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We do not have the ability to perform precise calculations of long-range
strong interaction effects, because the effective QCD coupling is not small
and so we cannot use perturbation theory. Nevertheless, I will show that
we know a lot, though not nearly enough. As a measure of our lack of
knowledge, the best prediction for the total cross-section at LHC energy is:
oMHC =125 + 25 mb.

PACS numbers: 12.40.Nn, 13.85.—t, 13.60.—r

1. Regge theory

This article is about the long-range strong interaction at high energy.
Much of what I know about this subject comes from my long collaboration
with Sandy Donnachie. A few years ago together with colleagues from the
Heidelberg University we wrote a book about it [1]. Most of the material in
this paper is taken from the book, and references to papers and data may
be found in it.

Because we do not have the ability to perform precise calculations of
long-range strong interaction effects, much of what we know comes from
looking at experimental data, and so this paper contains rather more data
plots than equations. In order to use what understanding we have of the
theory and apply it to the data, we have to introduce extra assumptions.
I will show that, often, making the simplest possible assumptions turns out
to be very successful.

The basic theory is known as Regge theory. It relates together a large
number of different reactions. Among those that I will discuss are:

e hadron—hadron total cross-section,

e hadron—hadron elastic scattering,
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e diffraction dissociation,
e photon and lepton induced reactions.

I will show that we know a lot, but of course not nearly enough. As a
measure of our lack of knowledge, the best prediction for the total cross-
section at LHC energy is:

oHC — 125 £ 25 mb.

By this I mean that 15 years ago I would have predicted 100 mb with some
confidence, and it is still quite likely that this will prove to be correct. But
a value as large as 150 mb is also quite possible.

Let us have a short glance at the history of strong interactions that finally
led to Regge theory:

e 1935: Yukawa predicted the existence of the pion — its exchange gen-
erates the static strong interaction,

_

I
I
I
Fig. 1. Graphical representation of one pion exchange.

e 1960s: Nearly everybody worked on the applications of Regge theory,
which sums the exchanges of many particles and generates the high-
energy strong interaction.

e The known particles not are enough — we need to include exchange
of another object, the Pomeron.

e 1970s: QCD is discovered — the BFKL equation generates Pomeron
exchange as gluon exchange, but it makes total cross-section rise with
energy much faster than is observed.

e Barly 1990s: HERA finds a sharp rise of Fy(z, Q?) at small =, appar-
ently described by BFKL Pomeron exchange.

e So there are two Pomerons: soft (nonperturbative) and hard (pertur-
bative).

e Late 1990s: Higher-order perturbative corrections to BFKL exchange
spoil the calculation — this problem is not yet solved, and we do not
know whether the hard Pomeron is related to the BFKL equation.
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The mathematics to study Pomeron exchange is sophisticated and similar
to that used to study diffraction in optics, and it leads to elastic scattering
differential cross-section reminiscent of optical diffraction (see Fig. 2):
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do/dt
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Fig. 2. Elastic a« scattering at 126 GeV CM energy.

But “diffractive” processes in particle physics are more complicated than in
optics.

The main ingredient of Regge theory is a concept of Regge trajectory.
Regge trajectory describes a set of physical particles whose spins (J) are
proportional to their squared masses (m? = t). In Fig. 3 we show 4 degen-
erate families of particles: J = a(t) ~ % 4 0.9 t. The particles in square
brackets are listed in the data tables, but there is some uncertainty about
whether they exist. The function a(t) is called a Regge trajectory.
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Fig. 3. Plot of spins of families of particles against their squared masses.
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Regge theory sums the exchanges of many particles, this is schematically
depicted in Fig. 4.

Fig. 4. Kinematics of Regge exchange.
Define

s = (P + P2)2 = squared CM energy ,

t = (Ps— P1)2 = squared momentum transfer .

