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Photon self-energy in a magnetized chiral plasma from Kkinetic theory
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We study the photon self-energy in magnetized chiral plasma by solving the response of electromagnetic
field perturbations in chiral kinetic theory with Landau level states. With lowest Landau level
approximation and in the collisionless limit, we find solutions for three particular perturbations: the
parallel electric, static perpendicular electric field, and static perpendicular magnetic field, corresponding to
chiral magnetic wave, drift state, and tilted state, from which we extract components of photon self-energy
in different kinematics. We that show no solution is possible for more general field perturbations. We argue
that this is an artifact of the collisionless limit: while static solutions corresponding to the drift state and
tilted state can be found, they cannot be realized dynamically without interaction between Landau levels.
We also discuss the possible manifestation of side-jump effects due to both boost and rotation, with the
latter due to the presence of background magnetic field.
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I. INTRODUCTION

There has been a long history of work towards an under-
standing of vacuum polarization by electromagnetic fields.
The full effective action of vacuum for an arbitrary constant
electromagnetic field was established by Heisenberg and
Euler [1], who predicted the critical electric field in vacuum.
It was later realized by Schwinger [2] that the critical electric
field leads to pair production. On the other hand, while
the magnetic field does not destabilize the vacuum, it does
modify vacuum properties, such as enhancing the pair
production rate [3] and causing vacuum birefringence
[4-6]; see [7,8] for recent reviews.

Recently there has been growing interest in the effect of
the magnetic field in the chiral medium in a variety of
systems including quark-gluon plasma, Weyl semimetal,
etc. The magnetic field in the chiral medium is known to lead
to novel anomalous transport such as the chiral magnetic
effect [9-12], chiral separation effect [13,14], chiral mag-
netic wave [15], etc. Furthermore, the presence of magnetic
field also modifies existing transport coefficient-like con-
ductivities [16-23] and viscosities [24,25] nontrivially. In
the regime of the linear response, these transport phenomena
are characterized by photon self-energy in the magnetized
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chiral medium. In the presence of the magnetic field, the
photon self-energy contains a very rich structure and is also
very complicated in general. There have been many field
theoretic attempts to study the photon self-energy [26-29];
see also studies on gluon self-energy [30,31].

A distinguishing feature of the chiral fermion from the
classical particle is its spin, which is a genuine quantum
quantity measured in 7. A semi-classical expansion in A
gives rise to the chiral kinetic theory (CKT) [32-57]. It has
been successfully applied to study the transport phenomena
of the chiral medium in response to the weak electromag-
netic field [58-61], where each power of electromagnetic
field contributes O(#). In the regime of the strong magnetic
field, a different expansion scheme is used giving rise to a
chiral kinetic theory based on Landau level (LL) states
[18,22,62]. The purpose of this paper is to apply this chiral
kinetic theory to study the photon self-energy in magnet-
ized chiral plasma as an alternative approach to the self-
energy problem. For simplicity, we work in the strong
magnetic field and collisionless limit. We will reproduce
the field theoretic results to the accuracy of the CKT
approach and show some new results for the drift state and
tilted state.

The paper is organized as follows: in Sec. II, we
summarize generalities of photon self-energy, in Sec. III,
we give a short review of chiral kinetic equations based on
LL states and analyze the structure of equations, and in
Sec. IV, we present solutions corresponding to three
specific perturbations and discuss the physical implications
of them. We further show it is not possible to obtain more
solutions for more general perturbations. We will argue
that it is an artifact of the collisionless limit; in Sec. V we
summarize the results and discuss future directions.

Published by the American Physical Society
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Throughout this paper, we primarily study the chiral
medium consisting of right-handed fermions with charge
Q = |e|. Contribution of left-handed fermions will be added
when comparing with field theoretic results. For simplicity,
we set e = 1 and reinstate it in the end. We use the following
nonstandard convention p, = (py, p1, p2. p3) for conven-
ience. The magnetic field points in the x3 direction.

II. GENERALITIES OF PHOTON SELF-ENERGY
IN A MAGNETIZED MEDIUM

The photon self-energy in the imaginary time formalism
is defined by [63]

_ 8g(x)
ALY’ (1)

I (x,x') = (T (T (0)5(x')))

where T denotes time ordering in Euclidean time. We can
rewrite (1) in a simpler form in momentum space:

8J(q) = T (q)5A7 (q). (2)

Note that the Euclidean frequency g, takes discrete values
of Matsubara frequencies 2znT, with T being temperature.
It can be analytically continued to the complex frequency
plane. Taking g, — i(qo + i€), we obtain the more useful
retarded photon self-energy

6J"(q) =TI (q)8A,(q). (3)

with J4(q) — iJ°(q) and A%(q) — iA%(g). Equation (3)
expresses the current as a response to external electromag-
netic field perturbation, which can be studied in kinetic
theory. We will mainly study retarded self-energy in
the paper.

