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Abstract

The description of nuclear matter at high densities, reached in the cores of
neutron stars, has become one of the major problems in both experimental
and theoretical physics. In this thesis we consider the Skyrme model and its
generalizations to reproduce the state of nuclear matter at such densities and
the macroscopic properties of neutron stars.

We start in the Introduction with a complete and detailed overview about
the physics of neutron stars. First, the concept of a neutron star as one of
the possible final fates of the very massive stars is introduced. Then, a brief
explanation on the consecutive stages of the core-collapse of the progenitor
star is given to present one of the most violent processes in our universe, the
supernova explosions. The entire mechanism of supernovae is not included,
since it mainly involves neutrino physics, which will not be studied in this
thesis. Instead, we rather focus on the general properties of neutron stars. At
this point, we mention the typical masses and sizes of neutron stars to establish
the physical scales of our problem. Further interesting phenomenology of
neutron stars, like rotational velocities or strong magnetic fields, is mentioned
and quantified to show the extreme conditions reached in these objects. To
end this first introductory part, we explain how the URCA processes rapidly
cools down the newly born stellar object to yield a (relatively) cold neutron
star, whose description is one of the main objectives of this thesis.

The following entire subsection is devoted to present the prevailing descrip-
tion of the interior of neutron stars based on five different layers. An extensive
outline on the size and chemical composition of each layer is given, with a com-
plementary scheme depicted in the text. We remark that the outermost parts
are essential for the experimental observations of neutron stars, but they are
already well determined from hadronic physics reproducible in terrestrial ex-
periments. Nevertheless, these regions only represent less than a 1% of the
total neutron star. At the neutron drip density, the matter adopts different
geometries called the nuclear pasta phases, and for larger densities, the equa-
tion of state is mainly determined by theoretical simulations. Deeper inside
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the neutron star, the nuclei dissolve into free neutrons, protons and leptons
in equilibrium under the beta decay and charge neutrality conditions. In the
innermost region, the extreme conditions attained hide the specific state of
nuclear matter within our current knowledge, but the different possible sce-
narios are explained. Among them, the kaon condensation in neutron star
cores will be considered in the last chapter of this work.

In the next subsection, we comment the evolution of neutron stars throughout
the history since their first accepted proposal by Baade and Zwicky in 1934
until the breakthrough discovery of pulsars by J. Bell and A. Hewish. Besides,
soon after the works of Baade and Zwicky, the theoretical contributions of Tol-
man, Oppenheimer and Volkoff (TOV) established the theoretical framework
to obtain neutron star solutions from any equation of state for nuclear mat-
ter. Indeed, the TOV formalism is used several times throughout this thesis,
therefore, it is explained in Appendix B. Eventually, we mention the current
theoretical works on neutron star physics, focused on the description of nu-
clear matter at such high densities and the experimental techniques which are
the source of information for the neutron star observables in the present.

In the second chapter, we present and motivate the Skyrme model and its
generalization as a theory of nuclear matter and, in particular, for the study of
neutron stars. First, we introduce the historical context in which the Skyrme
model was proposed. The main feature of this model is the existence of stable
topological solitons, called skyrmions, which are identified with atomic nuclei.
We present the Lagrangian density, built from two interactions term and a
SU(2) group element field which carries three degrees of freedom identified
with the pions. The mathematical arguments to understand the existence
of the skyrmions are given, but the model is mainly introduced from the
physical and modern point of view of low-energy effective field theory of QCD.
Furthermore, the energetical stability of the solitons is carefully analyzed, from
which the notion of the BPS energy bound is introduced.

The simplest skyrmion is characterized by the topological number B = 1 and
spherical symmetry, it is aimed to represent the classical state of the proton
and neutron. The parametrization of this field configuration is given by the
hedgehog ansatz, and yields a single ordinary differential equation of second
order. The resolution of this field equation is explained in the text, but an
alternative approach based on spectral methods is studied in the Appendix A.
Then, the parametrization of larger B skyrmions, out of spherical symmetry,
is performed through the rational map approximation, however, the result-
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ing solutions yield too large binding energies and unrealistic energy density
configurations. Additionally, since protons and neutrons are spin and isospin
1/2 quantum particles, the inclusion of these effects is an important step
that must be considered in the Skyrme model. The quantization procedure
of skyrmions relies on a semiclassical approximation in which the quantum
corrections to the energy are obtained from the classical configuration, and
the possible quantum states are determined by the symmetries of the specific
solution, as stated by Finkelstein and Rubinstein. The introduction to the
standard Skyrme model ends up with the inclusion of a pion mass potential
term which not only yields a more realistic model, but also improves on some
of the incorrect properties of the previous solutions.

A brief outline on the first attempts to construct neutron star solutions is
presented in subsection 2.1.2. Although the results were completely unre-
alistic, the study of neutron stars within the Skyrme model motivated the
development of a new kind of low-energy crystalline solutions by Klebanov.
Different periodic solutions were proposed and the observables of the neutron
stars computed from Skyrme crystals sharply improved, but still the masses
were small compared with experimental observations.

The next section is aimed at introducing another Skyrme-based model with
a different Lagrangian, composed of a generic potential term and a new term
with six derivatives of the Skyrme field. Skyrmions may be obtained from this
new model too, and the main property is that they saturate the corresponding
BPS energy bound, hence, it is called the BPS model. Despite this model is not
physically motivated, the mathematical structure and the great improvement
on the solutions have crucial phenomenological implications.

We review the computations of neutron stars within the BPS model for differ-
ent potentials and compare them with the low-mass standard Skyrme model
solutions. Besides, due to the BPS model stress-energy tensor, we may com-
pare between the neutron stars obtained from a full theoretical computation
and from the TOV formalism under a mean-field approximation. The high
values for the maximum masses of the BPS neutron stars motivate the com-
bination of the two models for an accurate description of highly dense matter
from a generalized Skyrme model, which is the seed of this research work.

The first novel research work is shown in subsubsection 2.2.1.1, where BPS
neutron stars are coupled to a modification of General Relativity. More specif-
ically, a new term quadratic in the Ricci scalar is introduced in the Einstein-
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Hilbert action, motivated as a higher order correction given that the intense
gravitational fields convert neutron stars into ideal scenarios to detect these
high curvature effects. Although this modification is the simplest choice, the
difficulty in the resolution of the problem sharply increases. Nevertheless,
solutions are found and the implications on neutron star observations are dis-
cussed.

The last section of Chapter 2 introduces a generalization of the Skyrme model,
based on the combination of the BPS and standard Skyrme submodels. As a
natural starting point, we compute the B = 1 skyrmion for different values
of the sextic term coupling constant. The pion mass is fixed to the physical
value, but the other parameters are fitted to the proton and ∆ excitation
masses using an iterative method after the quantization of spin and isospin
degrees of freedom. For completeness, we also compute the classical energies
of the firsts four skyrmions to study the impact of the sextic term on isolated
solutions. Finally, the chapter is concluded with an effective analysis about the
neutron stars within the generalized Skyrme model. We construct a complete
EOS consistently from scaling arguments supported by the results from both
submodels explained throughout the entire chapter. The remarkable results
on the mass, radius and tidal deformability of the neutron stars are a great
motivation to study full theoretical crystal solutions in the generalized Skyrme
model.

In Chapter 3, we focus on the construction of Skyrme crystals in order to
establish the basis for the description of neutron stars. First, the concept of
Skyrme crystals is explained, and we remark that topological solitons are still
allowed despite the boundary conditions have changed. The energy of these
solutions is obviously infinite, but the structure may be divided into finite-
size unit cells with well determined energy and baryon number, such that the
energy per baryon number of the whole crystal remains finite.

We follow the Kugler and Shtrikmann approach to construct crystal solutions.
The idea consists in the expansion of the fields in truncated Fourier series,
such that the coefficients are varied in order to minimize the energy func-
tional. In this way, the scenario is directly translated into a finite-dimensional
minimization problem which, indeed, does not require a very large number
of coefficients. However, the centre of the skyrmions is fixed such that they
cannot move freely in this approach, so we still have to find their optimal
distribution and orientation within the unit cell. Different field configurations
were studied since the first simple cubic symmetry proposed by Klebanov, we
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review the symmetries and explain how they can be easily implemented in the
Fourier expansion formalism.

The minimization of the energy functional implies the simultaneous multidi-
mensional variation of the coefficients, so we first consider the simplest case
with two coefficients to develop the numerical algorithm. More coefficients are
gradually added, and a fast convergence in the energy is observed, so we fix
the final number of coefficients (around 30) for each symmetry by comparing
with the original values obtained by Kugler and Shtrikmann. The philosophy
of the minimization algorithm is described and the numerical details are also
given, then, it is applied for different sizes of the unit cell to obtain the values
of the energy. In this way, the energy is obtained as a function of the lattice
length (L) and it is parametrized using scaling arguments for an analytical
treatment which is extremely useful. The energy curve always takes a mini-
mal value, called the equilibrium, and it grows for smaller values of the lattice
length, being equivalent to compress the system. For larger values of L, the
energy also increases, generating an unphysical region with negative pressure,
but this only indicates that our description is still classical and further effects
must be included.

Throughout this study we observe an interesting property of the energy curve,
which becomes crucial for the subsequent fit of the parameters. The accuracy
of the fit proposed for the energy suggests that each term in the Lagrangian
may be actually fitted independently by its own scaling behaviour. Following
this idea, we obtain a simpler and universal parametrization of the energy
curve which also accounts for a wide range of the parameters without per-
forming the minimization explicitly. This “perfect scaling” is indeed quite
accurate at the minimum of energy.

In section 3.2 we introduce the concept of infinite nuclear matter, which is
the physical system that we want to describe using Skyrme crystals. The
identification of the minimum of energy with the nuclear saturation point
fixes the energy and length scales of the crystals. To reproduce these values,
we fit the parameters of the standard Skyrme model for different values of the
sextic term coupling constant using the perfect scaling approximation. Then,
we compute the energy curves for the different crystals in a broad range of
densities (or equivalently lattice lengths). The results are carefully analyzed in
order to find the ground state at the equilibrium, and also the numerical values
at the minimum are given, as well as the coefficients from the parametrization
of the energy curve.
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Additionally, the possible phase transitions between the symmetries are ex-
tensively studied. At high densities we find a transition of the crystal into
a fluid-like behaviour, due to the presence of the sextic term. Another tran-
sition between the FCC and BCC symmetries, already noticed by Kugler
and Shtrikmann, is found, but we extend the study including the impact of
the sextic term on the transition density, and the details to consistently re-
construct the whole energy curve are also given. At low densities we find a
second order phase transition from the FCC crystal to its half-skyrmion ver-
sion. However, it is observed that the FCC crystal is not the true ground state
at low densities, instead, a new kind of crystalline solutions are found to be
the correct low energy solutions. These new lattices are obtained locating a
B = 4 skyrmion in the center of a unit cell and imposing periodic boundary
conditions. In this way, a lower value of the energy in the L → ∞ limit is
obtained, which is further decreased with the computation of the B = 32 and
B = 108 lattices. The inclusion of these lattices have motivated the study of
a new phase transition from infinite nuclear matter into isolated nuclei within
the Skyrme model. This is, indeed, a unique property of this model and the
final goal of every nuclear model, i.e., a complete description of nuclear matter
in the whole range of densities. Under this assumption we try to reproduce
the surface energy coefficient in the semi-empirical mass formula. In fact, we
construct a consistent argument to identify this contribution in the energy of
Skyrme crystals, and the geometry of these lattices predict the correct scaling
with the baryon number, however, the obtained value is much larger than the
experimentally determined one.

This chapter ends with the construction of the EOS from the Skyrme crystals,
considering the different phase transitions studied before, and the resolution
of the TOV system to obtain neutron stars solutions. The results confirm that
the sextic term is crucial for a correct description of neutron stars, besides, it
also has an interesting impact on the speed of sound. The masses obtained
agree with the experimental observations, but the radii are slightly higher than
the expected values. Therefore, this chapter represents the starting point for a
realistic and consistent description of neutron stars within the Skyrme model.

In Chapter 4, we focus on the introduction of new particle species. The first
step is the inclusion of isospin quantum effects in Skyrme crystals, as we did
with isolated skyrmions in the second chapter. These effects are, actually,
of great importance for neutron stars since they account for the difference
in energy between protons and neutrons. Then, the quantization procedure
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is again reviewed and we obtain the expression of the Hamiltonian for these
quantum effects in the Skyrme crystals. The isospin energy will depend on the
lattice length, through the isospin inertia tensor, and on the specific quantum
state of the crystal. We compute the isospin tensor curve similarly to the
classical energy, and we explain how the possible quantum states of the crystals
are obtained from the Finkelstein-Rubinstein constraints. For this purpose,
an additional approximation is required due to the infinite size of the crystal.
Among the states, we find the charge neutral case, however, it is definitely not
the most realistic case since we expect to have a small proton fraction inside
neutron stars (despite their name). The problem is that the small number of
baryons within the unit cell only allows for some specific number of protons
which are not realistic either.

This fact motivates a further approximation in which a larger chunk of crystal
is considered. In this approximation, we obtain the isospin energy contribution
as a function of the density and proton fraction, from which we identify the
symmetry energy curve. This curve has been extensively studied in nuclear
physics, and it has great implications on the description of neutron stars since
it is responsible for many important effects. The symmetry energy has also
been tightly constrained from theoretical and experimental results, we give
the most fiducial values and compare them with those obtained from Skyrme
crystals. This new observable has important implications since it has never
been determined in the Skyrme model and it may be used to fix the sextic
term parameter. Moreover, it enables the introduction of protons and leptons
in the EOS, imposing charge neutrality and beta equilibrium. We computed
the symmetry energy curve for several values of the parameters and found
that it may be accurately reproduced using Skyrme crystals. Furthermore,
the symmetry energy curve in the FCC crystal presents the transition to
finite nuclear matter since the same asymptotic behaviour is found in the
large L limit. Indeed, the FCC crystal yields remarkable results for the curve
in the whole range of densities, even the asymptotic value is close to the
semi-empirical mass formula coefficient in the asymmetry term contribution.
Additionally, we find the desired behaviour of the isospin energy curve in the
low density regime when realistic neutron star matter is considered, however,
the classical contribution deteriorates the total energy curve.

We end this section with an extensive analysis of the parameters using the
perfect scaling approximation. The introduction of the symmetry energy in
the Skyrme model allows to completely determine all the parameters in the
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model, hence, it is interesting to check the possibility to reproduce all the
observables within the model and still have physically acceptable neutron
stars. From this analysis we find difficulties to satisfy all the conditions with
arbitrary accuracy, but we find some interesting conclusions on the values of
the sextic term coupling constant, the speed of sound and the masses and
radii of the neutron stars.

In the next section we consider the possibility to develop a kaon condensed
core in neutron stars. This task is addressed using the Callan and Klebanov
approach which naturally introduces the strange degrees of freedom perturba-
tively in a SU(3)-extended Skyrme field. The interactions between kaons and
pions are directly given by the model itself, therefore, the final Lagrangian
is purely within the Skyrme model with no ad hoc extra fields. We follow
the standard procedure for the condensation of a scalar field and obtain the
contribution to the energy from the kaon condensed field. Then, the isospin
degrees of freedom of the whole system (including kaons) are quantized in
order to study the impact of kaons on the particle fractions. The quantization
procedure is the same, but an additional term is introduced in the energy
contribution. Given that the system is more complicated than in the previ-
ous section, we must build the thermodynamical grand potential to obtain
the equilibrium conditions. The density at which kaons become energetically
favourable is computed using four different sets of parameters obtained from
the last section, then, the total energy is calculated and we find that the im-
pact of kaons on the Skyrme crystals produces a first order phase transition.
In this case, the presence of two conserved charge requires a Gibbs construc-
tion to reconstruct a physically acceptable energy curve. Finally, the Skyrme
npeµ with kaon-condensed core EOS is shown and also the mass-radius curves
for the resulting neutron stars.

The last result in this chapter is the impact of ρ mesons in the Skyrme lat-
tices with the aim of solving one severe problem in the description of nuclear
matter within the Skyrme model, the compression modulus value. We first
motivate the inclusion of vector mesons with similar computations carried
out in the past. Next, we present the compression modulus, how it is mea-
sured, the accepted experimental value and we show the values obtained for
the Skyrme crystals computed in the second chapter. Additionally, we argue
that the deviations from the correct value are not the result of a wrong set of
parameters, but are indeed a problem of the crystal solutions. Then, we moti-
vate the interaction term between ρ mesons and pions, and obtain the energy
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contribution and the corresponding Euler-Lagrange equations. A remarkable
feature of this interaction is that we may still identify an energy bound for the
whole system. Eventually, we show the energy curves of the α-lattice coupled
to ρ mesons and the great improvement on the compression modulus value.

Finally, we end with some concluding remarks and additional ideas to extend
the research developed throughout this thesis.
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Resumo

A descrición da materia nuclear a altas densidades, alcanzada nos núcleos
das estrelas de neutróns, converteuse nun dos principais problemas da f́ısica
tanto experimental como teórica. Nesta tese consideramos o modelo Skyrme
e as súas xeneralizacións para reproducir o estado da materia nuclear a tales
densidades e as propiedades das estrelas de neutróns resultantes.

Comezamos na introdución con unha visión completa e detallada da f́ısica
das estrelas de neutrónss. Primeiro introducimos o concepto de estrela de
neutróns. Logo, seguimos cunha curta explicación das etapas consecutivas do
colapso do núcleo da estrela proxenitora co gallo de presentar un dos procesos
máis violentos do noso universo, as explosións de supernovas. O mecanismo
completo polo que se dan as supernovas non está inclúıdo, xa que este in-
volucra procesos da f́ısica de neutrinos, que non serán estudados con detalle
nesta tese. Polo tanto, centrarémonos máis nos aspectos máis xerais das es-
trelas de neutróns, tales como as velocidades de rotación ou os fortes campos
magnéticos, dos que se falará e os que serán cuantificados para amosar as
condicións tan extremas que se acadan nestes obxectos. Para rematar esta
parte introductoria, explicaremos como os procesos URCA arrefŕıan rapida-
mente o obxecto estelar recén nacido, dando lugar a unha estrela de neutróns
fŕıa (relativamente), cuxa descrición é o obxectivo principal desta tese.

A seguinte subsección está enteiramente adicada a presentar a descrición pre-
dominante do interior das estrelas de neutróns, estratificada en cinco capas
distintas. Apórtase un extenso esquema da composición qúımica e tamaño de
cada unha das capas, e adicionalmente un bosquexo ilustrado no propio texto.
Destacamos que as partes máis externas son esenciais para as observacións ex-
perimentais das estrellas de neutróns, pero xa están ben determinadas pola
f́ısica hadrónica reproducible en experimentos terrestres. Non obstante, estas
rexións representan menos do 1% da estrela de neutróns. Á densidade de
goteo de neutróns, a materia conforma diferentes xeometŕıas nomeadas como
fases de pasta nuclear, e para densidades maiores, a ecuación de estado está
principalmente determinada por simulacións teóricas. Máis cara o interior da
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estrela de neutróns, os núcleos disocianse en neutróns, protóns e leptóns libres
e en equilibrio, baixo as condicións de descaemento beta e neutralidade de
carga. Na rexión máis interna, as condicións extremas acadadas ocultan o
estado espećıfico da materia nuclear no marco do noso coñecemento actual,
pero expĺıcanse os distintos escenarios posibles. Entre eles, a condensación
de kaóns nos núcleos das estrelas de neutróns, será considerada no último
caṕıtulo deste traballo.

Na seguinte subsección, comentamos a evolución histórica das estrelas de
neutróns na ciencia, dende que son propostas e aceptadas por vez primeira,
a partir da observación de explosións de supernovas por Baade e Zwicky no
1934, até o revolucionario descubrimento dos púlsares por J. Bell e A. Hewish.
Ademais, pouco despois dos traballos de Baade e Zwicky, as contribucións
teóricas de Tolman, Oppenheimer e Volkoff (TOV), fixaron o marco teórico
para obter solucións de estrelas de neutróns a partir de calquera ecuación de
estado para a materia nuclear. De feito, o formalismo TOV emprégase varias
veces ao longo dsta tese, polo que será explicado detalladamente no Apéndice
B. Finalmente, mencionamos os traballos teóricos actuais sobre a f́ısica das
estrelas de neutróns, centrados na descrición da materia nuclear, a moi altas
densidades, e as técnicas experimentais que son a d́ıa de hoxe, a principal
fonte de información para coñecer mellor as cantidades observables respecto
deste tipo de obxectos astrof́ısicos.

No segundo caṕıtulo, presentamos e motivamos o modelo de Skyrme e a súa
xeralización, como unha teoŕıa de materia nuclear e en particular, para o es-
tudo das estrelas de neutróns. Primeiro, introducimos o contexto histórico no
que se propuxo o modelo de Skyrme. A principal caracteŕıstica deste modelo
é a existencia de solitóns topoloxicamente estables, chamados skyrmions, que
se identifican cos núcleos atómicos. Presentamos a densidade lagranxiana,
construida a partir de dous termos e un campo fundamental do grupo SU(2),
con tres graos de liberdade identificados como pións. Proporciónanse os argu-
mentos matemáticos para entender a existencia dos skyrmions, pero o modelo
introdúcese principalmente dende o punto de vista f́ısico e moderno da teoŕıa
de campos efectiva de baixa enerx́ıa da QCD. Ademais, anaĺızase coidadosa-
mente a estabilidade enerxética dos solitóns, a partir da cal se introduce a
noción do ĺımite BPS para as enerx́ıas.

O skyrmion máis sinxelo caracteŕızase por ter o número topolóxico B = 1 e
simetŕıa esférica, e representará o estado clásico do protón e do neutrón. A
parametrización desta configuración de campo dase empregando o ansatz do

XIV



ourizo cacho, e produce unha única ecuación diferencial ordinaria de segunda
orde. A resolución desta ecuación de campo expĺıcase no texto, pero estu-
darase un enfoque alternativo baseado en métodos espectraies no Apéndice
A. Entón, a parametrización de skyrmions con valores de B maiores, fóra da
simetŕıa esférica, reaĺızase a través da aproximación de mapa racional. Porén,
as solucións resultantes producen enerx́ıas de enlace demasiado grandes e con-
figuracións de densidad de enerx́ıa pouco realistas. Ademais, xa que os protóns
e neutróns son part́ıculas cuánticas de esṕın e isoesṕın 1/2, a inclusión destes
efectos é un paso importante que debe considerarse no modelo de Skyrme.
O procedemento de cuantización dos skyrmions ten como piar unha aprox-
imación semi-clásica na que se obteñen as correccións cuánticas á enerx́ıa a
partir da configuración clásica, e os posibles estados cuánticos están determi-
nados polas simetŕıas da solución espećıfica, como afirmaron Finkelstein e Ru-
binstein. A introdución ao modelo de Skyrme estándar remata coa inclusión
dun termo potencial de masa para o pión, que non só produce un modelo máis
realista, senón que tamén mellora algunhas das propiedades incorrectas das
solucións anteriores.

Na subsección 2.1.2 preséntase un breve esquema sobre os primeros inten-
tos de construir solucións de estrelas de neutróns. Sendo os resultados bas-
tante pouco realistas, o estudo das estrelas de neutróns dentro del modelo de
Skyrme motivou o desenvolvemento dun novo tipo de solucións cristalinas de
baixa enerx́ıa por Klebanov. Propuxéronse diferentes solucións periódicas e
os observables para as estrelas de neutróns calculados empregando os cristais
de Skyrme melloraron notablemente. Aı́nda aśı, as masas eran pequenas en
comparación coas observacións experimentais.

A seguinte sección ten como obxectivo introducir outro modelo baseado no
de Skyrme con un lagranxiano diferente, composto por un termo potencial
xenérico e un novo termo con seis derivadas do campo de Skyrme. Tamén se
poden obter skyrmions deste novo modelo, e a propiedade principal, a satu-
ración no correspondente ĺımite de enerx́ıa BPS, continúa sendo certa, polo
que se lle chama ao modelo BPS. Ainda que este modelo non está motivado
fisicamente, a súa estrutura matemática, e a gran mellora á hora de obter
solucións, fan del un marco máis ca válido e con implicacións fenomenolóxicas
cruciais.

Revisamos os cálculos de estrelas de neutróns dentro do modelo BPS para
diferentes potenciais e comparámolos con solucións do modelo de Skyrme
estándar de baixa masa. É máis, por mor do tensor de enerx́ıa momento
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do modelo BPS, podemos comparar as estrelas de neutróns obtidas mediante
un cálculo teórico completo e as obtidas empregando o formalismo TOV baixo
unha aproximación de campo medio. Os altos valores para as masas máximas
das estrelas de neutróns BPS motivan a combinación dos dous modelos para
unha descrición precisa da materia altamente densa a partir dun modelo de
Skyrme xeralizado, que é o gromo deste traballo de investigación.

O primeiro resultado novedoso froito da nosa investigación, amósase na sub-
subsección 2.2.1.1, onde as estrelas de neutróns BPS acoplan a unha teoŕıa
de Relatividade Xeral modificada. Especificamente, engádese un novo termo
cadrático no escalar de Ricci na acción de Einstein-Hilbert, motivado como
unha corrección de orde superior, dado que os intensos campos gravitacionais
fan das estrelas de neutróns, escenarios ideais para detectar estes efectos de
alta curvatura. Aı́nda que esta modificación é a máis sinxela das eleccións,
a dificultade á hora de resolver o problema aumenta drásticamente. Non
obstante, atopamos solucións e discútense as implicacións en canto ás obser-
vacións das estrelas de neutróns.

A última sección do Caṕıtulo 2 introduce unha xeralización do modelo de
Skyrme, baseada na combinación dos submodelos de Skyrme estándar e BPS.
Como punto de partida natural, calculamos o skyrmion B = 1 para diferentes
valores da constante de acoplamento do termo séxtico. A masa do pión f́ıxase
ao valor f́ısico, pero os outros parámetros axústanse ás masas de excitación
do protón e da ∆ , despois da cuantización dos graos de liberdade de esṕın e
isoesṕın emmpregando un método iterativo. Por completitude, tamén calcu-
lamos as enerx́ıas clásicas dos primeros catro skyrmions para estudar o impacto
do termo séxtico en skyrmions illados. Finalmente, o caṕıtulo conclúe cunha
análise efectiva sobor das estrelas de neutróns dentro do modelo de Skyrme
xeralizado. Construimos unha EOS completa de xeito consistente a partir
de argumentos de escala resgardados polos resultados de ambos submodelos
explicados ao longo de todo o caṕıtulo. Os notables resultados sobre a masa,
o radio e a deformabilidade de marea das estrelas de neutróns son unha gran
motivación para estudar solucións teóricas completas de cristais no modelo de
Skyrme xeralizado. No Caṕıtulo 3, centrámonos na construción de cristais de
Skyrme co obxectivo de establecer as bases para a descrición das estrelas de
neutróns. Primeiro, expĺıcase o concepto de cristal de Skyrme, resaltando que
os solitóns topolóxicos áında están permitidos a pesar de que as condicións de
contorno cambiaran. A enerx́ıa destas solucións é obviamente infinita, pero
a estrutura pode dividirse en celas unitarias de tamaño finito con enerx́ıa e
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número de barións ben determinados, de xeito que a enerx́ıa por número de
barións do cristal completo permanece finita.

Utilizamos o enfoque de Kugler e Shtrikmann para construir solucións cristali-
nas. A idea consiste en expandir os campos en series de Fourier truncadas, de
xeito que os coeficientes vaŕıen para minimizar o funcional de enerx́ıa. Desta
forma, o problema tradúcese directamente nun problema de minimización de
dimensión finita que, de feito, non precisa un gran número de coeficientes.
Aśı e todo, o centro dos skyrmions está fixado, o que significa que non poden
moverse libremente con este enfoque. Polo tanto, áında temos que atopar a
súa distribución e orientación óptimas dentro da cela unitaria. Estudáronse
diferentes configuracións de campo desde a primera simetŕıa cúbica simple
proposta por Klebanov; revisamos as simetŕıas e explicamos de que maneira
poden ser implementadas de xeito sinxelo no formalismo de expansión de
Fourier.

A minimización do funcional da enerx́ıa leva de seu a variación multidimen-
sional e a un tempo dos coeficientes, aśı que primeiro consideramos o caso más
simple con dous coeficientes para desenvolver o algoritmo numérico. Vanse en-
gadindo pouco a pouco más coeficientes e obsérvase unha rápida converxencia
na enerx́ıa, polo que fixamos o número final de coeficientes (arredor de 30)
para cada simetŕıa, comparando cos valores orixinais obtidos por Kugler e
Shtrikmann. Descŕıbese a filosof́ıa do algoritmo de minimización e tamén
se proporcionan os detalles numéricos. A continucaión, apĺıcase para difer-
entes tamaños da cela unitaria, para atopar aśı os valores da enerx́ıa. Desta
maneira, obtense a enerx́ıa como función da lonxitude da rede e parametŕızase
empregando argumentos de escalado co gallo de seren empregadas dun xeito
anaĺıtico, xa que isto é extremadamente útil. A curva de enerx́ıa sempre
encontra un valor mı́nimo, o chamado equilibrio, e medra para valores máis
pequenos da lonxitude da rede, sendo isto equivalente a comprimir o sistema.
Para valores máis grandes de L, a enerx́ıa tamén aumenta, xerando unha
rexión non f́ısica, con presión negativa, pero isto tan só indica que a nosa
descrición segue sendo clásica e que se deben incluir efectos adicionais.

Ao longo deste estudo observamos unha propiedade ben interesante na curva
de enerx́ıa, que se volve principal para o posterior axuste dos parámetros.
A precisión do axuste proposto para a enerx́ıa suxire que cada termo no la-
granxiano podeŕıa ser axustado de maneira independente polo seu propio com-
portamento de escalado. Seguindo esta idea, obtemos unha parametrización
máis simple e universal da curva de enerx́ıa, que tamén ten en conta un am-
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plo rango de parámetros, sin realizar a minimización explicitamente. Este
“escalado perfecto” é en efecto bastante preciso para o mı́nimo da enerx́ıa.

Na sección 3.2 introducimos o concepto de materia nuclear infinita, que é o
sistema f́ısico que queremos describir empregando cristais de Skyrme. A iden-
tificación do mı́nimo de enerx́ıa co punto de saturación nuclear, fixa as escalas
de enerx́ıa e a lonxitude dos cristais. Para reproducir estes valores, axus-
tamos os parámetros do modelo estándar de Skyrme para diferentes valores
da constante de acoplamento do termo séxtico, utilizando a aproximación de
escalado perfecto. Logo, calculamos as curvas de enerx́ıa para os diferentes
cristais nun amplo rango de densidades (ou equivalentemente lonxitudes de
reixa). Os resultados son analizados cuidadosamente para encontrar o estado
fundamental no equilibrio; tamén se proporcionan os valores numéricos no
mı́nimo, aśı coma os coeficientes de parametrización da curva de enerx́ıa.

Adicionalmente, estúdanse extensamente as posibles transicións de fase en-
tre as simetŕıas. A altas densidades encontramos unha transición do cristal
a un comportamento semellante ao dun fluido, debido á presencia do termo
séxtico. Atópase outra transición entre as simetŕıas FCC e BCC, xa ano-
tada por Kugler e Shtrikmann, pero extendemos o estudo inclúındo o impacto
do termo séxtico na densidade de transición, e proporciónanse detalles para
reconstruir consistentemente toda a curva de enerx́ıa. A baixas densidades
encontramos unha transición de fase de segunda orde do cristal FCC á súa
versión de medio skyrmion. Non obstante, observamos que o cristal FCC
non é o verdadeiro estado fundamental a baixas densidades; no seu lugar,
encóntranse novas solucións cristalinas que son as correctas e de baixa en-
erx́ıa. Estas novas redes obtéñense colocando un skyrmion B = 4 no centro
dunha cela unitaria e impoñendo condicións de contorno periódicas. Desta
maneira, obtense un valor máis baixo da enerx́ıa no ĺımite L → ∞, que dis-
minúe máis áında co cálculo das redes B = 32 e B = 108. A inclusión destas
redes motivou o estudo dunha nova transición de fase da materia nuclear in-
finita a núcleos illados dentro do modelo de Skyrme. Esta é, de feito, unha
propiedade única deste modelo aśı como tamén o obxectivo final de todo mod-
elo nuclear, é dicir, unha descrición completa da materia nuclear en todo o
rango de densidades. Baixo esta suposición, intentamos reproducir o coe-
ficiente de enerx́ıa superficial na fórmula semi-emṕırica de masa. De feito,
construimos un argumento coherente para identificar esta contribución na que
a enerx́ıa dos cristais de Skyrme, e a xeometŕıa destas redes pred́ı o escalado
correcto cun número de barións; Aśı e todo, o valor obtido é moito maior que
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o determinado experimentalmente.

Este caṕıtulo conclúe coa construción da Ecuación de Estado (EOS) a partir
dos cristais de Skyrme, tendo en conta as diferentes transicións de fase estu-
dadas anteriormente, e a resolución do sistema TOV para obter solucións de
estrelas de neutróns. Os resultados confirman que o termo séxtico é crucial
para unha descrición correcta das estrelas de neutróns; ademais, tamén ten
un impacto interesante na velocidade do son. As masas obtidas concordan
coas observacións experimentais, pero os radios son lixeiramente superiores
aos valores agardados. Polo tanto, este caṕıtulo representa o punto de partida
para unha descrición realista e coherente das estrelas de neutróns dentro do
modelo de Skyrme.

No caṕıtulo 4, enfocámonos na introdución de novas especies de part́ıculas.
O primeiro paso é a inclusión de efectos cuánticos de isoesṕın nos cristais de
Skyrme, como fixemos cos skyrmions illados no segundo caṕıtulo. Estes efec-
tos son de grande importancia para as estrelas de neutróns xa que explican a
diferencia de enerx́ıa entre protóns e neutróns. Despois, rev́ısase novamente
o procedemento de cuantización e obtemos a expresión para o hamiltoniano
destes efectos cuánticos nos cristais de Skyrme. A enerx́ıa de isoesṕın de-
penderá da lonxitude da rede, a través do tensor de inercia de isoesṕın, e do
estado cuántico espećıfico do cristal.

Calculamos a curva do tensor de isoesṕın de maneira semellante á enerx́ıa
clásica e explicamos como se obteñen os posibles estados cuánticos dos cristais
a partir das restricións de Finkelstein-Rubinstein. Para tal fin, reqúırese unha
aproximación adicional por mor do tamaño infinito do cristal. Entre os esta-
dos, atopamos o caso de carga neutra, emporiso, definitivamente non é o caso
máis realista xa que esperamos ter unha pequena fracción de protóns dentro
das estrelas de neutróns a pesar do seu nome. O problema é que o pequeno
número de barións dentro da cela unitaria tan só permite algúns números
espećıficos de protóns que tampouco son realistas.

Este feito motiva unha aproximación adicional na que se considera un frag-
mento maior de cristal. Nesta aproximación, obtemos a contribución da en-
erx́ıa de isoesṕın como función da densidade e a fracción de protóns, a partir da
cal, identificamos a curva de enerx́ıa de simetŕıa. Esta curva foi amplamente
estudada na f́ısica nuclear, e ten grandes implicacións na descrición das estre-
las de neutróns xa que é responsable de moitos efectos importantes. A enerx́ıa
de simetŕıa tamén foi restrinxida rigorosamente a partir de resultados teóricos
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e experimentais; proporcionamos os valores máis confiables e comparámolos
cos obtidos dos cristais de Skyrme. Este novo observable ten importantes
implicacións xa que nunca fora determinado no modelo de Skyrme e pode
ser utilizado para fixar o parámetro do termo séxtico. Ademais, permite a
introdución de protóns e leptóns na EOS impoñendo neutralidade de carga e
equilibrio beta. Calculamos a curva de enerx́ıa de simetŕıa para varios valores
dos parámetros e atopamos que pode ser reproducida con precisión usando
cristais de Skyrme. O que é máis, a curva de enerx́ıa de simetŕıa no cristal
FCC presenta a transición á materia nuclear finita xa que nesta, atópase o
mesmo comportamento asintótico no ĺımite de L grande. De feito, o cristal
FCC produce resultados notables para a curva en todo o rango de densidades;
mesmo o valor asintótico está preto do coeficiente da fórmula semi-emṕırica de
masa, na contribución do termo de asimetŕıa. Adicionalmente, encontramos o
comportamento desexado da curva de enerx́ıa de isoesṕın no réxime de baixa
densidade cando se considera materia realista de estrela de neutróns, con todo,
a contribución clásica deteriora a curva de enerx́ıa total.

Concluimos esta sección cunha análise extensa dos parámetros utilizando a
aproximación de escalado perfecto. A introducción da enerx́ıa de simetŕıa no
modelo de Skyrme permite determinar completamente todos os parámetros no
modelo, polo tanto, é interesante verificar a posibilidade de reproducir todos
os observables dentro do modelo e áında ter estrelas de neutróns fisicamente
aceptables. Desta análise encontramos que non é sinxelo satisfacer todas as
condicións con precisión arbitraria, pero atopamos algunhas conclusións in-
teresantes sobre os valores da constante de acoplamiento do termo séxtico, a
velocidade do son e as masas e radios das estrelas de neutróns. Na seguinte
sección consideramos a posibilidade de que se desenvolva un núcleo con con-
densado de kaóns nas estrelas de neutróns. Esta tarefa abórdase baixo o
enfoque de Callan e Klebanov, quen introduciron naturalmente os graos de
liberdade extraños de forma perturbativa nun campo de Skyrme extendido
a SU(3). As interaccións entre kaóns e pións son proporcionadas directa-
mente polo propio modelo, e aśı, o lagranxiano final está puramente dentro
do modelo de Skyrme, sin campos extras ad hoc. Seguimos o procedemento
estándar para a condensación dun campo escalar e obtemos a contribución á
enerx́ıa do campo de condensado de kaóns. Como seguinte paso, cuant́ızanse
os graos de liberdade de isoesṕın de todo o sistema (inclúındo kaóns) co fin
de estudar o impacto dos kaóns nas fraccións de part́ıculas. O procedemento
de cuantización é o mesmo, pero engádese un termo adicional na contribución
enerxética. Dado que o sistema é máis complicado ca na sección anterior, debe-
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mos construir o potencial termodinámico grande para obter as condicións de
equilibrio. A densidade á que os kaóns tornan a ser enerxeticamente favorables
é calculada empregando catro conxuntos de parametros diferentes, obtidos da
sección anterior, e logo calculamos a enerx́ıa total e atopamos que o impacto
dos kaóns nos cristais de Skyrme é o de producir unha transicón de fase de
primeira orde. Neste caso, a presencia de dúas cargas conservadas, require
dunha construción de Gibbs para refacer unha curva de enerx́ıa fiscamente
aceptable. Finalmente, amosamos a fracción npeµ para o modelo con unha
ecuación de estado para o núcleo, que teña en conta o condensado de kaóns,
ademais das curvas masa radio para as estrelas de neutróns resultantes.

O derradeiro resultado neste caṕıtulo é o impacto dos mesóns ρ nas redes de
Skyrme co obxectivo de resolver un grave problema na descripción da mate-
ria nuclear dentro do modelo de Skyrme, o valor do módulo de compresión.
Primero, motivamos a inclusión dos mesóns vectoriais con cálculos semellantes
aos realizados no pasado. A continuación, presentamos o módulo de com-
presión, como se mide, o valor experimental aceptado e amosamos os valores
obtidos para os cristais de Skyrme calculados no segundo caṕıtulo. Ademais,
argumentamos que as desviacións con respecto ao valor correcto non son o
resultado dun conxunto incorrecto de parámetros, senon que é realmente un
problema das solucións cristalinas. A continuación, motivamos o termo de in-
teracción entre mesóns ρ e pións, e obtemos a contribución enerxética e as cor-
respondentes ecuacións de Euler-Lagrange. Unha caracteŕıstica notable desta
interacción é que áında podemos identificar un ĺımite de enerx́ıa para todo o
sistema. Finalmente, amosamos as curvas de enerx́ıa da rede α acoplado a
mesóns ρ e a gran mellora para o valor do módulo de compresión.

Finalmente, rematamos con algunhas observacións finais e ideas adicionais
para ampliar a investigación desenvolvida ao longo desta tese.
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Andrzej Wereszczynskib

a Departamento de F́ısica de Part́ıculas, Universidad de Santiago de Compostela and
Instituto Galego de F́ısica de Altas Enerxias (IGFAE) E-15782 Santiago de Compostela, Spain

b Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków, Poland

Journal and article information

Name: Symmetries and Ultra Dense Matter of Compact Stars special issue, Symmetry

Publisher: MDPI

Date of publication: 12 April 2023

ISSN: 2073-8994

DOI: 10.3390/sym15040899

Impact Factor: 2.7 (2022)
Contribution from the PhD student: Development of algorithms for analytical
and numerical computations, elaboration of the figures displayed in the manuscript
and contribution to its writing.
The results from this article are reproduced in Chapter 4, subsubsection 4.1.3 with the
standard author permissions from the American Physical Society

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.074007
https://journals.aps.org/copyrightFAQ.html
https://www.mdpi.com/2073-8994/15/4/899
https://www.mdpi.com/authors/rights




Scope and Methodology

The study of neutron stars is crucial for the understanding of the behaviour
of nuclear matter at extreme densities (up to ten times the density of atomic
nuclei). This information is encoded in the so-called equation of state, which
is the relation between the pressure applied on a system and its density. At
low densities, the equation of state is completely determined by terrestrial
experiments, but its extension to higher densities must lead to neutron star
observables that agree with astrophysical measurements.

Since the number of neutron star observations, as well as their accuracy, is
still low, it is important to obtain the maximal possible amount of observables
from simulations and the comparison between different theoretical models. In
this thesis, we will extract the results from the Skyrme model because of its
natural and inherent description of nuclear matter.

It is also known that, despite their name, neutron stars are not completely
made up of neutrons, but protons and leptons (electrons and muons) are
present. Indeed, the number of protons is mainly determined by the sym-
metry energy, hence, it is a crucial ingredient for the realistic description of
matter inside neutron stars. Besides, recent progress in the determination
of the symmetry energy from different experiments and theoretical analyses,
therefore, we may find in this observable a new source of information to con-
strain the Skyrme model.