At large s but [t| < s each trajectory ali (t) contributes to the amplitude

aF (-1
At~ T AT (-t (0) (120 0) (2] (1)
7
with + according to the C-parity of the exchange. We know nothing about
the function 57 (t), except that it is real. I'(—a; (t)) has a pole when o (t)
is a negative integer, but the signature factor (1 £ e—imai (t)) vanishes when
o (t) is odd/even. The signature factor is the only factor that is not real.
The mathematical formalism that is used to derive this high-energy be-
haviour of a scattering amplitude was developed by Watson and Sommer-
feld in the middle of the 19th century. It starts with the partial-wave series
for the amplitude, which is a sum over orbital angular momentum values
£=0,1,2,.... This sum is converted into an integral over ¢, which becomes
a continuous complex variable. So the partial-wave amplitude ay(s) becomes
a function a(¢, s) and it has singularities in the complex-¢ plane. It turns out
that a trajectory «(t) corresponds to a simple pole at £ = a(t). As I have
indicated, a Regge pole at this point in the complex-£ plane contributes
a power s*®~1 to the high-energy behaviour of the physical amplitude.
Unfortunately, we know that simple poles are not the only singularities
of ag(s). It also has branch points, and we do not know enough about these
additional singularities to use them to make well-defined calculations. It is
this difficulty that brought to a halt the intense activity in Regge theory in
the 1960s, and it has still not been solved. I will discuss it in Section 8.
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2. Total cross-section: Fits and theoretical bounds

Optical theorem relates amplitude (1) to the total cross-section:
oTOT(s) =Im A(s,t = 0). (2)
So each trajectory contributes a fixed power

1
sa(O)—l -3

~ 8 for p,w, fo,as  trajectories.

Experiment finds that total cross-sections rise gently at large s. So if this
is caused by a Regge pole we need another trajectory with «(0) a little > 1.
We call this the soft Pomeron trajectory. Probably it corresponds to the
exchange of glueballs, though we cannot be sure because the experimental
study of the glueball spectrum is so very difficult.

Fits to total cross-section using Eqs. (1), (2) are presented in Fig. 5.
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Fig.5. Fits to total cross-sections for pp, pp and 7+p scattering.

A few remarks are here in order:

e We need a Pomeron trajectory with ap(0) = 1.08. It couples equally
to particles and their antiparticles.

e Note the significant discrepancy between the two Tevatron measure-
ments (last two high energy points on the left panel in Fig. 5).

e Note also that the Pomeron’s coupling to the pion is about 2/3 that
to the nucleon (quark counting rule).

It is remarkable that such a simple fit works well all the way from such
low energy to very high energies. At the lower-energy end of the plots, very
little can be produced in the final state, just a very few pions. But as the
energy increases, we cross thresholds for the production of charm, jets and
much else. The total cross-section, however, is completely smooth and seems
to be unaware of these thresholds.
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When Donnachie and I first made these fits to total cross-section, the
higher-energy data from the CERN collider and the Tevatron were not avail-
able, but our predictions based on Regge theory were successful.

The magnitude of the Pomeron’s contribution to the Kp cross-section
shown in Fig. 6 is a little less than to the 7p: the coupling of the Pomeron
to a strange quark is about 70% of that to the light quarks. The Pomeron’s
coupling to the pn and pn amplitudes (see again Fig. 6) is the same as to
pp and pp: it has the quantum numbers of the vacuum (like the fs).
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Fig. 6. Fits to total cross-sections for K*p, pn and pn scattering.

Before the HERA measurements of the vp total cross-section, predictions
for its value differed very widely. But the prediction from Regge theory
depicted in Fig. 7 proved to be successful.
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Fig. 7. Fit to total cross-section for yp scattering.

It is, however, well known that the power-like behaviour of the total
cross-sections is incompatible with the Froissart—f.ukaszuk—Martin bound
which says that at very large s

oTOT () < % log? <i> (3)

™ 50
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for some unknown sg — probably of the order of 1 GeV?. At LHC energy,
this gives 0 TOT < 4.3 barns. So the bound has little to do with physics!
Note that the proof depends on the partial-wave unitarity equation:

2

ﬁﬁuz :CEX

Im ag(s) = |ag(s)|?> + inelastic terms

so that
lae(s)| < 1.

Therefore the bound applies only to hadron—hadron scattering.
Nevertheless, there is a wide belief that it applies also to photon and
lepton-induced processes. To derive the bound for these processes, one has
to use models or physical intuition. But it is far from certain that this is
reliable under the extreme conditions that will operate at very high energies.
In principle, the photoproduction cross-section might become very large
at high energy, and Fy(z, @?) might become very large at small x.
A more stringent constraint follows from an obvious inequality:

O_ELASTIC O_TOTAL )

<

In fact, unitarity can be used to show that even

O,ELASTIC O,TOTAL ) (4)

1
<3

This is the Pumplin Bound.
Because Pomeron exchange alone gives

g TOTAL g e ~ 0.08,
and
do ELASTIC L
dt t=0

it violates the bound (4) at large s.

3. t dependence of high energy processes

Let us consider elastic scattering and assume that the Pomeron trajec-
tory is linear (like p,w, fa2, as):

ap(t) =ep + apt. (5)
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Fig. 8. Pomeron coupling to the separate quarks in a hadron.