For a parity breaking chiral medium consisting of right-
handed fermions, H’,’g” is, in general, not symmetric in the
Lorentz indices. Nevertheless, IT% is still constrained by an
anomalous Ward identity. To derive an anomalous Ward
identity in the regime of the strong magnetic field, we note
that there is an effective dimensional reduction from
3+ 1D to 1+ 1D. In this regime, the most interesting
perturbations are time and longitudinal components of
photon fields 6A, = ay and 6A; = as. For the right-handed
current indicated by the subscript r in the background
magnetic field, the Ward identity is given by

1
(2n)?

Here, E3 = Jya; — J3ay is an electric field induced by
perturbations. With the Fourier transforming equation (4)
and doing variation with respect to a, and a3, we obtain the
following constraints:

0,8 = — E3B. (4)

1
0
qﬂH/;Q,r = (277,')2 (—Q3)B,

1
3
qﬂHlIIQ,r = (271_)2 qoB (5)

Note that the anomalous Ward identity (5) is satisfied
by the correlator of the right-handed and vector current
[Ty . = (J7J¥)g. To obtain the self-energy of the photon, the
correlator of the left-handed and vector current ITy, =
(J4J¥) g needs to be added. The photon self-energy given
by the sum of the right-handed and left-handed contribu-
tions is nonanomalous, as required by conservation of the
vector current. With an abuse of language, we will use self-
energy to refer to ITy . and IT; as well.

III. CHIRAL KINETIC EQUATIONS
WITH LANDAU LEVELS

The chiral kinetic equations with Landau level states of
the right-handed fermion are given by [22]

AojO + A =0,
poi® + pij =0,
Aoj 4+ A0 + 26k p ik =0,

) P B
—poj = pij’ + Eeka,J" =0, (6)

with A, = 9% - (F,, +flw)aim for u=0, 1, 2, 3. We
use greek letters for spacetime indices and small roman
letters for spatial indices. F,, corresponds to the back-
ground magnetic field with the only nonvanishing compo-
nents F, = —Fy = —B. f,, = 0Ja, — dfa, corresponds
to the perturbation of the electromagnetic field.
Equation (6) is derived based on an expansion in % or,
equivalently, in Oy with f,, ~ O(dy) but B ~ O(8%). It is
valid up to O(0Jx) and to all order in B, which implicitly
assumes the hierarchy of scales dy < p. Solving (6) we
can obtain j# and the momentum integral of j* gives the
induced current J#

JH(X) = / dpit(X. p). (7)

In the absence of perturbation, the background in the lowest
Landau level (LLL) approximation is given by

o0 . 2 ., a .
J°=J3:W‘5(po+p3)e PiBE(Ipol), j'=72=0, (8)

with p7 = pi + p3 and f.(|pol) = sy being the
Fermi-Dirac distribution. The upper/lower sign is for
positively/negatively charged LLL states. The subscript r
in u indicates it is a chemical potential for right-handed
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fermions. Higher LL states are massive from the 1 4+ 1D
point of view with mass ~+/nB; thus, their contributions

are exponentially suppressed ~e~VB/T in the large B limit.
For the LLL background, the momentum dependence
factorizes into e~Pr/B , which is from the LLL wave
function, and f(|po|)=s(|ps|). The dispersion py=—ps
is due to our nonstandard convention for momentum.

Since (6) is valid to O(0Jy), we seek the solution of j#
order by order in the following gradient:

8j = bl + 81+ 9)

with the subscript indicating the order of the gradient. We
use o to distinguish the induced j# from the background
one. The terms of O(d%) are beyond the accuracy of (6).
Substituting (9) into (6), we obtain to order O(9%) and
O(0y), respectively,

Didj,
D;8j(y, + 267 p ;6 = 0.

:O’

Po5f(()o) + piéjéo) =0,
. o 1 if .
=Podj(o) = Pidjfo) +5€7 D8]y = 0. (10)
and

Didjjy

Diéj((’]) + 26k p jéjfl) =V,

=38,

P05j(()1) + Pi5jél) =0,

—P05J'21) - Pi5j(()1) + %GijkDﬁjl((]) = Vi, (11)
with the right-hand side defined as
S == (880" + 8A;j' + 9By, + 0idjify) )
Vi==(680j" + 88" + 0ySji) + 0i67)
Vi=-— G ekSAj* + %e"ﬂfa 5 j(f())) : (12)
We have defined D; = _%FU and 6A, = a—‘;fﬂy. We

also use the shorthand notation 9, = fo . The structure of
the equations are quite informative: (10) and (11) can be
viewed as equations for & j’(‘o) and & j’(’]), respectively.
The only difference is that the former are homogeneous
and the latter are inhomogeneous. The homogeneous
equations cannot uniquely determine j’(‘o). The source of
inhomogeneous equations involves perturbations and the
undetermined o j?o)' Nevertheless, (10) and (11) can still

be solved thanks to the over-determinacy of the equations.