Finally, one of the main problems in neutron stars physics is known as the
hyperon puzzle. This is related to the possible appearance of strange degrees
of freedom inside neutron stars at high densities, implying a sharp reduction
of the masses and radii. This effect rules out many equations of state from
the list of possible candidates to describe nuclear matter at high densities.
Besides, the inclusion of strangeness is highly non-trivial in some models, and
it is interesting to study how they can be included in the Skyrme model.
Furthermore, once these new degrees of freedom are included, the kaon con-
densation in the core of neutron stars has a similar impact, and its formation

XXXIX



is also of great interest.

The previous physical motivations establish the following main goals for this
thesis:

1. The understanding of the Skyrme model and its generalization as a nuclear
theory and its motivation for the description of neutron stars.

2. Computation of crystal configurations from the generalized Skyrme model
for a first classical description of the mass and radius of neutron stars.

3. Addition of isospin effects and leptons to obtain a realistic description of
nuclear matter inside neutron stars and the computation of the symmetry
energy, which has never been obtained from the Skyrme model.

4. Inclusion of strangeness in the equation of state, without any ad hoc extra
fields but purely within the Skyrme model to predict the density at which
kaons condense inside neutron stars.

5. Extend the Skyrme model with the addition of ρ mesons to solve the
compression modulus problem in the description of infinite nuclear matter.

The methodology to carry out the goals presented above consists of the fol-
lowing steps:

Bibliographic revision: The study of topological soliton solutions is an
interesting task in many different models due to their properties. To get
familiarized with these solutions and with the aim of obtaining them in ex-
tensions of the Skyrme model, it is important to review the previous works in
which they were obtained in the same context.

Conversely, it is important to understand which observables can be extracted
from nuclear terrestrial experiments and astrophysical events, and how they
are computed from theoretical models. Hence, the study of the nuclear matter
behaviour at low densities as well as how it is extrapolated and constrained
to higher densities is of great importance.

Development of symbolic and numerical codes to setup and solve
the problem: The problems presented in this thesis join two different fields
of study, and it is important to find the optimal way to proceed in each case.
For instance, in General Relativity, the problems are usually translated into
a system of differential equations which must be first obtained from the Ein-
stein equations in some specific system of coordinates. Alternatively, in the
Skyrme model we frequently need first to consider the possible symmetries of



the solutions, with a correct parametrization, and then find the field equa-
tions from the energy functional. Both scenarios require efficient symbolic
algorithms to obtain the expressions that we will finally solve. Besides, it is
also interesting to develop a sufficiently flexible framework to introduce pos-
sible modifications, like extensions of General Relativity or additional terms
in the Skyrme lagrangian.

Once the problem has been translated into a numerical issue, we need to
consider different algorithms to find the solution. Specifically, in the Skyrme
model a shooting method is frequently used to integrate the field equations
for the simplest solution, however this is not the only possibility. For the
rest of solutions, a better choice is to consider a minimization problem rather
than a system of differential equations and implement a gradient flow method.
Besides, it is straightforward to implement periodic boundary conditions on
the solutions using a gradient flow method, however, although this algorithm is
more effective and versatile, it requires a high computational capacity even for
an efficient code, so the development of this framework to obtain the solutions
from the Skyrme model is an important step.

Additionally, we will also consider other solutions which are more efficiently
obtained using other approaches. This is the case of the FCC or BCC Skyrme
crystals, which are better obtained varying the coefficients of the Skyrme
fields expanded in truncated Fourier series to minimize the energy. Despite
this method is basically a minimization as well, the procedure is completely
different.

Analysis of the results and the comparison with experimental data:
Finally, when the solution is obtained it is important to reproduce the results
from previous works to trust our numerical method. Then, the physical ob-
servable of interest must be extracted from the solution. This may not be a
trivial task since it may require accurate integrations or even further minimiza-
tions. Besides, the estimation and consideration of errors both experimentally
and theoretically are essential to accept or disprove the result.





Chapter 1

Introduction

Didn’t know how but I always had a feeling I

was gonna be that one in a million. Always

had high, high hopes.

Panic! at the Disco

1.1 Neutron Stars

Neutron stars (NS) are one of the most compact objects in the universe, such

that matter reaches its most exotic states in their interiors. More specifi-

cally, NS are the remnant cores of very massive stars, typically those with

masses larger than 8M⊙ during their main-sequence stage [140], where M⊙ =

1.98841× 1030 kg is the mass the Sun. These high masses induce strong grav-

itational interactions, but the stars remain stable under collapse due to the

energy released from the nuclear fusion reactions. An increasing sequence of

nuclei in the baryon number occurs in these reactions until the most stable nu-

clei are achieved in the last stages of the stars. At this point, nuclear fusion is

not energetically favoured anymore and the gravitational collapse takes place.

The outermost layers are so squeezed towards the core, so that the matter

inside the star is greatly compressed until the degeneracy pressure stops the

collapse and bounces, producing one of the most violent events in the universe,

a type II supernova explosion.

The whole mechanism of these type of supernovae may be split in six different

stages [70], in which the different neutrino emissions play a crucial role, but

a detailed description remains unclear [71]. In this process, a large amount of

mass from the star is expelled, leaving a extremely compact object of ∼ 2M⊙

and around 10 km of radius, the NS [139,201]. Additionally, the atomic matter
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present in the former star is so compressed in the collapse, that the electrons

and protons combine via electron capture processes. This produces a vast

amount of neutrons, and it is the reason for their name.

Nevertheless, NS are not the only fate of a very massive star. If the grav-

itational attraction is sufficiently strong, so that the degeneracy pressure of

nuclear matter is not enough to stop the collapse, then the final remnant is a

black hole. Recent simulations estimate that stars in the main-sequence with

masses larger than 20M⊙ are more likely to produce a black hole [118].

The main characteristic of NS is their high compactness, C := GM/R ∼
0.2−0.3, being the closest to the maximal values of the spherically symmetric

black holes, CBH = 0.5. This induces a huge surface gravity, which may be

roughly estimated in the Newtonian limit, g = GM/R2 ∼ 1010g⊕, where g⊕
is the surface gravity on Earth. The intense gravity present in NS convert

them into unique scenarios where the four fundamental known interactions

are simultaneously important. Moreover, the high curvature effects around

the NS bends the photons trajectory that much, so that we could see the 85%

of the star surface.

Furthermore, the conservation of angular momentum imply that the rotation

of the original star induces high rotational velocities in the much smaller

resulting NS. The largest rotational frequencies observed have reached Ω ∼
700 Hz [119], quite close to the maximal Keplerian frequency, ΩK ∼ 1.4 kHz

[140]. Indeed, the high speed rotations induce measurable deformations in the

NS being, in fact, a valuable source of information. NS are also characterized

for having the strongest detected magnetic fields ∼ 108 − 1015 G, the highest

magnetized NS are called magnetars. The origin of such intense magnetic

fields is indeed more intricate than that of the fast rotations, but there exist

some possible justifications [214]. The fast rotations combined with the strong

magnetic fields produce the emission of beams of electromagnetic radiation,

which, when aligned with the Earth, provides an effect analog to a cosmic

lighthouse. These objects are known as pulsars, and they are responsible for

the discovery of NS with the subsequent interest in their study.

Additionally, despite they are called stars, nuclear reactions do not occur in the

NS interiors. Indeed, the temperature of NS reaches the highest values ∼ 1013
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K during their formation, but the lack of nuclear reactions and the emission of

neutrinos cools down the NS to∼ 106 K in the next million years [142]. Indeed,

The NS cooling is governed by the direct URCA process in the first seconds

of existence. This mechanism is the result from the combined reactions,

n→ p+ e− + ν̄e, p+ e− → n+ νe. (1.1)

The name URCA was given by Mário Schenberg referring to a casino in Rio

after telling to Gamow: “The energy in a supernova must disappear as quickly

as the money at the roulette table.” The temperature drops to ∼ 109 K,

then neutrinos are emitted by the modified URCA processes, which involve

interactions between the nucleons, and the NS cooling sharply slows down.

Actually, the direct URCA process might continue if the fraction of protons

is larger than 1/9 in the NS, so the accurate description of nuclear at high

densities is crucial to distinguish not only the static properties of NS but also

many dynamical effects. However, already at these temperatures, the energy

associated to thermal fluctuations ∼ 0.1 MeV is much smaller than the nuclear

matter binding energies ∼ 10 MeV. For this reason, the NS computations with

no interest in the cooling physics are carried out under the zero temperature

assumption.

It is widely accepted that nuclear matter is so compressed inside NS, that the

baryon density in the center might surpass several times the average baryon

density of stable nuclei, which is known as the nuclear saturation density ρ0 =

2.68×1017 kg/m3. Therefore, the extreme conditions reached inside NS convert

them into ideal laboratories to study how nuclear matter behaves at these

regimes which are not reproducible on Earth. Indeed, the complete knowledge

of nuclear matter is encoded in the so-called equation of state (EOS), and its

determination has become one of the most outstanding problems in nuclear

physics in the present [56].

1.1.1 Structure of Neutron Stars

Our current understanding of NS interiors is based on layers [113] as it is

shown in Fig. 1.1.

The outermost part of a NS is a thin layer mainly made of light atoms (1H,
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12C, 14Si) of density ρ ∼ 103 kg/m3 called the atmosphere, where the thermal

spectrum is created and emitted. The specific thickness ranges from millime-

ters to some ten centimeters, depending on the temperature and the radiation

transports. It is possible to extract valuable information from this external

part about the surface properties of the stars, like the radius, surface temper-

ature, chemical composition and the shape of the surface magnetic field.

The next layer is called the outer crust (or envelope), it extends up to some

hundred meters starting with a very thin layer of a non-degenerate gas of

electrons for ρ ≤ 107 kg/m3 and positive ions from light nuclei. Going deeper,

for densities ρ ≲ 109 kg/m3, this layer is mainly made of 56Fe nuclei [140]

displayed on a lattice [78] surrounded by a degenerate gas of ionized electrons.

At this point, the degeneracy pressure induces electron capture processes,

producing neutrons in the present nuclei. The outer crust ends when the

energy density reaches the neutron drip value ρND ≈ 4× 1014 kg/m3.

For larger densities, we enter the (∼ 1 km thick) inner crust (or simply the

crust), where neutrons leak out of nuclei and very large baryon number B ≳

200 clusters are produced. Here, close to the nuclear saturation density, ρ0 =

2.5 × 1017 kg/m3, the neutron enriched matter starts to deform due to the

competition between the Coulomb and surface energies [186], so that a well-

established sequence of different shapes occurs. Specifically, around ρ ≈ 0.1ρ0
the nuclear matter adopts the shape of gnocchi, spaghetti, waffles, lasagna,

antispaghetti and antignocchi [74]. For obvious reasons, this stage is known

as the nuclear pasta phases [205].

This phase ends at ρ ≈ ρ0/2, where we enter in the outer core. At these

regimes, the excess of neutrons at high pressures suggest that nuclei dissociate

and a superfluid state of neutrons might occur [207]. Actually, the interaction

of vortices, created due to the superfluid state, with the surface of the NS

could explain the pulsar glitches, in which a fast and momentary acceleration

in their period is observed [31]. In this layer of several kilometers thick, matter

is composed of a small amount of protons, electrons and mainly neutrons

under charge and beta equilibrium. Furthermore, the high energy of electrons

at some point favours the production of muons to ensure charge neutrality,

both lepton species are well described by relativistic ideal Fermi gases.
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Figure 1.1: Depiction of the internal composition by layers of a neutron star.

Finally, in the beginning of the inner core, the densities surpass ρ ≳ 2ρ0, but

the value at the centre is still unknown. Different simulations suggest that the

energy density might reach the values ρ ∼ 10−15ρ0, depending on the model.

The size of this part is still unknown, but it might be of several kilometers as

well. The specific composition is also obscure, but different hypothesis, which

are mainly model dependent, have been proposed. The high densities reached

in the core of NS might be the idoneous conditions to produce condensation of

mesons, like pions or, if the electron degeneracy pressure is sufficiently high,

kaons. Simulations estimate the emergence of kaon condensates around 2− 3

times the saturation density. Indeed, the presence of strangeness might occur

as well from the baryonic particles production, called hyperons. This possibil-

ity has also been studied, but these particles are expected to appear between

3− 4 times the saturation density. Moreover, this phenomenon induces a re-

lease of the energy, which sharply decreases the masses of the NS. This effect

may be problematic if the EOS does not reach the values that have been ex-

perimentally determined. Nevertheless, these are purely hadronic phase tran-

sitions, but quark deconfinement has also been suggested to occur at some

point in the cores of very massive NS. All these transitions affect significantly

the properties of the NS, so they have crucial importance to describe the EOS
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correctly.

One last possibility is the strange quark matter hypothesis [55,204,234]. It is

based on the simple bag model, which simulates the quark confinement consid-

ering the system of quarks as a highly compressed Fermi gas in a finite region

of space. To be consistent with the observations, a constant is introduced

ad hoc to penalize energetically the free quark matter at low temperatures.

However, if a strange quark is added to the bag, there is a narrow window of

values for the bag constant that might sharply decrease the energy per baryon

of the three-flavour quark system, implying that strange quark matter is the

absolute stable state of matter. This hypothesis introduced the idea of the

so-called strange stars as the ultimate stable state of matter in compact stars.

1.1.2 History of Neutron Stars

The theoretical prediction of NS is attributed to Baade and Zwicky in 1934,

when they analyzed the enormous amount of energy released in the supernova

explosions. Indeed, the term super-nova was first used in their original work

[38]. Although they correctly identified the supernova with the formation

of a NS, they indicated that the resulting object would be formed by the

accumulation of neutrons falling down from the surface to the core of the star,

due to the almost zero pressure applied on them.

The concept of EOS was soon introduced to predict the chemical composi-

tion of NS at different densities. The first β-equilibrated npe system was

proposed in 1933 by Sterne [217], where the neutronization of nuclear matter

for increasing densities was confirmed. Later, a systematic study of the mass

and radius of a NS was developed independently (in fact in the same day)

by Tolman [223], Oppenheimer and Volkoff [181] in 1939, deriving the stellar

structure equations directly from general relativity (GR). In those studies, the

Mass-Radius (MR) curve is reconstructed for an EOS describing a degenerate

Fermi gas of neutrons, and the concept of maximal mass NS was introduced

with a value of Mmax ≈ 0.7M⊙. They realized that this small value of Mmax

was due to the simplicity of the EOS, but after the Second World War, the

inclusion of nuclear interactions increased the maximal mass up to 2M⊙. The

further development of realistic EOS with additional vector meson interac-
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tions, strangeness, magnetic fields, superfluid cores and the thermal evolution

of NS via neutrino emissions has been an increasing field of study since the

1960s.

The interest in the refinement of the EOS was mainly motivated by the first

experimental X-ray detections in the 60s decade. The first measured X-ray

source of non-solar origin was called Sco X-1, discovered in 1962 by Giacconi

and his collaborators [98], but it was not identified as a NS at that moment.

In the present we know that Sco X-1 is actually a binary system with a NS

accreting matter from the companion.

The next remarkable X-ray source observation was the Crab nebula in 1964,

however, this case was neither identified with a NS given the large size mea-

sured ∼ 1013 km. Surprisingly, the Crab nebula is actually a plerion, i.e., an

active pulsar surrounded by the supernova remnant gas, which is expanding

and radiating due to the interactions with the central NS strong magnetic

fields. Indeed, the observation of the supernova explosion from this specific

stellar object has been dated to the year 1054 by historical records of Chinese

astronomers. It is indicated in these manuscripts that the light emitted in the

explosion would have been visible even during the daylight.

Probably the most famous NS observation was made by Jocelyn Bell in 1967

[120], using a radiotelescope designed by her supervisor, Anthony Hewish. She

discovered a radio source emitting strictly periodic pulses with a very short

and stable period P = 1.3373 s. The identification of this source with an

oscillating star was ruled out since the fast rotational velocity would fly apart

the star, and the stability in the period made them even think of a possible

artificial origin. Indeed, they denoted the source by “LGM” (little green men)

due to the obscure origin of the signals, so the publication was postponed

until the situation was clarified. Finally, the discovery of three more similar

objects suggested that the source might be a pulsating NS. However, over

a hundred of pulsars, some of then in the range of millisecond period, were

observed by the end of 1968, then the idea of Gold [102], that the pulsar

is a fast rotating NS with strong magnetic fields, was finally accepted. The

original object discovered by Bell is now called PSR B1919+21, and Hewish

was awarded in 1974 with the Nobel Prize for the discovery of pulsars, albeit

with some controversy for not considering J. Bell in the award.
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1.2 Current status of Neutron Stars physics

In the present, theoretical computations of NS are focused on the numerical

simulations of the possible scenarios mentioned before in the deepest layers of

NS and their comparison with the current observations. Specifically, the final

goal of every study is the full description of nuclear matter for all densities,

positioning the EOS as the cornerstone in NS physics.

Quantum Chromodynamics (QCD) has been established as the fundamental

theory of strong nuclear interactions. In particular, it is a non-abelian quan-

tum field theory (QFT) which describes the interactions between quarks and

gluons, the fundamental degrees of freedom of nuclear matter. Then, a first

naive thinking would suggest the derivation of the EOS using QCD as the

starting point, but it is not the case. In QFT, the standard description of the

interactions between particles is carried out via the evolution of the coupling

constant as a function of the energy scale. The non-abelian structure of QCD

induces self-interactions between gluons, this triggers an asymptotic decrease

of the coupling constant to at high energies. Hence, quarks and gluons become

weakly coupled in this regime, a phenomenon called asymptotic freedom, and

it is of great importance given that it allows to perform computations in the

perturbative framework of Feynman diagrams.

In the opposite direction, the QCD coupling constant grows arbitrarily as

the energy scale decreases, which causes quarks and gluons to be strongly

bounded. This effect is known as the color confinement, and it is responsible

for the fact that isolated quarks cannot be observed at low energies, instead

they are strongly tied in bound states which are the mesons and baryons.

It also prevents us to compute quark-gluon dynamics in the standard per-

turbative approach, indeed the energy scale at which QCD is not reliable

anymore has been estimated around ΛQCD ∼ 200 MeV [95]. Therefore, other

approaches are necessary to describe nuclear matter in the low energy scale

regime. Lattice QCD has become an interesting proposal of non-perturbative

formalism to extract information from the fundamental theory at high tem-

peratures and low baryon densities. However, as we have seen, NS are the

prototypical scenarios of very high baryon densities and relatively low tem-

peratures, hence this approach is not a correct choice for our purposes.
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1.2.1 Theoretical approaches

The most frequent approaches to develop an EOS are called many-body in-

teraction methods, which are built from nucleons, as the fundamental degrees

of freedom, and the couplings extracted from the few-body (two or three)

nucleon interactions. The further inclusion of strange degrees of freedom and

deconfined quark matter in the EOS is a more complicated task which requires

additional interactions terms, including strange mesons and hyperons, and ad

hoc hadron-quark phase transitions [48]. The few-body computations extract

the dominant two-body (or higher order) nuclear forces, based on experimen-

tal data or from theoretical approaches, like meson-exchange models [137],

potential models [146, 231] or even from Lattice QCD using high computa-

tional resources. A detailed description of the different few-body techniques

may be found in [68, 179] and the references therein. Once the information

of the nucleon-nucleon interactions has been obtained, it is introduced as an

input in the many-body computational methods, which are classified into ab-

initio microscopic methods or phenomenological models.

One of the most used ab-inito methods is the relativistic Dirac-Brueckner-

Hartree-Fock. This method is actually the lowest-order Hartree-Fock approx-

imation of the energy density in the Brueckner-Bethe-Goldstone theory [113].

The basic idea of this theory is the introduction of a self-energy term to split

consistently the single-nucleon Hamiltonian and the interactions terms be-

tween nucleons. This step is crucial to ensure the convergence of the method.

Then, all the interaction diagrams must be considered to compute the energy

of the system [41], but the summation on the whole set of diagrams is replaced

by the so-called G-matrix. Thus, the G-matrix may be regarded as the effec-

tive in-medium interaction between two nucleons. It is obtained as a solution

to an integral equation at different densities, so that the self-energy term is

also determined, and the total energy of the system may be computed. In

this way, the EOS is constructed, however, in this approach, the three body

forces must be included since they are essential to reproduce the properties of

nuclear matter at the saturation point.

Another popular and successful case are the Chiral Effective Field Theo-

ries [150]. These are based on the effective field theory (EFT) philosophy,
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considering only the appropriate degrees of freedom for a specific physical

phenomenon in some energy and length scales, instead of considering the pos-

sibly more complicated underlying fundamental theory. Other fundamental

ingredients in an EFT are the symmetries of the problem and the expansion

parameter, also known as the power counting. The main advantage of EFT is

the consistent description order by order in the expansion parameter, focusing

on the key physical properties of the scenario. In particular, chiral EFT pro-

vide a model-independent systematic framework to describe the low energy

interactions between hadrons, introduced as external effective fields, through

the interchange of mesons as the fundamental degrees of freedom. These theo-

ries rely on the chiral symmetry, which is the invariance under the interchange

of quarks in the massless Lagrangian of QCD. Thus, the expansion parameter

typically relates the chiral symmetry breaking scale Λχ with the quarks masses

or the meson momentum transfer. The inclusion of chiral EFT results allowed

to constrain the EOS slightly above the saturation density, ∼ 1.1n0 [221].

Specifically, the Skyrme model may be enclosed in the chiral EFT paradigm,

but not in the traditional sense, since baryons appear naturally within the

model, in opposition to the other methods explained above. It was already

considered in 2012 to describe NS, but the results did not correspond to the

mass constraints. Nevertheless, the Skyrme model recently gained some inter-

est in the study of dense nuclear, from the promising results using a specific

extension of the model [12]. Then, it is natural, and the aim of this thesis,

the combination of these models to extend the computations for NS.

On the other hand, phenomenological models are often called effective en-

ergy density functionals. Among them, relativistic mean-field theories [100]

are built from an effective Lagrangian of nucleons described by Dirac spinor

fields, which interact through the exchange of different type of mesons. The

coupling constants are usually fitted to some nuclear matter properties, and

each meson is responsible of different effects, for instance, the short and long

range interactions are carried by the σ and ω mesons respectively, and the

neutron-proton asymmetry contributions are accounted by ρ mesons. Then,

the whole system of highly coupled nonlinear equations is solved under a

mean-field approximation, in which the mesons are replaced by their spatially

integrated mean value.
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1.2.2 Experimental detections

The multiples approaches explained above produce a wide variety of EOS

[68, 69, 183], and each one yields different observables like the mass, radius

and rotational or tidal deformations for NS. Therefore, these results must be

compared with experimental measurements to confirm the reliability of the

EOS. Indeed, the low density regime has already been constrained up to 1−2

times the saturation density, from heavy ion collisions [125].

Many different observational techniques have been developed to extract the

NS properties [196]. The Shapiro delay method [206] is an effective way to

measure the mass of a NS. In a binary system, in which one of the compact

objects is a pulsar, the strong gravitational effects induce a periodic delay in

the received pulse. The delay is a correction to the classical Newtonian motion,

so it is an example of post-Newtonian (PN) parameter and it is related to the

mass of the companion. Then the NS mass may be extracted from the binary

mass function, which is easier to measure. Many important detections have

been determined using this technique [82,87], indeed, these observations ruled

out some EOS whose maximal mass could not reach the values M ≳ 2M⊙.

An additional PN parameter in binary-NS systems may be related to the

moment of inertia [83], which depends directly on the mass and radius of

the compact object. The moment of inertia has already been estimated in

this way, but the current measurements produce large uncertainties, then this

observable does not further constrain the EOS. The reason is that it is obtained

from a second order O(v4/c4) PN parameter in the orbital velocity of the NS,

extracted from the apsidal precession of the orbits. However, it is expected

that longer timing baselines will resolve the accuracy.

Interestingly, the moment of inertia has been recently related to other physical

observables, specifically the deformability and quadrupolar moment of rotat-

ing NS, in the so-called universal relations [237]. Hence, even though different

observables cannot be measured simultaneously for the same NS, the unknown

observables may be estimated from the others using these relations.

X-ray observational techniques represent an important source of information

given that the emitted photons are greatly affected by the mass and radius of
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the NS. The Neutron Star Interior Composition Explorer (NICER) experiment

is now the main responsible for the mass and radius measurements from X-ray

emissions of spinning NS [164,165,197,198]. It is a NASA telescope located in

International Space Station which is collecting the photons in the 0.2−12 keV

spectrum emitted by pulsars. In this way, the compactness may be constrained

by the flux curve due to the gravitational light-bending effect, besides, there

are promising expectations in the independent constraint of the mass and

radius from the spectroscopy analysis [184].

Finally, from a completely different perspective, gravitational wave (GW) ob-

servations has become an increasing field of study. The propagation of grav-

itational radiation emitted by the accelerated motion of masses is a strong

prediction of GR, and it encodes valuable information from the source. How-

ever, due to the low intensity of gravity, these waves must be emitted from very

massive, compact and rapidly moving sources (mainly binary NS or black hole

mergers), and yet their observation requires an extremely accurate detector.

The first GW detection of a binary neutron stars coalescence is attributed to

the LIGO scientific and Virgo collaborations [2] in 2017. Furthermore, the

combined detection of the GW emission and the electromagnetic counterpart

from this source [1] established the starting point of the new multimessenger

detection era. This event not only allowed to constraint the MR diagram of

NS, but also imposed an upper bound for the tidal deformability. This new

observable may be extracted from the PN expansion of the GW waveform just

before the merging, and it is a direct indication on how much nuclear matter

is compressed inside the NS, also known as the stiffness of the EOS.

The LIGO and Virgo detectors have measured more events since the first GW

observation, imposing tight constraints on the EOS. They have been recently

complemented by other detectors like KAGRA, and extensions of LIGO and

Virgo in other places. Besides, new detectors are expected to be introduced

in the next decade, like LISA or the Einstein Telescope [39].
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The Skyrme model

The outcome of the battle depends on how

you handle weakness and strength.

Gichin Funakoshi

In the beginning of the 1960s, T. H. Skyrme proposes a theory purely built

from mesons to reproduce the nuclear interactions and describe baryonic so-

lutions [210, 211]. In this theory, which in the present is commonly known

as The Skyrme model [156, 240], baryons naturally appear as nonperturba-

tive collective excitations from the non-linear interactions between mesons.

More specifically, these solutions are topological solitons [154,193] and, in the

context of the Skyrme model, they are called skyrmions. The model was intro-

duced before the appearance of QCD, so it is originally based on the Yukawa’s

idea, prevalent since the 1930s, in which nuclear interactions between baryons

were mediated by mesons. The success of this idea is due to the reasonable

description of long range interactions between nucleons and the discovery of

the pions.

The computational difficulty to obtain solutions from the model at that mo-

ment, together with the advent of QCD in the beginning of the 1970s, induced

a loss of interest in the model for some years. It was in 1983 when Witten [233]

established a relation between QCD in the large Nc limit [220] and the Skyrme

model, which drew attention to the model again. In his work, it is shown how

the fundamental theory of strong interactions becomes an effective theory of

weakly interacting mesons, in which the baryons satisfy the typical properties

of solitons [122, 149, 202]. Hence, the Skyrme model might be understood as

an EFT of QCD at low energies, regime at which results cannot be obtained

from the standard perturbative methods. This result strengthened the basic
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ideas of the Skyrme model, and many analogies between the two theories may

be extracted.

2.1 The standard Skyrme model

The Skyrme model is built from a field, denoted by U , which is an element

of the SU(2) Lie group. This implies that the field satisfies the following

conditions:

U †U = UU † = I2, det{U} = 1. (2.1)

In practice, this field is parametrized in terms of other scalar fields. Specifi-

cally, the exponential map establishes a correspondence between the elements

of a Lie group and its associated Lie algebra. Besides, any element of a Lie

algebra may be expanded in terms of the algebra generators, which in the

su(2) case, these are the Pauli matrices,

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
. (2.2)

Then, the Skyrme field may be written in terms of the new fields, πa (a =

1, 2, 3), which are identified with the pions,

U = exp{iπ̃aτa} = cos(π̃)I2 + i sin(π̃)π̃aτa := σI2 + iπaτa, (2.3)

where I2 is the 2× 2 identity matrix, and π̃ =
√
π̃2 =

√
π̃aπ̃a. We also have

defined the σ field, which must satisfy the unitary constraint σ2 + π2 = 1.

Hence, the Skyrme model is a scalar field theory of pions which was originally

represented by the following Lagrangian density,

L24 = L2 + L4 = −f
2
π

16
Tr{LµL

µ}+ 1

32e2
Tr
{
[Lµ, Lν]

2
}
. (2.4)

It is usual to express the Lagrangian in terms of Lµ = U †∂µU , the left-invariant

Maurer-Cartan form, which is an element of the su(2) Lie algebra. The sub-

script in each term is just a notation to represent the number of derivatives in
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the specific term, for this reason, we will often refer to them as the quadratic

(L2) and the quartic (L4) terms. We remark here that, throughout this thesis,

we will work with different versions of the model, therefore, we will refer to

the previous Lagrangian (2.4) as the standard Skyrme model.

There are two parameters (fπ, e) in this theory. The coefficient fπ, present

in the quadratic term may be identified with the pion decay constant, which

has the physical value 186 MeV within our convention. The other one is

known as the Skyrme parameter, e, and it has no direct identification with

any observable. However, it is usual to consider both as free parameters and

use them to fit the solutions to nuclear observables.

The Skyrme model is invariant under a SU(2)L×SU(2)R chiral transformation

of the field,

U → LUR†. (2.5)

However, in order to obtain finite energy solutions, we need to impose the

vacuum boundary conditions on the Skyrme field at spatial infinity. There is

no unique choice for the vacuum, but it is standard, and natural, to consider

the limit U
x→∞−−−→ I2. This condition corresponds to the spontaneous chiral

symmetry breaking in the Skyrme model, which modifies the previous internal

invariance to the diagonal symmetry group, SU(2)L × SU(2)R → SU(2)V .

Then, the model is now invariant under the so-called isospin transformation,

U → AUA†. (2.6)

These features of the Skyrme model are also present in QCD, whose La-

grangian for massless quarks is chiral invariant. Besides, it is known that this

symmetry is also spontaneously broken to the isospin symmetry in the fun-

damental theory [149]. Moreover, the Nambu−Goldstone theorem [104, 168]

states that any spontaneously broken symmetry in a relativistic system in-

duces a number of massless Goldstone bosons equal to the number of broken

generators. These bosons are, indeed, the pions [149].

In general, we may extend the symmetry of the Skyrme model to SU(Nf),

where Nf is the number of flavours that we want to consider. However, we aim
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at describing atomic nuclei and nuclear matter inside NS, hence, we just need

to reproduce protons and neutrons, which are composed by the two lightest

quarks, u and d. The inclusion of strangeness is considered at the end of this

thesis, since it is of huge interest for NS physics, thus, we will maintain Nf = 2

until the last chapter.

For any fixed time, the Skyrme field defines a map from the three dimensional

real space to the SU(2) group. From the unitary condition we see that the

fields (σ, πa) lie on a three-sphere, so the SU(2) group may be regarded as

the S3 manifold. Then, the Skyrme field is the map U : R3 → SU(2) ∼ S3.

Furthermore, once the vacuum condition is imposed on the field, the whole

spatial infinite of R3 is compactified into a point, becoming the base manifold

the S3 too. This implies that the field configurations may be classified by the

third homotopy group which, in this case, satisfies π3(S
3) = Z. Therefore,

there is an integer number, denoted by B, associated to each field configura-

tion, which is different for topologically distinct configurations. This integer

number was identified by Skyrme with the baryon number of nuclear matter,

and it may be calculated from the topologically conserved current Bµ:

B =

∫
d3x B0, Bµ =

ϵµναβ

24π2
Tr{LνLαLβ}. (2.7)

It is trivial to see that the divergence of the topological current vanishes

(∂µB
µ = 0), therefore, the topological charge is conserved. In addition, the

zero component B0 of the current is the pullback of the target space volume

form, so the integer number B counts the number of times the field configu-

ration winds around the target space. For this reason, the topological charge

is also known as the winding number.

For computational purposes, it is usual to work with an adimensional model,

scaling out the energy and length units. Indeed, we may choose these units

such that the two parameters in the Lagrangian (2.4) are eliminated,

Es =
3π2fπ
e

, xs =
1

fπe
. (2.8)
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These are called the Skyrme units, and the Lagrangian is expressed as follows,

L =
1

24π2

[
−1

2
Tr{LµL

µ}+ 1

4
Tr{[Lµ, Lν]}

]
. (2.9)

In these units, solutions are obtained independently of the parameters, so

that we have the freedom to fit the energy and length scale to some physical

observables, which is translated into the fit of the parameters fπ and e.

The quadratic term may be expressed as a kinetic energy term for the Skyrme

field,

L2 = −1

2
Tr{LµL

µ} =
1

2
Tr
{
∂µU

†∂µU
}
. (2.10)

However, when it is expanded in terms of the pion fields, it yields a kinetic

energy contribution plus self-interaction terms. In fact, this term is also known

as the non-linear σ-model (NLSM).

Even though this term already reproduces some long distance phenomenology

of nuclear matter, it is not enough to provide energetically stable solutions.

Under a simple rescaling of the spatial coordinates x → x/σs on a field con-

figuration U(x) → U(x/σs), it may be shown that the energy is minimized for

σs = 0, i.e., the solution collapses. This is anticipated by the Derrick scaling

theorem [88], which states that stationary localized solutions to a nonlinear

wave equation in three or higher spatial dimensions are unstable.

However, the inclusion of the quartic term in the model avoids the Derrick

theorem restriction and yields stable solutions. Applying the scaling argument

in the static energy functional E = −
∫
d3xL of the Skyrme model,

E = E2 + E4 =
1

24π2

∫
d3x

[
−1

2
Tr
{
L2
i

}
− 1

4
Tr
{
[Li, Lj]

2
}]

, (2.11)

we find a non-zero size of the minimal energy configuration.

E(σs) = σsE2 +
E4

σs
, (2.12)

∂σs
E = 0 −→ σ2s =

E4

E2
̸= 0. (2.13)



18 2.1. The standard Skyrme model

Then, the quartic term is crucial to stabilize the solutions. It was introduced

by Skyrme himself, this is also a reason for which the quartic term is frequently

referred to as the Skyrme term. Given that the Skyrme model is identified as

a low-energy effective field theory of QCD, the quartic term may be seen as a

higher derivative correction to the NLSM. It is not, in fact, the only term that

we can construct with four derivatives that satisfies chiral symmetry, but it is

the only one that yields a Hamiltonian of second order in time derivatives.

Furthermore, a lower energy bound for the field configurations may be ob-

tained in the standard Skyrme model. The energy functional (2.11) may be

written in terms of strictly positive terms using the following relations:

L†
µ = −Lµ, (2.14)

Tr
{
[Li, Lj]

2
}
= 2Tr

{
(ϵijkLiLj)

2
}
= −2Tr

{
|ϵijkLiLj|2

}
. (2.15)

Then, the perfect square may be reconstructed from the two terms in the

energy to obtain the so-called Bogomol’nyi-Prasad-Sommerfield (BPS) bound

[57,190].

E =
1

24π2

∫
d3x

[
1

2
Tr
{
|Li|2

}
+

1

2
Tr
{
|ϵijkLiLj|2

}]
=

1

24π2

∫
d3x

[
1

2
Tr
{
(|Lk| − |ϵijkLiLj|)2

}
+ Tr{|ϵijkLiLjLk|}

]
≥ |B| (2.16)

Indeed, the Skyrme units have been defined such that the BPS bound is ex-

actly the topological charge. The equality cannot be saturated in the standard

Skyrme model since no solutions, other than the trivial (vacuum) solution

Lk = 0, can be obtained from the BPS equation,

Lk = ϵijkLiLj. (2.17)

Solutions to the field equations for different values of B may be obtained

using different approaches. The simplest solution is the B = 1 skyrmion,

which has spherical symmetry, therefore, the field equation is just an ordinary

differential equation (ODE) that only depends on the radial coordinate. This

solution may be parametrized by the hedgehog ansatz: πa = f(r)na, where
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f(r) is the profile function and na is the S2 unit vector.

U = exp{if(r)naτa} = sin(f)I2 + cos(f)naτa. (2.18)

Inserting the hedgehog ansatz in the Lagrangian we obtain a second order

ODE for the profile function f(r). Recall that we chose I2 to be the vacuum

state of the Skyrme field, hence the topologically non-trivial boundary condi-

tions for the B = 1 skyrmion are: f(r = 0) = π, f(r → ∞) = 0. However,

in order to solve the field equation, we need to know the value of f and its

derivative at the same value of r. The usual way to solve this issue, is to

integrate the equation starting with an initial seed for f ′(r = 0), using any

standard ODE integrator, like a Runge-Kutta method. The input value for

the first derivative will not produce a solution with the correct boundary con-

dition at infinity, but a shooting method may be implemented to reach the

correct value iteratively.

Nevertheless, the solution may be obtained using other techniques which are

not usually found in the Skyrme model literature, but they are often used in

other studies. Spectral methods [105, 106] are a powerful tool to solve many

kinds of differential equations, which are vastly used in numerical relativity

[107], specifically for the study of collisions between compact objects [176,

203] or fast rotating NS [59]. This technique has also been used to solve

other (non-topological) solitonic systems like rotating boson stars [108], but

no applications, to our knowledge, have been found in the Skyrme model.

Then, the B = 1 skyrmion field equation may serve as another interesting

test in which this approach could be implemented to compute skyrmions,

as well as a representative example to show how to solve non-linear ODE

using spectral methods. The resolution of the B = 1 skyrmion is detailed in

appendix A using this technique.

Once the solution for the field profile is found, the energy obtained for the

skyrmion is E = 1.2315, and it represents the classical state for a nucleon,

i.e., the proton or neutron.

Solutions for higher values of B have been extensively studied. The standard

procedure to obtain the low-B skyrmions consists in the identification of the

symmetries for the field configuration, then the field equations may be solved
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using different approaches. The B = 2 solution was first identified to be

axially symmetric in [153], and then the system of PDE was solved in [62].

The extension to the tetrahedral B = 3 and cubic B = 4 skyrmions [64]

was also performed following this approach [64], but a new method was soon

developed to simplify the resolution of the field equations. The rational map

approximation [124,157] splits the radial and angular dependent parts of the

Skyrme field in the energy functional. In this approach, the skyrmion is

parametrized using (2.18), but with a generic angular distribution,

n(R)
a =

1

1 + |R(z)|2
(
2Re(R(z)), 2Im(R(z)), 1− |R(z)|2

)
, (2.19)

where R(z) is the rational map, which is a holomorphic function of the stere-

ographic coordinate z(θ, ϕ) of the S2. Specifically, R(z) is the ratio between

two polynomials, p(z) and q(z), which have no common roots. The rational

map is fixed by considering the most general polynomials of degree B, which

is the baryon number of the resulting skyrmion. Then the symmetries are

imposed on R(z), constraining some of the coefficients in the polynomials.

The part that only depends on z in the energy functional is minimized first,

by varying the remaining coefficients of the polynomials p(z) and q(z). Thus,

we end up with an expression that only depends on the radial coordinate

through the profile function f(r), which is minimized as we did in the spheri-

cally symmetric case. Recall that skyrmions obtained from rational maps are

not solutions of the field equations, since in this approximation we minimize

different parts individually, but it is a powerful tool to obtain symmetric field

configurations.

Comparisons between the energy of the solutions and the rational map con-

figurations show quite similar results up to B = 8. This encouraged the

computation of higher B-skyrmions to reproduce heavier nuclei. However,

the energy density of these field configurations was concentrated in hollow

and shell-like distributions [47], which does not correspond to the physical

nuclei.

An additional problem in the standard Skyrme model, as pointed out in [63], is

the large difference between the binding energies obtained from the solutions
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[154] and the experimental values, which are not larger than 1%. They are

defined as follows,

BEB(%) :=
EB=1 − EB/B

EB=1
. (2.20)

However, these binding energies have been computed from the classical ener-

gies of the skyrmions, hence, this discrepancy might be due to the lack of some

corrections that we are not considering. Indeed, it was recently shown [112]

that the quantum corrections from vibrational modes yield remarkable results

in order to solve this longstanding problem.

Further effects of realistic nuclear matter are the spin and isospin quantum

corrections. Indeed, nucleons are spin 1
2 particles, but the higher spin ex-

citation of the proton (∆ particle), as well as different isospin excitations

(isotopes) of many nuclei, have been observed. Furthermore, it is known that

an important correction to the mass of the nuclei comes from the difference

between the number of protons and neutrons. Hence, it is of great interest to

consider this quantum effects in the Skyrme model.

However, we have seen that nucleons appear as collective excitations from the

nonlinear interactions between pions, which are bosonic particles. Then, the

natural question of how fermionic particles are obtained in a purely bosonic

theory arises. This question was addressed by Finkelstein and Rubinstein

in [92], where they stated that fermionic quantum states may be obtained

since the wave functions may change the sign under a 2π rotation due to the

existence of non-contractible loops in the configuration space of wave functions

[134, 156]. This is, indeed, the requirement for the correct quantization of

the Skyrme model or similar low-energy EFT of QCD. Furthermore, they

introduced the constraints that determine the possible quantum states of a

skyrmion depending on the specific symmetries of the solution.

Having said that, a canonical quantization as in standard QFT is not possi-

ble since the Skyrme model is non-renormalizable, therefore, a semi-classical

quantization must be applied. The usual procedure [29,63] considers the quan-

tization of a finite number of collective coordinates which correspond to the

zero modes (symmetries) of the Skyrme Lagrangian i.e., translations, spatial
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rotations and isorotations of the field. This approach is motivated from the

approximate description of slowly moving soliton dynamics using the geodesic

motion on the moduli space of static configurations [152]. It also involves

an approximation in which the skyrmion of baryon number B is transformed

under these symmetries rigidly, such that no deformations are allowed. Trans-

lations of the skyrmion are usually ignored, but the quantization of spin and

isospin has been extensively studied, indeed due to the simplicity of the ra-

tional map, for different values of the baryon number [134,135,151].

Despite the great phenomenological interest of (iso-)spin quantum correction

in the Skyrme model, they are not helpful in the previously mentioned binding

energies problem.

In [29], the B = 1 skyrmion was quantized obtaining from the same classical

solution a splitting in the energy to describe the proton and the ∆ baryon.

Then the parameters were calibrated to reproduce their masses, and the values

obtained are usually referred to as the standard parameters in the Skyrme

model,

fπ = 129 MeV, e = 5.45. (2.21)

The quantization of the B = 1 skyrmion will be briefly explained in the

last section to recalibrate the parameters in a generalization of the Skyrme

model and to compare them with those obtained from NS. Furthermore, in the

upcoming chapters we will show in detail how the quantization of the isospin

in Skyrme crystals opens a broad phenomenology in the Skyrme model.