As T pointed out in Section 2, total cross-section data suggest the quark
counting rule: the Pomeron seems to couple to the separate quarks in
a hadron with a v* coupling (as expected if Pomeron exchange is two-gluon
exchange):

AL (s,t) ~ B}P(t)(ﬂﬂ“m)(ﬂﬂuuQ)e_%im’P(t) (aéps)ap(t)—l‘ (6)

The two-gluon-exchange model would make (p(t) essentially constant:
Br(t) = 512,3. For coupling to nucleons, we need isosinglet (sum of pro-
ton and neutron) C' = + Dirac and Pauli form factors Fy(t) and Fy(t).
Assume they are the same as for C' = — photon exchange (this is unlikely
to be quite right!). Then Fy(¢) is very small (at t = 0 it is the sum of the
anomalous magnetic moments of the proton and neutron, 1.79-1.9). This
means Pomeron exchange does not flip the nucleon helicity, which is found
to be true. So

do _ [38pFi(t)]"

dt a7
where p and €p are known from ¢ TOT. Therefore the only free parameter is
o/p. One can fix o/ from the very-low-t¢ data at some energy, say /s =53 GeV
shown in Fig. 9. This gives o = 0.25 GeV 2.

(ps)2reiet), (7)
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Fig.9. do/dt for small t.
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Then the formula (7) works well out to larger ¢ at the same energy, as it
is shown in Fig. 10. It also fits well to pp and pp elastic scattering data at
all other available energies. Because Fj(t) is raised to the power 4 in the
formula, this gives a good test that it is the correct form factor, but why
this should be so is not understood.

Note that the curves do not include photon exchange, which contributes
significantly at very small ¢.
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Fig. 10. do/dt for larger range of ¢.

Because formula (7) contains the factor exp(2a/tlog(a’s)), the contribu-
tion of Pomeron exchange to the forward peak in do/dt becomes steeper as
the energy increases. This is shown in Fig. 11.

Note again the discrepancy between the data from the two Tevatron
experiments.

do
— H =2
dt 100 “Fnze_1800 GeV
(mb GeV~2) ey
10 ¢
1 | | |
0 0.05 0.1 0.15 0.2
|t]

Fig.11. Shrinkage of the forward peak.
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We have now almost all ingredients to predict 7p elastic scattering. The
form factor Fi(t) is raised to the power 4 in the pp-scattering formula because
the Pomeron couples to each of the two protons, so that [Fy(t)]? appears in
the amplitude, and one has to square the amplitude to get do/dt. Fy(t) is
multiplied by 3 because, according to the quark counting rule, the Pomeron
couples to single quarks in the proton and there are three of them. If we
want to extend the formula to 7p scattering, we must replace [3Fy (t)]* with
[3F1(1)]? [2Fx(t)])?, where Fy(t) is the elastic form factor of the pion. This
has been measured and is shown in Fig. 12. We can plot now elastic cross-
section for mp scattering (at /s = 19.4 GeV). The curve (shown in Fig. 13)
has no free parameters!

Fﬂ.(t) 1r w
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05 ¢

et

. R .
0.3

0 02 04 06 08 1
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Fig. 12. Elastic form factor of the pion.

do/dt 10 ¢
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Fig. 13. Elastic cross-section for 7p scattering (at /s = 19.4 GeV).
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We can repeat analogous steps in the case of exclusive p photoproduction.
To calculate the amplitude for vp — pp, we shall use vector dominance and
assume the p behaves like the pion. The result is shown in Fig. 14. Again this
calculation contains no free parameters! Note that both Pomeron exchange
and vector-meson exchange are included in this calculation.

100 f:-.

do/dt L
(/Lb G6V72) h >

0l Tl .

0 01 02 03 04 05
[t] (GeV?)

Fig. 14. Exclusive p photoproduction at W = 71.7 and 94 GeV from ZEUS.

Now we shall turn to pp elastic scattering at large t. For |t| greater than
about 3 Gev?, the data are consistent with being energy-independent and
fit well to a simple power of ¢:

do _8

— =0.09t7°. 8
7 0.09 (8)
This behaviour, illustrated in Fig. 15, is what is calculated from triple-gluon

exchange shown in Fig. 16.
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Fig. 15. pp elastic scattering at large ¢ for different energies.
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N

Fig. 16. Three gluon exchange in pp elastic scattering.

It is not understood why this simple mechanism, with no higher-order
perturbative QCD corrections and fixed couplings ag, should be what is
needed. Note, though, that if the proton wave function is such that on aver-
age its momentum is shared equally among the three quarks, the momentum
transfer carried by each gluon is only ¢/9 and so is quite small.

