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Abstract

In pursuit of New Physics (NP) to extend the Standard Model (SM), no effort is spared, as evidenced by

the LHC and its experiments at CERN, the world’s largest scientific enterprise. But with no conclusive

evidence of deviations from SM predictions, novel and complementary approaches for discovery should be

considered. The amount of LHC data recorded is the greatest ever accumulated and is largely unexplored.

Hence the proposed data-directed paradigm (DDP); letting the data itself guide us towards its regions

of interest, significantly enhancing our discovery potential. Symmetries of the SM can be utilized for

this endeavor, as they provide two exclusive datasets that can be compared without requiring simulation.

Focusing on the data, selections which exhibit significant asymmetry can be identified efficiently and

marked for further study. An example is the approximate symmetry between electrons and muons in

SM processes. This property can be exploited to probe the data for deviations from SM features such as

Lepton Universality (LU) or Lepton Flavor Conservation (LFC). To this end, the e/µ-symmetry method is

developed. This analysis method provides a data-driven approach to estimate SM background contributions.

It involves, in particular, a technique to account for detection effects that invalidate the expected SM

symmetry and a statistical analysis procedure. A direct search for the LFV decays of the Higgs boson

H ! e⌧ and H ! µ⌧ using the e/µ-symmetry method is presented, which uses the Run-2 dataset of pp

collisions delivered by the LHC at
p

s = 13 TeV and recorded by the ATLAS detector, corresponding

to an integrated luminosity of 138.42 fb�1. The final results are combined results of this analysis with

two other MC-based searches for the same signals. Some tension from SM predictions is observed at the

level of 2.5� in the search for H ! µ⌧, while no evidence of the H ! e⌧ decay is found. Upper limits

on the branching ratios (BR) are set at a 95% confidence level (CL): 0.230% (0.192%) for H ! e⌧ and

0.163% (0.182%) for H ! µ⌧ when the two searches are conducted independently (simultaneously). The

successful completion of this analysis is an important endorsement of the e/µ-symmetry method. However,

only a specific signal is searched for in a small theoretically motivated data region. In terms of the DDP

proposed, the broadest possible region is scanned for any deviation from SM predictions. Implementing

such data-directed and generic searches based on symmetries of the SM is still at an initial stage. Towards

laying the groundwork, a generic approach to identify asymmetries between two measurements is developed

in a simplified framework. With little optimization, the sensitivity achieved is only slightly lower than that

of optimal likelihood-based tests, which have full knowledge of the signal. This approach has the advantage

of being extremely fast, enabling to efficiently scan large portions of the data for any hints of NP.

vii



1 Introduction

The SM encapsulates our best understanding of the elementary particles and their interactions, including

the description of three of the four known fundamental laws in the universe (electromagnetic, weak, and

strong interactions, omitting gravity). Yet, we are still confronted with unresolved puzzles it does not

explain, e.g., how neutrinos acquire their mass, the true nature of dark matter, or the matter-antimatter

asymmetry. As such, the SM can only be regarded as a low-energy, effective incarnation of a more global

theory that eludes us so far. Hence, one of the main goals of the LHC program at CERN is to discover

physics Beyond the SM (BSM), which would provide hints toward uncovering the more fundamental theory

that encompasses the SM. But despite hundreds of searches for BSM physics that have been conducted at

the LHC, particularly in the general-purpose experiments, ATLAS and CMS, no significant deviation from

the SM predictions have been found. The SM agrees with most experimental results, often with utmost

precision.

Most of these searches have been conducted based on predictions from proposed theoretical extensions of

the SM, which aim to resolve some of the remaining puzzles. Some popular examples are supersymmetry,

models with extra dimensions, or models with more than one Higgs-like neutral boson. Such proposed

theories predict the presence of signatures within the accumulated data that differ from SM-only physics.

These are then used as the basis for conducting searches, where the searched-for signal is well known, and

only a restricted region of the observables space (the space spanned by the observables of the measured

data) is probed. In addition, these searches are generally conducted following the “blind analysis” paradigm,

where the data is only looked at in the last step of the analysis after most of the efforts and time have been

invested. Priority is given to well-motivated SM extensions, which predict features possibly observable

within the energy scale of LHC collisions (E ⇠ 1 TeV). But given the many searches already conducted,

the more popular extensions are highly constrained.

The remaining potential BSM signatures which haven’t been experimentally searched for are many,

significantly more numerous than those that have. In addition, the amount of accumulated data is by far

the largest ever available and remains largely unexploited; only a small portion of the entire observables

space has been probed. But without the theoretical guidance which has, until today, steered the choice of

experimental searches, there is no particular motivation to conduct one search before another. As a result,

more and more model-independent searches are being conducted, with the intention to cover more and more

regions of the observables space. Still, these searches are resource-intensive tasks with limited sensitivity

or probe only limited regions. To tackle this problem, we pursue an efficient method for scanning the

data in wide ranges of the observables space, intending to find regions more likely to include evidence of

BSM physics. Such regions, when found, would be marked for further study using traditional data analysis

methods. Complementary to the “blind analysis” paradigm, where the targeted region of the observables

space is selected before conducting the analysis, this proposed DDP looks upon the data itself to steer the

choice of searches to be performed.

In this context, we develop the e/µ-symmetry method, a data-driven analysis method to search for BSM

physics in HEP experimental data. Electrons (e) and muons (µ) are two charged leptons, each carrying

a different flavor (generation) number. They are among the most efficiently reconstructed particles by

detectors in accelerator experiments. In the SM theory, there is an approximate symmetry between

processes that lead to final states including electrons and muons, which derives from LU. In addition,

the accidental LFC SM symmetry forbids interactions that don’t conserve lepton flavor such as µ! e�

(where � is a photon). Both LU and LFC derive from special features of the SM, meaning that they don’t

1



necessarily hold in the fundamental theory of nature1. As a result, finding experimental evidence that

they are not conserved could have far-reaching implications. In fact, the strongest direct evidence that the

SM is an incomplete theory – the discovery of neutrino masses and oscillation – entails that LFC is not

preserved in nature. However, conclusive evidence from within accelerator experiments still eludes us.

The e/µ-symmetry method exploits this approximate electron/muon symmetry to search for deviations

from SM predictions in a data-driven way. It is sensitive to a wide range of signatures from potential

BSM processes, including violations of LU or LFC. Since it doesn’t rely on the simulation of background

processes, it can be used to rapidly scan large portions of the observables space, efficiently uncovering

hints of BSM physics hidden in the accumulated data.

The development, implementation, and application of the e/µ-symmetry method in different contexts are

at the core of the research presented in this thesis. In particular, its application in a direct search for Higgs

LFV decays, using LHC data collected by the ATLAS detector, is presented. The rest of this thesis is

organized as follows. In section 2, the theoretical framework is described, focusing on the SM properties of

LU and LFC. Motivation towards searching for evidence that they are not conserved is advanced, relying

on existing experimental results and describing some examples of SM extensions that allow them to be

violated. In addition, a description of the LHC and the ATLAS experiment is given and of the data analysis

methods used. In section 3, the e/µ-symmetry method is described in detail, and different implementations

are compared. The example of the Higgs LFV search is introduced based on partial ATLAS Run-2

simulated data. The ATLAS full Run-2 Higgs LFV analysis using the e/µ-symmetry method is presented

in section 4. The complete ATLAS full Run-2 Higgs LFV analysis combines the analysis presented here

with two MC-based searches for the same signal. The combined results are summarized, although the

MC-based analyses aren’t described. In section 5, various studies are presented that focus on implementing

the e/µ-symmetry method in data-directed and generic searches. In particular, the results reported in [1]

are described, and an alternative approach for symmetry restoration within the e/µ-symmetry method is

considered. A summary of the research conducted is given in section 6, where conclusions are drawn.

1 LU is not a symmetry of the SM since Higgs couplings are not flavor universal. Still, it leads to an approximate lepton symmetry

which can be precisely tested

2



2 Scientific background

This section introduced the scientific background related to the research presented in this thesis. In

section 2.1, the SM of particle physics is summarized, describing, in particular, the laws of LU and LFC.

Performing searches for violations of these conservation laws is motivated in section 2.2, examples of

theories extending the SM where they are violated are presented in section 2.3, and in section 2.4, current

bounds found from previous searches are listed.

In addition, the LHC and the ATLAS experiment are described in section 2.5, and statistical analysis

methods standardly used in searches for BSM physics are described in section 2.6.

2.1 The Standard Model, Lepton Universality, and Lepton Flavor Conservation

The SM is a theory of the elementary particles and their interactions that continually provides successful

experimental predictions [2]. It is defined - in the Lagrangian formalism - by its fundamental local

symmetry described in (1), a set of fermion fields, and the Higgs field.

GSM = SU (3)C ⇥ SU (2)L ⇥U (1)Y (1)

The local symmetry (1) breaks spontaneously by the vacuum expectations value (VEV) of the single Higgs

scalar as follows:

GSM

SSB���! SU (3)C ⇥U (1)EM (2)

The SM fermions, quarks or leptons, are described in five different representations of the gauge group (1):

LL (1, 2)�1/2, ER (1, 1)�1, QL (3, 2)+1/6, UR (3, 1)+2/3, DR (3, 1)�1/3 (3)

where the subscripts L/R indicate the chirality of the fields (left- or right-handedness). Each comes in three

flavors (generations) and is either an SU (2) doublets (LL and QL) or singlet (ER, UR, and DR), depending

on its chirality. We denote their SU (2) components as:

LiL =

 

⌫iL
`iL

!

, EiR = `iR, QiL =

 

uiL
diL

!

, UiR = uiR, DiR = diR (4)

where i = 1, 2, 3 indicates the flavor.

After electroweak symmetry breaking, they are grouped into four types:

• up-type quarks: u1,2,3 = u, c, t - (up, charm, top)

• down-type quarks: d1,2,3 = d, s, b - (down, strange, bottom)

• charged leptons: `1,2,3 = e, µ, ⌧ - (electron, muon, tau)

• neutral leptons: ⌫1,2,3 = ⌫e, ⌫µ, ⌫⌧ 2 - (electron neutrino, muon neutrino, tau neutrino)

2 We only consider the interaction eigenstates since the neutrinos are massless in the SM

3



The term “flavor” distinguishes between the different copies of the same gauge representation, namely fields

with common quantum numbers, although they correspond to particles with distinct masses. Antiparticles

share the flavor of their counterparts but with an opposite flavor charge (similarly to the electromagnetic

(EM) charge). Interactions between the SM fermions are mediated by different bosons, each responsible

for a specific force type. These interactions can be either “flavor universal” - with couplings proportional

to the unit matrix in flavor space, “flavor diagonal” - with couplings that are diagonal in flavor space, or

“flavor changing” - which can allow for a different “flavor-number” (number of particles minus number of

antiparticles of a given flavor) in the initial and final states. The different fermion SM interactions are

summarized in Table 1.

Interaction Force carrier Symbol Fermions Flavor

EM Photon A0 u, d, ` universal

Strong Gluon g u, d universal

Weak Neutral Current Z boson Z0 u, d, `, ⌫ universal

Weak Charged Current W boson W± ud̄/`⌫̄ changing/universal

Yukawa Higgs h u, d, ` diagonal

Table 1: The SM fermion interactions.

In the leptonic sector, only couplings mediated by the Higgs boson are non-universal since they are

proportional to the fermion’s masses. The universality of the photon and gluon couplings results from the

gauge invariance in (2) and thus holds in any model extending the SM. On the other hand, the Z couplings

to leptons are universal due to a special feature of the SM; all leptons of a given charge and chirality

come from the same SU (2)L ⇥U (1)Y representation. The only possible flavor-changing processes are

mediated by the W± boson and are referred to as “flavor changing charged current” (FCCC) interactions.

They involve up-type and down-type flavors or charged lepton and neutrino flavors. Some examples are

µ! e⌫̄e⌫µ, sū ! µ� ⌫̄µ, or b! cc̄s. Note that in the leptonic sector, the charged-current weak interaction

is considered universal since the W couplings to ⌧⌫̄⌧ , µ⌫̄µ, and e⌫̄e are equal. This diagonality follows

from the local symmetry in (1). Note also that these FCCC processes do not violate the SM’s law of LFC

(no flavor changing processes). Indeed, LFC does not distinguish between lepton flavor and lepton family

number (meaning that it interprets the charged lepton’s flavor and its neutral counterpart’s as the same).

“Flavor changing neutral current” (FCNC) processes do not occur in the SM at tree level and are usually

highly suppressed.

The fact that lepton flavor is always conserved is an “accidental symmetry” of the SM (meaning that it isn’t

a law used to define the theory, but it is preserved by all the renormalizable terms of its lagrangian). Other

accidental symmetries are the conservation of the number of leptons or baryons. Equation (5) summarizes

all the accidental symmetries of the SM: baryon number, electron flavor, muon flavor, and tauon flavor

conservation.

G
global

SM
= U (1)B ⇥U (1)e ⇥U (1)µ ⇥U (1)⌧ (5)

A particular process will be considered LFV if it breaks at least one of the leptonic global symmetries of (5).

Similarly, we denote as LU Violating (LUV) any process which is non-universal in the leptonic sector.

4



2.2 Hints of Lepton Flavor / Universality Violation

2.2.1 Neutrino oscillations

Violation of the lepton flavor symmetry has already been experimentally determined by the discovery of

neutrino mass and oscillations [3].

In the SM, fermions masses arise after the spontaneous symmetry breaking from the Yukawa interactions

mediated by the Higgs boson. In the leptonic sector, these interactions mix between doublets of the SU (2)L

group LL =
� ⌫L`

¯̀
L

�

and its corresponding singlet ER = `R, with ` standing for e, µ, ⌧, and subscripts L (R)

standing for left-handed (right-handed), describing the particle’s chirality. These interaction terms are

given in (6), where the i and j indices run on the possible flavors e, µ, and ⌧.

�L`Yukawa = Y `i j L̄Li�ERj + H .c. (6)

In the mass basis, the coupling matrix Y ` becomes diagonal after the spontaneous symmetry breaking.

Furthermore, the acquired VEV of the SM Higgs field being h�i =
� 0

v/
p

2

�

, none of these terms includes

neutrinos. Therefore, the SM predicts the neutrinos to be massless. Nevertheless, many SM extensions

allow for non-zero neutrino masses by explicitly breaking these symmetries (see, for example, [4–7]).

In the SM Effective Field Theory (EFT) formalism described further in (16), neutrino mass is introduced

via the seesaw terms [8]:

�Ldim�5
seesaw =

Z⌫
i j

Λ
��LLi

LL j
+ h.c. (7)

These are dimension five terms (the lowest dimension of non-renormalizable terms one can add) that break

lepton flavor and total lepton number. The fermionic fields included are all SM fields, but the neutrino

mass terms are Majorana mass terms, and the lepton number conservation is violated by 2. These lead,

upon spontaneous symmetry breaking, to neutrino masses:

M⌫
i j =

Z⌫
i j
v

2

2 Λ
(8)

Moreover, since these terms break the lepton flavor symmetry, they also permit lepton mixing.

Neutrino masses can also be achieved by adding new fields, called sterile neutrinos, that don’t couple to

any of the SM force fields. They couple to both the Higgs field and a SM “active” neutrino through the

following set of terms:

Y⌫i j L̄Li �̃⌫s j (9)

which give rise, after spontaneous symmetry breaking, to a Dirac mass term. In addition, a bare mass

term including only the sterile neutrinos can be added, which will be a Majorana mass term. These are

explicated in the following:

�LM⌫
= MDij ⌫̄Li⌫s j +

1

2
MNij ⌫̄

c
si⌫s j + h.c. (10)

Whether the neutrino mass terms are Majorana or Dirac, neutrino oscillation follows from the charged

current interactions with the W± field, described by:

�L`CC =
g
p

2

⇣

ēL µ̄L ⌧̄L
⌘

�µU
*..,
⌫1
...

⌫n

+//-
W+µ (11)
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where n is the number of active+sterile neutrinos. U is the mixing matrix, which can be expressed in terms

of the diagonalizing matrices of the mass matrices from (10). In this set of terms, the neutrinos are in

their mass eigenstates. So the weak eigenstates ⌫↵ produced in a weak interaction are, in general, linear

combinations of the mass eigenstates ⌫i:

|⌫↵(t)i =
n

X

i=1

U⇤↵i |⌫i (t)i (12)

Thus the probability of detecting the neutrino, produced in a state ⌫↵, in a state ⌫� is given by:

P↵� =
���D⌫� ���⌫↵(t)

E���2 =
�������
n

X

i=1

n
X

j=1

U⇤↵iU
⇤
� j

D

⌫j (0)
���⌫i (t)E

�������
2

(13)

Neutrino oscillations explicitly violate the conservation of lepton flavor. They can be detected in the

charged-current interaction ⌫↵(t)N 0 ! `�N by comparing the measured flux to the total expected flux.

The first evidence for such processes was detected in the Homestake gold mine using a chlorine detector [9].

In this experiment, the flux of ⌫e solar neutrinos was measured to be smaller than expected. Since then,

multiple experiments, either solar [10], atmospheric [11], or beam-like [12, 13], have confirmed neutrino

oscillations with a very high (> 5�) significance.

2.2.2 B decay anomalies

The summary presented in this section relies mainly on the review presented in [14].

Many experimental results from various experiments that probe LU between the first two lepton families

(electron and muon) are in excellent agreement with theoretical predictions based on the SM. For example,

the measured ratio Γ(Z ! µµ)/Γ(Z ! ee) agrees with the SM and LU with a precision within 0.3% [14–

16]. Other (most precise) examples include: electroweak W� ! `� ⌫̄` (agreement within 0.8%) [14, 17,

18], pseudoscalar decays K� ! `� ⌫̄` [14, 19, 20] and ⇡� ! `� ⌫̄` [14, 21] (agreement within 0.2%), ⌧

decays ⌧� ! `� ⌫̄`⌫⌧ [14, 17] (agreement within 0.14%), and quark resonance decays J/ ! `` [14]

(agreement within 0.31%). Similar tests involving the third lepton family (⌧) are generally less precise.

This is due to the complex decay of the ⌧ which makes its reconstruction more challenging (⌧ leptons are

more massive – 17 and 3500 times heavier than the muon and electron – and decay close to the interaction

point due to their short lifetime of 0.3 ps). Only in Z boson decays the constraint on LUV is as precise as

with the first two families [15] (agreement within 0.3%). With W boson decays, for example, it is only

within 3%, an order of magnitude less precise, and manifests a tension with the SM expectation at the level

of 2.6� [18]. Still, no strong indication of LUV is observed in most experimental results.

B decay anomalies are an exception, where significant tension with SM predictions has been observed.

These anomalies refer to two distinct classes of measurements that involve semileptonic decays of the B

hadron, each probing a different decay of b quarks to lighter quarks and leptons:

• b! c`� ⌫̄`

• b! s`+`�

6



In the first case (b! c`� ⌫̄`), the transition involves FCCCs, which occur at tree level in the SM (mediated

by virtual W bosons). The measurements discussed relate to B mesons (qb̄ with q = u, d, s, c) decaying to

D(⇤) mesons (cq̄ with q = u, d, s and where (⇤) indicates if it is an excited state in terms of total angular

momentum), and compare the ratios in (14) to SM predictions:

RD(⇤) (`, `0) =
Γ(B ! D(⇤)`⌫̄` )

Γ(B ! D(⇤)`0⌫̄0
`
)

(14)

In fact, RD(⇤) (e, µ) measurements which involve only the first two lepton families are in agreement with SM

predictions and LU, such that B ! D(⇤)e⌫̄e and B ! D(⇤)µ⌫̄µ decays are assumed free of NP contributions

and are used for the measurements of the b $ c couplings. The tension arises in the measurements

involving the third lepton family of RD(⇤) (⌧, e or µ), where the decays involving electrons and muons are

averaged in the denominator. The experimental world averages – combining results from the LHCb, Belle,

and BaBar experiments – are 0.340 ± 0.030 (0.295 ± 0.014) for RD (RD⇤), which exceeds the expected SM

value of 0.299 ± 0.003 (0.285 ± 0.005) by 1.4� (2.5�). This corresponds to a combined disagreement at

the level of 3.1� [22]. Since the ⌧ is much heavier than the electron or muon, we can speculate that B

decays to the third generation are more sensitive to the presence of NP. As such, most theoretical studies

which attempt to account for this discrepancy consider additions to b! c⌧⌫̄⌧ .

The second case (b! s`+`�) involves FCNCs, which are forbidden at tree level in the SM but can occur at

the loop level. These are, therefore, much rarer decays than in the first case. The measurements discussed

relate to B mesons decaying to K (⇤) mesons (qs̄ with q = u, d) and compare the ratios in (15) to SM

predictions:

RK (⇤) (µ, e) =

R q2
max

q2
min

dΓ(B!K (⇤)µ+µ�)

dq2

R q2
max

q2
min

dΓ(B!K (⇤)e+e�)

dq2

dq2 (15)

where q2 is the invariant mass squared of the dilepton system integrated between q2
min and q2

max. In this

case, the only sensitive measurements involve the first two lepton families due to the rarity of the process

considered and the difficulty of reconstructing ⌧ leptons. The most precise measurements of these ratios

are from the LHCb experiment, finding 0.846+0.044
�0.041

(0.69+0.12
�0.09

) for RK (RK⇤) – measured in the range

1.1 < p2 < 6.0 GeV2 – in tension with the SM expected value of 1.00±0.01 at the level of 3.1� (2.5�) [23,

24] (similar but less precise measurements from the Belle and BaBar experiments are compatible with the

SM expectation). These results are more surprising than the tension found in the RD(⇤) measurements since

it involves the first two lepton families. Attempts to account for this discrepancy consider NP additions

which modify the b! s coupling.

The B decay anomalies refer to the tension observed between experimental measurements of the RD(⇤) and

RK (⇤) ratios with their SM predictions. Both experimental and theoretical values can be estimated precisely

since the dominant uncertainties cancel in the ratios3. These tensions are evidence of LUV and hint at NP

which modify the b! c`� ⌫̄` or b! s`+`� couplings. Various models extending the SM which account

for these discrepancies have been proposed, for example, with the addition of a new neutral heavy boson or

leptoquarks. Relevant to the research presented in this thesis, these anomalies could also be linked to LFV

decays of the Higgs or other massive resonances [25–27].

3 The experimental systematic uncertainties are effectively reduced by normalizing the two components in each ratio with

reference measurements, namely B ! D(⇤)3⇡ and B ! K (⇤) J/ (! ``) for (14) and (15) respectively.
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2.3 Lepton Flavor Violation in Standard Model extensions

2.3.1 Physics beyond the Standard Model

The SM is not a complete theory of nature but rather a successful (low energy) EFT, valid up to some

undetermined cut-off energy scale Λ. When searching for BSM physics, the hope is to find evidence for

effects present in the theory with a finite value of Λ but disappear in the limit Λ! 1. Such BSM effects

can potentially violate the accidental symmetries of the SM. In the EFT formalism, they are virtually

introduced by adding non-renormalizable higher-order terms to the SM Lagrangian:

LEFT = LSM +

X

i

c
(5)

i

Λ
O

(5)

i
+

X

i

c
(6)

i

Λ
O

(6)

i
+ ... (16)

where the O
(D)

i
are operators of dimension D and the c

(D)

i
are parameters called the Wilson coefficients.

The O
(D)

i
must be invariant under the fundamental symmetry of the SM but can violate any of its accidental

symmetries.

Relevant to our work, off-diagonal Higgs couplings to leptons would violate the lepton flavor symmetries

introduced in (5). Such effect is not observed in the SM since (accidentally) the Yukawa and mass matrices

are simultaneously diagonalized. However, flavor violating Higgs couplings arise naturally in different

proposed extensions of the SM and can be introduced in different ways. Some examples are described in

more detail below; in the 2HDM model, this is achieved by introducing a second Higgs scalar field (see, for

instance, [28, 29]); the addition of Vector-Like Leptons (VLL), which mix with the SM leptons is also

possible (see, for instance, [30–34]); and they can result from adding particles with bare mass terms, e.g.,

in specific applications of the Minimal Flavor Violation (MFV) principle to the lepton sector (see, for

instance, [35, 36]) where the bare mass terms appear via the seesaw mechanism [8].

In the research presented in this thesis, we look for the Higgs LFV decays H ! µ⌧ and H ! e⌧, which

violate the lepton flavor symmetries U (1)µ ⇥U (1)⌧ and U (1)e ⇥U (1)⌧ respectively. These decays are

FCNC processes with leptons, which are absent from the SM at any level. When adding neutrino masses

(via the seesaw terms in (7)), FCNC processes with leptons occur at higher order. However, they are highly

suppressed by loop factors, the GIM (or Glashow–Iliopoulos–Maiani) mechanism, and the flavor mixing

coefficients and contribute to these decays only at tiny and unobservable rates (B(H ! µ⌧) ⇠ 10�50).

Therefore, observing any of these decays with non-negligible rates (BR of a few per-mil) would have

far-reaching implications and could hint towards NP at higher dimension terms of the effective theory. One

possibility is the dimension six terms:

Ldim�6
=

Y 0
e,i j

Λ
2
LFV

(�†�)�LLi
ER j
+ h.c. (17)

Furthermore, an observable Higgs LFV decay suggests that the non-diagonal couplings are not much

smaller than the diagonal ones. This is challenging in extensions where the decay is loop suppressed, as in

the case of the Minimal Supersymmetric SM (MSSM) [37]. Thus we can speculate that the searched-for

decays, if found, would proceed at tree level.
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2.3.2 Two Higgs doublet model

The simplest model that allows for non-negligible Higgs LFV decays is the two Higgs doublet model

(2HDM). It has two distinct scalar Higgs fields, �1, and �24. In general, the Yukawa couplings of leptons

to both fields, shown in (18), aren’t simultaneously diagonalizable, allowing for FCNCs.

L2HDM
Yuk,` = ⌘i j L̄Li�1ERj + ⇠̂i jLLi�2ERj + h.c. (18)

Without loss of generality, we can work in the so-called Higgs basis where h�1i = v/
p

2 and h�2i = 0. In

this basis, the ⌘i j couplings will generate fermions masses after spontaneous symmetry breaking, while the

⇠̂i j lead to FCNC at tree level:

L2HDM
FCNC,` = ⇠i jhLLiERj

In type III 2HDM, no prior assumptions are placed on the couplings of the two Higgs fields, and the ⇠

coefficients are arbitrary. Nevertheless, it is common to use the Cheng-Sher Ansatz [39]; the flavor-changing

couplings should be of the order of the geometric mean of the Yukawa couplings of the two fermions:

⇠i j /
p

mim j

p
2

v

2.3.3 Vector-like leptons

The SM leptons are chiral in that left-handed and right-handed fermions transform differently under

the SU (2)L group. They come in three generations, and a chiral fourth generation is excluded based

on experimental measurements of the Higgs couplings [40]. On the other hand, adding VLLs is still a

valid possibility, exploited in various SM extensions. As opposed to chiral fermions, right-handed and

left-handed fermions of the vector-like family transform similarly under the SU (2)L group. As a result,

they include Dirac mass terms – independent of the electroweak symmetry breaking – negating the need

for large Higgs couplings, which conflicts with existing measurements. The addition of VLLs in various

well-motivated extensions of the SM leads to natural Higgs LFV couplings, for example, in composite

Higgs models [30, 31] or models with warped extra dimensions [31–33].

Many different setups, including VLLs, can be considered. VLLs can be SU (2) singlets, doublets, or

triplets and come in multiple types (generations). In this description, we concentrate on a specific setup

following [34], inspired by composite Higgs models. In this setup, we include singlet and doublet VLLs

with three generations for each (similarly to the SM leptons), and the SM charged leptons get their masses

due to their mixing with the added vector-like states.

We denote the chiral SM leptons by li
L
= (⌫i

L
, ei

L
), ei

R
, i = 1 . . . 3, and the three generations of VLLs by

Li
L/R
= (N i

L/R
, Ei

L/R
), Ẽi

L/R
, transforming as 2�1/2 and 1�1 under the electroweak gauge group. The VLLs

acquire masses via Dirac terms and Yukawa couplings with the Higgs boson:

LVLL,mass = �M (L̄CLL + ¯̃ECE Ẽ) � (L̄LY ẼRH + L̄RỸ ẼLH + h.c.) (19)

4 Although the formalism used here is different, 2HDM can also be described in the SM EFT formalism when assuming that

the new degrees of freedom introduced are much heavier than the weak energy scale (see, for example, [38]). In this case,

off-diagonal Higgs couplings arise from the dimension six terms described in (17).
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where CL,CE,Y, Ỹ are 3 ⇥ 3 matrices in generation space, and M is a common mass scale of the VLLs.

The chiral leptons acquire mass via mixing with the VLLs:

LVLL,mix = M (l̄L�lLR +
¯̃EL�eeR) + h.c. (20)

where �l/e are also 3 ⇥ 3 matrices in flavor space. Assuming the VLLs are very heavy and the elements of

CL/E are O(1), then M � v sets the mass scale of the VLLs.

In the EFT formalism, we integrate out the new heavy particles. In this case, the effective Higgs couplings

to the chiral charged leptons can be written as:

L
Yl
VLL,eff

= � h
p

2
ēLceffeR + h.c. (21)

where ceff is the effective Yukawa couplings matrix of the chiral leptons. It is proportional to the mixing

couplings �l/e and, at the zero derivative level, includes a term that is mediated by each of the two VLL

Yukawa couplings, the Y and Ỹ terms in (19). This is illustrated by the diagrams in Figure 1, which were

taken from [34]:

Figure 1: Diagrammatic illustration of the effective Yukawa coupling to the chiral leptons.

Explicitly, the Yukawa couplings to the chiral leptons are given by:

ceff = �lC
�1
L YC�1

R �e +
3v2

2M2
�lC

�1
L

f
YC�1

R ỸC�1
L Y

g
C�1
R �e + O(�4) (22)

We see that at Leading Order (LO), they depend on the VLL Yukawa matrix Y and are flavor diagonal in an

adequate basis. The contribution of Ỹ is suppressed by v
2/M2. For non-zero Ỹ i j non-diagonal elements,

LFV decays of the Higgs boson can be generated:

Γ(H ! e±
i

e±
j
)

Γ(H ! e+
j
e�
j
)SM

=

v
2

2m2
e j

( |c
i j

eff
|2 + |c

ji

eff
|2) (23)

2.3.4 Minimal Flavor Violation in the lepton sector

Another interesting model is found when imposing the MFV principle on the charged lepton sector. MFV

assumes that the Yukawa structure of the SM is the only source of flavor-changing processes. In the absence

of Yukawa interactions (taking the Yukawa couplings to zero), the SM has a global [U (3)]5 symmetry

under which each of the SM fermion representations with three flavors, QLi
,URi
, DRi

, LLi
, and ERi

, can

transform following X ! VXX where VX is a 3⇥ 3 unitary matrix. Therefore, this symmetry includes what

can be described as flavor invariance. The Yukawas break this flavor symmetry, leaving only the global

SM symmetry described by (5). In MFV, the Yukawa matrices are treated as spurions (dimensionless

non-dynamical fields) with transformation properties that permit recovery of this flavor invariance in the
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SM. In addition, any new operator introduced must also be flavor invariant. Under these requirements, the

couplings of the dimension six terms in (17) can be written as linear combinations of the Yukawa matrices.

As mentioned earlier, these couplings induce FCNC at tree level.

MFV applied to the SM lepton sector does not give rise to off-diagonal Higgs couplings; we want to recover

the SU (3)L ⇥ SU (3)E flavor symmetry5 in the Yukawa terms YeLL�ER. Since LL ⇠ (3̄, 1) ! LLV
†

L
and

ER ⇠ (1, 3) ! VRER, we need Ye ⇠ (3, 3̄) ! VLYeV
†

R
. For the dimension six operator

Y0e
Λ2 (�†�)�LLER

to be flavor invariant, we impose Y 0e ⇠ (3, 3̄) ! VLY 0eV
†

R
. So Y 0e must be made up of odd powers of Ye,

and we simply write Y 0e = aYe + b(Y
†
e Ye)Ye + O(Y 5

e ), where a and b are constants. Since Y 0e and Ye are

simultaneously diagonalizable, no off-diagonal Higgs couplings arise here.

This is different from the case of MFV applied to the SM quark sector. With both up and down right-handed

quarks, the two different Yukawa matricesYu andYd are treated as separate spurions. As a result, off-diagonal

Higgs couplings arise. A similar situation can occur in the lepton sector if we introduce neutrino masses. For

the case of right-handed Dirac neutrinos, the flavor symmetry is now SU (3)L ⇥ SU (3)E ⇥ SU (3)⌫ . There is

an additional Yukawa term, Y⌫LL
H�⌫R, two spurions: Ye ⇠ (3, 3̄, 1) ! VLYeV

†

E
and Y⌫ ⇠ (3, 1, 3̄) ! VLY⌫V

†
⌫

and again, we impose Y 0e ⇠ (3, 3̄, 1) ! VLY 0eV
†

E
for the dimension six operator to be flavor invariant.

Y 0e is still expanded in odd powers of Ye: Y 0e = aYe + b(Y
†
e Ye)Ye + c(Y

†
⌫ Y⌫)Ye + O(Y 5), but this time the

extension contains a Y
†
⌫ Y⌫ term. Since Ye and Y⌫ are not necessarily diagonalized in the same basis, the

leading contribution to flavor-changing Higgs couplings comes from the Y
†
⌫ Y⌫ matrix. In the mass basis

where Ye is diagonal, we can express Y 0e in terms of the lepton mixing matrix UPMNS coefficients and the

Y⌫ eigenvalues (y1, y2, y3) / (m⌫1,m⌫2,m⌫3). For instance, keeping only the leading contributions and

assuming standard neutrino mass hierarchy, we find:

y
0
µ⌧ = c(Y †⌫ Y⌫)µ↵(Ye)↵⌧ = c(UY 2

⌫,diagU†)µ⌧ y⌧ = c

3
X

i=1

uµiu
⇤
⌧iy

2
i y⌧ ⇠ cuµ3u⇤⌧3y

2
3 y⌧

y
0
eµ ⇠ cue3u⇤µ3y

2
3 yµ

From the above, we have y
0
eµ/y

0
µ⌧ ⇠ 10�2. The current bound on y

0
eµ results from the bound on the

µ! e� decay [41]:

q

|y0eµ |2 + |y
0
µe |

2  10�6. Hence, lepton MFV with Dirac neutrinos would lead only to

unobservably small rates for Higgs LFV decays, with y
0
µ⌧  10�4, corresponding to a BR of order 10�6.

A more interesting scenario is the case of Majorana neutrinos, with masses generated by the seesaw

mechanism from the dimension five non-renormalizable terms shown in (7). Here we introduce three

right-handed sterile neutrinos NRi
, i = 1, 2, 3. The flavor symmetry is now SU (3)L ⇥ SU (3)E ⇥ SU (3)N .

Additional terms are the Yukawa terms Y⌫LL
H�NR and the bare mass terms MN Nc

R
NR. There are three

spurions this time: Ye ⇠ (3, 3̄, 1) ! VLYeV
†

E
, Y⌫ ⇠ (3, 1, 3̄) ! VLY⌫V

†

N
and SN ⇠ (1, 1, 6) ! V ⇤

N
SNV

†

N
,

where we define SN by MN = M · SN in order to decouple the mass scale from the flavor structure. Again

we impose Y 0e ⇠ (3, 3̄, 1) ! VLY 0eV
†

E
for the dimension six operator to be flavor invariant, and we have

Y 0e = aYe + b(Y
†
e Ye)Ye + c(Y

†
⌫ Y⌫)Ye +O(Y 5). So here also, the leading contribution to flavor changing Higgs

couplings comes from the Y
†
⌫ Y⌫ matrix. The difference with the Dirac case is that the light-neutrino mass

matrix m⌫ andY⌫ aren’t simultaneously diagonalizable due to the additional bare mass term. By diagonalizing

the effective neutrino mass matrix shown in (24), we find m⌫ = diag(m⌫1,m⌫2,m⌫3) = v
2UYT

⌫ M�1
N

Y⌫U
†.

5 This is the part of the global [U (3)]5 symmetry that is broken by the leptonic Yukawa terms.
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M⌫ =
*,

0 Y⌫
vp
2

YT
⌫

vp
2

MN

+- (24)

So Y⌫ = i
p
MN

v
R
p

m⌫U
†, where R is a general orthogonal matrix. Keeping only the leading contributions,

this leads to the flavor-changing couplings:

yi j / (Y †⌫ Y⌫)i j yj =
1

v2
(U
p

m⌫R†MN R
p

m⌫U
†)i j yj (25)

Concretely, R and MN are completely unknown, while there is only partial information on m⌫ . If we assume

that the heavy sterile neutrinos are degenerate and that R is real, then (25) simplifies to yi j / (Um⌫U
†)i j yj .

So we obtain the same relation y
0
eµ/y

0
µ⌧ ⇠ 10�2 as in the Dirac case. To conclude, in order to allow for

significant flavor-changing Higgs couplings, R and MN must play a non-trivial role, and the relations they

must fulfill have no special motivation.

2.4 Previous searches and current bounds

The best current upper limit at 95% CL on the BR of various LFV processes with the Higgs and Z bosons

are the following:

• B(h ! ⌧µ)  0.15%, set by CMS using 137 fb�1 of 13 TeV data [42]. The best corresponding limit

from ATLAS searches is B(h ! ⌧µ)  0.28%, using 36.1 fb�1 of 13 TeV data [43].

• B(h ! ⌧e)  0.22%, also set by CMS using 137 fb�1 of 13 TeV data [42]. The best corresponding

limit from ATLAS searches is B(h ! ⌧e)  0.47%, using 36.1 fb�1 of 8 TeV data [43].

• B(h ! µe) ⇠ 10�8, set by indirect constraints derived from the results of the search for µ ! e�

conducted by MEG [41].

• B(Z ! ⌧µ)  7.2⇥ 10�6, set by ATLAS combining 20.3 fb�1 of 8 TeV data and 139 fb�1 of 13 TeV

data [44].

• B(Z ! ⌧e)  7.0 ⇥ 10�6, set by ATLAS combining 20.3 fb�1 of 8 TeV data and 139 fb�1 of 13 TeV

data [44].

• B(Z ! µe)  2.62⇥10�7, set by ATLAS using 139 fb�1 of 13 TeV data [45]. The best corresponding

limit set by CMS searches is B(Z ! µe)  7.3 ⇥ 10�7, using 20.3 fb�1 of 8 TeV data [46].

No significant deviation from the SM has been found in these different flavor leptonic final states.