The situation is similar to conventional CKT, where the
over-determinacy of equations can be used to fix homo-
geneous and inhomogeneous solutions at the same order in
the gradient expansion; see, for example, [64]. In CKT with
Landau levels, the homogeneous solution & j/(do) and inho-

mogeneous solution & j’(‘l) appear at different orders.

Before closing this section, we verify that the first
equation of (11) is consistent with the anomalous Ward
identity. We integrate the equation over the four-momen-
tum and reorganize it as

[ #v@,a1) -

By our nonstandard convention, we identify the lhs as d,,J*.
For the rhs, the first term becomes the boundary term upon
integration over the transverse momentum

(13)

.~ 0 .
/dZPTDifSJl(l) —/dZPTEBeMN5J%) =0, (14)

with the capital roman letters running over indices in the
plane perpendicular to the background magnetic field
M,N =1, 2. The second terms can be written explicitly as

0 0
d* K— + 5 >'°
/ p aprOM c’)p3f03j
0 0
+ {5 —f0+5— *}
((’9190 S0 par fSM)]

The terms involving % vanish for the same reason as

(15)

above. Using (8) and including contributions from both
positively and negatively charged LLL states, we can
combine the remaining terms as

0
p (
/ P p3

2 2
8p0>f03( ) exp( p7/B)

x 8(po + p3)(f+(Ipol) = F-(Ipol))

= 2 ([T am (=5 ) e
- /_mdpo( oo )=o)

E;B E;B
- (27[)2 (f+(0) + f—(o)) - (27[)2 .
Therefore, we reproduce anomalous Ward identity. There is
a caveat in the above derivation in that we have taken the IR
momentum cutoff A to zero. Note that the validity of the
kinetic theory requires p > Oy; thus, we expect A = Jy. It
follows that the factor f, (A) + f_(A) = 1 + O(9Jx). Note
that E5 ~ O(0y) and B ~ O(9%). What (16) shows is that

(16)
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the anomalous Ward identity is satisfied up to corrections of
0(0%). We will not attempt to obtain this correction as it lies
beyond the accuracy of the kinetic theory. It is also interesting
to note that in conventional CKT without the background
magnetic field, the anomaly appears by virtue of level
crossing inside the region of |p| < A; see, for example,
[34]. In CKT with the Landau level basis, an anomaly appears
manifestly from the level crossing of the LLL state alone.
Below we will simply set A = 0 in the remainder of the paper.

IV. SELF-ENERGY FROM SOLUTIONS
TO KINETIC EQUATIONS

In this section, we present solutions to (10) and (11),
which allow us to extract components of self-energy in
different kinematics, which in fact correspond to different
states. After presenting three simple solutions, we will
show that no more solutions are possible. We will argue that
this is an artifact of the collisionless limit.

A. Parallel E field: Chiral magnetic wave

We begin with the case of the parallel E field, which can
be induced by either ay(7, x3) or az(t, x3). This case can be
simplified by noting that the parallel electric field only
induces the longitudinal motion of LLL states, which is
classical. Therefore, the motion leads only to the redis-
tribution of LLL states like in classical kinetic theory. On
the other hand, we show in [22] that the LLL state with
arbitrary distribution f(p,) satisfies the CKT equation (6)
[65]. Note that (10) is nothing but truncation of (6) to order
O(0%). Thus, a solution corresponding to the redistribution
of LLL states with a slow-varying f(pg, X) satisfies (10)
automatically. Since we don’t expect solution other than
redistribution of LLL states, we set o j’(‘l) = 0. In order for

(11) to hold, we need to require the inhomogeneous terms
to vanish: § = V| =V} = 0. This allows us to fix &/,
from the following constraint equations:

0 Y\ , .
So3 (am - ap0> 7= (9 + 83)5J(()0) =0. (17)

In arriving at (17), we have used the property of the LLL

state & j(()o) =6 j?o) and assumed all 9, to vanish because the

field perturbation fy; = 0yaz — J3ay is independent on x.
Equation (17) can be solved easily in momentum space as

. . 2
51(()0) = 51?0) = 2n) exp(=p7/B)8(po + p3)

q3

x f! —
f(Po)q0+i€+q3

0

. . 2
51?0) = 51?0) == (27) exp(—=p7/B)8(po + p3)

D g, (18)

x f —a
f(Po)q0+l€+q3

for perturbations a (7, x3) and a;(¢, x3), respectively. Again
f(po) can be f.(|pg|) for solutions corresponding to
positively and negatively charged LLL states. We have
made the substitution g, — go + ie so that the solution
corresponds to the retarded response.