2.1.1 Introducing the pion mass

So far, we have seen some of the problems of the Skyrme model in which

pions are massless particles. However, it is known that pions have mass,

mπ = 138 MeV, which means that chiral symmetry is explicitly broken into

the isospin symmetry. Then, since the model is expected to describe QCD

at low energies, the inclusion of a pion mass term in the Lagrangian seems a

natural requirement.

Additionally, isospin symmetry implies that the pions have the same mass,
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which is also false. Hence, a further isospin symmetry breaking mechanism

would be required in the Skyrme model. However, the difference between

the masses (∼ 1 MeV) is rather small in comparison to the energy scales

considered in this work, besides, it is still not clear how isospin symmetry

might be broken in the model. Therefore, we neglect this effects and maintain

the isospin symmetry in this work.

The simplest choice to add a pion mass to the original theory (2.4) is the

following,

L0 =
m2

πf
2
π

8
Tr{U − I2}. (2.22)

This term explicitly breaks chiral symmetry because now the only possible

vacuum state is precisely U = I2. As well as the quadratic term, this potential

term may also be expanded on the pion fields around the vacuum and we would

obtain the usual mass term of a scalar field.

The solutions obtained from the massive Skyrme model (following our previ-

ous notation we will denote it as L240) improve some of their properties. In

the original model the profile function of the B = 1 skyrmion decays to zero at

infinity under a power-law, f ∼ 1/r2. However, the inclusion of the pion mass

term introduces a new term in the field equation which induces an exponential

decay on the profile function. This is a standard phenomenon in field theory,

as it occurs, for instance, with the long range interaction of electromagnetism,

mediated by the massless photon, as opposed to the weak interactions, whose

gauge bosons have mass. It is also an important effect from the computa-

tional point of view, since now the exponential decay reduces the size of the

skyrmion and a smaller grid may be used in the numerical resolution of the

field equations.

The major improvement of the pion mass term is the B = 3 and B = 4

clustering effect for some large B ≥ 10 skyrmions. It is known that the α-

particle model correctly describes the properties of some large nuclei with

zero isospin [66]. Fortunately, the pion mass term (2.22) penalizes the hollow

solutions [45, 46], and yield solutions with more realistic structures [44].

Additionally, solutions in the massive model have larger energies, however,
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the BPS bound is also expected to increase with the inclusion of the new

term. Indeed, it is possible to redefine a BPS bound [115], but now it will

depend on the parameters (fπ, e, mπ) given that we cannot erase them from

the Lagrangian with any change of units. The knowledge of these generalized

bounds is important to find the minimal energy configurations, and they will

be specially helpful for the study of Skyrme crystals in the next section.

The quantization of the B = 1 skyrmion was also computed including the

pion mass term [28]. Although potential terms do not directly enter in the

quantization procedure, they modify the classical solution, hence, different

values for the parameters, fπ = 108 MeV, e = 4.84, were obtained to reproduce

the masses of the proton and ∆ baryon.

2.1.2 Neutron stars in the standard Skyrme model

From a simple analysis we may see that NS contain the order of M⊙/mN ∼
1057 baryons, being mN = 939 MeV the mass of the nucleon. Hence, a naive

thinking would suggest that in order to describe a neutron star from the

Skyrme model, we would have to obtain the B ∼ 1057 skyrmion. This is

obviously an impossible task from the computational point of view, however,

some attempts to obtain enormously large-B solutions yield some results in

the description of NS from the standard Skyrme model.

The first studies of self-gravitating skyrmions to describe NS involved the

resolution of the full Einstein−Hilbert−Skyrme (EHS) system using the ra-

tional map approximation for the Skyrme field [188]. In this approach, NS

are obtained for different values of the baryon number until a maximal value

is attained, for which stars are no longer stable under radial oscillations. The

results yield NS with quite small maximal baryon number and unnatural hol-

low shell-like configurations, where the solutions had a step-like behaviour.

Besides, the solutions were obtained using unphysical values for the gravita-

tional constant to facilitate the computations, given that the thickness of the

solutions decreased with the value of G.

Nevertheless, motivated by this effect, they further considered large B rational

map configurations based on N shells of smaller baryon number rational maps,

first introduced in [157]. These multilayer field configurations, combined with
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additional approximations on the profile and metric functions [132, 133], al-

lowed to obtain solutions for the physical values of G. Furthermore, the values

of the maximal baryon number increased to ≈ 1056, however, the NS obtained

had small values of the masses and radii [172], compared to the typical values

for a NS.

A much more promising result in the NS description within the Skyrme model

concerns a new type of solutions called Skyrme crystals. A detailed explana-

tion on how these configurations are constructed will be given in the next

chapter, but at this point we will only comment the main results of their

application to NS modelling.

The lowest energy configuration (up to now) in the massless standard Skyrme

model was found almost simultaneously in two different works [77, 136] in

1988. This solution is an infinite lattice of unit cells, each one with B = 4,

and its energy is just a 3.8% above the unattainable BPS bound. Hence, it

represents a suitable configuration to describe infinite nuclear matter and to

be a model for NS from the standard Skyrme model.

The energy of this solution depends on the size l of the unit cell, and it is a

convex function which has a single minimum value E0 at some value l0 of the

length. It has been computed for a large range of values of l, and follows the

simple relation [77],

E(l) = E0

[(
l

l0
+
l0
l

)
(1− ε)

2
+ ε

]
, (2.23)

where E0 = 727.4 MeV, l0 = 1.666 fm are precisely the energy and the lattice

length of the minimum respectively, and ε = 0.0515. In this parametrization,

l is the size of the unit cell with volume V = l3, which has B = 1 within it.

The parameters (fπ, e) used to obtain this curve correspond to the standard

values (2.21).

The Skyrme crystal may also be used to obtained NS, but from a different

approach. Rather than solving the full EHS system, an EOS might be obtained

from a mean-field (MF) approximation using the thermodynamical definitions,

ρ =
E

V
, p = −dE

dV
, nB =

B

V
, (2.24)
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where V is the volume of the unit cell. The three variables (ρ(l), p(l), nB(l))

are functions of the lattice length, hence, we may associate a value of the

pressure, energy and baryon densities to each value of l and find the relations

ρ(p) and nB(p).

Then we assume the stress-energy tensor of a perfect fluid,

T µν = (ρ+ p)uµuν − pgµν, (2.25)

where the pressure and the energy density are related by the EOS extracted

from the Skyrme crystal. NS are obtained following the TOV formalism [181,

223, 229], which is the standard approach to describe the stellar equilibrium

in GR. The details of the TOV formalism are explained in Appendix B.

The resulting NS yield better values than the previous attempts, leading to

a maximal mass of Mmax = 1.49M⊙, with a radius of R ≈ 10 km and B ≈
2 × 1057 [171]. The whole MR curve has been obtained for comparison with

other Skyrme EOS, and it is shown in Fig. 2.1.

These results have been consistently considered as the minimal energy con-

figuration and they have definitely improved the NS description within the

Skyrme model. However, the maximal mass turns out to be quite small com-

pared to the NS measurements, which require a maximal mass of 2M⊙ at least.

Moreover, as we have seen in the Introduction, a crystalline configuration is

an acceptable description in the outer crust of NS, but it is not expected to

be present for the innermost layers.

2.2 The BPS Skyrme model

The perspective of the Skyrme model as an EFT of QCD at low energies

suggest that the Lagrangian (2.4) only considers the first contributions of an

expansion in field derivatives. Therefore, there is no reason not to consider

additional higher derivative terms as corrections to the model to solve the

problems mentioned above.

The most natural extension is a term with six derivatives of the field. Among

the possibilities, as also occurred with L4, the only term that provides a
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Hamiltonian of second order in time derivatives is the following [16,17],

L6 = −λ2π4BµB
µ. (2.26)

We will refer to this as the sextic term which, when combined with a generic

potential term L0 = −µ2U , yields a special model with very interesting prop-

erties.

The coupling constant λ2 of the sextic term is a new parameter that may be

used to fit nuclear observables from the solutions. In fact, we may relate this

parameter to the coupling constant between the pions and the ω meson in an

extended version of the Skyrme model coupled to vector mesons [27,161–163],

hence, it is possible to give an estimation of its value. More specifically, when

the ω meson is integrated out in the extended Lagrangian, the interaction

term yields a sextic term with λ2 = g2ω/
(
2π4m2

ω

)
[7], where mω and gω are the

mass and coupling constant of the ω meson respectively. For the empirical

values mω = 783 MeV and g2ω/(4π) ∼ 10 − 12 [162], we obtain λ2 ∼ 8 − 10

MeV fm3.

In this section, we will consider different potential terms, then the parameter

µ2 will have very different values. For the pion mass potential term (2.22) we

identify µ2 = m2
πf

2
π/4, so it will be interesting to study how the parameters

change when they are used in the standard or in the BPS Skyrme model. We

will also compare them when they are fitted to isolated atomic nuclei or to

infinite nuclear matter and NS.

Despite we are going to study a different Lagrangian in this section, all the

previous topological considerations on the Skyrme field are independent of the

theory. Hence, the L60 model still allows the existence of topological solitons.

Besides, the solitons are also energetically stable in this theory due to the

opposite scaling of the sextic and the potential term:

E60(σs) =
E6

σ3s
+ σ3sE0, (2.27)

∂σs
E60 = 0 −→ σ6s =

E6

E0
̸= 0. (2.28)

The BPS bound, and the corresponding BPS equation, may also be obtained
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in this model as follows,

E =

∫
d3x

[
λ2π4

(
B0
)2

+ µ2U
]
= (2.29)∫

d3x
[
λ2π4

(
B0
)2

+ µ2U ± 2λµπ2B0
√
U
]
=∫

d3x

[(
λπ2B0 − µ

√
U
)2

+ 2λµπ2B0
√
U
]
≥ λµ|B|

∫
volS3

√
U . (2.30)

To obtain the bound in the last line we have made use of the following property

of B0:

volR3B0 =
U ∗(volS3)

2π2
. (2.31)

Specifically, in cartesian coordinates volR3 = d3x.

Then, the BPS equation is:

λπ2B0 = µ
√
U . (2.32)

The main property of this model is the possibility to obtain solutions to the

BPS equation. For this reason, the L60 model is also known as the BPS model.

Moreover, the BPS equation may be solved analytically for any value of B.

The reason for the integrability lies in the infinite amount of symmetries on

the target space [8]. In particular, the sextic term is the pullback of the volume

form on the target space, S3 in our case. Therefore, all diffeomorphisms that

preserve the volume form of this manifold will not produce changes on the

topological current, therefore, the sextic term remains invariant.

This volume-preserving diffeomorphisms (VPD) invariance is broken in the

BPS model once the potential term is introduced. However, potential terms

which only depend on the trace of the Skyrme field, U := U(Tr{U}), like
the pion-mass term (2.22), are still invariant under area-preserving diffeomor-

phisms on the S2. This may be checked from the expansion (2.3) of U , such

that any transformation on the pion fields that leaves the norm π invariant

has no effect on the trace of the field, given that Tr{U} ∼ σ ∼ 1−π2. These

infinitely many symmetries are responsible for the integrability of the model
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for any value of B [16].

Furthermore, the static energy functional (2.29) of the BPS model satisfies

a similar set of symmetries as well. Specifically, all volume-preserving diffeo-

morphisms on the base space R3 will not affect the energy functional [6]. This

is trivial to see for the potential term, which does not depend on the base

space coordinates. The sextic term, on the other hand, depends on the spa-

tial coordinates, but it is also invariant under these transformations since the

topological current contracts the indices of the derivatives with a Levi-Civita

symbol. Therefore, it has the same structure as the base space volume form,

d3x ∼ ϵijk∂iU∂jU∂kU . These symmetries imply that any change of coordi-

nates which remain the volume invariant will have zero cost of energy. As a

consequence, all the solutions of the BPS model may have arbitrary shapes.

This facilitates the resolution of the BPS equation since we may always use

the generalization of the hedgehog ansatz (2.18) to higher topological charges,

U : (r, θ, ϕ) 7→ (f = f(r),Θ = θ,Φ = Bϕ), (2.33)

which is called the axially symmetric ansatz when B > 1.

In addition, the VPD invariance on the base space are precisely the symmetries

of an incompressible ideal fluid. This suggests a close connection to nuclear

matter due to the success of the liquid drop model in the description of atomic

nuclei. Moreover, the spherical symmetry for arbitrarily high B solutions

totally differs from the shapes of the solutions obtained in the standard Skyrme

model, but it is in excellent agreement with the experimentally known shapes

of the large baryon number nuclei.

Besides, solutions to the BPS equation satisfy the E ∝ |B| energy curve,

impliying that the binding energies are exactly zero. Although a realistic

description of nuclear matter requires non-zero binding energies, these are

indeed very small ∼ 1%. Then, the BPS model may serve as the starting

point of a more complete model that reproduces the correct binding energies.

One possibility might be to consider small perturbations around the BPS

model, in a kind of near-BPS model [12, 49,60].

Another fundamental property of the BPS model lies in the stress-energy
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tensor, which may be extracted from the action [9]

T µν = − 2√
|g|

δS

δgµν
= − 2√

|g|
δ
∫
d4x
√
|g|L

δgµν
=

2λ2π4
BµBν

|g|
−
(
λ2π4gαβ

BαBβ

|g|
− µ2U

)
gµν. (2.34)

The following variations of the metric are useful to derive the previous result,

δ

(
1√
|g|

)
= − 1√

|g|
δ
√

|g| (2.35)

δ
√
|g| = 1

2

√
|g|gαβδgαβ. (2.36)

Recall that in a generic (non-flat) spacetime, the topological current is actually

B̃µ = Bµ/
√
|g|, where g is the determinant of the metric and Bµ is the flat

spacetime (2.7) current. Now, considering the following definitions:

uµ =
Bµ√

gαβBαBβ
, (2.37)

p = λ2π4gαβ
BαBβ

|g|
− µ2U , ρ = λ2π4gαβ

BαBβ

|g|
+ µ2U , (2.38)

the stress-energy tensor has an expression equivalent to a perfect fluid (2.25).

The identification of the energy density ρ yields precisely the integrand of the

energy functional (2.29) for static field configurations. However, the identi-

fication of p is, for the moment, just a mathematical definition, so we still

cannot consider it as the physical pressure of the system.

The conservation of the stress-energy tensor in a flat spacetime for static

solutions implies that p is constant,

∂iT
ij = δij∂ip = 0 → P := p ≡ const. (2.39)

The pressure definition in (2.38) generalizes the BPS equation (2.32). Indeed,

this generalized equation may be obtained by integrating the field equations
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[9], where P is precisely the integration constant:

λπ2B0 = µ
√

U + P/µ2. (2.40)

We will only consider the positive P case.

The volume and energy of the solutions to the non-BPS equation (2.40) may

be easily obtained:

V (P ) =
π2λ

µ
|B|

〈
1√

U + P/µ2

〉
S3

, (2.41)

E(P ) = π2λµ|B|

〈
2U + P/µ2√
U + P/µ2

〉
S3

, (2.42)

where we have adopted the notation used in [12] for the integration of a generic

function on the S3

⟨F ⟩S3 :=
1

2π2

∫
volS3F. (2.43)

Interestingly, neither the volume nor the energy depend on the specific solu-

tion. In fact, solutions with the same pressure will occupy the same volume.

It is now easy to show that P actually is the pressure of the system.

∂E

∂V

∣∣∣∣
B

=
∂E/∂P

∂V/∂P
= −P. (2.44)

Surprisingly, the BPS model yields the standard thermodynamical relation

naturally, although the variables E, V and p have been introduced from a

pure field theoretical definition. Thus, (2.38) is the generalization of the BPS

equation to the non-zero pressure case in a generic spacetime, where p is not

constant anymore.

Combining the expressions in (2.38), we obtain a relation between the energy

density and the pressure of the system, i.e., the EOS of the BPS model,

ρ = p+ 2µ2U . (2.45)
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Recall that the potential term depend on the Skyrme field, so the energy

density is not only a function of the pressure. Hence, the BPS Skyrme model

EOS is non-barotropic.

Another relation may be extracted by adding the expressions in (2.38),

ρ = −p+ 2λ2π4
(
B0
)2
. (2.46)

Since B is the baryon number in the Skyrme model, it is natural to identify

B0 with the baryon density nB. Indeed, this expression represents the Euler

thermodynamical relation, from which we may identify the baryon chemical

potential of the BPS model, µB = 2λ2π4B0.

Finally, we have seen that the spin and isospin quantization in the standard

Skyrme model allows to reproduce some interesting phenomenology of nuclear

matter. In the BPS model, the inclusion of these and further effects is much

easier, due to the spherical symmetry, and produces an extremely accurate

reproduction of the nuclear binding energies [13, 14].

2.2.1 Neutron stars in the BPS Skyrme model

NS have also been obtained in the BPS model [10, 11], leading to promising

results for their study within the Skyrme model. The main advantage of the

BPS model is that, owing to the symmetries, the ground state solutions may

be parametrized with the ansatz (2.33) for arbitrarly high B. Indeed, this

is compatible with the spherically symmetric ansatz of the spacetime metric

(B.12), hence, we may solve the full EHS system without MF approxima-

tion. Nonetheless, this fact may also be regarded as an interesting scenario to

compare the results from a MF approximation and the full-theory (FT) [11].

In the MF approximation we use the thermodynamical definitions of the en-
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ergy and baryon densities,

ρ(p) =
E(p)

V (p)
= µ2

〈
2U+p/µ2√
U+p/µ2

〉
〈

1√
U+p/µ2

〉 , (2.47)

nB(p) =
B

V (p)
=

µ

π2λ

〈
1√

U+p/µ2

〉 . (2.48)

The dependence on the pressure is naturally introduced from the non-BPS

equation (2.40), however, once the skyrmions are coupled to gravity, the pres-

sure is not constant anymore.

The parameters (λ2, µ2) of the BPS model must be fixed to some values in

order to solve the TOV system. Given that we want to describe NS, instead

of the proton and ∆ masses, we may fit the parameters to reproduce the

saturation energy and baryon density of infinite nuclear matter (INM),

E0 = 923 MeV, n0 :=
ρ0
mN

= 0.16 fm−3. (2.49)

This choice seems more appropiate for our purpose since nuclear matter inside

NS is more similar to an infinitely extended system than to isolated nuclei. An

extensive explanation of the INM properties will be given in the next chapter.

Different potentials yield different expressions for the densities, specifically,

we will compare between three potentials with their respective value for the

parameters:

• Step-Function potential

U := Θ = Θ (Tr{I− U}) (2.50)

From a phenomenological point of view, this is not a correct choice given

that a constant potential term yields a linear EOS in the BPS model,

which is not expected at all in the whole interior of NS. Besides, the

sharp behaviour of this potential in the surface of NS represents the lack

of a crust, which neither is correct. However, this case is interesting (and
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helpful) because the EOS obtained in the MF and FT are the same. The

parameters obtained from this potential are,

µ2 = 73.8335 MeV/fm3, λ2 = 29.6083 MeV fm3. (2.51)

• Pion mass potential

U := Uπ = 1− cos(f) (2.52)

The obvious choice is the pion mass term, which was introduced in the last

section (2.22). This potential has a non-constant behaviour and yields a

nontrivial EOS. The parameters obtained in this case are,

µ2 = 92.2919 MeV/fm3, λ2 = 25.6836 MeV fm3. (2.53)

As mentioned before, the physical constants of the pion may be identify

from µ2 = m2
πf

2
π

4 , which yields fπ = 385.93 MeV when mπ = 138 MeV.

This indicates that the parameters of the BPS model must be significantly

larger than the physical values to describe nuclear matter, however, the

introduction of other terms (L2, L4) might alleviate this situation.

• Squared pion mass potential

U := U2
π = (1− cos(f))2 (2.54)

This potential has previously been studied for isolated skyrmions, and the

interest lies in its repulsive behaviour [110]. Here, it represents a different

case that yields an interesting EOS to compare. The parameters obtained

differ substantially from the previous values,

µ2 = 147.6670 MeV/fm3, λ2 = 14.8042 MeV fm3. (2.55)

We show in Fig. 2.1 the EOS curves for the different potentials explained

before, and their explicit expressions may be found in [11]. Actually, since the

EOS is non-barotropic in the FT cases, a different curve is obtained for every

value of the baryon number, hence, we first have to solve the Einstein equations
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to extract an EOS. The curves of the FT computations represented in Fig. 2.1

have been obtained for the corresponding maximal mass in each case. For

comparison with the stars obtained from the BPS model, we also consider the

EOS obtained from the crystal solution in the standard Skyrme model using

the standard parameters (2.23) and the same crystal curve when fitted to the

nuclear saturation point (2.49). The specific values of the parameters for this

last fit are fπ = 138.17 MeV, e = 4.60.

The whole set of EOS covers a wide range of different possibilities. The first

observed feature is that all the MF cases have a nonzero value of the energy

density in the zero pressure limit. This is directly related to the fact that the

low density regime is not correctly reproduced in these models. For instance,

the Skyrme crystal reaches the p = 0 equilibrium point at a finite value of the

lattice length l0 with a nonzero value of the energy E0.

A correct description for lower densities would not present a minimum value of

the energy, instead the E(L) curve decreases asymptotically for larger lengths

than the minimum. This, in NS terminology, is translated into the absence

of crust in the resulting NS. On the other hand, the FT curves seem to have

the correct ρ→ 0 limit for vanishing pressure, as it occurs with the standard

nuclear physics EOS obtained from the different methods explained in the

Introduction. We use for comparison the Barcelona-Catania-Paris-Madrid

(BCPM) [208] EOS, since it reaches the minimal accepted values for the mass

and satisfies the most fiducial radius constraints. This EOS is based on the

combination of the Brueckner-Hartree-Fock approach for the inner parts of

the NS, and the BCPM energy density functional for the inhomogeneities in

the crust.

Additionally, the stiffness of each EOS may be easily compared from the same

plot. It is often said that an EOS is softer o stiffer than other EOS when

the energy density is, in general, larger or smaller for the same values of

the pressure respectively. For instance, in our case we would conclude that

the Skyrme crystal EOS is clearly softer than the BPS EOS in the FT case.

Indeed, a careful analysis on the stiffness may extract valuable information of

the masses and radii of the resulting NS. Specifically, the softer an EOS is in

the range of p ≳ 1 MeV/fm3, the more compressed the nuclear matter will be,

therefore, soft EOS yield NS with smaller radii. Besides, the accumulation of
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nuclear matter in the core of the NS induce an earlier gravitational collapse,

producing much smaller maximal masses.

The TOV equations may be solved for each EOS in the MF case as explained

in Appendix B, and the MR curve is obtained. On the other hand, the res-

olution of the EHS system in the FT case is slightly different. Since the

stress-energy tensor of the BPS model is already a perfect fluid, the expres-

sions of the differential equations obtained from the TOV system apply to

this case too. The energy density and pressure are defined in (2.38), besides,

we also have naturally identified nB ≡ B0. However, these definitions depend

on the Skyrme profile function, hence, in order to close the TOV system of

equations, a further equation must be added to determine the Skyrme field.

We take the definition of the pressure (2.38) as the differential equation for

the profile function.

In the MF case, the pressure in the centre of the star pc determines the solu-

tion, but in the FT the baryon number B of the star is the input parameter,

and determines the solution. Then, the system must be solved using a shoot-

ing method for the value of the pressure in the center of the star, such that

the condition p(R) = 0 is fullfiled.

The MR curves of both the MF and FT cases are shown in the right plot

of Fig. 2.1 for different values of the pc and B respectively. We also added

the MR curve obtained from the crystal configuration in the standard Skyrme

model for the original parameters and the nuclear saturation fit.

The main feature in the MR plot is the wide difference between the maximal

masses attained in the BPS and the standard Skyrme models. Whilst the

smallest mass for the BPS model obtained is ≈ 3M⊙ for the squared potential

in the MF case, the standard Skyrme model hardly reaches the values 1.5M⊙.

This completely agrees with the previous analysis on the stiffness of the EOS.

Besides, the small value of the maximal mass in the standard Skyrme model

is a problem of the model itself, given that we obtain quite similar masses for

different choices of the parameters. Although the results obtained from the

BPS model are much higher than the current measurements, this is indeed a

nice result since it is actually really hard for standard nuclear physics EOS

to reach very high masses. Interestingly, these computations motivate the
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Figure 2.1: Left: The EOS for the different models considered so far, in the MF and FT approaches. In the
FT cases we considered the EOS resulting from the maximal mass stars. Right: The MR curves from the
same models.

combination of both submodels given that desirable values for the maximal

masses lie precisely in the middle ∼ 2− 2.5M⊙.

The next interesting feature concerns the low mass region in the MR curve.

All the Skyrme EOS satisfy the limit M(R → 0) → 0, contrary to the BCPM

case. This, as explained before, is due to the lack of a crust in the Skyrme

EOS, i.e., because of the limit ρ(p = 0) ̸= 0. Actually, the EOS obtained from

the FT cases represented in Fig. 2.1 seem to reproduce the correct behaviour

in the zero pressure limit, however, the MR curves do not present the typical

behaviour of NS with crust, like BCPM. Indeed, all the EOS obtained for

every baryon number satisfy the correct zero pressure limit in the FT cases.

The reason for these apparently contradictory results, is that the FT cases

of the BPS model are actually special cases in which different EOS may be

defined. The relations ρ(p) of every star are unique EOS that only apply

for the specific solution, but we may associate the values of the pressure and

energy density at the centre of each NS to construct a new global ρc(pc) EOS.

We show the new global EOS for the FT cases in Fig. 2.2, which display the

same behaviour as the EOS of the MF cases. Therefore, we conclude that

the correct EOS to study the presence of crust is the ρc(pc) relation. The

corresponding EOS obtained from the solutions for different values of mass

are also plotted to show that they all emerge from the global EOS and exhibit

the zero density limit. We remark that the existence of different EOS in
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the BPS model is due to the field-dependent EOS, which is not a frequent

phenomenon, but it is a more general statement that might apply for other

non-barotropic EOS.
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Figure 2.2: Global ρc(pc) EOS for the two potentials from the FT cases in the BPS Skyrme model which
determines the presence or not of a crust. We also added three EOS corresponding to NS solutions of different
mass.

Finally, we want to show how the different EOS affect some of the solutions

of the TOV system in Fig. 2.3. For this purpose, we consider the Θ potential

with nonzero energy density at the surface of the NS, the pion mass potential

Uπ with the correct zero pressure limit of the energy density but not for the

derivative, and the BCPM and squared potential which both reproduce the

correct limit for the energy density and its derivative. We plot the grr metric

function and the mass, pressure and energy density profiles inside the∼ 1.4M⊙

NS for each model.

The metric function B(r) is determined by the compactness function of the

star. The BCPM and FT curves show a nontrivial behaviour for this func-

tion with a maximum value in the outer parts (r/R ≥ 0.6), contrary to the

monotonously increasing simple trend in the MF case. The mass and energy

density functions mainly show how the mass is distributed along the radius of

the NS. In the MF case, the energy density profile is almost constant, which is

not a realistic description for a NS and induces the M ∝ r3 mass curve. The

remarkable result is the highly concentrated core of the quadratic potential

with the 90% of the mass reached already at the 67% of the radius of the
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Figure 2.3: Profile functions of the solutions obtained from the TOV system for a single NS. Here we compare
between three extremely different EOS and a realistic nuclear physics EOS.

star, whilst for the BCPM and FT pion mass potential, the same ratio of the

mass is attained at the 85% of the radius. The three different behaviours may

also be seen in the pressure plot, which always reaches the zero value at the

surface of the star.

2.2.1.1 BPS Skyrme neutron stars in modified gravity

NS are affected by intense gravitational fields (namely, by high curvature

effects) more strongly than any other currently observable physical system in

the universe. They are, therefore, perfect natural laboratories to investigate

the consequences of this high curvature. In particular, they allow us to study

deviations from GR and to constrain the free parameters in theories describing

these deviations, or even to discard them by comparing their predictions with

the observed data. Such deviations, or Extended Theories of Gravity (ETG),

are completely natural from an effective field theory point of view, where

quantum gravity corrections should induce further terms in the low-energy

effective action of the gravitational field, in addition to the Einstein−Hilbert

(EH) action. The f(R) theories [76, 85, 175, 213] are a specific class of these

ETG in which the EH action linear in the Ricci scalar R is replaced by a
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generic function f(R). These theories are motivated, first, by their relative

simplicity when it comes to solve the modified Einstein equations and, second,

from a cosmological point of view, by the possibility to explain the acceleration

of the universe (the dark energy problem) or the abundance of non-baryonic

matter in the galaxies (the dark matter problem). These motivations are

based on the presence of an additional degree of freedom, which is usually

related to a scalar field known as the scalaron. Besides, these f(R) theories

lead to modified Einstein equations which are of more than second order, but

they avoid the Ostrogradski instability [182,235].

In particular, we shall consider the theory

f(R) = R− αR2, (2.56)

also known as the Starobinsky model [215]. The reason for this choice is

that standard GR is in excellent agreement with all current astrophysical and

cosmological observations. Any extension of GR, therefore, should approach

GR in the limit of small curvature, but the most natural way to achieve this is

by a power series expansion f(R) = R+
∑∞

i=2 ciR
i. Then, the term quadratic

in R is the leading-order correction to the EH action.

The f(R) theories consist in the following modification of the EH action,

S =
1

16πG

∫
d4x
√
|g| f(R) + Smatter, (2.57)

where f(R) is a generic function of the Ricci scalar R. GR can be recovered

by setting f(R) = R.

The new Einstein equations may be obtained, as we did in Appendix B, by

varying this action with respect to the metric. Following [53],

δS =

∫
d4x

[
δ
√

|g|f +
√

|g|δf
]
=∫

d4x
√

|g|
[
−1

2
fgµνδg

µν + fRδR

]
=∫

d4x
√
|g|
[
−1

2
gµνf + fRRµν − (∇µ∇ν − gµν∇α∇α) fR

]
δgµν, (2.58)
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where we have defined fR = ∂f/∂R and for the last expression we have made

use of the results (B.5−B.9) from Appendix B. Then, the modified Einstein

equations in f(R) gravity are

G̃µν = 8πGTµν, (2.59)

G̃µν = fRRµν −
1

2
gµνf −

(
∇µ∇ν − gµνg

αβ∇α∇β

)
fR. (2.60)

Since we want to consider static NS we maintain the spherically symmetric

ansatz for the spacetime metric. Besides, since in the BPS model the baryon

number appears explicitly, we will denote it as N only in this section, to avoid

confusion with the metric component B. Additionally, in order to distinguish

between the Ricci scalar and the radius of the stars we will denote, along this

section, as Rs the last one.

The first difference with respect to GR is that now the Ricci scalar is not

fixed (algebraically) just by the value of the pressure and the energy den-

sity. Instead, tracing the equation (2.60) we obtain a second order differential

equation for R that we have to solve,

R′′ = −f3R
f2R

R′2 − B

3f2R
(4πG(ρ− 3p) + 2f − fRR) +

(
−A′

2A
+
B′

2B
− 2

r

)
R′

(2.61)

The key point is that we now have an additional degree of freedom in compar-

ison to the GR case, precisely provided by the fR(R) term. The components

of the generalized Einstein tensor may be computed, and the equations for the

metric components A and B can be obtained combining the (t, t) and (r, r)

components as in the GR case,

A′′

A
=
A′B′

2AB
+
A′2

2A2
+

2B′

rB
+

2

fR

(
−4πGBp+

Bf

2
+

(
A′

2A
+

2

r

)
f2RR

′
)

(2.62)

B′ =
2rB

3fR

[
4πGB(ρ+ 3p)−Bf − fR

(
−BR

2
+

3A′

2Ar

)
−
(
3A′

2A
+

3

r

)
f2RR

′
]

(2.63)

Following our notation we have defined f2R = ∂2f/∂R2, and we denote d/dr ≡
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′. Finally an equation for the pressure of the star is obtained from the con-

servation of the stress-energy tensor ∇µT
µν = 0, which leads to the same

equation.

We may prove that f(R) theories are completely equivalent to scalar-tensor

theories. This will be important to fix the sign of the parameter α in our

modified gravity.

The Brans-Dicke action [65] takes the form

SBD =
1

16πG

∫
d4x
√
|g|
[
ϕR− ω

ϕ
gµν∇µ∇νϕ− V (ϕ)

]
. (2.64)

To see the correspondence, we can rewrite the action (2.57) in a new dynam-

ically equivalent form with a new scalar field χ,

S =
1

16πG

∫
d4x
√

|g| (f(χ) + f ′(χ)(R− χ)) . (2.65)

From the scalar field equation we find that R = χ iff f2R(χ) ̸= 0, then redefin-

ing the scalar field as ϕ := f ′(χ) and V (χ) = χ(ϕ)ϕ − f(ϕ) we arrive at the

Brans-Dicke action for ω = 0.

The mass of the scalar field ϕ may be defined from the action (2.64), by

obtaining its equation of motion and identifying the terms with those of the

Klein-Gordon equation,

□ϕ− 1

3 + 2ω
(8πGT + ϕV ′(ϕ)− 2V (ϕ)) = 0. (2.66)

The equation of motion for the field can be expressed as a Klein-Gordon

equation, defining an effective potential [75,90], dVeff/dϕ = − 1
3+2ω(ϕV

′− 2V ).

Then the mass is related to the second derivative of this effective potential, and

equation (2.66) admits the usual Yukawa-like solution ϕ(r) ∝ exp{−m(ϕ)r}/r
with m defined as explained above. Now we can obtain the mass of the new

degree of freedom in our theory in terms of f(R) and its derivatives. Setting

ω = 0 and the potential given above we have for a generic f(R) theory [90]

m2 = −fR −Rf2R
3f2R

. (2.67)
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In our case f(R) = R− αR2, we obtain that the mass of the field is m2 = 1
6α ,

thus the sign of α must be positive in order to have a real scalar field.

In order to solve the system of differential equations, we need first to know the

boundary conditions of all the variables and also of their derivatives. These

conditions are obtained analysing the Einstein equations (2.60) and the system

(2.61−2.63) and (B.15). As explained in Appendix B, we expand the field

variables close to the center in even powers of r, but in this case the Ricci

scalar is also added to the system.

From the (θ, θ) component of (2.60) we immediately obtain b0 = 1. In f(R)

gravity we still have the problem of finding the value of a0, because the system

of differential equations can be re-expressed in terms of A′/A. Therefore, a0 is

again determined only up to a multiplicative factor, so we give it an arbitrary

value for the integration.

Again in the MF case, the pressure in the centre pc is an input parameter.

This means that for each (not too large) value pc we will find a NS solution.

In the FT case, on the other hand, the input parameter is the baryon number

N , so for fixed N there is only one correct value for the pressure in the center,

which we have to determine with a shooting method. Recall that we have the

additional differential equation (2.38) of the pressure in the FT case, which

determines the Skyrme profile function.

Finally, we need the initial value R0 of the Ricci scalar. Unlike in GR, the

Ricci scalar is now not determined algebraically but satisfies its own second-

order differential equation and, therefore, we do not know its initial value.

The way to solve this problem is, again, by a shooting method imposing the

Minkowski spacetime condition at large distances, R
r→∞−−−→ 0. In order to be

able to satisfy this condition, we have to integrate the system up to large

distances, in contrast to the GR case where we just have to integrate until the

radius of the star.

The shooting to determine R0 required by f(R) gravitational theories has

been solved already for cases which are similar to our MF case, i.e., with a

barotropic EOS (see for example [37, 129]). On the other hand, we have to

solve a double shooting problem for the pressure and the Ricci scalar in the

FT case. To solve this problem, we perform several shootings for the pressure
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until a sufficient accuracy is reached, then we change the value of the Ricci

scalar. Besides, when we change the value of the Ricci scalar we also constrain

the range of values in the shooting of the pressure. Repeating this iteration

we obtain the required solutions.

It is crucial to constrain the pressure after each iteration when solving the sys-

tem because, as we explained, the solutions of the scalar field are Yukawa-like,

i.e., exponential functions. We will have both the positive and the negative

(exp(±mr)) solutions, and as we want a finite solution and the mass is a real

value, the growing exponential must be cancelled, but this can be obtained

only with a very accurate initial condition for R. Another interesting feature

that supports this argument is found when we change the values of α. When

α grows we are deviating more from GR, but the mass of the field decreases,

and we find that it is easier to reach a good accuracy in our solutions.

Finally, as we have two second-order equations, we have to start the integra-

tion at a small but nonzero value of r and, therefore, we need the values of a1
and R1. To obtain them, we just have to insert the expansions of the variables

in the equations and take the limit r = 0,

A′′(0) = 2a1 =
2

9(1− 2αR0)

(
16πG (2ρc + 3pc) +

R0

2
− 3

4
αR2

0

)
, (2.68)

R′′(0) = 2R1 =
1

18α
(16πG (ρc + 3pc) +R0) . (2.69)

Results and Discussion

We have solved the Einstein equations with a 4th order Runge-Kutta method,

so we can extract now the observables of the NS (the mass and radius) from

the solutions. We find some interesting differences with respect to the GR

case, but before showing the figures we will explain how to calculate the mass.

Once we integrate the system for a given value of the pressure in the center,

we extract the radius of the star as the point Rs where the pressure is zero.

Then, we maintain the integration with p = ρ = 0. In GR, the mass can be
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obtained by solving the differential equation,

dMρ

dr
= 4πGr2ρ(r), (2.70)

which is obtained from the TOV system by taking the parametrization B(r) =

[1− 2GM(r)/r]−1 and by using the field equations of GR which implyM(r) =

Mρ(r). In the region outside of the star, the spacetime is described by the

Schwarzschild metric (where R = 0 and M = const.), thus, we can identify

the surface mass value Ms ≡M(Rs) with the mass of the star.

However, in f(R) gravity, we do not have the Schwarzschild solution for r ≥
Rs, because R satisfies its own differential equation and, in general, is nonzero

for r ≥ Rs, approaching zero only in the limit of large distances r → ∞. As

a consequence, the mass function

M(r) =
r

2
(1−B−1(r)), (2.71)

is no longer constant outside the star, and the surface mass Ms = M(Rs) is

different from the asymptotic or ADM (Arnowitt-Deser-Misner) massMADM =

limr→∞M(r) as seen by a distant observer. Ms is also different from Mρ(Rs),

because it receives additional contributions from the curvature scalar inside

the star radius (for a detailed discussion see [200]).

We show the curves of the asymptotic (ADM) mass against the radius Rs for

both the FT and the MF cases in Figs. 2.4 and 2.5. Further, in Figs. 2.6 and

2.7 we plot the same mass against the central energy density. Here α is always

given in units of km2.

We find that for stars with small masses (i.e., for sufficiently small central

pressures or, equivalently, central energy densities), the radius and the value

of the ADM mass for a fixed pc decrease with increasing α so they are smaller

than the GR case. The decrease in MADM can be directly seen in Figs. 2.6

and 2.7, whereas the corresponding decrease in the star radius follows from

Figs. 2.4 and 2.5. For small masses, the MR curves in Figs. 2.4 and 2.5 are

almost identical for different α, so smaller masses correspond to smaller radii.

For higher values of the central pressure (corresponding to larger masses),

the radii and the masses of the stars for fixed pc increase with increasing α
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Figure 2.4: MADMR curve in the MF, for three different potentials, and for different values of α in units of
km2.
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Figure 2.5: The same MR curve of Fig. 2.4 in the FT cases.

(i.e., stronger deviations from GR). Again, the increase of the masses can be

directly seen in Figs. 2.6 and 2.7, whereas the corresponding increase of the

radii can be inferred from Figs. 2.4 and 2.5. For the maximum ADM masses

we provide the corresponding values also in Tables 2.1 and 2.2.

From Figs. 2.4 and 2.5 it appears as if the MR curves for different α approached

each other for small masses. This is, however, not entirely correct. The

different MR curves for different α for a given model, in fact, always cross each
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Figure 2.6: The ADM mass as a function of the central energy density, for the MF case. It can be clearly
seen that for a fixed ρc the mass decreases with increasing α for small masses, but increases with increasing
α for large masses. The maxima of the curves correspond to the value of pc where the unstable branch starts.
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Figure 2.7: The same curves of Fig. 2.6 for the FT cases. The same conclusions may be extracted, however,
solutions in the unstable branch cannot be found.

other in the region of smallM . In particular, for each α there exists a NS mass

M∗(α) which has exactly the same radius as its GR counterpart (α = 0). For

all our models, however, this occurs for very small masses (always smaller than

0.15M⊙). As such small masses are most likely phenomenologically irrelevant,

we did not try to zoom into this region to make this behavior more visible.

The fact that this crossing of different MR curves occurs for very small masses
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is probably related to the very stiff nature of our EOS even for small density.

BPS Skyrme NS, by construction, do not have a crust region, although a crust

can be added without difficulty [15]. Other EOS, which are much softer in

the low-density region, produce pronounced crust regions for small mass NS

and, thus, the crossing happens for much larger masses, see, e.g., [200].

U = Uπ (FT)

α (km2) 0 1 5 10 20

MADM (M⊙) 3.332 3.327 3.325 3.323 3.321

Rs (km) 16.26 16.36 16.46 16.63 16.81

ρc (MeV/fm3) 820.73 817.64 786.10 704.61 655.20

U = U2
π (FT)

α (km2) 0 1 5 10 20

MADM (M⊙) 2.134 2.130 2.128 2.126 2.124

Rs (km) 12.84 12.91 13.05 13.13 13.21

ρc (MeV/fm3) 2188.60 2116.41 1951.95 1872.46 1807.41

Table 2.1: Exact case: values of the NS radii and the central energy densities for the maximum mass stars
for the two potentials considered, and the corresponding values of α.

Another interesting quantity is the mass at the surface of the star, Ms, which

in f(R) gravity is a second, independent and invariant mass observable, as

explained in [200]. It may be understood as a sum of the mass contributions

of matter and curvature inside the star. As in [37], we find that its value

decreases when we deviate from GR (i.e., for increasing α), see Figs. 2.8 and

2.9. It turns out, however, that the non-vanishing curvature scalar outside

the star produces a further contribution to the ADM mass which essentially

compensates this decrease. The region outside the star, in which the Ricci

scalar does not vanish, is also referred to as the gravisphere [37], and it can

be seen explicitly in Fig. 2.10. We only include the MF plots because they are

quite similar to the FT case.