2.5 The LHC and the ATLAS detector

2.5.1 Overview

The LHC is the world’s largest and most powerful particle accelerator and collider [47], located at the

headquarters of CERN in the vicinity of Geneva, Switzerland. It is housed in a circular tunnel of 27 km in

circumference, dug 50 to 175 m deep underground, across the Franco-Swiss border. It collides bunches of

protons with a targeted center of mass energy of 14 TeV. Its first data-taking period (2010-2013) attained

the center-of-mass energy of 7 TeV (8 TeV from 2012) and recorded data equivalent to about 5.5 fb�1
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(22.8 fb�1) of integrated luminosity. During its second run (2015 - 2016), it delivered collisions at energy

13 TeV and about 140 fb�1 of integrated luminosity.

The ATLAS experiment [48] is one of the two general-purpose detectors built in an attempt to exploit the

discovery potential of the LHC. It was designed to investigate a wide range of physics processes, including

SM precision measurements and searches for physics beyond the SM. Particles produced in the LHC

collisions emerge from the center of the detector in all directions, and the different signatures they leave

are recorded. ATLAS comprises a series of concentric subsystems, each sensitive to different types of

particles produced in the collisions. The Inner Detector (ID) is closest to the interaction point and measures

the trajectories of charged particles [49, 50]. The calorimeters [51, 52] surround the ID; first, the EM

calorimeter, which detects and stops electrons and photons, then the hadron calorimeter, which detects and

stops hadrons. In the outermost layer is the Muon Spectrometer (MS), which detects the muons penetrating

through the calorimeters [53].

2.5.2 ATLAS subdetectors

In this section, we briefly describe of the ATLAS subsystems most relevant to the research presented in

this thesis. The focus is given to detector components that play a role in electron and muon detection in the

pseudorapidity range |⌘ | < 2.5: the ID, the EM calorimeters, and the MS.

The inner detector The ID is the closest subdetector to the interaction point. It has the following tasks;

reconstruct the tracks and vertices of each event with high precision and at high efficiency; contribute

to charged particle recognition and identification of secondary vertices from short-lived particle decays;

permit precise measurements of the momenta of charged particles. These tasks are fulfilled by combining

high-resolution detectors at inner radii with continuous tracking elements at outer radii, all contained in a

solenoidal magnet with a central field of 2T.

Semiconductor tracking (SCT) detectors are used in the inner radii. The highest granularity around the

vertex region is achieved using at least three layers of semiconductor pixel detectors. Four additional layers

of silicon microstrips complete the measurements. The outer radii consist of straw tube tracker (TRT)

systems which provide many tracking points (typically 36 per track), permitting continuous track-following

with much less material and at lower costs.

The electromagnetic calorimeter The main task of the EM calorimeter is an accurate measurement of

the energy and track position of electrons and photons. It also provides electron and photon triggers. The

requirements include fast response, high granularity, and sufficient radiation length.

It is a sampling calorimeter with liquid argon as the active medium and lead plates as the absorber. The lead

plates are accordion-shaped, providing full � coverage and symmetry without azimuthal cracks. Readout

electrodes are installed between the lead plates, and the remaining space is filled with liquid argon. The

electrons and photons escaping the ID deposit all their energy through the production of EM showers.

From the sampled energy of the shower, the particle’s energy can be inferred.
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The muon spectrometers The MS is the outermost detector system of ATLAS. It is designed to measure

high-pT muons with a high precision independent of the ID. The spectrometer also provides an independent

muon trigger.

Two types of trigger detectors are used, Resistive Plate Chambers (RPC) in the barrel region and Thin Gap

Chambers (TGC) in the endcap region. In addition, precision tracking and momentum measurement are

provided by Monitored Drift Tube (MDT) chambers and, in the innermost layer of the endcap, by Cathode

Strip Chambers (CSC). Measurement of the muon pT requires at least three hits and a high magnetic field

to bend their trajectories. Therefore, three layers of MDT chambers or CSCs usually combined with RPCs

or TGCs are used. The magnet system of the MS includes three air-core superconducting systems located

in the barrel and both endcap regions. Each consists of eight coils positioned symmetrically around the

beam axis. The bending power ranges from 1.5-7.5 T, depending on the region.

2.5.3 ATLAS coordinate system and kinematic variables

A right-handed Cartesian coordinate system whose origin coincides with the nominal interaction point is

defined: the positive x-axis points towards the center of the LHC ring while the y-axis points upwards. The

z-axis lies along the beam pipe. Spherical coordinates are also used: the azimuthal angle � is defined on

the transverse plane identified by the x- and y-axes and by convention ranges between �⇡ and ⇡. The polar

angle ✓ is measured from the positive direction of the z-axis, but it is conveniently expressed in terms of the

pseudorapidity ⌘ = �ln(tan(✓/2)). For a massless particle, the pseudorapidity ⌘ is equal to the rapidity:

y =
1

2
ln

 

E + pz

E � pz

!

(26)

where E is the particle energy and pz its longitudinal momentum.

The distance between two particles in the ⌘ � � plane is measured by the variable:

∆R =

q

∆⌘2
+ ∆�2 (27)

A particle’s transverse momentum is the projection of the particle’s momentum vector on the traverse plane:

pT =

q

p2
x + p2

y (28)

Since the momentum of the incoming partons is, at first approximation, only directed along the z-axis,

the transverse momenta of all the outgoing particles should sum to zero unless some particles remain

undetected, such as neutrinos. Therefore, the missing transverse energy (or missing transverse momentum)

is defined as:

Emiss
T = |~pmiss

T | = �
X

i

~pT,i (29)

where i loops on all the visible particles in the event.

2.6 Statistical analysis methods

In this section, we present statistical analysis methods standardly implemented in searches for BSM physics

from HEP collision data [54].
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2.6.1 Binned likelihood-ratio test statistic

BSM searches are usually cast into statistical hypothesis testing, where the compatibility of the data is

evaluated w.r.t. two statistical hypotheses, the null hypothesis H0 and the alternative hypothesis H1. In the

context of BSM searches, H0 is the background-only hypothesis, where only SM processes contribute to

the data, while H1 is the signal hypothesis, where the searched-for signal is expected in addition to the SM

background. The signal discovery is quantified by computing the p-value p, representing the probability at

which the data is compatible with H0. This is often translated in terms of significance Z = Φ�1(1 � p),

where Φ is the standard Gaussian cumulative distribution. Discovery is claimed when H0 is excluded by

Z � 5� significance, or equivalently p  2.87 ⇥ 10�7. In the absence of any significant signal found in the

data, an upper limit on the signal’s BR is set. In this case, H1 is excluded by p = 0.05, corresponding to a

95% CL.

The compatibility of the data with a given hypothesis is computed based on histograms of the final

discriminant (a selected observable which enhances the signal to background separation) using a binned

likelihood-ratio test statistic. In each bin i, the measured data ni is compared to the predicted expected

value E[ni] = bi (θ) + µ · si (θ), where bi (si) is the expected number of background (signal) entries in this

bin, µ is the signal strength parameter which, common to all bins, regulates the signal’s BR, and θ is a set

of nuisance parameters associated to the uncertainties in the predictions. The likelihood function L(µ, θ)

is then a bin-by-bin product of terms comparing the data to the prediction Poisson(ni |bi (θ) + µ · si (θ), of

(optional) similar terms from subsidiary measurements of the nuisance parameters in Control Regions

(CR) and of constraint terms penalizing variations of the nuisance parameters from their estimated nominal

value (log-normal for normalizations or Gaussian for shape systematics). The signal strength µ and the

nuisance parameters are determined by finding the best fit, which maximizes L(µ, θ).

The significance and the upper limit on the signal’s BR are derived using the test statistics q0 and q̃µ,

respectively, together with their asymptotic distributions described in [54]. Their definitions are shown in

(30) and (31):

q0 =

8>>><>>>:
�2 ln

L

✓

µ=0, ˆ̂θ

◆

L
⇣

µ̂,θ̂
⌘ µ̂ � 0,

0 µ̂ < 0

(30)

q̃µ =

8>>>>>>>>><>>>>>>>>>:

�2 ln
L

✓

µ,
ˆ̂
θ (µ)

◆

L

✓

0, ˆ̂θ (0)

◆ µ̂ < 0,

�2 ln
L

✓

µ,
ˆ̂
θ (µ)

◆

L
⇣

µ̂,θ̂
⌘ 0  µ̂  µ,

0 µ̂ > µ

(31)

The term L( µ̂, θ̂) is the likelihood evaluated at its global maximum, where µ̂ and θ̂ denote the values of the

parameters at this maximum. And ˆ̂
θ represents the value of θ that maximizes the likelihood for a certain

fixed value of µ.

For a given test statistic tµ, the p-value that measures the compatibility between the data and a given

hypothesis – which assumes µ = µ0 – is provided by:

pµ0 =

Z 1

tµ,obs

f (tµ |µ
0)dtµ (32)
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where tµ,obs is the value of tµ observed in the data, and f (tµ |µ
0) is the Probability Distribution Function

(PDF) of tµ under the assumption µ0. For the special case µ = µ0, f (tµ |µ) is well approximated by the

half -�2 distribution with 1 degree of freedom in the large sample approximation (see [54]). In this case,

the significance Z0 is obtained from (30) simply via Z0 =
p

q0, and the upper limit on the signal’s BR is

derived at 95% CL from (31) using:

µup = µ̂ + �Φ
�1(1 � 0.05) = µ̂ + 1.64� (33)

where � represents the standard deviation of µ̂ measured from the covariance matrix of the best fit

maximizing the likelihood function.

Usually, the upper limits reported are modified versions of the one computed by (33), using the CLs method

[55] which instead of pµ uses:

p0µ =
pµ

1 � pb
(34)

where pb is the p-value derived from the same test statistic under the background-only hypothesis:

pb = 1 �
Z 1

q̃µ,obs

f (q̃µ |0)dq̃µ (35)

The CLs upper limit on µ at 95% CL is obtained by solving (34) for p0µ = 0.05.

Finally, expected significances or upper limits can be derived, which quantify the analysis’ sensitivity

prior to looking at the data in the sensitive Signal Regions (SR). For this, we replace the data in the

likelihood-ratio test statistic with the so-called Asimov dataset, constructed as the sum of the combined

background prediction and of the signal with a fixed signal strength µ (µ = 1 for the expected significance

and µ = 0 for the expected upper limit).

2.6.2 Evaluation of a fit’s performance

In the following, we describe some standard methods and tools used to evaluate a binned likelihood

fit’s performance. The fit is used to find the values of the signal strength parameter µ and the nuisance

parameters θ, which maximize the likelihood function.

Fit inputs The fit may be performed with different types of inputs (corresponding to the left side of the

Poisson terms in the likelihood function)

• Asimov dataset: constructed as the sum of the combined background prediction and the signal with

a fixed signal strength µ. This dataset is used for validating the fit’s performance, as well as for the

obtention of the expected significance (with µ = 1) and expected limit (with µ = 0) of the search

• Sideband/Mixed dataset: includes the data only in the bins where the expected signal fraction

(w.r.t. the background prediction) is smaller than 5% – the non-blinded bins – measured for a signal

BR of 1%. Other bins – the blinded bins – are discarded in the sideband dataset, while in the mixed

dataset, they include Asimov dataset yields but modified with post-fit background yields from a

background-only fit in the non-blinded bins. These datasets are also used for validating the fit’s

performance, taking into account some of the possible post-fit values of the nuisance parameters
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• Unblinded dataset: includes the data in all the bins, without any blinding restrictions. This dataset

is used for the obtention of the actual results, the observed significance, and the observed limit of the

search

Parameter pulls, constraints, and correlations After a fit, the parameter pulls are the adjustments on

each parameter’s value towards better prediction to data agreement (for the Asimov dataset, no pulls are

expected by construction). In general, pulls should be within 1� of the parameter’s pre-fit uncertainties.

The post-fit parameter uncertainties are derived from the covariance matrix of the parameters, which

includes correlation coefficients. These correlations are built by the fit, even if the correlated parameters

are from completely independent sources. One should ensure that the correlations are sensible, e.g., if

two parameters are found largely correlated, then it is expected to some degree. Correlations may lead to

constraints, meaning the reduction of the parameters’ uncertainties w.r.t. the pre-fit values. Considerable

constraints should be investigated.

Ranking of nuisance parameters A ranking of the nuisance parameters by their impact on the signal

strength µ can be constructed. To obtain the impact of one nuisance parameter on µ, the value of this

nuisance parameter is fixed, e.g., to its �1�-variation, the whole fit is repeated, and the resulting value of µ

is saved. The impact is the value of µ from the nominal fit minus the new value of µ. This is repeated for

the +1�-variation of the nuisance parameter and all other nuisance parameters. Finally, a ranking can be

made.

Breakdown of Uncertainties The breakdown of the uncertainties, i.e., the impact of a group of nuisance

parameters on the uncertainty of the signal strength µ, is obtained by the following procedure: a fit is

performed where the nuisance parameters of one group are fixed to their best-fit value from the nominal fit.

The resulting uncertainty on µ is subtracted in quadrature from the uncertainty on µ from the nominal fit.

The result is the impact of this group of nuisance parameters on µ.
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3 The e/µ-symmetry method

The electron/muon (e/µ) symmetry method is a data-driven analysis method to search for BSM physics in

HEP experimental data. It was first proposed in [56] and implemented, in a simplified form, in the ATLAS

Run-1 search for Higgs LFV decays [57]. The results described in this thesis mainly center around the

development, implementation, and application of this analysis method in different contexts.

The e/µ-symmetry method is described in section 3.1; the example of the Higgs LFV search is detailed

in section 3.2; the efficiency correction – which accounts for asymmetries induced by different detection

efficiencies – is presented in section 3.3; the implementation of the method in a statistical analysis

is discussed in section 3.4; section 3.5 discusses possible implementations and generalizations of the

method.

3.1 Description

The e/µ-symmetry method is based on the premise that the kinematic properties of the SM background

are, to a good approximation, symmetric under the exchange of electrons and muons (e $ µ). This

electron-muon symmetry, which derives from LU, is not an exact symmetry. It is invalidated by phase-space

effects and Higgs Yukawa couplings due to the mass difference between electrons and muons. But the

Yukawa couplings are very small, and at the energy achieved in the LHC’s collisions, the differences due to

phase-space effects are negligible, rendering the e/µ-symmetry method applicable.

Based on this assumption, any two mutually exclusive datasets, one comprising of a number of electrons in

its final state and the other of the same number of muons instead, are expected to be statistically consistent

– if they consist solely of contributions from SM processes. In this case, the distribution of any observable

(kinematic property or combination of kinematic properties of the data) from these two datasets should be

equivalent up to statistical uncertainties. In the e/µ-symmetry method, these two datasets are compared,

and any observed asymmetry is interpreted as a sign of NP. In terms of one-sided searches for BSM physics,

one dataset is probed for excess above the other, which serves as the SM background estimate (the roles of

the two datasets can be switched).

The main advantage of this analysis method is that it provides a data-driven background estimation method,

evading the need to use MC samples that are computationally heavy, include systematic uncertainties, and

need to be validated at length before being used in an analysis. As such, the e/µ-symmetry method can be

applied more efficiently, and a wide range of final states can be probed rapidly. Indeed, the number of

different final states, including electrons or muons in association with any additional object(s) and any

combination of charges, is vast, each potentially sensitive to different BSM manifestations. Some examples

are ee vs. µµ, e+µ� vs. e�µ+, e+jet vs. µ+jet, . . . In addition, any other symmetry of the SM – exact or

approximate – could be similarly probed. The main disadvantages of this method are that the background

estimate is limited by the statistics in the recorded data; and that it is only sensitive to eventual BSM

processes that contribute asymmetrically to the two datasets considered. Indeed, if one or different BSM

processes would lead to symmetric contributions, they wouldn’t be detectable.

An important aspect to consider in the e/µ-symmetry method is that detection effects invalidate the

expected SM symmetry. Electrons and muons are different objects detected by different detectors and

technologies. As a result, some asymmetry between the datasets, including electrons vs. muons, is induced
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when recording the events. These effects must be identified and corrected to restore the expected SM

symmetry. Among these effects, we identified two dominant ones:

• Contribution of events containing misidentified and non-prompt leptons, namely fake events. These

fake leptons originate mainly from misidentified jets or leptonic decays within jets, and the rates of

faking electrons and muons are different.

• Difference in detection efficiencies of electrons and muons, which vary differently with the kinematic

properties of each lepton.

Other effects include resolution of the kinematic parameters of each lepton, correct determination of the

charge, and others. But so far, these have not been taken into account as their impact is smaller than the

overall uncertainties (the combination of the systematic uncertainties deriving from the corrections applied

to the two main effects listed above and of the statistical uncertainties).

3.2 The search for Higgs Lepton Flavor Violating decays example

Searching for Higgs LFV decays is well-motivated: LFV occurs in nature (section 2.2), and such decays are

predicted in various SM extensions (section 2.3). The e/µ-symmetry method was first implemented in the

ATLAS Run-1 Higgs LFV analysis [57], and this same search with the ATLAS Run-2 data is presented in

section 4. In the following, we describe the application of the e/µ-symmetry method to these searches.

More specifically, the e/µ-symmetry method is described when the ⌧ lepton further decays to the lepton of

the other flavor in the Higgs LFV decays considered:

• H ! µ⌧! µe + 2⌫ (H ! µ⌧e)

• H ! e⌧! eµ + 2⌫ (H ! e⌧µ)

In principle, the e/µ-symmetry method could also be applied to the same search where the ⌧ decays

hadronically or to the same-flavor lepton, but this is not considered in the scope of the research presented

here and will therefore not be addressed. The two decay modes `⌧̀ 0 and `⌧had are illustrated in Figure 2,

where `/`0 is used to denote electrons and muons.

H

`
+

⌧
�

W
�

⌫̄`0

`
0�

⌫⌧

Y`⌧ H
`
+

⌧
�

W�

q̄

q0

⌫⌧

Y`⌧

Figure 2: LFV decay schemes of the Higgs boson for the `⌧̀ 0 (left) and `⌧had (right) final states. The off-diagonal

Yukawa coupling term is indicated by the Ỳ ⌧ symbol.
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In this context, the e/µ-symmetry method provides sensitivity to the difference between the two BRs

|B(H ! µ⌧e) � B(H ! e⌧µ) |, and we perform each of the two searches independently, assuming that

the BR of the other decay is zero. This is motivated by the experimental limit on B(µ! e�) [41], which

indirectly limits the product B(H ! µ⌧e) ⇤ B(H ! e⌧µ) < 10�8, ensuring that at least one of the two BRs

is currently undetectable. For simplicity, we describe the method assuming an H ! µ⌧e signal. The same

procedure, but with e and µ exchanged, is valid under the H ! e⌧µ assumption.

Events selected must contain two opposite-sign leptons, one electron and one muon. The leading lepton

(the lepton with the larger transverse momentum) is indicated by `0 and the subleading lepton by `1. These

dilepton events are then divided into two mutually exclusive datasets:

• µe dataset: `0 is the muon and `1 is the electron (p
µ

T
> pe

T
)

• eµ dataset: `0 is the electron and `1 is the muon (pe
T

> p
µ

T
)

Based on the expected SM e $ µ symmetry assumption, the SM background is split equally between the

two datasets. The H ! µ⌧e signal, however, is present only in the µe dataset because the pT spectrum of

electrons from H ! µ⌧e decays is softer than the muon pT spectrum. Indeed, the energy of the ⌧ lepton is

divided between the electron and two neutrinos it decays to. Therefore, we look for an excess of events in

the µe dataset compared to the eµ dataset, which estimates the SM background contributions.

In particular, one can look at histograms of the reconstructed Higgs mass (determined from the properties

of the two leptons and other objects in each event) and search for an excess around the known Higgs mass

value at 125 GeV. This is illustrated in Figure 3.

Figure 3: Illustration of the eµ-symmetry method showing how the H ! µ⌧ LFV signal can be discovered by

comparing data yields in the e⌧ and µ⌧ channels. Based on toy simulated data described in section 5.4.1.

One method to estimate the Higgs mass from its decay products is using the collinear approximation.

The so-called collinear mass mcoll is based on the assumption that the decay products of the Higgs are

back-to-back, that the decay products of the ⌧-lepton go in the same direction as the ⌧-lepton and that all

missing transverse energy Emiss
T

(see (29)) originates from the neutrinos of the ⌧-decay. Its definition is

given by:

mcoll =

q

2p
`0
T

⇣

p
`1
T
+ Emiss

T

⌘

(cosh∆⌘(`0, `1) � cos∆�(`0, `1)) (36)
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where the transverse momentum pT, the pseudorapidity ⌘, and the azimuthal angle � of the two leptons are

described in section 2.5.3.

Preliminary study definitions Two distinct efficiency correction methods for the e/µ-symmetry method

have been developed, and they are described and compared in sections 3.3 and 3.4. The first is based on

the implementation used in the Run-1 Higgs LFV analysis, but the second one is implemented in the full

Run-2 Higgs LFV analysis, described in detail in section 4.

In the following sections, we illustrate the first method based on a preliminary study of the Run-2 Higgs

LFV search using MC simulated data. The details and definitions given below are used in this study:

The samples used are MC simulated samples which correspond to the partial Run-2 dataset of 2015+2016

LHC data with center of mass energy 13 TeV, corresponding to a total integrated luminosity of 36.1 fb�1.

They are produced with the ATLAS simulation infrastructure [58] to reproduce the ATLAS detector

response. The signal Higgs LFV decays are modeled using EvtGen 2.0 [59]. The production modes

considered are gluon-gluon Fusion (ggF) and Vector Boson Fusion (VBF), produced with Powheg [60]

generator interfaced with Pythia8 [61], and W H + Z H produced with Pythia8 generator. The main SM

processes that contribute to the background and are considered are Z ! ⌧⌧, tt̄, single top, WW , W Z , Z Z ,

H ! ⌧⌧ and H ! WW , jointly referred to as the SM MC sample. Figure 4 shows diagrams illustrating

some of these contributions.

Figure 4: Diagrams illustrating some of the main SM background contributions to the Higgs LFV `⌧̀ 0 searches,

namely Z ! ⌧⌧, WW and tt̄ from left to right.

Events selected must contain precisely two opposite-sign leptons of different flavors, an electron and a

muon. The leptons are required to have pT > 15 GeV, |⌘ | < 2.47, and to pass a medium Identification

(Id) and a gradient Isolation (Iso) criteria (see section 4.2 for details on lepton reconstruction in ATLAS).

Furthermore, electrons from the transition region between the barrel and endcap calorimeters are excluded

(1.32 < |⌘ | < 1.52).

The trigger selection is based on a combination of single-electron and single-muon trigger chains, as

detailed in Table 2. Priority is given to single-electron triggers, which are used in all events where

the electron has pT above the applicable threshold + 1 GeV. If the electron’s pT is below the threshold,

single-muon triggers are used if the muon has pT above the relevant threshold + 1 GeV. A further matching

between the triggered lepton and the trigger track is required.

We define two event selections. The symmetric baseline selection is a loose selection that includes the

Higgs LFV signal and where we can expect an eµ/µe SM symmetry. It contains the following selection

cuts:
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Trigger menu Data period Thresholds [GeV]

Single electron 2015 24 + 60 + 120

2016 26 + 60 + 140

Single muon 2015 20 + 50

2016 26 + 50

Table 2: Trigger items (more details on the triggers used are given in Table 7).

• Minimum pT and symmetric trigger coverage:

– for 2015 data: ( p
`1
T
> 15 GeV and p

`0
T
> 25 GeV ) or ( p

`0/`1
T
> 21 GeV )

– for 2016 data: ( p
`1
T
> 15 GeV and p

`0
T
> 28 GeV ) or ( p

`0/`1
T
> 27 GeV )

• 30 < m`` < 150 GeV (invariant mass of the two leptons)

• No b-jets in the event (b-tagged jets with pT > 25 GeV)

The SR is a selection included in the baseline selection, constructed to enhance the signal over background

ratio. At this stage, the Run-1 SR definitions are used without being optimized for the Run-2 data. The

additional selection cuts are:

p
`0
T

� 35GeV

∆�(`1, E
miss
T

)  0.7

∆�(`0, `1) � 2.3

∆�(`0, E
miss
T

) � 2.5

∆pT(`0, `1) � 7GeV

Table 3: SR selection cuts applied in addition to the symmetric baseline selection.

3.3 Efficiency correction

3.3.1 Main concept

As detailed earlier, the approximate e/µ symmetry in the SM is invalidated by detector effects. Thus, to

apply the method, the symmetry needs to be restored. The correction to the difference in fake rates is done

by estimating the contribution of events, including fake leptons (fake events), and taking this contribution

into account. Estimating fake contributions is not specific to the e/µ-symmetry method since it is also

required in more standard analysis methods which rely on MC samples for the background estimation.

As such, it is not described here, although an example is detailed in section 4.5. On the other hand, the

efficiency correction is specific to this analysis method.

The central concept of the efficiency correction is as follows. Say we compare two datasets we label

as the e-dataset and the µ-dataset. Since we discuss restoring the expected SM symmetry, we currently
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assume that only SM processes occur. Therefore, we expect that at interaction point, the number of events

contributing to each of these two datasets is equal:

N0 = Ne
0 = N

µ

0
(37)

(Here, e and µ are only used to label the two datasets that we compare, which can include any switched

number of electrons or muons and possibly other objects.)

We lose some of these events in different fractions from each dataset at detection level. The relation

between N0 and the number of detected events in each dataset is given through the efficiencies. Naively:

N0 =
Ne

✏e
=

Nµ

✏µ
(38)

So, if we apply the inverse of the efficiencies to our measured events, we scale the two datasets back to the

number of events at interaction point, restoring the expected symmetry.

Another method to restore the symmetry is to apply an efficiency-ratio correction. Instead of scaling both

datasets back to N0, we can restore the symmetry by using the ratio of ✏µ and ✏e to scale the e-dataset to

match with the µ-dataset (or vice-versa by switching e and µ):

Nµ
=

✏µ

✏e
Ne
= R✏ · Ne

B Ñe
sym (39)

We introduced the efficiency-ratio Correction Factor (CF) R✏ , which is the ratio of the efficiencies of

the µ over e-datasets (in this example). This approach is usually preferred when using one dataset for

background estimation (here the e-dataset), leaving the dataset tested for NP as raw uncorrected data (here

the µ-dataset). Of course, the roles of the two datasets can be switched. R✏ · Ne is the SM symmetric

background contribution within the µ-dataset. This is estimated from the e-dataset; thus, we label it

Ñe
sym.

The description in (38) and (39) is naive since it assumes that the efficiencies ✏e and ✏µ are constant for all

events in their respective datasets. But this assumption is generally wrong since the efficiencies depend on

the kinematic parameters of the objects in the events considered. In the following, we describe two distinct

approaches considered to account for these variations, along with and their respective statistical model

implementations.

3.3.2 Sub-region correction

The first approach considered for the efficiency correction is to divide the observables space (the space

spanned by all the observables of the events in the datasets considered) into sub-regions where the efficiency

ratio introduced in (39) is approximately constant. The primary motivation for using this approach is in the

implementation and treatment of the statistical analysis when testing for BSM discovery. In this case, a

single efficiency-correcting parameter can be assigned to each sub-region in the statistical model, and the

symmetric background component is left as a fit parameter constrained by the uncorrected measurements

of the two datasets (see section 3.4.1 for more details).

A version of this approach was used in the ATLAS Run-1 Higgs LFV analysis [57], and some further

developments were considered in the research presented here. But in the end, this is not the approach

implemented in the ATLAS Run-2 Higgs LFV analysis presented in section 4. Therefore it is described in
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a non-optimized form and only some preliminary results are shown based on the 2015+16 SM MC sample

(see sample and selection definitions in section 3.2).

In the context of the Higgs LFV search, the two datasets compared are the eµ and µe datasets. Assuming

only symmetric contributions, (39) is rewritten as:

Nµe
=

✏µe

✏eµ
Neµ
= R✏ · Neµ (40)

Although both the eµ and µe datasets include one electron and one muon, their efficiencies can differ.

Therefore their distributions from SM processes are not symmetric after detection, as seen in Figure 5.

Indeed, these datasets differ by the pT ordering of the two leptons, and the lepton’s pT is, in general, the

most sensitive parameter which affects the efficiency values. Typically, lepton detection efficiencies are

very low for low pT leptons, increasing when the pT increases along a turn-on curve until they reach a

certain plateau value. An example of this pT efficiency dependency can be seen in Figure 12. In the

region where both leptons’ pT is in the plateau region of their respective efficiencies, the efficiency ratio is

assumed constant. The fact that the turn-on curves are different between electrons and muons leads to the

need to define several sub-regions in the low to medium pT range. In the general case, other efficiency

dependencies could also affect the symmetry.

In the Run-1 Higgs LFV search, the event selection included a cut on the leading lepton’s pT above the pT

value where the efficiency plateaus start, p
`0
T
> 35 GeV. As a result, the various sub-regions of constant

efficiency ratio were defined solely based on the subleading lepton’s pT6. But using the same strategy with

the Run-2 data results in non-negligible residual asymmetry, as seen in Figure 6. In particular, the ratio of

eµ over µe p
`0
T

distributions presents a slope increasing from 0.9 to 1.2 in the considered range.

To correct this residual asymmetry, we include a p
`0
T

dependency in the efficiency correction as follows. We

derive a 2D efficiency-ratio map as a function of p
`0
T

and p
`1
T

by dividing the equivalent 2D distributions of

the eµ over µe MC datasets7 in the baseline selection. In order to avoid bins with low statistics and extreme

values, a simple bin-merging algorithm is applied. The resulting efficiency-ratio map obtained is shown

in Figure 7 for the combined SM sample. The next step is to split the efficiency-ratio map into a finite

number of channels (the sub-regions of approximately constant efficiency ratio). This is done based on a

specific approach, which could be improved or replaced; still assuming a search for H ! µ⌧e, we draw

the 1D histogram of the efficiency-ratio values obtained from the map in Figure 7 and from the eµ events

which pass the SR selection. The resulting R✏ histogram is shown in Figure 8(a). The channels are then

defined by merging bins of this R✏ histogram. The specific choice is determined from parameters such as

the statistics per channel or the variance of the R✏c per channel; the optimal considerations have yet to be

determined. Here, four channels have been selected and are shown in Figure 8(b). The measured average

R✏c value per channel is used as the nominal value for the efficiency-CFs, and the standard deviation is

used as a constraint (see Table 4). For validation, the eµ and µe kinematic distributions are compared

in each channel after applying the relevant mean R✏c values as CFs to the µe dataset. The resulting SM

MC sample’s collinear mass distributions per channel in the SR selection are shown in Figure 9. We find

that the symmetry is indeed restored, and the agreement in most bins is within statistical uncertainties.

We observe an offset of 10% in channel 4, which exhibits a significant downward fluctuation in the µe

6 In the Run-1 search, the SR was further split in two – whether at least one central high-pT jet was reconstructed in the event or

not. But in the Run-2 search presented in this thesis, this additional efficiency dependency was no longer observed and dropped;

therefore, we don’t address it here.
7 This is opposite to the description in (40), where the efficiency ratio is from the µe over eµ datasets when searching for the

H ! µ⌧e signal. This choice depends on the statistical model implementation; see description in section 3.4.1.
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Figure 5: SM MC sample distributions in the eµ and µe datasets for events passing the symmetric baseline selection.

Only statistical uncertainties are shown. No correction is applied.

dataset around 130 - 140 GeV, which we attribute to a statistical fluctuation. This channel suffers from low

statistics and a wider spread of the R✏ values compared to the other three but includes the most important

signal contribution.

One significant advantage of the method used here for defining the different sub-regions of approximately

constant efficiency ratio is that it transforms an N-dimensional problem, where N is the number of different

parameterizations of the efficiency-CFs, into a 1D problem, by using the statistics of the dataset that

serves to estimate the SM background. In addition, the obtained standard deviation of the R✏c can be

used to constrain the efficiency-CFs in the fit model (In the Run-1 implementation, these parameters were
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Figure 6: SM MC sample distributions in the eµ and µe datasets for events passing the symmetric baseline selection.

Only statistical uncertainties are shown. Efficiency correction based on the Run-1 method is applied to the µe dataset.

The CFs were measured based on the p
`1
T

distributions and found to be 1.24 / 1.18 / 1.12 for events where p
`1
T
< 20

GeV / 20 < p
`1
T
< 30 GeV / p

`1
T
> 30 GeV.

left unconstrained in the fit). Still, the need to split the SR into sub-regions of approximately constant

efficiency ratio is a significant caveat because of two opposing features: this splitting comes at the cost of

reduced statistics in each sub-region, increasing, in particular, the uncertainty of the estimation of the SM

symmetric background; and the constant efficiency-ratio value which is used is only an approximation in

each sub-region, which can only be improved by increasing the number of sub-regions. Because of these

caveats, another approach for the efficiency correction was developed, bypassing the need for this splitting

into sub-regions of constant efficiency ratio.
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Figure 7: Efficiency-ratio map derived from the ratio of the eµ and µe SM MC samples in the symmetric baseline

selection.

(a) (b)

Figure 8: (a) Efficiency-ratio distribution from the eµ events in the Run-1-based SR. The red lines delimit the different

channels in the statistical model. (b) Occupancy of each channel in the p
`0
T

vs. p
`1
T

space.

3.3.3 Single event correction

The second approach considered for implementing the efficiency correction is an event-by-event correction

method. As discussed above, it bypasses the need for splitting the SR into sub-regions of constant efficiency

ratio, which is a substantial advantage (more precise efficiency correction and more statistics for estimating

the SM symmetric background contribution). In this implementation, the other dataset (the one which

is not probed for NP) is directly used – after efficiency correction – as the SM symmetric background

estimate.

In this case, we obtain the SM symmetric background Ñe
sym (defined in (39)) by applying efficiency CFs as
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Figure 9: SM MC sample’s collinear mass eµ and µe distributions in the Run-1-based SR selection, per channel of

the statistical model. Only statistical uncertainties are shown. Efficiency correction using the mean R✏c values per

channel is applied to the µe dataset.

weights to the e-dataset events:

Ñe
sym =

N e
X

i=1

✏
µ

i

✏e
i

wi =

N e
X

i=1

R✏i · wi (41)

where wi = 1 for data events, and wi = (MC weight)i for MC events.

We considered two distinct approaches to obtain the efficiency CFs:

• From the ratio of e- and µ-dataset n-dimensional distributions
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• From the ratio of e- and µ-efficiencies estimated per event

The first method to obtain the efficiency CFs is illustrated based on the Higgs LFV study described in

the previous section. The CFs are taken from the 2D efficiency-ratio map shown in Figure 7, derived

from the ratio of eµ over µe distributions in the baseline selection. Applying them to the µe events in the

Run-1-based optimized selection successfully restores the eµ vs. µe symmetry in this selection – within

statistical uncertainties in most bins – as seen in Figure 10.

Figure 10: SM MC sample distributions in the eµ and µe datasets for events passing the Run-1-based SR. Only

statistical uncertainties are shown. The efficiency correction using CFs from the efficiency-ratio map derived in the

symmetric baseline selection is applied event-by-event.

This method is straightforward and gives good results when applied to MC-simulated samples limited to
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SM processes, but applying this to real data is challenging. Indeed the presence of fake contributions

– which can only be estimated up to some rather large uncertainty – could lead to biasing the values

obtained. A possible approach is to rely on the ATLAS-provided Scale-Factors (SF), which correct MC

mismodelings, to translate the R✏ values we derive from MC into CFs applicable to the data. Further

developments are presented in section 5.5.

The second method to obtain the efficiency CFs was implemented in the ATLAS Run-2 Higgs LFV analysis,

presented in section 4. The ith e-dataset event’s CF is determined from a ratio of efficiencies R✏
i
= ✏

µ

i
/✏e

i
.

The ✏
µ

i
efficiency is determined by considering the ith e-dataset’s mirror event. It has the same kinematic

properties as the ith e-dataset event, but with switched electrons and muons. This is similar to when

applying SFs to MC samples in order to reach better data vs. MC agreement. Indeed, the event-by-event

SFs are, in fact, SFi = ✏
data
i
/✏MC

i
.

The efficiency values ✏e
i

and ✏
µ

i
are measured using estimates of the different component efficiencies from

which they are composed. These vary depending on the final state composition of the compared datasets

but can be summarized in three main categories:

• trigger efficiencies

• electron detection efficiencies

• muon detection efficiencies

As further detailed in section 4.3.4, lepton (electron or muon) detection efficiencies are a product of sub-

efficiencies of the different constraints applied to them during their reconstruction, namely Reconstruction

(Reco), Id, and Iso efficiencies. As for trigger efficiencies, they depend on the triggers used in the analysis.

Each of these components can have different dependencies on the leptons’ kinematic variables, which

enables precise symmetry restoration.

In the Higgs LFV example, assuming a search for the H ! µ⌧e signal, the efficiency-ratio CFs applied to

the eµ events to estimate the SM symmetric background contribution can be written as:

R✏i (eµ event) =
✏
µe

i

✏
eµ

i

=

✏
µe

trig
({ki }e, {ki }µ) · ✏µ ({ki }e) · ✏e ({ki }µ)

✏
eµ

trig
({ki }e, {ki }µ) · ✏e ({ki }e) · ✏µ ({ki }µ)

(42)

where {ki }` represents the kinematic properties of lepton `.

3.4 Statistical analysis implementation

3.4.1 Sub-region correction

In this section, we describe the implementation of the statistical analysis when searching for a BSM signal

in a µ-dataset by comparing it to an e-dataset for the case of the efficiency correction per sub-region of

constant efficiency ratio. The roles of the e and µ-datasets can be switched by exchanging e $ µ. We also

show some preliminary results based on the Higgs LFV SM MC sample study, described in section 3.3.2.

As a reminder, this implementation was used in the ATLAS Run-1 Higgs LFV search [57]. Still, due to the

disadvantages of splitting the SR into sub-regions and the approximate efficiency correction, a different

implementation was used in the ATLAS Run-2 Higgs LFV search, described in the following (sections

3.4.2 and 4.3.6).
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Here, we split the SR into different sub-regions – or channels c – with a single efficiency-ratio correction

parameter r✏c per sub-region. These parameters can either be constrained by exteriorly provided measure-

ments – Gaus(r✏c | R
✏
c,�R✏

c
) – as is the case in the Higgs LFV SM MC sample study, or left unconstrained

if no measurement is available (as in the Run-1 Higgs LFV search).