Integrating the solution (18) over the four-momentum
and using the following identity

0 0
/ dpofs (1pol) - / dpof’(Ipo)
0 —_

[Se]

= —f,(0) = F_(0) = —1, (19)

we obtain the following retarded self-energy components
from (3):

e’B q3

27)? gy +ie+qz’
e’B 90

2)? gy +ie+qs’

H?e(.)r(%a %) = H%(,)r(%, 613) = —(

H10e3,r(110’ q3) = H3R3:r(q0’ qS) = ( (20)

We have reinstated the powers of e in the above. Note that
(20) is independent of temperature and chemical potential.
This is because the integration over p, only picks up
boundary terms at py, = 0, similar to (16). We can verify
(20) indeed satisfies (5). The pole of ITy, gives the
dispersion relation g, + g3 = 0 of the collective excitation
of the chiral medium. It corresponds to a wave propagating
with the speed of light in the x5 direction. In fact, this is
nothing but the chiral magnetic wave in the limit of the
strong magnetic field [15].

It is also interesting to note that ITy, is not symmetric
with respect to Lorentz indices. The reason is that the states
consisting of right-handed fermions are not parity invariant.
Applying parity transformation on (20), we obtain the
components of self-energy for the medium consisting of
left-handed fermions

e*B q3
27)? gy +ie—q3’

H?e?z(‘]()a (I3) = —H?e(_)z(%, 613) = (

e'B 90
2m)? qo +ie—qz

—T12, (g0, 93) = 10, (q0, 43) = ( (21)

These results can also be obtained from explicit solutions of
the chiral kinetic theory for the left-handed medium, which
we collect in Appendix A. Adding up contributions from
both left-handed and right handed fermions, we obtain the
following components of self-energy for the parity invari-
ant state:
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e’B 243
(27)* (g0 + i€)* — g3

H?e3(CIo»C]3) = H%O(CIO, 613) =~

e’B 243
27)* (qo +i€)* — 43

H%O(C]o,%) =

e’B 249093
(27)% (qo + ie)* — g3

1 (g0, 43) = ( (22)
These agree with field theoretic results in the LLL
approximation up to an overall factor of e~/ [66).

The exponential factor is at least O(9%), which lies beyond
the accuracy of our current chiral kinetic equation.

B. Static perpendicular E field: Drift state
Next we consider the case of static perpendicular E
induced by ay(x7). We begin by solving for & j?l) and § jfl)
from the third and i = 3 component of the fourth equations
of (11) to obtain

(51"(’1)) o <_pOPM5j1(V11) —pa%eMNDMéjZ))
. :

5j?1) 0= P3 P3PM5J'% + po%eMNDMéj](\b
(23)
We proceed with the following ansatz:
8jtt) eexp(=p3/B)8(po + p3), (24)

which converts (11) to the following equivalent equations:

Béj[(‘{) M MN 9 0 MN g 573
72([)04_173)—190 J(1) 56 Napoj —55 NOJ{0)»
2F
MN N MPm 0
2e PM5J(1)— B s
eM"N§jiN B

with Ey = —0yag being the perpendicular electric field
perturbation. Equation (25) adopts the following solution:

) . 2p
8jo) = i) = ao <—5’(po +p3) - 705(170 + P3)>

x exp(—p%/B)f(po),

M €MNEN 5
ojiy = B 3(po + p3) exp(—=pz/B)f(po),
] ) GMNP E
8Jty = 87y = #5'(190 + p3) exp(=p7/B)f(po)-

(26)

Using & (po+p3)f(po) =—=06(po+p3)f'(po), we see that
the zeroth order solution & jé‘o) is simply a redistribution of

LLL states with 8f(po) = ao(f'(po) — 222 f(po)); thus,
(10) is automatically satisfied.

Integrating the solution over the four-momentum and
using the following integrals:

A 0 2T? Iu%
A dPOP0f+(|P0|>—/ dpoPof—(|P0|):T+3,

0 0
/ dpof+(|pol) - / dpof-(Ipol) = .
0 _

[Se]

we find the following components of self-energy after

reinstating powers of e:
e’ n’T?
— | eB+—-— 2,
GG

e gy, (27)

62

(27)?

Equation (27) satisfies (5) trivially because gy = g3 = 0.