An even further mass definition (the “Newtonian mass” Mn [200]) is provided

by the (t, t) metric function A(r),

Mn(r) =
r

2
(1− A(r)) , Mn,s =Mn(Rs), (2.72)
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U = Θ (MF)

α (km2) 0 5 10 20 50 500 5000

MADM (M⊙) 4.218 4.219 4.221 4.227 4.275 4.402 4.447

Rs (km) 17.58 17.60 17.79 17.92 18.08 18.55 18.95

ρc (MeV/fm3) 430.70 374.21 360.09 345.97 338.91 317.73 289.49

U = Uπ (MF)

α (km2) 0 5 10 20 50 500 5000

MADM (M⊙) 3.918 3.919 3.921 3.944 3.990 4.113 4.170

Rs (km) 16.56 16.70 16.82 16.93 17.09 17.50 17.69

ρc (MeV/fm3) 489.46 426.80 408.83 399.83 390.82 372.75 363.70

U = U2
π (MF)

α (km2) 0 5 10 20 50 500 5000

MADM (M⊙) 2.905 2.921 2.944 2.974 3.019 3.106 3.143

Rs (km) 12.63 12.90 13.00 13.12 13.29 13.61 13.69

ρc (MeV/fm3) 825.34 705.17 689.90 674.56 659.15 628.06 596.59

Table 2.2: Mean-field case: values of the NS radii and the central energy densities for the maximum mass
stars for the three potentials considered, with the corresponding values of α.
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Figure 2.8: Mass function vs radius, for the MF case. For each potential, the solutions are for a fixed value
of pc which is sufficiently large to lead to a rather large mass but, at the same time, sufficiently small such
that all solutions belong to the stable branch. The vertical dashed lines indicate the NS radii for different α,
which turn out to be very similar.

and this mass is relevant for the surface redshift,

zs =

(
1− 2GMn,s

Rs

)−1/2

− 1. (2.73)
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Figure 2.9: The surface mass as a function of the NS radius, for the MF case. It can be clearly seen that the
surface mass for a given radius shrinks with increasing α.

0 10 20 30 40 50
r (km)

0.005

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

R
(r

) (
k
m
−

2
)

U= Θ

α= 1

α= 10

α= 5

α= 0(GR)

0 10 20 30 40 50
r (km)

0.005

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

R
(r

) (
k
m
−

2
)

U=Uπ

0 10 20 30 40 50
r (km)

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0.001

R
(r

) (
k
m
−

2
)

U=U2
π

MF CASE

Figure 2.10: The Ricci scalar as a function of the radius, for the MF case. The solutions are for the same
fixed values of pc as in Fig. 2.8. The Ricci scalar suddenly jumps from a non-zero value to zero in the GR
case, but is continuous at Rs for α > 0. Again, the vertical dashed lines indicate the NS radii for different α,
which turn out to be very similar.

Interestingly, it turns out that Mn,s is larger than MADM such that the value

of zs for a star of a given mass increases in comparison to the one predicted

in GR. This is probably related to the particularly stiff nature of the EOS

of the BPS Skyrme model, because for the soft EOS used in [200] they find

the opposite behavior. In any case, this difference could be important to

discriminate between different extended theories of gravity.

The Ricci scalar curves for the MF case shown in Fig. 2.10 are continuous at

the NS radius for the modified gravity α > 0, but discontinuous for the GR

case. This discontinuity is a consequence of the EOS of the BPS model in the
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Figure 2.11: The Newtonian mass at the surface as a function of the star radius, for the MF case. For a fixed
radius, it grows with α for small stars but shrinks for large stars.

MF case because, in GR, the Ricci scalar obeys a purely algebraic equation

given by the trace of the Einstein equations,

R = 8πG (3p− ρ) . (2.74)

Therefore, if the EOS leads to a non-vanishing energy density at the NS

surface, the Ricci scalar will also show that discontinuity. In the modified

gravity, on the other hand, the curvature satisfies its own differential equation

until the end of the integration, which results in a continuous curve.

Finally, we remark a possible singularity which, interestingly, is always avoided

by solutions of our system. Indeed, the first derivative of f(R),

fR(R) = 1− 2αR, (2.75)

may, in principle, become zero for a positive R, which would introduce a

singularity in the equation (2.63). In GR, R is always negative close to the

surface, where ρ dominates over p, see (2.74). Whether it may become positive

in the center of the star depends on the EOS. It may become positive in our

case, because in the high-pressure limit the EOS of the BPS Skyrme model

approximates the maximally stiff EOS ρ = p + const. Indeed, it can be

seen in Fig. 2.10 that R(0) takes positive values in the GR case (α = 0).
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On the other hand, we also see that R(0) diminishes with increasing α. In

particular, it seems that R(0) always becomes negative for sufficiently large

α. In any case, fR(R(r)) = 1−2αR(r) always remains positive for all r for all

solutions considered (even for extremely large α), and the singularity never

occurs. In general, these results are compatible with those obtained in other

investigations [36,37,86,129,200,216].

In more detail, our M(Rs) curves are quite similar to the curves resulting

from quark stars [36], although the deviations for different values of α are

slightly larger in the quark star case (probably related to the fact that the

quark star EOS for high densities is softer than the BPS Skyrme EOS). The

underlying reason for their similarity is that in both cases (quark stars and

BPS Skyrme stars) the EOS does not become extremely soft in the low-density

region, such that the MR curves always have positive slope for small masses.

In other words, the radius grows with the mass, and light stars do not have a

pronounced tail (or crust). For EOS which approach the very soft EOS of nu-

clear physics for low densities, on the other hand, the resulting M(Rs) curves

lead to larger radii for smaller masses (a negative slope) in the low-density

region. For such EOS, the effect of varying α is much stronger, particularly

for small mass NS, there seems to exist an overall tendency that the variation

of α has a stronger effect for softer EOS.

It is interesting to compare the values of α used here, which are similar to

those in [36, 37, 200], with some observational astrophysical bounds. In [35]

the bound α ≲ 1 km2 was suggested, based on NS masses constraints. That

bound, however, was derived within a perturbative approach to the Starobin-

sky model which is not capable of reproducing the gravisphere contribution

to the NS mass and, therefore, underestimates this mass. Taking into account

this correction, the bound becomes much weaker [36]. Other astrophysical

bounds [167] are much weaker, as well, such that the values considered in

the present article are, at this moment, compatible with those astrophysical

bounds. Further, we restricted to positive values of α to avoid tachyonic in-

stabilities. For α < 0 we found solutions of the Ricci scalar that show damped

oscillations outside the stars, see [34] for a detailed investigation.

We find that the radius increases with α, while the maximum mass also slightly

increases in the MF case, see Table 2.2. In the FT case, instead, the maximum
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ADM mass seems to slightly decrease with increasing α, although the effect

is tiny, as may be seen in Table 2.1. So, in principle, we could constrain the

values of α with observational NS data, however, such data are still not very

precise. Besides, the maximum masses that the NS can reach strongly depend

on the EOS that we are using, hence, those EOS that are slightly below the

minimum accepted value 2M⊙, could be reconsidered with these results. A

priori one might think that the maximum mass can be arbitrarily large when

the value of α is increased, but we find that this is not the case. For instance,

for the large value α = 5000 km2 we find an increase of about 5%, also found

in [216].

One further interesting result is that the Newtonian surface mass Mn,s rele-

vant for the redshift of radiation emitted from the star surface is larger than

the ADM mass, in contrast to results for softer EOS. This implies that if gen-

eralized gravity turns out to be indeed relevant for NS, then the redshift will

be able to distinguish different EOS and, in particular, their stiffness.

We also find that the Ricci scalar is a smooth function at the surface of the

stars. In the GR case, an EOS leading to a non-vanishing energy density

at the surface of the star leads to a discontinuity in the Ricci scalar, but in

f(R) gravity that discontinuity is cured, because R satisfies its own differ-

ential equation. We required that the Ricci scalar tends to zero at infinity

to recover an asymptotically flat spacetime but, in principle, this would not

be necessary, and we could have imposed the Schwarzschild solutions just at

the surface of the star. This has been done in [96, 178] for some EOS, but

this matching condition cannot be imposed for an arbitrary EOS, therefore

it is highly unnatural. The results shown in here are, thus, a straightforward

violation of the Jebsen-Birkhoff theorem in f(R) gravity.

These results also open a new possibility in the description of NS. It consists

in the study of the differences of these results performed in the Einstein frame

as is done in [129], although they present their final results in the Jordan

frame. Indeed, we have posed the problem and solved the equations in the

Jordan frame, in which GR is usually expressed. However, the introduction of

modified theories of gravity, concretely the scalar-tensor theories, motivates

the introduction of the Einstein frame via a conformal transformation of the

metric.
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In any case, the BPS Skyrme model does yield rather high values for the

maximum mass even in GR, up to ∼ 3.5M⊙ for realistic potentials, and the

computations in generalized gravity does not help in this respect. For a more

complete and more reliable description of nuclear matter, the BPS Skyrme

submodel should be combined with the standard Skyrme model, which, as we

have seen in the last section, leads to much smaller values of the maximum

mass.

2.3 The generalized Skyrme model

The properties of the BPS model, concerning isolated nuclei and NS, encour-

ages the generalization of the standard Skyrme model including the contribu-

tion of the sextic term. Therefore, we present the generalized Skyrme model:

L2460 = −f
2
π

16
Tr{LµL

µ}+ 1

32e2
Tr
{
[Lµ, Lν]

2
}
−λ2π2BµB

µ+
m2

πf
2
π

8
Tr{U − I2}.

(2.76)

In this model, the stability of the skyrmions is also ensured due to the op-

posite scaling of the terms. Moreover, a generalized BPS bound may be also

extracted [18], with explicit dependence on the parameters.

The starting point and natural procedure is the resolution of the B = 1

skyrmion, which is the simplest solution. We first write the previous La-

grangian in Skyrme units, however, due to the presence of the sextic and

potential terms we cannot completely eliminate the parameters from the La-

grangian,

L2460 =
1

24π2

[
−1

2
Tr{LµL

µ} − 1

4
Tr
{
[Lµ, Lν]

2
}

−4π4c6BµB
µ − c0

2
Tr{I2 − U}

]
. (2.77)

The parameters have been encompassed into the adimensional coupling con-

stants c6 = 2λ2f 2πe
4 and c0 = 2m2

π/ (fπe)
2. Introducing the hedgehog ansatz

(2.18) in the Lagrangian, the field equation of the profile function f(r) is

obtained, and it may be solved for any given values of c6 and c0.

In order to fix the parameters fπ and e, we follow the ideas in [28,29], in which
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the B = 1 skyrmion is quantized to reproduce the masses of the proton and

the ∆ excitation. As mentioned before, for the zero mode quantization, we

perform a time-dependent transformation of the full symmetry group on the

Skyrme field,

U(x) → A(t)U(R(B(t))x+X(t))A†(t) (2.78)

The transformed field is introduced in the Lagrangian and we obtain the static

energy term plus additional kinetic energy terms,

L = −M +
1

2
MẊ2 +

1

2
aiVijaj +

1

2
biUijbj −

1

2
aiWijbj. (2.79)

We have identified the static energy functional with the massM of the skyrmion,

and the different kinetic energies come from translations, rotations, isorota-

tions and a mixed spin-isospin term. We also have defined the corresponding

inertia tensors Vij, Uij, Wij and the angular frequencies ai, bi associated to

rotations and isorotations respectively,

ai = −iTr
{
τiB

†Ḃ
}
, bi = −iTr

{
τiȦA

†
}
. (2.80)

We drop the translational kinetic energy contribution, and for the B = 1

skyrmion all the inertia tensors are equal and proportional to the identity due

to the spherical symmetry of the field configuration, Uij = Vij = Wij = Λδij.

Their expressions may be easily obtained in terms of the profile function.

The Hamiltonian is obtained via the Legendre transformation of the La-

grangian (2.79), from the angular velocities to the canonical spin and isospin

angular momenta. The possible quantum states, which are characterized by

the spin and isospin quantum numbers |j, i⟩, are found from the Rubinstein-

Finkelstein (FR) constraints in spherical symmetry [151]. Finally, the quan-

tum corrections to the B = 1 skyrmion may be obtained for the j = i = 1
2

ground state and the j = i = 3
2 first excited state, which correspond to the
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proton and ∆ particle respectively,

Mp =M +
3ℏ2

8Λ
,

M∆ =M +
15ℏ2

8Λ
.

(2.81)

We fix the pion mass to its physical value (mπ = 138 MeV) and we compute

the solutions for different values of λ2 to study the impact of the sextic term on

the skyrmion. For each value of λ2, the field equation is solved with an initial

seed of values (fπ, e), and the isospin inertia tensor is computed. This process

is repeated iteratively until the values for Mp = 939 MeV and M∆ = 1232

MeV are satisfied.

The results obtained for the parameters from the B = 1 fit in the general-

ized Skyrme model are shown in Table 2.3. Interestingly, when the sextic

term coupling constant increases, the required Skyrme parameter to fit the

solutions also grows, which implies that the quartic term becomes less impor-

tant. Indeed, the Skyrme parameter rapidly blows up if the sextic term is

present in the massless model, whilst it remains stable when the mass term is

included. The main reasons for this discrepancy between the two models are

the repulsive behaviour of the sextic term and the slow decay of the massless

model. In particular, when the sextic term is included the solution expands,

increasing the value of the inertia tensor, thus, reducing the importance of the

quantum energy in (2.81). However, the difference between the two physical

masses is precisely given by this correction which, after recovering the physi-

cal units, depends proportionally to fπe
3, whilst the classical contribution is

proportional to fπ/e. This implies that the Skyrme parameter must increase

to counteract the growth of the inertia tensor in order to maintain the fits.

Additionally, we may see from the definition of c6 ∝ e4 that if e increases

so does the presence of the sextic term, which is precisely the main cause of

this effect. Hence, the presence of the sextic term induces a feedback process

that may not have solution for a given maximal value of λ2 if the size of the

solution is not restricted by an exponential decay.

Conversely, the parameter fπ also increases, but much more slowly since the

energy is much less affected by the sextic term than the isospin inertia tensor.
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mπ = 0 mπ = 138 (MeV)

fπ (MeV) e λ2 (MeV fm3) fπ (MeV) e λ2 (MeV fm3)

135.97 6.30 1 112.24 5.24 1

145.98 9.77 3 118.34 6.27 3

149.36 39.59 5 123.18 7.99 5

Table 2.3: Sets of parameters that fit the B = 1 solution to the masses of the proton and the ∆ excitation.

In fact, it is still far from its physical value (186 MeV).

The energies of the solution are larger than for the standard fit (2.21), but

also the BPS bound increases. However, the difference in energy between

the solution and the BPS bound broadens for both the massless and massive

models, contrary to a first naive intuition from the BPS model. This indicates

a nontrivial interaction between the sextic and the other terms for these values

of λ2, however, for sufficiently high values of both c6 and c0 this difference in

energy should decrease, given that we are approaching the BPS model.

We show in Fig. 2.12 the profile function solutions against the radial coordinate

in the massive case for the different values of λ2. There, the expansion of the

solution in space is clearly visible. Indeed, the repulsive behaviour of the

sextic term may have an interesting effect in the r → 0 limit of f(r). In

this region, the profile function has always positive second derivative in the

models without sextic term, see right part of Fig. 2.12. However, if the sextic

term is included, we may find a sufficiently large value of c6 for which the

second derivative is negative near the r = 0 region, in which the sextic term

is the most relevant. This effect might have important consequences in the

description of the electric charge density profile functions for the nucleons

within the Skyrme model [89].

Finally, we solve the next skyrmions (up to B = 4) to compute the classical

binding energies (2.20) in the generalized model. The quantization of these

solutions follows the same procedure, and their corresponding quantum states

have also been identified in the standard Skyrme model. However, we will

only be interested in the classical energies. The reason is that the quantum

corrections already increase the energy of the B = 1 ground state an 8% of

the total energy, but the next skyrmions will typically have smaller or even

zero (for the B = 4 ground state) contributions [151]. In conclusion, these
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Figure 2.12: Radial profile function of the B = 1 skyrmion in the generalized Skyrme model for different
values of the sextic term coupling constant in units of MeV fm3.

corrections induce even more bounded isolated skyrmions, hence, they cannot

be considered as a solution for the binding energies problem.

These skyrmions do not have spherical symmetry anymore, hence we obtain

the solutions using an accelerated gradient descent (AGD) minimization al-

gorithm for the fields in the three-dimensional space. This procedure is ex-

tremely useful to obtain minimal energy configurations, so we explain the

details in Appendix C. We start with the rational map field configuration for

each skyrmion [157] and let the algorithm vary the fields in the direction of

maximal decreasing energy. The set of parameters that we are going to con-

sider correspond to the λ2 = 3 case of Table 2.3 in the massive model. The

energies of the resulting solutions are shown in Table 2.4.

The skyrmions have inherited the symmetries initially imposed by the rational

map, but the density distributions are more spread in space, due to the repul-

sive behaviour of the sextic term. The energy density distribution is shown

in Fig 2.13 using the Runge colouring convention [91], which turns out to be

quite helpful to see the orientation of the pion fields.

Unfortunately, the binding energies computed are even worse than in the stan-

dard Skyrme model, both values are shown in Table 2.4. Hence, a substantial

decrease of the binding energies purely within the generalized model would re-

quire very large values of c6 and c0 simultaneously, however, the computations

become extremely hard numerically in this limit using the AGD.
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B E/B BEB (%) BEB (%) (L24)

1 1.541 0 0

2 1.451 5.84 4.31

3 1.400 9.16 6.98

4 1.362 11.62 9.10

Table 2.4: Energy per baryon number and corresponding binding energies for the first four ground state
skyrmions in the generalized model. We also included the binding energies of the same solutions in the
standard Skyrme model for comparison.

Figure 2.13: Energy density contour plots in three dimensions of the first four skyrmions. We adopt the
Runge colouring convention to represent the orientations of the pion fields.

Nonetheless, it has been shown that the classical energies should receive sig-

nificant corrections from the quantization of the vibrational modes. This is

still a task ahead, but it is for sure an interesting direction to improve the

results of the Skyrme model for isolated nuclei.

2.3.1 Neutron stars from a Generalized Skyrme EOS

The aim of this final part is to consider a first approximated description of INM

to reproduce NS from the generalized Skyrme model, in which we consider

the contributions from the standard and the BPS submodels from an effective

approach.

As mentioned before, the lowest energy solution of the standard Skyrme model

(2.4), for very large baryon number consist of a crystalline lattice of cubic

unit cells. The energy per baryon of such solution as a function of the lattice

parameter of the unit cell (l) is given by (2.23). The pressure, using the

thermodynamical definition (2.24), is

p(l) =
E0

3l2

(
l0
l
− 1

l0

)
(1− ε)

2
. (2.82)
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This expression vanishes at the finite length l = l0, which is a well-known

property of INM at the saturation density n0. Further, we shall argue below

that the standard Skyrme crystal should provide the leading contribution to

the nuclear EOS close to the nuclear saturation. This explains the fit of the

Skyrme crystal parameters l0 and E0 to the INM values (2.49) that we have

considered in the previous section.

At sufficiently high densities, for instance those at the core of a NS, the sextic

term (2.26) provides the most important contribution to the EOS, related to

the ω meson repulsion of nuclear matter [23]. The sextic term alone defines

a barotropic perfect fluid with energy density ρ6 = λ2π2(B0)2 = p, see the

definition (2.38). The EOS ρ6 = p is maximally stiff with a speed of sound

equal to one, which explains its dominance at high density.

In the case of interest here, we will introduce a constant effective potential

µ2U = ρU , which is supposed to take into account the effects of the subleading

contributions above a certain threshold value pPT for the pressure. This is

equivalent to choosing the Θ potential (2.50) and implies the barotropic EOS

ρ = ρ6 + ρU = p+ 2ρU (2.83)

already at the full FT level.

It is clear from the previous sections that the true equation of state for Skyrme

matter should take into account both models in a unified fashion. Neverthe-

less, we may still obtain some information of the full description within the

generalized model by scaling arguments of the energy terms for the different

submodels.

Indeed, consider the case of the Skyrme crystal and let σs ∈ (0, 1]. A scale

transformation of the space coordinates of the form x → x/σs can be under-

stood as a mapping between crystalline solutions, respectively, with lattice

size l and σsl. On the other hand, the lattice length is a function of the

pressure, inverting (2.82):

l20
l2

=
1

2

(
1 +

√
1 +

24l30
E0 (1− ε)

p

)
. (2.84)
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Then, we conclude that two solutions at different pressures p and p′ which

have a lattice length of l(p) and l′(p′) respectively, are related through a scale

transformation σs(p, p
′) such that l′(p′) = σs(p, p

′)l(p). In particular, any

configuration with lattice length l(p) will be related to the zero pressure crystal

(minimum energy configuration) via l(p) = σs(p)l0, where σs(p) = σs(0, p)

can be seen as a function relating the pressure of the crystal and the scaling

parameter. Furthermore, taking into account (2.84), we find

σs(p) =

√√√√ 2

1 +
√
1 + 24l30

E0(1−ε)p
. (2.85)

Indeed, this expression has the correct limits σs(p → ∞) → 0 and σs(p =

0) = 1.

This equivalence between pressure and scaling allows us to write the energy

of the Skyrme crystal at any pressure (i.e. σs ̸= 1) as a simple function of

σs = l/l0,

E(σs) = E0

[(
σs + σ−1

s

) (1− ε)

2
+ ε

]
. (2.86)

Obviously, the contribution from the term proportional to σs becomes negli-

gible for large pressure, whereas the term proportional to σ−1
s dominates in

this regime (σs ≪ 1).

Next, consider the sextic term contribution to the energy per baryon of a fluid

element Ω

E6

B
=

∫
Ω d

3x
√

|g|ρ6∫
Ω d

3x
√

|g|B0
(2.87)

which transforms as E6 → σ−3
s E6 under a scaling of the spacetime coordinates.

This implies that the sextic contribution will dominate the energy per baryon

at sufficiently high pressure. Therefore, we may assume that a solution of the

complete model will provide an EOS which tends to the EOS of the submodel

ρ6 at high pressure, with an asymptotic energy per baryon of E6/B = ρ6/B
0 =

λ2π2
√
p. This is, therefore, the asymptotic behavior of the energy per baryon
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at high pressure also for the full model.

On the other hand, as the pressure decreases to a certain value, E6/B becomes

of the order of the energy per baryon of the Skyrme crystal, and the BPS

approximation to the complete solution will start to fail. For even lower p,

the contribution of E6/B will be subleading in comparison to the Skyrme

crystal. This supports the idea that a transition of some kind must take place

within this generalized model, between the crystalline phase of the standard

Skyrme model and the perfect fluid phase of the BPS model. A quantitative

prediction of the pressure value pPT where this transition occurs, as well as

the determination of its character (first or second order) would require the

knowledge of the full solution. In [10], the BPS submodel was used to model

the full NS core so the parameters λ2 and µ2 were fitted to match with the

infinite nuclear matter approximation at zero pressure. In the present case,

however, the Skyrme crystal describes the low-pressure region, therefore, it

should be fitted to nuclear matter. In this section, we will propose an EOS

for the generalized model. The value of λ2 will be determined, instead, by the

behavior of the EOS in the limit of very high pressure, in which, as argued,

it can be approximated by only the sextic term.

From the previous considerations, we can construct a generalized EOS which

takes into account both the standard Skyrme and BPS submodels at different

regimes, based on simple assumptions on the behaviour of the solutions in

the low and high pressure regimes, without knowing these solutions explicitly.

Indeed, we will assume that the low pressure solutions of the complete model

are still Skyrme crystals and the energy is approximately described by (2.23).

In the fluid high-pressure phase, we will assume that the sextic term provides

the most important contribution, and the complete solutions can be well de-

scribed by a BPS Skyrme model. We can model this behaviour by introducing

a certain value of the pressure, pPT , above which the solutions are described

by a BPS fluid. Therefore, the generalized EOS ρGen(p) must satisfy

ρGen(p) :=

{
ρSk if p≪ pPT

p+ const. if p≫ pPT

(2.88)

A simple way of parametrizing this behavior that yields a smooth transition
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between these two regimes is to consider an EOS of the form

ρGen(p) = (1− α(p)) ρSk + α(p) (p+ ρSk(pPT )) , (2.89)

where α(p) is a function that interpolates between the two regimes, α → 0

for p/pPT → 0 and α → 1 for p/pPT → ∞. Specifically, we consider the

interpolating function,

α(p, pPT , β) =
(p/pPT )

β

1 + (p/pPT )
β
, (2.90)

as in [15]. Here, smaller values of β produce a more gradual transition, whereas

larger values correspond to a faster transition between the two regimes. For

the transition between the Skyrme crystal and the BPS fluid at pPT , we have

to choose the rather gradual transition β = 0.9, because otherwise the re-

sulting energy density (2.89) would lead to acausal propagation (a speed of

sound larger than one), in some regions inside the star, see Fig. 2.14. As a

result of this interpolation, the energy density contribution from the crystal

becomes less important as p grows, freezing at its value at pPT for sufficiently

high pressures, playing the role of an effective potential energy for the BPS

Skyrme model. The p dependence for p > pPT is taken into account by ρ6,

which is known to provide the leading contribution for large p. Therefore,

the generalized EOS (2.89) is effectively equivalent to that of a BPS Skyrme

model with a Θ potential (2.50) for p≫ pPT . In the following section, we will

see that the value of pPT determines the maximum mass of a NS, so we may

adjust the value of pPT to agree with the current maximum mass limit for NS.

To obtain the baryon density nB as a function of the pressure in the generalized

model, we use the well-known Euler relation ρ = −p+ ∂ρ
∂nB

nB, which yields a

differential equation for n, that we integrate using nB(p = 0) ≡ n0 = 0.16 fm−3

as initial condition. The result, and the corresponding EOS ρ(p), are shown

in Fig. 2.15, where other EOS have been included for comparison.

Addition of crust: the Hybrid EOS

The generalized Skyrme EOS (2.89) only describes, by construction, nuclear

matter above nuclear saturation. Below saturation density, nuclear matter in
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Figure 2.14: Speed of sound of the generalized Skyrme EOS (2.90) for different values of the interpolating
parameter. The red curves represent (unphysical) superluminical sound velocities, whilst the green curves
correspond to acceptable curves.

a NS is known to be in a rather inhomogeneous state, resulting from a com-

petition between nuclear and electromagnetic forces (e.g., the nuclear pasta

phases). In principle, the (generalized) Skyrme model can be coupled to the

electromagnetic interaction, so these low-density phases are fundamentally

within its scope. Full field-theoretical calculations for this coupled system

and for large B are, however, not feasible, and a macroscopic treatment is

currently unknown. On the other hand, the standard methods of nuclear

physics, such as many-body techniques, can be used to describe these low-

density NS crust regions and are completely reliable there. This motivates us

to consider a hybrid version of (2.89), in which at a sufficiently low density,

n∗ (or equivalently p∗), a realistic EOS for a NS crust, like ρBCPM(p), is glued,

ρHyb(p) :=

{
ρBCPM if p≪ p∗

ρGen if p≫ p∗
(2.91)

We choose again the BCPM EOS to reproduce the low density regime. For

the crust and the outer core (nB ≲ n0), nuclear matter is well understood,
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and standard nuclear physics EOS should provide a precise description of NS

matter. Again, we choose a smooth transition between the two regimes, using

the interpolating function (2.90). Now we choose the faster transition β = 2,

as was done in [15] (replacing pPT by p∗).
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Figure 2.15: Comparison of the energy and baryon densities of the Generalized and Hybrid EOS from the
Skyrme model with other standard nuclear physics EOS.

Results

We solve the TOV system of equations to determine the static properties of

the NS resulting from the new generalized and hybrid EOS. In the hybrid EOS,

there are two free parameters, namely the values of p∗ and pPT corresponding

to the low and high density parts. Here, we show that recent astrophysical and

gravitational wave observations actually tightly constrain the value ranges for

both parameters. For instance, from the MR curves, we find that only the

value of pPT affects the maximum NS mass in the model. Thus, we could

constrain the value of pPT using the maximum mass limit for nonrotating NS

of M/M⊙ = 2.16+0.17
−0.15 proposed in [195]. However, given the GW observations

of GW190425, with a total mass of 3.4+0.3
−0.1 and mass ranges of components

varying from 1.12 to 2.52M⊙ [4], and GW190814, a compact binary merger
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between a 22.2− 24.3M⊙ black hole and a secondary object within the mass

gap (2.50− 2.67M⊙) [5], we have allowed the range of values of pPT to yields

stars of maximum mass up to ∼ 2.5M⊙.

In Fig. 2.16 we show different MR curves of the hybrid model corresponding

to different values of pPT . We can see a good agreement, for any pair (p∗, pPT )

within the ranges p∗ ∈ [0.5, 2] MeV/fm3 and pPT ∈ [25, 50] MeV/fm3, with the

most likely MR relation for the NS corresponding to the GW170817 event [2].

We have not included the corresponding data of the second BNS event, namely,

GW190425, since it was less informative on matter effects than GW170817,

although our data is also compatible with this event, specially for lower val-

ues of pPT . In the same figure, we represent the most updated measured

masses of some heavy pulsars, PSR J1614-2230 (1.928± 0.017M⊙) [94], PSR

J0348+0432 (2.01±0.04M⊙) [33] and PSR J0740+6620 (2.14+0.10
−0.09M⊙) [82], as

well as the most probable MR region from combined observations of GW and

these heavy pulsars [138]. Also, other constraints from NICER, chiral EFT

and multimessenger observations are represented, adapted from [79] and [109].
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Figure 2.16: MR relation for the hybrid model (red curves) for different combinations of values of p∗ = 0.5, 1, 2
MeV/fm3 and pPT = 25, 40, 50 MeV/fm3 . The red shaded region corresponds to the accessible region of the
hybrid model with p∗ and pPT within the given ranges.
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The observed gravitational waveform can also be used to place direct con-

straints on the tidal deformability of NS. Indeed, the waveform produced by

the coalescence of two NS at the early phase of the inspiral depends on the

underlying EOS mostly through the tidal Love number [121]. However, the

individual Love numbers for the two stars cannot be disentangled in the ob-

served gravitational waveform. Instead, what is measured is the so-called

effective tidal deformability Λ̃, a mass weighted average of the deformabilities

of the individual stars in the merger [93]. Similarly, the two component masses

are not measured directly, but the chirp mass, Mc = (m1m2)
3/5 /(m1 +m2)

1/5

where q = m1/m2 is the mass ratio, can actually be tightly constrained. In

the case of the GW170817 event, the chirp mass was constrained to 1.188+0.004
−0.002

at the 90% confidence level, and the mass ratio was constrained to be in the

range 0.7 − 1 within the same confidence level, whereas the effective tidal

deformability was inferred to be smaller than 800 [3].

Λ̃ =
16

13

(m1 + 12m2)m
4
1Λ1 + (m2 + 12m1)m

4
2Λ2

(m1 +m2)
5 (2.92)

Such measurements allow to reduce the set of Skyrme models able to reproduce

the NS properties. Following [237], we have solved the Einstein equations

for slowly rotating Skyrmion stars with the hybrid EOS using the Hartle-

Thorne formalism [117,222] and obtained the dimensionless tidal deformability

of stars described by this model as a function of their TOV mass. On the

other hand, since the chirp mass of the binary progenitor of GW170817 is

well measured, for any given EOS the effective deformability reduces to a

simple EOS-dependent function of the mass ratio. These curves, together with

the constraints commented above, are represented in Fig. 2.17, from where it

follows that our new EOS is compatible with the data from [3] for the ranges

of p∗ and pPT considered. Future measurements of the tidal deformability

of NS will allow us to further constrain these ranges, since we find that the

curves Λ̃(q) depend on the particular values of both parameters.

For completeness, we also compute the effective deformability for the EOS

considered in the previous section. This observable completely rules out the Θ

and pion mass MF potentials in the BPS model due to the huge deformabilties.

The MF quadratic pion mass potential is within the 90% confidence level
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90% (light) credible regions for the joint posterior of Λ̃ and q as obtained in [3] assuming a low spin prior.
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with quite similar values to the FT pion mass potential, contrary to their MR

curves. The BCPM curve lies perfectly in the main region of the inferred tidal

deformability, slightly below the hybrid EOS. At the bottom we find the FT

quadratic pion mass term which has the lowest deformability, but still within

the accepted values.

Interestingly, we find quite extreme differences in the tidal deformability within

the BPS model. On the one hand, we find the maximally stiff EOS, given by

the Θ potential, which reaches the highest deformabilities, and the quadratic

potential with the lowest values. We find a possible explanation about this dif-

ference in the energy density distribution inside the NS. From Fig. 2.3 we may

see that the FT quadratic potential concentrates the vast majority of matter

in the core, whilst the MF pion mass potential, which has an almost identical

behaviour to the Θ potential, nuclear matter is homogeneously distributed

along the star. Then, for two equal mass NS from the different models, the

one with the largest amount of matter concentrated in the core would be the

least deformed since matter in the surface is more gravitationally bounded.

Additionally, it was suggested in [127] that the behaviour of the energy den-

sity profile might also be the origin of some universal relations like the inertia

moment and compactness of the stars, with which the tidal deformability is
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also related.
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Figure 2.18: Λ̃(q) curves for the EOS considered throughout this chapter with the same GW170817 constraints
as in Fig. 2.17.

The λ2 coupling constant appearing in front of the sextic term in the general-

ized Lagrangian does not directly show up in the generalized EOS proposed

in this work, whose parameters are constrained by the observations of maxi-

mum mass and deformability. However, the generalized Skyrme model EOS

approaches the EOS of the BPS submodel for sufficiently large pressure, by

assumption. We can, therefore, extract an effective value of λ2 by taking the

limit of infinite pressure and using the Euler relation of the BPS model (2.46)

to obtain an effective value of λ2,

λ2∞ = lim
p→∞

p+ ρ

2π4n2B
. (2.93)

For the range of values pPT ∈ [25, 50] MeV/fm3, we find that λ2∞ ∈ [8.6, 11.9]

MeV fm3. The values so obtained for λ2∞ are, therefore, compatible with the

values obtained by assuming that the sextic term in the generalized Lagrangian

results from integrating out the ω vector meson.

Finally, there exists the possibility to consider a quark-hadron phase transi-

tion in the cores of very massive NS [100, 201]. Indeed the density at which

deconfinement is expected to occur is around ∼ 40n0 [32]. In this work we
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have found a correct description of NS observables with the generalized and

hybrid EOS, reaching the highest density of nmax = 7.7n0 and ρmax = 1577

MeV/fm3 for pPT = 50 MeV/fm3 in the maximal mass NS. Hence the pres-

ence of quark-deconfined matter inside NS is completely dismissed within our

approach.



Chapter 3

Skyrme Crystals

But in the end, it’s only a passing thing, this

shadow. Even darkness must pass. A new day

will come. And when the sun shines it will

shine out the clearer. Those were the stories

that stayed with you. That meant something.

Even if you were too small to understand why.

Samwise Gamgee

Skyrmions have been extensively studied, and solutions for finite values of

B were found both in the standard and the BPS submodels with different

shapes and properties. The usual procedure to find a minimal energy solution

considers the different possible symmetries for the skyrmion and then, the

solution is the one with the lowest energy. However, it becomes more difficult

to find the minimal energy solutions for increasing B since the number of

possible configurations quickly grows [111].

Skyrme crystals are solutions obtained imposing periodic boundary conditions,

therefore, they are infinitely spatially extended solutions so they formally have

infinite baryon number. For this reason, skyrmion crystals are good candidates

to describe infinite nuclear matter and to reproduce the conditions inside NS.

To obtain these periodic solutions, we split the crystal in finite unit cells where

we construct the skyrmion configuration, then, the main difference between

the crystals and isolated skyrmions lies in the boundary conditions. Now

Skyrme crystals compactify the real space into T3, however, since the T3 is

still an oriented and compact manifold, the Hopf’s degree theorem ensures

the existence of topological solitons labelled by an integer number.

From all the possible unit cells in three dimensions that we may use to con-

struct a Skyrme crystal, we will consider cubic unit cells throughout this work,
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but we will allow for different symmetries within them. Additionally, since

the crystal is infinitely extended, it has infinite energy and baryon number,

however, the unit cell is finite in size, hence, it carries a finite amount of en-

ergy and baryon number. Then, the energy per unit cell, as well as the energy

per baryon number of the crystal, are completely well defined and finite,

Ecrystal

Bcrystal
=
NcellsEcell

NcellsBcell
=
Ecell

Bcell
. (3.1)

The first Skyrme crystal was proposed in 1985 for the standard Skyrme model

by Klebanov [130], motivated by the phenomenological application of crystals

to the interior of NS. He considered the simplest possible crystal with a simple

cubic (SC) unit cell, in which eight B = 1 skyrmions were located in the

corners of the cube in the maximal attractive channel with respect to their

nearest neighbors. Then, he computed the minimal energy field configuration

respecting these conditions for different values of the unit cell side length

and found that the lowest value of the energy was just 8% above the BPS

bound. In the following, we will explain how we construct Skyrme crystals

via the procedure given in [136] with the different symmetries that have been

proposed, and we will compare them within the generalized Skyrme model.

3.1 Construction of Skyrme crystals

The starting point in the construction of the Skyrme crystal proposed in [136]

is the expansion of the fields in the following Fourier series,

σ =
∞∑
a,b,c

βabc cos
(aπx
L

)
cos

(
bπy

L

)
cos
(cπz
L

)
,

π1 =
∞∑

h,k,l

αhkl sin

(
hπx

L

)
cos

(
kπy

L

)
cos

(
lπz

L

)
,

π2 =
∞∑

h,k,l

αhkl cos

(
lπx

L

)
sin

(
hπy

L

)
cos

(
kπz

L

)

π3 =
∞∑

h,k,l

αhkl cos

(
kπx

L

)
cos

(
lπy

L

)
sin

(
hπz

L

)
.

(3.2)



Chapter 3. Skyrme Crystals 73

Here, the unit cell extends from −L to L (being L an input parameter) in all

three Cartesian directions, so the volume of the unit cell is V = 8L3. Then,

the symmetries of a given crystal impose some conditions on the Skyrme

field which, in the end, are translated into constraints on the coefficients of

the expansions βabc and αhkl. Finally, the constrained coefficients are varied in

order to obtain the lowest energy configuration. These expansions of the fields

break the normalization condition of the Skyrme field (2.1), a renormalization

is required,

nA −→ nA√
nBnB

. (3.3)

Although the expansion series of the fields are infinite, the truncation to the

first coefficients provides a good approximation to the solution. Therefore, the

addition of higher modes produces corrections to the energy, which become

smaller for higher orders. Indeed, we find that the energy converges very fast

with an increasing number of coefficients considered in the expansion. This

conclusion is also seen numerically; while the first coefficients are of order

∼ 1, we have calculated that the next orders decay to the ∼ 4%, ∼ 0.3% and

∼ 0.06% of the first-order results. Hence, we may safely truncate the series

to a finite number of coefficients; we take around 30 coefficients to obtain the

solution for each crystal.

The crystal considered by Klebanov has the simplest unit cell. It is invariant

under cubic symmetry transformations:

A1 : (x, y, z) → (−x, y, z),

(σ, π1, π2, π3) → (σ,−π1, π2, π3), (3.4)

A2 : (x, y, z) → (y, z, x),

(σ, π1, π2, π3) → (σ, π2, π3, π1), (3.5)

and it has an additional periodicity symmetry on the side length of the unit
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cell,

A3 : (x, y, z) → (x+ L, y, z),

(σ, π1, π2, π3) → (σ,−π1, π2,−π3), (3.6)

Owing to the translational invariance of A3, the energy (2.76) and baryon

(2.7) densities are periodical in L, as well as reflection invariant due to the

symmetry A1. Since each skyrmion contributes 1/8 to the baryon number and

the cube has eight corners, the baryon number of this cube is 1. However, the

fields are periodical in 2L (as follows again from the symmetry A3), hence the

unit cell is a cube of length 2L.

Body Centered Cubic (BCC) Crystal of half-skyrmions

This unit cell was proposed in [103] to be the one with the lowest energy for

small values of L. It introduces an additional symmetry,

B4 : (x, y, z) → (L/2− z, L/2− y, L/2− x),

(σ, π1, π2, π3) → (−σ, π2, π1, π3). (3.7)

to those of the Klebanov crystal (A1, A2 and A3). The motivation of this

new crystal comes from the appearance of an additional symmetry when two

B = 1 skyrmions are brought together and form the lower energy B = 2

field configuration, in which the B = 1 skyrmions have lost their individual

identity. This new symmetry involves an O(4) transformation that produces

a BCC unit cell of half-skyrmions. A half-skyrmion is a solution with σ = −1

at the centre until some radius r0 for which σ = 0. It carries a half of baryon

charge and it is undefined outside r0. This solution is located in the centre of

the cube of side length L. Additionally, a new half-skyrmion solution can be

defined via the transformation (σ, πa) → (−σ,−πa). These new solutions are

located in the corners of the cube, connected to the σ = 0 value of the central

half-skyrmion at r = r0, forming a cube of side length L.

As a result, the mean value of the σ field in this cube is exactly zero, so

the energy coming from the potential term L0 ∼ (σ − 1) will scale exactly

as 8c0L
3. Further, the eight half-skyrmions in the corners contribute a total
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baryon number of 1/2, so the cube of side length L contains a baryon charge

of B = 1.

The energy and baryon densities are also periodic in L, but the fields have

again a 2L periodicity, then, we have Bcell = 8 within our unit cell of side

length 2L. The energy density iso-contour plots of the unit cell are shown

both in two and threedimensions in Fig. 3.1.

The restrictions imposed on the Fourier coefficients by the last symmetries

are:

• h, k are odd, l is even.

• a, b and c are even.

• βabc = βbca = βcab.

• αhkl = −(−1)
h+k+l

2 αkhl.

• βabc = −(−1)
a+b+c

2 βbac.