As discussed in section 2.6, the statistical analysis uses a binned likelihood function applied to 1D histograms

of an observable with a good signal over background separation power, the final discriminant. For example,

in the Higgs LFV SM MC sample study, we chose the collinear mass distribution described in (36), using

the histograms shown in Figure 10 per channel. We introduce a SM symmetric background fit parameter

b
sym

c,b
for each histogram bin b of each channel c. The b

sym

c,b
are simultaneously Poisson constrained by the

two data measurements Ne
c,b

and N
µ

c,b
in each bin of the e and µ-datasets respectively, but multiplied by

the r✏c for the e-dataset to account for the difference in efficiencies. We also include the searched for signal

Sc,b per bin for the µ-dataset (generally provided by MC simulation of BSM processes), multiplied by a

single signal strength parameter µs, which is the Parameter Of Interest (POI), common to all channels and

all bins. Denoting by C the number of channels c, and Bc the number of bins in the histograms of each

channel, the likelihood function is given by:

L(µs, {r✏c }, {b
sym

c,b
}) =

C
Y

c=1

Bc
Y

b=1

Pois( N
µ

c,b
| b

sym

c,b
+ µs · Sc,b ) ⇥ Pois( Ne

c,b | r
✏
c · b

sym

c,b
) ⇥Gaus(r✏c | R

✏
c,�R✏

c
)

(43)

We omitted from this description the treatment of signal uncertainties since this depends on how the signal

is provided and is not unique to the e/µ-symmetry method.

In terms of fake contributions briefly discussed in section 3.1, denoting them as Fe
c,b

and F
µ

c,b
for each

bins of the e and µ-datasets, respectively, we include them in the overall background estimate as follows

(omitting now, in addition, the constraint term on the r✏c and the treatment of fake uncertainties):

L(µs, {r✏c }, {b
sym

c,b
}) =

C
Y

c=1

Bc
Y

b=1

Pois( N
µ

c,b
| b

sym

c,b
+ F

µ

c,b
+ µs · Sc,b ) ⇥ Pois( Ne

c,b | r
✏
c · b

sym

c,b
+ Fe

c,b ) (44)

For example, we implement the statistical model described by (43) in the Higgs LFV SM MC study, with

the channels and efficiency-ratio constraints derived in section 3.3.2. The H ! µ⌧e MC simulated signal

described in section 3.2 is used for the signal S, normalized to 1% BR. Instead of the Ne data, we input the

contribution from the eµ SM MC dataset. Instead of the Nµ data, the sum of contributions from the µe

SM MC dataset and the H ! µ⌧e signal also normalized to 1% BR. Distributions from the best-fit that

minimizes the negative log-likelihood ratio are displayed in Figure 11 (all channels combined); the post-fit

prediction is compatible with the input data. The fitted efficiency-ratio CFs per channel are consistent with

the pre-fit values, as shown in Table 4. The signal strength found is µs
best-fit

= 0.74 ± 0.20, which is less

than 2� away from the input value of µs
input
= 1. We explain this discrepancy from the presence of the

downward fluctuation in the ratio of µe over eµ events around 130-140 GeV, observed mainly in channel 4,

which results in an underestimation of the signal contribution. The expected significance for the discovery

of the H ! µ⌧e signal found in this study is 3.1�. This is with a partial (2015+16) dataset of the Run-2

data but doesn’t consider fake contributions, which have large uncertainties. Also, no optimization of the

SR selection was done.

We also implemented the same experience, but this time using unconstrained nuisance parameters in place

of the R✏c , to test the advantage of using constrained versus unconstrained parameters. Due to the additional

freedom when removing the constraints, the resulting signal strength found is more consistent with the

input value, µs
best-fit

= 0.83 ± 0.20, but the expected significance measured at 2.80� is lower by ⇠ 10%.

31



Figure 11: SM MC sample mcoll distributions in the eµ (left) and µe (right) datasets for events passing the Run-1-based

SR, all channels combined. Comparing the input data (black dots) to the best-fit expectation values (blue). The fitted

symmetric background (b - dotted line), common to both datasets, is also shown. In the µe dataset, the H ! µ⌧e
signal contribution normalized to 1% BR is shown (red).

Channel # R✏c - prefit R✏c - postfit

1 1.12 ± 0.03 1.12 ± 0.02

2 1.22 ± 0.03 1.24 ± 0.02

3 1.33 ± 0.03 1.32 ± 0.03

4 1.45 ± 0.06 1.47 ± 0.04

Table 4: Efficiency-ratio values per channel.

3.4.2 Single event correction

When the efficiency correction is applied event-by-event, as described in section 3.3.3, the likelihood

function used is different mainly because we use the other dataset (that is not probed for BSM physics)

directly to estimate the SM symmetric background. When searching for a signal in the µ-dataset, the SM

symmetric background is obtained from Ñe
sym described in (41). In this case, there is no splitting of the SR

into sub-regions, and the likelihood function is simply defined by:

L(µs) =
QB

b=1 Pois
⇣

N
µ

b

��� Ñe
sym,b

+ µs · S
b

⌘

=

QB
b=1 Pois

✓

N
µ

b

���� PN e
b

i=1
R✏
i
+ µs · S

b

◆

(45)

where B is the number of bins in the histograms considered, Ne
b

(N
µ

b
) is the number of events in bin b

from the e-dataset (µ-dataset), and Sb and µs are the signal contribution in bin b and the signal strength

already introduced in (43). The treatment of uncertainties on the efficiency-ratio CFs, not shown here, is

done in the same manner as when applying SFs in a standard MC-based analysis. For this, we derive the
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upward and downward fluctuated Ñe
sym histograms – by inputting the R✏

i
± 1� values instead of the nominal

ones – which are also input to the fit. A parameter per bin that multiplies the symmetric background

contribution allows it to fluctuate within a Gaussian constraint delimited by these upward and downward

fluctuated values in the same bin. This enables conveniently accounting for various sources of uncertainties

– statistical or systematic – which depend on how the R✏
i

values are determined.

The inclusion of fake contributions in this statistical model must be done with more care. Assuming the

presence of fake events in the data, but still with no BSM processes, (39) becomes:

Nµ � Fµ
= R✏ (Ne � Fe) B Ñe

sym (46)

As can be seen, the fake contribution of the e-dataset Fe needs to be subtracted from the e-data prior to

applying the efficiency correction to estimate the SM symmetric background. Meaning that Fe is also

efficiency-corrected, using the same CFs as if it were a SM event. On the other hand, the µ-dataset fake

contribution Fµ is left uncorrected. Implementing this in the likelihood function is done as follows:

L(µs) =
QB

b=1 Pois
⇣

N
µ

b

��� Ñe
sym,b

+ F
µ

b
+ µs · S

b

⌘

=

QB
b=1 Pois

✓

N
µ

b

���� PN e
b

i=1
R✏
i
�

PFe
b

i=1
R✏
i
+ F

µ

b
+ µs · S

b

◆

(47)

As previously discussed, this statistical model is implemented in the ATLAS Run-2 Higgs LFV search

described in section 4, such that a detailed implementation example is discussed within.

3.5 Discussion and outlook

In this section, we presented the e/µ-symmetry method, an analysis method that exploits the approximate

SM e $ µ symmetry to provide a data-driven background estimate. It was illustrated based on the example

of the Higgs LFV search, and its implementation in the ATLAS full Run-2 Higgs LFV analysis – the

topic of section 4 – is a major component of the research presented in this thesis. In this context, some

details were given towards its implementation in a statistical analysis which searches for a BSM signal

priorly anticipated, as is standard in the ATLAS collaboration and searches in HEP in general. This falls

in the category of blind analyses, where a specific signal is searched for within a predefined region of

the collected data’s observables space; and where the actual data included in this sensitive region is only

looked at after all of the analysis is set up.

But one of the main advantages of the e/µ-symmetry method is that it provides a data-driven way to

model the SM background. Once the expected SM symmetry is under control, any asymmetry found

in the data could be a sign of NP. This enables implementing generic searches in large portions of the

collected data’s observables space, significantly enhancing the potential for discovering BSM physics

simply by better exploiting the already collected data. Such generic analyses fall in the category of the

DDP proposed by us in [1, 62], where we advocate permitting the data to lead us towards the interesting

regions within its observables space. In section 5, more considerations and motivation towards applying

such symmetry-based, data-directed, and generic searches are discussed, as well as some progress towards

possible implementations. In particular, we show that the potential for discovery, even when searching for

a generic signal, can be significant.
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4 ATLAS Run-2 search for Higgs Lepton Flavor Violating decays

This section presents the Symmetry-based search for Higgs LFV decays to e⌧ and µ⌧ using the full Run-2

data from pp collisions at
p

s = 13 TeV provided by the LHC and collected by the ATLAS detector. As

described in section 3.2, two searches are performed, H ! e⌧ ! eµ2⌫ and H ! µ⌧ ! µe2⌫, where the

SM background is estimated in a data-driven way using the e/µ-symmetry method.

Moreover, the complete ATLAS Run-2 Higgs LFV search comprises three separate analyses:

• MC-based searches for H ! e⌧had and H ! µ⌧had

• MC-based searches for H ! e⌧µ and H ! µ⌧e

• Symmetry-based searches for H ! e⌧µ and H ! µ⌧e

The MC-based searches, in contrast, use MC simulation to estimate the SM background. Although the

combined results are summarized, the MC-based analyses aren’t presented. In addition, the results reported

here are still unpublished at the time where this is written, although the paper is ready and going through

an internal ATLAS review prior to being submitted for publication. As such, they may be subject to small

changes during this process.

Section 4.1 describes the samples (measured and simulated) used in the analysis, and section 4.2 the

methods and definitions to reconstruct the different objects in each event; section 4.3 gives an overview of

the strategy implemented; section 4.4 presents measurements of electron efficiencies used in the efficiency

correction and section 4.5 the fake background estimate; in section 4.6 the different steps performed

to validate the background estimation procedure are detailed; a NN implementation to optimize the

signal to background separation is described in section 4.7; section 4.8 lists the systematic uncertainties

considered. The statistical analysis implementation and the obtained results are presented in section 4.9,

and in section 4.10, conclusions are drawn.

4.1 Collision data and simulated samples

The dataset used for these searches consists of the LHC data recorded by the ATLAS experiment at a center

of mass energy of 13 TeV from 2015-2018. The total integrated luminosity of analyzed data corresponds

to 138.42 fb�1 after the application of data quality requirements [63]. Events used in this analysis were

triggered by a combination of single-electron, single-muon, or electron-muon triggers, as detailed in

Table 7 [64–67].

Although this analysis is data-driven, we still use MC simulation to model the signal processes, measure

electron detection efficiencies (section 4.4), fine-tune the fake background estimation (sections 4.5.1 and

4.5.2), and validate the different stages of the analysis (section 4.6). We do not perform MC studies usually

implemented in standard analyses, such as normalizing specific samples for better data to MC agreement,

since the SM background estimate is based on data in our analysis.

All MC samples are processed through the full ATLAS detector simulation [58] based on Geant4 [68], and

the same event reconstruction algorithms are applied as with the data. Simulated events are reconstructed

with pileup events overlaid following the expected pileup profile. In addition, all simulated events were

weighted by SFs to correct for differences in object selection efficiencies in MC compared to data, as

recommended by the respective combined performance groups.
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For the Higgs LFV signal samples (H ! `⌧) and the Higgs background samples (H ! ⌧⌧ and H ! WW ),

we consider the dominant Higgs boson production modes at the LHC: ggF, VBF, and the associated

production modes W H and Z H. Others are neglected. The Higgs mass is set to mH = 125 GeV [69],

and the cross-sections are fixed to the SM predictions [70]. The generator used for the Higgs’ production

and decay is Powheg-Box v2 [60], while Pythia8 [61] is used for parton shower, hadronization, and other

decays.

SM background processes that contribute to our SR include Z/�⇤ ! ⌧⌧, tt̄, single top-quark, and diboson

(WW , W Z , and Z Z), together with the Higgs background samples previously described. The combination

of these samples is referred to as the SM MC sample. Smaller contributions result from Z/�⇤ ! ee and

Z/�⇤ ! µµ. For fake background studies or electron MC efficiency measurements, W+jets, V + �, and

ttV productions are also considered.

Z + jets and W+ jets production are simulated with Powheg-Box v2 + Pythia8 or Sherpa 2.2.1. The latter is

generally considered the standard, but Powheg-Box v2 + Pythia8 has been found to provide more statistics

in our selection, critically needed in some low statistics regions. It is therefore used as the default for

Z ! µµ in the main analysis and Z + jets and W+ jets in the fake composition estimate.

tt̄ and single top-quark production are simulated using Powheg-Box v2 + Pythia8, diboson using Sherpa2.2.1,

V + � with Sherpa 2.2.8, and ttV (only relevant for the Z + jets-CR) with aMC@NLO + Pythia8.

We use different types of data formats in our analysis. These are input files provided within the ATLAS

collaboration, including events with different types of final states and applied selection rules. The primary

input type is DAOD_HIGG4D1. To measure electron MC efficiencies, using only Z/�⇤ ! ⌧⌧, diboson, tt̄,

and single top-quark MC samples (the main SM contributions to our SR), the data format DAOD_TOPQ1

is used. To validate the electron MC efficiency measurement method – based only on Z/�⇤ ! ee MC

samples – the data type used is DAOD_EGAM1.

4.2 Object reconstruction

In this section, the objects used in this analysis are briefly described. Selected events require one electron

and one muon and a veto of hadronically decaying ⌧-leptons. For this analysis, it is essential that electrons

and muons are symmetric and can originate from ⌧-lepton decays. Therefore, deviations from the standard

ATLAS treatment of those objects are present in this analysis, which are indicated below.

Primary vertices require at least two associated tracks, each with transverse momenta pT > 500 MeV. If

more than one primary vertex is reconstructed in the event, the one with the largest
P

p2
T

is chosen as the

hard-scatter primary vertex. It is subsequently used to calculate the physics objects in the event.

Leptons are reconstructed with different levels of constraints depending on specific uses in the analysis.

Baseline leptons are defined to perform the overlap removal, calculate the missing transverse momentum

(see further in this section and in [80]), and veto additional leptons. Additional more stringent criteria are

applied to the signal or selected leptons used in the reconstruction of Higgs decay properties to ensure

higher background rejection and symmetry between electrons and muons.

Electrons are selected from clusters of energy deposits in the EM calorimeter that match a track reconstructed

in the ID. They are identified using likelihood Id criteria [71]. Baseline electrons are required to pass Loose

and BLayer LH (Likelihood-Hypotheses based) Id, which provides efficiency of about 93%. A cut on the

quality requirement BADCLUSELECTRON is imposed to reject electrons with problematic calorimeter
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measurements. Baseline electrons are required to have pT > 15 GeV and |⌘ | < 2.47 and electrons inside

the calorimeter crack region defined as 1.37 < |⌘ | < 1.52 are vetoed. The baseline electrons are used

for the overlap removal described below. The remaining baseline electrons are then used for the Emiss
T

calculation and the third lepton veto.

Selected electrons are further required to pass the Medium LH Id, which gives an average efficiency of

88% for typical electroweak processes, and the Gradient Iso criteria. The Gradient Iso criteria gives an

efficiency that increases with the electron’s pT, designed to give 90% at pT = 25 GeV and 99% at pT

= 60 GeV, uniform in ⌘ [71]. The absolute value of the longitudinal impact parameter of the electron

track, calculated with respect to the primary vertex and multiplied by sin ✓ of the track, is required to be

|z0 sin ✓ | < 0.5 mm. The significance of the transverse impact parameter calculated with respect to the

beam-line is required to be |d0 |/�d0
< 10. The latter is looser than standard impact parameter requirements

for electrons, allowing higher efficiency to select electrons originating from ⌧ decays.

Muons are reconstructed by combining ID and MS tracks with consistent trajectories and curvatures.

The combination is performed through an overall fit using the hits of the ID track, the energy loss in the

calorimeter, and the hits of the tracks in the MS. These muons are called combined muons [72], and only

those muons are used in this analysis. Based on the quality of the Reco and Id, muon candidates are defined

as Loose, Medium, and Tight. Baseline muons are required to pass Loose, which provides an efficiency

of about 98% relatively uniform in pT, and to have pT > 10 GeV and |⌘ | < 2.47. As for the electrons,

baseline muons are used for the overlap removal. The remaining baseline muons are then used for the Emiss
T

calculation and the third lepton veto.

Selected muons are further required to pass Medium Id and the FCTightTrackOnly Iso criteria. The same

impact parameter requirements as for electrons are applied: |z0 sin ✓ | < 0.5 mm and |d0 |/�d0
< 10, where

the latter is again loosened compared to standard muon impact parameter requirements to be consistent with

the hadronic decay of a ⌧-lepton. For symmetry reasons, only muons with pT > 15 GeV are considered,

and a veto for the calorimeter crack of 1.37 < |⌘ | < 1.52 is also applied to the muons. The calorimeter

crack veto for muons is specific to this analysis.

Hadronic ⌧ (⌧had) decays are composed of a neutrino and a set of visible decay products, typically one or

three charged pions and up to two neutral pions. The reconstruction of the visible decay products is seeded

by jets with the anti � kt algorithm [73] applied to calibrated topo clusters with a distance parameter of

R = 0.4 [74]. Jets seeding ⌧had-vis candidates are required to have pT > 10 GeV and |⌘ | < 2.5. To separate

visible decay products of hadronically decaying ⌧ leptons, ⌧had-vis, from quark and gluon-initiated jets,

isolation criteria based on a Recurrent NN (RNN) are constructed [75]. A boosted decision tree (eBDT) is

constructed to reject electrons faking ⌧had-vis candidates. Baseline taus are required to have 1 or 3 associated

tracks, pT > 20 GeV and |⌘ | < 2.47, excluding the crack region of 1.37 < |⌘ | < 1.52. The Medium RNN ⌧

Id and the Loose electron Boosted Decision Tree (eBDT) working points are applied as well as a muon veto

criterion called MuonORL. Baseline taus are used for the overlap removal. The remaining baseline taus are

then used for the Emiss
T

calculation and the hadronic ⌧ veto.

Jets are reconstructed from particle flow objects using the anti � kt algorithm with a radial distance

parameter of R = 0.4 [76]. Energy clusters are measured at the EM scale and calibrated to the jet

energy scale (JES) using the Global Sequential Calibration (GSC) [77]. Baseline jets are required to have

pT > 20 GeV, |⌘ | < 4.5, and pass the LooseBad cleaning working point. These jets are used for overlap

removal. For jets surviving the overlap removal, additional requirements on (f)JVT ((forward) Jet Vertex

Tagger) are imposed to suppress jets originating from pileup [78]. The Medium JVT working point is used.

Since the fJVT calibration is not yet available for PFlow (Particle Flow) jet, the fJVT decision and the
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corresponding CFs are taken from the matched EM jets. In order to identify and reject jets originating

from b-hadrons, the DL1r tagger is used with an 85% working point [79].

Since the reconstructed objects are not mutually exclusive, an overlap removal procedure is applied to the

baseline objects. The overlap procedure is summarized in Table 5.

Step Reject Against Criteria

1 electron electron shared track, p1
T

< p2
T

2 ⌧had-vis electron ∆R < 0.2

3 ⌧had-vis muon ∆R < 0.2

4 muon electron is-calo muon and shared ID track

5 electron muon shared ID track

6 jet electron ∆R < 0.2

7 electron jet ∆R < 0.4

8 jet muon Number of tracks < 3 and ghost-associated or ∆R < 0.2

9 muon jet ∆R < 0.4

10 jet ⌧had-vis ∆R < 0.2

Table 5: Overlap Removal selection. The selection criteria are applied sequentially as ordered in this table.

The missing transverse energy [80] is an estimate of the imbalance in the transverse momentum in the

detector, and it is computed as the missing transverse vector ~p miss
T

, with its magnitude – the missing

transverse energy Emiss
T

[81]. The ~p miss
T

vector is calculated as the negative vector sum of the transverse

momenta of electrons, muons, taus, and jets. Tracks not associated with any reconstructed object are

considered in the calculation as soft terms. The electrons, muons, and ⌧had-vis objects passing the baseline

selection described in the previous sections are used for the missing transverse energy reconstruction

together with the entire jet collection. The Tight criterion of the official ATLAS Missing Transverse Energy

Tool has been chosen. This criterion ensures that the transverse momentum of the forward jets (with

|⌘ | > 2.5) used for the Emiss
T

calculation is above 30 GeV.

4.3 Analysis strategy

4.3.1 Overview

Similarly to the description given in section 3.2, we discuss two searches for Higgs LFV decays using the

e/µ-symmetry method:

• H ! µ⌧! µe + 2⌫ (H ! µ⌧e)

• H ! e⌧! eµ + 2⌫ (H ! e⌧µ)
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The e/µ-symmetry method provides sensitivity to the difference between the two BRs |B(H ! µ⌧e) �
B(H ! e⌧µ) |, and we perform each of the two searches independently, assuming that the BR of the other

decay is zero.

Events selected must contain precisely two opposite-sign leptons, one an electron and the other a muon.

These events are then divided into two mutually exclusive datasets, one where the searched-for signal

is expected and the other serving as a SM background estimate. Details on the event classification and

selection are given in section 4.3.2 and section 4.3.3, respectively.

The obtention of background predictions includes several components. The SM contributions are estimated

using the data-driven e/µ-symmetry method, using the single event efficiency correction (described in

section 3.3.3) to account for efficiency differences between electrons vs. muons. Further details on the

implementation of the efficiency correction method are given in section 4.3.4, and the measurements of

electron efficiencies used in this correction are detailed in section 4.4. The fake or misidentified background

is mainly estimated using a different data-driven method, although some minor contributions are estimated

directly from MC. This is detailed in section 4.5. The combination of these various components which

constitute the overall background prediction is described in section 4.3.5.

Validation of the combined background prediction is done in several steps. The efficiency correction is

validated based on SM MC samples, where we verify that the expected symmetry is restored, as detailed

in section 4.6.1. The fake background estimate is validated by comparing MC predictions vs. data in

a dedicated same-sign CR, dominated by fake events, as well as in the symmetric baseline selection –

a selection that includes the expected signal contribution but is loose enough that it is dominated by

background contributions. This is shown in section 4.6.2. Finally, the combined background estimate

is validated by inspecting the obtained prediction vs. data in the baseline selection, as is shown in

section 4.6.3.

The strategy to achieve high sensitivity in this analysis is, on the one hand, a relatively loose selection to

keep high statistics and, on the other hand, constructing an observable that separates signal and background

as best as possible. The distribution of this observable is then used as the final discriminant in the fit. To

construct such an observable, a deep NN is trained. Further details on the NN implementation are given in

section 4.7. As a result, no optimized SR selection is defined, and all of the events which pass the baseline

selection are used for the training of the NN and the obtention of results in the statistical analysis. On the

other hand, selected events are further divided into two categories: VBF and non-VBF. The VBF category

is designed to enhance the sensitivity to the VBF Higgs production mode (see definitions of the SRs in

section 4.3.3).

The statistical analysis – used to extract the results – is performed separately for the search for H ! e⌧µ
and H ! µ⌧e. It uses a binned likelihood function based on histograms of the NN outputs. A simultaneous

fit that combines the non-VBF and VBF categories is done. Details on the implementation are given in

section 4.3.6. A discussion of the uncertainties considered and their treatment is given in sections 4.8 and

4.9.1. The results obtained are described in section 4.9.2 for this analysis, while final results in combination

with the MC-based analyses are presented in 4.9.3.

4.3.2 Event classification

Event classification refers to assigning an event with precisely two opposite-sign leptons, one an electron

and the other a muon, to either of the two mutually exclusive datasets, which we compare when applying
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the e/µ-symmetry method.

As described in section 3.2, we expect that in the case of the H ! µ⌧ signal, the pT spectrum of electrons

originating from ⌧ decays is softer than the muon pT spectrum. Based on this assumption, the event

classification is implemented following the pT-ordering of the two leptons, and we define the eµ and µe

datasets:

• µe dataset: `0 is the muon, and `1 is the electron (p
µ

T
> pe

T
)

• eµ dataset: `0 is the electron, and `1 is the muon (pe
T

> p
µ

T
)

where the leading lepton (the lepton with the larger transverse momentum) is indicated by `0 and the

subleading lepton by `1. As previously discussed, this method was used in the Run-1 Higgs LFV search

also based on the e/µ-symmetry method [57].

But this assumption is only valid in the rest frame of the decaying Higgs boson, which can be different than

the laboratory frame due to the eventual boosting of the Higgs. This leads to a non-negligible contribution

of wrongly classified signal events. These misclassified signal events negatively impact the sensitivity of

this analysis, not only because they are lost to our SR but also contribute instead to the background model.

This effect is found to be even worse for VBF signal events as compared to ggF signal events, due to the

Higgs being more boosted in average in the VBF case. We define the event classification accuracy as the

percentage of signal events correctly assigned.

The Higgs rest frame cannot be fully known due to missing information on the z-component of the missing

energy. Still, it can be estimated by adding the 4-vectors of the two leptons and the transverse component of

the missing energy and by constraining the resulting Higgs mass to 125 GeV. Event classification based on

the pT-ordering of the two leptons, this time boosted to this estimated Higgs rest frame, leads to significantly

improved accuracy. It was found that this can be improved even further when evaluating the pseudorapidity

component of the missing energy with the pseudorapidity of the system of the two leptons.

Accuracies for the different signal samples used in our analysis, showing the improvement achieved with

this refined event classification method, are shown in Table 6. The improved method is the one implemented

in this analysis.

(ggF) H ! µ⌧ (ggF) H ! e⌧ (VBF) H ! µ⌧ (VBF) H ! e⌧

laboratory frame 85.1 88.7 71.1 78.0

estimated Higgs frame 92.8 93.6 90.5 91.3

Table 6: Event classification accuracy in % for the different signal samples considered, based on the pT-ordering of

the two leptons either in the laboratory frame, or boosted to the estimated Higgs rest frame.

An ideal event classification method means that one can perfectly assign, within a signal event, which lepton,

`H , originates directly from the Higgs decay and which lepton, `⌧ , from the secondary ⌧ decay. Therefore

we refer to the two mutually exclusive datasets obtained by applying this improved event classification

method using the following notations:

• µτe dataset: `H is the muon and `⌧ is the electron (p
µ

T
> pe

T
in the estimated Higgs rest frame)

• eτµ dataset: `H is the electron and `⌧ is the muon (pe
T
> p

µ

T
in the estimated Higgs rest frame)
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As before, the SM background is split equally between the two datasets. We sometimes refer to these

two datasets simply as the µ⌧ and e⌧ datasets, implying that the ⌧ further decays to the opposite flavored

lepton.

4.3.3 Selections

In this analysis, different event selections for distinct tasks are considered.

The symmetric baseline selection – or baseline selection – is a loose selection that includes the Higgs LFV

signal and preserves the eµ/µe SM symmetry. It contains events with one electron and one muon with

opposite signs in the final state. The trigger logic to select those events is an OR between single-lepton

and dilepton triggers. The triggers considered are summarized in Table 7. Symmetric pT thresholds for

electron and muon triggers are chosen to ensure a symmetric selection between electrons and muons and to

not artificially violate the symmetry assumption.

Trigger Data recommended used

Menu Period Trigger Chain Name pT thresholds pT thresholds

Single

Electron

2015

HLT_e24_lhmedium_L1EM20VH 25 GeV 25 GeV

HLT_e60_lhmedium

HLT_e120_lhloose

2016-18

HLT_e26_lhtight_nod0_ivarloose 27 GeV 27 GeV

HLT_e60_lhmedium_nod0

HLT_e140_lhloose_nod0

Single

Muon

2015
HLT_mu20_iloose_L1MU15 21 GeV 25 GeV

HLT_mu50

2016-18
HLT_mu26_ivarmedium 27 GeV 27 GeV

HLT_mu50

Dilepton
2015 HLT_e17_lhloose_mu14 18 GeV, 15 GeV 18 GeV, 18 GeV

2016-18 HLT_e17_lhloose_nod0_mu14 18 GeV, 15 GeV 18 GeV, 18 GeV

Table 7: Triggers used in this analysis. An OR between all of them is required. Symmetric pT thresholds are used

instead of the recommended ones to avoid introducing an artificial asymmetry between electrons and muons.

Further event selection criteria applied are:

• ⌧had veto (to combine results with the H ! e⌧had and H ! µ⌧had searches)

• b-jet veto (tt̄ background reduction)

• p
`0
T

> 35 GeV and 30 < m`` < 150 GeV (background reduction)

Events that pass the baseline selection are further divided into two categories: the VBF and non-VBF

selections. The VBF category is designed to enhance the sensitivity to the VBF production mode. The

VBF selection includes events with at least two jets, which pass further dedicated requirements applied to

the jet kinematics and topology of the two jets j0 and j1 (denoting the leading and subleading jet ordered in

pT, respectively):
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• p
j0
T
> 40 GeV and p

j1
T
> 30 GeV

• |∆⌘ j j | > 3

• m j j > 400 GeV

The non-VBF category contains events failing the VBF selection.

The same-sign selection has the same requirements as the baseline selection, except that the leptons are

required to have charges of the same sign. This CR, mainly populated by fake events, is used for validating

the fake background estimation.

The Z+jets CR is a selection also mainly populated by fake events used in the fake background estimate. It

includes events with three baseline leptons: two leptons of the same flavor and opposite sign, tagged to the

Z boson decay, and a third probe lepton which is often a fake lepton. We further require that the tagged

pair’s invariant mass is between 80 and 100 GeV, the Emiss
T

is under 60 GeV, and the invariant mass of the

system of the probe lepton with the Emiss
T

is under 40 GeV.

4.3.4 Efficiency correction

One of the main focuses of this analysis, based on the e/µ-symmetry method, is to restore the expected

symmetry between SM events which contribute to the e⌧ and µ⌧ datasets. Asymmetries between these two

datasets arise after detection due to different lepton trigger and lepton detection efficiencies. The efficiency

correction is applied event-by-event, similar to the description in section 3.3.3. For this, we estimate each

event’s overall efficiency by measuring the various efficiency components affecting the detection of the

electron and the muon in the event.

We emphasize that the efficiency correction only attempts to restore the symmetry between real SM

contributions to the e⌧ and µ⌧ datasets. Another source of asymmetry, the contribution of events containing

fake or non-prompt leptons, are accounted for with different methods, as detailed in section 4.3.5.

Event efficiency

We select events with precisely one electron and one muon of opposite sign. The event efficiency

is a product of the efficiencies to detect the electron and the muon in the event and to trigger the event:

✏ tot = ✏ trig · ✏e · ✏µ (48)

Furthermore, the lepton efficiencies have different components for the different steps of the reconstruction

algorithms: Reco, Id, and Iso [71, 82].

✏`2 {e,µ } = ✏
reco
` · ✏ Id` · ✏

Iso
` (49)
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Trigger efficiencies are provided by the ATLAS electron and muon trigger working groups [64–67].

We use an inclusive combination of single-electron, single-muon, or di-lepton trigger chains, as detailed in

section 4.3.3. The global trigger efficiency of the event is calculated as a function of the kinematics of the

two leptons in the event, the relevant single-lepton trigger efficiency values, and combinatoric formulas

provided in the ATLAS TrigGlobalEfficiencyCorrection tool.

The single-electron trigger efficiencies are parameterized in terms of the electron’s pT and pseudorapidity

⌘. They rise with the electron’s pT up to around 80 GeV before reaching a plateau of over 95% efficiency.

The efficiencies significantly vary between the barrel and endcap regions of the detector, and separate

efficiency maps are provided for the different data-taking years.

The single-muon trigger efficiencies are lower than that of the single-electron trigger, especially in the

barrel region of the detector (⇠60-80%). They are parameterized in terms of the muon’s pseudorapidity

and azimuthal angle. There is no pT dependence, but the efficiencies are only valid above the trigger’s pT

threshold value. Separate efficiency maps are provided for the barrel and endcap regions and different

data-taking periods.

The dilepton triggers efficiencies are assumed to factorize into the two single-lepton triggers efficiencies,

and the properties are described by the behavior of the combined efficiencies.

Muon efficiencies are the product of the muon’s Reco, Id and Iso efficiencies [82]. Joint Reco and Id

efficiency maps are provided by the ATLAS muon working groups, parameterized by the muon’s ⌘ and �,

and a pT dependence is given to the systematic uncertainty of the efficiency values. Again separate maps

are provided for different data-taking periods, but the variations are much smaller than in the case of the

single-muon trigger efficiencies.

Muon Iso efficiencies are also provided and depend mainly on the muon’s pT. An additional parameter, the

distance to the closest jet, is used to further parameterize the systematic uncertainties on the muon Iso

SFs.

Electron efficiencies are also a combination of the electron’s Reco, Id and Iso efficiencies [71]. These

efficiencies were found by the EGamma performance group to depend strongly on the kinematic selection

and not only on the properties of the electrons. Therefore, they are not provided in the form of efficiency

maps. On the other hand, the SFs - which account for the difference in electron efficiencies between MC

and data measured by the performance group - were found to be independent of the selection and are

provided.

The recommended procedure to derive electron efficiencies valid in our SR is the following:

• Estimate first the MC electron efficiency from simulated samples; count the number of electrons in

the SR which pass the Reco, Id, and Iso criteria. Divide this number by the total number of electrons

generated:

✏MC
X =

Nelectrons passing cuts X

Nall electrons

, X ⇢ {Reco,Id,Iso} (50)

• Estimate the data electron efficiency by multiplying the measured MC efficiency by the relevant

electron SFs:

✏Data
X = SFX · ✏

MC
X (51)
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The electron candidates to consider in the first step must be carefully selected based on their truth

information. In particular, the origin of the electron needs to be matched to the relevant process that was

simulated, e.g., a Z boson in the case of a Z ! ee process. The electrons considered are:

• Prompt electrons with matched origin.

• Electrons that underwent bremsstrahlung conversion originating from a prompt electron with matched

origin.

• Electrons originating from a Final State Radiation (FSR) photon that converted.

The two latter types are jointly referred to as background electrons. The measurement of the electron MC

efficiencies is presented in section 4.4.

Efficiency correction strategy

As a reminder, when searching for an H ! µ⌧e signal within the µ⌧ dataset, we use the e⌧ data-

set after efficiency correction to estimate the SM background contributions (in a search for the H ! e⌧µ
signal, the roles of the two datasets are reversed). The efficiency correction is applied following the single

event correction formalism developed in section 3.3.3, where we use the event-by-event efficiency-ratio CF

introduced in (42) to the events of the e⌧ dataset.

Due to the different efficiency dependencies, the efficiency-ratio CF is relative to whether the event belongs

to the eµ or µe dataset, which differ by the pT ordering of the two leptons in the laboratory frame as

described in section 4.3.2. In terms of the e⌧µ and µ⌧e datasets (which differ by the pT ordering of the

two leptons in the estimated Higgs frame as described in section 4.3.2), the procedure is almost the same.

The efficiency correction is still applied only to the dataset used as the background estimate, but the

efficiency-CF is still relative to whether the event belongs to the eµ or µe dataset. For example, if the e⌧µ
is the basis for the background estimate, the efficiency-CF for the few µe events which contribute to it will

be R✏
i

(µe event).

We validate the efficiency correction based on the SM MC simulated samples, as described in section 4.6.1.

4.3.5 Background estimation

Several background processes result in signatures similar to the one expected for the H ! e⌧ or H ! µ⌧
LFV signal. They can be distinguished into two broad categories:

• fake backgrounds

• real SM backgrounds

Events of the first category result from particles or objects misidentified as leptons – electrons or muons –

which pass the lepton selection criteria, therefore allowing these events to be selected. We refer to these

leptons as fake leptons and the events selected, including them as fake events. The estimation of the fake

background contribution is separated in two depending on the source of the fake leptons; a data-driven

method called the Fake-Factor (FF) method for the main contribution (jets faking leptons) and directly

from MC for other sources. We denote as FF-fakes (FFF) the fakes estimated with the FF method, and as

MC-fakes (FMC) the fakes estimated from MC. The fake estimate is presented in section 4.5. It is validated

in the same-sign selection – a fake enriched CR defined in section 4.3.3 – as shown in section 4.6.2.
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Events of the second category result from SM processes, producing the same numbers and types of particles

as the signal process. They include Z ! ⌧⌧, diboson (WW , W Z , Z Z), top-quark production (tt̄ and single

top), and SM processes involving the Higgs boson: H ! WW and H ! ⌧⌧. As detailed in section 3.1,

these SM processes are symmetric to the exchange e $ µ, and their contributions are evaluated using the

e/µ-symmetry method. In particular, the efficiency correction described in section 4.3.4 is applied to the

data samples from which the fake contribution is subtracted. We denote the resulting estimate as the SM

symmetric background. Based on the formalism developed in (46), it is written as:

8>><>>:
Ñe⌧

sym = R✏ · (Ne⌧ � Fe⌧
FF
� Fe⌧

MC
) (H ! µ⌧ search)

Ñ
µ⌧
sym = R✏ · (Nµ⌧ � F

µ⌧

FF
� F

µ⌧

MC
) (H ! e⌧ search)

(52)

where Ne⌧ (Nµ⌧) is the data, Fe⌧
FF

(F
µ⌧

FF
) is the FF-fakes, and Fe⌧

MC
(F

µ⌧

MC
) is the MC-fakes – in the e⌧ (µ⌧)

dataset. The efficiency-ratio CF R✏ is applied event-by-event and differs whether the event is an eµ or µe

event, as described in section 4.3.4. The combined background prediction is then written as:

8>><>>:
bµ⌧ = Ñe⌧

sym + F
µ⌧

FF
+ F

µ⌧

MC
(H ! µ⌧ search)

be⌧ = Ñ
µ⌧
sym + Fe⌧

FF
+ Fe⌧

MC
(H ! e⌧ search)

(53)

Validation of the combined background estimate is shown in section 4.6.3.

4.3.6 Statistical analysis

The statistical analysis is used to extract the results. It is performed separately for the search for H ! e⌧µ
and H ! µ⌧e, under the assumption that the other LFV decay’s BR is zero. As previously discussed, the

final discriminant used in the analysis is the output histogram of the NN scores, implemented to enhance

the signal over background separation (see section 4.7).

The statistical analysis uses a binned likelihood function, constructed as a product of Poisson probability

terms – one for each bin in the distribution of the NN outputs. A simultaneous fit that combines the

non-VBF and VBF categories is done. Two measures of interest are derived: a) the significance of a signal,

which quantifies the disagreement with the background-only hypothesis, and b) an upper limit on the

cross-section times BR of the signal process, which quantifies the maximum signal strength consistent with

the data.