Note that § j(()l) and & j?l) are the odd function of p;, which

H%?(‘]M) ==

vanishes upon integration over pz, and thus do not
contribute to self-energy. A counterpart for the left-handed
contribution can be obtained by parity transformation as in
the previous case. Note that under parity transformation
U, — p;, wWe arrive at

00 30 e? 2T? ,
HR’[(CIM) = _HR,I(QM) = (271_)2 eB + 3 ‘|‘,Ml s

2
T iehN 28
aap e ank: (28)
Adding up contributions from both (27) and (28), we obtain
the following nonvanishing components for photon self-
energy:

_H%?(QM) =

22 72 T?
0a) == s (B + 5 02 442,

(2r7) 3
4¢?
H%O(QM) = —Wﬂﬂs,
MO 2 . MN
HR (('IM) = (2”)2 1€ gnH; (29)

with u = (u, +p;)/2 and us = (u, —p;)/2. Note that
unlike the case of the parallel electric field, the case of
the perpendicular electric field gives rise to medium
dependent self-energy components. In particular, the
medium dependent terms in 1% and IT;Y would not appear
in the static limit gy — 0 of (22). The difference can be
understood as follows: the solutions from parallel and
perpendicular electric fields correspond to a different state:
the parallel electric field leads to the redistribution of LLL
states, while the perpendicular electric field leads to a drift
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state, with the medium drifting with a velocity orthogonal
to both E,; and B. In the drift state, Hall current is expected
and is consistent with TT{? above. I and IL give the
deviation of charge density and current density of the drift
state from those of the background. Interestingly, the
deviation coincides with the 00 component of the self-
energy in the chiral medium without the background
magnetic field [67].

We can gain further insight into the drift state by
“boosting” the equilibrium state. It is not difficult to see
that by boosting the equilibrium medium to a velocity

- SMZE’V, we will then have the orthogonal electric field E;,
and background magnetic field B [68]. To describe it more
quantitatively, we use the covariant form of the background

solution

8(p - (u+b)e P /Bf(p-u)(u+by,  (30)

(27)*

which generalizes the solution in the medium frame to
arbitrary frame. We verify in Appendix B that it indeed
satisfies the covariant chiral kinetic equations to the lowest
order in gradient. Here u* and b* denote fluid velocity and
magnetic direction and p7 = —p? + (p-u)? — (p - b)*. u*
and b* are orthogonal to each other u-b =0. In the
medium frame, we have u* = (1,0,0,0) and b* =
(0,0,0,1). Under the boost, we have suM ZEMN%AJ
0(9dx) and 6b = 0. It is easy to see that suM leads to
0 j?’lf). The remaining corrections are not from covariance

and are only present in §;° and §;°. At zeroth order § j(()())
and & J'?o) come from the fact that the electric field

perturbation is not constant but x; dependent. In fact, a
in (26) should be interpreted as ay ~ Ey;/0y; thus, the
zeroth order correction characterizes the redistribution
of LL states in response to perturbation. A similar correc-
tion to the zeroth order solution is also present in chiral
kinetic theory without the background field [33]. At the
first order, & j%) and § j?l) are entirely determined by & j’(‘f)
from (23), which as we discussed above is not sensitive to
the x; dependence of the perturbation. Note that
&' (po+ p3)f(po) = —6(po + p3)f'(po). 1t is suggestive
to interpret & j?l) and § j?l) as a modification of the

distribution function f(pg) = f(po) — %f’(po) =

SMN E €MN E . .

f(po — =5=2), or py — py — 4=~ This is analogous
to the side-jump effect in the momentum in the absence of a
background field [38,69]. Note that since our background
solution is homogeneous in coordinate, a possible jump in
coordinate is not visible from our comparison. We should
not confuse the frame vector frequently used in the
description of the side jump with the fluid velocity wu*.
The latter is needed to define the magnetic field in the
background.

C. Static perpendicular B field: Tilted state

We turn to the case of the static perpendicular magnetic
field induced by az(xy). The analysis is similar to the
previous subsection. We will not spell out the details. With
the ansatz 6j1("1’> o exp(—p2/B)5(py + p3), we obtain the

following solution:

; . 2p
iy = 87y = (=222l + po)esol=rt /D) (o) ).

. 5 puBy
8101y =87ty = "8 (po + pa) exp(=p}/B)f (po).

‘M BJJ\_/I 2
51(1) = ?5(170 + p3)exp(=p7/B)f(po) (31)
with By, = —eMNdya; being the perpendicular magnetic

field. It gives rise to the following components of self-

energy:
e (n*T? L
(2]1_)2 3 lur ’

ieMNCIN/'lW (32)

H%3r(qM) = H?r(‘IM) =
62
(27)?