Face Centered Cubic (FCC) Crystal of skyrmions

This symmetry was proposed in [136] in order to have a new solution with

lower energy for very large values of L. It shares symmetries A1 and A2 and

also has two additional symmetries,

C3 : (x, y, z) → (x, z,−y),

(σ, π1, π2, π3) → (σ,−π1, π3,−π2), (3.8)

C4 : (x, y, z) → (x+ L, y + L, z),

(σ, π1, π2, π3) → (σ,−π1,−π2, π3). (3.9)

In this case, the energy and baryon number are periodic in 2L, and the unit

cell has the shape of an FCC lattice of skyrmions. We have eight B = 1

skyrmions in the corners of the cube, and symmetry C4 locates other six

skyrmions in the centre of the faces and it also isorotates them by π with

respect to their nearest neighbours. Thus, this lattice differs from the first in

that each skyrmion is surrounded by 12 nearest neighbours, all of them in the
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Figure 3.1: Top: The 3D energy density plot of the BCC unit cell with Bcell = 8. We adopt the Runge
colouring convention [91] in this figure to represent the pion fields. Bottom: Energy density contour plots in
two dimensions at z = 0, L/4 and L/2 respectively.

maximal attractive channel. Since we have the eight skyrmions in the corners

and other six in the faces of the cube, the total baryon number in this unit

cell is Bcell = 4. Again, the same energy density contour plots are shown in

Fig 3.2 for this new crystal.

As we mentioned before, these symmetries impose some constraints on the

Fourier coefficients and they can be easily obtained imposing the symmetries

on the field ansätze (3.2). In this case, the non-vanishing coefficients are

determined from the combination of the following restrictions:

• h is odd, k and l are even or h is even, k and l are odd,

• a, b, c are all odd or a, b, c are all even.
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Figure 3.2: Top: The 3D energy density plot of the FCC unit cell with Bcell = 4. The colours follow the
Runge colouring convention. Bottom: Energy density contour plots in two dimensions at z = 0, L/2 and L
respectively, since the energy density has double the period of the previous crystal.

Face Centered Cubic (FCC1/2) Crystal of half-skyrmions

This crystal configuration was almost simultaneously found, in two different

publications [77, 136], to be the one with the lowest energy in the standard

Skyrme model. It may be seen as the half-skyrmion version of the FCC crystal

explained before, since each kind of half-skyrmion (with σ = ±1 in their

centre) form a FCC lattice, similar to the NaCl crystal structure. Indeed it

shares the symmetries A1, A2, C3 plus an additional symmetry,

D4 : (x, y, z) → (x+ L, y, z),

(σ, π1, π2, π3) → (−σ,−π1, π2, π3), (3.10)



78 3.1. Construction of Skyrme crystals

then, some of the FCC crystal Fourier coefficients are set to zero in this crystal.

Specifically, this new unit cell only allows the Fourier coefficients which satisfy

the conditions:

• h is odd, k and l are even,

• a, b, c are all odd.

As a consequence, the FCC1/2 crystal will always have equal or larger energy

than the FCC crystal. This may lead to phase transitions between the crystals

at some length of the unit cell as we will see later.

Equivalently to the FCC crystal, the half-skyrmion solutions with σ = −1

in their centre are located at the corners and faces of the unit cell. Further,

the opposite half-skyrmions with σ = 1 occupy the body centre and the link

centres of the unit cube. Then, the mean value of the σ field is zero, again,

as in the BCC crystal. We show the same contour plots of the half-crystal in

Fig. 3.3.

The energy and baryon densities are periodic in L and they have the appear-

ance of a simple cubic unit cell of half-skyrmions. However, since the fields

are periodic in 2L we take that to be the side length of the unit cell, hence,

the unit cell still has the shape of an FCC crystal with the alternating half-

skyrmion solutions. In this case, the baryon content within our unit cell is

again Bcell = 4. This crystal is precisely the one studied in the second section

of Chapter 2, where we denoted with l the size parameter of the B = 1 unit

cell. Therefore, the equivalence between the size parameter l in (2.23) and the

side length L is l = 21/3L.

Numerical procedure

The full minimization of the energy functional becomes a computationally

hard task when the number of coefficients increases. For this reason, in a first

step, we will consider the simplest ansatz with only the first non-vanishing

coefficients for the FCC1/2 crystal.

The minimal energy configuration of this crystal in the L24 model has been

found at L = 4.71 with E/B = 1.038. The first nonzero coefficients under
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Figure 3.3: Top: The 3D energy density plot of the FCC1/2 unit cell with Bcell = 4. The pion fields
are represented following the Runge colouring convention. Bottom: Energy density contour plots in two
dimensions at z = 0, L/4 and L/4 respectively, as in the BCC crystal.

the restrictions explained before are β111 and α100. We may impose α100 =

1 without loss of generality and leave the other coefficient to minimize the

energy. The minimum is attained for β111 = −1 at L = 4.92 with an energy

per baryon of E/B = 1.071, which is already smaller than the minimum of

the Klebanov crystal.

The minimum is shifted towards the correct values when more coefficients

are included in the minimization. The convergence is indeed quite fast, the

number of coefficients for which we reproduce the values of the minimum is 32.

This number slightly changes for the other crystals, given that the restrictions

change. For instance, the BCC crystal required more modes in the expansion

(3.2) since many of the coefficients vanish due to the high symmetry.

The minimization is performed through the variation of the coefficients via a
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Nelder-Mead algorithm [170], implemented in the GSL library of C++. This

algorithm is also known as the downhill simplex method [192], and it is a nu-

merical method based on a direct comparison of the function at each iteration

for multidimensional minimization. The algorithm maps the n-dimensional

parameter space via a triangulation using the concept of n+1-simplex, which

is the generalization of the triangle in higher dimensions. The worst vertex

in the simplex is replaced by the centroid of the remaining n points, so that

the algorithm proceeds. The minimization ends when the size of the simplex

reaches some desired tolerance.

Additionally, the ansätze of the Skyrme fields are known analytically, and

they have been fixed to reproduce the properties of the specific crystal, like

the baryon number in the unit cell and the orientations of the skyrmions,

independently on the specific values that yield the minimal energy configu-

ration. Hence, the derivatives of the fields are known analytically as well, so

the integrals of the baryon and energy densities may be accurately estimated

numerically since the expressions may be evaluated at any point in space. We

use a Gaussian quadrature method for the computation of the integrals, which

induces a negligible error. It has been estimated to be less than 10−5 for the

baryon number.

Therefore, the main source of error in this minimization comes from the vari-

ations of the coefficients, which we estimate to induce around 1% of error in

the energy. This is contrary to the AGD minimization, where the derivatives

and integrations are estimated using finite differences and Riemann sums re-

spectively. However, in the AGD method, the error is induced in both the

baryon number and energy, hence, a common way to erase this effect is to

compute the ratio between both values.

Once the values of the curve E(L) have been obtained, we fit the points with

the following function,

E

B
= k + k2L+

k4
L

+ c6
k6
L3

+ c0k0L
3, (3.11)

which is motivated from the scaling behaviour of the different terms that

appear in the Lagrangian.
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This fit reproduces the numerical points with great accuracy, being the largest

difference between the fit and the data point less than 0.5%. Furthermore,

this fit is extremely useful since it allows for the analytical manipulation of the

energy curve in order to compute the important magnitudes, like the pressure,

energy density and speed of sound.

3.1.1 Perfect scaling property

An interesting observation is that the contribution to the energy of each term

can be approximately parametrized as E(L) = ciKiL
3−i, at least for L ≤ Lmin

in the FCC1/2 crystal. Here, Ki is a universal constant in the sense that

different parameters will not change its value, and i is the scaling dimension

of each term. Then, the energy can be expressed as the sum of the individual

contributions of each term in the Lagrangian. This suggests that at least in

the high density regime (which is the one of interest), there is an approximate

perfect scaling of each term. The accuracy of this approximation is given

by the differences Ki ̸= ki and k ̸= 0. This perfect scaling (PS) property at

medium (L ∼ Lmin) densities will be useful to fit the values of the constants fπ
and e in the next sections. To obtain the perfect scaling parametrization, we

calculate the energy for a single value of L and we compute the contribution

of the different terms individually to extract the constants Ki. Specifically, we

calculate the constants Ki in the case c6 = c0 = 1 for simplicity and for a value

of the length near the minimum. Then, the curve E(L) can be approximated

by

EPS

B
= K2L+

K4

L
+ c6

K6

L3
+ c0K0L

3. (3.12)

The universal constants Ki of the PS approximation are given in Table 3.1.

We show in Fig. 3.4 the comparison between the curves of the energy per

baryon number of the FCC1/2 crystal for the four different submodels. We

have considered the standard values of the parameters (2.21) for fπ and e and

we just turn on and off the sextic term coupling constant to λ2 = 5 MeV/fm3

and the pion mass to its physical value. The PS curve is also represented in

order to compare this approximation with the fully minimized energy values.

We also consider the energy curve obtained from the approximated ansatz
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Figure 3.4: Energy per baryon number curves against the lattice length L of the FCC1/2 crystal. The circles
are the full-numerically minimized values of the energy, the solid lines are the PS approximation curves, and
the dots were obtained from the Castillejo ansatz for the fields.

for the Skyrme fields given in [77] by Castillejo et al. In this figure, we may

see that the Castillejo ansatz for the Skyrme field is a better approximation

for large values of L whilst the PS deviates more from the numerical values

in that region, but it is more accurate in the large density regime. Both

approximations are quite accurate around the minimum of the curve, and this

fact will be of great importance to describe realistic nuclear matter inside

NS. It is also clearly visible how the different terms that we include in the

Lagrangian have the expected impact on the energy per baryon curve. The

sextic term, due to its repulsive behaviour, shifts the length of the minimum

to larger values, whereas the attractive potential term has the opposite effect.

Model K2 K4 K6 K0

L24 0.1108 2.4373 0 0

L240 0.1136 2.4089 0 0.0085

L246 0.1111 2.4319 1.2435 0

L2460 0.1164 2.4042 1.0824 0.0084

Table 3.1: Fitting constants for the PS approximated curves
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3.2 Infinite nuclear matter from Skyrme crystals

The binding energies of isolated nuclei are a measure of how much a particular

nucleus is bounded to lighter nuclei. They have been experimentally measured

up to very high baryon numbers, and it is know that they are accurately

reproduced by the semi-empirical mass formula:

BEB := mNB−EB = aVB−aSB2/3−aA
(Nn −Np)

2

B
−aC

Np (Np − 1)

B1/3
, (3.13)

where EB is the mass of the nucleus with baryon number B, and Np, Nn are

the number of protons and neutrons respectively.

The first contribution corresponds to a bulk term which just takes into ac-

count the number of baryons that the nucleus has. The second term is the

contribution from the finite-size effects, i.e. a correction from the surface of

the nucleus. The third term is the quantum isospin correction to the energy,

which does not break isospin symmetry but penalizes any asymmetry between

protons and neutrons, it is also called the pairing term. The last term is just

the contribution from the Coulomb energy between protons in the nucleus.

This model is based on theoretical arguments in which nuclei are consid-

ered spherical drops of incompressible fluid, but the values of the coefficients

(aV , aS, aA, aC) are obtained from the fit of the experimental data for physical

nuclei, so this is why it is called semi-empirical. Under these assumptions

the nuclei lie in a constant density curve which is called the nuclear satura-

tion density n0. This value has been measured from the interior of very large

nuclei [123] and the most fiducial value is given by (2.49).

The system that we want to describe using the Skyrme crystals, with the final

aim of reproducing NS, is commonly known as infinite nuclear matter (INM).

It is an idealized system where the surface, Coulomb and isospin contributions

are neglected. Then, we can extract the value of the energy E0 := mN − aV
(2.49) of INM at the saturation density from the semi-empirical mass formula.

Hence, we will be interested in the fit of the minimum of the Skyrme crystals,

at which the skyrmions are at zero pressure, to the values of the INM at the

saturation point.
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A remarkable property of the standard Skyrme model without potential term

is that, with a suitable choice of units (2.8), one can factor out all dimensionful

constants from the energy functional, so that the constants remaining inside

it are just dimensionless numbers. As a consequence, one can just forget

about the numerical values of the coupling constants and numerically find the

different crystalline solutions at different unit cell lengths. Once the relation

between the energy and length E(L) is found, the values of the coupling

constants can be adjusted a posteriori in order to fit whatever observable we

are interested in. Unfortunately, the addition of the sextic and mass potential

terms to the energy functional spoils this property, as there is no choice of

units that allows to factor out all coupling constants in the energy functional.

This means that, in order to be able to obtain solutions, one needs first to give

specific values to the coupling constants appearing in the problem. However,

this is problematic if one wants to fit the values of energy and density to

some physical values. In our case, we want to identify the energy and the

density at the minimum of the crystal (L0 := Lmin) with the nuclear saturation

point, however, one cannot know the value of L0 without performing the

numerical simulations, but in order to do so you need to fix the values of

the parameters. Hence, the fitting of the skyrmion crystal parameters in

the generalized model to values at nuclear saturation is, in principle, a very

difficult problem that needs to be solved iteratively until a self consistent

solution is achieved. Given the computational cost of simulating a single unit

cell at a given length, following this naive approach would make it almost

impossible to realize a significant scan of parameters in a reasonable time.

However, due to the PS property at the minimum, we take advantage of

this approximation in order to fit the magnitudes obtained from generalized

Skyrme crystals to their physical values (up to a certain error).

We fix the physical value of the pion mass, and we will use two different values

to the sextic term coupling constant λ2. As we mentioned before, the values

of fπ and e which reproduce (2.49) can, in fact, be calculated exactly in the

L24, since the dimensionless Lagrangian does not depend on them,

fπ
e

=
Bcell

3π2Emin
E0, fπe = (2n0)

1/3Lmin. (3.14)
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mπ = 0 mπ = 138 (MeV)

fπ (MeV) e λ2 (MeV fm3) fπ (MeV) e λ2 (MeV fm3)

137.81 4.59 0 118.76 4.32 0

147.75 5.51 3 125.33 4.90 3

160.30 8.59 7 134.80 6.26 7

Table 3.2: Values for the parameters of the generalized Skyrme model that fit the minimal energy point of
the FCC1/2 crystal to the nuclear saturation point.

where Lmin and Emin denote the values of the length and energy at the mini-

mum, and Bcell is the baryon number of the unit cell (recall that we consider

the unit cell with volume 8L3). In the FCC1/2 phase, Bcell = 4, and for the

model L24 the exact values have been previously shown, fπ = 138.17 MeV,

and e = 4.60, being quite close to those obtained from the perfect scaling

approximation. These values are, in fact, not far from those obtained fitting

the hedgehog solution to the proton and the ∆ excitation [29]. For the other

models, we do not attempt to calculate fπ and e exactly. Instead, we calculate

them from the coefficients obtained from perfect scaling approximation, and

then use (2.49) to fit the pairs of values (Lmin, Emin) by varying fπ and e.

The results for the fits are given in Table 3.2. Interestingly, we find the same

effect as with the isolated B = 1 skyrmion, where the Skyrme parameter

increases due to the presence of the sextic term, but it is less pronounced.

Besides, the constant fπ is more affected in this fit, but sill smaller than its

physical value.

As a first, and interesting, check we also have computed the energy of the

FCC1/2 crystal with the parameters obtained from the previous chapter to

compare with the energies given in Table 2.4. The minimal value is reached

for L0 = 5.20 with E0/B = 1.280, being a 6% smaller than the B = 4 isolated

skyrmion.

3.2.1 Comparison between the symmetries

We show the curves E/B for the different symmetries and for different models

in Fig. 3.5. The left upper plot (model L24) reproduces the known results

described in the Chapter 2. A more detailed discussion of the remaining plots

will be given below, where we describe the resulting phases of skyrmionic
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matter at different densities. In Fig. 3.5 we also use the fact that for all models,

except for the simplest model L24, there exist topological energy bounds [18]

which are tighter than the Skyrme-Faddeev bound. We plot these topological

energy bounds for each model together with the energy curves for the values

of the parameters specified in Table 3.2. Although the crystals do not reach

the bounds, they are very close to it at the minimum. We show the values of

these bounds and how far the minimal energy of the crystals are above it in

Tables 3.5 and 3.6.

Further, we find that the half-skyrmion phases are well fitted to the proposed

parametrization (3.11) even for L ≥ Lmin. However, this parametrization

breaks down for large L for the FCC phase, and a more complicated behaviour

is observed in this region. Indeed, ⟨σ⟩ does not vanish for large L in the FCC

phase, but has a nontrivial dependence on L which requires a different fitting

curve rather than (3.11). A possible choice for the large L regime might

be a hyperbolic tangent, but we cover the whole curve using a spline cubic

interpolation. However, for small L the FCC phase is either exactly equal to

the FCC1/2 phase (a phase transition occurs) or very close to it. In particular,

the region where the FCC phase differs significantly from the FCC1/2 phase

is always beyond the minimum, i.e., for L > Lmin. As we shall argue below,

in this region the FCC crystal is not relevant for the nuclear EOS. We will,

therefore, ignore this problem and we will work with the parameters of the fit

ki that reproduce the half-skyrmion curves, which are given in Table 3.3. The

fit for the FCC1/2 phase serves as a good approximation for the FCC phase in

the small L region.

Model k0 k2 k4 k6 k0
L24 0.0467 0.1049 2.3448 0 0
L240 0.0201 0.1094 2.3866 0 0.0082
L246 0.0440 0.1027 3.8966 0.8183 0
L2460 0.1221 0.0956 2.6941 0.8650 0.0087

Table 3.3: FCC1/2 crystal fit coefficients.

Model k0 k2 k4 k6 k0
L24 0.0168 0.0957 2.9876 0 0
L240 -0.0760 0.1114 3.1247 0 0.0034
L246 0.1618 0.0885 3.1918 1.6589 0
L2460 0.1367 0.0840 3.0337 1.6915 0.0046

Table 3.4: BCC crystal fit coefficients.

As expected, we conclude that the FCC crystal reaches the lowest energy in

the L240 and L2460 cases, but the FCC1/2 crystal is the energetically favourable

phase at the minimum when the pion mass term is not included. This conclu-

sion is visible in Fig. 3.5, but the details on which phase is preferable will be

clarified in the next section. Another set of parameters was considered in [22]
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Figure 3.5: Energy per baryon as a function of the lattice length parameter for the three different crystal
symmetries considering the four relevant Skyrme models. The horizontal dashed line represents BPS bound
of each model for the specific choice of parameters in each case. The energy and length are both given in
adimensional units (2.8).

Model L0 E0/B Bound

L24 4.72 1.04 1

L240 3.84 1.13 1.06

L246 9.97 1.67 1.57

L2460 6.30 1.44 1.34

Table 3.5: FCC1/2 crystal values at the minimum of
energy.

Model L0 E0/B Bound

L24 5.56 1.08 1

L240 4.66 1.16 1.06

L246 11.76 1.73 1.57

L2460 7.65 1.48 1.34

Table 3.6: BCC crystal values at the minimum of en-
ergy.

and the conclusions were the same as here, however, from Tables 3.5 and 3.6

it may be seen that the difference in energy between the FCC1/2 and BCC

crystals is significantly smaller when the pion mass term is present. There-

fore, it seems possible to find a set of parameters with sufficiently large c0 for

which the BCC has lower energy than the FCC crystals, however, a physical

motivation for that choice of parameters is required.

Again, the impact of each term in the E(L) curve is visible in Fig. 3.5, where

the minimal energy configuration is shifted towards larger or smaller values
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of the lattice length. Also the energy increases when new terms are added,

although the energy of the L246 is higher than the full generalized Skyrme

model. This effect may seem contradictory, but the comparison in this case

is harder than in Fig. 3.4, where we just turn on and off each term in the

Lagrangian. In this case, the parameters are changed among the different

models in order to fit to the same physical energy and length scales. Then, by

comparing the values of the adimensional coupling constants (c6, c0) present

in the energy, we see that the sextic term contribution is much larger in the

L246 term than in the full model, producing the larger adimensional energy.

Besides, the energy of the minimum moves away from the BPS bound when

more terms are added in the Lagrangian. This is, again, surprising when the

sextic term is introduced since we are closer to the BPS Skyrme model, then,

the difference should decrease. As stated in the previous chapter, for very large

values of the sextic and potential terms, the difference between the minimum

and the bound will finally decrease. However, for the values considered here,

the non-trivial interaction between the different terms deviates the generalized

Skyrme model from a BPS theory.

We also found larger deviations from the PS constants in Table 3.1 when

large values of the sextic term are considered. This is visible from the fitting

constants in Table 3.3 for the L246 case. This reflects a change in the behaviour

of the Skyrme crystal under scale transformations when the sextic term (which

behaves like a fluid) is dominant in the Lagrangian. Indeed, we will see in the

next subsection how a phase transition to a fluid phase may be observed.

3.2.2 Phase transitions

We may anticipate from Fig. 3.5 that even though the FCC1/2 crystal reaches

the lowest energy at the minimum, it may not be the crystal with the lowest

energy for all values of L. This is clear in the region with large values of L,

for which the FCC crystal has lower energy than the FCC1/2. We will also

see that there is a phase transition from the FCC to the BCC crystal at small

values of L, however, since they do not have the same baryon content within

the unit cell, a more careful comparison is necessary. We will study in the

following the possible phase transitions that we may have since it may lead to
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an interesting phenomenology of the Skyrme crystals. For simplicity, since L

is a measure of the size of unit cell it is also a measure of the baryon density,

then we will also refer to the region of small values of L as the high density

regime and for large values of L the low density regime.

3.2.2.1 High density phase transitions

Fluid-like phase transition

As stated in the Chapter 2, the BPS model shares the properties of a per-

fect fluid [16]. The inclusion of the sextic term in the Lagrangian should,

therefore, lead to a skyrmionic matter that reflects this fluidity, at least in

the high density regime where the contribution from this term to the energy

becomes relevant. More specifically, we will find that in the range of densities

considered here, a perfect fluid is never reached exactly. Instead, the sextic

term has the effect of homogenizing the energy densities in the unit cell of a

crystal configuration at high densities.

A measure of this homogeneity may be obtained by comparing the exact,

field-theoretic energy density and its mean value over the unit cell, ρmean =

Ecell/Bcell. Since the sextic term scales as 1/L3, we expect to have a highly

inhomogeneous crystal at the minimum of the energy, where the skyrmions

are surrounded by regions of vacuum, whereas for decreasing values of L a

more homogeneous energy density (fluid-like behaviour) will appear, i.e., the

field configuration will get closer to a perfect fluid with homogeneous energy

density, without exactly reaching it. We will compare the L240 and L2460 cases,

since we want to consider the more realistic cases in which pions have mass,

however, we remark that the pion mass term is irrelevant for these high-density

effects.

To compare the energy densities within the unit cell we define the radial energy

profile (REP) enclosed within a sphere of radius r,

E(r) =

∫ r

0

d3x ρ (3.15)

where ρ is substituted by the ρmean in the case of the constant energy density

unit cell and by the energy density of the generalized Skyrme model (2.76) in
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Figure 3.6: Ratio between the REPs for the crystal and the fluid at different densities with and without sextic
term. The coordinate r has been defined as the radial coordinate rescaled by the lattice length.

the full field-theoretical case. We calculate both REPs for each case at the

baryon density of the minimal energy (n0), and at the higher densities 3n0
and 7n0. We show in Fig. 3.6 the ratio χ = E(r)/Emean(r) of the two REP for

each case, since it tells us how far we are from the fluid-like behaviour. For

this concrete calculation, we only consider the BCC phase, because (i) this

is the relevant phase for high densities, and (ii) the effect of homogenization

is stronger for this phase. The resulting REP will grow with the radius until

r =
√
3L and take a constant value equal to the energy of the unit cell for

larger values.

In Fig. 3.6 we can see that the homogeneity of the energy density strongly

increases with density, i.e., with decreasing values of the lattice parameter,

when the sextic term is included. For the model L240 without the sextic term,

on the other hand, the ratio χ between the lattice and the fluid REPs is al-

most independent of the density and strongly deviates from unity. In other

words, without the sextic term skyrmionic matter remains in a crystalline

phase with an essentially unchanged rigidity up to very high densities. When

the sextic term is included, instead, the resulting crystal becomes less rigid

against volume-preserving deformations at high densities, but without com-

pletely losing its crystalline structure.

In contrast to the volume-preserving deformations, the inclusion of the sextic
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term is known to lead to much more resistance against these deformations like

compressions, resulting in a much stiffer EOS for skyrmionic matter at high

densities [23]. The stiffer EOS of the generalized model is important, since

it allows for more realistic NS maximum masses than the standard Skyrme

model. This observation led us to consider an EOS based on an interpolation

between the standard Skyrme crystal at intermediate densities and the perfect

fluid of the BPS model at high densities in the last chapter. On the other

hand, the nature of the transition between the crystalline and the fluid phases

remained undetermined. Our current results imply that the fluid phase is

approached asymptotically rather than via a phase transition.

FCC1/2 to BCC phase transition

The energies per baryon number of the FCC1/2 and BCC phases have been

compared in Fig. 3.5. An important point here is that whilst the FCC1/2 unit

cell contains 4 baryons, the BCC unit cell has 8 baryon units, so if we want

to compare both crystals we need to do it at the same baryon density.

We find that the different terms that we consider in the Lagrangian have

an important impact on the transition point. Specifically, the sextic term

locates the transition at physically reasonable densities, i.e., the same order

of magnitude as the density at the energy minimum. Without the sextic term,

we find the transition point at very high densities, and the addition of the

pion-mass term shifts the transition density to even higher values, therefore,

we only plot the cases in which we have the sextic term.

We show in Fig. 3.7 the two phases and the density at which the transition

takes place, and the numerical values for this point are given in Table 3.7.

Since the energy curves have different slopes at the transition point there is

a discontinuity in the derivative of the energy. This implies that the FCC-

to-BCC is a first order phase transition and we must perform a Maxwell

construction (MC) in order to avoid unphysical regions.

The pressure of a system acquires great relevance when phase transitions are

present since it must remain finite and continuous in order to have a physical

transition. The pressure, as well as the energy density of the crystal, can be

obtained from their thermodynamical definition (2.24).
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Figure 3.7: Comparison between the energies of the BCC and FCC1/2 crystals at the same baryon density,
showing the phase transition point, denoted by the red cross in the plots. Both nB and E are shown in
Skyrme units.

From these expressions we may conclude that there is a discontinuity in the

pressure of the crystal and this is contradiction with the Gibbs conditions that

must be preserved in every phase transition,

pI = pII, µIB = µIIB (3.16)

For this analysis we will identify the FCC1/2 crystal as the phase I and the

BCC crystal as the phase II. Besides, in our system the baryon charge is

conserved so we must find the mixed phase which has the associated chemical

potential (µB) common to both phases.

Model nPT/n0 pPT (MeV/fm3)

L24 62.21 1321

L240 46.93 1048

L246 2.65 30.92

L2460 2.21 20.14

Table 3.7: Ratio between the transition density and the density at which the minimum of the energy of the
FCC1/2 crystal is achieved.

The MC introduces a mixed phase which preserves the Gibbs conditions in

this case. The main idea of this construction is to find one point in each of

the energy curves which have the same pressure, we denote it by pPT , and

join them with the curve which has the same value of µB for the two phases.

Mathematically this means that we have to find the points (VI , VII) of each
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phase that have the same slope in the E(V ) diagram and are both tangent

to the straight line with the same slope (which is pPT ). We remark that,

although we denote as pPT the pressure at which the phase transition occurs,

it is not related to the effective transition between the Skyrme crystal and the

BPS model considered in the previous chapter.

We must be careful for this calculation since we are dealing now with the

volumes of the unit cells. This means that same volumes have different baryon

content in each crystal, so we need to rescale them in order to have the same

baryon number,

nFCCB = nBCCB −→ VFCC =
VBCC
2

(3.17)

The final energy curve with a physical phase transition starts at low densities

in the FCC1/2 crystal until we find the mixed phase which joins to the BCC

crystal,

E(V ) =


EFCC(V ), V ≥ V1
EFCC(V1)− pPT (V − V1), V1 ≥ V ≥ V2
EBCC(V ), V ≤ V2

(3.18)

Actually, from the arguments given before and the curves displayed in Fig. 3.5

we would have to compute the transition between the BCC and FCC crystal

of single skyrmions. However, we may use the FCC1/2 energy curve for these

calculations since the density at which the transition occurs, the FCC and

FCC1/2 crystals are the same in the L246 case and the difference between

them in the L2460 case is negligible. The final curve, with the first order phase

transition, after the MC is applied, may be seen in Fig. 3.12.

3.2.2.2 Low density phase transitions

FCC1/2 to FCC phase transition

As we noted in the construction of the crystals, the FCC1/2 crystal will al-

ways have larger or equal energy than the FCC. In Fig. 3.5 we see that the

energies of both crystals are indistinguishable at high densities, but at some

value of the length the curves split and the FCC crystal becomes the ground
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Figure 3.8: Mean value of the σ field within the unit cell shows the second order transition from the FCC
to the FCC1/2 crystal when the pion mass term is not included, and the asymptotic approach when it is
included.

state. This behaviour in the E(L) curves suggests a phase transition between

the crystals, but the presence of the pion-mass potential term is crucial in

the understanding of this possible transition. Concretely, this potential term

explicitly breaks chiral invariance, then, it is not compatible with the FCC1/2

symmetry σ → −σ. However, the relevance of the potential term in the en-

ergy decreases at high densities, so both crystals tend to the same energy in

the chiral limit. Hence, when this term is not included in the Lagrangian

both crystals are allowed and we find a FCC to FCC1/2 second order phase

transition, but when the potential term is present the FCC crystal is always

the ground state and the energy curves approach asymptotically.

This phase transition has been extensively studied in [143], where the mean

value of the σ field was proposed to be the order parameter of the transition.

We show in Fig. 3.8 the curve of the σ field mean value in the unit cell

for the cases L24 and L240 to represent the cases without and with pion-

mass potential term respectively. The addition of the sextic term does not

qualitatively change the curves.

Although the FCC1/2 is not the ground state crystal it is a good approximation

to the FCC crystal at large densities. Indeed, for the values of the parameters

that we have considered, the transition point always occurs at densities smaller
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than the minimum of energy in the case without potential term. Besides, even

with potential term the FCC1/2 crystal is already a good approximation to the

FCC crystal for densities larger than the minimum.

B = 4N 3
α Skyrme lattices

For the moment, we have mostly focused on the behaviour of Skyrme crystals

under the Kugler and Shtrikman construction procedure. It is the aim of this

section to show that there is a new branch of solutions which have different

energies in the low density regime and tend to the FCC1/2 crystal at high

densities.

The fact that the Skyrme crystal has a minimum is not a bad behaviour, since

this is expected to occur in symmetric nuclear matter. However, the energy

of the half-crystals seems to diverge with L, but this is due to the Fourier

expansion that we use to construct the Skyrme crystal, in which we impose

the skyrmions to be in fixed positions and we do not allow them to move freely

within the unit cell to find the lowest energy configuration.

This is a correct procedure for small values of L, however, if we increase the

size of the unit cell the skyrmion is only allowed to spread instead of clustering

to form a compact configuration surrounded by vacuum.

This motivated us to find new lower energy configurations with a new numer-

ical minimization method which lets the skyrmions move with no restrictions

within the unit cell. We use the AGD method to find the field configura-

tions with minimal energy, locating the B = 4 skyrmion in the centre of the

unit cell. We use the rational map approximation (2.19) found in [124] as

initial configuration for the minimization, and periodic boundary conditions

are imposed on the faces of box after each iteration. The B = 4 skyrmion has

octahedral symmetry, the rational map with this symmetry and degree four

explicitly reads,

R(z) =
z4 + 2

√
3iz2 + 1

z4 − 2
√
3iz2 + 1

. (3.19)

The motivation for this new lattice starts with the similarities between the

isolated B = 4 skyrmion, which has cubic symmetry, and the FCC1/2 crystal.
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Indeed, the energy density contour of the isolated skyrmion is quite similar to

the crystal in the sense that it is composed by eight half-skyrmions located in

the corners of a cube.

Besides, the study of the B = 4 skyrmion in periodic boundary conditions

under different deformations showed the phase transitions it may experiment

[209]. Concretely, the phase transition between the FCC1/2 and the B =

4 skyrmion lattice was found at a certain value of L, then the new lattice

becomes a more energetically favourable crystal.

Since the isolated B = 4 skyrmion aims to describe an alpha particle, we

will refer to this configuration as the α-lattice. We calculated the energy of

this new lattice for different values of L in the L240 model. The reason for

not considering the sextic term is that the AGD is extremely sensitive to high

values of c6, and we have rather large presence of the sextic term in this specific

case.

As a result, it turns out that the α-lattice has lower energy than the crystal

at a certain value of L, furthermore, it tends to a constant value at L → ∞.

Indeed, the asymptotic constant value is precisely the energy of the isolated

B = 4 skyrmion. This motivates the construction of other cubic lattices with

larger values of B, since it is known that the energy per baryon of skyrmions

decreases for increasing values of the baryon charge [91].

The next simplest cubic skyrmions, which are the N 3
α multiples of the B = 4

skyrmion, are the B = 32 and B = 108 solutions. The way to construct these

higherB skyrmions is, in fact, by cutting chunks of the Skyrme crystal, an then

joining the fields with appropriate vacuum boundary conditions as explained

in [42]. Once these isolated solutions are obtained they are introduced in

the AGD method with periodic boundary conditions in order to solve the

corresponding 4N 3
α-lattices.

The constant value for L → ∞ is also found for the FCC crystal, given that

the single skyrmions are moved apart from each other in this limit. However,

it settles much more slowly than the cubic lattices considered in this section.

Besides, all these new lattices have less energy than the FCC crystal at low

densities, since they achieve the more compact and energetically favourable

configuration ofB = 4N 3
α skyrmion, rather than 4N 3

α isolatedB = 1 skyrmions
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of the asymptotic FCC crystal.

Decreasing the size of the unit cell forces the skyrmion to recover the FCC1/2

crystal configuration. The transition in the energy curve for these lattices may

be seen in Fig. 3.9 at a slightly smaller density than the minimum.
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Figure 3.9: Energy per baryon number for the different crystals and lattices considered in this work in the
L240 model. The large difference in energy between these lattices and the FCC crystal that indicate the
correct ground state is clearly observed. However, the convergence to the same FCC1/2 crystal is observed
slightly above the minimum.

The explicit transition to the half crystal is represented in Fig. 3.10 via the

corresponding energy density contours at different lattice length values.

Transition to finite nuclear matter

In addition to the great improvement in the low density regime of the E(L)

curve with these new lattices, a smooth transition from infinite to finite nu-

clear matter is found. Increasing the value of the lattice length, the neighbour-

ing unit cells are moving apart from each other, ending up with an isolated

skyrmion in the infinite L limit. This is actually the physical reason of the

asymptotic finite value at the end of the energy curve. Furthermore, this fact

has great interest since it is possible to extract an estimation of the surface

term present in (3.13) entirely within the Skyrme model.
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Figure 3.10: Energy density contour of the 4N3
α lattices at different sizes of the unit cell. The colours represent

the same values as in Fig. 3.3. Here, the transition to the the FCC1/2 crystal is visible, whereas the isolated
skyrmion is recovered for large values of L.

For this purpose, we first assume that the energy of a B-skyrmion is just the

energy at the minimum of the energy curve, and the difference between the

minimum and the asymptotic value (i.e. the energy of the isolated skyrmion)

is the contribution from the surface energy. This is a reasonable assumption

since quantum corrections are not considered, and we can see from Fig. 3.9

that the minimum of the curve is the same for all the lattices, covering a wide

range of baryon numbers, at least up to 108. Then, the surface energy may

be parametrized in terms of the number of faces of each skyrmion and the

number Nα of alpha particles. Specifically, due to the cubic symmetry of the

lattices that we are considering, each skyrmion will have six faces covered by

N 2
α alpha particles, hence, the surface energy and the baryon number may be

easily related,

B = 4N 3
α, (3.20)

EB = E0B + 6EsurfaceN
2
α = E0B +

6Esurface

42/3
B2/3. (3.21)
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From this simple analysis we found the same scaling of the surface contribution

in (3.13) in terms of the baryon number. We remark that this behaviour does

not have to be necessarily true in the Skyrme model since it simply comes

from geometrical arguments, however, we fitted the difference between the

energy of the isolated skyrmion and the minimum of energy and we found a

great agreement with the correct power-law.
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Figure 3.11: Surface energy of the isolated 4N3
α skyrmions fitted to the semi-empirical mass formula surface

term expression.

From the fit we can extract a value for aS, though it turns out to be too high

compared to the most fiducial experimental value,

aSkyrme
S = 78.3 MeV ≫ aexp.S = 18.3 MeV. (3.22)

This discrepancy may be directly related to the problem of the high binding

energies in the Skyrme model. Correct values for the asymptotic difference

between the isolated skyrmions would yield the precise value for the surface

energy coefficient, hence the resolution of the binding energies problem also

implies great enhancement in the infinite nuclear matter description. Indeed,

we will see in the next section that this problem also prevents the correct

description in the low density regime of the EOS, specifically the region of the

crust.
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3.3 Neutron stars from generalized Skyrme crystals

We have perfomed an exhaustive study of skyrmionic matter at different den-

sities in order to describe nuclear matter. The main result is that Skyrme

crystals are the most appropriate candidates to describe INM in the Skyrme

model not only because they are infinitely extended configurations with the

lowest energy, but also because we found a nontrivial phenomenology at dif-

ferent densities.

In this final section we obtain the EOS from the Skyrme crystals and solve

the TOV system of differential equations to study the impact that the sextic

term has in the NS from a complete field theoretical approach. Despite the

results obtained so far are not a completely realistic description of INM, it

may serve as a first indication for the maximal mass of the NS. Besides, it is

interesting for a direct comparison with the results obtained combining the

two submodels in the previous chapter.

The equation of state may be easily obtained from the crystals using the

definitions (2.24). Besides, since the energy has been parametrized by (3.11),

the pressure and energy density are obtained analytically in terms of L as

well,

p(L) = − 1

24L2

dE

dL
, ρ(L) =

E

8L3
, (3.23)

where the coefficients of the energy are given in Tables 3.3 and 3.4 for each

crystal. Recall that there is a first order phase transition between the FCC1/2

and the BCC crystals which is solved by the piecewise function (3.18). This

produces a discontinuous jump in the EOS since the pressure is required to be

constant during the mixed phase in the MC, but the energy changes along the

p ≡ constant path. The values of the phase transition have also been obtained

from the fit of the energy (3.11), and they are given in Table 3.7.

The EOS are represented in the upper left plot of Fig. 3.12 for the different

models considered. All the curves tend to the same energy density in the zero

pressure limit since we have fixed the parameters in each case in order to fit

the nuclear saturation point. However, the L246 case seems to deviate from

the rest of EOS. The reason is that the fit has been obtained from perfect
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scaling approximation, which is not arbitrarily accurate, and we have seen

that the sextic term tends to deviate from the crystal configuration into a

fluid. Besides, the L246 case has the largest value of c6 ∼ 250 among the

four sets of parameters, being extremely far from the values c6 = c0 = 1

used to computed the perfect scaling constants. We might have recomputed

the constants for a better accuracy, however, the deviation is around a 5%,

although the logarithmic scale magnifies this effect in the plot.

The phase transitions are present in each curve, but they are only visible in

the cases where the sextic term is included. Furthermore, this figure displays

the stiffening on the EOS when more terms are added in the Lagrangian,

specially the sextic term. This, indeed, produces the increase in the masses

and radii.

The speed of sound is another informative magnitude in the EOS, it is directly

related to the stiffness so it has great implications on the observables of NS [30].

As explained before, it must always be less than one, and it may be computed

analytically as well,

c2s =
dp

dρ
=
dp

dL

dL

dρ
, (3.24)

dp

dL
=

1

12L3

dE

dL
− 1

24L2

d2E

dL2
, (3.25)

dρ

dL
=

1

8L3

dE

dL
− 3E

8L4
. (3.26)

The speed of sound curve depends on L and on the energy fit constants, but

the asymptotic value at high densities turns out to be a constant value for

each case. In the L→ 0 limit we have,

L2460 : c2s −→ 1, (3.27)

L240 : c2s −→ 1/3. (3.28)

These values also apply for the massless versions since the potential term is

irrelevant at high densities. Interestingly, the speed of sound without sextic

term tends to the conformal value of deconfined quark matter. There is,

indeed, an intense debate on the possibility of surpassing the conformal bound
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inside NS cores [50]. It is known that hadronic matter must deconfine into

quark matter at some point for high densities, hence, the speed of sound must

tend asymptotically to the conformal value. One possibility is that the sound

velocity is always subconformal and it tends to 1/
√
3 from below, but this is

in tension with the most massive NS observations and most of simulations,

which suggest that the conformal bound is violated inside NS.

The speed of sound curve as a function of the pressure is shown in the upper

right plot in Fig. 3.12. The main conclusion obtained so far is that the sextic

term is necessary for a correct description of NS using the Skyrme model.

Therefore, it is clearly observed from Fig. 3.12 that if this term is included,

the conformal bound is widely exceeded for reasonable densities. Then, the

best description hitherto for NS purely within the Skyrme model also predict

that the conformal bound is violated.

Additionally, the speed of sound may be affected by other effects previously

to the quark deconfinement. Indeed, the decrease in the speed of sound is

usually a sign for the appearance of new particle species inside NS.

The value of c2s in the zero pressure limit may also be determined, however,

it explicitly depends on the values of the constants in the energy fit. Besides,

the low density part is not correctly reproduced in the Skyrme crystals due

to the absence of crust, therefore, it requires further development.

The resolution of the TOV system for these EOS yields the MR curves shown

in the lower plot of Fig. 3.12. We have included the MR curve with (dashed

lines) and without (solid lines) MC to clearly see the impact of the phase

transition on the NS. This phase transition is not attained in the models

without sextic term since the NS become unstable earlier. Additionally, we

have also computed the curves for the L246 and L2460 models with λ3 = 3

MeV fm3, where the other parameters have been again fitted to the nuclear

saturation point.

The masses obtained from the crystalline solutions reach the minimal mass

constraints from experimental observations. Interestingly, we obtain values

for the mass similar to the effective description of the generalized EOS in the

previous chapter, even though the values for the sextic term coupling constant

are significantly smaller. This may be interpreted as an underestimation of
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Figure 3.12: Top left: The full Skyrme crystal EOS including the possible phase transitions in the different
submodels. Top right: The speed of sound obtained from each EOS. Bottom: The MR curves obtained solving
the TOV system of equations.

the sextic term in the effective description. Conversely, the radii turn out

substantially larger than the expected values, which suggests that the EOS

might be too stiff. This effect might be attributed to a prominent presence of

the sextic term, however, the large radii already for the low mass NS indicate

that this might be a problem intrinsic to the crystalline solutions near the

minimum. Nonetheless, the radius is highly affected by the low density regime

of the EOS, which is not correctly described for the moment since the energy

curves considered here still present a minimum.





Chapter 4

Neutron Star matter in the Skyrme

model

Happiness can be found, even in the darkest of

times, if one only remembers to turn on the

light.