As I will explain, the data for Fp(z, Q?) suggest that there exists a second
Pomeron, the hard Pomeron, with intercept «(0) ~ 1.4. If we replace the
gluons with this, we obtain a contribution that rises sharply with increas-
ing energy. Although it is not seen in existing data, it might well become
dominant at LHC energy, so that the large-t elastic scattering differential
cross-section might be rather large.

Note that triple-gluon exchange is C' = —1 — its contributions to the pp
and pp amplitudes are opposite in sign.

At smaller values of t, the pp elastic scattering data show a striking dip
structure shown in Fig. 17 (the 62 GeV data are multiplied by 10).

do/dt L
(mb GeV~2)
01+ =x
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0.001 b -
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Fig. 17. Shrinking dip in pp elastic scattering.
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It is not simple to construct an amplitude that reproduces these dips.
The phase of the contribution from single-Pomeron exchange is given by the
signature factor, so that at —t ~ 1.4 GeV? its real and imaginary parts are
of similar magnitude. In order to cancel both of these at the same value of t,
additional terms are needed. One of these is almost certainly the exchange
of two Pomerons, but its phase is very different, so at least one other term
is needed. Donnachie and I suggested that this is the triple-gluon-exchange
contribution that is evident at larger values of t.

However, for pp scattering this has the opposite sign, which led us to
predict that for this process the dip should be absent. This was confirmed
in measurements at y/s=53 GeV shown in Fig. 18.

do/dt
(mb GeV~2)

0.0001 ¢ % -

1e-05 \ \ \ \ \
1.1 12 13 14 15 16 1.7

] (GeV?)

Fig.18. do/dt, upper points for pp, lower points for pp. No dip is seen for pp
scattering.

A C = —1 exchange term such as triple-gluon exchange is known as
an odderon exchange term. But there is no sign in the data of odderon
exchange at t = 0.

4. Diffraction dissociation

This is the name given to the process

pp — pX

depicted in Fig. 19, with the final proton loosing only a very small fraction
¢ of its initial momentum (so therefore there is a large rapidity gap).



2076 P.V. LANDSHOFF

p a— U p/

———
X
Fig. 19. Diffractive dissociation in pp scattering.

If we square the amplitude and sum over X we arrive at a diagram shown
in Fig. 20. We need the imaginary part of the big lower bubble (compare the
optical theorem). When its energy My is large we can apply Regge theory
to it and so we get the triple-Regge diagram shown in Fig. 21.

\

P

Fig. 20. Cross-section for the diffractive dissociation.

t=0
Fig. 21. Triple-Regge coupling.
It is not enough just to include the triple Pomeron! A very large number
of terms need to be considered:
PIP PIP foIP Pfy foIP wlP
P f2 P P f2 w

A term (132) contributes to d?c/dt d¢

. a3(0)—1
ff(t)fg(t)fg(O)Géz(t) ei(@(ar(t))—p(az (t)))é“l—al(t)—OQ (t) <_> ., (9)

with
—ima(t) C=+1,
—in(a(t)—1) C=-1.
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Using a combination of terms, it is not difficult to get good fits to re-
stricted sets of data. An example is shown in Fig. 22.

100

10

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Fig.22. Data at —t = 0.25 GeV? plotted against & from two experiments at the
CERN ISR at /s from 23 to 38 GeV, with a simple triple-Regge fit.

However, there are other data which are much more difficult to accom-
modate, for example the fixed-target data shown in Fig. 23.

0 o /s =16 GeV
TAdE o Vs =24 GeV
¢ =0.04
1
20 -
0 +
t
10 L ‘ ‘ ‘
0.04 0.08 0.12 0.16 0.2
It| (GeV?)

Fig. 23. Fixed target data.

Notice two characteristics of these data: the cross-section decreases as
the energy increases, and while a simple exponential in ¢ fits well to the three
highest-t values at each energy, it fails to describe the lowest-t points.
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All too often, fits are made to a restricted set of data using only Pomeron
exchange, with the result that conclusions are reached that are almost cer-
tainly wrong.

The data at higher energies present severe problems. Sadly, the UA4
data for d?c/dt d¢ have been lost. CDF publish no data points, just their
fit. UA4 data for do/dt survive, that is d?c/dt d¢ integrated over a certain
range of £&. The result of integrating the CDF fit similarly is shown in Fig. 24.
There is an obvious problem!

do
dt

10

546 GeV M2 >2 ¢ < 0.05

0.1
0 0.2 0.4 0.6 0.8 1

|t
Fig.24. UA4 data for do/dt and the CDF fit.