H%i(QM) ==

which again satisfies (5) trivially as gy = g3 = 0. The
contribution from left-handed fermions can be obtained by
the parity transformation to give

e? 72 T?
- H(I)Q%I(QM) = H%%I(CIM) = —W (T +ﬂ12>,

e
—)216MN6]NM1- (33)

The combined photon self-energy components are

4¢?
H?S = _W”MS’
2¢2 [(m*T?
I (qy) = —W ( 3 + u? +ﬂ§)’
M3 2 . MN
HR (qM> = - (2”)2 e gnHs. (34)

Comparing (32) with the static limit of 03 and 33
components of (22), which vanishes identically, we see
the difference is also medium dependent. We can see that
143 gives precisely the chiral magnetic effect due to B :

2¢? 2¢?
Qap € Owsks =

I1¥3 also agrees with components of parity odd self-energy
in the absence of the background field [33], which is

M _ M3 _
J —HRa3——

WﬂsBzﬁ- (35)
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responsible for the chiral magnetic effect. These particular
components of self-energy actually give rise to chiral
plasma instability [67]. We can see some trace from the
backreaction of the induced chiral magnetic current to the
electromagnetic field. The induced magnetic field AB can
be found by solving the Maxwell equation

(Vx AB)M = JM, (36)
with the solution given by AB; = % Usaz0;3. It can lead to

the enhancement of the background magnetic field.
However, to answer the question dynamically, we need
to know the self-energy beyond the static limit.

Let us again compare the tilted state with the equilibrium
state rotated in such a way that the background magnetic
field coincides with that of the tilted state [70]. We can use
the covariant form of the background solution (30) with
6b™ = Bj;/B and 6u = 0. 5b™ gives precisely 8¢, from
the covariant factor (u + b)*. The remaining difference
between the tilted state and equilibrium state is in &;°
and §;°. The tilted state is not entirely equivalent to the
rotated equilibrium state because of the x; dependence of
the perpendicular magnetic field. The x; dependence leads
to the difference in & j(()o) and § j?o)' On the contrary,

5 j?l) and & j?l) are fixed by & j?’l’) through (23); thus, they
are not sensitive to the x; dependence of the perturbation.

Using &'(po + p3)f(po) = =8(po + p3)f (po), we inter-
pret o j(()l) and 5]’?]) as modifications of the distribution

function:  f(po) = f(po) =252 f'(po) = f(po — 25%),
or py = po — @. Like in the case of the drift state, it

is suggestive to interpret the modification of distribution
function as an analog to the side-jump effect in the
momentum in the absence of the background field
[38,69]. Since our background solution is homogeneous
in the coordinate, a possible jump in coordinate is not
visible. We stress that this is a new effect due to the
background field: the conventional side jump is manifested
through the boost, and in our case the side jump can be
manifested through both boost du and rotation 6b, as we see
in both the drift state and tilted state, respectively.

D. No more solutions

Finally, we look for solutions for more general pertur-
bations without using the ansatz. Since the background is
LLL states in equilibrium and the zeroth order solution
éjéto) is a redistribution of LLL [71], we have j, = j;
and & j(()o) =6 jﬁo) with all other components vanishing. It

follows that § = V} and 1NV}, = V3,. We can eliminate
redundant equations in (11) to obtain

DMéjI(V{) = 2€MNPM5J'?{)7

1 ] . .
(§€MNDN - pM) (874 = 87tn) + (po + P3)3ji) = 0.
2eMN pydjfly = —((880 + 843)° + (9p + 03)y)).

2
= —(8Au)° + 8M5j?0))' (37)

: 1 ; :
(po = p3)e"™5j), + < Dy + €MNPN> (840 + 0ifyy)

To proceed, we define A,, by pulling out a factor of ¢~77/8
from §jf},:

5j1(”

1= e ri/BAy,. (38)

AM are functions of p and g. The solutions for static
perpendicular electric and magnetic fields correspond to
A, being independent of p,,. Plugging (38) into (37) and
dividing out the common factor e~P1/B, we obtain

0

M7 4 =0 3

€ apN M , (93)
1 B 0 \B 0O
- 2p =22 ) 2L A+ (po+ p)Ay =0,
po—p3< Py 23PM>28171< k+(Po+p3)Au
(39b)
2eMN p Ay = —(8Ag + 583)8(po + P3)f(Po)

= 8(po + p3) (99 + 03)g9(po. X), (39¢)

-1 B,y 0 [( B 0 > ]
€ 20 ——— |A
Potp32 opn Pk Opk K

==0Ay0(po+p3)f(Po)—6(po+P3)Oug(po.X). (39d)