Albus Dumbledore

4.1 Quantization of Skyrme crystals

The crystalline solutions obtained so far correspond to classical solutions in

which no quantum effects have been considered. Specifically, the isospin cor-

rection to the energy, like the third term in the semi-empirical mass formula

(3.13), is crucial for a realistic description of nuclear matter. Indeed, inside

NS (as the name suggests) a high asymmetry between protons and neutrons

is expected, implying a large contribution to the energy. Hence, since Skyrme

crystals aim to describe NS, the quantum isospin contribution to the energy

needs to be considered.

This is the goal of this section, in which we will extensively explain the stan-

dard isospin quantization procedure in the Skyrme model, showing explicitly

the expressions for the isospin inertia tensors in general. Then, the specific

case of the FCC1/2 crystal is considered and the physical implications are

studied.

The quantization of the Skyrme crystal was already discussed by Baskerville

[43] in the massless model. The vacuum boundary conditions of isolated

skyrmions break the chiral symmetry of the Lagrangian (2.4) to the diago-

nal isospin subgroup. However, this does not occur for periodic boundary
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conditions, and there is not natural way to define the isospin subgroup. More

specifically, there is an ambiguity in the reduction of the 4-dimensional rep-

resentation of the crystal symmetry, into a trivial 1-dimensional irrep and

3-dimensional irrep, such that one dimension in isospace is singled out. We

take the σ field to transform under the trivial representation, since this is the

natural decomposition when the specific pion mass term (2.22) is introduced.

Therefore, we will only consider the quantization of Skyrme crystals in the

massive model.

The starting point, as we did in the last section of Chapter 2, is the trans-

formation of the Skyrme field under the symmetries of the Lagrangian (2.78).

However, in this section we will only consider the quantization of isospin de-

grees of freedom. The reason is that a global spatial rotation of an infinite

crystal requires infinite energy, however, for a rotation in the isospace a finite

amount of energy per baryon is required [43]. Besides, global isorotations

may be decomposed in the individual isorotations of each unit cell, but that

decomposition does not apply for spin rotations. Then, we only promote the

isospin transformation to be time-dependent,

U(x) → A(t)U(x)A†(t), (4.1)

and the transformed field is inserted into the Lagrangian. This produces a

kinetic energy term in the Lagrangian,

T =
1

24π2

∫
d3x

[
−1

2
Tr
{
L2
0

}
− 1

2
Tr
{
[L0, Li]

2
}
+ 4π4c6

(
Bi
)2]

. (4.2)

The time component of the Maurer-Cartan current, as well as the spatial com-

ponents of the topological current, are now excited due to the time dependence

of the isospin transformation. The expressions after the transformation (4.1)

are the following:

L0 = AU †
[
A†Ȧ, U

]
A†, (4.3)

Li = AU †∂iUA
†, (4.4)

Bi =
1

8π2
ϵijk Tr{L0LjLk}. (4.5)
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Recall that the potential term does not explicitly contribute to the kinetic

energy due to the lack of derivative terms. However, the presence of a poten-

tial term changes the classical solution, so it will affect indirectly the isospin

inertia tensor. Nonetheless, the standard range of parameters that we usu-

ally consider in the Skyrme model yields c0 ≲ 0.5, which produces an almost

negligible difference.

Now, we make use of the isospin angular frequency definition, A†Ȧ = i
2ωaτa.

Then, we may identify the isospin inertia tensor, Λab, from the isorotational

kinetic energy definition, T = 1
2ωaΛabωb, and extract the following expression:

Λab =
1

24π2

∫
d3x
[
Tr{TaTb}+ Tr{[Ta, Li][Tb, Li]}

− c6
16

(ϵijk Tr{Ta[Lj, Lk]}) (ϵilmTr{Tb[Ll, Lm]})
]
, (4.6)

where we have defined the su(2)-valued current,

Ta =
i

2
U † [τa, U ] . (4.7)

Expanding the three terms in the isospin inertia tensor,

Λab =
1

24π2

∫
d3x

[
Λ
(2)
ab + Λ

(4)
ab + c6Λ

(6)
ab

]
, (4.8)

we obtain an expression depending on the fields which, in the case of the

Skyrme crystal, are known since the classical solution has already been solved

in the previous chapter. Indeed, due to the symmetries (3.4) and (3.5) that

all Skyrme crystals share, it might be proven that the isospin inertia tensor is

diagonal and proportional to the identity [20], Λab ≡ Λδab, where its eigenvalue

Λ is the isospin moment of inertia. In general, we can always diagonalize the

isospin inertia tensor, however, the fact that it is proportional to the identity

is a special property of some field configurations, like the Skyrme crystal.

This will not be the case of the B = 4N 3 lattices studied in the last parts

of the previous chapter, where the third component of the isospin tensor is

different to the others. The reason is that those lattices only have spatial

cubic symmetry, but not in isospace.
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The diagonal components of the isospin inertia tensor are shown below,

Λ(2)
aa = 2

(
π2b + π2c

)
, b ̸= c ̸= a, (4.9)

Λ(4)
aa = 8

(
∂iσ

2
(
1− π2a

)
+ (∂iπa)

2 (1− σ2
)
+ 2σπa∂iσ∂iπa

)
, (4.10)

Λ(6)
aa = (∂iσ∂jπa − ∂jσ∂iπa)

2 . (4.11)

We remark that these expressions have been obtained from (4.6) in general,

and no symmetry has been imposed. It is also important to note that in the

last expressions we do not use the Einstein summation convention for repeated

pionic indices (a, b, c). Instead we just want to show that the only components

of interest are the diagonal terms, and the others vanish for Skyrme crystals.

We computed the isospin inertia tensor as a function of the lattice length in the

L24 case and compared with the values previously obtained by Baskerville [43].

As we noted before, the inclusion of a potential term does not impact the

isospin inertia tensor directly, however, the sextic term induces a new term.

Following the scaling behaviour of each term we consider the parametrization

Λ(L) = Λc + Λ2L
3 + Λ4L+ c6

Λ6

L
, (4.12)

to fit the isospin inertia tensor in the generalized Skyrme model, see Fig. 4.3.

The sextic term has, indeed, an important impact since the isospin tensor is

an increasing monotonic function in the L24 theory, vanishing in the infinite

baryon density limit. However the inclusion of the sextic term changes this

behaviour, then, the isospin tensor now diverges in the same limit. On the

other hand, in the zero baryon density limit (or alternatively the L → ∞
limit) the sextic term vanishes, and the isospin tensor also diverges. We find

good agreement between the numerical data and the fit (4.12) for a wide range

of densities.

The kinetic energy of the isospinning crystal with Ncells unit cells is the sum

of each unit cell kinetic energy,

T =
Ncells

2
ωaΛabωb =

Ncells

2
ωaΛωa. (4.13)
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Then, the Hamiltonian for the isospin corrections may be obtained via a Leg-

endre transformation of the Lagrangian between the angular frequency and

the canonical body-fixed angular momentum definition,

Ka =
∂L
∂ωa

= NcellsΛωa. (4.14)

The standard quantization procedure promotes the angular momenta to op-

erators (Ka → K̂a) in the Hamiltonian,

Ĥiso =
K̂2

2NcellsΛ
=

Î2

2NcellsΛ
, K̂aK̂a = K̂2 (4.15)

In the last part, we have made use of the relation between the Casimir invariant

operators (K̂2 = Î2) of the body-fixed (Ka) and space-fixed (Ia) isospin angular

momentum.

In order to add the contribution of this Hamiltonian to the classical energy of

the crystal, we need to know the quantum state of the whole crystal. This is,

of course, impossible since the crystal is infinitely extended so that the number

of particles is infinite. Therefore, the following assumptions are imposed on

the quantum state of the crystal to simplify the task:

• The quantum state of the full crystal |Ψ⟩ is strictly written as a superpo-

sition of each individual unit cell quantum state |ψ⟩.

• The quantum state of the crystal inherits the point symmetry group of

the classical configuration and it is also shared by the quantum state of

each unit cell.

The first assumption neglects any quantum correlation between neighbouring

unit cells so that the full crystal quantum state may be decomposed in the

tensor product of each unit cell state, |Ψ⟩ = ⊗
Ncells

|ψ⟩. The second assumption

ensures that any isorotation of the crystal occurs equivalently in each unit

cell. Then, the total isospin of the crystal is expressed as the sum of each unit

cell isospin, itot = icellNcells.

Now, the FR constraints resulting from the symmetries of the crystal must

be solved in order to obtain the possible quantum states in the unit cell.
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How these states are obtained will be briefly described in the following, for a

detailed explanation see [20]. In general, the symmetries of the configuration

must be written in terms of the generators of the spin and isospin groups

which act on a state. Then, the FR constraints are imposed,

eiθ1n1Leiθ2n2K = χFR |ψ⟩ , (4.16)

where L, K are the body-fixed spin and isospin angular momentum vectors

respectively, and χFR = ±1 is the constraint.

In the FCC1/2 Skyrme crystal, the relevant symmetries that relate spin and

isospin transformations are A2 (3.5) and C3 (3.8). They are expressed as

follows,

A2 : ei
π

2
√
3
(K1+K2+K3) = R(0,−π/2,−π/2), (4.17)

C3 : ei
π
2K1 = R(π/2,−π/2, π/2), (4.18)

where the R(α, β, γ) rotation represents the specific operator in the ZYZ con-

vention of Euler angles. Spin rotations are represented by the same operators,

but we will focus on the quantum isospin states.

The representation in terms of R(α, β, γ) rotations is important since it is

known how these operators act on the states in terms of Wigner D-matrices

[20]. Thus, the problem reduces to finding the eigenstates of the Wigner

D-matrix corresponding to each symmetry for the different possible values

of isospin in the unit cell of Bcell = 4. Additionally, given that the baryon

number in the unit cell is even, we have imposed the constraint χFR = +1

following the results in [135].

We found a unique quantum state for each isospin value, i = 0, 1, 2 which

is common to both symmetries. The energy for each of these states may be

computed from the Hamiltonian (4.15). We might think that the i = 0 state

has the lowest energy since it has exactly zero isospin energy. However, since

this state is symmetric in isospin, the presence of protons require the inclusion

of electrostatic interaction in the energy. It has already been noticed in [130]

that if this contribution is taken into account in the infinite crystal, even the

energy per baryon number would diverge due to the long range interaction of
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Coulomb energy. Therefore, we conclude that the charge neutral state, is in

fact the ground state of the Skyrme crystal.

The charge neutral case is made up of Bcell neutrons in each unit cell and it

induces the largest isospin contribution to the energy, since it fixes the highest

isospin value in the unit cell, icell =
1
2Bcell. In this case, the total isospin of

the full crystal is itot =
1
2NcellsBcell, and the isospin energy of the crystal may

be obtained,

Eiso =
ℏ2

2NcellsΛ
itot(itot + 1)

Ncells→∞−−−−−→ ℏ2

8Λ
NcellsB

2
cell. (4.19)

Again, the energy of the entire crystal diverges, but it does so linearly, such

that the energy per unit cell (or per baryon number) remains finite.

We have explicitly introduced the ℏ factor in the isospin energy since it is a

contribution of quantum origin. In order to be consistent with the Skyrme

units, in which the isospin inertia tensor is computed (4.6), it is important to

know the value of the quantum scale in the same units, ℏ = e2

3π2 .

It might also be crucial to consider the impact that the isospin contribution

might have on the classical configuration. This possibility has been consid-

ered for the isolated B = 1 skyrmion in [147], but not for skyrmion crystals.

However, we have confirmed in [20] that the isospin effects are always smaller

than the classical energy contribution. Hence, we may safely neglect the back-

reaction due to the isospin effects and include them as a quantum correction.

4.1.1 Symmetry energy

The energy of isospin-asymmetric infinite nuclear matter is often expressed as

a function of the baryon density and the asymmetry parameter δ =
Nn−Np

B .

Indeed, isospin-asymmetry is in general parametrized as an expansion of the

energy in powers of δ up to second order,

E

B
(nB, δ) = E(nB) + S(nB)δ

2 +O(δ3). (4.20)

The zero order is the energy curve of the symmetric INM, which we identify

with the energy curves E(L), obtained from the classical Skyrme crystals in
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the previous chapter. The function S(nB) is known as the symmetry energy

curve [141, 199], which measures the change in the energy due to the proton-

neutron difference at a given baryon density.

The symmetry energy may also be defined as the difference between pure

neutron and symmetric nuclear matter. This curve is of great importance

since it affects many different phenomena of nuclear matter. It has been

constrained up to nB ∼ n0 but, again, it is difficult to experimentally extend

nuclear matter up to much higher densities. Instead, the curve is expanded

in powers of the baryon density,

S(nB) = S0 +
1

3
Lsym

(
nB − n0
n0

)
+

1

9
Ksym

(
nB − n0
n0

)2

+ · · · (4.21)

and parametrized by the the symmetry energy at the saturation density, S0.

The higher multipoles in the expansion,

Lsym = 3n0
∂S

∂nB

∣∣∣∣
nB=n0

, Ksym = 9n20
∂2S

∂n2B

∣∣∣∣
nB=n0

, (4.22)

are the slope and the curvature of the symmetry energy at saturation respec-

tively.

The three multipoles in the expansion (4.21) have been inferred from the com-

bined theoretical predictions and experimental measurements of the symmetry

energy curve [40]. This curve has been mainly constrained at subsaturation

densities by the Isobaric Analog States (IAS) method [84] for finite nuclei,

however, the extension of the restrictions above the saturation was performed

through the analysis of NS observables. Indeed, the discovery of GW170817

induced an extensive study on the radii of NS in which the symmetry energy

is involved. Here, we shall consider the most fiducial values obtained from

an averaged survey of 53 analysis from nuclear experiments [180] for S0 and

the combination of other analysis extracted from NS observables [144] for the

higher multipoles. The numerical values with their corresponding uncertain-

ties are given in Table 4.1.

Actually, the Lsym multipole, which is also called the slope, is directly related

to the neutron skin thickness [227], and it may be determined from terrestrial
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experiments. The neutron skin is the accumulation of neutrons in the surface

of the large baryon number nuclei due to the Pauli pressure from the excess of

neutrons with respect to protons. The thickness of this skin is the result of the

competition between this repulsive behaviour and the symmetry energy (more

specifically to the slope) since large asymmetries increase the energy. However,

the recent determination of the neutron skin thickness of 208Pb [25] yield

unexpected high values for the slope, L
(PREX)
sym = 106± 37 MeV. This induced

serious tensions with the rest of estimations [236], which require further studies

on this topic.

S0 (MeV) Lsym (MeV) Ksym (MeV)

31.7± 3.2 57.7± 19 −107± 88

Table 4.1: Experimental values for the symmetry energy curve multipoles at the saturation density.

It may be noticed that our previous result of the isospin energy for the Skyrme

crystal (4.19) naturally follows the same behaviour to the symmetry energy

(4.20) since it is proportional to i2cell, which is indeed a measure of the isospin

asymmetry. For the computation of the energy, we have imposed the zero

charge condition in the unit cell, where we have fixed the isospin numbers to

i = 2, i3 = −2, describing a pure neutron crystal. This corresponds to the

highest isospin asymmetry of nuclear matter, similar to what is expected to

occur in the core of NS. However, realistic models of the nuclear matter inside

NS do not predict a totally asymmetric state, but a small fraction of protons

must be allowed. Although the real values are unknown, simulations yield

some estimations of the proton fraction γ :=
Np

B ∼ 10−2 − 10−1 [158,187].

Since the Skyrme crystal has Bcell = 4, there is a finite number of possible

quantum states which physically correspond to the different combinations of

protons and neutrons within the unit cell. Nonetheless, even the minimal

possible number of protons in the unit cell yields a too high proton fraction

γ = 0.25 compared to the expected values. We could consider the total

quantum state resulting from the combination of several unit cell quantum

states, following the standard spin composition procedure in representation

theory. Then, in order to reproduce realistic values of the proton fraction,

a simple estimation indicates that we would need to combine the order of
1

γBcell
∼ 15 unit cells, which becomes an unhandleable task.



114 4.1. Quantization of Skyrme crystals

Following the same philosophy, we consider an arbitrary numberN of unit cells

enclosed in a larger chunk of crystal with B = NBcell. Then, we perform a

mean-field approximation in which the third isospin eigenvalue of the quantum

state is generically defined,

i3 =
Np −Nn

2
= −NBcell

2
δ. (4.23)

Now, the proton fraction is not an input, but it is left as an independent

variable introduced by the asymmetry parameter, δ = 1− 2γ. Once the third

isospin component has been established from the mean-field approximation,

the total isospin value of the crystal is fixed by i = i3, given that i2 ≥ i23, and

that is the condition that minimizes the isospin energy.

Then, the isospin energy of the Skyrme crystal per unit cell with an arbitrary

proton fraction is:

Eiso =
ℏ2B2

cell

8Λ
δ2. (4.24)

Finally, this energy may be compared with (4.20) and we can extract the

symmetry energy curve,

S(nB) =
ℏ2

2Λ
, (4.25)

where the dependence on the baryon density lies entirely on the isospin inertia

tensor. Indeed, this is precisely the same expression that is obtained from the

difference between pure neutron (4.19) and symmetric nuclear matter energies,

which is an equivalent definition of the symmetry energy [141].

We show in Fig. 4.1 the symmetry energy curves for the Skyrme crystals ob-

tained for the massive model from the previous chapter. However, despite the

energy and baryon density at saturation are correctly fitted, the values for

the symmetry energy multipoles come out too low. Surprisingly, the values

of S0 are indeed quite similar, independently on the model, which might be

a sign of the difficulty on the simultaneous fit of E0, n0 and S0 using Skyrme

crystals.

We have also added a new curve for which we have fixed the standard pa-
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Figure 4.1: Symmetry energy curve of the Skyrme crystals studied in the previous chapter. We also added
a new case (black solid (FCC1/2) and dashed (FCC) lines) which reproduces S0, Lsym and Ksym using the
standard parameters (2.21) and λ2 = 1.5. The red shaded region comes from the IAS constraints for the
symmetry energy obtained from [84], whilst the green area represents the suprasaturation constraints from
the GW170817 event analysis [144].

rameters (2.21) and the sextic term coupling constant has been tuned to fit

the symmetry energy at saturation, with a final value of λ2 = 1.5 MeV fm3.

In fact, all the multipoles are quite accurately reproduced with this set of

parameters, however, the energy and baryon density at the minimum deviate

from the correct values, E0 = 822 MeV and n0 = 0.22 fm−3.

In general, we find that the sextic term has significant impact in the isospin

inertia tensor already at the minimum of energy. It generally decreases the

values of S(nB), which is actually quite hard to fit at saturation if the other

observables are below the 20% of error. Hence, although the results obtained

in this section are highly dependent on the fit of fπ and e, small values of the

sextic term, around λ2 ∼ 1−3 MeV/fm3, seem to be preferred by the symmetry

energy curve. This is indicated not because of the value of S0 itself, but the

sextic term is in particular penalized by the multipole Lsym. Nevertheless, the

whole symmetry energy curve obtained from Skyrme crystals is well within

the experimental uncertainties if S0 is well fitted. This is a great result which

is intrinsic to Skyrme crystals and encourages their use to describe INM for

densities above the saturation point.
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Model λ2 (MeV fm3) S0 (MeV) Lsym (MeV) Ksym (MeV)

L240 0 22.67 36.03 -71.99

L2460 3 22.16 30.48 -93.56

L2460 7 22.26 24.22 -118.43

L2460
fπ = 129 MeV, e = 5.45

1.5 31.94 46.40 -131.64

Table 4.2: Values of the symmetry energy curve multipoles at saturation for the sets of the parameters given
in Table 3.2 and a new set with the standard parameters of [29].

We may also obtain the symmetry energy curve from the FCC crystal of

skyrmions since it satisfies the symmetries considered for the quantization of

the crystal. The values at the saturation point are the same as those for

the half crystal in Table 4.2, however, an interesting effect is observed in the

L→ ∞ limit.

The asymptotic behaviour of the FCC crystal produced a constant value for

energy in the large L limit, and the same is observed for the symmetry en-

ergy curve. This constant value of the symmetry energy is indeed another

manifestation of the transition to finite nuclear matter explained in the end

of the last chapter. Hence, we may directly compare the asymptotic value of

the symmetry energy with the asymmetry coefficient present in (3.13),

S(FCC)(nB = 0) = 24.2 MeV ≈ aexp.A = 23.2 MeV. (4.26)

The value is surprisingly close the experimental fit when the symmetry energy

is well fitted at the saturation point, at least for the FCC crystal. Therefore,

this asymptotic behaviour is an extremely remarkable property of crystalline

configurations in the Skyrme model since it allows to describe symmetric and

asymmetric nuclear matter in the whole range of densities.

4.1.2 Realistic npeµ matter in Skyrme neutron stars

The inclusion of the symmetry energy in the Skyrme model enables the pres-

ence of an arbitrary number of protons in our system. However, for a consis-

tent description in which protons are present, we must include the Coulomb

electrostatic interaction in the energy. Furthermore, as we mentioned before,

the inclusion of the Coulomb interaction yields an infinite contribution to the
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energy per baryon.

In order to solve this problem, we introduce a negatively charged background

of leptons such that the Coulomb interaction is exponentially suppressed and

we may neglect the electrostatic contribution between neighbouring unit cells

in a first approximation. Additionally, NS are charge neutral objects in which

the system of protons, neutrons and leptons is stabilized via the neutron β

decay and electron capture processes, which is called β-equilibrium,

n→ p+ l + ν l, p+ l → n+ νl. (4.27)

Leptons are typically described by a relativistic Fermi gas at zero temperature,

whose energy depends on the number of particles Nl and the volume,

El(Nl, V ) =
m4

l

8π2ℏ3
V
[(
x+ 2x3

)
− ln

(
x+

√
1 + x2

)]
, (4.28)

where ml is the mass of the corresponding lepton, x = ℏkF/ml, and the

dependence on Nl is implicit in the Fermi momentum kF =
(
3π2Nl/V

)1/3
.

All thermodynamical properties of interest, like the chemical potential (µl)

and pressure, for the system of leptons may be extracted from the energy

expression,

µl =
∂E

∂Nl

∣∣∣∣
V

, p = − ∂E

∂V

∣∣∣∣
Nl

. (4.29)

Specifically, the chemical potential acquires the simple expression,

µl =

√
(ℏkF )2 +m2

l . (4.30)

In the outer crust of NS we only expect to have electrons since other lep-

tonic species are unstable under weak interactions. However, since electrons

are fermions, the increase of the density in deeper layers of the NS rises the

chemical potential (4.30) up to µe ≥ mµ = 105.658 MeV. At this point muons

become energetically more favourable than electrons, so they start to appear

in the system.

The number of each particle species is solved imposing β-equilibrium and
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charge neutrality, which yield the following conditions,

µn − µp := µI = µl, l = e, µ, (4.31)

Np = Ne +Nµ, (4.32)

respectively. We have introduced in the system the isospin chemical potential

µI using its thermodynamical definition. The lepton chemical potentials are

already known from (4.30), but the explicit form of µI may be obtained in two

different, but equivalent, ways from the Skyrme crystal. In one way, one can

introduce a nonzero isospin chemical potential through a covariant derivative

in the Skyrme model, this is formally equivalent to the quantization procedure

explained above [20, 212], and µI may be easily related to the isospin energy.

From another thermodynamical point of view, we may rewrite the variables

of our system,

E =Eclass(V,B) + Eiso(V, δ) + Ee(V,Ne) + Eµ(V,Nµ) = (4.33)

− pV + µpNp + µnNn + µeNe + µµNµ, (4.34)

in terms of other degrees of freedom of interest. Specifically, we may define

the isospin number of particles NI :=
Np−Nn

2 , which is the same as the third

isospin component i3, and the baryon number B = Np +Nn,

E = −pV + µBB − µINI + µeNe + µµNµ, (4.35)

where the definitions µB =
µn+µp

2 and µI = µn − µp are satisfied. Then, the

isospin chemical potential is canonically obtained from the isospin energy since

it is the only one that depends on NI = −Bδ
2 ,

µI = −∂Eiso

∂NI
= −ℏ2

Λ
NI . (4.36)

Hence, the equilibrium conditions (4.32) become a system of equations, and
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yield the following equation for γ,

ℏBcell

2Λ
(1− 2γ) =

[
3π2

(
γBcell

V
− nµ

)]1/3
, (4.37)

nµ =
1

3π2

[(
ℏBcell

2Λ
(1− 2γ)

)2

−
(mµ

ℏ

)2]3/2
, (4.38)

which may be solved at every value of the baryon density. For very low

densities, the chemical potential of electrons is too low and we must impose the

condition nµ = 0. Besides, electrons quickly become ultrarelativistic particles,

i.e., kF ≫ me = 0.511 MeV, therefore, we have imposed the condition µe = kF
in the beginning to simplify the expressions.

The main properties of the curve γ(nB) may be directly extracted from (4.37)

since the main nontrivial behaviour comes from the isospin inertia moment.

As we have seen, in the limit L→ 0, the inertia moment vanishes if the sextic

term is not included. From this we conclude that γ = 1/2 is the solution in

that limit, implying that we would have symmetric nuclear matter in the inner

core of NS. The sextic term produces a divergence in the isospin moment of

inertia in this limit , then the solution in this case is γ = 0, which implies

that all electrons have been captured by the protons and the core is full of

neutrons. This is, indeed, a more plausible situation than without the sextic

term since the increase of the pressure in the center of NS would enhance the

electron capture process. However, it is believed that the proton fraction do

not completely vanishes in the core of NS, due to the appearance of the other

particles. Then, we conclude that the sextic term improves the phenomenology

of Skyrme NS, and for a complete description we need to include other particles

in the system.

In the opposite limit, L → ∞, the isospin inertia tensor always diverges for

the half Skyrme crystals. This yields again a zero proton fraction in the zero

baryon density limit, which is not realistic at all. What we actually expect

in the surface of NS is a lattice of 56Fe nuclei [78], since it is the most stable

nucleus, then, the proton fraction in this region of the star is γFe = 0.464.

For this reason, we want to focus in this section on the B = 4N 3
α Skyrme lat-



120 4.1. Quantization of Skyrme crystals

tices which reproduces the high density behaviour of Skyrme crystals, but they

have a different description at low densities. The same qualitative arguments

for the proton fraction apply for the FCC crystal of single skyrmions. We first

found that the isospin inertia tensor is not proportional to the identity in the

lattices, but instead it has two eigenvalues, Λ1 := Λ11 = Λ22 ̸= Λ3 := Λ33.

Therefore, we have to review the previous calculations carried out for an in-

ertia tensor proportional to the identity.

The difference enters in (4.15), where the three components of the isospin

operator are splitted,

Ĥiso =
K̂2

1 + K̂2
2

2NcellsΛ1
+

K̂2
3

2NcellsΛ3
=

Î2

2NcellsΛ1
+

K̂2
3

2Ncells

(
1

Λ3
− 1

Λ1

)
. (4.39)

Since the Hamiltonian depends on the third body-fixed isospin angular mo-

mentum, fixing the value of i3 is not enough, and an explicit computation

of the isospin quantum state via the FR constraints is required. However,

the contribution to the energy from this additional term is modulated by

the difference between the two eigenvalues. Then, we propose the relation

Λ = Λ3 (1 + ϵ) and expand in perturbation theory to obtain,

Ĥiso =
Î2

2NcellsΛ3
+

(
K̂2

3 − Î2
)

2NcellsΛ3
ϵ. (4.40)

Moreover, we may find a maximal bound for the contribution to the energy

in this approximation. The third body-fixed isospin eigenvalue takes values

in the interval k3 ∈ [−i, i], then k23 ≤ i2. Besides, Λ3 > Λ1 for all the values

of L considered here, hence ϵ is always negative and it is never larger than

a 20%. Therefore, the linear correction in the Hamiltonian (4.40) is positive,

so it underestimates the symmetry energy, but always strictly smaller than a

20%.

For simplicity in the computations, we neglect the linear correction, therefore,

the main contribution in (4.40), combined with the previous conditions i = i3
and (4.23), in the limit Ncells → ∞, yields the following expression of the
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isospin energy per unit cell for the Skyrme lattices,

Eiso =
ℏ2B2

cell

8Λ3
δ2. (4.41)

Then, we may study the symmetry energy and the particle fractions for

Skyrme lattices using the third component of the isospin inertia tensor. As

expected, the curve Λ3(L) settles down to a constant value in the limit L→ ∞
in the same way as it occurs with the FCC crystal. Furthermore, we may now

conclude that this behaviour implies that the solution to (4.37) is γ = 0.5 in

the zero density limit, which is extremely close to the iron proton fraction.

This is an additional impressive result for the Skyrme model since we are still

considering an incomplete description without Coulomb effects. However, this

contribution will slightly suppress the presence of protons, then it would bring

us even closer to the real value.

We consider the set of parameters that fits the symmetry energy for compar-

ison with the FCC crystal,

fπ = 129 MeV, e = 5.45, λ2 = 1.5 MeV fm3, mπ = 138 MeV (4.42)

The resulting values for the main observables computed with the α-lattice are

given in Table 4.3. The same values apply for the higher B = 32 and 108

lattices at saturation since they are all the same at the minimum of energy,

but the different asymptotic behaviour of the lattices yield other values for

the asymmetry coefficient. Unfortunately, this coefficient is too high in the

α-lattice, and the smaller isospin inertia tensor of the bigger 108-lattice yields

a larger contribution to the symmetry energy producing an even worse result

for asym.

We show in the left plot of Fig. 4.2 the symmetry energy curve of the Skyrme

crystals and the α-lattice for comparison. The three curves tend to the same

value at high densities, since they finally recover the same half-skyrmion struc-

ture. Although the α-lattice seems to diverge from the crystals curves, this is

an artificial effect due to the logarithmic scale in the x-axis. Indeed, the largest

difference in the symmetry energy for larger densities than the minimum is

smaller than a 2%.



122 4.1. Quantization of Skyrme crystals

E0 (MeV) n0 (fm
−1/3) S0 (MeV) Lsym (MeV) Ksym (MeV) a

(α)
A (MeV)

820 0.21 31.44 43.21 -89.90 27.90

Table 4.3: Values of the INM observables obtained from the α-lattice using the set of parameters (4.42). We
include in the last column the asymptotic value of the symmetry energy curve.

We have also solved the equilibrium equation (4.37) for the three configura-

tions, the results from the α-lattice are shown in the middle plot of Fig. 4.2.
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Figure 4.2: Left: Symmetry energy curves for the α-lattice, FCC crystal and its half-skyrmion version. Here,
the transition to finite nuclear matter in the FCC and α-lattice is observed. Middle:. Particle fractions
obtained for the α-lattice, with the limits expected from the analysis of (4.37) Right: The total (classical and
isospin) energy of the three crystalline configurations for realistic npeµ matter.

As we had anticipated, the proton fraction (and because of the baryon number

conservation the neutron fractions too) tends to 1/2 in the zero density limit.

Along the curve the number of electrons and protons is the same to ensure

charge neutrality, until muons become energetically favourable at nB/n0 ∼
0.85. Finally, at high densities, due to the sextic term impact on the inertia

tensor the proton fraction tends to zero.

Lastly, we may compute the total energy resulting from the classical contribu-

tion of the lattice and the other contributions coming the isospin quantization

and lepton Fermi gases (4.33). The energy of symmetric nuclear matter is ex-

pected to have a minimum of energy in the point (E0, n0), but once asymmet-

ric β-equilibrated npeµ matter is considered, the minimum should be sharply

softened or even removed, such that the resulting NS develops a crust. The

Skyrme lattices are great candidates for this to occur given that they have
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the smallest asymptotic value. This is shown in the right plot of Fig. 4.2 for

the three configurations again. However, the difference in energy between the

minimum and the energy in the L→ ∞ limit is still too high in the α-lattice

to completely erase the minimum from the isospin contribution. Instead, the

minimum is slightly displaced and an interesting effect is observed. Although

we still have a displaced minimum, the energy curve develops a bump which

is above the minimum by a 6%, then the energy asymptotically decreases in

the L→ ∞ limit. This asymptotic behaviour is a great feature of this energy

curves and it is related to the smooth vanishing of the isospin contribution in

the γ → 0.5 limit.

The bump in the energy curve may be directly associated to the high binding

energies in the Skyrme model. However, the correct asymptotic behaviour

of the energy curve suggests that the presence of this bump might also be

related to the compression modulus problem, which is a severe problem in the

Skyrme model when it comes to reproduce INM. We will explain in more detail

this problem in the last section of this chapter, where we propose a solution

for it, but the compression modulus is basically related to the curvature of

the energy curve at the minimum. If the compression modulus is too high,

which is the case in the Skyrme model (∼ 4 times the experimental value),

the energy curve rapidly increases around the minimum. Thus, the isospin

corrections cannot compete with this growth in the classical energy, so that

the total energy increases. If the curvature around the minimum is, instead,

sufficiently smaller, then the total energy would decrease, erasing the minimum

and developing a crust.

4.1.3 Analysis of the parameters

The computation of the symmetry energy curve with the crystals opens the

possibility to consider this new observable as a source of information to fix the

values of the parameters present in the Skyrme model. In Chapter 3 we used

the energy and baryon density at saturation to fix the pion decay constant

and the Skyrme parameter. The sextic term coupling λ2 was used as a free

parameter to study the effects that it had on the NS maximal masses. In

the previous section, we have seen that λ2 may be tuned to fit the symmetry

energy at saturation and the higher multipoles. Then a natural exercise is to
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Figure 4.3: Isospin inertia moment curve of the FCC1/2 Skyrme crystal with and without sextic term. We
show the numerical data (dots), fitted via the parametrization (4.12) (dashed lines) and the PS approximated
curve (solid lines). The minima of the energy curves are represented by the crosses, where the PS is still an
accurate approximation.

check if the set of three parameters in the Skyrme Lagrangian can be used to

fit the three observables simultaneosly at the saturation point.

From the results of our numerical simulations we have observed that the

FCC1/2 crystal displays an almost perfect scaling property [24] with the unit

cell length. Recall that this property is stronger than the fact that each E(L)

curve may be fitted by (3.11), it means that each of the terms in the energy

functional scales with L independently as Ei ∝ L−i+3, where i is again the

number of spatial derivatives appearing in that particular term. The values of

the perfect scaling constants, which we have labelled by Ki, are then universal

in the sense that they will not change for different values of the parameters.

Furthermore, this perfect scaling property is a characteristic of the field con-

figuration, and not only of its energy. It is observed that also the isospin

moment of inertia of the unit cell displays a sufficiently well perfect scaling

for the minimal energy configuration, which we have identified with the sat-

uration point. This is important in our analysis since we also want to fit the

values of the symmetry energy at saturation.

Although the scaling is not perfect, in general the biggest deviations from

the full numerical values of energy start far from the minimum, at which the
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perfect scaling fit is most precise.

Thus, we take advantage of this property in order to fit the magnitudes ob-

tained from generalized Skyrme crystals to their physical values (up to a

certain error). We do so following an iterative process based on five main

steps:

1. Due to the perfect scaling property, the (adimensional) energy follows the

curve (3.12), and the isospin moment of inertia approximately satisfy the

expression (4.12) with Λc = 0, see Fig. 4.3. The values of Λi are again

”universal”, i.e., they do not depend on the parameters or on L. Hence,

these values are obtained from the contribution of each term indepen-

dently, for the same choice of the parameters and length of the unit cell

length L as we did with the energy constants in Table 3.1. The values of

the new Λi universal scaling constants in the generalized L2460 model are

shown in the table below,

n 2 4 6

Λn 0.0380 1.3931 0.8831

Table 4.4: Perfect scaling parametrization constants of the isospin inertia tensor

2. We fix the energy scale Es to an arbitrary value in MeV. This is equivalent

to fixing one of the three free parameters of the model, for instance, fπ.

3. Then, we calculate L0 by minimizing (3.12), and the values of E0, n0, S0

and Lsym for different pairs of values (e, λ2).

4. When we find a set of parameters (fπ, e, λ
2) that fits the nuclear magni-

tudes within their respective errors of at most 15% then we calculate the

corresponding EOS and solve the TOV system to obtain the mass-radius

curve.

5. Finally, we accept the sets of values that satisfy the constraints, Mmax ≥
2M⊙ and R1.4M⊙ ≤ 12.5 km. These constraints are motivated from pulsar

measurements [33, 87, 198]. We find that there is more than one set of

parameters, so there is a residual freedom in the choice of these values that

satisfy the nuclear physics magnitudes at saturation and NS observables.

The scan of parameters underscores the motivation for the generalized Skyrme
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Figure 4.4: Symmetry energy of Skyrme crystals as a function of the density. We show 23 different curves
from the scanned values. The shaded regions constrains the symmetry energy at sub-saturation [84] and
supra-saturation [144] densities.

model. The nuclear physics magnitudes are better fitted for very low or even

null values of λ2 since the sextic term reduces the value of the symmetry en-

ergy multipoles, confirming what the result of the previous section suggested.

However, those sets of parameters are not accepted since they do not satisfy

the maximum mass requirement. This reflects the importance of the sextic

term in the extension of the Skyrme model to very high densities as inside

NS.

In Fig. 4.4 we plot 560 symmetry energy curves obtained from a first quick

scan in blue, and in red we plot 23 representative cases from the larger set

which have been fully minimized. We also represent at densities larger than n0
some restrictions obtained from the most recent constraints of the analysis of

neutron star observations, and at densities smaller than the saturation point

which are more restrictive.

We have obtained the EOS from these 23 sets of parameters and compare

them with some constraints obtained from a recent analysis [30]. In that work

they build a huge number of physically well motivated EOS and compare

the resulting NS with pulsars and GW observations. They conclude that the

conformal limit in the speed of sound (c2s = 1/3) is expected to be surpassed

inside NS. In Fig. 4.5 we show the EOS obtained from our analysis and a

good agreement is found with their results. The majority of our EOS exceeds
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Figure 4.5: The EOS for the same 23 values shown before. In black we plot the resulting EOS without isospin
effects, whilst in red we consider npeµ matter. We find a good agreement between our EOS and the shaded
regions obtained from the analysis in [30] at high densities. The purple region is an estimation for the range
of the maximum central density inside NS, and the dots represent the maximum central energy densities in
our models.

the conformal bound too, and all of them lie inside the constrained region

in the (ρ, p) diagram. We have cut the low density region in Fig. 4.5 due to

the absence of a crust in our EOS. However it is remarkable how the Skyrme

model correctly describes the high density regime, which corresponds to the

core of the NS and hence the main responsible for the mass of the star. Also

the BCPM [208] EOS is represented as an accepted candidate to compare with

in the diagram.

In a more extensive analysis of the parameters, we found ∼ 10, 000 accepted

sets of parameters. In order to obtain these values, we made the scan with

the following steps: ∆Es = 5 MeV, ∆e = 0.01, ∆λ2 = 0.01 MeV fm3. As

briefly mentioned before, the constraints on the symmetry energy yield rather

stringent upper bounds on the sextic term coupling constant, we find that

λ2 ≲ 3.4 MeV fm3. Nevertheless, we remark that a lower bound for this

constant can also be obtained from the maximum mass requirement of neutron

star EOS [19]. In this analysis we have found a lower bound of λ2 ≳ 0.29 MeV

fm3.

We solved the system for the same 23 cases and in Fig. 4.6 we plot the MR

curves, again with and without isospin effects for each case. The main con-

clusion is that the isospin always increases the radii of the stars. On the other

hand, the isospin increases the masses of the stars withM ≲ 2.3M⊙, for larger
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values the masses are reduced. This effect is also visible in 4.5, where the red

curves lie below the black lines at lower densities, hence the reds are stiffer,

whilst for very high densities the situation is slightly the opposite. Another

keypoint is that all the sets of parameters obtained in this analysis allow to

have a wide range of maximum masses, Mmax ∼ 2− 2.5M⊙. This was an im-

portant feature in the NS obtained in the last section, and it is still possible

using the fully minimized Skyrme crystals. This is of great important for the

Skyrme model since it would be able to describe possible high-mass measure-

ments like [4]. In addition, despite the difference in the maximum masses, the

radii of the stars do not change as much when choosing some parameters or

others, R1.4M⊙ ∼ 12− 13 km. However a final comment about the radii of the

NS requires the presence of a crust, since it will affect the radii of low mass

NS.

As can be seen all the black lines satisfy (in good approximation) our Mmax

and R1.4M⊙ restrictions although they were imposed on the mass-radius curves

resulting from the PS approximation. We have checked that the mass-radius

curves obtained via the PS approximation are indeed quite similar to those of

the fully minimized results for these 23 cases, so it confirms the PS approxi-

mation as a powerful and accurate tool for skyrmion crystals.

We also plot in 4.6 the most likely mass-radius relations for the NS correspond-

ing to GW170817 [2] and GW190425 [4] events. The green regions represent

the estimations for the mass and radius values of J0030+0451 (bottom) [164],

and a more recent analysis of the PSR J0740+6620 mass and radius from

NICER (top) [198]. The purple region constraints the mass-radius curves

from the statistical analysis done in [30], besides they also give an estimation

for the maximum central energy density that a NS may support. We also

do the comparison in Fig. 4.5 between the range of values that they obtain

(purple region) and our values (dots).

The greatest difference between the NS obtained using the interpolation be-

tween the submodels in the last section and those obtained from the mini-

mization of the generalized Skyrme model using crystal solutions is found in

the radii. Although we still have freedom to reach very high masses ∼ 2.5M⊙,

the radius increases when we consider the full model. The low-mass region

(∼ 1.4M⊙) in the MR curves of Fig. 2.16 and Fig. 4.6 differ due to the pres-
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Figure 4.6: MR curves for the 23 representative sets of parameters considered. The colours of the lines
represent the same as in Fig. 4.5. The shaded regions correspond to GW (blue and orange) and pulsar (green)
constraints.

ence of a crust in the first case. We do not include a crust in the EOS shown

in this section since it would be more interesting to consider an EOS which

already has a crust entirely obtained from the Skyrme model. This is still an

open problem due to the behaviour of the Skyrme crystals at low densities,

but the study of the new lattices presented in the first section may lead to the

correct description of the full EOS within the Skyrme model. Nonetheless we

have seen that the inclusion of a crust via the simple quadratic interpolation

(2.90) increases the radius of the NS around 1 km.

