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Abstract We study the performance of one-qubit quantum and semiclassic refrigerators with the qubit on the hot side. We obtain
the cooling power and the � function. We discover that the quantum refrigerators perform differently to classic ones. We also prove
that even in the high-temperature limit, where the semiclassic version of the refrigerator is valid, the results of the optimization are
different to those obtained by optimizing classic refrigerators.

Quantum Thermodynamics (QTD) is the branch of Quantum Mechanics (QM) dealing with the study of engines that produce work
on the nanoscale [1]. A general definition of a quantum thermodynamic machine says quantum machines are thermal engines that
work under the time evolution rules that are dictated by the QM. This definition is very suitable since it extends the current definitions
of quantum heat engines (QHEs) in such a way that it allows quantum refrigerators (QRs) to be included.

In the last 70 years, some attention to QHEs and QRs has been devoted. In recent years, furthermore, research in the field of
QTD has become quite specialized. This means that we can define three types of jobs within this field. In a first group, we find
jobs on the basis of QTD. In them, the authors study the basis of the QTD by proving how the basic principles of thermodynamics
arise from the laws of QM. In a second group, we find works that explore the general properties of thermodynamic quantum
systems, trying to understand them and to obtain some properties such as energy fluxes Qh and Qc, the system entropy change
�S, and other thermodynamic properties [1–8]. In them, the authors also use the results to asses or to discard conjectures about
the similarity between QTDs and classic thermodynamics. Finally, we find another set of works that are, somehow, more applied:
those studying how a concrete quantum thermodynamic system performs in the best possible way. Among the works belonging to
the last group, we find works studying how much work is produced by a quantum system or how a classic thermodynamic cycle
can be reproduced using a concrete quantum system. In this group, we also find other works that are even more applied. In them,
the authors choose a concrete version of a quantum machine and, using the Finite-time Thermodynamics (FTTD) [9–30], obtain
its relevant thermodynamic functions using, to calculate the relevant fluxes in the machine, the theory of open-quantum systems
[31–35].The authors also optimize the performance of the engines [36–39].

As it is seen looking at the references [36–39], the strategy mentioned in the previous paragraph has only been used to study
qubit-based QHEs, but it has not been used to study qubit-based QRs. From a theoretical standpoint, there is no reason not to extend
the works on qubit-based QHEs to qubit-based QRs. In this work, we start with this extension proposing the study of a one-qubit
QR (OQR) with the qubit on the hot side, see Fig. 1. Doing this, we prove that the methods used in [36–39] to study QHEs are also
applicable to the study of QRs and, by extension, to other thermodynamic engines. Moreover, and from a more practical standpoint,
the study presented in this work also serves to understand whether QRs perform as classic refrigerators or not, thus also opening
the way to carry out studies on quantum systems that could work as refrigerators on the nanoscale. To achieve this last target, we
study here the cooling power Qc and the � function (�) [27] of OQRs. When doing it, we also comment on the effects of the
strength of the coupling between the qubit and the thermal baths, thus following the research lines scoped in [40–42]. Finally, it is
worthy to mention that our OQR is, somehow, similar to other devices that are studied in the literature [43, 44], which makes our
study (i) comparable and (ii) demonstrates that the study of this type of machines is essential to improve our understanding of the
fundamental principles of QTD.

The work is organized as follows: In Sect. 1, we present the OQR under study in this work. We start calculating (by means of
the solutions of the Lindbland equation [45]) the relevant heat fluxes of the machine. Then we deduce, using the techniques of the
FTTD [9–30], Qc and �. In Sect. 2, we optimize the performance of different OQRs. First, we optimize them considering that
the temperatures Th and Tc of the hot and cold baths are fixed to understand the performance of OQRs that work coupled to fixed
environments. Then, we carry a more general investigation considering OQRs of different Carnot COPs (εC ). This second kind of
studies allow us to optimize the performance of OQRs working in different environments. In Sect. 3, we explore the behavior of the
OQR in the limit in which E and Tc satisfy E/Tc � 1. Our intention is to understand whether, in this limit, OQRs reduce to their
classic counterpart or not. It is also our objective to study how semiclassic refrigerators can be optimized, which are their optimal

a e-mail: jjfernandez@fisfun.uned.es (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-024-05437-z&domain=pdf
http://orcid.org/0000-0002-7909-2328
mailto:jjfernandez@fisfun.uned.es


  619 Page 2 of 10 Eur. Phys. J. Plus         (2024) 139:619 

working properties and how do they compare to those of classic refrigerators. We end this work with a summary of our findings and
a perspective of future work.