5. Deep inelastic lepton scattering

In this section we shall apply Regge theory to deep inelastic lepton—
proton scattering depicted in Fig. 25.

Fig.25. Deep inelastic lepton—proton scattering.

Define

W2=@m+q?, v=pg, Q' =-¢, z=@Q%(2v).
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Soft-Pomeron exchange contributes a behaviour (W?2)%08 at fixed Q2. 1 have
shown how this describes the data well for Q2 = 0. But the W dependence
gets steeper as Q2 increases, as shown in Fig. 26. At large Q? the behaviour
is about (W?2)04,

ag
mb
(mb) 070
aammn” 2
. " Lanmm 65
0.01 | . " e 2
- .ll.... 60
0.001 | - mt e 120
. . " . =250
. .l. = = 500
0.0001 | » " L a"
| | jl
i L
10 100 1000
W (GeV)

Fig. 26. DIS data for different Q2.
The theory of the W dependence is not well understood. Define

B (1,7 (1)

Two alternative theoretical possibilities:

o (Wz, Q2) —

o A (W?2)%4 term is there at all Q2, but at Q% = 0 its contribution is
very small.

e It is not there at Q2 = 0, but as Q2 increases it is gradually generated
through perturbative QCD evolution.

The second approach is conventional, but it has a mathematical problem,
as I will shortly explain. The first leads to the possibility that o(pp) also
has an s%4 term, so that the LHC total cross-section is big.

5.1. Simple Regge fit

We shall discuss now simple Regge fit to the DIS data. Soft Pomeron
exchange contributes to Fy(z, Q?) at large W a term that behaves as (W?2)¢t,
with €; ~ 0.08. This is equivalent to (1/x) at large 1/z, say 1/z > 103.
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At smaller values of 1/x, we must add in fy and ay exchange, and include
a multiplicative factor in each term so as to make it go to 0 appropriately
as ¢ — 1. To begin with let me restrict the discussion to z < 1073.

We have seen that soft-Pomeron exchange is not enough, so Donnachie
and I added in another term which we call hard-Pomeron exchange. It
behaves as (1/x), and I have shown that we need ¢y ~ 0.4. In order to pin
down the contribution from this term, we went through a number of steps:

1. Take

B (2,Q%) = fo (@) a~ + f1 (@)™, 2<1077.

In order to get information about the unknown functions fo(Q?) and
f1(Q?), choose a value for ¢y somewhat less than 0.4 and another
somewhat greater. Then fit the available data at each Q2. This gives
the outputs for the two functions shown in Fig. 27.

0.1 ...-! DDDDDDDDDD DD
fO(Qz) . " s fl(Q2) DES' _-___...
. o . "y "
L] o o a]
u o u
0.01 | . oo '
o a]
= 0.1
a]
a]
0.001 + = 0.36
‘ = 05 ‘ U
10 100 0.1 10 100
Q? (GeV?) Q? (Gev?)

Fig.27. Functions fy and f;. The black points are for ¢g = 0.36, and the white
points €9 = 0.5.

In each case, fo(Q?) rises steadily with @2, while f1(Q?) either goes
to a constant or rises to a peak and then slowly decreases.

2. This suggests parametrisations of fo(Q?) and f1(Q?). Current conser-
vation implies that near Q? = 0 at fixed W, Fy(z,Q?) vanishes like
Q2. Therefore f;(Q?) ~ (Q?)'+%. Take

2 14€o

@) ()
o Q2 1+e€1
fl (Q ) = A <m> .
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For simplicity, this choice makes f1(Q?) go to a constant at large Q2.

Although its contribution for z < 0.001 is fairly small, we include also
an fo, as exchange term, that is we add

frR(Q)a™",  egp=—0.4525

and use a similar parametrisation for fo(Q?) to that for fi(Q?):

Q2 > 1+er

2\ _
fR(Q)—AR<1+Q2/Q%%

. Now go back and again fit the data for z < 0.001, this time with ¢g
as one of the free parameters. Include also the photoproduction data
and restrict to W > 6 GeV. This gives

c0=041, Qu=29GeV, Qi=770MeV, Q=465 MoV,

Ag=0.0022, A; =0.60, Ap=12

with x? = 0.95 per data point (190 data points), see Fig. 28. (The
values of Ay, As are determined largely by the real-photon data.)