(Po—p3)eMN AN+

We have defined 5j(()0) =8(po+ p3)e"TBg(po. X). We
already know & j’(‘()) corresponds to the redistribution of LLL

states, so ¢ has to be a function of py and X only. Below we
will show that this is not possible except for the special
cases presented in the above subsections. We first apply

eMN% to (39b) and use (39a) to arrive at

wy 99

A =0. 40
Opn Opk (40)

Pm€

We can also apply €V py to (39b) and use (40) to obtain
(Po + p3)e" pyAy = 0. (41)

We then multiply (39d) by p,, to obtain
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-1 B
Z MN
Po+ P32 bu

0 B 0
X — | 2ppAxy ———A
dpn ( YT K>
= —pudAyd(po + p3)f(po)
= 8(po + P3)PmOug(po. X). (42)

(po — P3)pue™ Ay +

Using (41) to simplify the first term and using (40) to
eliminate the second term in the round bracket on the lhs,
we arrive at

2poe™ pyAy +

0
"N pyAy+ EMNPMPK—AK]
Po+ D3 Ipy

=—pubAyd(po+p3)f(po)
(43)

The second term in the square bracket can be further
simplified using the following identity:

MNpy+e"py + M py = 0. (44)
It follows that
MN 9 NK KM 9
"V pupk m—Ax = —(€" py + "M py) Py m—Ax
dpn dpn

0
=" pypk EANv (45)

]?30]”(170)

Cilgo+q3)’

—6(po+ p3)PrOmg(po.X).

% (2pafou + 20 f3m)f (Po)

where we have used (39a) and relabeled indices in the
second equality. We can then rewrite the square bracket of
(43) as

0
[GMNPMAN + eV pypk —AK:|
dpn

0 0
= ¢MN (1 —|——>A =eMN_—_p Ay, (46
Pm Opx N Opx PmAN ( )

With this, we arrive at the following simple form
of (43):

(2190 + >€MNPMAN
Po+ P3

= —pu6Ay(po + p3)f(po)
—8(po + P3) PmOng(po. X). (47)

We can now plug (39¢) into the above and compare the
coefficients of 6(py + p3) and & (py + p3) to determine
9(po). Note that the coefficients have to be matched

3(po+ps)
Potprs

which involves the dropping of boundary terms and is
not always justified. We end up with two expressions
for g

separately rather than using &§(py+ p3) = —

g= (2P0J~c30 - ZPMfMO)f/(Po) -
2i(po(qo + 93) — Pmam)

with f,w =i(q,a, — q,a,). 1t is easy to verify that (48)
includes all three cases we discussed above: in the case of
the parallel electric field, two expressions of (48) give the
same result; in the case of the static perpendicular electric
or magnetic field, only the second expression should be
used. In all three cases, g is independent of pz. This is a
necessary condition for & j?o) to be a valid zeroth order

solution as stressed above. However, any other field
perturbations would not allow for a p; independent g;
thus, no more solutions can be found.

The lack of a nontrivial solution may sound odd. Indeed,
it is actually an artifact of the collisionless limit we work in.
In the absence of interaction between LL states, the

, (48)

dynamics of LL states is restricted to classical longitudinal
motion. This can be induced by the parallel electric field
leading to the chiral magnetic wave. The perpendicular
electric or magnetic fields necessarily lead to the quantum
transition between LL states. Although our background and
the zeroth order solutions are restricted to be LLL states in
equilibrium and its redistribution, the medium dependent
contribution to self-energy components in (29) and (34)
effectively go beyond LLL approximation. This is can be
seen by noting the field theoretic results of the self-energy
in LLL approximation is always proportional to B from the
density of states of LLL, but the medium dependent
contributions are O(B°), which is likely due to higher
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LL contributions. As remarked above, the quantum tran-
sition from LLL to higher LL is not possible without
interaction. The only possible solutions are static ones in
which no dynamics is involved. In other words, although
these static solutions can be found, solutions corresponding
the dynamical realization of these states are not possible in
the absence of collision. The collisionless limit also lies
behind the disagreement of the static limit of (22) and (29).
We expect a consistent limit will be reached by including
collision. We leave it for future work.

V. SUMMARY AND OUTLOOK

By using chiral kinetic theory with Landau level states,
we studied the photon self-energy in magnetized chiral
plasma from the response to electromagnetic field pertur-
bations. In the regime of the strong magnetic field, we
studied the response of chiral plasma to three different field
perturbations: the parallel electric field, and the static
perpendicular electric and static perpendicular magnetic
fields. They give rise to components of self-energy in
different kinematics. The three perturbations lead to the
chiral magnetic wave, drift state, and tilted state, respec-
tively. From the case of the chiral magnetic wave, we obtain
self-energy components, which are in agreement with field
theoretic results up to the accuracy of the chiral kinetic
theory. From the cases of drift state and tilted state, we
obtain components of self-energy in the static case. We also
compared the solutions of the drift state and tilted state with
boosted and rotated background solutions, respectively.
The difference is understood from the spatial dependence
of the perturbations.