On the other hand, the 2.5M⊙ NS radius in Fig. 2.16 is around 11.5 km, while

the radius for the same mass in Fig. 4.6 reaches 13 km. These high-mass NS

are hardly affected by the presence of a crust, so the numerical simulation of

the Skyrme crystal leads to a stiffer EOS. Nevertheless, the high-mass region

of the last plot may be sharply improved with the inclusion of strangeness

degrees of freedom in the system. Taking into account this effect provides

even more realistic EOS, besides it is known that it will decrease the maximal

mass as well as the radius, leading to a softer EOS at high densities.

4.2 Kaon condensation in Skyrme neutron stars

The computation of the symmetry energy enabled a natural way to include

leptons in Skyrme crystals, which corresponds to a more realistic description of
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NS. However, it is believed that in the deepest layers of NS, new particles like

∆ resonances [145], strange degrees of freedom [224, 228] or even deconfined

quark matter [159,160] would appear similarly as muons, which become more

energetically favourable than electrons.

Specifically, the appeareance of kaons and their subsequent condensation was

firstly proposed in 1987 by Kaplan and Nelson [128], and it has been exten-

sively studied [194], even in the present. The idea is based on the sufficient

reduction of the in-medium mass of the antikaon K−, due to the interactions

between the nuclear potential. Besides, the appearance of kaons is a phase

transition which may be of first or second order [101], with great impact on

the masses of NS. Hence, the study of this phenomenon might shed some light

not only in the internal composition of NS, but also in the parametrization of

the nuclear potentials.

Actually, the presence of strange degrees in NS is a wider study in which also

hyperons may be considered. Simulations have inferred that baryonic particles

with strangeness may be produced around 2− 3 times the saturation density,

whilst kaon condensation is believed to occur at 3 − 4 times n0. However,

both processes provide, as the main effect, the decrease the maximal masses

of the NS, since the EOS gets softened. This, indeed, may be problematic for

some EOS which cannot support NS with maximal masses much larger than

those already measured ∼ 2M⊙, and it is commonly known as the hyperon

puzzle [58, 225].

In this section we perform a detailed study on the possibility to have condensa-

tion of kaons in the FCC1/2 Skyrme crystal, the order of the phase transition,

and how this affects the resulting NS.

4.2.1 The Bound-State approach of the Skyrme model

Throughout this thesis we have been working with the Skyrme model based on

the Nf = 2 isospin symmetry, which is able to describe successfully nucleons

and their spin and isospin excitations. Including strangeness in the model is

translated into adding one more flavour.

First attempts considered the most natural extension, which is the SU(3)

flavour symmetry in the model. However, it seems that treating strangeness
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in the same way as isospin does not produce suitable results [80, 191]. This

failure is not quite surprising given that the mass of the s quark, ms ∼ 100

MeV, is much higher than the u and d quarks, mu ≈ md ∼ 4 MeV, to consider

the full symmetry. Instead, Callan and Klebanov [72, 73, 131] introduced the

strangeness as SU(3) perturbations of the non-strange SU(2) solitonic solu-

tions, in the so-called Bound-State model. This approach remains as one of

the simplest and most successful models for hyperons due to the agreements

in the masses and the correct identification in the particles spectrum. The

idea of this procedure is the inclusion of strange mesonic degrees of freedom,

kaons, in the model and construct topologically nontrivial solutions from the

pionic theory with nonzero kaon solutions. We want to develop this formalism

specifically in the FCC1/2 Skyrme crystal to derive an EOS in which kaons are

included. This would imply that the Skyrme model is able to produce a quite

complete description of the high density regime of NS matter.

The starting point in the Bound-State model is the inclusion of the kaon fluc-

tuations as the SU(3) extension on top of a purely pionic SU(2) skyrmion

background. Two different ansätze have been proposed to describe the field

configuration. Although many static properties, studied so far, yield the same

results in both cases, it may be argued that form factors will come out differ-

ently [177]. We will consider the one proposed in [54],

U =
√
UKUπ

√
UK , (4.43)

Uπ =

(
u 0

0 1

)
, UK = exp

{
i
2
√
2

fπ
D

}
, (4.44)

which differs from the original proposal by Callan and Klebanov. In this

parametrization, the pionic field Uπ is the trivial SU(3) embedding of the

usual SU(2) Skyrme field, here denoted by u. The fundamental kaon field is
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imprinted in the D matrix, which has the form,

D =

(
0 K

K 0

)
, (4.45)

K =

(
K+

K0

)
, K† =

(
K−, K̄0

)
. (4.46)

The Lagrangian is extended by a ne potential term which accounts for the of

the pions and kaons,

Lnew
0 =

f 2π
24

(
m2

π + 2m2
K

)
Tr{U − I2}+ (4.47)

√
3

24

(
m2

π −m2
K

)
Tr
{
λ8
(
U + U †)}, (4.48)

where mK = 490 MeV is the kaon mass, and λ8 is the eighth component of

the Gell-Mann matrices λA, which are the su(3) Lie algebra generators.

Furthermore, in the SU(3) case, the Wess-Zumino-Witten (WZW) term [230,

232,233] must be included in the total action. Although it was first introduced

to break the C, P and T transformations, this term describes the parity-

violating kaon decay K+K− → π+π0π−. Additionally, it also needs to be

included when the Skyrme model is coupled to the electromagnetism since it

accounts for the π0 decay into a pair of photons. Actually, it can only be

expressed in terms of a five-dimensional action term,

SWZW = −i Nc

240π2

∫
d5x ϵµναβρTr{LµLνLαLβLρ}, (4.49)

where Nc = 3 may be directly identified with the number of QCD colour de-

grees of freedom. Nevertheless, it is finally expressed as an integral in the stan-

dard four-dimensional spacetime integral using the Stokes theorem. As a fur-

ther comment, this term has crucial importance regarding the spin-statistics

of skyrmions, however, this only applies in the exact SU(3) symmetry since

it vanishes in the SU(2) case.

Kaons become energetically favourable when µe is larger than the kaon mass.

If this condition is attained, since kaons are bosons, they occupy the lowest
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energy state in the large pressure regime of NS, forming a condensate. Then,

we follow the standard formalism for the condensation of a scalar field [204]

to describe the kaon field (4.46). We will focus on the condensation of the

electrically charged kaons, hence we impose the conditions K0 = K̄0 = 0. A

condensed scalar field is determined by the vacuum expectation value (VEV)

⟨K±⟩, which is constant in space, and has a simple time-dependent phase,

⟨K±⟩ = ϕe±iµKt. (4.50)

The constant field VEV, ϕ, becomes nonzero when the kaon condition is sat-

isfied, it will change for different values of the lattice length, and its specific

value will be determined by the minimization of kaon potential energy. The

phase, µK , is the kaon chemical potential, and it will be fixed by the equilib-

rium condition to the electron chemical potential. We introduce (4.50) in the

generalized SU(3) Skyrme field and use the relation D3 = ϕ2D, which is valid

for the specific condensed kaon field. Then, we redefine the field ϕ→
√
2

fπ
ϕ and

obtain,

√
UK =

(
cosϕ 0 ieiµKt sinϕ

ie−iµKt sinϕ 0 cosϕ

)
(4.51)

We assume that the kaon backreaction to the classical configuration of the

Skyrme crystal is negligible. Then, the skyrmion solution and the classical

energy contribution remain unaffected, but there will be additional contri-

bution to the total energy when kaons condense. Introducing the extended

Skyrme field (4.43) in the Lagrangian we obtain the usual Skyrme Lagrangian

and an additional potential term which depend on the kaon field ϕ,

SSkyrme(U) + SWZW(U) =

∫
dtd3x L2460(u)−

∫
dt VK(ϕ). (4.52)

The new term comes from the time dependence of the kaon field (4.50), it

is often called the optical kaon potential, and we will split it in different

contributions,

VK =
1

24π2

∫
d3x

[
V

(2)
K + V

(4)
K + V

(6)
K + V

(0)
K

]
+ V

(WZW)
K . (4.53)
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Each contribution comes from each term in the Skyrme lagragian, introducing

the explicit expression of the field configuration (4.43) and the kaon condensed

field ansatz (4.50) we obtain,

V
(2)
K = µ2K sin2 ϕ[(1 + σ2 + π23) sin

2 ϕ− 2(1 + σ cos2 ϕ)], (4.54)

V
(4)
K = −2µ2K sin2 ϕ

{
(1 + σ)∂in

2 cos2 ϕ+

+ 2
[
∂iσ

2(1− π23) + ∂iπ
2
3(1− σ2) + 2σπ3∂iσ∂iπ3

]
sin2 ϕ

}
, (4.55)

V
(6)
K = −µ2K

c6
2
sin4 ϕ(∂iπ3∂jσ − ∂iσ∂jπ3)

2, (4.56)

V
(0)
K = 2

m2
K

f 2πe
2
(1 + σ) sin2 ϕ, (4.57)

V
(WZW)
K = −µKNcBcell sin

2 ϕ. (4.58)

The quadratic, quartic and potential terms require lengthy but straightfor-

ward computations. However, for the WZW and sextic terms, the Lie algebra-

valued differential forms formalism is extremely helpful. An extensive deriva-

tion of both terms using this formalism may be found in [21].

Finally, we have to consider quantum isospin corrections as we did in the

previous sections. Since kaons also have isospin quantum number they will

contribute to the isospin inertia moment. We perform the new time-dependent

isospin transformation on the extended Skyrme field,

U → A(t)UA†(t), A(t) =

(
a(t) 0

0 1

)
, (4.59)

where a(t) is the usual SU(2) isospin transformation.

The expressions of the excited currents are equivalent to those obtained before

(4.5), but in this case the time component of the Maurer-Cartan form is sep-

arated into two different contributions, one comes from the time dependence

of the kaon field (which yields the potential term VK computed before) and

the other from the isospin transformation,

U †∂0U → AL0A
† + AU †

[
A†Ȧ, U

]
A†. (4.60)
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The angular frequency is now defined in terms of the Gell-Mann matrices

A†Ȧ = i
2ωaλa, where a = 1, 2, 3. The angular frequency is again a three-

vector since the simple extension (4.59) of A implies that A†Ȧ belongs to the

su(2) subalgebra of su(3). Introducing everything in the Lagrangian we obtain

the corresponding kinetic energy contribution,

T =
1

24π2

∫
d3x

[
−1

2

(
Tr{L2

0}+ 2Tr{L0Ta}ωa + Tr{TaTb}ωaωb

)
−1

2
(Tr{[(L0 + Taωa), Lk][(L0 + Tbωb), Lk]}) + 4π4c6

(
Bi
)2]

,

(4.61)

which has an equivalent expression to (4.2), quadratic in the angular frequency,

and an additional contribution linear in ωa. We have defined Ta =
i
2U

† [λa, U ],

equivalently as before.

Again, we identify the kinetic energy with an isorotational energy, from which

we may extract the isospin inertia tensor,

T =
1

2
ωaΛabωb −∆aωa, (4.62)

and the isospin kaon current ∆a. Both expressions are rather straightforward

to obtain,

Λab =

∫
d3x [−Tr{TaTb} − Tr{[Ta, Lk][Tb, Lk]}−

c6
8
ϵlmnTr{TaLmLn}ϵlrsTr{TjLrLs}

]
, (4.63)

∆a =

∫
d3x [−Tr{L0Ta} − Tr{[Ta, Lk][L0, Lk]}−

c6
8
ϵlmnTr{L0LmLn}ϵlrsTr{TaLrLs}

]
. (4.64)

As before, the symmetries A1 (3.4) and A2 (3.5) of the Skyrme crystals produce

an isospin inertia tensor proportional to the identity. However, when the kaon

field is nonzero, this property is lost and the isospin inertia tensor becomes

anisotropic, with two different eigenvalues, Λ := Λ11 = Λ22 and Λ3. Besides,

the operator ∆a is also excited, but the only non-vanishing component is ∆ :=
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∆3 and the others, ∆1,2 are zero. This produces a different third component

of the isospin angular momentum,

K3 = Λ3ω3 +∆, (4.65)

which yields the following Hamiltonian,

Ĥ =
K̂2

1 + K̂2
2

2Λ
+

(
K̂2

3 −∆2
)

2Λ3
. (4.66)

This Hamiltonian is similar to the one obtained from the Skyrme lattices

(4.39) with an additional scalar term. Following the same arguments we finally

obtain the quantum energy of the Skyrme crystal with kaons,

Equantum =
ℏ2B2

cell

8Λ3
δ2 − ∆2

2Λ3
, (4.67)

where the first term is the isospin energy obtained previously, but now the

isospin moment of inertia depend on the kaon field.

The derivation of the explicit expressions for Λ3 and ∆ requires a careful treat-

ment, and the group properties of the Skyrme field must be used several times

in some key points. We finally obtained the following simplified expressions,

Λ
(2)
3 =

π21 + π22
2

(1 + cos2 ϕ)2 + (1 + σ)
sin2(2ϕ)

4
, (4.68)

Λ
(4)
3 = 2(1 + cos2 ϕ)

[
(1− π23)∂iσ

2 + σπ3∂iσ∂iπ3) + (σ ↔ π3)
]
+

+ ∂in
2(1 + σ)

sin2(2ϕ)

4
,

Λ
(6)
3 =

µ2Kc6
4

(1 + cos2(ϕ))2(∂iπ3∂jσ − ∂iσ∂jπ3)
2 (4.69)

∆(2) = −iµK
[
(π21 + π22)(cos

4 ϕ− 1) + (1 + σ)
sin2(2ϕ)

2

]
, (4.70)

∆(4) = −2iµK
[
2(1− cos4 ϕ)

(
π21∂iπ

2
2 + π22∂iπ

2
1 − 2π1π2∂iπ1∂iπ2

−∂in2(π21 + π22)
)
++∂in

2(1 + σ)
sin2(2ϕ)

4

]
, (4.71)
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∆(6) = i
µKc6
2

(1 + cos2 ϕ) sin2 ϕ(∂iπ3∂jσ − ∂iσ∂jπ3)
2 (4.72)

∆(WZW) = −NCBcell

2
sin2 (ϕ) (4.73)

4.2.2 Kaon condensation in neutron star cores

When the kaon field develops a nonzero VEV, apart from the neutron decay

and lepton capture processes of (4.27), additional processes involving kaons

may occur:

n→ p+K−, l → K− + νl (4.74)

such that the chemical equilibrium conditions

µn = µp + µK , µl = µK (4.75)

are satisfied. The last expressions are the extension of (4.32) to the condensate

phase.

The total energy within the unit cell may be obtained as the sum of the

baryon, lepton and kaon contributions:

E = Eclass + Eiso(γ, ϕ) + Ee(Ne) + Eµ(Nµ) + ΩK(µK , ϕ). (4.76)

We remark that the above expression does not fully correspond to the (rel-

ativistic version of the) internal thermodynamical energy for nonzero kaon

condensate. The reason is that the kaon chemical potential µK has been in-

troduced as the independent variable in the system, whereas the chemical

potentials µl of the remaining particles are functions of the corresponding

particle numbers, Nl, as must be the case for an internal energy. We have

combined the contributions coming from the optical potential and the quan-

tum energy in the same term,

ΩK(µK , ϕ) = VK − ∆2

2Λ3
, (4.77)

which depends on the condensed kaon field ϕ and on the kaon chemical po-
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tential through the explicit dependence on µK of both VK and ∆.

Now we want to determine the values of the proton fraction and the kaon

condensate that minimize the total energy for a given baryon density nB
(or equivalently, fixed L) under the modified β-equilibrium (4.74). For this

purpose, we perform the systematic thermodynamical derivation of the equa-

tions. We first define the new degrees of freedom, NQ = Np − Ne − Nµ and

B = Np +Nn, and we perform a Legendre transformation to define the ther-

modynamical grand potential,

Ω(B, µe, ϕ) = E(B,NQ, ϕ) + µeNQ, (4.78)

where we have already imposed the equilibrium conditions (4.75) implying

µI = µe = µµ = µK . Recall that the isospin chemical potential is related to

the proton fraction through (4.36), and therefore µe too. The grand potential

must now be minimized with respect to its variables, i.e. ϕ and µe,

∂Ω

∂µe

∣∣∣∣
nB ,ϕ

=
∂Ω

∂ϕ

∣∣∣∣
nB ,µe

= 0. (4.79)

Using (4.76) we have:

γnB−
(µ2e −m2

e)
3/2 + (µ2e −m2

µ)
3/2

3π2ℏ3
+
nB
4

∂EK

∂µK

∣∣∣∣
µK=µe

= 0, (4.80)

∂VK
∂ϕ

− ∆

Λ3

∂∆

∂ϕ
+
∂Λ3

∂ϕ

(
∆2

2Λ2
3

− µ2e
2ℏ2

)
= 0. (4.81)

The first expression is precisely the charge neutrality condition, where we have

partially recovered the proton fraction in the first term for clarity. The second

one is the minimization of the grand canonical potential with respect to the

kaon field. We note here that we drop the ultrarrelativistic consideration

for electrons since the appearance of kaons may decrease hugely the electron

fraction. By solving the system of equations (4.80) and (4.81) for µe and ϕ we

obtain all the needed information for the new kaon condensed phase. Then we

may compare the particle fractions and energies between both phases, which

we will denote by npeµ and npeµK.
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Before solving the full system for different values of the lattice length L, we

must obtain the value of the length Lcond at which kaons condense. This value

is indeed important since it will determine whether or not a condensate of

kaons will appear at some point in the interior of NS. This is accomplished

with the same system of (4.80) and (4.81) by factoring the sinϕ from the

second equation and setting ϕ = 0. Then we may see the system as a pair

of equations to obtain the values of γcond and Lcond, the values of the proton

fraction and the length parameter for which the kaons condense.

We show in Table 4.5 the density at which kaons condense for different values

of the parameters. All the values are given in units of MeV and fm, respec-

tively.

label fπ e λ2 E0 n0 S0 Lsym ncond/n0
set 1 133.71 5.72 5.00 920 0.165 23.5 29.1 2.3

set 2 138.11 6.34 5.78 915 0.175 24.5 28.3 2.2

set 3 120.96 5.64 2.68 783 0.175 28.7 38.7 1.6

set 4 139.26 5.61 2.74 912 0.22 28.6 38.9 1.6

Table 4.5: Sets of parameter values obtained from the extensive analysis in the last subsection and their
corresponding observables at nuclear saturation.

We choose some representative parameter values such that, for the parame-

ter sets 1 and 2, the energy per baryon and baryon density at saturation are

reasonably close to their experimental values, whereas the sets 3 and 4 rea-

sonably fit the symmetry energy and slope at saturation. The aim is to study

the impact that the different observables have on the condensation density.

In Fig. 4.7, we show the E(L) curves both without and with kaon condensa-

tion, in dimensionless Skyrme units. It is clearly visible that for sufficiently

small L a nonzero kaon condensate is preferred. In the same figure, we also

show the resulting particle fractions, where a significant increase in the num-

ber of protons is clearly visible when kaons appear. In Fig. 4.8 we plot the

symmetry energy as a function of nB with and without condensed kaons.

Finally the interest of this work is to study the impact that kaon conden-

sation have on the Skyrme NS, for which the EOS must be obtained. The

npeµ matter case is easy to obtain using (4.34) for different values of L after

solving the β-equilibrium and charge neutrality conditions for γ. However,
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Figure 4.7: Left: Energy vs lattice length for the set 1 of parameters. The energy is shown for the classical
crystal without isopin contributions (green), isospin asymmetric (npeµ) matter with (black) and without
(blue) kaons. We also plot the completely asymmetric neutron matter (magenta) which lies slightly above the
blue curve. Right: Particle fractions as a function of baryon density for the set 1 of parameters, both with
(solid lines) and without (discontinuous lines) kaon condensate.

once we include kaons, the change in the energy curve Fig. 4.7 may lead to a

first or second order phase transition. To distinguish the order of the phase

transition in our case, we need to know accurately the pressure near the con-

densation point. Therefore, we computed more points for the energy near the

condensation value with higher accuracies, and we obtained the pressure using

a numerical derivative. We conclude that the kaon condensation produces a

first order phase transition for our choices of parameters in the Skyrme model.

This can be seen in the right plot of Fig. 4.9, where we show the EOS for our

best accuracy and for the set 1 of parameters. Clearly, there is a non-physical

region which must be bridged by a first order phase transition. Similar results,

indicating a first-order transition, are found for the other parameter sets.

The phase transition to kaon condensation has been investigated previously,

e.g., within a relativistic mean field theory framework [101, 189]. The kaon

optical potential, which is the relevant parameter for the phase transition, was

allowed to vary within a rather large range in these investigations. This lead

to a large variety of possible situations, from a second order phase transition

for a weak optical potential to a strongly first-order transition for a strong one,

where the number of protons outweighs the number of neutrons at sufficiently

high density. For intermediate optical potentials, their results are similar to

ours.
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Figure 4.8: Symmetry energy of nuclear matter as a function of baryon density for the sets of parameters
considered in this work. The thick line represents the symmetry energy when kaons are considered in the
system and the dashed line does not include kaons.
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Figure 4.9: Left: Energy per baryon against the side length of the unit cell and their interpolations. Right:
pressure against the energy density, from which we conclude that there is a first order phase transition. Both
plots are for the set 1 of parameters.

Maxwell construction vs Gibbs construction

The Maxwell construction (MC) is typically used to obtain a physical equa-

tion of state when a first order transition is present. Indeed, the MC has been

already studied in the Skyrme crystals context to describe the transition be-

tween crytals with different symmetries [24]. This construction is based on a

mixed phase of constant pressure which connects the two solutions. However,

the MC is only correct when there is a single conserved charge (in this case,
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the baryon number) for which the associated chemical potential is enforced to

be common for both phases in the mixed phase [99]. If, instead, an additional

charge is conserved, like the electric charge in the case of npeµ matter, the

Gibbs conditions for the phase equilibrium,

pI = pII, µIi = µIIi , i = B, q (4.82)

cannot be both satisfied in a standard MC. In the last expression µB and µq
represent the chemical potentials associated to the conserved baryon and elec-

tric charges, respectively. Instead, one should perform a Gibbs construction

(GC) [99, 101]. Indeed, the GC has also been proven useful in the context of

a hadron-to-quark phase transition inside NS [51].

We may write the chemical potential of each particle species as a linear com-

bination of the chemical potentials associated to the conserved charges of our

system:

µi = BiµB + qiµq, (4.83)

where Bi and qi are the baryon number and electric charge of the particle

species i. Then we might identify the baryon and electric charge chemical

potentials with the neutron and electron chemical potentials respectively. The

main difference between MC and GC is that, in the mixed phase, the first one

imposes charge neutrality locally, i.e. both phases are neutral independently,

however in the GC it is imposed globally in the mixed phase. Considering a

volume fraction χ of the kaon condensed phase, charge neutrality is imposed

in the GC as:

nMP
q = (1− χ)nIq + χnIIq = 0. (4.84)

The mixed phase in the GC is calculated by identifying first the contributions

to the pressure and charge densities in each phase separately. Then we have

to solve the system of equations composed by (4.82), (4.84) and (4.81). We

use the unit cell length parameter of the first (npeµ) phase LI as the variable

defining our position in the phase diagram, then the unknowns are the length

in the second (npeµK) phase LII, the proton fractions γI, γII, the kaon field ϕ
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and the volume fraction χ.

We remark that we assumed in our calculations of the kaon condensate that

the backreaction of the condensate on the crystal is negligible, such that our

two phases are always considered in the same classical crystal background,

and the energies per baryon of the two phases are compared for the same

length L. As a result, we always should have LI = LII and, consequently,

nIB = nIIB by construction. On the other hand, the relation between L and

the thermodynamical variables p, µi and ϕ used in (4.82), (4.84) and (4.81)

is quite nontrivial in both phases. We, therefore, treat LII as an independent

variable in our numerical calculations. We find that always LI = LII within our

numerical precision, which provides us with an additional consistency check

both for our numerics and for the thermodynamical transformations we used.

The results are shown in Fig. 4.10. Specifically, in the left plot of Fig. 4.10

the energy per baryon is shown as a function of the lattice parameter L both

for the two pure phases and for the mixed phases resulting from a MC and

a GC, respectively. We find that the mixed phase of the GC, and hence the

values at which the kaon field becomes non-zero, starts at a smaller density

than the value obtained in Table 4.5. This is also found in [101], for which the

GC mixed phase extends to a larger region than the one obtained from the

MC, because the mixed phase in the GC no longer is for constant pressure.

In our case, even the minimum of E(L) is shifted to slightly lower values and,

hence, the use of the GC affects the low density regime of the EOS.

Once the energy is computed, the EOS is obtained in the standard procedure

and the TOV system of equations may be solve to study the impact that kaons

have in the Skyrme NS. The results of this computation are plotted in the right

panel of Fig. 4.10 for the 4 sets of parameters. We compare the results obtained

between the MC and GC as well as with the EOS without kaons but we also

include the same GW and pulsar constraints from the previous section in the

MR diagram. The first observation is that the addition of kaons to the EOS

agrees with the expectation, reducing the achievable maximum mass. This

represents the hyperon puzzle, in which the appearance of new strange degrees

of freedom softens the EOS such that it may not lead to sufficiently massive

NS (∼ 2M⊙). As can be seen, this is not the case in the generalized Skyrme

model since we may obtain very high masses easily due to the contribution of
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Figure 4.10: Left: E(L) curves for the two phases and the two different constructions, for set 1 of the
parameter values. Right: MR curves of NS with a kaon condensed core. The different sets of parameters
that we consider are shown with different colors. Solid lines represent npeµ matter, dashed-dotted lines are
obtained with a MC and the dashed with the GC.

the sextic term. Furthermore the radii of NS are also reduced, which benefits

our concrete model since the radii for skyrmion crystals are in some cases too

large.

The main difference between the two different constructions is that the MC

starts at a given density, hence it deviates from the npeµ EOS at a certain

mass. On the other hand, since the GC changes the location of the minimum,

it leads to different results also in the low mass region. However, both con-

structions practically merge in the high masses region, in which they follow

the same npeµK EOS.

As already explained, the thermodynamically stable region of the E(L) curves

and the corresponding EOS based on Skyrme crystals is L ≤ L∗ or, equiva-

lently, nB ≥ n0. As a consequence, NS based on Skyrme crystals have nB = n0
at the NS surface or, in other words, Skyrme crystal NS have no low-density

region (outer core and crust).

It is possible to add a low-density region to the NS by joining the GC equa-

tions of state of the Skyrme crystal with a standard nuclear physics EOS for

low densities as we explained in the second chapter of this thesis. This compu-

tation is performed in [21] using the same smooth interpolation between our

kaon condensed Skyrme crystal EOS and the BCPM [208] EOS, with the value
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of p∗ as the point where both EOS cut. In terms of the baryon density, the

joining occurs at n∗B ∼ 1.1n0 for the parameter sets 1-3, and for n∗B ∼ 1.2n0
for the set 4. Nevertheless, we do not show the results from this effective

construction since the goal of this section was the correct description of the

high density regime in the EOS, which is the region affected by the presence

of kaons.

4.3 The inclusion of ρ mesons in the Skyrme model

Throughout this chapter we have improved the description of matter inside NS

by introducing new particle species in a consistent fashion entirely within the

Skyrme model. However, even more particles are expected to be important

in nuclear interactions and specially inside NS. Specifically, the inclusion of

other higher-mass mesons to mediate the interactions between nucleons is

crucial in many theoretical approaches for nuclear matter. Indeed, it was

argued by Witten that the deviations in the nuclear observables computed

from the Skyrme model may be due to an incomplete theory of mesons.

Many extensions of the Skyrme model with vector mesons were proposed to

improve the results of the solutions [26,27,161,163]. Specifically, the inclusion

of ρ mesons as an additional field with a particular interaction term with

the pions in the Skyrme model was first proposed by Adkins in [26]. This

is, indeed, the most natural choice since these are the next lightest mesons

(mρ = 775 MeV) after the pions, however, the results obtained in this work

were not so promising.

The inclusion of vector mesons in the Skyrme model gained substantial interest

again from a BPS theory of skyrmions coupled to vector mesons proposed by

Sutcliffe in [218]. Although this theory is obtained in the holographic approach

it definitely suggested that the binding energies problem in the Skyrme model

might be solved by the inclusion of vector mesons, besides, the interactions

terms and coupling constants are naturally fixed by the theory. Indeed, even

the inclusion of just the ρ mesons yielded remarkable results in the binding

energies [219].

Later, the full numerical minimization of the solutions carried out by Naya

and Sutcliffe [169] confirmed the improvement on the binding energies for the
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first B = 1− 8 skyrmions. Moreover, the ρ mesons also influence the shapes

of the minimal energy configurations, inducing a clustered structure which is

closer to physical nuclei. This effect is actually observed even for the very

small baryon number skyrmions B ≥ 5.

In this final section we want to study, for the first time, the impact of the ρ

mesons on the Skyrme α-lattice solution, to show the physical implications

that they have on the other main longstanding problem in the Skyrme model,

the compression modulus.

4.3.1 The compression modulus problem

The energy curve E(nB) of symmetric nuclear matter in (4.20) is also ex-

panded in power series of the baryon density,

E(nB) = E0 +
1

2
K0

(nB − n0)
2

9n20
+O(n3B), (4.85)

equivalently to the symmetry energy curve (4.21).

The first multipole in this expansion is the energy per baryon E0 of symmet-

ric nuclear matter at the saturation density. There is no linear term since

symmetric nuclear matter reaches a minimum of the energy at saturation.

The next multipole, K0 is known as the compression modulus, it enters at

second order in the energy curve, and it is directly related to the compress-

ibility of nuclear matter, hence it determines the softness of the EOS near the

minimum.

The compression modulus is not directly measured, but it may be extracted

from the Isoscalar Giant Monopole Resonance (ISGMR) [97, 114, 239] fre-

quency, ωM . This resonance is a collective excitation of the nucleus, in which

both protons and neutrons vibrate spherically in phase. It is measured through

the low-momentum transfer in inelastic scattering collisions between isoscalar

particles (like α particles or deuterons) and medium-heavy nuclei, B ≥ 90.

The frequency of this resonance for a given nucleus may be related to its
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compression modulus K [67],

ω2
M =

K

mNR2
, (4.86)

where R is the radius of the nucleus and mN is the mass of the nucleon. The

value of this frequency was experimentally determined for different nuclei,

such that the following dependence on the baryon number was found,

ℏωM ∼ 80B−1/3 MeV. (4.87)

Then, from the well-known relation between the radius of a nucleus and its

baryon number, R ≈ 1.25B1/3 fm, we find the B-independent value for the

compression modulus,

K = K0 ∼ 240± 20 MeV. (4.88)

Further numerical simulations from theoretical approaches yield a range of

values for K which confirmed this value [52]. Nevertheless, given that we usu-

ally work in Skyrme units, we have the freedom to fit the energy at saturation,

so it is more informative for us to consider the adimensional ratio, K0

E0
∼ 0.25.

It is possible to compute the compression modulus from Skyrme crystals using

the definition from the Taylor expansion (4.85),

K0 = 9n20
∂2E

∂n2B

∣∣∣∣
n0

≡ 9V 2∂
2E

∂V 2

∣∣∣∣
L0

. (4.89)

The last derivation of the compression modulus in terms of the unit cell volume

(or equivalently, the lattice length L) is equivalent, given that L0 is defined as

the point at which the energy is minimal.

The numerical values are given in Table 4.6 for the crystals obtained in Chap-

ter 3. Although we have fitted the parameters to reproduce the saturation

point, the compression modulus is much larger than the experimental value.

This is also a well-known problem in the Skyrme model, which seems to yield

too stiff energy curves. This might be a problem of the specific solutions con-

sidered here, however, a simple derivation of the compression modulus, again
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under the perfect scaling approximation, is much more clarifying and shows

that the ratio K0/E0 is quite far from the desired value.

Model λ2 (MeV fm3) K0 (MeV)

L24 0 882

L240 0 1340

L246 3 1321

L246 7 1831

L2460 3 1794

L2460 7 2333

Table 4.6: Values for the compression modulus for the crystals studied in Chapter 3.

The energy of Skyrme crystals has been shown to follow with great accuracy,

at least around the minimum, the PS approximation (3.12). Under a Derrick

scaling transformation of the Skyrme field at the minimal energy configuration

U(L0) → U(ΛL0), the PS parametrization yields,

E(Λ) =
E(2)

Λ
+ ΛE(4) + Λ3E(6) +

E(0)

Λ3
. (4.90)

Then, the compression modulus may be related to the second derivative of

the energy with respect to the Derrick factor Λ,

E(1) = E0, E ′(1) = 0, E ′′(1) = E0 + 8
(
E(6) + E(0)

)
K0 = 9V 2 ∂

2E

∂V 2

∣∣∣∣
L0

= L2
0

∂2E

∂L2

∣∣∣∣
L0

L=ΛL0==== E ′′(1).

This result explains why we find K0/E0 = 1 in the standard massless Skyrme

model, and the inclusion of further terms increases even more this ratio. Nev-

ertheless, this argument is based on the PS approximated energy curve, which

is expected to fail for very high values of c6 and c0, for which we would recover

the BPS model. In this model, the compression modulus is exactly zero for a

wide variety of potential terms [9], hence a near-BPS model may be a solution

for the compression modulus problem. However, the values of the parameters

c6 and c0 to reach the BPS model must be extremely large, so that numerical

computations become difficult in this regime.

We propose in this section to include the next lightest mesons in the model,
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motivated from previous studies, in order to find crystalline solutions with

realistic values of K0/E0.

4.3.2 Skyrme α-lattice coupled to ρ mesons

The inclusion of ρ mesons in the Skyrme model requires the extension of the

Lagrangian with the standard kinetic and mass terms for a vector field,

Lρ = −1

8
Tr{R†

µνR
µν}+

m2
ρ

4
Tr{R†

µR
µ}, (4.91)

where Rµ = ρµ0I2 + iρµaτa is the SU(2) representation of the ρ mesons, but it

is not an element of the group, and Rµν = ∂µRν − ∂νRµ is the corresponding

field strength tensor.

The theory is completed with the coupling between pions and ρ mesons

through the following interaction term,

LI =
α

2
Tr{Rµν[L

µ, Lν]} = αTr{∂µRν[Lµ, Lν]}. (4.92)

We propose this interaction term which differs from the one proposed by

Adkins in [26], since it leads to much simpler computations, specially out of

spherical symmetry. The motivation for the interaction term considered by

Adkins is to reproduce the ρ → ππ decay which does not produce a quartic

term L4 after integrating out the ρ mesons from the theory. We do not find

the last restriction mandatory, so we may consider a different interaction term

which also yields the same decay reaction. Besides, the interaction term (4.92)

always decouples the ρµ0 field from the system, since Rµ is coupled to a su(2)

element. This property only occurs in the spherically symmetric case for

the Adkins term, then a further constraint must be imposed to erase the

unphysical component of the ρ mesons. In addition to these motivations for

using this interaction term, the proposal arose from other studies that included

vector mesons in chiral perturbation theory, in which this term is used [126].

Furthermore, a BPS bound may be defined in the full Skyrme − ρ theory if

this specific coupling is considered. As we did in (2.16), we must express the

energy as a combination of positive definite terms. We first write down the
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static energy functional,

E = ESkyrme +

∫
d3x

[
1

8
Tr
{
|Rij|2

}
+
m2

ρ

4
Tr
{
|Ri|2

}
− α

2
Tr{Rij[Li, Lj]}

]
.

(4.93)

The kinetic and mass terms are always positive definite, but for the interaction

term we must realize that it may be used to complete the perfect square

between the kinetic energy of the ρ mesons and a quartic Skyrme term with

a new different coupling constant.

Tr

{(
1√
8
Rij +

α√
2
[Li, Lj]

)(
1√
8
Rij +

α√
2
[Li, Lj]

)†
}

=

Tr

{
1

8
|Rij|2 +

α

4

(
Rij[Lj, Li] +R†

ij[Li, Lj]
)
+
α2

2
|[Li, Lj]|2

}
=

Tr

{
1

8
|Rij|2 −

α

2
Rij[Li, Lj] +

α2

2
|[Li, Lj]|2

}
. (4.94)

Then, the energy of the ρ mesons plus the interaction term yield positive

terms and a remaining quartic Skyrme term, which may be absorbed into the

Skyrme energy part. Then, in the L24 model, we recover the same BPS bound

(2.16), but with a redefined Skyrme parameter,

E ≥ 3π2fπ
ē

|B|, (4.95)

ē2 =
e2

1− 16α2e2
. (4.96)

From this result, it is clear that larger values of the coupling constant α

increase the Skyrme parameter, which reduces the importance of the quartic

term. Indeed there is a limiting value for which the Skyrme term completely

vanishes,

ē2 ≥ 0 −→ cα := αe ≤ 1

4
. (4.97)

This feature has great importance since the energy curve of Skyrme crystals

increase for L < L0 due to the quartic term in the L24 and L240 models. How
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fast the energy increases depends on the importance of L4 with respect to the

other terms, and we have seen from the too high values of K0 that the curve

must be flattened near the minimum. Therefore, the α coupling constant may

be tuned to yield a smaller quartic term and to obtain better values for the

compression modulus.

Then, we compute the static energy functional in Skyrme units,

E = ESkyrme +
1

24π2

∫
d3x

[
4
(
(∂iρ

j
a)

2 − ∂iρ
j
a∂jρ

i
a

)
+ 2cρ0(ρ

i
a)

2 + 32αe∂iρ
j
aS

a
ij

]
.

(4.98)

where we have defined the adimensional field, Rµ → Rµ

fπ
and its adimensional

mass constant cρ0 =
2m2

ρ

f2
πe

2 . The ρi0 fields have been erased since they are not

coupled to the pions, so that they only contribute positively to the energy,

hence, the minimal static energy solution is trivially ρi0 = 0. At this point,

we see that the constant of interest is the adimensional coupling constant cα,

which cannot be larger than 1/4, otherwise the Skyrme term vanishes and we

do not have stable skyrmions anymore.

We have also defined the Sµν tensor in the interaction term,

[Lµ, Lν] = −2i(∂µσ∂νπc − ∂νσ∂µπc + ϵabc∂µπa∂νπb)τc = −2iSc
µντc. (4.99)

The field equations for the ρ mesons and their contribution to the Skyrme part

are obtained. Then, the minimal energy configuration of the α-lattice coupled

to ρ mesons is computed for different values of L using the AGD algorithm.

We will consider the L240 model since the gradient flow method is quite sensi-

tive to the sextic term for small values of L and, given that the quartic term

is reduced by the ρ mesons, it becomes numerically difficult to converge into

the solution. The results for energy curve are shown in Fig. 4.11. In the left

plot we show the adimensional total energy of the system against the lattice

length, for different values of the coupling constant cα. In this plot we see that

the minimal energy configuration (Emin, Lmin) shifts towards smaller values of

the unit cell when the coupling is increased. The reason is that the quartic is a

repulsive term, hence, smaller energy configurations are preferred if this term

is reduced. Besides, the quartic term prevents the collapse of the skyrmion,



152 4.3. The inclusion of ρ mesons in the Skyrme model

1 2 3 4 5 6

L

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

E
/B

cα = 0

cα = 0.125

cα = 0.166

cα = 0.208

cα = 0.220

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

L (fm)

920

930

940

950

960

970

980

E
/B

 (M
eV

)

Figure 4.11: Left: Adimensional energy of the α-lattice for different values of the coupling with the ρ mesons.
Right: The same curves when the minimum of each curve is fitted to the nuclear saturation point.

therefore, in the limit cα → 1/4 the minimum is shifted towards the point

(E = 0, L = 0). Indeed, since the skyrmion becomes unstable in this limit, an

accurate convergence in the numerical computations is harder to achieve.

Furthermore, the numerical difficulty to compute the solutions with high cou-

pling constant values may be also attributed to the different scales developed

between the mesons. For increasing α, the ρ mesons accumulate in the cen-

tre of the box whilst the skyrmions remains practically unchanged in size.

Therefore, a really accurate grid is needed to compute the small-size contri-

butions from the ρ mesons, but it must be sufficiently large to contain the

whole skyrmion.

In order to see the decrease in theK0/E0 ratio due to the increasing presence of

the ρ mesons, we show in the right plot of Fig. 4.11 the same E(L) curves but

now in physical units. All the minima from each curve have been manually

shifted to the saturation point (E0, n0), so that the curvature around the

minimum may be easily compared. In this plot we clearly see the decrease of

the second derivative of the energy, the numerical values for the ratio K0/E0

are given in Table 4.7.

Additionally, we may also observe from the same plot that the binding en-

ergies, defined as the difference between the asymptotic energy and the min-

imum, also become smaller. Indeed, as we mentioned before, it was shown

in [218] that the Skyrme model coupled to an infinite tower of vector mesons

yields a BPS theory, implying that the binding energies are exactly zero. Al-
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though the BPS theory is only achieved with an infinite number of mesons,

even the truncation to the first order, which are the ρ mesons, significantly

enhances the binding energies [169]. Actually, the binding energies that we

are considering here are not exactly those of the isolated nuclei, however, in

the Skyrme model context, the minimum of the Skyrme crystal may be seen

as the energy of the B = ∞ skyrmion, which is the lowest. Therefore, if the

difference between the B = 4 skyrmion and the crystal decreases, the rest of

the finite B isolated skyrmion binding energies will, by definition, decrease as

well.

The specific values of the binding energies in our computations are given in

Table 4.7, from where we confirm that the ρ mesons decrease this difference.

This is also a great feature of this combined theory, since a sufficient reduction

of this binding energy will allow the development of a crust for Skyrme NS.

In addition, smaller values of this binding energy will also improve the surface

term coefficient aS obtained from the Skyrme lattices.

cα K0/E0 K0 (MeV) BE (%) α

0 1.170 1080 5.54 0

0.125 0.985 909 5.36 0.031

0.166 0.778 718 5.00 0.046

0.208 0.461 425 4.25 0.075

0.220 0.381 351 3.85 0.095

Table 4.7: Values of the adimensional coupling constant between ρ mesons and pions with the corresponding
values of the compression modulus and energy ratio. In the third column we show the value of the compression
modulus once the minimum has been shifted to the saturation point. In the last two columns we compute
the difference between the minimum and the L → ∞ asymptotic energy and the corresponding value of the
physical coupling constant, respectively.