The likelihood function for the H ! µ⌧e search, based on the formalism introduced in (47), is written as:

L(µs) =

B
Y

b=1

Pois
⇣

N
µ⌧

b

��� Ñe⌧
sym,b + F

µ⌧

FF,b
+ F

µ⌧

MC,b
+ µs ·

⇣

S
µ⌧

b
� S̃e⌧

b

⌘⌘

(54)

where B is the total number of bins in the histograms considered, Nµ⌧ is the µ⌧ data, Ñe⌧
sym is the SM

symmetric background (52), FFF and FMC are the FF-fakes and MC-fakes, S
µ⌧

b
is the searched-for H ! µ⌧e

signal, and µs is the signal strength parameter. We also include here the signal contamination S̃e⌧ : the

H ! µ⌧e events, which are wrongly classified to the e⌧ dataset (see section 4.3.2). Due to symmetry
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considerations, this contribution needs to be included after efficiency correction, similarly to the e⌧ fake

contributions. Likewise, for the H ! e⌧µ search, the likelihood function is:

L(µs) =

B
Y

b=1

Pois
⇣

Ne⌧
b

��� Ñ
µ⌧

sym,b
+ Fe⌧

FF,b + Fe⌧
MC,b + µ

s ·
⇣

Se⌧
b � S̃

µ⌧

b

⌘⌘

(55)

Not shown in the above expressions, systematic uncertainties – expressed as a set of nuisance parameters –

are considered as additional Gaussian constraint terms (limited by the upward and downward fluctuated

distributions per nuisance parameter and per sample) in the likelihood function. All considered systematic

uncertainties are summarized in section 4.8. In addition, statistical uncertainties of the total background

expectations are considered bin-by-bin via additional Poisson constraint terms in the likelihood. The

corresponding nuisance parameters – the �-parameters – are parameterized to have a mean value of 1 and a

variance corresponding to the relative statistical uncertainty.

The significance and the upper limit on the BR are derived using the test statistics q0 and q̃µ respectively,

which are described in section 2.6.

4.4 Electron efficiency measurements

As discussed in section 4.3.4, the electron efficiencies – used in the efficiency correction – depend strongly

on the kinematic selection and not only on the properties of the electrons. On the other hand, the SFs are

independent of the selection. As per the recommendation, we measure electron efficiencies valid in our

selection from MC and translate them to data efficiencies via the provided SFs.

In the following, we present the measurements of the electron MC efficiencies valid in our selection. In

particular, Z ! ee samples aren’t included in these measurements since they don’t contribute to our SR.

In contrast, they are the dominant contribution to electron efficiencies and SFs derived by the EGamma

performance group. We describe the method used in section 4.4.1 and validate it based on Z ! ee samples

in section 4.4.2. Results and strategies implemented to boost the MC statistics are shown in section 4.4.3,

and the derivation of uncertainties is described in section 4.4.4. A study comparing efficiencies measured

for leading vs. subleading electrons is presented in section 4.4.5. In section 4.4.6, we compare the

efficiencies obtained for our selection to those obtained from the Z ! ee samples. Finally, efficiencies

measured when tighter constraints on the electrons are applied are presented in section 4.4.7.

Validation of the measured electron efficiencies and the efficiency correction (described in section 4.3.4) is

shown in section 4.6.1 based on the SM MC sample and in section 4.6.3 based on the data.

4.4.1 Description

Samples

One of the technical challenges in measuring electron efficiencies from MC samples is to circumvent any

bias induced by preselection constraints applied to the input data files. For instance, the HIGG4D1 DAODs

which we use in our analysis only include events with at least two loosely identified leptons. Therefore it

isn’t possible to provide unbiased electron efficiency measurements from them.

The next obvious candidates are the EGAM1 DAODs, which are used by the performance group to measure

electron efficiencies and provide electron SFs. Indeed, EGAM1 preselection requires at least two loosely
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identified electrons, or one electron and one photon. Therefore these can be used to obtain unbiased

electron efficiency measurements. On the other hand, the EGAM1 DAODs do not include all the SM

processes which contribute to our SR, nor events with one electron and one muon which are relevant to us.

Therefore it isn’t possible to provide electron efficiency measurements in a selection close to our analysis

selection from them.

Ultimately, we derive the electron MC efficiencies using the TOPQ1 DAODs. With a preselection requiring

at least one loose lepton with pT > 20 GeV, and all the relevant SM processes available, these are adequate

for measuring unbiased electron efficiencies in a selection close to our analysis selection.

The SM processes we consider to measure the electron MC efficiencies are Top, Z ! ⌧⌧, and Diboson.

These are the dominant processes with real SM contributions to our SR. We refer to their joint contribution

as the SM sample. In particular, we don’t include Z ! `` samples for this measurement since it isn’t a real

SM background in our analysis (given that we only include events with one electron and one muon).

Electron candidates

Electron candidates used in the electron MC efficiency measurements are truth-matched electrons with

pT > 15 GeV and |⌘ | < 2.47, measured away from the crack-region (1.37 < |⌘ | < 1.52). Truth-matching

refers to looking at a reconstructed particle’s information within the simulated event generation origin,

such as which type of particle it corresponds to or from which mother particle it decayed. This information

is only available in MC simulated samples. Truth-matching is applied here to select only prompt electrons

and is done using the ATLAS IFFTruthClassifier tool. We accept the following electron categories:

• Prompt electrons with matched origin

• Background electrons or photons which originate from a prompt electron that underwent electron-

photon conversion and with matched origin

• Background electrons that originate from FSR photons

Electron candidates can also be found in the PhotonContainer, meaning they were reconstructed as photons

but are true electrons. Including electrons reconstructed as photons means that the denominator in (50) is

filled with all the reconstructed clusters found in the EMCal. Ideally, we would include all real electrons

produced in the simulated collision in the denominator, but we are missing electrons whose cluster was

not reconstructed. Still the cluster reconstruction efficiency is > 99% for electrons with pT > 15 GeV

(see Figure 12), so it is only a small effect. These electron candidates are used to measure the electron

Reco efficiency. If there is more than one electron candidate in a given event, we apply a simple Overlap

Removal among them based on the |∆R| < 0.2 criteria. We then prioritize reconstructed electrons over

reconstructed photons, then the highest pT.

Event selection

Events considered for measuring electron efficiencies contain either two electron candidates, or one electron

candidate and one muon, with pT > 15 GeV, |⌘ | < 2.47. Selection constraints are applied to approach the

definitions of our baseline selection discussed in section 4.3.3:

• opposite sign leptons away from the crack-region (1.37 < |⌘ | < 1.52)

• Symmetric trigger coverage (same pT thresholds for electrons and muons) (no trigger matching)

• ⌧had veto
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Figure 12: Electron cluster, track, and reconstruction efficiencies. This plot was provided by the ATLAS EGamma

working group.

• b-jet veto

• 30 < m`` < 150 GeV

Reconstructed muons are required to be truth-matched (using the IFFTruthClassifier) to prompt muons.

Electrons are truth-matched, as discussed above.

Tag&probe

We use a tag&probe method to obtain an unbiased sample of electrons (the probes). Indeed, due to the

requirements applied in the input files to include events, we know that every event contains at least one

loose lepton with pT > 20 GeV, so the overall sample of electrons available is biased. The tag&probe

method is used to identify and reject the lepton which originated in its event selection at the time of the

creation of the input file – the tag lepton. The second lepton – the probe lepton – is then unbiased by this

original selection. The tags are baseline leptons with pT > 20 GeV. In the case of µe events, the muon is a

tag candidate, and the electron is a probe candidate, and in the case of ee events, both electrons are tag and

probe candidates in turn. If a tag candidate satisfies the tag requirements, its paired probe electron will be

used to measure electron efficiencies.

Electron working points

All electron probes are included in the denominator of (50). To be included in its numerator, they need

to satisfy the constraints associated with the following working points, which are the constraints used to

define the signal electrons used in the analysis:

• Reco: Reconstructed as an electron and passes TrackQuality criteria as defined by the EGamma

performance group (enough sensor hits, not too many dead sensors)

• Baseline: Passes the electron Loose Id requirements, standard overlap removal (with all objects in

the event), and relaxed impact-parameter cuts (see section 4.2)

• Id: Passes the electron Medium Id requirements
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• Iso: Passes the electron Gradient Iso requirements

Parameterization

We derive 2D electron MC efficiency maps as a function of the electron’s pT and ⌘. The binning used is

the same as the binning for the electron SFs. We investigate separate maps for the following:

• Different data-taking years

• Electron or muon tags

• Leading or subleading electron probes

Due to limited statistics, this split parameterization comes with large uncertainties. We discuss below some

merging strategies that we considered and used to bypass this limitation.

Uncertainties

The statistical uncertainties of the separate numerator and denominator of the efficiency measurement

are simply the statistical uncertainties of the weighted count of probe electrons included in each. But the

uncertainty of the numerator and the denominator are correlated. We estimate the statistical uncertainty on

an efficiency value ✏ measured with Nden electrons included in its denominator by
p
✏ (1 � ✏ )/Nden, based

on the binomial approximation.

We assign systematic uncertainties to the electron efficiency measurements from two different sources: the

tag flavor (electron or muon) and the kinematic selection. We then combine them to provide one systematic

uncertainty to be used in the fit. Further details are given in section 4.4.4.

4.4.2 Validation in Z → ee

We validate our measurements of the electron MC efficiencies by comparing them to measurements from

the EGamma ATLAS performance group. The measurements performed by EGamma are described in [71].

For this measurement, we derive efficiencies from the same input used by EGamma, the DAOD_EGAM1

Z/�⇤ ! ee samples, and match their selection. The main differences with the selection used to measure

efficiencies for our analysis are:

• Use only Z ! ee samples

• Use only ee events with 75 < M`` < 105 GeV

• Use standard impact parameter cuts on the electrons

• Tag electrons have pT>25 GeV (instead of 20 GeV for our efficiencies)

Plots showing the comparison of our measurements to reference values obtained from EGamma are shown

in appendix A.1. The values obtained agree within uncertainties.
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4.4.3 Results and merging schemes

In this section, we present the electron MC efficiencies used in the analysis for the efficiency correction,

measured from the combined SM sample in the baseline selection.

As previously discussed, MC statistics are limited for these measurements, mainly due to the exclusion

of Z ! ee samples which do not contribute to our SR. Towards obtaining measurements with sufficient

statistics, we consider different merging schemes of the separate efficiency maps:

• Use |⌘el | instead of ⌘el

• Release the pT(`0) > 35 GeV cut

• Combining data-taking years

• Electron and muon tags

• Leading and subleading electron probes

A merging scheme is considered potentially adequate at first if the efficiency values of the to-be merged

maps are more or less consistent up to statistical uncertainties. But in the end, the determining criteria is

how well the symmetry is restored when using the merged efficiencies in the efficiency correction of the eµ

and µe datasets.

The most apparent merging scheme we consider is the use of |⌘el | instead of ⌘el (Figure 13). Indeed the

measured efficiency values found in a specific ⌘el bin are almost always consistent with those found in the

corresponding �⌘el bin due to the geometrical symmetry of the detector.

Figure 13: Measured electron MC efficiencies per pT and ⌘ bin. The ⌘ bin efficiencies are displayed within each

pT bin (0 < ⌘ < 2.47), positive ⌘ bins in red and their respective negative ⌘ bins in blue. The efficiencies here use

combined data-taking years, electron and muon tags, leading and subleading probes, and no pT(`0) > 35 GeV cut.

Releasing the pT(`0) > 35 GeV cut (Figure 14 ) leads to efficiency values with lower statistical uncertainties

and which are consistent with the efficiency values which are measured with this cut. Therefore this cut is

dropped when measuring the electron MC efficiencies.

Regarding the different data-taking years (Figure 15), we observe that efficiency values for 2017 and 2018

are consistent, while those for 2015+16 are usually higher. This is expected since the electron Id efficiencies

were found to decrease with higher pileup, as seen in Figure 16 of [71]. Still, due to low statistics, we find

that merging the efficiency maps per year instead of using separate ones leads to a better-restored symmetry

after efficiency correction.
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Figure 14: Measured electron MC efficiencies per pT and ⌘ bin, with (base) and without (pre) the pT(`0) > 35 GeV

cut. The efficiencies here use combined data-taking years, electron and muon tags, leading and subleading probes,

and |⌘el | bins.

Figure 15: Measured electron MC efficiencies per data-taking year and per pT and ⌘ bin. The labels mc16a, mc16d,

and mc16e are the MC campaigns corresponding to data-taking years 2015+16, 2017, and 2018 respectively. The

efficiencies here use combined electron and muon tags, leading and subleading probes, |⌘el | bins, and no pT(`0) > 35

GeV cut.

For the tag lepton’s flavor, in principle, we should use muons since our SR contains events with one

electron and one muon. But we expect that within our SM sample (which excludes Z ! ee samples), eµ

events and ee events have similar topology. Therefore we consider including also ee events for the electron

efficiency calculation, meaning using electron tags, which would lead to significantly increased statistics.

In Figure 16, we compare efficiencies obtained from events with muon tags versus electron tags. A slight

tendency for higher values in the case of electron-tagged efficiencies is observed, especially for pT bins

higher than 50 GeV. However, including also electron-tagged events in the efficiency measurement leads to

improved restored symmetry. Therefore, electron and muon tagged events are combined for the electron

MC efficiency measurement.

Finally, in Figure 17, we compare efficiency values measured from electron probes whether the electron is

the leading vs. subleading lepton in the event. We find that leading electron efficiencies are systematically

higher than subleading electron efficiencies (within the same pT and ⌘ bin), with differences going up to

5% in efficiency for some bins. Using separate maps for leading and subleading electron probes leads to

improved restored symmetry; hence the MC efficiencies, in this case, are kept separate.

In the end, we chose to use efficiency maps parameterized as a function of the electron’s pT and |⌘ |,

corresponding to the full 2015-18 data-taking period, using both electron and muon tags and without the

pT(`0) > 35 GeV cut, but separate for leading and subleading electrons. These are the efficiencies shown

in Figure 17, keeping in mind that for the leading electron efficiency maps, only pT > 35 GeV bins are
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Figure 16: Measured electron MC efficiencies per tag lepton’s flavor and per pT and ⌘ bin. The efficiencies here use

combined data-taking years, leading and subleading probes, and |⌘el | bins, and no pT(`0) > 35 GeV cut.

Figure 17: Measured electron MC efficiencies per leading (blue) versus subleading (red) electrons and per pT and ⌘

bin. The efficiencies here use combined data-taking years, electron and muon tags, |⌘el | bins, and no pT(`0) > 35

GeV cut. The last pT bin in the subleading electron map is pT > 80 GeV, and in the leading electron map, pT > 150

GeV.

relevant. Using this scheme, we show in Figure 18 the obtained electron MC efficiencies per electron

working point projected on the pT and ⌘ axes.

4.4.4 Uncertainties

To estimate systematic uncertainties in the electron MC efficiency measurements, we vary the flavor of the

tag lepton (electron or muon) and the kinematic selection (applying or not the pT(`0) > 35 GeV cut). This

approximately mirrors systematic uncertainties derived by the EGamma group obtained from varying the

tag Id criterion for the first and the dilepton mass window range for the latter.

In the case of the tag’s flavor, the difference between efficiencies measured from electron tagged and muon

tagged events is shown in Figure 16. The nominal values use combined electron and muon tags, and the

systematic uncertainty per bin is set as the largest difference between |nominal - electron tag| and |nominal -

muon tag| efficiencies. This uncertainty is set symmetrically as both upward and downward variations.

In the case of the kinematic selection, the difference between efficiencies measured with or without

applying the pT(`0) > 35 GeV cut is shown in Figure 14. The nominal values are measured without

the cut (in order to boost statistics), although in our base selection, this cut is applied. The systematic

uncertainty per bin is set as the absolute difference between the two measurements, set symmetrically as

both upward and downward variations. This only affects efficiency measurements of subleading electrons

with pT < 35 GeV.
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Figure 18: Electron MC efficiencies per electron working point projected on the pT and ⌘ axes. Separate plots are

shown for leading and subleading electrons. Using combined data-taking years, electron and muon tags, and |⌘el |

bins. The last pT bins (overflow) are not shown.

In Figure 19, we show the resulting systematic bands per bin with respect to the nominal values for

the leading and subleading electron MC efficiency maps and the tag’s flavor, selection, and combined

systematics.

4.4.5 Leading vs. subleading electrons

In an attempt to understand better the origin of the differences in efficiency values measured from

leading vs. subleading electrons, shown in Figure 17, we derived a similar comparison when using

the DAOD_EGAM1 Z/�⇤ ! ee samples used in the efficiency measurement validation described in

section 4.4.2.

As is shown in Figure 20, here as well, the values can differ significantly whether the electron probe is

the leading or subleading electron in the event. We find differences mainly in the pT < 40 GeV range,

where the leading electron efficiency values can be higher by up to 5% efficiency. We also compared

leading and subleading efficiencies per working point (Reco, Id, and Iso) – the individual plots are shown

in appendix A.2. We find that this difference originates mainly from the Iso constraint but is also observed

when requiring Id.

52



Figure 19: Electron MC efficiency measurements used in the analysis. Nominal values and statistical errors are in

red, and upward and downward systematic variations are in blue and black. The top three plots are for the subleading

electron efficiencies, showing the tag’s flavor, selection, and combined systematic variations. The last plot is for

the leading electron efficiencies, showing the tag’s flavor systematic variations only since these efficiencies are not

affected by the selection systematic. For this last map, only the bins with pT > 35 GeV are used in our analysis.
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Figure 20: Measured electron MC efficiencies using the reference Z ! ee samples per leading (blue) versus

subleading (red) electrons and per pT and ⌘ bin. The efficiencies here use combined data-taking years and |⌘el | bins.

To further investigate, we looked at the Z ! ee Iso efficiencies as a function of the kinematics of the

dielectron (probe + tag) system. In Figure 21(a), we show the comparison of leading vs. subleading

efficiencies measured as a function of the pT of the Z boson (measured from the two electrons it decayed

to). We find that when pT(Z ) = 0, the efficiencies agree, but the difference observed increases the larger

pT(Z ) is. This hints at some correlation with the hadronic activity within the underlying event.

Another check performed was to look at dielectron distributions when the electron probe – either the

leading or the subleading electron – is constrained to a specific pT and ⌘ bin (constraining one electron

fully constrains the dielectron system since they both decay from the Z boson). An example of pT(Z )

distributions in the 25 < pT < 35 GeV and 0.1 < ⌘ < 0.6 bin is shown in Figure 21(b). We find that the

underlying distributions of dielectron kinematics are very different whether the probe is the leading or

subleading electron, which leads to the differences in efficiency values observed.

More studies are needed to fully understand these effects; for example, one could look at efficiencies as a

function of the number of jets near the electrons or the Emiss
T

soft terms. Still, this study shows that the

difference in leading vs. subleading electron efficiencies is a genuine effect, which justifies using separate

efficiency maps when applying the efficiency correction.
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Figure 21: (a) Leading vs. subleading Z ! ee Iso MC efficiencies measured as a function of the dielectron (probe +

tag) pT. (b) Normalized dielectron pT distributions from Z ! ee when the leading vs. subleading probe electron is

constrained to the 25 < pT < 35 GeV and 0.1 < ⌘ < 0.6 bin. In the labels, n stands for numerator (Iso electrons) and d

for denominator (Id electrons).
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4.4.6 Comparison to Z → ee

As detailed in section 4.3.4, the electron efficiencies are not provided by EGamma since they were found to

depend strongly on the kinematic selection and not only on the properties of the electrons. In Figure 22,

we compare the electron MC efficiencies measured for our analysis to those measured with the Z ! ee

samples in order to show the differences observed. We find that, indeed, the efficiency values can differ

significantly, with a difference of up to 4-5% in specific bins, mainly in the pT < 25 GeV and pT > 45 GeV

ranges. The same comparison for the individual working points is shown in appendix A.3.

Figure 22: Comparison of LFV vs. Zee electron combined efficiencies for leading and subleading electron probes.

4.4.7 Alternative electron constraints

During the development of this analysis, we considered applying additional selection cuts, which our partner

MC-based analysis used to suppress, particularly the Z ! µµ background. This Z ! µµ contributes to

our SR in the µ⌧e dataset due to low-energy muons misidentified as electrons (see details in section 4.5.3).

The tighter requirements considered, applied to the electrons, are the following:

• d0sig(e) < 5

• 0.2 < ptrack
T
/pcluster

T
(e) < 1.25

Applying these cuts significantly affects the electron efficiencies. Therefore dedicated measurements were

performed, and the symmetry after efficiency correction was inspected. These studies are recorded in

appendix A.4.

55



In the end, due to the small impact on the sensitivity of the analysis, these additional requirements weren’t

implemented. Still, the fact that the efficiency correction successfully restores the symmetry in significantly

different selections is a further endorsement of the e/µ-symmetry method.

4.5 Fake background

The fake lepton background is the contribution of events where one or two of the leptons reconstructed in

the event is a fake lepton. Fake leptons are usually jets misidentified as leptons but can come from other

sources as well. Since the probability of faking an electron or a muon is different and varies with the

kinematic properties of the lepton, we don’t expect the fake background to contribute evenly to the e⌧ and

µ⌧ datasets. Therefore estimating precisely the fake background is key to restoring the expected symmetry,

one of the main assumptions in this analysis.

To estimate the fake background contribution originating from jets faking leptons, we use a data-driven

technique called the FF method, standardly used in ATLAS analyses – for example in the H ! WW ⇤ ! `⌫`⌫
production cross-section measurement [83]. This technique measures certain properties from a dedicated

fake-enriched data selection, in our case, the Z+jets CR (defined in section 4.3.3), which are extrapolated

to the baseline or same-sign selections in order to estimate their fake background contribution, as described

in section 4.5.1. It is more accurate than using the fake background estimate obtained from simulated MC

samples, for instance, W+jets samples since fake estimation in MC doesn’t reflect precisely the actual fake

distributions.

Still, MC samples are used to estimate the dominant uncertainty on the jet fakes estimate, the fake flavor

composition uncertainty, which originates from the difference in the relative abundance of fakes originating

from various sources. This is described in section 4.5.2.

Other sources of fake leptons are estimated separately and directly from MC simulation due to being

present in the baseline selection and same-sign CR but absent from the Z+jets CR:

• Electron fakes from photon conversions

• Electron fakes from misidentified muons or prompt muon conversions

• Electron and muon fakes from hadronic ⌧ decays

This is described in section 4.5.3. We jointly refer to the combined contribution of the fake background

estimated from MC as the MC-fakes and the more dominant contribution of jet fakes estimated with the

data-driven FF method as the FF-fakes.

The fake contributions are estimated separately in the baseline selection and in the same-sign CR, which is

used for validation and the e⌧ and µ⌧ datasets. Their validation is done by comparing MC + fake prediction

to the data and is presented in section 4.6.2.

4.5.1 Jet fakes estimate

The FF is a transfer factor measured from data in the Z+jets CR. It is calculated as the ratio of the number

of so-called Id versus anti-Id leptons. The Id-leptons are the signal leptons that pass all the selection

criteria used in the analysis. In contrast, anti-Id leptons are leptons that fail to pass some of these selection
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criteria. The method to estimate the contribution of fake electrons and fake muons is the same, except for

the requirements defining the anti-Id leptons:

• Id electrons and muons pass medium Id and Iso criteria

• anti-Id electrons pass loose Id but not medium Id or not Iso criteria

• anti-Id muons pass medium Id but not Iso criteria

The assumption is that for any given source of lepton fake, the number of Id versus anti-Id fakes is

proportional and independent of other selection criteria. The choice of the Z+jets CR to measure the FF is

to use a selection kinematically close to our SR and containing a high number and purity of fakes. The FF

is then applied in the baseline or same-sign region event by event as a SF to all the data events that include

an anti-Id lepton, constituting the fake background estimate.

The FF is measured from data in the Z+jets CR. As described in section 4.3.3, it consists of events with

three leptons, two leptons are tagged to the Z and the third one, the probe lepton, has a high probability

of being a fake. Although the fake purity is high in this CR, some of the Id and anti-Id leptons found

can actually be prompt leptons or fake leptons from the MC-fakes category. To correct this, we subtract

these contributions as obtained from MC simulation, which contaminate both the Id and anti-Id fake

lepton samples. Similarly, when applying the FF in either the baseline or same-sign regions, both real and

MC-fake contributions are subtracted. In Figure 23, we show the Emiss
T

and mT(`probe) distributions of the

probe leptons in a loosened Z+jets selection (without applying the Emiss
T

< 60 GeV and mT(`probe) < 40

GeV cuts). The gap between the data and the MC prediction illustrates the jet faking leptons contribution

in this selection.
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Figure 23: Distributions of the missing transverse energy (left) and of the transverse mass distribution of the probe

lepton (right) before the application of the respective requirements for the Z + jets-CR (Emiss
T

< 60 GeV and mT(`probe)

< 40 GeV).
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FFs are extracted from the Z + jets-CR by subtracting the MC-based backgrounds from the data and then

building the ratio of the Id leptons and the anti-Id leptons selections:

FF =
Ndata

id
� N

MC-based bkgs

id

Ndata
anti-Id

� N
MC-based bkgs

anti-Id

. (56)

FFs are calculated for electrons and muons separately. They are binned in pT and, in the case of electrons,

in ∆�(`p, E
miss
T

). Binning in |⌘ | was also investigated for both electrons and muons but not found to be

important.

Figure 24 displays the FFs determined from the Z + jets-CR for electrons and muons separately. Electron

FFs are between 0.1 and 0.4, with smaller FFs for small ∆�(`p, E
miss
T

) and larger for larger ∆�(`p, E
miss
T

).

Muon FFs are between 0.3 and about 0.6, with a large statistical uncertainty for the highest pT and FF

value.
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Figure 24: FFs for electrons (left) and muons (right) determined in the Z + jets-CR. The error bars indicate the

statistical uncertainties from data and MC-based backgrounds. The dotted band summarizes the total uncertainty,

including the systematic uncertainty from the subtraction of the MC-based backgrounds.

The systematic uncertainties on the FFs result from the MC subtraction, dominated by theoretical

uncertainties on Z Z and W H cross-sections (7.1% and 6%, respectively). Still, statistical uncertainties are

larger. The measured FF values and their uncertainties are summarized in Table 8.

A closure test in the Z + jets CR is done, where the FFs are applied to the anti-Id leptons in this selection.

Figure 25 shows that the prediction agrees with the data within uncertainties in most bins. The remaining

small mismodeling is in individual bins or very close to the systematic uncertainty and thus considered

acceptable. The same procedure is applied to the anti-Id leptons in the baseline or same-sign regions in

order to estimate the jets faking leptons contributions in each selection, respectively – with the exception

that additional CFs are applied to account for differences in fake composition, as described in section 4.5.2.

The results are shown in section 4.6.2 when presenting the validation of the overall fake background

estimates.
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Electron FFs

∆�(`p, E
miss
T

) < 0.8 dphilmet > 0.8

15<pT<20GeV 0.2161 ± 0.0101 (stat) ± 0.0011 (syst) 0.255 ± 0.014 (stat) ± 0.0023 (syst)

20<pT<25GeV 0.1763 ± 0.0141 (stat) ± 0.0027 (syst) 0.2209 ± 0.0248 (stat) ± 0.0055 (syst)

25<pT<35GeV 0.1371 ± 0.0193 (stat) ± 0.0061 (syst) 0.2414 ± 0.0285 (stat) ± 0.0111 (syst)

pT>35GeV 0.1797 ± 0.0272 (stat) ± 0.0259 (syst) 0.3912 ± 0.0504 (stat) ± 0.0346 (syst)

Muon FFs

15<pT<20GeV 0.3358 ± 0.0142 (stat) ± 0.0055 (syst)

20<pT<25GeV 0.3224 ± 0.0274 (stat) ± 0.0136 (syst)

pT>25GeV 0.5222 ± 0.0773 (stat) ± 0.14 (syst)

Table 8: FFs and associated uncertainties, measured from the Z+jets CR.
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Figure 25: Emiss
T

(left) and mT (`probe) (right) distributions including the electron fake estimate in the Z + jets CR,

using the nominal FFs, but including systematic uncertainties from the fake background estimate.

4.5.2 Jet fakes flavor uncertainty

The FFs are measured in the Z+jets CR and applied to the baseline selection or the same-sign CR used for

validation. But fake leptons can originate from a number of different sources whose relative abundance

will vary between the different selections. If these fake sources have distinct chances of passing the Id- and

anti-Id selections, it leads to a discrepancy in their ratio from one region to the other.

In order to quantify this discrepancy, a flavor composition study of the fake leptons on MC is performed.

The classification of the leptons into different flavor categories is done using the IFFTruthClassifier tool.

The MC samples considered are the Z+jets, W+jets, Z ! ⌧⌧, V + �, Top, Diboson, and Higgs. For the

first three, we compare results from samples with two distinct generators, PowhegPythia and Sherpa.
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The FF method gives an estimate of the jet faking leptons contributions which originate from the following

distinct sources:

• light jets

• charm jets

• bottom jets

• unknown (electrons or muons with incomplete truth information).

Electron fake flavor composition

Table 9 summarizes per region the flavor fractions for Id and anti-Id electrons and the electron FFs

per flavor component. The unknown fractions being always under 2%, we don’t include this category.

The Id and anti-Id electrons are mainly light jets, followed by charm jets in the baseline region, mainly

light jets in the same-sign region. In the Z+jets region, bottom flavor is also significant. The flavor

fractions reasonably agree between the two generators, but with more bottom in Sherpa and more charm in

PowhegPythia.

The electron flavor FFs per region are similar, with the largest fluctuations for light flavor (smaller in

same-sign, larger in base) and bottom flavor (larger in Z+jets). Values between both generators can vary,

generally lower with Sherpa, but the trends per region are similar.

Region LightFlavorDecay CHadronDecay BHadronDecay

Id Electron Flavor Fractions

Baseline 68.9 ± 1.3 (65.4 ± 2.8) 22.8 ± 1.2 (16.7 ± 2.0) 7.1 ± 0.5 (17.0 ± 1.4)

Same-Sign 74.6 ± 1.7 (66.5 ± 3.6) 3.5 ± 0.7 (4.6 ± 1.0) 18.2 ± 1.4 (27.8 ± 3.0)

Z+jets 56.5 ± 0.4 (57.7 ± 1.9) 8.0 ± 0.2 (6.3 ± 0.7) 34.3 ± 0.4 (34.8 ± 1.6)

Anti-Id Electron Flavor Fractions

Baseline 61.8 ± 0.6 (66.0 ± 0.9) 30.7 ± 0.5 (19.5 ± 0.7) 7.1 ± 0.2 (13.9 ± 0.4)

Same-Sign 79.5 ± 0.5 (71.0 ± 0.9) 3.5 ± 0.3 (4.7 ± 0.4) 15.6 ± 0.4 (23.5 ± 0.7)

Z+jets 61.6 ± 0.2 (61.0 ± 0.7) 10.5 ± 0.1 (8.0 ± 0.3) 27.5 ± 0.2 (30.5 ± 0.6)

Electron Flavor FFs

Baseline 0.188 ± 0.007 (0.112 ± 0.013) 0.125 ± 0.008 (0.096 ± 0.011) 0.168 ± 0.014 (0.138 ± 0.006)

Same-Sign 0.129 ± 0.007 (0.098 ± 0.015) 0.137 ± 0.031 (0.103 ± 0.022) 0.160 ± 0.013 (0.124 ± 0.007)

Z+jets 0.164 ± 0.002 (0.136 ± 0.010) 0.136 ± 0.004 (0.112 ± 0.014) 0.222 ± 0.003 (0.164 ± 0.007)

Table 9: Electron flavor fractions and flavor FFs per region, integrated in pT and ⌘. Results measured from

PowhegPythia (Sherpa) samples are displayed in each cell. Only statistical uncertainties are considered.

Muon fake flavor composition

Table 10 summarizes per region the flavor fractions for Id and anti-Id muons, as well as the muon
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FFs per flavor component. The Id and anti-Id muon fakes are mainly charm flavor in the baseline region

and mainly charm and bottom flavor in the same-sign and Z+jets regions. For anti-Id muons, light is also

significant in same-sign. The flavor fractions are similar between the two generators, with again more

bottom in Sherpa.

The muon flavor FFs are similar between regions and generators for the charm and bottom flavors. While

larger differences are found for light flavor and unknown, their fractions are relatively small except for

same-sign anti-Id light.

Region LightFlavorDecay CHadronDecay BHadronDecay Unknown

Id Muon Flavor Fractions

Baseline 9.1 ± 0.8 (4.1 ± 2.2) 76.7 ± 1.1 (76.5 ± 2.4) 6.1 ± 0.5 (14.2 ± 0.9) 8.1 ± 0.7 (5.1 ± 1.6)

Same-Sign 10.6 ± 2.4 (8.7 ± 4.2) 28.8 ± 3.3 (31.5 ± 3.2) 52.0 ± 3.5 (50.6 ± 3.7) 8.7 ± 2.3 (9.2 ± 3.3)

Z+jets 8.2 ± 0.3 (3.6 ± 3.2) 35.0 ± 0.6 (34.7 ± 2.5) 50.3 ± 0.6 (57.4 ± 2.9) 6.4 ± 0.3 (4.3 ± 1.4)

Anti-Id Muon Flavor Fractions

Baseline 8.5 ± 0.5 (9.4 ± 1.4) 78.1 ± 0.7 (64.4 ± 1.4) 11.4 ± 0.4 (24.8 ± 0.8) 2.0 ± 0.2 (1.4 ± 0.8)

Same-Sign 23.5 ± 1.7 (14.3 ± 2.6) 18.2 ± 1.3 (18.8 ± 1.4) 51.9 ± 1.8 (62.1 ± 2.4) 6.4 ± 1.0 (4.8 ± 1.5)

Z+jets 7.9 ± 0.2 (8.6 ± 1.3) 27.6 ± 0.3 (25.0 ± 1.1) 57.3 ± 0.4 (60.1 ± 1.4) 7.3 ± 0.2 (6.3 ± 1.1)

Muon Flavor FFs

Baseline 0.437 ± 0.049 (0.157 ± 0.089) 0.401 ± 0.016 (0.424 ± 0.026) 0.218 ± 0.019 (0.205 ± 0.011) 1.656 ± 0.240 (1.321 ± 0.892)

Same-Sign 0.103 ± 0.027 (0.158 ± 0.089) 0.360 ± 0.059 (0.434 ± 0.060) 0.228 ± 0.021 (0.211 ± 0.012) 0.311 ± 0.104 (0.502 ± 0.253)

Z+jets 0.361 ± 0.016 (0.108 ± 0.100) 0.439 ± 0.011 (0.354 ± 0.035) 0.303 ± 0.006 (0.245 ± 0.013) 0.305 ± 0.015 (0.174 ± 0.066)

Table 10: Muon flavor fractions and flavor FFs per region, integrated in pT and ⌘. Results measured from PowhegPythia

(Sherpa) samples are displayed in each cell. Only statistical uncertainties are considered.

Correction factors

This section introduces CFs, which account for the difference in flavor composition between the Z+jets

CR on one side and the baseline or same-sign selections on the other when applying the data-driven FFs.

These CFs, evaluated in MC, are defined as the ratio between the FFs in the baseline or same-sign regions,

divided by the FFs in the Z+jets region, FFMC
base/SS

/FFMC
Z+jets

. In data, the application of the FFs is then

adjusted as:

FFbase/SS = FFdata
Z+jets ·

FFMC
base/SS

FFMC
Z+jets

(57)

where FFdata
Z+jets

are the FFs obtained from data described in (56).

Although we don’t expect the FFs evaluated in MC to be fully reliable, we still expect, due to semi-

cancellations, that this ratio can help translate the data-driven FFs measured from the Z+jets region to

FFs valid within the region where they are applied. By comparing results obtained with different MC

generators, we derive an uncertainty on the data-driven fake background due to the fake flavor composition.

This systematic uncertainty reflects the difference in the fake composition between the Z + jets CR where

the FFs are determined and the baseline or same-sign selections where they are applied. Since the source

of the fakes differs for electron and muon fakes, this systematic uncertainty is considered uncorrelated

between electron and muon fakes. The determination of the CFs and the associated flavor composition

uncertainty is done separately in the baseline and same-sign selections.
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In Figure 26, we compare the FFs in the Z+jets region measured from data to those measured in MC with

Sherpa and PowhegPythia samples. The data FFs are generally higher than those measured in MC. The

MC FFs measured with PowhegPythia samples agree better with the data than those measured with Sherpa

samples.
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Figure 26: Comparison of electron and muon Z+jets FFs, measured from data, from MC using Sherpa samples, and

from MC using PowhegPythia samples.

Figure 27 shows the FFs and CFs in the different regions, measured with the different MC generators.

Results with PowhegPythia have smaller statistical uncertainties and agree better with data in the Z+jets

region. Therefore, we use the CFs measured with PowhegPythia as our nominal values and derive systematic

uncertainties by comparing them to those measured with Sherpa.

Table 11 summarizes the CFs and their uncertainties that we apply to the data-driven FFs, in order to

account for the differences in flavor composition of the fakes between the different regions.

Baseline Region Same-Sign Region

Electron CFs

15<pT<20GeV 0.788 ± 0.037(stat) ± 0.050(syst) 0.799 ± 0.054(stat) ± 0.168(syst)

20<pT<25GeV 0.879 ± 0.064(stat) ± 0.080(syst) 0.704 ± 0.076(stat) ± 0.214(syst)

25<pT<35GeV 1.153 ± 0.089(stat) ± 0.449(syst) 0.724 ± 0.092(stat) ± 0.154(syst)

pT>35GeV 1.301 ± 0.086(stat) ± 0.472(syst) 0.823 ± 0.086(stat) ± 0.134(syst)

Muon CFs

15<pT<20GeV 0.962 ± 0.048(stat) ± 0.160(syst) 0.621 ± 0.067(stat) ± 0.294(syst)

20<pT<25GeV 1.250 ± 0.096(stat) ± 0.389(syst) 0.662 ± 0.116(stat) ± 0.319(syst)

pT>25GeV 1.888 ± 0.147(stat) ± 0.089(syst) 0.793 ± 0.116(stat) ± 0.644(syst)

Table 11: CFs and corresponding uncertainties per kinematic bin. The nominal values and statistical errors are derived

with PowhegPythia samples, while the systematic uncertainty is evaluated by comparing with Sherpa samples.

Table 12 summarizes the data-driven fake yields and their uncertainties from different sources in the

baseline and same-sign selections.
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Figure 27: Comparison of electron and muon FFs and CFs in the different regions (base, same-sign and Z+jets), and

measured with the different MC generators (Sherpa and PowhegPythia).

selection nominal stat ffelstat ffmustat ffwzsys ffzzsys cfelstat cfmustat cfelsys cfmusys sys-combined

base-e⌧ 18085.1 0.89 0.52 4.58 7.99 3.04 0.32 3.59 1.47 9.21 14.14

base-µ⌧ 16761.5 0.72 6.24 1.03 5.67 2.08 4.31 0.63 12.70 0.99 16.12

ss-e⌧ 5896.5 0.80 4.19 3.65 0.91 0.37 3.68 6.25 6.74 26.83 29.16

ss-µ⌧ 6813.8 0.63 7.08 0.94 0.61 0.25 7.53 1.16 18.80 5.62 22.28

Table 12: FF fake yields (nominal) and relative uncertainties in [%] induced from statistical uncertainties (stat) or the

different systematic uncertainty sources determined: the FF statistical errors (ffelstat and ffmustat), the WZ and ZZ

cross-section errors (ffwzsys and ffzzsys), the flavor composition CFs statistical error (cfelstat and cfmustat) and

systematic uncertainty (cfelsys and cfmusys) and the combined systematic uncertainty (sys-combined). These are

shown separately in the e⌧ and µ⌧ datasets and the baseline and same-sign selections.