1 One-qubit quantum refrigerator with the qubit on the hot side

Figure 1 depicts the OQR that is studied in this work. It has two baths filled with bosons on its extremes. One of them is called hot
bath and is characterized by the temperature Th . The other one is called cold bath, and it is characterized by the temperature Tc. Both
baths are filled with bosons and have the spectrum of an oscillator. The bath of temperature Tc is in perfect contact with a Carnot
Refrigerator (CR) that extracts power from it and rejects power to the bath of temperature T1. This bath is connected with that of
temperature Th via a qubit of energy E. Thus, Tc, Th and T1 in our engine satisfy T1 > Th > Tc.

In our engine, the amount of energy that passes from the bath of temperature T1 to that of temperature Th is controlled by the
qubit of energy E. As it has been proven in previous works [36–39], controlling the energy E of the qubit, the amount of energy that
ends in the bath of temperature Th is increased (if E gets bigger) or decreased (if E gets smaller).

In order to calculate the energy fluxes circulating through the OQR, we assume that the Hamiltonian of the qubit is

H � E

2

(
1 0
0 − 1

)
. (1)

The energy levels of the qubit are ±E/2, and its state is characterized by the 2 × 2 time-dependent density matrix ρ(t). The time
evolution of ρ(t) is given by the Lindbland equation [45]:

dρ(t)

dt
� −i[H , ρ(t)] + Dh[ρ] + D1[ρ]. (2)

The first term on the right hand side of Eq. (2) gives the unitary part of the evolution and expresses the quantum nature of our qubit.
The other two terms, Dh[ρ] and D1[ρ], are known as the dissipators and introduce in the equation the interactions between the qubit
and the baths of temperatures Th and T1. In OQRs, the energetic spectra of the cold and hot baths are those of a harmonic oscillator.
Thus, the dissipators have the following structure:

Di � �i

[
ni

(
σ +ρσ− − 1

2
{σ−σ +, ρ}

)
+ n̄i

(
σ +ρσ− − 1

2
{σ−σ +, ρ}

)]
. (3)

Here, i � h stands for the dissipator connecting the qubit to the reservoir of Th and i � 1 for the one that connects the qubit
and the reservoir of T1. Following what is done in previous works, we use Barrow’s [46] approximation. So, we consider that the
thermal couplings �1 and �h are constant in each calculation to be carried out. In Eq. (3), the creation and annihilation operators
are σ + � |1〉〈0| and σ− � |0〉〈1|. The occupation of the bath i (i � 1, h, c) at the energy E is ni � [exp(βi E) − 1], assuming that
the baths are filled with bosons. In ni , βi � 1/Ti is the temperature inverse. As in previous works [36–39], we use Planck’s units.
This means that for us, kB � � � 1 and that we assume that the dissipation constants �1 and �h , the temperatures T1, Th and Tc
and the energy E have no units.

It is also interesting to note that for us, a concrete OQR is defined once the constants �1 and �1 and the temperatures Th and Tc
are given. When the OQR is defined, we calculate the energy flux Qh � Tr[HDh[ρ]] going from the reservoir of temperature T1 to
that of temperature Th [36]. As the reservoir of T1 remains at this temperature all the time, we know that Q1, the energy rejected
from the CR, is Q1 � Tr[HDh[ρ]], i.e., we know that Qh � Q1. For OQRs working in steady state, Qh and Q1 are obtained by

Fig. 1 One-qubit quantum
refrigerator (OQR). In the
extremes of the OQR, we find two
thermal baths of temperatures Th
and Tc . They are filled with
bosons, and their energy spectrum
is that of an oscillator. The
reservoir of temperature T1 has
the same structure, and it is
connected to the reservoir of
temperature Th by a qubit of
energy E. Between the reservoirs
of temperatures Tc and T1, a CR
extracts energy from the reservoir
of temperature Tc , injects it into
the reservoir of temperature T1
and accepts power Pin
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doing dρ(t)/dt � 0 in Eq. (2) and using the solution ρ̄ � (1 + azσ z)/2 [36] in Eq. (3). Here, az � (�h + �1)/(�h Sh + �1S1),
Sh � 2nh + 1 and S1 � 2n1 + 1 are two functions of the occupations of the reservoirs. Using ρ̄, we calculate