We further showed no solution can be found in response
to other more general perturbations. We argued that it is an
artifact of the collisionless limit in which we work. Without
collisions, quantum transition between LL states is not
possible but only the classical motion of the LL state is
allowed. As a result, the drift state and tilted state cannot be
realized dynamically but can only be found as static
solutions. To study more general perturbations, it is crucial
to introduce collision. It can be done by promoting the
photon as a dynamical field, which mediates the interaction
between LL states. It would also allow us to study the self-
energy of LL states and the photon in a systematic way. We
hope to address these in the future.
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APPENDIX A: CHIRAL KINETIC EQUATIONS
FOR LEFT-HANDED FERMION

The chiral kinetic equation for left-handed fermions can
be derived from the equation of motion for the correspond-
ing Wigner function W:

1 ). 1 . _
(EA”—zpﬂ)G”W—O, <§Aﬂ+lpﬂ> Wé*=0. (A1)

The difference with the counterpart of right-handed fer-
mions is o# — 6. We then decompose the Wigner function
into components j* as

W = j°1 + jio;. (A2)
This decomposition keeps the integral representation of
current (7) the same for left-handed fermions. The chiral

kinetic equations for components follow immediately
from (A1)

Aoj0 = AjF =0,
poj’ = pij' =0,
Agj' = A0 =267 pjjt,
. 1 ..

—-poj + pij° - EeukAjJ'k =0. (A3)
They are obtainable from the counterpart of right-handed
fermions by the replacement A; - —A; and p; — —p;. It
follows that the contributions of left-handed fermions and
right-handed fermions to self-energy are related by the

replacement g; — —q;, which agrees with what we used in
the text.

APPENDIX B: COVARIANCE OF THE
BACKGROUND SOLUTION

In this appendix, we show the covariance of the back-
ground solution (30). We first write down the covariant
chiral kinetic equations

A =0, (Bla)
—Byju + By + 2640”7 =0, (B1b)
pujt =0, (Blc)
Pulyv = Puiu + %eﬂmN’j” =0, (Bld)

with A, =0, — aim (Fu =+ fu)- F,, can be decomposed as

F. = €u)sB"u’ + E,u, — E u,. Here v is a unit vector
corresponding to fluid velocity. E, = F, u” and B =
Te" Py, F,; are electric and magnetic fieldS in the fluid.

We further define B¥ = Bb* with b* being a direction
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vector of the magnetic field. By definition we have u-b5=0.
The solution (8) corresponds to u* = (1,0,0,0) and
b* =(0,0,0,1). We will not consider a general wu*,
but restrict ourselves to the case with flow
(1,0,0,0) + O(9yx), i.e., flows which deviate from the
static flow only by the gradient term. Thus E, ~ O(0y),
allowing us to neglect the electric field terms in A,,. To the

lowest order in gradient A, = %Beﬂywb/’u”.
pb
We begin by noting that (B1d) is equivalent to (B1b).
This can be shown by multiplying (B1d) by e*’* and using

the identity

ut =

apuv
P €upo

= 28250 — 535)). (B2)

Below we show at the lowest order in gradient (B1a), that
(Blc) and (Bld) are indeed satisfied by the following
covariant solution:

J o (utbyS(p- (u+b)er/Bf(p-u), (B3)

with p2 = —p% + (p-u)?> — (p - b)>. We first see (Bla)
and (Blc) are satisfied by the antisymmetry of the indices
and on-shell conditions:

. 0
Aﬂ_]” ~ a—pyBE‘,wpg

Pt ~p-(u+b)s(p-(u+b))=0.

bus (u+ b =0,

(B4)

Equation (B1d) requires some work:

1
Py =prt+ 56”””%,,]'”
~ (p"(u+b)" = p*(u+ b))
x8(p- ((u+b)e /B f(p-u)
1 vpo 9 a
+§€” ’ 8—mB€paaﬁb uﬁ(u + b)o'é(p : (u + b))

x e PHBf(p - u) (85)

The second term can be simplified by noting that % can

pull out p,, u;, and b,. The last two cases always vanish
when contracting with ep,mﬁb“uﬂ. Keeping only the p,
contribution and using the following identity:

7€ poy = — (0455 + S5 + 30405

— 8,840 — 830487 — 8.0555),  (B6)

we obtain from (B5)

~p - (u+b)(B'u — b u)3(p - (u+b))e P/Ef(p - u),
(B7)

which vanishes by the on-shell condition.
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