Q' Fy(z,Q?)
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1000 | .
=
\
]
P \ \ 100 | %
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"\k—i\
p 1t -
S

01| ] o1 —
N
M
m‘-NH‘I‘
0.01 | — T
0.05 | me— @ ]
M\
0001 e
ﬂ'\

0 Lo : : e ‘ 10.045
0.0001
100 1000 10000 1le-06  1le-05 0.0001  0.001

2v (GeV?) T

Fig. 28. Regge fit to small x DIS data.
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The data for the charm contribution F§(z, Q%) display a very interesting
simplicity. Even at small Q2 they agree well with a fixed power of 1/z
close to 0.4 as can be seen from Fig. 30. The lines are just 2/5 of the hard-
Pomeron contribution to the complete Fh(x,Q?). The factor 2/5 suggests
that the coupling of the hard Pomeron to the ¢ quark has the same strength
as to the light quarks. The data do not allow more than an extremely small

Parametrisations in which fo(Q?) falls slowly at large Q?, for example
like 1/@Q, also describe the data well. If only for this reason, the error
on the determination of €y is quite large, say ¢y = 0.41 4 0.06.

FZ(‘T', Qz)

100000

1000

10

0.1t

0.001

Fig.

P.V. LANDSHOFF

. There are data at larger Q? but at larger x. Introduce powers of
(1 — ) in each term given by the dimensional counting rule. This
is not correct, but better than nothing, and using the values of the
parameters that have already been determined by the data for x <
0.001 they give surprisingly good fits out to very large Q?, see Fig. 29.

A — 5000 (x 22Y)

—— 150 (x 2%)
_— -— 15
T Eete.
T
L e
I - 0.045 (x 27 %)

Ty 1 1 P

le-6 le-4 0.01

29. Regge fit to larger « DIS data.

5.2. Charm

contribution from soft-Pomeron exchange.
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0.0001 0.001 0.01

X

Fig. 30. Q? F§(x,Q?) as function of = for Q2 = 500 GeVZ.

So only the hard Pomeron couples to charm, a result that I find surpris-
ing. It seems to be true even at Q? = 0 as shown in Fig. 31.

(/jb) | "
10 + s
i
i
0.1 ‘ ‘
10 )

W (GeV)

Fig.31. Charm photoproduction cross-section in DIS.
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6. Perturbative QCD and Regge theory

Perturbative QCD and Regge theory have to live together. To see how
it happens consider the singlet DGLAP equation is:

Du(0.@?) = [a:P (00 (@) wlar=@?)

ot
e = (18))

It simplifies if we Mellin transform with respect to x. That is, define

1
u(N, Qz) = /d:rxN_lu (:E,Q2) , (13)

01
P (N,a, (@) = / dz NP (200 (Q?)) | (14)

0

Then 5
S (V, Q*) =P (N,as (Q%)) u (N,Q%). (15)
If u(z,Q?) ~ £(Q*)z~¢ at small x, then u(N,Q?) has a pole
f(Q?)

N (16)

Insert this in the DGLAP equation. The pole singularities on the two sides
of the equation must balance as N — ¢g:

@) =P (¥ = 0. (@) 5 (). )

For hard-Pomeron exchange, with € ~ 0.4, expand the matrix P(e,ag) in
powers of ag. This is not valid for soft-Pomeron exchange, € ~ 0.08, because
the elements of P are singular at N = 0.

This is a problem with all applications of pQCD to the evolution of
Fy(z,Q?), though usually it is a problem that is hidden.

To solve the differential equation, we need initial conditions at some @Q?,
e.g. at Q% =20 GeV2. We saw that for F§(x, Q?) soft-Pomeron exchange is
extremely small. So pQCD suggests that this is true also for g(z, Q?).
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The upper curves in Fig. 32 come from the fit to the data that I have
described. The lower curves are the solution to the DGLAP equation, using
values of Aqcp similar to what are usually accepted:

AYO =140 MeV, ANEO — 330 MeV .

fo(@?) : ‘ :
fo(Q?) fo(20)
f0(20) /
1} 1t ]
01t 0.1 NLO
0.01 - - - - 0.01 - - -
1 10 100 1000 10000 1 10 100 1000
Q2 (Gev2) Q2 (GGVQ)

Fig.32. QCD evolution of fy at leading order (left) and next to leading order
(right).

Note that the DGLAP equation is supposed to be valid only for large
Q?; evidently this means Q? greater than about 5 GeV2. It is interesting
that the LO and NLO results are not very different.

It is interesting also that the upper curves behave as a power of Q2 at
large O, because that is how we chose to parametrise fo(Q?). But the
outputs from the DGLAP calculations rather behave as power of log(Q?).
Numerically, they are almost identical over a very large range of Q? values.