Qh � γh E(n1 − nh), (4)

where γ � �h�1/(�h Sh + �1S1). We note that Qh ≥ 0 since n1 ≥ nh , and that this happens because T1 ≥ Th .
Figure 1 shows that at the core of the OQR, a CR boosts the cooling process. The CR works between two isotherms of temperatures

Tc and T1, with Tc < T1, so its COP is ε � Tc/(T1 − Tc). Since in the OQR, T1 ≥ Th , we know that ε is always bigger than the
Carnot COP εC � Tc/(Th − Tc), defined by the temperatures of the baths placed on the OQR extremes. Moreover, since we know
that the CR works reversibly, we realize that Q1/T1 � Qc/Tc. This equality is used to calculate

Qc � Tc
T1

γh E(n1 − nh). (5)

Once we have Qc, we use the energy conservation principle Qc + Pin � Qh to calculate Pin ,

Pin � γh E(n1 − nh)

[
T1

Tc
− 1

]
. (6)

Moreover, as n1 > nh and Tc/T1 > 1, we know that Pin > 0. Finally, having Qc, Qh and Pin , we calculate the OQR COP,

ε � (Tc/T1)γ E(n1 − nh)

γ E(n1 − nh) − (Tc/T1)γ E(n1 − nh)
� Tc

T1 − Tc
. (7)

and the �-function � � 2ε − εC

ε
Qc [47]. �, in terms of the parameters defining the OQR, is

� � γh E
2Th − Tc − T1

Th − Tc

Tc
T1

(n1 − nh). (8)

2 Optimizations

2.1 Fixed Th and Tc

We start studying Qc and �, see Eqs. (5) and (8), in terms of ε to understand the working properties of OQRs. To prove the generality
of our results, we present results for two combinations of temperatures (A) Th � 10 and Tc � 2 and (B) Th � 20 and Tc � 2. In
both cases, we use E � 10. For the set (A), εC � 1/4, and for the set (B), εC � 1/9. Using Fig. 2, we analyze the behavior of Qc

in terms of ε. We find the following results: (i) Qc is zero for ε � 0 and ε � εC . (ii) It is positive for every other value of ε ∈ (0,
εC ) and (iii) reaches a maximum for ε � ε∗. ε∗ is always different to 0 and εC . The concrete value of ε∗ is different for each OQR
and changes with E, Th and Tc. It also changes with �h and �1.

Our results for Qc show that its curve, in terms of ε, is similar to those of classic refrigerators. Thus, Qc has maximum for ε 	� 0,
ηC and ε ∈ (0, ηC ). We also find that while in classic refrigerators, ε only depends on Th and Tc, in OQRs, ε depends on Th , Tc E,
�h and �1. To better check this result and to prove the dependence of Qc on E more clearly, we present in Fig. 3 the curve of Qc

versus ε of OQRs where the hot and cold heat reservoirs have the temperatures Th � 10 and Tc � 2. For completeness, we present
results for OQRs of qubit energies E � 10, 15, 20. We appreciate that the maximum value Qmax

c of Qc is different for the three
OQRs. We also see that the value ε∗ of ε, for which Qc � Qmax

c , is different for different values of E. This means that in OQRs, Qc

Fig. 2 Cooling power Qc
calculated for two different OQRs
with εC � 0.25 (black line) and
εC � 0.11 (red line)
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Fig. 3 Cooling power Qc
calculated for three different
OQRs with εC � 0.25. The OQRs
qubit energies are E � 10 (black
line), E � 15 (red line) and
E � 20 (blue line)

Fig. 4 � function versus ε. We
present results for two different
OQRs. One of them has
εC � 0.25 (black line), and the
other one has εC � 0.11 (red line)

is modified when E changes. This result is important, showing that OQRs work differently to classic refrigerators, as in the last ones,
Qmax

c and ε∗ only change with Th and Tc and that it does not change with the value of the heat resistance [20]. Let us remember
that in classic refrigerators, neither Qmax

c nor ε∗ depend on the thermal resistances placed on the hot branch of the refrigerator [20].
Doing calculations for different values of Th , we find that Qmax

c increases with Th and that ε∗ decreases with this temperature.
We show this presenting results for Tc � 2 and εC � 0.25 (Th � 5Tc)/εC � 0.11 (Th � 11Tc) in Fig. 3. We highlight that the
results presented in the figure are general and that similar results are found for other values of εC .