4.5.3 Other fakes estimate

The background from hadronically decaying ⌧-leptons misidentified as leptons (⌧had ! `), muons

misidentified as electrons (µ! e), and photons misidentified as electrons (� ! e) is estimated from MC

simulations. It corresponds to the remaining part of the fake backgrounds, not covered by the data-driven

FF method, discussed in section 4.5.1.
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This MC-based fake estimate is done separately in the baseline and same-sign selections, based on the

following simulated processes: Z ! ⌧⌧, tt̄, single-top, diboson, Z ! µµ, Z ! ee, and V�. Contributions

from H ! ⌧⌧ and H ! WW are neglected. Fake leptons in MC simulation are selected employing a

truth matching based on the IFFTruthClassifier. If at least one lepton is classified in one of the MC-fakes

categories, then the event is included in the MC-fakes estimate.

The MC-fake yields in the baseline selection are summarized in Table 13. The largest contribution,

when considering both e⌧ and µ⌧ final states, comes from Z ! µµ, for which one muon – typically

the one with the lower transverse momentum – is misidentified as an electron. This process mainly

contributes to the µ⌧-dataset where the electron is sub-leading in most events, but not in all due to the

chosen lepton-assignment strategy described in section 4.3.2. Only the µ⌧-dataset is used to study the

Z ! µµ-background in the following.

fake source e⌧ µ⌧

µ! e 1401.9 ± 25 6855.7 ± 43.7

⌧had ! ` 3658.4 ± 54.2 2057.5 ± 43.3

� ! e 811.6 ± 33.1 2239.5 ± 59.3

Table 13: MC-fake yields in the baseline selection, shown separately per fake source and for the e⌧- and the

µ⌧-datasets.

In order to check if the µ! e-fake rate is well modeled by the MC predictions, a dedicated validation region

(VR) is defined. High purity of Z ! µµ-events is desired such that the expected yield can be compared

to the corresponding data yield. To achieve this, in addition to the baseline selection requirements, the

following criteria are applied:

• 35 GeV < pT(`0) < 45 GeV

• 75 GeV < m`` < 100 GeV

• 1.25 < trk-pT/cluster-pT < 3 for electrons

• mcoll < 115 GeV

The Z ! µµ contribution in this VR amounts to around 70% of the events. An overshoot of the prediction

compared to data is visible, shown in Figure 28. Therefore, a corresponding uncertainty of 16% on the

Z ! µµ-normalization in MC is defined and applied in full size – to be conservative – to the total MC-fakes

contribution and not only to its Z ! µµ-part.
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Figure 28: Emiss
T

and mcoll distributions in the Z ! µµ-VR in the µ⌧-dataset. ’MCfakesRest’ in the legend is MCfakes

without Z ! µµ which is shown separately, while ’Fakes’ are the data-driven jet fakes. Only statistical uncertainties

are displayed.

4.6 Validation of the background estimates

In this section, we present the different steps to validate the estimates of the various background contributions,

as well as their combination. Validation is performed by inspecting various kinematic distributions of the

selected events and comparing the agreement between different datasets depending on the validation step

considered.

The efficiency correction is validated based on the SM MC samples by inspecting the resulting e⌧ vs. µ⌧

symmetry, shown in section 4.6.1. The fake estimate is validated by comparing MC background + fake

predictions to the data, separately for the e⌧ and µ⌧ datasets and in the same-sign and baseline selections,

shown in section 4.6.2. The combined background prediction is validated by inspecting the achieved

e⌧ vs. µ⌧ symmetry in the data, as is shown in section 4.6.3.

4.6.1 Efficiency correction

We start by validating the efficiency correction method described in section 4.3.4 (together with the

measured electron MC efficiencies presented in section 4.4) based on the SM MC simulated samples, with

events passing the baseline selection. Due to the different efficiency dependencies, the efficiency-ratio

CF is relative to whether the event belongs to the eµ or µe dataset, which differ by the pT ordering of the

two leptons in the laboratory frame (as described in section 4.3.2). Therefore we start by comparing the

corrected eµ and µe datasets. We first apply standard (MC to data) SFs to both datasets in order to scale

them to what is expected in data. The eµ dataset is then corrected using data efficiencies. As per (51), the

measured electron MC efficiencies are converted to electron data efficiencies by multiplying them with the

relevant standard (MC to data) electron SFs.

We inspect the level of the agreement after efficiency correction for various kinematic distributions, as

shown in Figure 29. Any particular trend in the ratio of corrected eµ over µe events as a function of a

distribution could hint at a residual asymmetry which should be investigated. Applying the efficiency
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correction successfully recovers the expected symmetry between the eµ and µe datasets, which agree

within statistical uncertainties in most bins.

In terms of the e⌧µ and µ⌧e datasets (which differ by the pT ordering of the two leptons in the estimated

Higgs frame as described in section 4.3.2), the procedure is almost the same. The efficiency correction is

still applied only to the dataset used as the background estimate. However, the efficiency-CF is still relative

to whether the event belongs to the eµ or µe dataset. For example, if the e⌧µ is the basis for the background

estimate, the efficiency-CF for the few µe events which contribute to it will be R✏
i

(µe event).

We proceed with the same comparison, but with the corrected e⌧ vs. µ⌧ events instead of corrected eµ vsµe.

This is shown separately for the non-VBF category in Figure 30 and the VBF category in Figure 31. Here

as well, applying the efficiency correction restores the expected SM symmetry in simulated events.

The same validation but with tighter constraints applied to the electrons (as described in section 4.4.7) is

presented in appendix A.4. Although the electron efficiencies are significantly impacted by these tighter

constraints, the expected SM symmetry is successfully restored in this case as well.

4.6.2 Fake background

The overall fake background estimate is validated in the baseline and same-sign regions by comparing

MC background + fake prediction to the data. In the baseline region, we assume that the selection is

wide enough such that the expected signal wouldn’t impact the MC to data agreement if present. In the

same-sign region, a fake purity – calculated based on the predictions – of 64.9% in e⌧ and 75.9% in µ⌧ –

is reached.

Similar to the eµ-symmetry validation in MC shown in section 4.6.1, this validation step is intermediate

and isn’t decisive in our analysis since we estimate the SM contribution to our SR from the data directly.

It is important, nonetheless, since when validating the eµ-symmetry in data, we can’t decouple features

originating from the efficiency correction and the fake estimate. Still, good MC vs. data agreement isn’t

critical for us as it is in more conventional analyses where the background is estimated from MC and where

additional studies are performed to achieve this, such as normalizing specific SM contributions based on

MC vs. data comparison in dedicated CRs.

The overall fake background estimate is composed of the FF-fake and MC-fake contributions. The FF-fake

contribution is obtained by multiplying the anti-id events in the data minus the prompt anti-id MC events

by the relevant FFs and CFs, as described in section 4.5.

Different kinematic distributions of the e⌧ and µ⌧ datasets are shown in the baseline (Figures 32 and 33)

and same-sign (Figures 34 and 35) selections. The average level of disagreement is around 3-4% in the

baseline selection, and we expect it to be covered by MC systematics (only systematics on the FF-fake

estimate are shown). In the same-sign selection, the modeling is good, and the prediction agrees with data

within the statistical uncertainties and the uncertainties on the FF-fake estimate depicted by the uncertainty

band.
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4.6.3 Combined background prediction

The combined background is the sum of the SM symmetric background defined in (52) and the fake

estimates. It is described in (53).

The comparison of the combined background predictions to the data in the µ⌧ dataset is shown separately

for the non-VBF category in Figure 36 and the VBF category in Figure 37. In the plots, only statistical

uncertainties and systematic uncertainties on the FF-fakes (the dominant ones) are included. Both signals

are shown, normalized to 1% BR, and scaled by 10. The H ! e⌧µ signal corresponds to the “contamination”

of wrongly classified signal events, as described in section 4.3.2, and its contribution is very small. Only

plots in the µ⌧ dataset are shown since, due to the symmetry, the background predictions to data agreement

is similar – albeit inverted – in the e⌧ dataset, and the fake estimates from both datasets are included in the

background predictions. In general, the modeling of the data by the predictions is good – within systematic

uncertainties. Disagreements in isolated bins are found, but no general trends are observed.
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Figure 29: Comparison of efficiency-corrected eµ (dark blue) over µe (red) SM MC sample datasets in the baseline

selection for the pT(`0), pT(`1),mT(`0, E
miss
T

),mT(`1, E
miss
T

),∆�(``) and mcoll distributions. The uncorrected eµ

dataset is also displayed (light blue).
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Figure 30: Comparison of efficiency-corrected e⌧ (dark blue) over µ⌧ (red) SM MC sample datasets in the non-VBF

selection for the pT(`H ), pT(`⌧ ),mT(`H, E
miss
T

),mT(`⌧, E
miss
T

),∆�(``) and mcoll distributions. The uncorrected e⌧

dataset is also displayed (light blue).
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Figure 31: Comparison of efficiency-corrected e⌧ (dark blue) over µ⌧ (red) SM MC sample datasets in the VBF

selection for the pT(`H ), pT(`⌧ ),mT(`H, E
miss
T

),mT(`⌧, E
miss
T

),∆�(``) and mcoll distributions. The uncorrected e⌧

dataset is also displayed (light blue).
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Figure 32: MC vs. data agreement in the baseline selection for different kinematic distributions in the e⌧ (left) and

µ⌧ (right) datasets. The FF-fakes are in gray and the MC-fakes in blue. Only the systematic uncertainty associated

with the FF estimate is shown.
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Figure 33: MC vs. data agreement in the baseline selection for more kinematic distributions in the e⌧ (left) and µ⌧

(right) datasets. The FF-fakes are in gray and the MC-fakes in blue. Only the systematic uncertainty associated with

the FF estimate is shown.
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Figure 34: MC vs. data agreement in the same-sign selection for different kinematic distributions in the e⌧ (left) and

µ⌧ (right) datasets. The FF-fakes are in gray and the MC-fakes in blue. Only the systematic uncertainty associated

with the FF estimate is shown.
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Figure 35: MC vs. data agreement in the same-sign selection for more kinematic distributions in the e⌧ (left) and µ⌧

(right) datasets. The FF-fakes are in gray and the MC-fakes in blue. Only the systematic uncertainty associated with

the FF estimate is shown.
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Figure 36: Comparison of the background predictions to the data in the µ⌧ datasets in the non-VBF selection for

the pT(`H ), pT(`⌧ ),mT(`H, E
miss
T

),mT(`⌧, E
miss
T

), Emiss
T

, and mcoll distributions. Statistical and FF-fakes systematic

uncertainties on the background prediction are included in the uncertainty band.
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Figure 37: Comparison of the background predictions to the data in the µ⌧ datasets in the VBF selection for

the pT(`H ), pT(`⌧ ),mT(`H, E
miss
T

),mT(`⌧, E
miss
T

), Emiss
T

, and mcoll distributions. Statistical and FF-fakes systematic

uncertainties on the background prediction are included in the uncertainty band.
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4.7 Enhancing Sensitivity via Neural Network

The strategy to achieve high sensitivity in this analysis is, on the one hand, a relatively loose selection

(baseline region) to keep high statistics and, on the other hand, constructing an observable that separates

signal and background as best as possible. The distribution of this observable is then used as the final

discriminant in the statistical analysis. To construct such an observable, fully connected deep NNs are

trained.

The NNs are trained to separate the signal from the various background contributions. Different NNs are

used for the non-VBF and the VBF categories to exploit the particular VBF topology, including additional

kinematic jet-related information. The chosen architecture takes into account the limited training sample

size. The e⌧ and the µ⌧ datasets are combined in order to enhance the number of events in the training.

In addition, the VBF cut on the jet invariant mass (m j j) is lowered to 300 GeV to increase the size of

the training set in this region. The NNs are trained via supervised learning using Keras (v2.2) [84], with

Tensorflow (v1.12) [85] backend. The hyper-parameters and the input variables are optimized based on the

Asimov discovery significance [54], carried out using the Optuna framework [86], which also allows using

the L2 weight regularization to prevent overtraining.

For the non-VBF region, a single multiclass classifier with three output classes is trained. The three classes

correspond to signal, SM symmetric background, and fake background. The MC-fakes contribution is

added to the SM symmetric background class since the distributions of its main processes, Z ! µµ,
Z ! ⌧⌧, and V�, are more similar to the distributions of the SM symmetric background processes than

to the ones originating from jets faking leptons. For the VBF region, three single binary classification

networks are trained. The resulting output distributions are linearly combined in a single one – where the

weights are also optimized using the Asimov discovery significance – to obtain one discriminant. The three

networks are trained to separate signal events from (i) MC-fakes, Z ! ⌧⌧ and H ! ⌧⌧, (ii) tt̄, single-top,

diboson, and H ! WW and (iii) FF-fakes.

The NNs are trained with several input variables, including the four-momenta of the analyses objects

and other derived observables, like the invariant masses, angular separations, and the Emiss
T

. In the VBF

region, jet-related variables are used in addition. The list of variables is optimized for each category by

removing the lowest-ranked variables with a marginal contribution to the sensitivity. The visible Higgs

mass (mvis), the collinear mass (mcoll), and the Higgs mass obtained with the Missing Mass Calculator

technique (mMMC) [87] show the highest separation power together with transverse masses obtained from

the Emiss
T

and each of the leptons (mT(`H, E
miss
T

),mT(`⌧, E
miss
T

)). Under the collinear approximation, the

azimuthal angular difference between the prompt lepton decaying from the Higgs (from the ⌧) and the

Emiss
T

– ∆Φ(`H, E
miss
T

)(∆Φ(`⌧, E
miss
T

)) – is expected to be large (small) for signal events. Other angular

differences are also included: ∆R(`H, `⌧ ),∆⌘(`H, `⌧ ),∆Φ(`H, `⌧ ). The angular differences ∆Φ involving

`H are evaluated in the approximate Higgs boson rest frame. Two vertex variables are also included as they

provide powerful discrimination power: the difference in the transverse impact parameter (d0) between the

leptons ∆d0(`0, `1) and the d0 significance of the ⌧ lepton �
`⌧
d0

. The ∆↵ discriminant [88] is expected to

be close to zero if the decay products of the ⌧ are collinear and the transverse momentum of the Higgs

boson can be neglected, while for the background events, this value deviates from zero. The ⌘-centrality,

defined as

exp(�4/(⌘( j0) � ⌘( j1))2 · (⌘(`) � 0.5(⌘( j0) � ⌘( j1)))2) (58)

is included as well in the VBF category.
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The binning of the NN output distributions is chosen pre-fit such that each individual background

contribution has yields larger than zero and relative statistical uncertainties smaller than 100% in each bin

and such that the overall background estimate has decreasing yields in bins of increasing NN score.

The resulting NN discriminant distributions are shown in Figure 38, as obtained from the fit described

in section 4.9.2, separately for the H ! e⌧µ and H ! µ⌧e signal searches and in the non-VBF and

VBF regions. Full uncertainties (statistical and systematic) corresponding to the pre-fit values are shown.

The signal distributions are normalized to 0.1% BR and scaled by 100. Two distinct prediction vs. data

comparisons are shown in the plots, the data over prediction (background + signal times signal strength)

ratio and background-subtracted data.

4.8 Systematic uncertainties

Systematic uncertainties affect the yields of the main fit observable, the NN output distribution. These can

be categorized into two groups: experimental uncertainties and theoretical uncertainties for the signal.

Theoretical uncertainties for the background processes are not considered since the background estimate is

mainly data-driven, except for the Z ! µµ normalization uncertainty determined in section 4.5.3 from a

dedicated CR and variations of the WZ and ZZ cross-sections in the FF-fake estimate (subtraction of real

MC contributions).

Experimental uncertainties include those originating from the trigger, Reco, Id, and Iso efficiencies of the

final-state particles. These include leptons [89–91], jets [77, 92, 93] and Emiss
T

[80]. Their energy scale and

resolution uncertainties are taken into account as well. Experimental uncertainties generally affect the

shape of the NN output distributions, the background yields, and the signal cross-section through their

effects on the acceptance and the migration between different categories. Uncertainties of the luminosity

measurement [94] are also included.

The uncertainties associated with the FF-fake contribution consist of statistical and systematic components.

The statistical component is estimated for each FF bin separately. It consists of the statistical uncertainties

from the data, and the subtracted real MC yields within the Z+jets CR propagated to the FFs. The systematic

component corresponds to the uncertainty from the subtraction of MC real events contributing to the

Z + jets CR, where the subtraction is varied by the theory cross-section uncertainties of the two dominant

contributions separately, the WZ and ZZ processes. Uncertainties associated with the CFs – which account

for different relative (jet) fake source abundances between the baseline and Z + jets regions – include the

statistical uncertainties of the MC events in both regions and the flavor composition uncertainty derived

from the comparison of two MC generators – as described in section 4.5.2. Table 12 summarizes the

pre-fit impact of each type of uncertainty on the FF-fakes estimate. In the statistical model (described in

section 4.3.6), the statistical sources are treated as uncorrelated between FF or CF bins, the systematic

sources as correlated between bins, and the MC subtraction uncertainties as correlated between bins and

also between electron and muon FF-fakes contributions.

The uncertainties related to the MC-fakes contribution consist of the statistical and experimental (systematic)

uncertainties associated with the available MC simulated events. An additional systematic uncertainty on

the Z ! µµ normalization is included, as described in section 4.5.3.

The SM symmetric background estimate consists of data, FF-fakes, and MC-fakes. The latter two are

subtracted from the data, and all three components are weighted with efficiency corrections event-by-event,

as described in section 4.6.3. Uncertainties on the FF-fakes and MC-fakes described above are propagated
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Figure 38: Postfit NN score distributions of the H ! e⌧µ (left) and H ! µ⌧e (right) signal in the non-VBF (top) and

VBF (bottom) categories. The uncertainties (hatched band), combining the statistical, experimental, and theoretical

contributions, correspond to the pre-fit values.

to the SM symmetric background. For the efficiency correction, experimental uncertainties related to

electron and muon efficiencies are included in both the numerator and denominator of the efficiency-ratio

CF shown in (42) and treated as correlated. Efficiency uncertainties provided by the ATLAS performance

groups are used for muon and trigger efficiencies and electron, muon, and trigger SFs. For electron

efficiency uncertainties, those determined in section 4.4.4 are used. SF uncertainties both included in the

efficiency-ratio CF and applied to MC samples are correlated when relevant.

For the signals, the Higgs boson production cross-section uncertainties are obtained following the
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recommendations of the LHC Higgs Cross-Section Working Group [95]. Effects on the signal expectations

are treated as uncorrelated between each production mode. Theoretical uncertainties affecting the ggF

signal originate from nine sources [70]. Two of these account for the yield uncertainties and are evaluated

by an overall variation of all the relevant scales, and are correlated across all the bins of the NN output

distributions [96]. Two sources account for migration uncertainties of zero to one jet and one to at least

two jets in the event [96–98]. Two sources account for the Higgs boson pT shape uncertainties and one

for the treatment of the top-quark mass in the loop corrections. Finally, two sources account for the

acceptance uncertainties of ggF production in the VBF region by selecting exactly two and at least three jets,

respectively [99, 100]. For VBF, WH, and ZH production cross-sections, the uncertainties due to missing

higher-order QCD (Quantum ChromoDynamics) corrections are estimated by varying the factorization

and renormalization scales up and down by factors of two around the nominal. For all production modes,

uncertainties are estimated for parton distribution functions and ↵s – the choice of the parton shower and

the hadronization model – and missing higher orders in the matrix element calculation. Parton distribution

functions and ↵s uncertainties are estimated using the PDF4LHC15nlo set of eigenvectors [101].

4.9 Statistical analysis and results

In this section, we present the implementation of the statistical analysis and the obtained results for the

H ! e⌧µ and H ! µ⌧e searches using the e/µ-symmetry method.

The pre-fit processing of the nuisance parameters is described in section 4.9.1; the obtained results are

described in section 4.9.2 for this analysis, while final results in combination with MC-based analyses are

presented in section 4.9.3.

4.9.1 Uncertainty preprocessing

There are several steps of preprocessing of the nuisance parameters before the statistical analysis to promote

a stable fit procedure: pruning, symmetrization and smoothing. Each of these steps can be performed with

various algorithms and options, which affect the analysis results differently. A dedicated study to which the

author contributed, comparing fit results for different configurations of the symmetrization and smoothing

steps, is presented in appendix B. As a result, the algorithms applied in the final analysis fits are described

in the following:

Pruning Nuisance parameters are pruned, i.e., dropped pre-fit if their effects are small to stabilize the fit.

The shape and normalization effects of the nuisance parameters are gauged separately. For the shape effect,

it is checked if the systematic variation has at least one bin with a difference to the nominal value of at least

0.1%. If not, the shape effect of the corresponding nuisance parameter is pruned. The normalization effect,

i.e., the overall effect, of a nuisance parameter is pruned if the impact of both up and down variations is

below 0.1%. The pruning procedure is performed for each process and region separately.

Symmetrization In cases where only the up or down variation of a systematic uncertainty is available

(one-sided variation), the existent variation is mirrored. For kinematic systematics (which can affect which

bin of the NN output an event falls), the up and down variations are symmetrized. The mean of their

absolute values is calculated and is set as the new value for the up and the down variation while the signs

80



are kept. Suppose the up and down variation of the kinematic systematic uncertainties are in the same

direction compared to nominal in one bin. In that case, the variation with the smaller absolute value gets

the opposite sign assigned. In addition, the mean of the absolute values is set as a new value on both sides.

Symmetrization is not applied in other cases.

Smoothing Smoothing of the systematic variations is applied to flatten fluctuations due to low statistics.

The procedure uses a parabolic smoothing algorithm for noise reduction. This is applied prior to

symmetrization for one-sided variations and afterward otherwise.

To illustrate the nuisance parameter preprocessing, a selected number of so-called envelope plots is shown

in Figure 39 for the H ! e⌧µ search and in Figure 40 for the H ! µ⌧e search. In each figure, for a

given sample’s NN distribution, its relative upward and downward fluctuated versions are shown – before

and after the preprocessing is applied. Also shown on the plots are the nuisance parameter’s ranking

and its impact on the signal strength’s fitted value which corresponds to the Asimov fit (see definitions

in section 2.6). In total, almost 2000 such distributions of systematic uncertainties (number of nuisance

parameters times samples they are applied to) per search are entering the statistical analysis.

Figure 39: Selected envelope plots for the H ! e⌧ search.

4.9.2 Standalone results

In this section, we present the observed and expected result for the two searches, H ! e⌧µ and H ! µ⌧e
(using the unblinded datasets). Each search is performed independently, assuming that the BR of the other

signal is zero. The results are obtained by fitting the statistical model described in section 4.3.6 to the

histograms of the NN output distributions. A description of the obtention of the results, the different inputs

used, and the methods implemented to evaluate the fit performance is given in section 2.6.

The post-fit NN output distributions are shown in Figure 38. The measured best-fit values of the signal

strengths are:
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Figure 40: Selected envelope plots for the H ! µ⌧ search.

• µse⌧ = �0.349+0.104
�0.108

(H ! e⌧µ search)

• µsµ⌧ = 0.248+0.101
�0.099

(H ! µ⌧e search)

Since this analysis is performed using the e/µ-symmetry method, which searches for an H ! µ⌧ signal in

the µ⌧ dataset by comparing it to the e⌧ dataset (and vice-versa for an H ! e⌧µ signal), it is expected that

the measured signal strengths are opposed in sign. Both obtained values point to an asymmetry between the

two datasets in favor of the µ⌧ dataset. This is seen in Figure 38, particularly from the “data - background”

panels, where the signal multiplied by the measured signal strength (shown in red) is compatible with the

observed disagreement, especially in the non-VBF region. Furthermore, the data agrees very well with the

post-fit prediction (background + signal times signal strength) in all regions, as is shown in the “data /

prediction” panels.

Scrutinizing the behavior of the various nuisance parameters included in the fit is essential in evaluating its

performance. This is done first with the Asimov and mixed datasets and needs to be validated before the

unblinded datasets are used for the obtention of results. This study is summarized here using the unblinded

datasets, while the ones based on the Asimov and mixed datasets are shown in appendix C.

The nuisance parameters are separated into groups: “JETMET” related to jet and Emiss
T

uncertainties,

“BTag” to b-tagging uncertainties, “Lepton” to experimental electron and muon uncertainties on the (MC

to data) SFs, “Lumi” to the luminosity uncertainty, “SigTheory” to the theoretical uncertainties on the

signal, “SymmbBackgroundEstimate” to fake and efficiency correction uncertainties, and “Gamma” to the

� parameters which describe the combined background statistical uncertainties. The pulls and constraints

on all the nuisance parameters – relative to their pre-fit nominal and uncertainty values – are shown, per

group, in Figure 41 and Figure 42 for the H ! e⌧µ and H ! µ⌧e searches, respectively. All of the pulls

of the systematic nuisance parameters are lower or very close to 1�, and the only noticeable constraint –

which appears if the spread of the black line is narrower than the green stripe – is for “El. Fake CF sys”.

This nuisance parameter accounts for the flavor uncertainty on the electron fakes in the FF-fake background

(see section 4.5.2). The pulls on the � parameters can be larger, especially in the last NN bins, due to

82



the discrepancy observed between the data and the background prediction (labels “cat inc” and “cat vbf”

correspond to bins in the non-VBF and VBF regions respectively).
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Figure 41: Pulls and constraints of the nuisance parameters in the search for H ! e⌧µ. The dots indicate the pulls,

and the lines represent the constraints. The green band indicates the 1� band relative to the pre-fit values.

The correlations found between the different nuisance parameters are displayed in Figure 43 for both

H ! e⌧µ and H ! µ⌧e. The first column/row of the correlation matrices shows the impact of each

nuisance parameter on the signal strength µs, which is discussed below (see the ranking of nuisance

parameters). The correlations found are reasonable and similar between both searches. The largest

correlation is between the “El. Fake CF sys” and “Mu. Fake CF sys” parameters, which both relate to the

flavor uncertainty which dominates the fake estimates.

The ranking of the nuisance parameters with respect to their impact on the signal strength µs is shown in

Figure 44. In addition, the ranking plots also show the pulls and constraints of the nuisance parameters

(the black dots with horizontal lines together with the x-axis at the bottom) discussed previously. We

find that the nuisance parameters with the largest impact are the �-parameters – which correspond to the

statistical uncertainties of the combined background – especially in the bins of higher NN scores. Since the

background estimation is data-driven, this is expected. The impact of the flavor uncertainty on the fake

estimate is also significant since it is the largest single uncertainty in the analysis.
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Figure 42: Pulls and constraints of the nuisance parameters in the search for H ! µ⌧e. The dots indicate the pulls,

and the lines represent the constraints. The green band indicates the 1� band relative to the pre-fit values.

The impact on the signal strength per uncertainty group is shown in Table 14 and Table 15 for the

H ! e⌧µ and H ! µ⌧e searches, respectively. Here also, we see that the largest impact is from the

�-parameters, followed by the group combining uncertainties on the fakes and efficiency correction. With

more accumulated data, we expect that both the Gamma and data uncertainties will be reduced, significantly

enhancing the sensitivity of the analysis.
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Figure 43: Correlations of the nuisance parameters in the search for H ! e⌧µ (left) and H ! µ⌧e (right). Only

nuisance parameters with correlations above/below +/ � 20% are shown.

Group Impact on unc. of µ

Full unc. +0.104 �0.108

Data unc. +0.047 �0.046

Prediction unc. +0.093 �0.098

Gammas +0.081 �0.086

BTag +0.000 �0.001

JETMET +0.027 �0.034

Lepton +0.017 �0.021

Lumi +0.003 �0.007

SigTheory +0.007 �0.017

Fakes + Eff. Corr. +0.053 �0.058

Table 14: Impact of the different uncertainty groups

on the uncertainty of the signal strength µ in the

search for H ! e⌧µ.

Group Impact on unc. of µ

Full unc. +0.101 �0.099

Data unc. +0.056 �0.055

Prediction unc. +0.084 �0.083

Gammas +0.067 �0.068

BTag +0.001 �0.000

JETMET +0.020 �0.018

Lepton +0.018 �0.016

Lumi +0.005 �0.002

SigTheory +0.013 �0.004

Fakes + Eff. Corr. +0.053 �0.051

Table 15: Impact of the different uncertainty groups

on the uncertainty of the signal strength µ in the

search for H ! µ⌧e.
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Figure 44: The ranking of the nuisance parameters in the search for H ! e⌧µ (left) and H ! µ⌧e (right). The postfit

impact is indicated by the filled bars, while the pre-fit impact is indicated by the empty bars. In addition, the pulls are

indicated by the black dots, and the black lines show the constraints.

86



The observed best fit signal strength (µs), significance, and upper limit for the H ! e⌧µ and H ! µ⌧e
searches are listed in Table 16. The corresponding expected results obtained using the Asimov dataset –

constructed from the post-fit nuisance parameter values – are shown in brackets. Results from the separate

non-VBF and VBF categories are also displayed.

non-VBF+VBF non-VBF VBF

e⌧ signif. −3.240 (6.814) −3.397 (5.888) −0.387 (4.099)

e⌧ limit (%) 0.077 (0.189+0.075
�0.053

) 0.082 (0.216+0.086
�0.060

) 0.356 (0.393+0.158
�0.110

)

µse⌧ �0.329+0.104
�0.108

�0.377+0.114
�0.119

�0.089+0.221
�0.247

µ⌧ signif. 2.498 (8.217) 2.694 (7.405) 0.301 (3.992)

µ⌧ limit (%) 0.415 (0.189+0.074
�0.053

) 0.485 (0.221+0.087
�0.062

) 0.466 (0.381+0.157
�0.106

)

µsµ⌧ 0.248+0.101
�0.099

0.299+0.112
�0.110

0.060+0.214
�0.194

Table 16: The observed results. The expected sensitivities are given in brackets. The expected significance is obtained

when assuming a BR of 1%.

The asymmetry favoring the µ⌧ over the e⌧ dataset discussed above corresponds to a 2.5� excess in the

H ! µ⌧e search and �3.2� excess in the H ! e⌧µ search. A significance of 3� is roughly interpreted

as a 1/1000 chance that the excess results from a fluctuation in the data from the background-only

hypotheses. This asymmetry is mainly found in the non-VBF region. The signal strengths µs measured in

the VBF region – although in the same direction (sign) as those of non-VBF – are compatible with the

background-only hypotheses. This asymmetry also has implications for the observed limits; the observed

limit of the non-VBF and VBF regions combined is ⇠ 2� below the expected in H ! e⌧µ and ⇠ 3� above

the expected in H ! µ⌧e.

4.9.3 Combined results

As previously discussed at the beginning of section 4, the full ATLAS Run-2 Higgs LFV search includes,

in addition, two other analyses which rely on MC simulation for background estimation; MC-based `⌧̀ 0

searching for the same signals as the analysis presented here (H ! e⌧µ and H ! µ⌧e) and MC-based `⌧had

searching for the same signals but when the ⌧ decays hadronically (H ! e⌧had and H ! µ⌧had). The two

final states, `⌧̀ 0 and `⌧had, are combined to measure the final analysis results. In the following, we refer to

the analysis presented in this thesis as the Symmetry-based `⌧̀ 0 analysis.

The best fit signal strengths measured with the combined MC-based analyses are µse⌧ = 0.11 ± 0.06 and

µsµ⌧ = 0.12 ± 0.05. This means that the MC-based analyses measure an excess in the data w.r.t. the

background prediction in both the e⌧ and µ⌧ datasets. The Symmetry-based search measures µse⌧ with an

opposite sign, but in contrast with the MC-based analysis, it makes use of the µ⌧ dataset to estimate the

background; therefore, it measures the difference between the two signal strengths. On the other hand, the

µsµ⌧ measured values are comparable; although the MC-based value is less than half of the one measured

with the Symmetry-based search, due to smaller uncertainties, the corresponding significances are similar.

Compatibility tests were performed to verify that the results from the Symmetry-based and MC-based

`⌧̀ 0 analyses are consistent, which consider the difference between the two signal strengths measured. A

compatibility within 2.3� was found between the two methods.
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The results obtained when combining the Symmetry-based `⌧̀ 0 and MC-based `⌧had analyses are shown in

Table 17. The combined measured signal-strength values are decreased, especially in the H ! e⌧ search,

since the µse⌧ value found in the MC-based search is opposite in sign. But in the H ! µ⌧ search, the

significance is increased to almost 2.9� due to the uncertainty reduction. We see from the expected results

that the combination improves the sensitivity of the analysis by up to 60%.

H ! e⌧ H ! µ⌧

µs �0.118+0.066
�0.067

0.133+0.048
�0.047

signif. −1.796 (9.560) 2.864 (12.586)

limit (%) 0.073 (0.128+0.051
�0.036

) 0.214 (0.091+0.037
�0.026

)

Table 17: Observed results of the combination with the MC-based `⌧had analysis. The expected sensitivities are given

in brackets. The expected significance is obtained when assuming a BR of 1%.

The results presented above are relative to the Symmetry-based searches described in this thesis. The final

results, which will figure in the paper once published, are based on a different combination of the distinct

analyses performed. Indeed, various combinations can be considered. The choice was made prior to the

data unblinding, by comparing the expected sensitivities achieved with the different options. Two sets of

results with different physical implications are derived:

• 1 POI fit: Independent searches for H ! e⌧ and H ! µ⌧ (assuming that the BR of the other signal

is zero) combining the MC-based `⌧̀ 0 in the non-VBF SR, the Symmetry-based `⌧̀ 0 in the VBF SR,

and the MC-based `⌧had in the non-VBF and VBF SRs

• 2 POI fit: Simultaneous search for H ! e⌧ and H ! µ⌧ combining the MC-based `⌧̀ 0 and `⌧had in

the non-VBF and VBF SRs

In the independent searches (1 POI fit), for the `⌧̀ 0 channel, the MC-based analysis has better expected

sensitivity than the Symmetry-based in the non-VBF SR but worse in the VBF SR. This is mainly driven by

the amount of MC statistics available in each SR in comparison to the data statistics. For the `⌧had channel,

only an MC-based analysis was performed. The simultaneous search (2 POI fit) is a single measurement of

both the H ! e⌧ and H ! µ⌧ searches. This can be implemented in the MC-based analyses since the

background predictions derived for each signal are independent of the data and one another. This is not the

case in the Symmetry-based searches, where only independent measurements can be performed.

Table 18 lists the observed best fit signal strength and upper limit for the H ! e⌧ and H ! µ⌧ searches

and for the 1 POI and 2 POI combinations. Based on the simultaneous fit, the H ! µ⌧ search shows a

2.5� excess, in line with the independent fit, while no significant excess was observed in the H ! e⌧

search, not supporting the hint in the independent fit.

4.10 Conclusion

Two direct searches for Higgs LFV decays, H ! e⌧µ and H ! µ⌧e, are presented based on data collected

by the ATLAS experiment at
p

s = 13 TeV, corresponding to an integrated luminosity of 138.42 fb�1.

The searches are conducted using the e/µ-symmetry method by comparing the data in the e⌧µ and µ⌧e
datasets – both include events with one electron and one muon in the final state but differ by the pT ordering

88



1 POI fit 2 POI fit

H ! e⌧ H ! µ⌧ H ! e⌧ H ! µ⌧

µs 0.129+0.061
�0.060

0.084+0.047
�0.046

µe⌧ = 0.094+0.059
�0.058

µµ⌧ = 0.107+0.045
�0.044

limit (%) 0.230 (0.118+0.047
�0.033

) 0.163 (0.089+0.036
�0.025

) 0.192 (0.114+0.046
�0.032

) 0.182 (0.087+0.035
�0.024

)

Table 18: Observed best fit signal strength and upper limit obtained from the independent (1 POI fit) and simultaneous

(2 POI fit) analyses, which combine results from the `⌧̀ and `⌧had searches as described in the text. The expected

sensitivities are given in brackets.

of the two leptons in the estimated Higgs rest frame. Significant efforts were made to correctly account for

detector-induced asymmetries between the two datasets: applying the efficiency correction and estimating

the fake background contribution. The results are extracted in a statistical analysis based on the output of a

NN, trained to identify the LFV signal.

The observed best fit values of the signal strengths are µe⌧ = �0.329+0.104
�0.108

and µµ⌧ = 0.248+0.101
�0.099

for the

H ! e⌧µ and H ! µ⌧e signals, respectively, when assuming that the other signal is zero. This corresponds

to an excess of �3.2� and 2.5�. Both values point to an asymmetry between the two datasets in favor

of the µ⌧ dataset. The expected significances obtained when assuming a BR of 1% on the signals are

6.814 and 8.217. Additionally, observed (expected) limits on the BRs are set at 95% CL using the CLs

method: 0.077% (0.189+0.075
�0.053

%) for H ! e⌧ and 0.415 (0.189+0.074
�0.053

%) for H ! µ⌧. The observed limits

are affected by the asymmetry present between the e⌧ and µ⌧ datasets.

Combination with the MC-based `⌧had search reduces the significance in the H ! e⌧ search to

�1.8� and increases it in the H ! µ⌧ search to 2.9�. The observed (expected) upper limits set

are 0.073% (0.128+0.051
�0.036

%) for H ! e⌧ and 0.214% (0.091+0.037
�0.026

%) for H ! µ⌧. The combination

improves the expected sensitivity of the analysis by up to 60%.

The final results derived for this analysis include independent H ! e⌧ and H ! µ⌧ searches combining

the Symmetry and MC-based analyses in the `⌧̀ 0 channel and the MC-based analysis in the `⌧had channel;

as well as a simultaneous H ! e⌧ and H ! µ⌧ search combining the `⌧̀ 0 and `⌧had MC-based analyses.

Based on the simultaneous fit, the H ! µ⌧ search shows a 2.5� excess in line with the independent fit,

while no significant excess was observed in the H ! e⌧ search, not supporting the hint in the independent

fit. The observed (expected) upper limits set with the independent searches are 0.230% (0.118+0.047
�0.033

%)

for H ! e⌧ and 0.163% (0.089+0.036
�0.025

%) for H ! µ⌧. The observed (expected) upper limits set with the

simultaneous search are 0.192% (0.114+0.046
�0.032

%) for H ! e⌧ and 0.182% (0.087+0.035
�0.024

%) for H ! µ⌧.