Because the gluon density is dominated at all Q? by hard Pomeron ex-
change alone, that is it behaves approximately as =4 for all 2, it is rather
larger (DL) than is conventionally supposed (MRST or CTEQ), particularly
at small Q2. This is shown in Fig. 33.

1000 ‘ ‘ ‘ ‘ 1000
100 DL 1 100 F
DL
—_ 10 + . 10 +
X X
2 1 [ MRSTand CTEQ 2 1L Z S
MRST and CTEQ
0.1 01t
Q"2=20 LO Q"2=20 NLO
0.01 : : : : 0.01 : : : :
1e-05 0.0001 0.001 0.01 0.1 1e-05 0.0001 0.001 0.01 0.1
X X

Fig.33. Gluon distribution at leading order (left) and next to leading order (right).
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7. Regge theory for other high energy processes
7.1. Photon—photon scattering

It is interesting to test Regge factorisation in photon—photon scattering.
For each of the separate exchanges hard Pomeron, soft Pomeron and Reggeon

the following relation holds:

This is valid if the exchange corresponds to a pole in the complex-¢ plane,
because for each exchange the contribution is the product of a coupling
at each vertex and a “propagator” corresponding to the other factors in
the Regge formula, including the power of s. Thus, for each term, the
contribution satisfies

o(yp)a(yp)

for all Q2% Q3.
a(pp) b

o(yy) =

For vy we must add in the box graph (see Fig. 34) summed over the
possible quark flavours in the loop. It is particularly important when the
energy is not very large.

JAVAVAVAVAVAVA SRR AVAVAVAVAVAVAY

Fig. 34. Perturbative contribution to y—y scattering.

In the case of real photons, the fits I have described for o(yp) and o(pp)
yield the result for o(v7) that is shown in Fig. 35. The experimental data
are uncertain because of the need to make large acceptance corrections, and
different models for calculating these lead to rather different outputs, as is
seen in the plot.

We may similarly calculate the charm component of o(v7) as shown in
Fig. 36.

In each case, the blue (lower) curves are the hard-Pomeron contribu-
tion. The box graph is what causes the cross-section initially to fall with
increasing W.
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Fig. 35. Cross-section for y—y scattering.
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Fig. 36. Cross-section for charm production in y—y scattering.

When one photon is on shell and the other off shell, a similar calculation
gives the photon structure function shown in Fig. 37.

When both photons are off shell we get the cross-section shown in Fig. 38.
In each case, the blue (lower) curves are the hard-Pomeron contribution.

At this point it is difficult to draw any conclusion about Regge factori-
sation: the data are not good enough.
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Fig.37. Photon structure function.
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Fig. 38. Cross-section for v* — v* scattering.

7.2.vp — J/ p

Parametrise the amplitude as a sum of hard Pomeron + soft Pomeron +
Reggeon exchange and adjust the relative contributions so as to fit the data
for do/dt. Because the Regge signature factor gives each term a different
phase, the resulting amplitude is not altogether simple. The result is shown

in Fig. 39.

The fit needs the hard Pomeron slope to be quite small, perhaps 0.05.

Integrating over t, we find the result shown in Fig. 40.

The blue (lower) line is from the hard-Pomeron term alone. Why does
the soft Pomeron couple to yp — J/¢p but not to F5? The explanation

may be found in data from the Omega experiment [2]:
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Fig. 39. Cross-section for yp — J/¢ p.

o
(nb GeV~2)

1000 ¢
Tt
100 ¢ }{{f}} {Hf‘}
= H1 data
10 ¢
50 500 5000
W (GeV)

Fig. 40. Integrated cross-section for vp — J/v p as a function of W.

pCu— J/p X _
pCu— JWX

So the valence quarks of the beam couple to J/¢: |c¢) mixes with |¢gG >
and the J/ is not pure cc.

6.

7.8. Hard Pomeron in hadron—hadron scattering?

Given that the hard Pomeron exists, does it contribute to pp and pp
scattering?” Try including its contribution in the fits to the total cross-
section. That is, use hard Pomeron, soft Pomeron and Reggeon exchange:

o(pp),o(pp),o(yp) : o= Xos° + X5 + Xps®,
B (z,Q%): 706 (Q%) + 27 f1 (QF) + 2 R fr (Q7) .



2090 P.V. LANDSHOFF
The resulting fits, with
€9 = 0.45, €1 = 0.067, ep = —0.48,

are shown in Fig. 41. The lower (blue) lines are the hard Pomeron contri-
bution.