Figure 4 helps us to study the behavior of � in terms of ε. � is negative in the limit ε → 0, increases when ε grows until reaching
a maximum and then decreases to zero when ε → εC . This behavior is general for every value of εC , and it is, of course, found in
the two curves of our figure (corresponding to εC � 0.11 and εC � 0.25). The value ε† of ε for which � is maximum depends on εC
indicating that it depends on Th and Tc. In the concrete cases studied, we find �max (εC � 0.11) � 0.055, �max (εC � 0.25) � 0.006,
ε†(εC � 0.11) � 0.06 and ε†(εC � 0.25) � 0.17. This figure also allows us to understand the results of optimizations using the
�-criteria on OQRs showing that the result of the optimization is a maximization of the cooling power (see Fig. 3), restricted with
the condition of doing the machine to work at a (real) COP that is under the Carnot one. We highlight that in the optimizations
carried out here in particular, and in those that can be done in general, the optimizations using the �-criterium result in working
configurations where the cooling power is not maximum (see the points corresponding to ε � 0.06 and ε � 0.17) in Fig. 3, but that
it has a value that is near to the maximum. It is very important to stress here that the result found for � is clearly different to the
one found in classic refrigerators, where it is found that � increases with ε, so � has no maximum. Thus, we can affirm that the
behavior of OQRs and classic refrigerators is different.

To understand the behavior of �max and ε† with E, we fix εC � 0.25 and carry out calculations for OQRs with E � 10, 15 and
20. The results, see Fig. 5, show that when E increases, �max gets bigger. This, see Eq. (4), happens due to two reasons: (i) � and
Qc are proportional to each other and (ii) Qc, according to Eq. (5), increases with E. These two reasons imply that � increases with
E and that the increase is almost linear. Theoretically, this result is deduced by combining Eqs. (4) and (5) and checking the linear
dependence of the two functions on E. Moreover, we find that ε† gets smaller when E gets bigger. We highlight that the behavior of
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Fig. 5 � calculated for three
different OQRs having εC � 0.25.
In one of the OQRs, E � 10
(black line), in another, E � 15
(red line) and in the third one,
E � 20 (blue line)

Fig. 6 Maximum cooling power
Qmax
c versus E. We present

results corresponding to εC � 2,
4, 8, 16 and 32. We use Th � 10
and �h � �1 � 10−3

ε† with E is similar to the one found for ε∗ with the energies of the qubits as the two functions are related. This result is logical due
to the proportionality existing between Qc and � once Th and Tc are fixed, a result that can be theoretically checked using Eq. (4).

2.2 Optimizations for different E

Once we have optimized OQRs for fixed configurations of the hot and cold baths (i.e., for fixed combinations of the values of Th
and Tc), we perform a more general optimization changing the energy E of the qubit. In order to present the results in the best way,
we perform calculations for several values of εC , i.e., for different combinations of Th and Tc.

The optimizations are done now using the following protocol: (i) We choose εC , and we fix Th � 10. (ii) We carry out calculations
for several different qubit energies E. For each pair E, εC , we calculate

Tc � εC

1 + εC
Th . (9)

(iii) Then we do a loop of the possible values of ε calculating, for each QR, Qc and �. (iv) We seek the biggest values Qmax
c and

�max of Qc and �. Upon finding them, we also obtain ε∗ and ε†. (v) Then we plot Qmax
c , �max , ε∗ and ε† as functions of E.

Finally, we change to another E and repeat steps (i)–(v), thus obtaining information for the chosen value of εC . Finally, we start the
procedure again and repeat steps (i)–(v) for a new value of εC . To do the optimization process as complete as possible, we perform
calculations for εC � 2, 4, 8, 16 and 32.

Figure 6 shows that Qmax
c increases linearly with E for every value of εC (see the lines of different colors in the figure). Thus,

every time that we change εC , the slope of the line defining Qmax
c in terms of E changes, thus revealing that Qmax

c depends linearly
on E as is deduced from Eq. (5).

