensure the convergence of
the algorithm. Moreover, the discretization of the space yields some numerical
errors such that the fields do not exactly satisfy unitarity, therefore we impose

this condition renormalizing the fields after each iteration, ny — \/:;TB

We take the rational map configurations as the initial conditions, with an

exponential or power-law decaying profile function f(r), depending on the
presence of the pion mass term. Then, the minimization starts and the en-
ergy decreases after each iteration, however we might find that the energy
increases after some iterations. In this case we set n to zero in (C.4), and the
minimization is restarted.

If the minimal energy configuration is obtained, the Derrick scaling argument
states that it must satisfy the so-called virial constraint [155],

E/(Usﬂf) =0— Fy— FEy—3Es+3Ey)=0. (ClQ)

os=1

We consider that the minimization algorithm has successfully converged when
the accuracy of the last condition is 1077.
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The present thesis aims to develop a realistic description of
highly dense nuclear matter and neutron stars within the
Skyrme model. For this purpose, the properties of neutron
stars and the problem of ultra-dense nuclear matter are
introduced.

The main features of the Skyrme model and the previous
attempts to reproduce neutron stars are reviewed to introduce
a physically motivated generalization of the model that yields
remarkable results for the neutron stars observables.

We establish the basis for a consistent description of infinite
nuclear matter at each range of densities and perform the
standard quantization procedure to account for the isospin-
asymmetric effects. Finally, we consider the kaon
condensation in the neutron star cores, and we include p
mesons as a viable solution to the compression modulus
problem.
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