89



5 Towards symmetry-based data-directed searches

In this section, we present different studies that aim to lay the groundwork for implementing data-directed

and generic searches for BSM physics, using the e/µ-symmetry method or similarly exploiting SM

symmetries in general. The motivation to conduct such searches is summarized in section 5.1. A simple

approach to identify asymmetries between two measurements, which exhibits good sensitivity and can

easily be generalized, is presented in sections 5.2 and 5.3. This approach is illustrated in the example of

the search for Higgs LFV decays, which is constructed using standalone simulated data produced with

dedicated software. The procedure employed to generate this data is described in section 5.4, along with

an independent study that probes the validity of generalizing the e/µ-symmetry method to datasets with

various final states. Finally, section 5.5 presents an alternative approach for symmetry restoration, which

can be efficiently implemented to account for any asymmetry accurately modeled in the MC samples.

5.1 Motivation

We propose extending the discovery potential of the LHC with a DDP. Similar to [102–104], its principal

objective is to efficiently scan large portions of the observables space for hints of NP, but unlike [102–104],

without using any MC simulation. We look directly at the data in an attempt to identify regions in the

observables space that exhibit deviations from a theoretically well-established property of the SM. Such

regions should be considered as data-directed BSM hypotheses, as opposed to theoretically-motivated ones,

and could be studied using traditional data-analysis methods. As detailed in [62], a search in the DDP can

be implemented with two key ingredients: a) a theoretically well-established property of the SM and b) an

efficient algorithm to search for deviations from this property.

In this section, we show that any SM symmetry can be exploited in such a data-directed search. Symmetries

can be used to split the data into two mutually exclusive datasets, which should only differ by statistical

fluctuations. By comparing them, we become sensitive to any potential BSM process which breaks this

symmetry. An example is the e/µ-symmetry method described in section 3, which enables comparing

any two datasets of events with the same number of electrons in one, and muons in the other, expected

symmetric from the approximate SM e $ µ symmetry. In the general case, systematic detector effects

could also affect the symmetry, such as the different electron vs. muon efficiencies. These need to be

accounted for – e.g., applying an efficiency correction as in section 4.3.4. Still, such correction methods

exist in principle. So as a first step, we do not consider them in the proof-of-principle study presented in

section 5.2. In an experimental realization of the symmetry-based DDP search, such systematic effects

must be taken into account.

The concept of exploiting symmetries of the SM for data-driven BSM searches was previously proposed in

[56] and [105]. It is also implemented – based on the e/µ-symmetry method– in the ATLAS Higgs LFV

search presented in section 4 and in [57] and in the search for an asymmetry between e+µ� and e�µ+ events

[106]. However, the implementation of these searches still follows the blind-analysis paradigm where only

a specific signal is searched for in a small theoretically-motivated subset of the observables space.

In terms of the DDP proposed here, no specific signal is searched for. Instead, the two SM symmetric

datasets are compared in full in many different sub-regions (corresponding to exclusive selections of the

data). Any significant deviation observed is a potential sign for NP to be further investigated. Thus,

sensitivity to many more possible BSM processes and scenarios is enabled. As such, the eµ/µe comparison

implemented in the Higgs LFV search discussed above becomes a general test for lepton flavor universality
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in the final state containing one electron and one muon of opposite charge. Similarly, different final states

including a number of electrons, muons, and other objects, can be probed (ee vs. µµ, e+jet vs. µ+jet,

etc.), each potentially sensitive to different BSM manifestations. In this context, the recent hints for

non-universality in the RK measurements from LHCb [23] are, in fact, hints of an asymmetry between

the ee and µµ datasets in the decay of b hadrons to a Kaon and two same-flavor leptons. Likewise, the

comparison of e�µ+ to e+µ� in [105] and [106] is a test of CP (Charge-Parity) symmetry in the lepton sector.

Other symmetries could be used in similar implementations, such as forward-backward or time-reversal

symmetries.

Given the large number of symmetries in the SM which can be violated in BSM scenarios, the potential

benefits of implementing such symmetry-based generic searches are significant. However, interpreting

the results must be done with care. Indeed, a data-directed search will naturally be tuned to identify

regions including statistical fluctuations or other measurement effects which could induce asymmetries. If

a detected signal originates from a statistical fluctuation, it will disappear with more collected data. If it

originates from a detector or other systematic effect correctly modeled in MC simulations, then it can be

ruled out. Any residual asymmetry can be considered a data-directed BSM hypothesis to be inspected

using standard analysis techniques. In this manner, the risk of claiming a false discovery should not be

higher than when implementing hundreds of searches in the blind paradigm since the trial factor is high in

both cases [107].

5.2 Identifying asymmetries between two measurements

This section aims to draw attention to the potential for discovering BSM physics when implementing

searches in the DDP, particularly data-directed searches based on symmetries of the SM. In this context, we

lay the groundwork for a generic method to compare two datasets and quantify the level of any discrepancy

between them, if present. As previously discussed, we do not address here the treatment of eventual

systematic effects that can deteriorate the expected SM symmetry between the two datasets. Nonetheless,

as shown in section 4, [57], and [106], in analyses that were based on symmetry considerations, such effects

can be accounted for. The results presented in this section also figure in [1].

Since the goal is to quickly scan multiple sub-regions of the observables space in a large number of final

states, a fast method for identifying asymmetries is needed. We develop this method based on a simplified

framework using MC simulated data. Different test statistics can be used to compare the two datasets (e.g.,

Kolmogorov-Smirnov [108], student t-test [109]). In the implementation proposed in this section, the

datasets are represented by 2D histograms8 of predetermined properties of the data and compared using a

simple test statistic, the N� test, described below. Since the method is fast, multiple 2D histograms of all

the existing properties and their combinations can be compared efficiently. We leave to future work the

generalization of this study for a more comprehensive and optimized implementation.

When working with histograms, there is no a priori way to choose the bins, which is particularly challenging

in many dimensions. One solution to this challenge is to make use of machine learning. Starting

from [110, 111] based on [112], there have been a variety of proposals to perform anomaly detection

with machine learning by comparing two datasets [110, 111, 113–121] (see [122–126] for recent reviews).

Complementary to the binned DDP (henceforth, simply “the DDP”), we demonstrate that asymmetries

can also be identified using weakly supervised NNs, similar to the approach in [112]. Nevertheless, for

now, such methods require training at least one NN for each event selection. This is time-consuming and

8 The generalization of the proposed analysis approach to n-dimensional histograms is straightforward.
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restricts the number of selections that can be tested, which could be limiting in the context of the DDP,

depending on the available computational resources.

The sensitivity of the proposed DDP search is compared to that of two likelihood-based test statistics.

While both assume exact knowledge of the signal shape, one represents an ideal search in which also

the distribution of the symmetric background components are precisely known, and the other represents

the expected sensitivity of a traditional blind analysis search employing a symmetry-based background

estimation, such as the Higgs LFV analysis described in section 4. According to the Neyman-Pearson

lemma [127], these are the most sensitive tests for the respective scenarios they consider.

This section is organized as follows. In section 5.2.1, we describe some of the statistical properties of the

DDP symmetry search. The simulated data used for our numerical studies are presented in section 5.2.2.

Results for the DDP are given in section 5.2.3, and a complementary approach using NNs is discussed in

section 5.2.4. We end with conclusions and outlook in section 5.2.5.

5.2.1 Quantifying asymmetries

Given two datasets, our goal is to determine the probability that they are asymmetric, as opposed to

originating from the same underlying distribution. The latter represents the null hypothesis, where both

measurements are indeed symmetric as expected from the symmetry property of the SM considered. In the

context of the symmetry-based DDP proposed here, and unlike other statistical tests commonly used in

BSM searches, no signal assumptions are made. The test is intended to output the probability at which the

background-only hypothesis is rejected.

In order to rapidly scan many selections and final states, the method used to quantify the asymmetry

between two datasets should be efficient. This can be achieved if we ensure that the results obtained are

independent of the properties of the underlying symmetric background component. Indeed, one of the

most time-consuming tasks for implementing a statistical test to reject a hypothesis is determining the test

statistic’s PDF under said hypotheses. But if this PDF is constant and known, we avoid the need to derive it

for each different dataset tested.

The generic N� test statistic considered is given in (59). A and B are two n-dimensional matrices

representing the two tested datasets projected into histograms of n properties of the measurements. They

each have M bins in total, the Ai and Bi are their respective number of entries in bin i, and the �Ai and

�Bi are their respective standard errors:

N� (B, A) =
1
p

M

M
X

i=1

Bi � Ai
q

�2
Ai
+ �2

Bi

(59)

In this formalism, we search for a signal in B by comparing it to the reference measurement A, but their

roles are exchangeable. When A and B are two (Poisson-distributed) measurements, (59) simplifies to:

N� (B, A) =
1
p

M

M
X

i=1

Bi � Aip
Ai + Bi

(60)

It can be shown that in the limits of the normal approximation, applicable here provided there are enough

statistics in each bin of the two matrices, the symmetry-case PDF of the N� test is well approximated by

a standard Gaussian. This satisfies the condition that the test should be independent of the underlying
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symmetric component, ensuring its efficiency. We confirmed that this approximation is valid when ensuring

at least 25 entries per bin. For scenarios with lower statistics, the background-only PDF can be distorted

from the normal distribution. Nevertheless, large N� values still correspond to asymmetries. Further

studies on the validity in low statistics are discussed in section 5.3.2.

The performance of the N� test is compared to that of two distinct likelihood-based test statistics, which

are built on the test statistic for the discovery of a positive signal described in section 2.6 and rely on the

full knowledge of the signal shape that is being searched for:

• qL1
0

assumes that the underlying symmetric component is perfectly known. This is equivalent to

the ideal analysis case in which the signal and background distributions are perfectly known (no

uncertainties)

• qL2
0

uses no a priori knowledge of the underlying symmetric distribution and estimates it from the

two measurements as part of the fitting procedure. This represents the case where symmetry is the

only available information

Since we aim to compare the sensitivity to detect asymmetries using the N� test relative to the likelihood-

based tests, statistical uncertainties on the signal are not included in this study. The likelihood functions

for each scenario are shown below, where S is the shape of the signal considered, B is the tested dataset,

T is the true distribution of the symmetric background, and A is a measurement of T . The parameter µ

represents the signal strength, and b = {bi } are the background parameters (one per bin of the compared

matrices):

L1µ (B,T, S) = Poisson(B | T + µS) (61)

L2µ (B, A, S; b) = Poisson(B | b + µS) · Poisson(A | b) (62)

The formalism used, which permits a comparison with the N� test, is shown in (63) and (64), where Lµ is

the likelihood function (either L1µ or L2µ), �µ is the profile likelihood ratio, µ̂ and b̂ are the maximum

likelihood estimators of µ and the bi parameters, and
ˆ̂
b is the maximum likelihood estimator of the bi when

µ is fixed.

�µ (B, A, S) =
Lµ (B, A, S;

ˆ̂
b)

Lµ̂ (B, A, S; b̂)
(63)

q0(B, A, S) =

(

�2 ln �0(B, A, S) , µ̂ � 0

+2 ln �0(B, A, S) , µ̂ < 0
(64)

When performing a test for discovery, we compare the test’s score to the background-only PDF to obtain a

p-value (p), which measures the level at which the background hypothesis can be rejected. We then translate

this p-value into an equivalent significance Z = Φ�1(1 � p), where Φ�1 is the quantile of the standard

Gaussian. A significance of 5 is commonly considered an appropriate level to constitute a discovery,

corresponding to p ⇡ 2.87⇥ 10�7. For the case of the N� test, the background-only PDF is itself a standard

Gaussian. Therefore the score obtained is directly a measure of the obtained significance Z , bypassing the

need to compute the p-value:

Z = N� (B, A) (65)

Similarly, regarding the q0 test, we know from [54] that:

Z =
p

q0(B, A, S) (66)
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So the
p

q0 background-only PDF is again a standard Gaussian9. Therefore, in the following, we directly

compare the N� and
p

q0 significance values.

5.2.2 Data preparation

The symmetry-based DDP is demonstrated in a practical example, the search for Higgs LFV decay H ! ⌧µ
where the ⌧ further decays to an electron, based on the example discussed in section 3.2. The SM processes

considered which contribute to the symmetric background include Drell-Yan, diboson, Wt, tt̄, and SM

Higgs (H ! WW/⌧⌧). For each of these processes, a dataset equivalent to 40 fb�1 of pp collisions

at
p

s = 13 TeV was generated using MadGraph 2.6.4 [128] and Pythia 8.2 [61]. The response of the

ATLAS detector was emulated using Delphes 3 [129]. The signal processes considered are ggF and VBF

Higgs production mechanisms. The generation of these MC simulated samples is described in detail in

section 5.4.1. The SM events are used to construct an eµ symmetric template matrix T – representing the

SM background underlying distributions from which symmetric datasets will be drawn (see description

of this process further below). The Higgs LFV signal events are used to construct a normalized signal

template matrix S. This is done by projecting the simulated measured events on a 28 ⇥ 28 2D histogram

with two selected event properties:

• x-axis: collinear mass (defined in (36)), 5 GeV bins from 30-170 GeV

• y-axis: leading lepton pT, 5 GeV bins from 10-150 GeV

To demonstrate the concept and allow quantitative comparisons to the performance of the likelihood-based

tests, we avoided bins with low statistics by adding a flat 25 entries to each bin in T . The resulting T

and S templates are shown in Figure 45. Other background and signals considered are flat T background

distributions (with either 100 or 104 entries per bin) and rectangle, 2D Gaussian, and slope-like signal S

templates described in section 5.3.1.

Given a background template T – which represents the underlying symmetric distribution – and a signal

template S – which can be injected with different levels of signal strength – the procedure to generate

the datasets used to qualify the different tests is as follows. From T , we Poisson draw N pairs of (A, B)

background-only measurements, which are symmetric up to statistical fluctuations. The background +

signal measurements Bs are obtained by injecting some signal into the B datasets. We inject the signal with

a signal strength µinj, determined such that a q0 test for discovery (qL1
0

or qL2
0

) outputs a given significance

Zinj when testing Bs
= B + µinjS against B:

p
q0(B + µinjS, B, S) = Zinj (67)

Since S is normalized, µinj is the number of signal events added to the B dataset.

Explicitly, for the qL1
0

and qL2
0

cases, it is found by solving (68) and (69), respectively:

2 *,�µinj1 +

M
X

i=1

"
(Bi + µinj1Si) ln

 

1 + µinj1
Si

Bi

!#+- = Z2
inj1 (68)

9 This can also be shown in the more common single-sided formalism presented in [54], where the background-only PDF of q0 in

the asymptotic limit is given by 1
2

(�(0) + �2
1
), where �2

1
is the �2 distribution with one degree of freedom. Thus the PDF of

p
q0 is 1

2
(�(0) + �1), and the �1 distribution is the half-normal distribution.
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(a) (b)

Figure 45: The e/µ background template matrix T (left) and the Higgs LFV signal template matrix S (right). The x, y,

and z axes are the collinear mass, leading lepton pT, and the number of entries per bin, respectively (S is normalized).

2

M
X

i=1

"
(Bi + µinj2Si) ln

 

1 + µinj2
Si

2Bi + µinj2Si

!

� Bi ln

 

1 + µinj2
Si

2Bi

!#
= Z2

inj2 (69)

For each separate experiment considered and detailed below, the number of A, B, and Bs
= B + µinjS

matrices we generate is N = 20K. For the N� and qL2
0

tests, the PDFs of the symmetric case (background-

only) are obtained by comparing the B and A pairs, and the PDFs of the asymmetric case (signal+background)

by comparing the Bs and A pairs. The same applies to the qL1
0

test when the A matrices are replaced by the

template T .

5.2.3 Results

Focusing on the Higgs LFV example, using the signal (S) and background (T) templates shown in Figure 45,

we apply an injected signal strength µinj which corresponds to the 5� significance of the ideal qL1
0

test. To

give an impression, when applied to T , this corresponds to a signal fraction of 0.2% or in a 6 ⇥ 6 window

centered around the signal of 2.8%. Figure 46 compares Z PDFs obtained with the qL1
0

, qL2
0

, and N� tests.

As expected, the symmetric-case PDFs of all tests are consistent with standard Gaussian distributions.

We observe that the background + signal (asymmetric-case) PDFs are consistent with Gaussians with

variance 1 ± 0.05 (for all examples considered), centered around the resulting average significance Zavg of

the relevant test. The Zavg of each test can be directly estimated using the Asimov dataset described in

section 2.6, setting A = T and Bs
= T + µinjS. The resulting significance with the qL1

0
test is predictably

Zavg = 5.0 ⇡ Zinj. With Zavg = 3.53, qL2
0

is less sensitive than qL1
0

since it does not use an a priori

knowledge of the background but estimates it from the two measurements as part of the fitting procedure.

Since the N� test is averaged on all the bins, and most of them only include background contributions, the

resulting average significance Zavg = 1.48 is significantly lower than the separation power measured with

the qL2
0

test.

In general, applying the N� test in a sub-region of the datasets can be much more efficient. Even though

the signal’s shape and location are not known in a generic test, since the calculation of N� is fast, one
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Figure 46: Significance PDFs comparing results of the N� , qL1
0

, and qL2
0

tests for the Higgs LFV example, with

injected signal strength corresponding to 5� of qL1
0

.

could test multiple bin subsets10or develop an algorithm to optimize this selection. In Figure 47, we show

N� scores with the Asimov data obtained when the test is performed on square windows of different sizes

centered around the location of the signal. The N� sensitivity increases when the window encapsulates the

SR more precisely, reaching up to Zavg,max = 2.74 with the 6 ⇥ 6 bins window. Thus, for this example, the

sensitivity achieved is only slightly worse than the one achieved with the qL2
0

test, which exploits a full

knowledge of the signal shape. The N� results presented hereafter are for the best-suited window (6 ⇥ 6

bins for all examples considered, unless specified otherwise).

In Figure 48, we show the Receiver Operating Characteristic (ROC) curves obtained from the PDFs of the

different tests. The Area-Under-Curve (AUC) measured is approximately 1.0 for the qL1
0

test and 0.994 for

the qL2
0

test. With an AUC of 0.973, the N� test is only 2.6% less sensitive than the qL1
0

test, and 2.0%

less sensitive than the qL2
0

test. Finally, in Figure 49, we show Zavg per test (estimated from the Asimov

data), for increasing injected signal strength. Using the N� test statistic, the symmetric case (background

only) can be separated from the asymmetric case at the level of 2� if the signal that would have been

measured assuming an ideal analysis (qL1
0

) is at the level of 3.5�. This should also be compared to the

2.5� separation that would have been obtained in the same case using the profile likelihood ratio test

statistic that uses the two datasets to estimate the symmetric background and full knowledge of the signal

shape (qL2
0

).

For clarity, we also consider a flat background template T with 104 entries in each bin, and a flat rectangle

signal template S of size 6 ⇥ 6 bins, located at the center of T . Since the qL1
0

and qL2
0

are independent of

the background and signal shapes, and only depend on the injected signal strength, their symmetry- and

asymmetry-case PDF will remain unchanged. The PDF associated with the N� in the asymmetric case

10 There is a trial factor for performing multiple tests, but as stated earlier, the goal is to identify interesting regions and not to

compute a precise global p-value. That could be done with k-folding or other divide-and-test schemes, which we leave for

future work to explore.
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Figure 47: Significance measured from the Asimov data, with the N� test applied to increasing window sizes, and

compared to the qL1
0

and qL2
0

significance. Results for the Higgs LFV example and the ideal (flat) scenario are shown,

with injected signal strength corresponding to 5� of qL1
0

. The green and yellow bands correspond to the 1� and 2�

deviations from the symmetry (no signal) assumption, respectively.

Figure 48: ROC curves comparing results of the N� , qL1
0

, and qL2
0

tests for the Higgs LFV example, with injected

signal strength corresponding to 5� of qL1
0

.

will change. As shown in Figures 47 and 49, in this simplified case, the N� sensitivity matches exactly the

sensitivity of the qL2
0

test. This suggests that the loss of sensitivity of the generic N� test, compared to

qL2
0

, is mainly due to shape variations of the background and the signal (in the optimal sub-region that
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is tested). But even in a realistic scenario like the Higgs LFV example, the sensitivity loss is reasonable

(from Zavg = 3.53 to 2.74), and the power achieved to identify regions with asymmetry, even though the

N� test is generic, is significant. In terms of the ability to identify asymmetries, similar performance was

obtained for all the other shapes of signal and background considered. Additional studies characterizing

the N� test statistic are presented in section 5.3.

Figure 49: Significance measured from the Asimov data for increasing injected signal, comparing results of the N� ,

qL1
0

, and qL2
0

tests. Results for the Higgs LFV example and the ideal (flat) scenario are shown. The green and yellow

bands correspond to the 1� and 2� deviations from the symmetry (no signal) assumption, respectively.

5.2.4 Neural Network approach

Machine learning-based anomaly detection methods constructed by comparing two datasets are categorized

as weakly- or semi-supervised learning because both datasets are mostly background, and one will have

more signal than the other. The dataset with the most signal potential is given a noisy label of one, and

the other dataset is given a label of zero. A classifier trained to distinguish the two datasets can then

automatically identify subtle differences between the datasets without explicitly setting up bins. Existing

proposals construct the datasets from SR / sideband regions [110, 111, 116], from data versus simulation

[113, 114, 121, 130], as well as other approaches [115, 117–120]. We propose to extend this methodology

to symmetries.

The combination of machine learning and symmetry has received significant attention. For a given

symmetry, one can construct machine learning methods that are invariant or covariant (in machine learning,

this is called equivariant) under the action of that symmetry. For example, recent proposals have shown

how to construct Lorentz covariant NNs [131–133]. Symmetries can also be used to build a learned

representation of a dataset [134]. There have also been proposals to use machine learning methods to

discover symmetries automatically in datasets [135–137]. In the context of BSM searches, [138, 139]

recently described how to use a weakly supervised-like approach to test if a given symmetry is broken by

applying the transformation to the input data. Our approach also starts by positing a symmetry, but we do
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not apply the symmetry transformation to each data point. Instead, we have two datasets that should be

statistically identical in the presence of symmetry but could be different when BSM is present.

In the following, we demonstrate the concept of identifying asymmetries using a weakly supervised

approach. Considering the eµ symmetry example discussed above, one of the datasets is the eµ dataset,

and the other is the µe dataset. The same two-dimensional space described earlier is used for illustration;

extending to higher dimensions is technically straightforward. A deep NN with three hidden layers and 50

nodes per layer is used for the classifier. Rectified Linear Units (ReLU) are used for all intermediate layers,

and the output is passed through a sigmoid function. This network is implemented using Keras [84] and

Tensorflow [85] using Adam [140] for optimization. We train for 20 epochs with a batch size of 200. None

of these parameters were optimized. Figure 50 shows the NN’s symmetry/asymmetry separation power as

a function of the signal fraction injected into the µe dataset. The background-only band is computed via

bootstrapping [141]. For each bootstrap, two datasets are created by drawing from the eµ and µe events

with replacement. By mixing the two datasets, any asymmetry is removed.

There is no unique way to quantify the NN performance. An optimal test statistic by the Neyman-Pearson

Lemma [127] is monotonically related to the likelihood ratio. [113, 114, 121, 142] show how to modify the

loss function so that the average loss approximates the (log) likelihood ratio. Here, we find that in practice,

the maximum NN score using the standard binary cross-entropy loss function is an effective statistic, which

goes from 0.5 in the case of no signal and increases as more signal is injected. The background-only band

in Figure 50 is computed via bootstrapping. Where the blue line and green/yellow bands cross indicate the

approximate 1�/2� exclusion. The NN is able to automatically identify the presence of BSM for signal

fractions that are a few per mil, corresponding to around 5� significance calculated with the ideal qL1
0

test.

Future explorations of this idea will understand the best way to set up the training, what statistics are most

effective, and how to best extend to higher dimensions.

5.2.5 Discussion

With limited resources at hand and yet no conclusive indication of BSM physics found, we must try novel

and complementary avenues for discovery. To overcome the limitations stemming from adapting the

blind-analysis strategy, we propose developing the DDP. Similarly to [102–104, 143, 144], yet without

relying on MC simulations, its principal objective is to allow scanning of as many regions of the observables

space as possible and direct dedicated analyses towards the ones in which the data itself exhibits deviation

from some fundamental and theoretically well-established property of the SM. Relative to regions in which

the data agrees well with the SM predictions, the ones that exhibit deviations are promising for further

investigations into BSM physics.

We propose developing the DDP based on symmetries of the SM and demonstrate its potential sensitivity

using, as an example, the e/µ symmetry. Symmetries allow splitting the data into two mutually exclusive

datasets, which, under the symmetry assumption, differ only by statistical fluctuations. Thus, asymmetry

observed between the two datasets in any observable and at any sub-selection is potentially interesting and

should be considered for further study.

While different algorithms can be developed to identify asymmetries, even the most simple one developed,

the N� test statistic, already provides good sensitivity. It is compared to the sensitivity obtained with two

likelihood-based test statistics; the first, qL1
0

, represents an ideal analysis in which both the signal and the

symmetric contribution from the SM processes is perfectly known. The second, qL2
0

, represents the expected
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Figure 50: The maximum NN score from training a classifier to distinguish the eµ from µe datasets with (asym) and

without (sym) a BSM contribution. The green (yellow) and blue bands represent (twice) the standard deviation over

10 bootstrap datasets. The separation power is shown as a function of the injected signal fraction (bottom scale) and

the corresponding significance calculated with the ideal qL1
0

test. Note that these results are not directly comparable

to the binned DDP because it is not possible to ignore signal statistical uncertainties.

sensitivity of a traditional blind analysis search for a predefined signal that employs a symmetry-based

background estimation, such as the Higgs LFV search described in section 4.

Compared to the sensitivity obtained in an ideal analysis, the separation power between the symmetric case

and an asymmetry at the level of 5� is less than 3% lower in terms of the area under the ROC curve, and a

separation at the level of 2� is achieved for 3.5� signal injected. Compared to traditional symmetry-based

analysis, the separation power between the symmetric case and an asymmetry at the level of 3.5� is less

than 2% lower in terms of the area under the ROC curve, and a separation at the level of 2� achieved

using the N� test is only slightly degraded relative to the 2.5� obtained with the qL2
0

test. The results

quoted are when applying the N� test in the best-suited window for the examples considered. The ability

to find this optimal window demonstrates the strength of the DDP. Since the test is rapid, a large number of

n-dimensional histograms and windows within can be tested efficiently. This could permit scanning the

data systematically in search of asymmetries.

We have shown that weakly-supervised NNs can also be used to identify asymmetries between two datasets.

This paves the way towards NN-based DDP.

We emphasize that traditional blind analyses are expected to be the most sensitive for any predefined signal.

Nonetheless, it is impossible to conduct a dedicated search in any possible final state and at any possible

event selection. Moreover, not all potential signals can be thought of. Thus, the DDP could significantly

expand our discovery reach.
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5.3 Characterization of the Nσ test statistic

This section presents additional studies characterizing the N� test statistic defined in (59) and used in

section 5.2.3 to quantify asymmetries between two measurements. The study’s framework, data analysis

methods (including benchmark tests), data preparation, and obtention of results are already described in

sections 5.2.1-5.2.3.

5.3.1 Varying backgrounds and signals

As discussed in section 5.2.3, the N� sensitivity for a given signal can vary greatly on how well or poorly

the signal is encapsulated in the sub-region tested (see Figure 47). To further emphasize this property,

we consider the case of a flat background template T with 104 entries in each bin (28 ⇥ 28) and a signal

template S, which is only present in a single bin and injected with a signal strength corresponding to 5� of

qL1
0

. In Figure 51, we compare the ROC curves obtained from different tests: qL1
0

, qL2
0

, N� applied to all

the bins, and N� applied only to the bin where the signal is present.

Figure 51: ROC curves comparing results of the N� , qL1
0

, and qL2
0

tests for the example of a flat background (104

entries/bin) and a single-bin signal with injected signal strength corresponding to 5� of qL1
0

. Results when N� is

applied to all bins, or the single bin with signal, are compared.

The qL1
0

and qL2
0

sensitivities do not depend on the properties of the background or signal templates

considered, since the signal is injected with a signal strength corresponding to a fixed significance of qL1
0

or

qL2
0

. So their respective ROC curves in Figure 51 are the same as those shown, for example, in Figure 48.

When the N� test is applied to all the bins, it has no sensitivity to detect this (single bin) signal; its

measured average significance is Zavg ⇡ 0.1. But when it is applied only to the bin that includes the signal,

its sensitivity (Zavg ⇡ 3.5) is equivalent to that of qL2
0

– which uses the same background assumptions but

full knowledge of the signal. This one-bin example is analogous to a counting experiment. In this case, the

N� and qL2
0

sensitivities are equivalent. This was already observed in section 5.2.3 for the similar case of a
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flat background and rectangle signal, where the N� test was only applied to the bins, that include signal

contributions.

We also showed in section 5.2.3 that in the case of the Higgs LFV example, even in an optimized sub-region,

the N� sensitivity is degraded compared to that of qL2
0

(see Figure 47). We attribute this to variations in

the background or signal. To further characterize the test’s performance, we consider different background

templates and signal templates.

In Figure 52(a), we compare ROC curves obtained using the rectangle 6⇥6 signal with variable background

templates: flat with 100 entries per bin, flat with 104 entries per bin, the eµ background from the Higgs

LFV example (see Figure 45) with signal centered around coordinates (130, 110) (location 1), and the eµ

background with signal centered around coordinates (60, 40) (location 2). In all cases, the injected signal

amounts to 5� of qL1
0

. We find that the N� test performs equally well (Zavg ⇡ 3.5) for a flat background

with 100 or 104 entries per bin. It is slightly penalized for the eµ background, especially at location 2

(Zavg ⇡ 3.1), due to larger differences in the background statistics from bin to bin.

In Figure 52(b), we compare ROC curves obtained using the usual flat background (104 entries per bin) but

with different signal templates: rectangular (size 6 ⇥ 6), gaussian (std 2 bins), and Higgs LFV (see Figure

45). In all cases, the injected signal amounts to 5� of qL1
0

. We find that, compared to the ideal rectangle

signal case (Zavg ⇡ 3.5), the N� sensitivity is slightly penalized for the gaussian signal (Zavg ⇡ 3.2), and

even more for the Higgs LFV signal (Zavg ⇡ 2.8) since it is spread out on more bins, but the obtained

sensitivity is still close to that of qL2
0

.

(a) (b)

Figure 52: ROC curves obtained with variable background (a) or signal (b) templates. Otherwise, using the flat 104

background template and rectangle 6 ⇥ 6 signal template. The injected signal strength corresponds to 5� of qL1
0

for

all cases.

All the signals considered up to now are bump-like signals, illustrating searches for resonances. But

other types of BSM signatures can be considered, for example, in non-resonant or indirect searches (see,

e.g., [145, 146]). We also consider a slope-like signal. It is uniform along the y-axis and linearly rising

along the x-axis (still normalized to unity). In Figure 53, we show N� scores with the Asimov data obtained

when the test is performed on windows of size x ⇥ 28, which start from the right-most edge of the matrix
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and where x is varied from 0-28. With an injected signal corresponding to 5� of qL1
0

, the best N� score

for the case of the flat background (104 entries per bin) is Zavg,max = 3.33 with a window of size 18 ⇥ 28,

and for the case of the eµ background Zavg,max = 2.95 with a window of size 17 ⇥ 28. These scores are

again close to that of qL2
0

(Zavg = 3.53).

Figure 53: Significance measured from the Asimov data, with the N� test applied to windows of size x ⇥ 28

with increasing x values, and compared to the qL1
0

and qL2
0

significance. The injected signal is the slope-like

signal described in the main text. Results for the flat and eµ backgrounds are shown, with injected signal strength

corresponding to 5� of qL1
0

. The green and yellow bands correspond to the 1� and 2� deviations from the symmetry

(no signal) assumption.

Table 19 summarizes the results comparing the qL1
0

, qL2
0

, and N� sensitivities obtained from the Asimov

datasets for the various background and signal templates considered. The signals are injected with a

significance corresponding to 5� of qL1
0

(qL2
0

) in the first half (second half) of the table. For the eµ

background with a rectangle or Gaussian signals, results for both signal locations already considered above

are listed (loc1: (130, 110), loc2: (60, 40)). We also indicate, for each case, the corresponding µs
inj

– which

is the total number of injected signal events – and the signal fraction w.r.t. the number of background

events. Both the N� scores and the signal fractions are measured in the optimal window in which the

N� score is maximized (6 ⇥ 6 for all cases except for the slope signal where it is 18 ⇥ 28 (17 ⇥ 28) if the

background is flat (eµ)).

103



background signal µs
inj

signal fraction Z (qL1
0

) Z (qL2
0

) Zmax(N�)

flat (104) rect 3004.2 0.83 5.00 3.53 3.53

gaus 3550.5 0.75 5.00 3.53 3.16

hlfv 4281.1 0.66 5.00 3.53 2.80

slope 12018.3 0.19 5.00 3.53 3.33

flat (102) rect 304.1 8.45 5.00 3.51 3.51

gaus 360.0 7.58 5.00 3.51 3.15

hlfv 434.2 6.71 5.00 3.51 2.79

slope 1206.0 1.88 5.00 3.53 3.33

eµ rect (loc 1) 268.1 8.84 5.00 3.51 3.47

rect (loc 2) 877.2 0.68 5.00 3.52 3.10

gaus (loc 1) 315.8 7.89 5.00 3.50 3.11

gaus (loc 2) 1069.5 0.63 5.00 3.52 2.85

hlfv 1011.7 2.76 5.00 3.52 2.74

slope 1195.7 0.23 5.00 3.52 2.95

flat (104) rect 4255.1 1.18 7.08 5.00 5.00

gaus 5029.9 1.06 7.08 5.00 4.48

hlfv 6065.4 0.94 7.08 5.00 3.96

slope 17003.9 0.26 7.07 5.00 4.71

flat (102) rect 436.8 12.13 7.14 5.00 5.00

gaus 517.9 10.90 7.15 5.00 4.48

hlfv 625.1 9.66 7.15 5.00 3.97

slope 1713.0 2.67 7.09 5.00 4.72

eµ rect (loc 1) 386.4 12.74 7.16 5.00 4.95

rect (loc 2) 1252.4 0.98 7.11 5.00 4.41

gaus (loc 1) 455.9 11.39 7.16 5.00 4.44

gaus (loc 2) 1524.6 0.90 7.11 5.00 4.04

hlfv 1440.4 3.92 7.10 5.00 3.89

slope 1704.3 0.33 7.11 5.00 4.19

Table 19: Comparison of qL1
0

, qL2
0

, and N� significances obtained from the Asimov datasets for the various background

and signal templates considered. The signals are injected with a significance corresponding to 5� of qL1
0

(qL2
0

) in

the first half (second half) of the table. The injected µs
inj

and signal fractions are also listed (see details in the main

body’s text).

Although the injected number of signal events and signal fractions can vary significantly from one case

to the other, the significance obtained with the generic N� test is consistently between 75-100% of the

signal-specific qL2
0

significance for all examples considered. We observe some small variations of the qL2
0

(qL1
0

) score for a fixed qL1
0

(qL2
0

) injected significance. We attribute this to the approximate validity of the

asymptotic assumption used to measure these significances depending on the statistics available. Since this

effect is small for all examples considered, we neglected it in all the descriptions above.
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5.3.2 Validity in low statistics

All the examples considered up to now were constructed with at least 25 entries in each bin of the

background template T in order to avoid regions with low statistics. For the case of very low statistics,

the PDF of the symmetric scenario (where the two compared matrices are indeed drawn from the same

underlying distribution) is no longer consistent with the standard Gaussian distribution. We illustrate this

in Figure 54(a) by comparing PDFs of N� scores obtained from 50K pairs of background-only matrices,

where the background templates T considered are flat backgrounds with 0.1, 1, and 10 entries per bin. In

this example, the N� test is applied in windows of size 6 ⇥ 6. When T has at least 10 entries per bin, the

N6⇥6
� PDF is consistent with the standard Gaussian (the dotted black line in the plot). But for lower entries

per bin in T , the PDF is narrower, albeit still Gaussian-like.

We attribute the distortion of the N� PDF from the standard Gaussian (at least in part) to the discreetness

of the Poisson statistics, which govern the yields in the compared matrices. As such, the statistics in T are

not the only parameters that affect the shape of the N� PDF; the size of the tested window should also be

considered. Indeed, the more bins are tested together, the more combinatorics and the more the different

N� scores obtained are continuous-like. In Figure 54(b), we compare N� PDFs applied to windows of

various sizes (1 ⇥ 1, 3 ⇥ 3, and 4 ⇥ 4) when T has only 2 entries per bin. We see that in the single-bin case

(1⇥ 1), the obtained PDF is narrow and doesn’t resemble a Gaussian due to the discreetness of the obtained

scores. Whereas for 3 ⇥ 3 or 4 ⇥ 4 windows, the N� PDF is consistent with the standard Gaussian.

In Figure 54(c) (Figure 54(d)), we compare N� PDFs when the tested windows are of size 2 ⇥ 2 (1 ⇥ 1) for

flat background templates T with variable entries per bin. In this case, the N� PDF is consistent with the

standard Gaussian for a minimum of 3 (15) entries per bin of T .

We summarize the minimal empirical conditions for the validity of the standard Gaussian approximation of

the N� PDF in the symmetric (background-only) case:

• For a single-bin N� test, the bins compared should include at least 15 entries

• For a 2 ⇥ 2 N� test, the bins compared should include at least 3 entries

• For a 3 ⇥ 3 N� test or larger, the bins compared should include at least 2 entries

When confronted with a scenario that doesn’t satisfy these conditions, one can try rebinning the compared

matrices to include more events in each bin or determining the expected symmetric-case PDF in more

detail.

Still, whatever the scenario, a larger N� score indicates a larger asymmetry between the two measurements

considered. Furthermore, since the symmetric-case PDF becomes narrower at low statistics, the obtained

score under the (invalid) normal approximation will underestimate the actual significance of the discrepancy,

which is conservative. Since our goal is to identify regions that exhibit asymmetries – to be studied using

more traditional data-analysis methods – this is enough in most applications to be considered.

5.3.3 Known background underlying distribution

In the previous discussions, we compared results obtained with the generic N� test to those obtained from

two distinct signal-specific likelihood-based tests, qL1
0

, which knows the exact underlying background

distribution, and qL2
0

, which – similarly to N� – makes no prior assumptions on the underlying background

distribution. For completeness, one can also consider a generic test similar to N� but which compares a
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(a) N6⇥6
� - variable flat bkgs (b) N� variable windows - flat bkg (2 entries/bin)

(c) N2⇥2
� - variable flat bkgs (d) N1⇥1

� - variable flat bkgs

Figure 54: N� PDFs obtained from 50K pairs of background-only matrices. The background template T is always

flat with variable entries per bin in (a), (c), and (d), and with 2 entries per bin in (b). The N� test is applied to

windows of variable sizes as described in the captions of (a), (c), and (d), and in the legend of (b). The PDFs are

compared to the standard Gaussian distribution, displayed as the dotted black line in the plots.

measurement B to a known background distribution T . We denote this test as N1
� and define it in (70); and

in the following, we denote the N� test between two measurements defined in (60) as N2
� .