We present, in Fig. 7, ε∗ in terms of E to check how the COP corresponding to the best cooling power changes with E. The figure
reveals two behaviors: (i) When εC is fixed, ε∗ is a constant function that does not change with E, being this behavior independent
of the concrete value of εC used in the calculation. We highlight that, for every εC , a small reduction of the value ε∗ happens if
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Fig. 7 COP corresponding to
Qmax
c versus E. We present

results corresponding to εC � 2,
4, 8, 16 and 32. We use Th � 10
and �h � �1 � 10−3

Fig. 8 � versus E. We present
results corresponding to εC � 2,
4, 8, 16 and 32. We use Th � 10
and �h � �1 � 10−3

E > 20. This means that the value of E almost does not affect the optimization of Qc and that only for very big values of E, small
reductions of Qc that are smaller than 1% are found.

Let us now study the behavior of � with E for different fixed values of εC . Figure 8 shows that � increases linearly with E, being
this behavior independent of εC (i.e., of the temperatures of the two heat reservoirs). We note the similarity of this result to the one
found studying the relation between Qc and E. However, the results are not completely equal, being the major difference between
them is the behavior found when εC is changed. Thus, we find that the slope of the curve Qc vs. ε increases with εC and that the
slope of the curve � vs. ε decreases upon increasing εC .

Finally we check how ε† changes with E. The results of the study are found in Fig. 9, where we include results for εC � 2, 4, 8,
16 and 32. We observe that ε† does not change with E for anyone of the εC s. This means that different OQRs with distinct values of
E work having the same �-regime. This result is very important, as it assesses the stability of OQRS working on the best �-regime
when E is changed.

3 OQRs working in the high-temperature limit: a semiclassic model

Let us now study the performance of OQRs that work connected to heat reservoirs satisfying Th � E and Tc � E . In this limit, the
OQR seems to be a classic refrigerator, but it is slightly different to them as some of its parameters still depend on E. Moreover, this
limit is very interesting since, in it, the coupling between the qubit and the bath is necessarily small [43, 44], what asses the solution
for Qc found in Sect. 2 to be valid. So, the result is a heat engine that works by following the classic rules but that has a quantum
reminiscences inside.

The semiclassic model of the OQR is depicted in Fig. 10. As we see, the form of the refrigerator is purely classic. It has
two heat reservoirs of temperatures Th and Tc on its extremes and a middle heat reservoir of temperature T1. In this semiclassic
refrigerator, T1 ≥ Th ≥ Tc, as is explained in [20]. Moreover, between the reservoirs of temperatures T1 and Th , a thermal resistance
R � �E/(4Th) exists; we remark the dependence of the resistance on E, being this factor what links the new device with its quantum
origins. Following the results of previous works [36, 39], we obtain the energy flux at the hot side of the engine.
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Fig. 9 COP corresponding to
�max versus E. We present results
corresponding to εC � 2, 4, 8, 16
and 32. We use Th � 10 and
�h � �1 � 10−3

Fig. 10 Semiclassic version of the
one-qubit quantum refrigerator
(OQR). On the hot extreme, the
conduction happens through a
classic resistance R. R is defined in
terms of the parameters of the
OQR shown in Fig. 1

Qh � �E

4Th
(T1 − Th) � Kh(T1 − Th). (10)

Equation 10 shows that the amount of energy passing from the bath of temperature T1 to that of temperature Th depends linearly on
the difference T1 − Th and that the coefficient defining the heat Kh depends on E, the energy of the qubit. This means that, although
the classic OQR seems to work as a classic refrigerator, the internal parameters defining it still preserve their quantum nature and
depend on the quantum parameters: �, and E. Note that we have stated that Kh is a constant, and in fact, it is for each OQR since
when we define Kh , we set the values of � and E. Finally, it is important to note that Qh > 0 because T1 > Th , as explained in
Calvo’s et al. work [20].

Once we have Qh , we calculate Qc and �. Qc is obtained using the reversibility condition of the CR at the heart of the engine.
For the semiclassic OQR, this condition is written down as Q1/T1 � Qc/Tc, and when it is used to calculate Qc, we obtain

Qc � ε

1 + ε

�E

4Th
(T1 − Th) (11)

using now the energy conservation principle, we obtain,

Pin � 1

1 + ε

�E

4Th
(T1 − Th). (12)

We highlight the use of ε � Tc/(T1 − Tc) in Eqs. (11) and (12) instead of T1 and Tc for commodity.
Employing now Eq. (4), we find

� � �ETc
4Th

(1 − Th/Tc)
2Th − T1 − Tc

Th − Tc
. (13)

Let us now optimize Qc, Pin and � to better understand the functioning of the high-temperature semiclassic OQR.