% 0.2

7 20 pp and pp o 8'12
(mb) g5 | (mb) g4 |
50 012 |
40 01t
0.08 |
il 0.06 |
20 0.04 |
10 ¢ 1 0.02 t

0 b ‘ 0 ‘

10 100 1000 10 100
V5 (Gev) Vs (Gev)

Fig. 41. Regge fits with hard Pomeron contribution (lower curves).

We can extrapolate these fits to the LHC energies. This is shown in
Fig. 42.

160

140 | Ppand pp

(mb)
100 |
80 |
60 |
40 |
20 |

1000 10000

Vs (GeV)

Fig. 42. Regge fits extrapolated to the LHC energies. The lower line is the original
fit with a hard Pomeron contribution.

At these energies we have to worry about unitarity, however, we do not
know how to do that. We need to sum single-IP, double-IP, ...exchanges:

Seb g
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Although we know some general properties of these additional terms,
we cannot calculate them. The double-/P-exchange term has the general
structure

Ay (s, 1) ~ B(t) 52 (log(s)) 7). (18)

For linear trajectories,

P, P, (t) = PP (0) + O/Plezt )
QP 1P, (0) = Q) (0) + ap, (0) -1,
/ /
! aP1 aPQ
Q@ = — 19

1P, 1P a/P1 n O/P2 ( )
But ((t) and «(t) are unknown. Evidently, 5(¢) depends on information
about two-quark correlations in the proton wave function.

8. Eikonal model for pp scattering

This model has no theoretical foundation, but it produces multiple-
exchange terms of the correct general structure.
In the CM frame

b1 = (Evp—i_%Q) 5 p3:(E7p_%Q) )
p2 = (BE,—p-3%a), pa=(E,~p+34q) (20)
with (p + %q)2 = (p— %q)2 so that p.g = 0 and therefore g is in the

two-dimensional space perpendicular to p. Also t = —g>.
Write the amplitude as a 2-dimensional Fourier integral

A(s,—q2) = 4/d2be_iq'bfi (s,b2) )

~ 1 .
2\ _ 2 iq.b 2
A(s,b) = 16#2/(1 qe'd A(s,—q) (21)
b is called the impact parameter.
Define ~
x(s,b) = —log <1 + 2iA/s>
so that

A (s, b2) = %z’s (1 — e_X(S’b)) )
Remember the unitarity condition
|2

Im a¢(s) = |ag(s)|® + inelastic terms
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so that lag(s)| < 1.
One can show that this is satisfied if

Re x(s,b) > 0.
Expand the exponential as a power series:

A(s,—q%) = 2is / Phe @b (1 o)

2 3

Py 2, —igb (. X" x° _ (=x)"
—2zs/dbe (X 2!+3!... s EREE . (22)

If first term is approximated by single-IP exchange, the second has the cor-
rect general structure of double-IP exchange, etc. And one can show that
then at very large s

oTOT ~ 4/ ey (log s)? (23)

so the Froissart bound is satisfied.

But, although it has been widely used, this representation for the am-
plitude has little theoretical foundation. For example, the double-exchange
term should contain information about the two-quark correlation in the pro-
ton’s wave function, but this is not present in the term y?2.

Let us now apply the eikonal model to pp elastic scattering. The fit to
do /dt using just the two single Pomeron exchanges and Reggeon exchange
agrees well with the data at small ¢, but not at larger ¢ as shown in Fig. 43.

100 | "\ 1800 Gev
BN
10 | O
1t i
Y 5 :
i
gl o b

0 0.1 0.2 0.3 0.4 0.5

Fig.43. do/dt for pp scattering in the eikonal model.

From its general structure, we know that IPIP exchange pulls do/dt down
at larger t. But nobody knows how to calculate it!
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As a simple model, calculate x(s,b) as the sum of the three single ex-
changes and take

A(s,b) = 2is <X(s, b) — A[x(s, b)]2>

together with a triple-gluon exchange term. Then repeat the fit, choosing A
to get pp dips at the right ¢ as shown in Fig. 44.
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Fig. 44. Fitting dips in the eikonal model.

9. Conclusion

We conclude by showing the extrapolation to the LHC energy that is
given now by the upper curve in Fig. 45. The lower curve is the fit with no
hard-Pomeron contribution.

140 ¢
120 | pp and pbarp
100 ¢
80 -
60 -
40 F
20

10 100 1000 10000

Fig. 45. Extrapolation of the total cross-sections to the LHC energies.

This procedure is highly model-dependent, so the error is inevitably
large:
o(LHC) =125 + 25 mb. (24)
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