N1
� (B,T ) =

1
p

M

M
X

i=1

Bi � Tip
Ti

(70)

Although such a test wouldn’t be applicable in the comparison of two measurements, which is our goal,

and although methods already exist for comparing a measurement to a known background distribution, the

main motivation to discuss this test is that the results obtained with N1
� compared to qL1

0
are equivalent to
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the results obtained with N2
� compared to qL2

0
. This means that all the results presented up to now are also

applicable to this scenario when switching N2
� and qL2

0
by N1

� and qL1
0

.

This is illustrated in Figure 55(a) in the case of the Higgs LFV example, where we compare the PDFs

of (N1
� , qL1

0
) for an injected signal corresponding to 3� of qL1

0
and of (N2

� , qL2
0

) for an injected signal

corresponding to 3� of qL2
0

. For both the symmetric and asymmetric cases, the obtained N� PDFs are in

agreement. These are obtained when applying the N1
� and N2

� tests in the same optimal 6 ⇥ 6 window

centered around the signal. We also show that the qL1
0

and qL2
0

PDFs agree as well.

To further clarify the relationship between the different tests considered, we compare in Figure 55(b) the

ROC curves per test for the Higgs LFV example, obtained with an injected signal corresponding to 3�

significance of qL2
0

for all tests. As expected, qL1
0

(Zavg ⇡ 4.2) is more sensitive than qL2
0

(Zavg ⇡ 3.0).

Similarly, N1
� (Zavg ⇡ 3.3) is more sensitive than N2

� (Zavg ⇡ 2.3).

(a) (b)

Figure 55: Comparison of results with (N1
� , qL1

0
) vs. (N2

� , qL2
0

) for the Higgs LFV example. In (a), PDFs are shown

when Zinj = 3� of qL1
0

for (N1
� , qL1

0
) and Zinj = 3� of qL2

0
for (N2

� , qL2
0

). In (b), ROC curves are shown when

Zinj = 3� of qL2
0

for all tests. The N1
� and N2

� scores are obtained in the optimal 6 ⇥ 6 window centered around the

signal

5.4 Efficiency correction in standalone MC samples

This section describes efforts towards generating MC simulated samples of pp collisions at
p

s = 13

TeV. The goal is to provide test data for proof-of-concept and the development of generic data-directed

searches using the e/µ-symmetry method in the context of the proposed symmetry-based DDP. Events

were generated using MadGraph5_aMC@NLO 2.6.4 [128] and Pythia 8.2 [61]. Delphes 3 [129] was used

to simulate the effects and measurements of the ATLAS detector. The generation procedure implemented

is detailed in section 5.4.1.

Using this data, we probe the expected e/µ symmetry from SM processes by comparing the eµ vs. µe or

ee vs. µµ datasets. This comparison, before and after the data is processed through the detector simulation,

is presented in section 5.4.2 and section 5.4.3, respectively. In the case of the reconstructed data, a
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correction for the efficiencies introduced in Delphes is applied to restore the symmetry. In section 5.4.4,

we summarize the results.

5.4.1 Samples and selection

The different SM processes simulated, which are the main background contributions to dilepton final states,

are Z/�⇤ ! ``, Z/�⇤ ! ⌧⌧, WW , Wt, tt̄, (ggF + VBF)H ! WW , and (ggF + VBF)H ! ⌧⌧. We also

produced signal samples for LFV decays of the Higgs (ggF + VBF) and Z bosons to ⌧e and ⌧µ final states.

The SM background and Higgs LFV signal templates used in the study presented in section 5.2 were

derived using these simulated samples (see Figure 45).

All the samples were generated at LO, with two leptons per event (electron, muon, or tau) and up to two

hard jets, except for VBF samples which have exactly two. We worked in the five-flavor scheme, used

the NNPDF3.0 PDF set [147], and applied the MLM scheme [148] with kT jet matching following the

recommended settings. MadSpin [149] was used to decay the W boson and the top quark, while the ⌧

decays (left unspecified) were handled by Pythia. In Delphes, we adjusted the default ATLAS card such

that the electron and muon efficiencies resembled those in ATLAS. In Table 20, we show the different

cross-sections and BRs used to estimate the cross-sections of the generated processes. Table 21 compares

the calculated cross-sections per generated sample to those estimated at LO by MadGraph.

Sample Value Source

Cross-Sections [pb]

tt 826.4 https://cds.cern.ch/record/2686255

Wt 94 https://link.springer.com/article/10.1007%2FJHEP01%282018%29063

WW 115.3 http://inspirehep.net/record/1469339/

(gg)H 43.62 CERNYellowReportPageAt1314TeV2014

(vbf)H 3.727 CERNYellowReportPageAt1314TeV2014

Z/�⇤ ! ee 2087 mg5_aMC@NLO

Z/�⇤ ! µµ 2087 mg5_aMC@NLO

Z/�⇤ ! ⌧⌧ 2101 mg5_aMC@NLO

Z 51450 mg5_aMC@NLO

BRs

W ! e 0.1071 pdg

W ! µ 0.1063 pdg

W ! ⌧ 0.1138 pdg

t ! q 0.665 pdg

t ! ` 0.111666667 (1 � B(t ! q))/3

H ! ⌧⌧ 0.06192 CERNYellowReportPageBR

H ! WW 0.2219 CERNYellowReportPageBR

Z ! ⌧` 0.00001 fixed

H ! ⌧` 0.01 fixed

Table 20: Cross-sections and BRs used to estimate the luminosity generated per simulated sample.
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Sample LO XSec [pb] XSec [pb] kFactor

WW ! ee 1.037 1.3225 1.276

WW ! e�µ+ 1.039 1.3127 1.263

WW ! e+µ� 1.039 1.3127 1.263

WW ! µµ 1.040 1.3029 1.252

WW ! ⌧�`+ 2.074 2.8001 1.350

WW ! ⌧+`� 2.079 2.8001 1.347

WW ! ⌧⌧ 1.034 1.4932 1.444

Wt ! ee 0.703 1.1242 1.600

Wt ! e�µ+ 0.702 1.1200 1.596

Wt ! e+µ� 0.701 1.1200 1.597

Wt ! µµ 0.701 1.1158 1.593

Wt ! ⌧�`+ 1.400 2.3145 1.654

Wt ! ⌧+`� 1.401 2.3145 1.652

Wt ! ⌧⌧ 0.699 1.1945 1.708

Z/�⇤ ! ee 1057.962 2087.0 1.973

Z/�⇤ ! µµ 1057.993 2087.0 1.973

Z ! ⌧e 0.241 0.5145 2.138

Z ! ⌧µ 0.240 0.5145 2.140

Z/�⇤ ! ⌧⌧ 1050.212 2101.0 2.001

tt ! ee 6.188 10.3047 1.665

tt ! e�µ+ 6.188 10.3047 1.665

tt ! e+µ� 6.188 10.3047 1.665

tt ! µµ 6.192 10.3047 1.664

tt ! ⌧�`+ 12.369 20.6095 1.666

tt ! ⌧+`� 12.371 20.6095 1.666

tt ! ⌧⌧ 6.176 10.3047 1.668

(gg) HWW ! `` 0.113 0.4408 3.886

(gg) H ! ⌧e 0.132 0.4362 3.309

(gg) H ! ⌧µ 0.132 0.4362 3.306

(gg) H ! ⌧⌧ 0.708 2.7010 3.817

(vbf)HWW ! `` 0.025 0.0377 1.522

(vbf)H ! ⌧e 0.029 0.0373 1.293

(vbf)H ! ⌧µ 0.029 0.0373 1.293

Table 21: List of all the simulated samples and their estimated cross-sections.

For the studies described below, we use events from the simulated SM processes corresponding to 20 fb�1

of integrated luminosity while ensuring that the mc weights per event are equal to unity.

We consider two sets of data, the truth data, which consists of the generated events after showering (initial-

and final-state parton and lepton radiation), and the reconstructed data, which consists of the showered

events after being processed through the detector simulation. The different detection modules implemented
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in Delphes which affect our study the most are:

• Lepton track Reco

• Lepton Reco

• Lepton Iso

• Lepton transverse momentum smearing

The lepton and lepton track Reco are implemented through efficiency maps binned in the lepton’s pT and

⌘ to simulate ATLAS measurements. The lepton Iso constraint is implemented by summing the pT of

the objects surrounding the lepton track within a cone and dividing the result with the lepton’s pT. If this

ratio is above a certain threshold, the lepton is non-isolated. The pT smearing is to simulate the detector’s

resolution.

For both truth and reconstructed datasets, we select events containing two opposite-sign leptons with

pT > 10 GeV and |⌘ | < 2.5. The selected events are further split into the ee, eµ, µe or µµ datasets

depending on the flavor of the selected leptons and their pT ordering.

5.4.2 Symmetry in truth data

As previously described, truth data refers to the generated events after showering. In contrast with the

reconstructed data processed through the detector simulation, these datasets are not comparable to measured

data. Still, it is reasonable to verify the expected SM e/µ symmetry based on them as a first step. In this

comparison, no correction (efficiency or other) is applied.

A comparison of ee vs. µµ and eµ vs. µe for different kinematic distributions of the truth datasets is shown

in Figure 56 (more distributions are displayed in appendix D.1, Figure 113). In the ee vs. µµ case, we find

an asymmetry that is not very large on average (less than 2%) but presents singular trends around the Z

peak in the m`` distributions and the leptons’ pT distributions. We identified that these features originate

from the lepton energy loss via bremsstrahlung and FSR, implemented in Pythia, which is much more

pronounced for electrons than muons. As a result, the mee peak is shifted to the left compared to the mµµ

one, leading to the asymmetric ratio profile displayed in the plot. This also affects the eµ vs. µe comparison

to some degree. Indeed, although both datasets contain an electron and a muon, this energy loss varies with

the lepton’s pT. As a result, we observe slightly increasing slopes towards the higher values in the ratio of

the m`` and pT distributions. Since this effect is corrected in ATLAS during electron reconstruction [71],

we didn’t consider it any further. Instead, we verified that deactivating “lepton showering” in Pythia leads

to symmetric truth datasets, as displayed in Figure 57 (more distributions are shown in appendix D.1,

Figure 113).

5.4.3 Symmetry in reconstructed data

The first step towards probing the symmetry within the reconstructed data is to measure the efficiencies

introduced by the detector simulation. Since we have access to the truth data, the lepton efficiencies are

measured directly from the ratio of reconstructed over truth distributions.

Following our experience using ATLAS data, our first attempt was to measure separate efficiency maps for

electrons and muons and for leading and subleading leptons, parameterized in the lepton’s pT and ⌘. But
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this method led to significant residual asymmetries related to how the Iso constraint is applied in Delphes.

We found this becomes minor when using dilepton efficiencies instead. Such an effect hasn’t been observed

within ATLAS MC data. Therefore, the efficiencies that we use for the efficiency correction are dilepton

efficiencies, with separate maps for the ee, µµ, eµ and µe datasets, parameterized as a function of p
`0
T

, ⌘`0 ,

p
`1
T

, and ⌘`1 . The efficiency correction is applied event-by-event following the description in section 3.3.3,

using the efficiency-ratio CFs.

The ee vs. µµ and eµ vs. µe reconstructed distributions after efficiency correction show very similar results

than with the truth distributions, as is shown in Figure 58 (more distributions are displayed in appendix D.1,

Figure 115). The same asymmetry caused by the energy loss via bremsstrahlung is present. An additional

asymmetry can be seen around the Z peak in the ee vs. µµ comparison due to the smearing applied in

Delphes to simulate lepton momentum resolution. In contrast, the same comparison using the datasets

with “lepton showering” deactivated leads to more symmetric distributions, as is shown in Figure 59 (more

distributions are displayed in appendix D.1, Figure 115). Still, the asymmetry due to momentum resolution

is unaffected. A possible method to account for this effect could be applying the electron pT smearing to

the muons and vice-versa, but this hasn’t been attempted.

5.4.4 Discussion

In this study, we reproduced all the steps required to obtain efficiency-corrected datasets within our

simulation framework: event generation, detection simulation, measurement of efficiencies, and efficiency

correction. Such datasets can be used in a symmetry-based DDP implementation.

Both the eµ vs. µe and ee vs. µµ comparisons are inspected, demonstrating that the e/µ-symmetry method

can be applied to generic searches in different selections.

We identified two sources of asymmetries not efficiency-related: lepton energy loss via bremsstrahlung and

lepton momentum resolution. Depending on the selection, these could also affect the symmetry between

measured datasets and should be corrected to permit a meaningful DDP implementation. To this end, in

the following section, we present a generic method to account for any asymmetry provided it is accurately

modeled within the MC samples.
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Figure 56: Comparison of ee vs. µµ (left) and eµ vs. µe (right) truth datasets (more distributions are displayed in

Figure 113).
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Figure 57: Comparison of ee vs. µµ (left) and eµ vs. µe (right) truth datasets with “lepton showering” deactivated

(more distributions are displayed in Figure 114).
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Figure 58: Comparison of ee vs. µµ (left) and eµ vs. µe (right) reconstructed datasets after the efficiency-based

correction is applied to ee or eµ (more distributions are displayed in Figure 115).
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Figure 59: Comparison of ee vs. µµ (left) and eµ vs. µe (right) reconstructed datasets with “lepton showering”

deactivated after the efficiency-based correction is applied to ee or eµ (more distributions are displayed in Figure 116).

115



5.5 Generic symmetry restoration

In this section, we present a different approach to restore the symmetry between two datasets, based

on the method introduced in the Higgs LFV example study at the beginning of section 3.3.3. It relies

on MC simulation but can also be applied efficiently to the measured data. In addition, it accounts for

any asymmetry accurately modeled in MC. Being generic and efficient, it can be especially useful in a

symmetry-based DDP implementation that aims to scan many different selections, searching for hints of

BSM physics.

This alternative method for symmetry restoration between two datasets is described in section 5.5.1. In

section 5.5.2, we implement it using the standalone MC samples, comparing datasets with various leptonic

final states after correction. In section 5.5.3, based on the ATLAS Run-2 datasets from the Higgs LFV

search, we compare this approach to the efficiency-based correction method implemented in the analysis.

A discussion of the results is given in section 5.5.4.

5.5.1 Description

We describe this method in the context of the e/µ-symmetry method. Let us consider the e- and µ-datasets

introduced in section 3.3. They are expected to be symmetric at interaction point but include some

efficiency-induced asymmetry at detection level. To restore the symmetry, we scale the e-dataset to the

µ-dataset by applying the event-by-event efficiency-ratio CF:

R✏ =
✏µ

✏e
(71)

Up to now, R✏ is determined by estimating the ✏e and ✏µ efficiencies separately. We propose to estimate it

from the ratio of µ- over e-dataset event distributions (Nµ/Ne) instead. Indeed, based on the symmetry

assumption, if N0 is the number of events at interaction point, then Ne = ✏e · N0 and Nµ = ✏µ · N0, leading

to the equalities:
Ne

✏e
=

Nµ

✏µ
,
✏µ

✏e
=

Nµ

Ne

(72)

This approach can be challenging with measured data due to the presence of fake and potential signal

events. The solution considered is to measure R✏ from MC and use the SFs provided by the distinct ATLAS

performance groups to obtain CFs applicable to data distributions. Since ✏data
= SF · ✏MC, this is described

by:

R✏ =
✏data
µ

✏data
e

=

SFµ · N
MC
µ

SFe · N
MC
e

(73)

To implement this, we derive R✏ correction maps from the ratio of n-dimensional SF-scaled MC distributions,

where n is the number of variables chosen to parametrize the correction. The correction is then applied

event-by-event directly using the values obtained from this map as CFs.

In the following, we sometimes refer to this approach as the MC distribution-based correction, compared

to the efficiency-based correction previously implemented.

The main advantage of this method is its simplicity. Indeed, estimating efficiencies – which can vary

depending on the selection – is no longer necessary. In contrast, SFs are much more stable (as discussed in

section 4.3.4). Without much effort, dedicated maps for different selections can be derived with varying
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parametrizations if needed. Another advantage is that all asymmetries accurately modeled in MC can be

corrected using this method, even if they aren’t efficiency-related. This is illustrated in section 5.5.2.

On the other hand, this approach relies on MC, rendering the intended data-driven analysis method

simulation-dependent. But even with the efficiency-based method implemented in the Higgs LFV analysis,

electron efficiencies are measured from MC (see section 4.4). And since we use a ratio of MC distributions,

we can expect semi-cancellations of potential mismodelings. The main limitation comes from the amount

of MC statistics available. If too low, it limits the number of parametrizations that can be included in the

correction, rendering it imprecise. If confronted with this scenario, a careful choice of the binning can help

to some degree, or additional MC samples could be requested.

Finally, this approach does not necessarily replace the efficiency-based method used up to now. Indeed, a

hybrid implementation can be envisioned. For example, one can use the muon and trigger efficiencies

provided by the ATLAS performance groups in combination with this approach to correct the residual

asymmetry related to electron efficiencies. In the context of the eµ vs. µe comparison, we illustrate this

when correcting the eµ dataset. We first derive the MC-based correction map with muon and trigger

efficiency correction applied to the eµ events:

R✏e,map =

SFµe · N
MC
µe

✏data
µ0
·✏data
tr ig,µe

✏data
µ1
·✏data
tr ig,eµ

· SFeµ · N
MC
eµ

(74)

Similarly, this can be implemented as follows:

R✏e,map =

✏data
µ1
· ✏data

trig,eµ
· SFµe · N

MC
µe

✏data
µ0
· ✏data

trig,µe
· SFeµ · N

MC
eµ

(75)

In this ratio, the numerator (denominator) is the n-dimensional MC distribution of the µe (eµ) dataset

scaled event-by-event with various factors. The resulting R✏e,map map only accounts for differences related to

electron efficiencies since the muon and trigger efficiency corrections are applied. To correct the measured

eµ data, the following CF is applied event-by-event:

R✏CF =

✏data
µ0
· ✏data

trig,µe

✏data
µ1
· ✏data

trig,eµ

· R✏e,CF (76)

where the R✏
e,CF

CF is obtained from the R✏e,map map derived in (74) or (75).

5.5.2 Implementation in standalone MC samples

We implement this alternative symmetry-restoration approach to the standalone MC samples described in

section 5.4, particularly to the reconstructed data with “lepton shower” activated. In this context, no data

samples are available; therefore, no SFs are applied. Instead, we verify the level of restored symmetry

within the same datasets used to generate the CF maps. This approach is compared to the efficiency-based

method implemented in section 5.4.3.
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ee vs. µµ

In this example, we first derive a 2D CF map parametrized in (p
`0
T

vs. p
`1
T

) from the ratio of µµ

over ee distributions. For simplicity, we didn’t include any ⌘ dependency. As a result, we don’t expect the

lepton ⌘ distributions to be symmetric after correction. Still, we expect the symmetry to be restored in the

other distributions, such as |∆⌘`` |. A specific bin-merging algorithm (that can be improved) is applied to

adapt the size of the CF bins to the available statistics: for candidate bin sizes ranging from 2 ⇥ 2 - 40 ⇥ 40

GeV, we select, in each sub-region of the map, the CF value from the smallest bin in which both the µµ and

ee datasets have a relative statistical uncertainty smaller than 110�1/2 (meaning at least 110 events since no

event weights are applied in these samples). The resulting map is shown in Figure 60(a).
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Figure 60: CF maps derived from the ratio of the µµ over ee (p
`0
T

vs. p
`1
T

) (a) and (m`` vs. p
`1
T

) (b) distributions.

We apply the derived CFs event-by-event to the ee dataset and review the level of restored symmetry. As

seen in appendix D.2, Figure 117, although the lepton pT distributions agree well, the asymmetry caused

by the lepton energy loss via bremsstrahlung and the momentum resolution isn’t completely resolved in

other distributions such as m`` or |∆⌘`` |.

In a second attempt, we include m`` in the parametrization of the CFs. This choice is motivated by the fact

that the m`` distribution is the most sensitive to effects such as pT resolution or lepton energy loss and that

the dilepton system is characteristic of the event’s topology in Drell-Yan processes. To this end, we derive a

3D CF map parametrized in (m`` vs. p
`0
T

vs. p
`1
T

) from the ratio of µµ over ee distributions, using the same

method as before, except that the bins are now cubic instead of square. To illustrate the m`` dependency of

the resulting CFs, Figure 60(b) displays a similar map but obtained from the 2D (m`` vs. p
`1
T

) distributions

instead. Distinctive features are observed around the Z peak at m`` = 90 GeV, which correspond to the

fluctuations due to pT resolution and lepton energy loss.

Using the CFs from the 3D map results in a significantly improved agreement, shown in appendix D.2,

Figure 118, especially for the m`` distribution that is now symmetric. But asymmetries appeared in the

higher range of the leptons’ pT distributions (pT > 80 ⇠ 100 GeV), which we attribute to an imprecise

correction due to the reduced statistics in these regions.

To address this issue, we attempt a correction that uses CFs from the 3D (m`` vs. p
`0
T

vs. p
`1
T

) map for events

with p
`0
T
< 90 GeV and CFs from the 2D (p

`0
T

vs. p
`1
T

) map for events with p
`0
T
> 90 GeV. The threshold

value (90 GeV) is chosen empirically from observing the residual asymmetries previously noticed and
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doesn’t have any special motivation otherwise. In this case, the symmetry is precisely restored in all the

distributions considered (except for the lepton ⌘ distributions), as is shown in Figure 63.

In summary, in this example, the symmetry is well restored using this approach. The asymmetries from

different sources (efficiencies, momentum resolution, and energy loss) are effectively and simultaneously

corrected. In comparison, the efficiency-based correction applied in Figure 58 results in significant residual

asymmetry. Another advantage of this method is the flexibility to choose the parametrization of the

correction to address any residual asymmetry.

eµ vs. µe

Similarly, in this example, we derive CF maps with the same method and parametrizations as in

the previous case but from the ratio of µe over eµ distributions. These are shown in Figure 61.
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Figure 61: CF maps derived from the ratio of the µe over eµ (p
`0
T

vs. p
`1
T

) (a) and (m`` vs. p
`1
T

) (b) distributions.

In this case, already with the 2D (p
`0
T

vs. p
`1
T

) correction, good agreement is achieved for almost all

distributions (excluding the lepton ⌘ distributions), as shown in appendix D.2, Figure 119. In the |∆⌘`` |

distribution, some small asymmetry (< 10%) is present in a few bins, although it is also generally symmetric.

Including ⌘ parametrizations in the CF map could potentially resolve this asymmetry.

With the same correction strategy implemented in the ee vs. µµ example (using CFs from the 3D

(m`` vs. p
`0
T

vs. p
`1
T

) map for events with p
`0
T
< 90 GeV and CFs from the 2D (p

`0
T

vs. p
`1
T

) map for events

with p
`0
T
> 90 GeV) the symmetry is improved further although the differences are small compared to the

statistical fluctuations. Still, some improvement in the m`` and |∆⌘`` | distributions is visible, as seen in

Figure 64.

eτhad vs. µτhad

We also consider the case of e⌧had vs. µ⌧had. Here, only one light lepton is present per event, and

we don’t expect asymmetries related to the hadronic ⌧ since it is present in both datasets. As a result, only

single-lepton corrections are needed, simplifying the correction’s parametrization. In the following, the

subscript 0 (1) indicates the light lepton (⌧had).
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We derive a 2D CF map parametrized in (⌘`0 vs. p
`0
T

) (of the light lepton) from the ratio of µ⌧had over e⌧had

distributions. The method used is the same as in the previous examples but with candidate bin sizes in the

⌘-axis ranging from 0.02 - 1. The resulting CF map is shown in Figure 62(a). After applying the correction

to the e⌧had dataset, the symmetry is well restored, as is shown in Figure 65.
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Figure 62: (a) CF map derived from the ratio of the µ⌧had over e⌧had (⌘`0 vs. p
`0
T

) distributions of the light leptons. (b)

CF map derived from the ratio of the e�µ+ over e+µ� (p
`0
T

vs. p
`1
T

) distributions.

e+µ− vs. e−µ+

Finally, we consider the case of e+µ� vs. e�µ+. These two datasets only differ by the charge of

the two leptons. Since Delphes doesn’t simulate charge-dependent efficiencies or momentum smearing,

and lepton energy loss is charge-independent, we expect the two datasets to be symmetric, even without

correction. Still, we apply the same procedure as in the other examples. In the following, the subscript 0 (1)

indicates the leading (subleading) lepton, even though it can be an electron or a muon in both datasets.

We derive a 2D CF map parametrized in (p
`0
T

vs. p
`1
T

) from the ratio of e�µ+ over e+µ� distributions, which

is shown in Figure 62(b). As seen in Figure 66, the two datasets are symmetric in all distributions, even

without correction. Applying the correction to the e+µ� dataset slightly improves the overall agreement.
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Figure 63: Comparison of the ee vs. µµ reconstructed datasets after the mixed (m`` vs. p
`0
T

vs. p
`1
T

) and (p
`0
T

vs. p
`1
T

)

MC distribution-based correction is applied to ee.
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Figure 64: Comparison of the eµ vs. µe reconstructed datasets after the mixed (m`` vs. p
`0
T

vs. p
`1
T

) and (p
`0
T

vs. p
`1
T

)

MC distribution-based correction is applied to eµ.
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Figure 65: Comparison of the e⌧had vs. µ⌧had reconstructed datasets after the (⌘`0 vs. p
`0
T

) MC distribution-based

correction is applied to e⌧had. The subscript 0 (1) indicates the light lepton (⌧had).
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Figure 66: Comparison of the e+µ� vs. e�µ+ reconstructed datasets after the (p
`0
T

vs. p
`1
T

) MC distribution-based

correction is applied to e+µ�. In the legend, eµ stands for e+µ� and µe for e�µ+.
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5.5.3 Implementation in ATLAS Run-2 samples

In this section, we evaluate the alternative approach for symmetry restoration using the ATLAS Run-2 data

(measured and simulated) that was used in the Higgs LFV analysis presented in section 4 (see section 4.1

for a description of the samples). In addition, we use the same object reconstruction (section 4.2), event

classification (section 4.3.2), event selection (section 4.3.3), fake estimate (section 4.5), and background

combination strategy (section 4.3.5). Only the obtention of the efficiency-CFs is different (section 4.3.4)

even though the way they are applied remains unchanged.

In this manner, we can compare this approach to the efficiency-based method implemented in the analysis11.

To this end, we compare the resulting symmetry after correction between the e⌧µ and µ⌧e datasets based

on the MC samples (section 4.6.1) and the measured data samples (section 4.6.3). Following the analysis

strategy, this comparison is made separately in the VBF and non-VBF SRs.

To derive the CF maps, we use truth-matched prompt e⌧µ and µ⌧e events from the SM MC sample (Z ! ⌧⌧,
tt̄, single top-quark, diboson, H ! ⌧⌧ and H ! WW ), which pass the baseline selection requirements.

Separate maps are generated for the VBF and non-VBF SRs. In addition, two distinct parametrizations are

considered:

• p
`0
T

vs. p
`1
T

• p
`H
T

vs. p
`⌧
T

As a reminder, `H (`⌧) is the leading (subleading) lepton in the Higgs estimated rest frame (see section 4.3.2).

Therefore, in the (p
`H
T

vs. p
`⌧
T

) case, events with switched lepton pT ordering in the Higgs and laboratory

frame contribute to separate regions of the CF map than the other events. The goal is to better model the

correction for these events if their topology is special in some way.

The CF maps are derived from the ratio of the µ⌧ over e⌧ distributions. To produce CFs applicable to data

events, all the usual SFs are applied to the MC distributions, as described in (73). The same bin-merging

strategy used in section 5.5.2 is also implemented here, except that the relative statistical uncertainty

threshold is lowered in the VBF SR from 110�1/2 to 40�1/2 due to lower MC statistics. The resulting CF

maps are shown in Figure 67. We compare the e⌧ and µ⌧ datasets after applying the CFs event-by-event to

e⌧ (the same CFs are used in MC and data since the MC events are weighted by their usual SFs).

The resulting distributions of the SM MC sample (data vs. background predictions) when using the

(p
`0
T

vs. p
`1
T

) maps in the non-VBF and VBF SRs are shown in appendix D.3, Figures 120 (122) and 121

(123), respectively. The resulting distributions of the SM MC sample (data vs. background predictions)

when using the (p
`H
T

vs. p
`⌧
T

) maps in the non-VBF and VBF SRs are shown in appendix D.3, Figures 124

(126) and 125 (127), respectively.

Excluding the lepton ⌘ distributions, this alternative approach successfully restores the expected symmetry

in all the samples, selections, and distributions considered. As a general trend, compared to the efficiency-

based correction, the modeling achieved is improved in regions with high statistics but can be slightly worse

in regions with fewer events. Similarly, the (p
`H
T

vs. p
`⌧
T

) correction is more precise than with (p
`0
T

vs. p
`1
T

),

provided there are enough statistics. As such:

11 This alternative symmetry-restoration approach was developed when the analysis was nearly complete; therefore, implementing

it in the analysis hasn’t been considered
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Figure 67: CF maps derived from the ratio of µ⌧ over e⌧ SM MC distributions with the (p
`0
T

vs. p
`1
T

) or (p
`H
T

vs. p
`⌧
T

)

parametrizations and in the non-VBF or VBF SRs.

• With MC data in the non-VBF SR, the MC distribution-based correction performs better than the

efficiency-based one for all distributions. However, in some specific regions, the modeling is worse,

e.g., lower range of mT(`0, E
miss
T

) and ∆�(``). The agreement is better with (p
`H
T

vs. p
`⌧
T

) than

(p
`0
T

vs. p
`1
T

), especially in the lepton pT distributions

• With MC data in the VBF SR, the modeling is also generally improved with the new approach,

except for the lower range of mT(`0, E
miss
T

) once again. Using (p
`0
T

vs. p
`1
T

) or (p
`H
T

vs. p
`⌧
T

) maps

leads to similar results on average, with some distributions more symmetric with the first (e.g., p
`H
T

)

and others with the second (e.g., p
`⌧
T

)

• With measured data in the non-VBF SR, the agreement is very similar with all methods, with

differences at the level of the uncertainties, although p
`⌧
T

is noticeably improved with the alternative

approach

• With measured data in the VBF SR, the agreement is also similar with all methods and difficult to

compare due to the large fluctuations. Excluding the lepton pT distributions, the efficiency-based

correction performs slightly better on average
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Finally, we also implemented the hybrid approach proposed at the end of section 5.5.1, where we apply

muon and trigger efficiency-based corrections and rely on the MC distribution-based correction to account

for the residual electron efficiency-related asymmetry. Following the description in (75), we derive the CF

maps from the MC distributions scaled by the “switched” muon and trigger efficiencies (✏µ1 · ✏ trig,eµ for µe

events and ✏µ0 · ✏ trig,µe for eµ events). These are shown in Figure 68 with the (p
`H
T

vs. p
`⌧
T

) parametrization.

As expected, the CFs are closer to unity in this case.
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Figure 68: CF maps derived from the µ⌧ over e⌧ SM MC distributions scaled by their “switched” muon+trigger

efficiencies in the non-VBF or VBF SRs.

To restore the symmetry between e⌧ and µ⌧, the e⌧ dataset is corrected event-by-event with the product

of the muon+trigger efficiency-ratio times the CFs from the maps just derived, as described in (76). The

resulting distributions of the SM MC sample (data vs. background predictions) in the non-VBF and VBF

SRs are shown in Figures 69 (71) and 70 (72), respectively.

Also here the symmetry is restored successfully in the different samples and selections. Compared to the

standalone MC distribution-based correction, the modelling is improved in many distributions and similar

in the others, excepting the lepton pT ones where it performs slightly worse on average.
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Figure 69: Comparison of e⌧ (dark blue) and µ⌧ (red) SM MC datasets in the non-VBF selection after the (p
`H
T

vs. p
`⌧
T

)

hybrid correction is applied to e⌧. The uncorrected e⌧ dataset is also displayed (light blue).
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Figure 70: Comparison of e⌧ (dark blue) and µ⌧ (red) SM MC datasets in the VBF SR after the (p
`H
T

vs. p
`⌧
T

) hybrid

correction is applied to e⌧. The uncorrected e⌧ dataset is also displayed (light blue).
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Figure 71: Comparison of the e⌧-based predicted background and µ⌧ data in the non-VBF SR when the (p
`H
T

vs. p
`⌧
T

)

hybrid correction is used to derive the symmetric background. Only statistical uncertainties are displayed.
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Figure 72: Comparison of the e⌧-based predicted background and µ⌧ data in the VBF SR when the (p
`H
T

vs. p
`⌧
T

)

hybrid correction is used to derive the symmetric background. Only statistical uncertainties are displayed.
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5.5.4 Discussion

In this section, we considered an alternative approach to restore the symmetry between two datasets.

Relying on MC distributions and their associated SFs, it provides a generic and simplified method to

account for any source of asymmetry accurately modeled in MC, in particular efficiency differences between

the compared datasets.

Implemented with the standalone MC samples, it successfully restores the expected symmetry between

datasets with various dilepton final states: ee vs. µµ, eµ vs. µe, e⌧had vs. µ⌧had and e+µ� vs. e�µ+. This

illustrates to some degree the range of selections that can be probed for NP in a symmetry-based DDP

implementation, although many more selections can be considered. Using this correction approach, we

effectively accounted for the different sources of asymmetry present in the simulated samples: lepton

efficiencies, energy loss, and momentum resolution. Depending on the datasets, different parametrizations

were considered to improve the modeling.

Based on the ATLAS Run-2 samples from the Higgs LFV search, the performance of this approach is

compared to the efficiency-based correction applied in the analysis. With only a 2D parametrization as a

function of the leptons’ pT, the overall performance is improved in MC and similar in data. Adding more

parameters to the correction, such as the lepton ⌘ or �, could further improve the agreement since small

residual asymmetries are present in some MC distributions.

A hybrid implementation which combined the muon+trigger efficiency-based correction and the MC

distribution-based correction was also conducted. This improved the modeling in many distributions,

leading to the best average performance among all the implementations considered.
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6 Conclusions

Searching for hints of BSM physics is the main goal of the LHC experiments at CERN. Thus far, clear

indications of deviations from SM predictions have yet to be uncovered. With most signatures predicted

by well-motivated SM extensions (within the current LHC reach) already searched for, there is no clear

guidance as to which searches should be conducted in the future. Yet, the amount of recorded data

is the greatest ever accumulated and is largely unexplored. With limited resources at hand, novel and

complementary approaches for discovery should be considered. This is the purpose of the proposed DDP;

letting the data itself guide us towards its regions of interest, significantly enhancing our potential for

discovery.

Symmetries of the SM can be exploited for this endeavor; by splitting the data into two datasets expected

symmetric under the SM-only assumption, we become sensitive to any asymmetric contribution from

potential BSM processes. This can be exploited to scan large portions of the observables space, efficiently

uncovering regions more likely to include non-SM contributions. Such regions would be marked for further

study using traditional data analysis methods. The research presented in this thesis aims at laying the

groundwork for such implementations.

In this context, the e/µ-symmetry method is developed, which exploits the approximate symmetry between

electrons and muons in SM processes to search for BSM physics. This data-driven analysis method was

first used in the ATLAS Run-1 search for Higgs LFV decays. Since then, significant improvements have

been achieved. In particular, a simplified statistical model implementation was developed. As a result,

the efficiency correction – which accounts for the asymmetry induced by the different electron and muon

efficiencies – is now applied event-by-event. This approach enables restoring the expected SM symmetry

with much higher precision. In addition, the SR is not split into separate channels, leading to reduced

statistical uncertainties on the background estimate. With these improvements, the analysis sensitivity is

enhanced, and its application range is broadened.

One of the main efforts presented in this thesis is the application of the e/µ-symmetry method to the

ATLAS Run-2 search for Higgs LFV decays based on a 138.42 fb�1 dataset of pp collisions at
p

s = 13

TeV. LFC is an accidental symmetry of the SM that is violated in nature via neutrino oscillation, but

evidence of LFV has yet to be uncovered within LHC experiments. Two distinct searches were conducted

in collaboration with other ATLAS members, the searches for H ! e⌧ and H ! µ⌧. The main challenges,

shared among the analyzers, included estimating the lepton efficiencies, developing the efficiency correction

procedure, the data-driven estimation of the fake background, implementing a dedicated NN for signal

enhancement, and conducting the statistical analysis itself. The final results are combined results of this

analysis with two other MC-based searches for the same signals. Some tension with the SM assumption

was observed at the level of 2.5�, while no evidence for the H ! e⌧ signal was found. Upper limits on the

BRs were set at 95% CL: 0.230% (0.192%) for H ! e⌧ and 0.163% (0.182%) for H ! µ⌧ when the two

searches were conducted independently (simultaneously).

The successful completion of the direct searches for Higgs LFV decays is an important endorsement of the

data-driven e/µ-symmetry method. It shows that systematic effects induced at detection level, such as the

different lepton efficiencies, can be effectively corrected and that the expected SM symmetry can be restored,

in this case, between the eµ (e⌧µ) and µe (µ⌧e) datasets. In addition, the achieved sensitivity is comparable

to that of more traditional analysis techniques. However, these searches still follow the blind-analysis

paradigm where only a specific signal is searched for in a small theoretically motivated sub-region of the

observables space. In terms of the DDP proposed, no specific signal is searched for. Instead, the full eµ
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and µe datasets are compared, and any significant asymmetry observed is considered a potential sign for

BSM physics. Hence the eµ/µe comparison becomes a general test for LU. Furthermore, any two datasets

with a switched number of electrons and muons in their final state can similarly be compared, each sensitive

to different BSM manifestations. And other SM symmetries, exact or approximate, can also be tested using

a similar approach.

Implementing such data-directed and generic searches based on symmetries of the SM is still at an initial

stage. To demonstrate proof of concept, a procedure was developed in a simplified framework: identifying

asymmetries between two measurements, represented by 2D histograms, using the generic N� test statistic.

Relying on simulated data and neglecting, for now, systematic detector effects, we show that with little

optimization, the sensitivity to detect asymmetries using this generic test is only slightly lower than that of

optimal likelihood-based tests that have full knowledge of the signal. This approach has the advantage of

being extremely fast, and the generalization to n-dimensional histograms is straightforward, enabling to

efficiently scan large portions of the observables space for hints of BSM physics. Another approach that

relies on weakly-supervised NNs, implemented by a collaborator, is also presented, paving the way towards

NN implementations for the symmetry-based DDP. These studies, reported in [1], were developed on a

practical case – the search for Higgs LFV decays, constructed from standalone MC data generated using

dedicated software.