1. We first do the derivative of Qc to T1 to obtain

dQc

dT1
� γ ETc

4Th

Th
T 2

1

(14)

dQc/dT1 is a positive function for every value of T1. This means that Qc has no extremes and it is a function that only grows
with T1. It cannot be used to optimize the semiclassic OQR. This result proves that OQRs and semiclassic OQRs work somehow
differently. Note that in previous sections, we have proven that in OQRs, Qc is a function that can be used to optimize OQRs.

123



  619 Page 8 of 10 Eur. Phys. J. Plus         (2024) 139:619 

2. The derivative of Pin is

dPin
dT1

� �E

4Th

[
1 − ThTc

T 2
1

]

Doing dPin/dT1 � 0, we find T ∗
1 � √

ThTc. This value of T1 has no physical meaning since T ∗
1 < Th , and by definition of

the OQR and the semiclassic OQR, we have T1 > Th (see Figs. 1 and 10). This means that Pin cannot be used to optimize the
semiclassic OQR.

3. The derivative of � is

d�

dT1
� �ETc

4Th(Th − Tc)

(
2Th + ThTc

T 2
1

− 1

)
(15)

Doing d�/dT1 � 0, we obtain T †
1 �

√
2T 2

h + ThTc. As T †
1 > Tc and T †

1 > Th , this temperature has physical meaning in our

semiclassic OQR and can be used to optimize its performance. For T †
1 , the cooling power Q†

1, expressed as function of εC , is

Q†
c � �ETc

4

εC

εC + 1

√
2 + 3εC − √

1 + εC√
2 + 3εC

(16)

We note that this is the cooling power calculated at the maximum � regime. We note that for every εC , Q†
c > 0.

We also obtain P†
in , the power absorbed by the CR when the OQR works at its best �,

P†
in � �E

4

√
(εC + 1)(2 + 3εC ) − εC√

(εC + 1)(2 + 3εC )
(17)

We notice that P†
in > 0 as expected, indicating that an optimal �-regime of work exists for the semiclassic OQR.

4 Concluding remarks

This work extends previous ones done on the optimization of qubit-based heat engines considering, for the first time, a one-qubit
quantum refrigerator. Thus, we prove the utility of the methods proposed in [36–39] to study quantum heat engines beyond heat
engines.

In the first part of the work, we have obtained the energy fluxes Qc and Qh of the quantum refrigerator, its �-function and
the power Pin that it absorbs as functions of the parameters defining the engine. Then we have optimized the refrigerator working
properties to the case where the temperatures of the hot and cold reservoirs are fixed. We found that for each pair of temperatures Th
and Tc, the cooling power is optimized for a temperature T ∗

1 > Thand that the value of T ∗
1 depends on Th , Tc, the coupling parameters

defining the engine, and E. Concretely, we found that T ∗
1 increases with E. We have also studied the �-function to discover that it is

also optimized for a T †
1 	� Th , Tc. We found that T †

1 > Th and that it changes with E and with the coupling parameters defining the
OQR. We also found that � increases when we increase E. It is important to remark that in OQRs, the �-function has a maximum
for a concrete value of ε, while the �-function of classic RE does not have it.

In the last part of the article, we studied the semiclassic limit of one-qubit quantum refrigerators where Th � E and Tc � E . We
found that in this limit, the refrigerator reduces to a classic one, but that some of the parameters defining that classic refrigerator
depend on the energy of the qubit and the thermal couplings. That is, although the machine is now classic, its functioning still
depends on its quantum nature. Optimizing the semiclassic version of the refrigerator, we found that: (i) Qc cannot be used to carry
out optimizations. (ii) Pin is optimized for a temperature that has no physical meaning, so it cannot be used to optimize the machine
either. (iii) � is optimized for a temperature T †

1 that only depends on Th and Tc and not on E, �h or �1. Result (iii) is very relevant as
it proves that the semiclassic version of the OQR is optimized in the same way as a classic refrigerator does when the optimization
is done using �, but that if Qc is used, the semiclassic OQR no longer optimizes as a classic refrigerator.

Our work extends previous work on qubit-based quantum thermal machines by considering the optimization of the quantum and
semiclassic versions of a classic single thermal resistance cooler. It proves that there are differences in the results of the optimizations
that depend on the nature (quantum/classic) of the system. It also allows us to understand that even in the semiclassic limit, the
optimizations lead to results that are somehow different to those obtained in classic refrigerators.
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