As mentioned before we may extract from (4.92) the interaction vertex which

describes the ρ meson decay into two pions. Then, it is possible to obtain the

decay width, Γρ in terms of α via standard QFT, and compute the physical

value of the coupling from the experimental value of Γρ. The derivation is quite

straightforward and requires the field equation of the ρ field. The interaction

vertex obtained is,

Lvertex = 2αm2
ρ ϵabcρ

ν
cπa∂νπb. (4.100)
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Hence, from the most fiducial value of the decay width, Γρ = 147.4 MeV, and

the physical pion decay constant fπ = 186 MeV we obtain,

αexp. = 0.0427. (4.101)

This value is smaller than those considered here in order to obtain a reasonable

value of the ratio K0/E0. However, we have only considered one physically

motivated interaction term between pion and ρ mesons, but we know that this

is not the only possibility. In fact, we may find in the Lagrangian obtained

from the holographic approach [219] an extensive list of the interaction terms

which may be considered order by order in the ρ mesons. Hence, it may be

argued that the inclusion of further terms will definitely contribute to the

improvement of the compression modulus value, then, the value of α will

approach the physical coupling constant. In this sense, we have shown the

results at the first order, although there is an additional interaction term of

the same order, besides, it may be identified with the ρ→ 3π decay, although

this process is highly suppressed.

As a final comment, the computation of NS is not performed in this section

given that the absence of the sextic term will not produce maximal masses

according to the experimental requirements. Furthermore, the inclusion of

ρ mesons softens the EOS, which decrease even more the maximal masses.

The inclusion of the sextic term will contend this effect, moreover, it allows to

increase the value of cα to reach the physical value of the compression modulus

since the skyrmions will always remain stable. However, larger values of the ρ

mesons coupling constant will require more presence of the sextic term, which

may complicate the numerical computations using the AGD method.



Chapter 5

Conclusions and Outlook

Country roads, take me home. To the place I

belong.

John Denver

The research work carried out throughout this thesis combines our most re-

cent understanding about NS with the theoretical framework provided by the

Skyrme model to develop an alternative description of ultra-dense nuclear mat-

ter. We conclude with some final remarks, including the best achievements

and open problems, and further ideas to improve the results obtained.

The main conclusion that may be extracted is that the sextic term is necessary

in the Skyrme model for a correct description of the high density regime in

the EOS. This term does not only produce sufficiently high masses, but also

induces interesting phenomenology, like the homogeneous fluid-like behaviour,

which is expected in the internal regions of NS. Furthermore, when this term

is combined with the standard Skyrme model, the properties of symmetric

INM may be reproduced and the resulting NS are significantly improved in

the sense that the MR curves get closer to the experimentally constrained

region. However, we observe that the radii are slightly larger (between 1− 2

km) than the expected values, which suggests a still high stiffness in the EOS

obtained from the Skyrme crystals.

The quantization of the crystals enabled the computation, for the first time, of

the symmetry energy curve within the Skyrme model. In fact, this curve may

be accurately fitted in the whole range of densities and yields realistic particle

fractions inside the NS. Besides, the contribution of these effects induces an

interesting asymptotic decay in the energy curve in the zero density limit,
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which may be crucial for the construction of a crust. The masses of the NS

are hardly affected by this contribution and the radii increase in the whole

MR curve, but less than some hundred meters. Therefore, the introduction of

isospin-asymmetry effects yields a great improvement in the phenomenology

of dense nuclear matter.

Additionally, the computation of the energy, baryon density and symmetry

energy of INM at saturation opens the possibility to completely determine

the free parameters in the generalized Skyrme model. Following this idea, we

performed an extensive analysis on the nuclear observables mentioned before

and the MR curves of the resulting NS in the pure neutron-matter case. In

conclusion, we find difficulties in the simultaneous fit of the three observables

with arbitrary accuracy, but we were able to establish upper and lower bounds

for the sextic term coupling constant from the nuclear and NS observables

respectively. Interestingly, even though the parameters are fixed by the nuclear

saturation point, we still find a wide range of maximal masses for the NS

between 2 and 2.5 solar masses. This is, indeed, a remarkable property of the

Skyrme model, which may bring severe problems to other nuclear models if a

sufficiently high mass NS is observed.

The Skyrme model also provides a natural extension to consider strange de-

grees of freedom. In particular, the kaon condensation is predicted at accept-

able densities and it mainly reduces both the mass and radius of the NS, as

expected. This effect has great implications since it shifts the MR curve closer

to the experimental constraints. The condensation density is mainly affected

by the symmetry energy, unfortunately, we find better values when the values

at saturation are smaller than the experimental measurements.

Finally, motivated by the previous computations of isolated skyrmions includ-

ing ρ mesons, we considered an interaction term between pions and ρ mesons

in the lattice of α particles. This coupling is well motivated and it directly

affects the two main problems found in the Skyrme model, i.e., the compres-

sion modulus and the binding energies. Although our computations are just

the first steps to approach this problem, the impressive results encourage the

further development on the inclusion of vector mesons to achieve our final

goal, the complete description of nuclear matter for all densities.
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The main open problem which is present in many of the computations per-

formed in this work is the absence of a crust in the low density regime of the

EOS. Although this issue is localized in the zero pressure limit, it affects the

radius in the whole MR curve. The addition of a crust by hand, as we did in

Chapter 2, typically enlarges the radii in 1 km, which is not a desirable effect.

However, this may not be the final answer since we do not actually know how

a crust purely constructed from the Skyrme model would affect the radius of

the NS. As explained in the text, this problem may be traced back to the high

binding energies of isolated skyrmions, hence, any progress on the binding

energies problem will favour the development of a crust. Nevertheless, as we

have seen in the Introduction, the outer layers of NS are rather complicated

systems in which different contributions are involved, therefore, the realistic

description of the low density regime requires the inclusion of further effects.

Specifically, the Coulomb interaction is expected to have a significant impact

at low densities, indeed, it is crucial for the shape of the nuclear pasta phases.

This contribution may also be considered within the Skyrme model once the

charge density is computed from the Gell-Mann−Nishijima formula [148]. The

electrostatic contribution is usually added to the energy as a correction, how-

ever, in order to obtain the nuclear pasta shapes, the backreaction on the

classical configuration must be taken into account.

Furthermore, the perturbative SU(3) extension of the Skyrme model consid-

ered to compute the kaon condensation allows to obtain hyperon solutions

as well [73]. Indeed, hyperons are expected to be produced even before the

kaon condensation, but they would induce the same effect on the NS, so this

is another source of improvement in the large values of the radii. Therefore,

it is of great interest to compute the effects of hyperons in Skyrme crystals

to study the impact on the particle fractions, on the NS and on the kaon

condensation density, where the strange matter is completely determined by

the Bound-State approach.

As a further suggestion, the inclusion of the sextic term in the Skyrme lattice

coupled to ρ mesons is the most natural extension of this work. The NS

masses will definitely grow if this term is added, but the compression modulus

will deviate from the experimental value. Nevertheless, additional interaction

terms between pions and ρ mesons may compete with this deviation. Isospin
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quantum corrections may be also considered in the full Skyrme−ρ mesons

system, but the time-dependence will excite the ρ0a fields, implying a further

minimization after the classical configuration has been obtained.

Additionally, all these computations may be reproduced in a new crystalline

configuration recently proposed from the combined minimization of the Skyrme

field and the geometry of space [116]. We want to remark this work since this

configuration has the smallest asymptotic energy at the zero density limit and,

therefore, it corresponds to the actual ground state of the Skyrme model in

this regime.

We hope to have illustrated the importance on the physics of ultra-dense

nuclear matter and NS with this thesis, and we motivate the reader to develop

the computations here exposed to achieve a complete and realistic description

of the nuclear matter in the whole range of densities based on the Skyrme

model.



Appendix A

B = 1 skyrmion from Spectral Methods

Spectral methods were originally introduced in the context of numerical hy-

drodynamics, however, they were extensively developed in order to solve the

highly non-linear Einstein equations within the Numerical Relativity frame-

work. The main difference with respect to finite differences numerical meth-

ods is that spectral methods obtain a numerical approximation to the desired

solution globally, rather than using local low degree approximations. This

produces, in many cases, significantly better accuracies with moderate com-

putational resources. In general, they can be used to solve any system of time-

independent PDE, like in our case of interest, the Skyrme field equations. This

appendix is not intended to be a rigorous mathematical and general presenta-

tion of spectral methods, but a practical and clarifying example. Specifically,

we show the resolution of the B = 1 skyrmion using this numerical technique.

The main idea in which spectral methods are based is that any function f(x)

can be approximately interpolated by truncated series of a set ofNc orthogonal

polynomials,

f(x) ≈
Nc−1∑
i=0

fiTi(x), (A.1)

where the coefficients fi are the proyection of the function f on each polyno-

mial Ti.

In this case, the system of differential equations is converted into a system of

algebraic equations in which the unknowns are the coefficients of the expan-
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sion. This is due to the fact that we know how different operators act on the

polynomials, Ti.

The two most frequent choices of polynomials are the Chebyshev and Leg-

endre sets. Legendre polynomials are commonly used to expand the angular

dependent part of the functions in some PDEs with axial symmetry. Since

the angular variables will not enter in our specific problem we will focus on

the Chebyshev polynomials, but the extension to other sets of polynomials is

rather straightforward.

Then, we fix {Ti} to be the set of Chebyshev polynomials, which are defined

on a grid x ∈ [−1, 1]. We compute the coefficients fi numerically on a discrete

space grid via weighted Gaussian quadratures, which are a fast and accurate

way to solve integrals,

fi =

∫ 1

−1

dx√
1− x2

f(x)Ti(x)∫ 1

−1

dx√
1− x2

Ti(x)Ti(x)

≈

Nc−1∑
j=0

f(xj)Ti(xj)wj

Nc−1∑
j=0

Ti(xj)Ti(xj)wj

, (A.2)

where xj and wj are the collocation points of the discrete grid and the weights

of the Chebyshev-Gauss-Lobatto (CGL) integral, respectively. The collocation

points and weights for the Chebyshev polynomials are calculated as follows,

xj = − cos

(
jπ

Nc − 1

)
, w0 = wNc−1 =

π

2Nc
, wj =

π

Nc
. (A.3)

We denote with j the indices of the grid parameters since the number of points

may be completely different to the number of polynomials, listed by i.

Chebyshev polynomials can also be classified by parity on the interval [−1, 1]:

T2i(−x) = T2i(x), T2i+1(−x) = −T2i+1(x). Then, if we want to interpolate

a function f(x) with a definite parity, even or odd, on that interval we may

directly use the polynomials with the same parity of f(x).

We construct the polynomials from the recurrence relation, for Chebyshev
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polynomials we have,

T0(x) = 1, T1(x) = x, Ti(x) = 2xTi−1(x)− Ti−2, (A.4)

It is quite useful to define the orthogonality condition by hand, since it is faster

than computing the discrete integrals, and an additional source of numerical

errors is also erased,∫ 1

−1

dx√
1− x2

Ti(x)Tj(x) = δij
π

1 + δi0
. (A.5)

The Skyrme field equation in the hedgehog ansatz reduces to an ODE for the

profile function f(r),

r2f ′′+2rf ′−sin(2f)+8 sin2(f)f ′′+4 sin(2f) (f ′)
2−4 sin2 f

sin(2f)

r
= 0. (A.6)

Given that the profile function extends up to infinity, the divergence of the

radial coordinate requires a special treatment of the equation. To solve this

issue, the space must be split in two different domains, D1 : r1 ∈ [0, rc], and

D2 : r2 ∈ [rc,∞), where rc is a free choice. The number of coefficients ND1
c

and ND2
c associated to each domain do not necessarily have to be equal.

Since the polynomials are defined on the interval [−1, 1], we change the ra-

dial coordinate to an adimensional, well-behaved spatial coordinate for each

domain,

D1 : r1 =
rc
2
(1 + x1), x1 ∈ [−1, 1] , (A.7)

D2 : r2 =
1

u
=

2rc
1− x2

, u ∈ [
1

rc
, 0], x2 ∈ [−1, 1] . (A.8)

As mentioned before, the main advantage of spectral methods is the expansion

of the functions in polynomials, since we analytically know how some operators

act on the polynomials. We show the three main linear operators that may
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be written as linear combinations of the polyonomials,

dTi
dx

= 2iTi−1 +
i

i− 2

dTi−2

dx
=
∑
j

Ld
ijTj, (A.9)

xTi =
1

2
(Ti+1 + Ti−1) =

∑
j

Lx
ijTj, (A.10)

1

x
Ti = 2Ti−1 −

1

x
Ti−2 =

∑
j

L
1/x
ij Tj. (A.11)

We denote the linear operators with the superindices d, x and 1/x to distin-

guish them. The size of these operators depend on the number of polynomials

considered, but the entries for a few number of coefficients may be found

in [106]. Obviously, more complex computations may be obtained from the

combinations of these operators, for instance, d2

dx2 is equivalent to L
dd
ij = Ld

ikL
d
kj.

Then, the field equation (A.6) is divided into a linear part in f and a source

term, written in terms of the new coordinate. In the first domain we have,

x21f
′′ + 2x1f

′ = s1, (A.12)

s1 = sin(2f)− 8 sin2 f − 4 sin(2f)(f ′)2 + 4 sin2(f)
sin(2f)

r2
. (A.13)

Note that all the non-linear terms in f are grouped in the source part. The

field equations in the second domain becomes,

(1− x2)
2f ′′ = s2, (A.14)

s2 = sin(2f)
(
1− 4u4(f ′)2

)
− 4u2 sin2 f (2u− sin(2f))− 4 sin2 f (2f ′ + uf ′′) .

(A.15)

The next step is to obtain the interpolation coefficients of the source term

function, s =
∑

i siTi(x). However, the non-linearities of the Skyrme field

equation introduces the function f , which is unknown, in the source term,

therefore, an initial guess for the profile function is required to compute the

coefficients si. Regarding the boundary conditions, f(0) = π and f(r → ∞) ∼
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r−2, we take the test function,

f(r) =
π

1 + r2
(A.16)

Then, the equations are generically written in this simple form,
∑

ij fiLijTj(x) =∑
i siTi(x), where Lij is the total linear operator resulting from the left part

of the equations (A.12) and (A.14).

Now, the boundary conditions must be implemented in the problem to ensure

that the solution will always satisfy them. In this framework we adopt the

tau-method, in which the last rows of the linear operators are used to fix the

boundary conditions, given that these are the least relevant. For notational

purposes, we use negative indices to refer to the last rows of the operator, so

that the index −1 := Nc − 1, corresponds to the last row, and −2 := Nc − 2

is the previous one. Each condition belongs to a single domain, then, in the

first domain we have,

f(r = 0) = π → f (D1)(x = −1) =
∑
i

f
(D1)
i Ti(−1) =

∑
i

f
(D1)
i (−1)i, (A.17)

L
(D1)
−2j = (−1)j, s

(D1)
−2 = π. (A.18)

Similarly, for the second domain we obtain,

f(r = ∞) = 0 →f (D2)(x = 1) =
∑
i

f
(D2)
i Ti(1) =

∑
i

f
(D2)
i , (A.19)

L
(D2)
−2j = 1, s

(D2)
−2 = 0. (A.20)

Actually, we have not used the last row of the linear operators, but the previous

one to impose the boundary conditions. The reason is that we still need

to impose continuity on the profile function and its first derivative between

both domains. For this purpose, both operators are brought together in a

larger square block-diagonal matrix, L(D), in which the matching conditions
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are imposed. The total operator is schematically represented below,

L(D) =

 L(D1) 0

0 L(D2)


The matching condition f (D1)(x = 1) = f (D2)(x = −1) is easily imposed in the

entire row of the total operator with indexN
(D1)
c −1, whilst the condition on the

first derivative requires the corresponding Ld operators, and it is imposed in

the last N
(D1)
c +N

(D2)
c −1 row. The total linear operator for N

(D1)
c = N

(D2)
c = 5

is explicitly shown,

L(D) =



0 2 10 30 68 0 0 0 0 0

0 2 16 54 128 0 0 0 0 0

0 0 6 36 104 0 0 0 0 0

1 −1 1 −1 1 0 0 0 0 0

−1 −1 −1 −1 −1 1 −1 1 −1 1

0 0 0 0 0 0 0 6 −24 60

0 0 0 0 0 0 0 −8 42 −112

0 0 0 0 0 0 0 2 −24 88

0 0 0 0 0 1 1 1 1 1

0 1 4 9 16 0 −1 4 −9 16



(A.21)

The final step, the resolution of the problem, consists in the computation of

the coeffcients fi such that the residuals Ri = L
(D)
ij fj−si are nearly zero. This

is achieved iteratively using a Newton-Rapshon algorithm, starting from the

initial seed (A.16).

The Newton-Raphson method proceeds as follows:

Jij(f
n) :=

∂Ri(f
n)

∂fnj
= Lij −

∂si
∂fnj

, Xn
i =

∑
j

J−1
ij (fn)Rj(f

n) (A.22)

fn+1
i = fni −Xn

i . (A.23)

It states that the vector of coefficients fn = {fni }, calculated after n iterations,

makes Ri tend to zero, so that we will get closer to the true solution after each
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iteration.

The Jacobian matrix Jij may be obtained analytically, however, if the source

is sufficiently complicated, the numerical calculation of J is a more efficient

choice. Using the discrete definition of the derivative we have,

Jij ≈
Ri(f

n + ϵfnj )−Ri(f
n − ϵfnj )

2ϵ
. (A.24)

We take the value ϵ ∼ 1% for a stable convergence of the method.

The profile function solution f(r) in the L24 model may be found in [154] as

well as the resulting energy for the B = 1 skyrmion.





Appendix B

The TOV formalism

The TOV formalism is the standard procedure to describe stellar equilibrium

in GR. It yields a system of ODEs for the spacetime metric functions and the

pressure of a perfect fluid which is minimally coupled to gravity. Therefore, it

solves the structure of a static, isotropic compact object under gravitational

equilibrium. This formalism was developed by Oppenheimer and Volkoff [181]

when they obtained and solved the system of differential equations, based on

the previous works of Tolman [223] in the analysis of spherically symmetric

spacetime metrics.

The starting point is the derivation of the field equations in GR from the EH

action [166] in the presence of an energy distribution,

S = SEH + Smatter =
1

16πG

∫
d4x
√

|g|R + Smatter. (B.1)

We will not consider the cosmological constant in this thesis, since it does not

have an important impact on NS observables due its tiny value (Λ ∼ 10−52

m−2) [61, 238].

In the EH action we find the determinant of the metric tensor, gµν, which

encodes the whole spacetime information. The Ricci scalar, denoted by R, is

the trace of the Ricci curvature tensor, R = Rµνg
µν, and the Ricci tensor may

be computed from the metric,

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

λρΓ
ρ
νµ − Γλ

νρΓ
ρ
λµ, (B.2)
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where Γα
µν are the Christoffel symbols,

Γα
µν =

1

2
gαβ (∂µgνβ + ∂νgµβ − ∂βgµν) . (B.3)

Variations with respect to the metric on the EH action yield a system of field

equations for each component of gµν. We have,

δSEH =
1

16πG

∫
d4x

[
δ
√

|g|R +
√
|g|δR

]
. (B.4)

To proceed, the following results are used [53],

δ
√

|g| = −1

2

√
|g|gµνδgµν, (B.5)

δR = Rµνδg
µν + δRµνg

µν, (B.6)

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
µλ, (B.7)

where ∇µa
ν = ∂µa

ν + Γν
µαa

α represents the covariant derivative in a generic

spacetime. The variations of the Christoffel symbols become easier to compute

by expanding first the relation δ(∇λgµν) = 0,

δΓρ
µν =

1

2
gρλ (∇µδgνλ +∇νδgµλ −∇λδgµν) . (B.8)

Then, they are introduced in the last expression to obtain the final result,

gµνδRµν = ∇λ

(
gµνδΓλ

µν

)
−∇ν

(
gµνδΓλ

µλ

)
=

(∇µ∇ν −∇α∇α g
µν) δgµν = − (∇µ∇ν −∇α∇α gµν) δg

µν. (B.9)

This final expression exactly vanishes, given that the covariant derivative ei-

ther applied on a constant or on the metric function is zero. Hence, the result

of the variations on the EH action is obtained computing the ratio δSEH/δg
µν.

Finally, the variational principle on the matter action yields, by definition, the

stress-energy tensor Tµν. Then, the field equations obtained from the total EH
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and matter actions give rise to the so-called Einstein equations,

Rµν −
1

2
gµνR = 8πGTµν. (B.10)

These equations relate the spacetime properties, in the left part, with the

matter content which is described by the stress-energy tensor.

In the TOV formalism, the matter inside the star is assumed to be described

by a perfect fluid stress-energy tensor,

T µν = (ρ+ p)uµuν − pgµν, (B.11)

where uµ is the four-velocity, which satisfies gµνu
µuν = 1 in the mostly minus

metric convention.

Additionally, static and spherical symmetry conditions are imposed, then we

use the standard spacetime metric parametrization,

gµνdx
µdxν = ds2 = A(r)dt2 −B(r)dr2 − r2dθ2 − r2 sin2 θ dϕ2, (B.12)

Both the metric and the stress-energy tensor are introduced in the Einstein

equations (B.10) and the system of ODEs is obtained from the (t, t) and (r, r)

components [100],

A′ = A

(
8πGBrp+

B − 1

r

)
, (B.13)

B′ = B

(
8πGBrρ− B − 1

r

)
. (B.14)

Additional equations to describe how matter is affected by the gravitational

field are required. A simple equation for the pressure may be obtained from

the r component in the conservation of the stress-energy tensor,

∇µT
µ
r = 0 −→ p′ = −ρ+ p

2

A′

A
. (B.15)

Conversely, the energy density is fixed by the EOS, which directly relates p

and ρ. At this point we may argue that the EOS previously obtained in a flat
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spacetime is not the correct choice to solve the TOV equations. However, the

equivalence principle ensures that a local Lorentz invariance frame exists in

the neighbourhood of any point in spacetime. The metric change factor over

a entire NS near the gravitational collapse may be computed, resulting in the

tiny value of ≲ 10−19 factor in the metric over the space between nucleons.

This negligible correction justifies the so-called bulk approximation to solve

the TOV equations using the flat spacetime EOS [100]. Therefore, the system

of ODEs is closed and ready to be solved once the correct initial conditions

are given.

All the variables are expanded in power series of r up to quadratic order, but

the linear order is suppresed by the smoothness condition around the origin,

A ∼ a0 + a1r
2 + ... (B.16)

B ∼ b0 + b1r
2 + ... (B.17)

p ∼ pc + p1r
2 + ... (B.18)

ρ ∼ ρc + ρ1r
2 + ... (B.19)

We find from inserting the previous expansions into the equations that B(0) =

1, and A(0) is irrelevant in the system. The reason is that A always appears

in the combination A′/A, which is zero at r = 0, therefore we set A(0) = 1.

Finally, the pressure at the origin, p(0) = pc, is the input value that fixes the

properties of the static spherically symmetric NS.

We use a 4th order Runge-Kutta method, with a constant step of ∆r = 10−3

km, to obtain the solutions for the metric functions and the pressure. The

equation (B.15) indicates that the pressure is always a decreasing function

inside the star, hence, the integration is stopped when the condition p(r =

R) = 0 is satisfied, and R is defined as the radius of the star. Although we

have used the same notation for the Ricci scalar and the radius of the star,

we maintain R from now on to denote the radius since the Ricci scalar is not

relevant in the TOV system.

The mass of the star is usually computed from the B(r) function evaluated at

the radius of the star. The reason is that for r ≥ R, there is no star anymore,

so that the Einstein equation reduces to the vacuum field equations, for which
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the Schwarzschild metric [166] is the only solution. The Schwarzschild solution

describes the spacetime surrounding an object with mass M and radius R.

Specifically, the (r, r) component of the metric

B(r) =

(
1− 2GM

r

)−1

, r ≥ R. (B.20)

In this way, we may extract the mass of our NS from this solution evaluated

at the radius of the star.

Different NS are obtained from the one-parameter family of pc values, such

that the curvesM(pc),M(R) are built. Small values of pc yield smaller masses,

but the radii will strongly depend of the EOS. Specifically, the presence of a

crust in the EOS, i.e., the ρ(p → 0) → 0 limit, implies that the small mass

region in the M(R) curve develops a tail of increasing radius for decreasing

mass. If there is not crust in the EOS, we obtain the opposite behaviour, in

which both mass and radius increase together in the whole M(R) curve. This

effect is expected to occur in quark matter EOS [81,185].

Increasing the value of pc we obtain larger masses until we reach a maximal

mass NS. Beyond this maximal mass, the resulting NS are unstable under

radial perturbations. There is, indeed a theorem which states that the stability

of the NS change if the condition,

dM

dρc
= 0, (B.21)

is attained. See [229] for a proof of this theorem, using a detailed perturbative

study on the stability of the solutions under radial perturbation.





Appendix C

Gradient Flow methods in the Skyrme

model

,Numerical methods are fundamental in the Skyrme model due to the com-

plexity of the solutions. We saw that already for the simplest B = 1 skyrmion,

either a shooting or spectral methods must be implemented to obtain the so-

lution. Higher topological charge solutions do not share spherical symmetry,

which implies that the angular variables appear in the field equations, there-

fore the problem is converted into a system of nonlinear PDEs.

A different approach might be considered in order to obtain solutions from

the Skyrme model. The solutions in a field theory are actually minimizers

of the energy functional. Hence, all the numerical techniques conceived for

optimization problems may be applied to solutions in our context.

The gradient flow is a simple, but effective, minimization procedure to find

the critical points of a scalar vector-valued function f(x), and it is widely

used, for instance, in machine learning algorithms training. It is based on the

evolution of the coordinates xi in the maximally decreasing direction, which

is given by the partial derivatives,

ẋi = −∂if(x), (C.1)

starting from an initial seed. Here, xi are the components of the x vector.

The discrete version of the gradient flow is the gradient descent method, which

solves the previous differential equation numerically, using the simplest dis-
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crete time evolution, x
(n+1)
i = x

(n)
i − ϵ∂if(x

(n)). The convergence rate of this

method mainly depends on the value of ∂if , then, despite it is an effective

method, it is not the most efficient choice to minimize a function given that

the convergence soon slows down. The parameter ϵ is the time step in the

gradient descent evolution, it is called learn rate in the machine learning con-

text. Large values of the learn rate slightly speed up the minimization, but

if the value is too high, the time evolution might diverge, hence, small values

are usually taken for a stable convergence.

In 1983, Yuri Nesterov applied the concept of acceleration in convex opti-

mization to find the optimal minimization algorithm. The accelerated gra-

dient descent (AGD) [173, 226] was proposed as the optimal first-order (i.e.,

only based on the gradient ∇f) minimization algorithm in convex optimiza-

tion [174] when an upper bound for the velocity in the optimization was found.

This method requires the introduction of an auxiliary variable yi, it is explic-

itly implemented below,

x
(n+1)
i = y

(n)
i − ϵ∂if(y

(n)), (C.2)

y
(n)
i = x

(n)
i +

n

n+ 3

(
x
(n−1)
i − x

(n−2)
i

)
. (C.3)

Note that the AGD is not a relaxation sequence in the sense that the next

iteration is always better than the previous one, but it converges in a faster

rate, therefore, we must be careful when the algorithm evolves into a worse

iteration.

The AGD method is implemented in order to find solutions from the Skyrme

model with B ≥ 1. However, solutions are minimal energy configurations of

the energy functional, which are infinitely extended in the three dimensional

space. Then, the AGD algorithm must be applied on a functional, where the

fields must be varied in the maximal decreasing energy direction. In this case,

the gradient of the function f(x) is substituted by the variations of the fields

ϕa on the energy functional E [ϕ, ∂ϕ],

ϕ(n+1)
a = ψ(n)

a − ϵ
δE [ϕ, ∂ϕ]

δϕa

∣∣∣∣
ϕ(n)

, (C.4)
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where ψa is the auxiliar field in the AGD algorithm, which is updated equiv-

alently to (C.3).

The starting point for the implementation of the AGD is the Skyrme model

energy functional E =
∫
d3x E . We expand the integrand, and express the

result in terms of the chiral vector nA = (σ, πa),

E =
1

24π2

[
(∂inA)

2 + (∂inA∂jnB − ∂inB∂jnA)
2+

+c6 (ϵABCDnA∂1nB∂2nC∂3nD)
2 + c0 (1− σ)

]
, (C.5)

where A = 0, 1, 2, 3. Computations are carried out much faster with the vector

field nA notation since the Lagrangian, except for the potential term, is chiral

invariant. Therefore, the four fields are treated equivalently in almost all the

mathematical and numerical computations, we identify ϕa := nA in (C.4).

Variations of the energy functional with respect to the fields yields the Euler-

Lagrange field equations,

δE [n, ∂n]

δnA
=

∂E
∂nA

− ∂i

(
∂E

∂ (∂inA)

)
. (C.6)

The chiral notation of the energy in terms of nA becomes even more helpful

when it comes to obtain the field equations. The expressions are given below,

∂E
∂nE

= 2c6B
0(ϵelmn∂1nl∂2nm∂3nn)− c0δ

e
0, (C.7)

∂s

(
∂E

∂(∂snE)

)
= 2∂2snE + 8

(
2∂s∂inA∂inA∂snE + (∂inA)

2∂2snE − ∂i∂snE∂inA∂snA

−∂inE∂i∂snA∂inA − ∂2snA∂inA∂inE
)
+ 2c6WsV

e
s − 6c6B

0(ϵelmn∂1nl∂2nm∂3nn),

(C.8)

where we have defined Ws and V
e
s separately to speed up the numerical com-

putations,

Ws = ϵABCDnA (∂s∂1nB∂2nC∂3nD + ∂s∂2nC∂1nB∂3nD + ∂s∂3nD∂1nB∂2nC) ,

(C.9)
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V e
s = ϵeabcnA

(
−δ1s∂2nB∂3nC + δ2s∂1nB∂3nC − δ3s∂1nB∂2nC

)
. (C.10)

Additionally, since the Skyrme field is unitary, this condition must be also

imposed in the minimization, then the problem becomes a constrained mini-

mization. For this purpose the energy density is redefined with the following

Lagrange multiplier, E → E + λ(1 − nAnA). The value for λ may be solved

using the equation of motion (C.1) and the unitary condition again,

nAnA = 1 → 2nAṅA = 0

ṅA = −δE[n,∂n]
δnA

− 2λnA

}
−→ λ = −1

2

δE[n, ∂n]

δnA
nA (C.11)

The minimization is performed on a finite size box of discrete space with

step ∆x. The energy and baryon number is computed in each iteration using

Riemann sum definition to check the correct convergence of the algorithm.

The typical value of the learn rate is ϵ ∼ 10−5 for a grid spacing ∆x = 0.2.

For a better accuracy in the solution, we may decrease the grid spacing to

∆x = 0.1, then a smaller ϵ ∼ 10−6 must be used to ensure the convergence of

the algorithm. Moreover, the discretization of the space yields some numerical

errors such that the fields do not exactly satisfy unitarity, therefore we impose

this condition renormalizing the fields after each iteration, nA → nA√
nBnB

.

We take the rational map configurations as the initial conditions, with an

exponential or power-law decaying profile function f(r), depending on the

presence of the pion mass term. Then, the minimization starts and the en-

ergy decreases after each iteration, however we might find that the energy

increases after some iterations. In this case we set n to zero in (C.4), and the

minimization is restarted.

If the minimal energy configuration is obtained, the Derrick scaling argument

states that it must satisfy the so-called virial constraint [155],

E ′(σsx)
∣∣∣
σs=1

= 0 −→ E2 − E4 − 3E6 + 3E0 = 0. (C.12)

We consider that the minimization algorithm has successfully converged when

the accuracy of the last condition is 10−5.
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[20] Christoph Adam, Alberto Garćıa Mart́ın-Caro, Miguel Huidobro, Ri-
cardo Vázquez, and Andrzej Wereszczynski. Quantum skyrmion crystals
and the symmetry energy of dense matter. Phys. Rev. D, 106(11):114031,
2022. arXiv:2202.00953, doi:10.1103/PhysRevD.106.114031.
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of rotating boson stars and geodesics around them: new type of orbits.
Phys. Rev. D, 90(2):024068, 2014. arXiv:1405.4837, doi:10.1103/

PhysRevD.90.024068.

[109] S. K. Greif, K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk.
Equation of state constraints from nuclear physics, neutron star masses,
and future moment of inertia measurements. Astrophys. J., 901(2):155,
2020. arXiv:2005.14164, doi:10.3847/1538-4357/abaf55.

[110] Sven Bjarke Gudnason. Loosening up the Skyrme model. Phys. Rev. D,
93(6):065048, 2016. arXiv:1601.05024, doi:10.1103/PhysRevD.93.
065048.

[111] Sven Bjarke Gudnason and Chris Halcrow. A Smörg̊asbord of Skyrmions.
JHEP, 08:117, 2022. arXiv:2202.01792, doi:10.1007/JHEP08(2022)
117.

[112] Sven Bjarke Gudnason and Chris Halcrow. Quantum binding energies

https://doi.org/10.1103/PhysRevC.60.025803
https://doi.org/10.1038/218731a0
https://doi.org/10.1016/0370-2693(87)91502-4
https://doi.org/10.1016/0370-2693(87)91502-4
https://doi.org/10.1007/BF02812722
http://arxiv.org/abs/gr-qc/0003072
http://arxiv.org/abs/gr-qc/0003072
https://doi.org/10.1006/jcph.2001.6734
http://arxiv.org/abs/gr-qc/0609020
https://doi.org/10.1051/eas:2006112
https://doi.org/10.1051/eas:2006112
http://arxiv.org/abs/0706.2286
https://doi.org/10.12942/lrr-2009-1
http://arxiv.org/abs/1405.4837
https://doi.org/10.1103/PhysRevD.90.024068
https://doi.org/10.1103/PhysRevD.90.024068
http://arxiv.org/abs/2005.14164
https://doi.org/10.3847/1538-4357/abaf55
http://arxiv.org/abs/1601.05024
https://doi.org/10.1103/PhysRevD.93.065048
https://doi.org/10.1103/PhysRevD.93.065048
http://arxiv.org/abs/2202.01792
https://doi.org/10.1007/JHEP08(2022)117
https://doi.org/10.1007/JHEP08(2022)117


188 Bibliography

in the Skyrme model. 7 2023. arXiv:2307.09272.

[113] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev. Neutron stars 1: Equa-
tion of state and structure, volume 326. Springer, New York, USA, 2007.
doi:10.1007/978-0-387-47301-7.

[114] M. N. Harakeh, K. van der Borg, T. Ishimatsu, H. P. Morsch, A. van der
Woude, and F. E. Bertrand. Direct Evidence for a New Giant Resonance
at A-80-13 MeV in the Lead Region. Phys. Rev. Lett., 38:676–679, 1977.
doi:10.1103/PhysRevLett.38.676.

[115] Derek Harland. Topological energy bounds for the Skyrme and Faddeev
models with massive pions. Phys. Lett. B, 728:518–523, 2014. arXiv:

1311.2403, doi:10.1016/j.physletb.2013.11.062.

[116] Derek Harland, Paul Leask, and Martin Speight. Skyrme crystals with
massive pions. J. Math. Phys., 64:103503, 2023. arXiv:2305.14005,
doi:10.1063/5.0159674.

[117] James B. Hartle. Slowly rotating relativistic stars. 1. Equations of struc-
ture. Astrophys. J., 150:1005–1029, 1967. doi:10.1086/149400.

[118] Alexander Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hart-
mann. How massive single stars end their life. Astrophys. J., 591:288–
300, 2003. arXiv:astro-ph/0212469, doi:10.1086/375341.

[119] Jason W. T. Hessels, Scott M. Ransom, Ingrid H. Stairs, Paulo Ce-
sar Carvalho Freire, Victoria M. Kaspi, and Fernando Camilo. A ra-
dio pulsar spinning at 716 Hz. Science, 311:1901–1904, 2006. arXiv:

astro-ph/0601337, doi:10.1126/science.1123430.

[120] A. Hewish, S. J. Bell, J. D. H Pilkington, P. F. Scott, and R. A. Collins.
Observation of a rapidly pulsating radio source. Nature, 217:709–713,
1968. doi:10.1038/217709a0.

[121] Tanja Hinderer, Benjamin D. Lackey, Ryan N. Lang, and Jocelyn S.
Read. Tidal deformability of neutron stars with realistic equations of
state and their gravitational wave signatures in binary inspiral. Phys.
Rev. D, 81:123016, 2010. arXiv:0911.3535, doi:10.1103/PhysRevD.
81.123016.

[122] G. Holzwarth and B. Schwesinger. Baryons in the Skyrme Model. Rept.
Prog. Phys., 49:825, 1986. doi:10.1088/0034-4885/49/8/001.

http://arxiv.org/abs/2307.09272
https://doi.org/10.1007/978-0-387-47301-7
https://doi.org/10.1103/PhysRevLett.38.676
http://arxiv.org/abs/1311.2403
http://arxiv.org/abs/1311.2403
https://doi.org/10.1016/j.physletb.2013.11.062
http://arxiv.org/abs/2305.14005
https://doi.org/10.1063/5.0159674
https://doi.org/10.1086/149400
http://arxiv.org/abs/astro-ph/0212469
https://doi.org/10.1086/375341
http://arxiv.org/abs/astro-ph/0601337
http://arxiv.org/abs/astro-ph/0601337
https://doi.org/10.1126/science.1123430
https://doi.org/10.1038/217709a0
http://arxiv.org/abs/0911.3535
https://doi.org/10.1103/PhysRevD.81.123016
https://doi.org/10.1103/PhysRevD.81.123016
https://doi.org/10.1088/0034-4885/49/8/001


Bibliography 189

[123] C. J. Horowitz, J. Piekarewicz, and Brendan Reed. Insights into nuclear
saturation density from parity violating electron scattering. Phys. Rev.
C, 102(4):044321, 2020. arXiv:2007.07117, doi:10.1103/PhysRevC.
102.044321.

[124] Conor J. Houghton, Nicholas S. Manton, and Paul M. Sutcliffe. Rational
maps, monopoles and Skyrmions. Nucl. Phys. B, 510:507–537, 1998.
arXiv:hep-th/9705151, doi:10.1016/S0550-3213(97)00619-6.

[125] S. Huth et al. Constraining Neutron-Star Matter with Microscopic and
Macroscopic Collisions. Nature, 606:276–280, 2022. arXiv:2107.06229,
doi:10.1038/s41586-022-04750-w.

[126] Elizabeth Ellen Jenkins, Aneesh V. Manohar, and Mark B. Wise. Chiral
perturbation theory for vector mesons. Phys. Rev. Lett., 75:2272–2275,
1995. arXiv:hep-ph/9506356, doi:10.1103/PhysRevLett.75.2272.

[127] Nan Jiang and Kent Yagi. Analytic I-Love-C relations for realistic neu-
tron stars. Phys. Rev. D, 101(12):124006, 2020. arXiv:2003.10498,
doi:10.1103/PhysRevD.101.124006.

[128] D. B. Kaplan and A. E. Nelson. Kaon Condensation in Dense Matter.
Nucl. Phys. A, 479:273c, 1988. doi:10.1016/0375-9474(88)90442-3.

[129] Ryotaro Kase and Shinji Tsujikawa. Neutron stars in f(R) gravity and
scalar-tensor theories. JCAP, 09:054, 2019. arXiv:1906.08954, doi:
10.1088/1475-7516/2019/09/054.

[130] Igor R. Klebanov. Nuclear Matter in the Skyrme Model. Nucl. Phys. B,
262:133–143, 1985. doi:10.1016/0550-3213(85)90068-9.

[131] Igor R. Klebanov. Strangeness in the Skyrme model. In NATO ASI:
Hadrons and Hadronic Matter, 12 1989.

[132] Vladimir B. Kopeliovich. The Bubbles of matter from multiskyrmions.
JETP Lett., 73:587–591, 2001. arXiv:hep-ph/0105102, doi:10.1134/
1.1392417.

[133] Vladimir B. Kopeliovich. MultiSkyrmions and baryonic bags. J. Phys. G,
28:103–120, 2002. arXiv:hep-ph/0109229, doi:10.1088/0954-3899/
28/1/308.

[134] Steffen Krusch. Homotopy of rational maps and the quantization of
skyrmions. Annals Phys., 304:103–127, 2003. arXiv:hep-th/0210310,

http://arxiv.org/abs/2007.07117
https://doi.org/10.1103/PhysRevC.102.044321
https://doi.org/10.1103/PhysRevC.102.044321
http://arxiv.org/abs/hep-th/9705151
https://doi.org/10.1016/S0550-3213(97)00619-6
http://arxiv.org/abs/2107.06229
https://doi.org/10.1038/s41586-022-04750-w
http://arxiv.org/abs/hep-ph/9506356
https://doi.org/10.1103/PhysRevLett.75.2272
http://arxiv.org/abs/2003.10498
https://doi.org/10.1103/PhysRevD.101.124006
https://doi.org/10.1016/0375-9474(88)90442-3
http://arxiv.org/abs/1906.08954
https://doi.org/10.1088/1475-7516/2019/09/054
https://doi.org/10.1088/1475-7516/2019/09/054
https://doi.org/10.1016/0550-3213(85)90068-9
http://arxiv.org/abs/hep-ph/0105102
https://doi.org/10.1134/1.1392417
https://doi.org/10.1134/1.1392417
http://arxiv.org/abs/hep-ph/0109229
https://doi.org/10.1088/0954-3899/28/1/308
https://doi.org/10.1088/0954-3899/28/1/308
http://arxiv.org/abs/hep-th/0210310


190 Bibliography

doi:10.1016/S0003-4916(03)00014-9.

[135] Steffen Krusch. Finkelstein−Rubinstein constraints for the Skyrme
model with pion masses. Proc. Roy. Soc. Lond. A, 462:2001–2016, 2006.
arXiv:hep-th/0509094, doi:10.1098/rspa.2006.1664.

[136] M. Kugler and S. Shtrikman. A new skyrmion crystal. Phys. Lett. B,
208:491–494, 1988. doi:10.1016/0370-2693(88)90653-3.

[137] M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Côté, P. Pirès,
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The present thesis aims to develop a realistic description of 
highly dense nuclear matter and neutron stars within the 
Skyrme model. For this purpose, the properties of neutron 
stars    and the problem of ultra-dense nuclear matter are 
introduced. 
 
The main features of the Skyrme model and the previous 
attempts to reproduce neutron stars are reviewed to introduce 
a physically motivated generalization of the model that yields 
remarkable results  for  the  neutron  stars observables.  
 
We establish the basis for a consistent description of infinite 
nuclear matter at each range  of  densities  and perform the 
standard quantization procedure to account for the isospin-
asymmetric effects. Finally, we consider the kaon 
condensation in the neutron star cores, and we include ρ 
mesons as a viable solution to the compression modulus 
problem. 
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