The procedure employed to generate these simulated samples is described. Making use of this simulated

data, additional studies were conducted towards implementing the e/µ-symmetry method in datasets with

various dilepton final states: ee vs. µµ, eµ vs. µe, e⌧had vs. µ⌧had and e+µ� vs. e�µ+. We identified

two sources of asymmetries not efficiency-related: lepton energy loss via bremsstrahlung and lepton

momentum resolution. These mainly affected the ee vs. µµ symmetry and couldn’t be resolved using the

efficiency-based correction.

An alternative approach for symmetry restoration was then developed. Relying on MC simulation and its

associated SFs, it provides a generic and simple method to account for any source of asymmetry accurately

modeled in MC. Using this approach, the symmetry was successfully restored between the various datasets

considered, accounting for all the different sources of asymmetry simultaneously. Implemented in the

ATLAS Run-2 samples from the Higgs LFV search, the level of restored symmetry was improved in MC

and similar in data, although in specific regions with low statistics, the efficiency-based correction was

more precise. Being generic and efficient, this method can be especially useful in a symmetry-based DDP

implementation. In addition, a hybrid implementation which led to the best average performance was

conducted, with each approach a distinct component of the correction.

In the right hand, we hold a generic test to identify asymmetries, and in the left hand, a doublet of efficient

methods to restore the expected SM symmetry. Determining how they couple, by taking into account, with

the right hand, uncertainties associated with the corrections from the left hand, is the next necessary step

towards setting up data-directed searches for BSM physics based on symmetries of the SM, which

may lead to unpredicted discoveries.
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Appendices

A ATLAS Higgs LFV search - supplementary electron efficiency

measurements

The studies presented here complement the discussion in section 4.4.

This section presents the following supplementary electron MC efficiencies measurements:

• Comparison of efficiencies from DAOD_EGAM1 Z/�⇤ ! ee samples to reference values obtained

from the EGamma performance group (appendix A.1)

• Comparison of leading and subleading electron efficiencies from DAOD_EGAM1 Z/�⇤ ! ee

samples (appendix A.2)

• Comparison of efficiencies from DAOD_EGAM1 Z/�⇤ ! ee samples to those from DAOD_TOPQ1

used in our analysis (appendix A.3)

• Electron MC efficiency measurements – and validation of the efficiency correction in MC – in

alternative selections (appendix A.4)

In the following, we refer to efficiencies we measure from DAOD_EGAM1 Z/�⇤ ! ee samples as Zee

efficiencies and to efficiencies used for our analysis as LFV efficiencies.

A.1 Zee efficiencies compared to reference values

We compare our Zee efficiency measurements to reference values from the EGamma performance group.

The measurements performed by EGamma are described in [71]. The method used to perform our

measurements is described in section 4.4.1.

We list here some comments relevant to all the plots shown in this section:

• We don’t provide efficiency values in the crack region (1.37 < |⌘ | < 1.52)

• Only pT bins up to 150 GeV are shown since the binning can vary from map to map in higher ranges

• Only statistical uncertainties are included in our Zee efficiency measurements

• The uncertainties on the reference values correspond to the TOTAL systematic uncertainty model

• We use newer datasets (p4323) for our measurements than those used for the reference values (p3918),

and the AnalysisRelease is also probably different

• We use Medium Id electrons as tags instead of Tight Id for the reference nominal values

• Not all mc campaigns are shown per working point depending on whether we obtained the relevant

reference values or not

• For mc16d Reco efficiencies and Id efficiencies measured with the Zmass method, the reference

values are, in fact, measured from mc16c samples with the 2017 pileup profile
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These can explain the residual disagreements observed between our Zee measurements and the reference

values.

Reconstruction efficiencies

As detailed in section 4.4.1, the Reco efficiencies include in the denominator all reconstructed clusters in

the EMCal, which are truth-matched to electrons, while only those that are reconstructed as electrons and

pass the TrackQuality criteria are included in the denominator.

Figure 73 compares our Zee Reco efficiencies and the reference values. Although our measurements tend

to be slightly (up to 1%) higher, the disagreement is within uncertainties.

Figure 73: Comparison of our Zee Reco efficiencies with reference values from EGamma for mc campaigns mc16a

and mc16d.

Identification efficiencies

For Id efficiencies, the denominator is filled with reconstructed electron probes, while only those which

pass the Medium Id requirement are included in the denominator. For mc16d, reference values from both

the Zmass and the Ziso measurement methods are shown.

Figure 74 compares our Zee Id efficiencies and the reference values. Although our measurements tend to

be slightly (up to 1.5%) lower in the lower pT range, the disagreement is almost always within uncertainties.

Isolation efficiencies

For Iso efficiencies, the denominator is filled with Medium Id electron probes, while only those which pass

the Gradient Iso requirement are included in the denominator.

Figure 75 compares our Zee Id efficiencies and the reference values. We see that the agreement is always

within uncertainties.
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Figure 74: Comparison of our Zee Id efficiencies with reference values from EGamma for mc campaigns mc16a,

mc16d, and mc16e.

A.2 Zee leading vs. subleading electron efficiencies

In section 4.4.3, Figure 17, we showed that the electron efficiencies measured for our analysis could differ

whether the electron probes used in the measurement are the leading or subleading leptons in the event.

Here we repeat this comparison using this time the Zee efficiencies.

Figure 76 compares the Zee efficiency measurements for leading or subleading electron probes per working

point. The plots shown use combined data-taking years and |⌘ | bins. We can see that here as well,

significant differences are observed, especially in the lower pT range, with leading electron efficiencies

values up to 5% higher for the combined (Reco*Id*Iso) electron efficiencies. The difference originates

mainly from the Iso constraint but is also observed when requiring Id. On the other hand, the Reco

efficiencies agree.

A.3 LFV vs. Zee electron efficiencies

As detailed in section 4.3.4, the electron efficiencies are not provided by EGamma since they were found

to depend strongly on the kinematic selection and not only on the properties of the electrons. Here we

compare our LFV to Zee efficiencies in order to show the differences observed in the measured values.

Figures 77-80 compare the LFV and Zee efficiencies for the different working points separately for leading

and subleading electron probes. As expected, the values generally differ beyond uncertainties, with a value
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Figure 75: Comparison of our Zee Iso efficiencies with reference values from EGamma for mc campaigns mc16a,

mc16d, and mc16e.

difference of up to 4-5% in specific bins for the combined electron efficiencies, mainly in the pT < 25 GeV

and pT > 45 GeV ranges.
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Figure 76: Comparison of Zee efficiencies between leading and subleading electron probes for the Reco, Id, Iso, and

combined efficiency working points.
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Figure 77: Comparison of LFV vs. Zee electron Reco efficiencies for leading and subleading electron probes.

Figure 78: Comparison of LFV vs. Zee electron Id efficiencies for leading and subleading electron probes.
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Figure 79: Comparison of LFV vs. Zee electron Iso efficiencies for leading and subleading electron probes.

Figure 80: Comparison of LFV vs. Zee electron combined efficiencies for leading and subleading electron probes.
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A.4 Alternative selections

Here we describe the measurements of electron MC efficiencies – and efficiency correction validation in

MC – when applying two additional selection cuts d0sig.(e) < 5 and 0.2 < ptrack
T
/pcluster

T
(e) < 1.25. In the

following, we refer to these two cuts as d05 and ptr cuts, respectively.

As described in section 4.4.1, the electron MC efficiencies are measured based on NTuples produced from

TOPQ1 derivations. But due to missing information in our TOPQ1-based NTuples, we can’t apply there

the ptr cut. Rather than reproducing the NTuples, we decided to measure the ptr efficiencies from the

HIGG4D1-based NTuples, which we combine with the TOPQ1-based efficiencies. In addition, we validate

this step by comparing efficiencies from TOPQ1 and HIGG4D1 at the electron working points that can

be determined in both. We summarize the strategy used here based on the working points defined in

section 4.4.1:

• Reco/Clus efficiency - Biased in HIGG4D1; use TOPQ1

• Base/Reco efficiency - Biased in HIGG4D1; use TOPQ1

• Id/Base efficiency - Compare HIGG4D1 vs. TOPQ1; use TOPQ1

• Iso/Id efficiency - Compare HIGG4D1 vs. TOPQ1; use TOPQ1

• d05/Iso efficiency - Compare HIGG4D1 vs. TOPQ1; use TOPQ1

• ptr/Iso or ptr/d05 efficiency - Missing in TOPQ1; use HIGG4D1

We stress that there is a difference in the efficiency measurements from the HIGG4D1 vs. TOPQ1-based

NTuples. As detailed in sections 4.4.3 and 4.4.4, our TOPQ1-based efficiencies use both electron and

muon tagged events, and we use the difference observed when using electron and muon tags to derive the

tag-flavor systematic uncertainty on the measurement. But the HIGG4D1-based NTuples only include

events with 1 electron and 1 muon, so only muon tags can be considered. As a result, the tag-flavor

systematic uncertainty is based on the d05/Clus efficiencies instead of the ptr/Clus efficiencies (but the

selection systematic uncertainty is correctly based on the ptr/Clus efficiencies). We decided to neglect this

as we expect it to be a small effect; indeed, the electron MC efficiency systematics aren’t ranked high in the

fits.

Figure 81 shows the impact of the d05 and ptr cuts on the efficiencies (using signal electrons that pass the

baseline selection in the denominator). We see that the d05 cut’s impact is always under 10% and largest in

the lower pT range and the barrel region. The ptr cut affects mainly electrons in the endcap region, with an

impact rising with pT to almost 30%.

Figures 82 and 83 compare the measured efficiencies from TOPQ1 vs. HIGG4D1 for the working-points

Id/Base, Iso/Id, and d05/Iso. Although the samples are different, which is made evident by the differences

in statistical uncertainties, we still find good agreement between the two. There is a larger disagreement in

the last pT bin of the leading Id/Base efficiencies, but statistics are low, which isn’t observed in the other

working points. Therefore this validates that we can use the d05/Clus efficiencies from TOPQ1 combined

with the ptr/d05 efficiencies from HIGG4D1.

In Figure 84, we show the overall efficiencies when applying both the d05 and ptr cuts, including the

envelopes corresponding to the combined tag-flavor and selection systematic uncertainties.
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Figure 81: Electron MC efficiencies when applying the d05, ptr , and d05+ ptr cuts to signal (Iso) electrons. The top

is for subleading, and the bottom is for leading electrons. The |⌘ | bin efficiencies are displayed within each pT bin.

In practice, depending on the alternative selection considered and the event, we need to apply either the ptr

cut, the d05 cut, or both or none. So we also derived efficiency maps when only one of the cuts is applied

and need to choose, per event, the corresponding map.

Similarly to section 4.6.1, we validate the efficiencies for the alternative selections by applying the efficiency

correction to the SM MC sample with the corresponding selection and investigating the resulting symmetry

between the e⌧ and µ⌧ channels. Figure 85 shows this comparison for the case where the d05 cut is applied

to the Higgs leptons, and the ptr cut is applied to the subleading electrons. The symmetry is successfully

restored, agreeing within statistical uncertainties in most bins.
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Figure 82: Comparing electron MC efficiencies measured from TOPQ1 and HIGG4D1 (labeled as xtau). We show in

order subleading and leading electron Id/Base efficiencies, then subleading and leading electron Iso/Id efficiencies.

The |⌘ | bin efficiencies are displayed within each pT bin.
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Figure 83: Same as above but for subleading and leading electron d05/Iso efficiencies.

Figure 84: Electron MC efficiency measurements used for the alternative selection. Nominal values and statistical

errors are in red, and upward and downward systematic variations are in blue and black. The top is for subleading,

and the bottom is for leading electrons. The |⌘ | bin efficiencies are displayed within each pT bin.
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Figure 85: Comparison of efficiency-corrected e⌧ (red) over µ⌧ (blue) events in the SM MC sample for the

pT(`H ), pT(`⌧ ),mT(`H, E
miss
T

),mT(`⌧, E
miss
T

),∆�(``) and Mcoll distributions. The uncorrected e⌧ channel is also

displayed (green).
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B ATLAS Higgs LFV search - pre-fit symmetrization and smoothing

The studies presented here complement the discussion in section 4.9.1.

We compare fit results using different symmetrization and smoothing algorithms introduced in section 4.9.1.

A description of the obtention of the results, the different inputs used, and the methods implemented to

evaluate the fit performance is given in section 2.6.

In section B.1, we compare the following setups:

• MaxCorrect symmetrization and Parabolic smoothing (label maxsym)

• MeanCorrect symmetrization and Parabolic smoothing (label meansym)

The first setup was used in an older version of the analysis fits (labeled here as v0.3), while the second setup

(labeled here as v0.4) was chosen for the obtention of final results. The difference lies in the symmetrization

method, applied only to two-sided kinematic systematics, where either the mean or max value of |up| and

|down| is used in both directions (see section 4.9.1 for more details). The main motivation for this change is

that MaxCorrect seems to slightly overestimate the uncertainties in some cases. In contrast, the TwoSided

symmetrization (considered in section B.2) seems to slightly underestimate them in some cases.

In section B.2, we compare our previous (v0.3) setup to the one used by our partner MC-based analysis (true

at the time this study was completed). The MC-based symmetrization, applied to all systematics (kinematics

and weights), uses TwoSided ((up-down)/2) for Jet, Muon, and Tau systematics; and MaxCorrect for the

others but is applied only on bins that have up and down variations in the same direction. The MC-based

smoothing method uses the MaxVariation algorithm. Explicitly, the setups compared are:

• MaxCorrect symmetrization and Parabolic smoothing (label symSym_smoSym - our v0.3 default)

• MaxCorrect symmetrization without smoothing (label symSym_smoNo)

• MaxCorrect symmetrization and MaxVariation smoothing (label symSym_smoMC)

• MC-based symmetrization and Parabolic smoothing (label symMC_smoSym)

• MC-based symmetrization and MaxVariation smoothing (label symMC_smoMC)

The comparison is made based on standalone fits of the Symmetry-based analysis. In B.1, only results with

Asimov fits are shown; in B.2, mainly results with the mixed fits are shown. For each comparison, a few

nuisance parameter envelope plots are displayed, selected based on two criteria:

• Choose nuisance parameters that have the largest difference of impact on POI between setups

• For each selected nuisance parameter, choose SR and sample envelopes that show the largest

differences, based on a reduced chi-square test
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B.1 MaxCorrect vs. MeanCorrect symmetrization

Towards comparing the Asimov fits conducted with the two symmetrization options considered (MaxCorrect

and MeanCorrect), Figure 86 shows the ranking of nuisance parameters in both cases, Figure 87 shows the

pulls and constraints on the nuisance parameters, and Figures 88 and 89 show selected nuisance parameter

envelopes. Table 22 displays the expected sensitivities.

Differences in the ranking and the constraints are minimal. Small differences are visible in the envelopes

where the MeanCorrect symmetrization gives slightly less conservative uncertainties than the MaxCorrect

symmetrization – as expected by construction. The effect on the expected sensitivities is small but in

the direction of a slight improvement for MeanCorrect – again, as expected by the definition of this

symmetrization option. The MeanCorrection symmetrization option for the nuisance parameters thus

performs as intended and is therefore chosen for the final fit setup.

maxsym meansym

e⌧ limit/% 0.193+0.077
�0.054

0.189+0.075
�0.053

e⌧ signif. 8.471 8.686

µ⌧ limit/% 0.190+0.075
�0.053

0.188+0.074
�0.053

µ⌧ signif. 9.016 9.107

Table 22: Expected sensitivities comparing maxsym and meansym for the Asimov fit. The significance is given when

assuming BR = 1%.
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(a) maxsym — H ! e⌧ (b) meansym — H ! e⌧

(c) maxsym — H ! µ⌧ (d) meansym — H ! µ⌧

Figure 86: Ranking of the nuisance parameters comparing the maxsym and meansym setups.
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(a) H ! e⌧ (b) H ! µ⌧

Figure 87: Pulls of the nuisance parameters comparing the maxsym and meansym setups.
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(a) maxsym - NP1 (b) maxsym - NP2 (c) maxsym - NP3

(d) meansym - NP1 (e) meansym - NP2 (f) meansym - NP3

(g) maxsym - NP4 (h) maxsym - NP5 (i) maxsym - NP6

(j) meansym - NP4 (k) meansym - NP5 (l) meansym - NP6

Figure 88: Selected envelope plots comparing maxsym and meansym H ! e⌧ Asimov fits, ordered by decreasing

differences of the impact on the POI.
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(a) maxsym - NP1 (b) maxsym - NP2 (c) maxsym - NP3

(d) meansym - NP1 (e) meansym - NP2 (f) meansym - NP3

(g) maxsym - NP4 (h) maxsym - NP5 (i) maxsym - NP6

(j) meansym - NP4 (k) meansym - NP5 (l) meansym - NP6

Figure 89: Selected envelope plots comparing maxsym and meansym H ! µ⌧ Asimov fits, ordered by decreasing

differences of the impact on the POI.
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B.2 MC-based vs. Sym-based setups

This study is based on the previous (v0.3) setup, so it cannot be directly compared to the study above. In

particular, the VBF selection still uses m j j > 300GeV as a requirement, and the electron SFs between

MC and efficiency correction are not yet fully correlated. Still, the MaxCorrect setup above, and the

symSym_smoSym here, use the same symmetrization and smoothing options.

The nuisance parameter ranking, the pulls, the constraints, and the example nuisance parameter envelopes

are shown in sections B.2.1 without any smoothing, B.2.2 with the MC-based smoothing, B.2.3 with the

MC-based symmetrization, and B.2.4 with both MC-based smoothing and symmetrization. In each case,

the fit is performed with the mixed dataset. The achieved sensitivities with the different symmetrization

and smoothing options are summarized in Table 23 for the Asimov fit and Table 24 for the mixed fit.

symSym_smoSym symSym_smoNo symSym_smoMC symMC_smoSym symMC_smoMC

e⌧ limit/% 0.206+0.082
�0.057

0.201+0.080
�0.056

0.210+0.084
�0.059

0.201+0.081
�0.056

0.207+0.083
�0.058

e⌧ signif. 8.372 8.636 8.227 8.647 8.394

µ⌧ limit/% 0.187+0.073
�0.052

0.187+0.073
�0.052

0.192+0.075
�0.054

0.184+0.072
�0.051

0.190+0.074
�0.053

µ⌧ signif. 8.975 8.955 8.609 9.148 8.698

Table 23: Expected sensitivities comparing the different setups for the Asimov fit. The significance is given when

assuming a 1% BR on the signal.

symSym_smoSym symSym_smoNo symSym_smoMC symMC_smoSym symMC_smoMC

e⌧ limit/% 0.200+0.080
�0.056

0.198+0.079
�0.055

0.207+0.082
�0.058

0.198+0.079
�0.055

0.205+0.081
�0.057

e⌧ signif. 0.968 0.983 0.934 0.977 0.946

µ⌧ limit/% 0.187+0.074
�0.052

0.184+0.072
�0.051

0.192+0.075
�0.054

0.183+0.072
�0.051

0.190+0.074
�0.053

µ⌧ signif. 1.018 1.030 0.991 1.038 1.000

Table 24: Expected sensitivities comparing the different setups for the mixed fit. The significance is given when

assuming a 1% BR on the signal.

The different setups for symmetrization and smoothing show consistent and well-behaving results. The

pulls and the sensitivities are generally similar, and the shifts in the highest-ranked nuisance parameters are

minor. In terms of the symmetrization option, the MaxCorrect is the most conservative, while the TwoSided

sometimes slightly underestimates the uncertainties. The MeanCorrect, considered in section B.1, is meant

to be in the middle. Among the smoothing options tested, MaxVariation is slightly more conservative than

Parabolic.
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B.2.1 No Smoothing

(a) symSym_smoSym — H ! e⌧ (b) symSym_smoNo — H ! e⌧

(c) symSym_smoSym — H ! µ⌧ (d) symSym_smoNo — H ! µ⌧

Figure 90: Ranking of the nuisance parameters comparing the symSym_smoSym and symSym_smoNo setups.
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(a) H ! e⌧ (b) H ! µ⌧

Figure 91: Pulls of the nuisance parameters comparing the symSym_smoSym and symSym_smoNo setups.
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(a) symSym_smoSym - NP1 (b) symSym_smoSym - NP2 (c) symSym_smoSym - NP3

(d) symSym_smoNo - NP1 (e) symSym_smoNo - NP2 (f) symSym_smoNo - NP3

(g) symSym_smoSym - NP4 (h) symSym_smoSym - NP5 (i) symSym_smoSym - NP6

(j) symSym_smoNo - NP4 (k) symSym_smoNo - NP5 (l) symSym_smoNo - NP6

Figure 92: Selected envelope plots comparing symSym_smoSym and symSym_smoNo H ! e⌧ mixed fits, ordered

by decreasing differences of the impact on the POI.
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(a) symSym_smoSym - NP1 (b) symSym_smoSym - NP2 (c) symSym_smoSym - NP3

(d) symSym_smoNo - NP1 (e) symSym_smoNo - NP2 (f) symSym_smoNo - NP3

(g) symSym_smoSym - NP4 (h) symSym_smoSym - NP5 (i) symSym_smoSym - NP6

(j) symSym_smoNo - NP4 (k) symSym_smoNo - NP5 (l) symSym_smoNo - NP6

Figure 93: Selected envelope plots comparing symSym_smoSym and symSym_smoNo H ! µ⌧ mixed fits, ordered

by decreasing differences of the impact on the POI.
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B.2.2 MCBased Smoothing

(a) symSym_smoSym — H ! e⌧ (b) symSym_smoMC — H ! e⌧

(c) symSym_smoSym — H ! µ⌧ (d) symSym_smoMC — H ! µ⌧

Figure 94: Ranking of the nuisance parameters comparing the symSym_smoSym and symSym_smoMC setups.
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(a) H ! e⌧ (b) H ! µ⌧

Figure 95: Pulls of the nuisance parameters comparing the symSym_smoSym and symSym_smoMC setups.

168



(a) symSym_smoSym - NP1 (b) symSym_smoSym - NP2 (c) symSym_smoSym - NP3

(d) symSym_smoMC - NP1 (e) symSym_smoMC - NP2 (f) symSym_smoMC - NP3

(g) symSym_smoSym - NP4 (h) symSym_smoSym - NP5 (i) symSym_smoSym - NP6

(j) symSym_smoMC - NP4 (k) symSym_smoMC - NP5 (l) symSym_smoMC - NP6

Figure 96: Selected envelope plots comparing symSym_smoSym and symSym_smoMC H ! e⌧ mixed fits, ordered

by decreasing differences of the impact on the POI.
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(a) symSym_smoSym - NP1 (b) symSym_smoSym - NP2 (c) symSym_smoSym - NP3

(d) symSym_smoMC - NP1 (e) symSym_smoMC - NP2 (f) symSym_smoMC - NP3

(g) symSym_smoSym - NP4 (h) symSym_smoSym - NP5 (i) symSym_smoSym - NP6

(j) symSym_smoMC - NP4 (k) symSym_smoMC - NP5 (l) symSym_smoMC - NP6

Figure 97: Selected envelope plots comparing symSym_smoSym and symSym_smoMC H ! µ⌧ mixed fits, ordered

by decreasing differences of the impact on the POI.
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B.2.3 MCBased Symmetrization

(a) symSym_smoSym — H ! e⌧ (b) symMC_smoSym — H ! e⌧

(c) symSym_smoSym — H ! µ⌧ (d) symMC_smoSym — H ! µ⌧

Figure 98: Ranking of the nuisance parameters comparing the symSym_smoSym and symMC_smoSym setups.
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(a) H ! e⌧ (b) H ! µ⌧

Figure 99: Pulls of the nuisance parameters comparing the symSym_smoSym and symMC_smoSym setups.
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(a) symSym_smoSym - NP1 (b) symSym_smoSym - NP2 (c) symSym_smoSym - NP3

(d) symMC_smoSym - NP1 (e) symMC_smoSym - NP2 (f) symMC_smoSym - NP3

(g) symSym_smoSym - NP4 (h) symSym_smoSym - NP5 (i) symSym_smoSym - NP6

(j) symMC_smoSym - NP4 (k) symMC_smoSym - NP5 (l) symMC_smoSym - NP6

Figure 100: Selected envelope plots comparing symSym_smoSym and symMC_smoSym H ! e⌧ mixed fits, ordered

by decreasing differences of the impact on the POI.

173



(a) symSym_smoSym - NP1 (b) symSym_smoSym - NP2 (c) symSym_smoSym - NP3

(d) symMC_smoSym - NP1 (e) symMC_smoSym - NP2 (f) symMC_smoSym - NP3

(g) symSym_smoSym - NP4 (h) symSym_smoSym - NP5 (i) symSym_smoSym - NP6

(j) symMC_smoSym - NP4 (k) symMC_smoSym - NP5 (l) symMC_smoSym - NP6

Figure 101: Selected envelope plots comparing symSym_smoSym and symMC_smoSym H ! µ⌧ mixed fits,

ordered by decreasing differences of the impact on the POI.
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B.2.4 MCBased Symmetrization and Smoothing

(a) symSym_smoSym — H ! e⌧ (b) symMC_smoMC — H ! e⌧

(c) symSym_smoSym — H ! µ⌧ (d) symMC_smoMC — H ! µ⌧

Figure 102: Ranking of the nuisance parameters comparing the symSym_smoSym and symMC_smoMC setups.
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(a) H ! e⌧ (b) H ! µ⌧

Figure 103: Pulls of the nuisance parameters comparing the symSym_smoSym and symMC_smoMC setups.
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(a) symSym_smoSym - NP1 (b) symSym_smoSym - NP2 (c) symSym_smoSym - NP3

(d) symMC_smoMC - NP1 (e) symMC_smoMC - NP2 (f) symMC_smoMC - NP3

(g) symSym_smoSym - NP4 (h) symSym_smoSym - NP5 (i) symSym_smoSym - NP6

(j) symMC_smoMC - NP4 (k) symMC_smoMC - NP5 (l) symMC_smoMC - NP6

Figure 104: Selected envelope plots comparing symSym_smoSym and symMC_smoMC H ! e⌧ mixed fits, ordered

by decreasing differences of the impact on the POI.
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(a) symSym_smoSym - NP1 (b) symSym_smoSym - NP2 (c) symSym_smoSym - NP3

(d) symMC_smoMC - NP1 (e) symMC_smoMC - NP2 (f) symMC_smoMC - NP3

(g) symSym_smoSym - NP4 (h) symSym_smoSym - NP5 (i) symSym_smoSym - NP6

(j) symMC_smoMC - NP4 (k) symMC_smoMC - NP5 (l) symMC_smoMC - NP6

Figure 105: Selected envelope plots comparing symSym_smoSym and symMC_smoMC H ! µ⌧ mixed fits, ordered

by decreasing differences of the impact on the POI.
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C ATLAS Higgs LFV search - blind fit results

The studies presented here complement the discussion in section 4.9.2.

This section presents the Run2 Higgs LFV analysis fit results using the blinded datasets – Asimov and

mixed. As a reminder, the blinded datasets are used to evaluate the statistical model and fit’s performance

prior to unblinding the data in the sensitive regions for the obtention of the final analysis results. Expected

results are also derived from the Asimov datasets, although those displayed in section 4.9.2 use a modified

Asimov dataset built with the post-fit (unblinded) predictions, while the Asimov dataset used here is pre-fit.

A description of the obtention of the results, the different inputs used, and the methods implemented to

evaluate the fit performance is given in section 2.6.

Results for the H ! e⌧µ and H ! µ⌧e searches with the Asimov dataset are described in section C.1 and

with the mixed dataset in section C.2.

C.1 Fit results with the Asimov dataset

As a reminder, the Asimov dataset is constructed as the sum of the background prediction and the signal

times a fixed signal strength µs
inj

. We set µs
inj
= 1 for the obtention of expected significance and µs

inj
= 0 for

the expected limit. The signals are normalized to 1% BR.

The Asimov fit results were already presented in appendix B.1 (under the label MeanCorrect or “meansym”)

in the context of comparing different symmetrization algorithms. We refer to these results when needed;

only complementary results are displayed here.

The post-fit NN output distributions are shown in Figure 106, where the blinded bins are marked with

a gray hashed area. In the plots, the black dots represent the actual data shown for illustrative purposes,

although it is not used in the fit.

Pulls and constraints on the nuisance parameters are shown in Figure 87 for the systematic uncertainties

and Figure 107 for the �-parameters. Their correlations are shown in Figure 108. Since the prediction is

used instead of the data, there is no pull of the nuisance parameters’ nominal values, but constraints and

correlations appear, reducing their uncertainties. As in the unblinded fit, the only noticeable constraint is

for “El. Fake CF sys”, and the largest correlation is between “El. Fake CF sys” and “Mu. Fake CF sys”.

The nuisance parameter impact ranking is shown in Figure 86, and the ranking per uncertainty group (the

same groups defined in section 4.9.2) in Tables 25 and 26. The impact from systematics related to MC

simulation – in particular jets, Emiss
T

, and signal theory – is much higher than in the unblinded fit since here,

the signal contribution is much larger (µs = 1).
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Figure 106: Post-fit NN output distributions of the H ! e⌧µ (left) and H ! µ⌧e signals (right) in the non-VBF (top)

and VBF (bottom) categories. Statistic and systematic uncertainties are included. The BR of the signal is normalized

to 1%.
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Figure 107: Pulls on the �-parameters in the H ! e⌧µ (left) and H ! µ⌧e (right) Asimov fits.
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Figure 108: Correlations of the nuisance parameters in H ! e⌧µ (left) and H ! µ⌧e (right) Asimov fits. Only

nuisance parameters with correlations above/below +/ � 20% are shown.

Group Impact on unc. of µ

Full unc. +0.136 �0.128

Data unc. +0.058 �0.058

Prediction unc. +0.123 �0.113

Gammas +0.076 �0.073

BTag +0.003 �0.003

JETMET +0.068 �0.057

Lepton +0.017 �0.014

Lumi +0.020 �0.016

SigTheory +0.044 �0.035

Fakes + Eff. Corr. +0.057 �0.053

Table 25: Impact of the different uncertainty groups

on the uncertainty of the signal strength µ in the

H ! e⌧µ Asimov fit.

Group Impact on unc. of µ

Full unc. +0.101 �0.099

Data unc. +0.056 �0.055

Prediction unc. +0.084 �0.083

Gammas +0.067 �0.068

BTag +0.001 �0.000

JETMET +0.020 �0.018

Lepton +0.018 �0.016

Lumi +0.005 �0.002

SigTheory +0.013 �0.004

Fakes + Eff. Corr. +0.053 �0.051

Table 26: Impact of the different uncertainty groups

on the uncertainty of the signal strength µ in the

H ! µ⌧e Asimov fit.
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The expected significances and limits are shown in Table 27 separately for the non-VBF, VBF, and combined

non-VBF + VBF categories.

non-VBF+VBF non-VBF VBF

e⌧ limit/% 0.189+0.075
�0.053

0.230+0.092
�0.064

0.338+0.139
�0.095

e⌧ signif. 8.685 7.787 3.977

µ⌧ limit/% 0.188+0.074
�0.053

0.214+0.084
�0.060

0.404+0.164
�0.113

µ⌧ signif. 9.107 8.258 3.812

Table 27: Expected sensitivities. The significance is given for assuming BR = 1%.

C.2 Fit results with the mixed dataset

The mixed dataset includes the data in the non-blinded bins (see Figure 106). The blinded bins include

Asimov dataset yields but modified with post-fit background yields from a background-only fit in the

non-blinded bins.

The nuisance parameter correlations are shown in Figure 109, and their pulls and constraints in Figure 110

(Figure 111) for the H ! e⌧µ (H ! µ⌧e) search. Except for the pulls, these are similar to the Asimov

fit results. The pulls are similar to those observed in the unblinded fits – all under or very close to 1� –

except for the �-parameters in the blinded bins, which are strongly pulled after unblinding but not here.

The nuisance parameter impact ranking is shown in Figure 112, similar to the ranking observed with the

Asimov fits. Overall, the fits with the mixed datasets show very reasonable results. The measured best-fit

signal strengths are µse⌧ = 0.87 ± 0.98 and µsµ⌧ = 0.93 ± 0.96 for the H ! e⌧µ and H ! µ⌧e searches,

respectively, in line with the signal injected in the input datasets (µs
inj
= 1).
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Figure 109: Correlations of the nuisance parameters in the H ! e⌧µ (left) and H ! µ⌧e (right) mixed fits. Only

nuisance parameters with correlations above/below +/ � 20% are shown.
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Figure 110: Pulls and constraints of the nuisance parameters in the H ! e⌧µ mixed fit. The dots indicate , and the

lines represent the constraints. The green band indicates the 1� band relative to the pre-fit values.
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Figure 111: Pulls and constraints of the nuisance parameters in the H ! µ⌧e mixed fit. The dots indicate the pulls,

and the lines represent the constraints. The green band indicates the 1� band relative to the pre-fit values.
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Figure 112: The ranking of the nuisance parameters in the search in the H ! e⌧µ (left) and H ! µ⌧e (right) mixed

fits. The postfit impact is indicated by the filled bars, while the pre-fit impact is indicated by the empty bars. In

addition, the pulls are indicated by the black dots, and the black lines show the constraints.
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D Symmetry DDP - supplementary kinematic distributions

In this section, we provide additional kinematic distribution comparisons, probing the restored symmetry

after efficiency correction in various selections and with the different methods presented in sections 5.4

and 5.5.

D.1 Standalone MC simulated samples - efficiency-based correction

The following figures are referred to in sections 5.4.2 and 5.4.3.

• Figure 113 complements the comparison of the truth datasets (see Figure 56)

• Figure 114 complements the comparison of the truth datasets with “lepton showering” deactivated in

Pythia (see Figure 57)

• Figure 115 complements the comparison of the reconstructed datasets after the efficiency-based

correction (see Figure 58)

• Figure 116 complements the comparison of the reconstructed datasets with “lepton showering”

deactivated in Pythia after the efficiency-based correction (see Figure 59)

D.2 Standalone MC simulated samples - MC distribution-based correction

The following figures are referred to in section 5.5.3.

• Figure 117 compares the ee vs. µµ reconstructed datasets after the (p
`0
T

vs. p
`1
T

) MC distribution-based

correction (see section 5.5.2, Figure 63)

• Figure 118 compares the ee vs. µµ reconstructed datasets after the (m`` vs. p
`0
T

vs. p
`1
T

) MC

distribution-based correction (see section 5.5.2, Figure 63)

• Figure 119 compares the eµ vs. µe reconstructed datasets after the (p
`0
T

vs. p
`1
T

) MC distribution-based

correction (see section 5.5.2, Figure 64)

D.3 ATLAS Run-2 Higgs LFV samples - MC distribution-based correction

The following figures are referred to in section 5.5.3.

• Figures 120 and 121 compare the e⌧ and µ⌧ SM MC datasets after the (p
`0
T

vs. p
`1
T

) MC distribution-

based correction in the non-VBF and VBF SRs, respectively.

• Figures 122 and 123 compare the e⌧-based predicted background and µ⌧ data when the (p
`0
T

vs. p
`1
T

)

MC distribution-based correction is used to derive the symmetric background in the non-VBF and

VBF SRs, respectively.

• Figures 124 and 125 compare the e⌧ and µ⌧ SM MC datasets after the (p
`H
T

vs. p
`⌧
T

) MC distribution-

based correction in the non-VBF and VBF SRs, respectively.

• Figures 126 and 127 compare the e⌧-based predicted background and µ⌧ data when the (p
`H
T

vs. p
`⌧
T

)

MC distribution-based correction is used to derive the symmetric background in the non-VBF and

VBF SRs, respectively.
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Figure 113: Comparison of ee vs. µµ (left) and eµ vs. µe (right) truth datasets (more distributions are displayed in

Figure 56).

187



Figure 114: Comparison of ee vs. µµ (left) and eµ vs. µe (right) truth datasets with “lepton showering” deactivated

(more distributions are displayed in Figure 56).
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Figure 115: Comparison of ee vs. µµ (left) and eµ vs. µe (right) reconstructed datasets after the efficiency-based

correction is applied to ee or eµ (more distributions are displayed in Figure 58).
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Figure 116: Comparison of ee vs. µµ (left) and eµ vs. µe (right) reconstructed datasets with “lepton showering”

deactivated after the efficiency-based correction is applied to ee or eµ (more distributions are displayed in Figure 58).
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Figure 117: Comparison of the ee vs. µµ reconstructed datasets after the (p
`0
T

vs. p
`1
T

) MC distribution-based correction

is applied to ee.
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Figure 118: Comparison of the ee vs. µµ reconstructed datasets after the (m`` vs. p
`0
T

vs. p
`1
T

) MC distribution-based

correction is applied to ee.
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Figure 119: Comparison of the eµ vs. µe reconstructed datasets after the (p
`0
T

vs. p
`1
T

) MC distribution-based correction

is applied to eµ.
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Figure 120: Comparison of e⌧ (dark blue) and µ⌧ (red) SM MC datasets in the non-VBF SR after the (p
`0
T

vs. p
`1
T

)

MC distribution-based correction is applied to e⌧. The uncorrected e⌧ dataset is also displayed (light blue).
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Figure 121: Comparison of e⌧ (dark blue) and µ⌧ (red) SM MC datasets in the VBF SR after the (p
`0
T

vs. p
`1
T

) MC

distribution-based correction is applied to e⌧. The uncorrected e⌧ dataset is also displayed (light blue).
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Figure 122: Comparison of the e⌧-based predicted background and µ⌧ data in the non-VBF SR when the (p
`0
T

vs. p
`1
T

)

MC distribution-based correction is used to derive the symmetric background. Only statistical uncertainties are

displayed.
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Figure 123: Comparison of the e⌧-based predicted background and µ⌧ data in the VBF SR when the (p
`0
T

vs. p
`1
T

) MC

distribution-based correction is used to derive the symmetric background. Only statistical uncertainties are displayed.
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Figure 124: Comparison of e⌧ (dark blue) and µ⌧ (red) SM MC datasets in the non-VBF selection after the

(p
`H
T

vs. p
`⌧
T

) MC distribution-based correction is applied to e⌧. The uncorrected e⌧ dataset is also displayed (light

blue).
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Figure 125: Comparison of e⌧ (dark blue) and µ⌧ (red) SM MC datasets in the VBF SR after the (p
`H
T

vs. p
`⌧
T

) MC

distribution-based correction is applied to e⌧. The uncorrected e⌧ dataset is also displayed (light blue).
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Figure 126: Comparison of the e⌧-based predicted background and µ⌧ data in the non-VBF SR when the (p
`H
T

vs. p
`⌧
T

)

MC distribution-based correction is used to derive the symmetric background. Only statistical uncertainties are

displayed.
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Figure 127: Comparison of the e⌧-based predicted background and µ⌧ data in the VBF SR when the (p
`H
T

vs. p
`⌧
T

)

MC distribution-based correction is used to derive the symmetric background. Only statistical uncertainties are

displayed.
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