
 

Photon self-energy in a magnetized chiral plasma from kinetic theory
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We study the photon self-energy in magnetized chiral plasma by solving the response of electromagnetic
field perturbations in chiral kinetic theory with Landau level states. With lowest Landau level
approximation and in the collisionless limit, we find solutions for three particular perturbations: the
parallel electric, static perpendicular electric field, and static perpendicular magnetic field, corresponding to
chiral magnetic wave, drift state, and tilted state, from which we extract components of photon self-energy
in different kinematics. We that show no solution is possible for more general field perturbations. We argue
that this is an artifact of the collisionless limit: while static solutions corresponding to the drift state and
tilted state can be found, they cannot be realized dynamically without interaction between Landau levels.
We also discuss the possible manifestation of side-jump effects due to both boost and rotation, with the
latter due to the presence of background magnetic field.
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I. INTRODUCTION

There has been a long history of work towards an under-
standing of vacuum polarization by electromagnetic fields.
The full effective action of vacuum for an arbitrary constant
electromagnetic field was established by Heisenberg and
Euler [1], who predicted the critical electric field in vacuum.
It was later realized by Schwinger [2] that the critical electric
field leads to pair production. On the other hand, while
the magnetic field does not destabilize the vacuum, it does
modify vacuum properties, such as enhancing the pair
production rate [3] and causing vacuum birefringence
[4–6]; see [7,8] for recent reviews.
Recently there has been growing interest in the effect of

the magnetic field in the chiral medium in a variety of
systems including quark-gluon plasma, Weyl semimetal,
etc. Themagnetic field in the chiralmedium is known to lead
to novel anomalous transport such as the chiral magnetic
effect [9–12], chiral separation effect [13,14], chiral mag-
netic wave [15], etc. Furthermore, the presence of magnetic
field also modifies existing transport coefficient-like con-
ductivities [16–23] and viscosities [24,25] nontrivially. In
the regime of the linear response, these transport phenomena
are characterized by photon self-energy in the magnetized

chiral medium. In the presence of the magnetic field, the
photon self-energy contains a very rich structure and is also
very complicated in general. There have been many field
theoretic attempts to study the photon self-energy [26–29];
see also studies on gluon self-energy [30,31].
A distinguishing feature of the chiral fermion from the

classical particle is its spin, which is a genuine quantum
quantity measured in ℏ. A semi-classical expansion in ℏ
gives rise to the chiral kinetic theory (CKT) [32–57]. It has
been successfully applied to study the transport phenomena
of the chiral medium in response to the weak electromag-
netic field [58–61], where each power of electromagnetic
field contributesOðℏÞ. In the regime of the strong magnetic
field, a different expansion scheme is used giving rise to a
chiral kinetic theory based on Landau level (LL) states
[18,22,62]. The purpose of this paper is to apply this chiral
kinetic theory to study the photon self-energy in magnet-
ized chiral plasma as an alternative approach to the self-
energy problem. For simplicity, we work in the strong
magnetic field and collisionless limit. We will reproduce
the field theoretic results to the accuracy of the CKT
approach and show some new results for the drift state and
tilted state.
The paper is organized as follows: in Sec. II, we

summarize generalities of photon self-energy, in Sec. III,
we give a short review of chiral kinetic equations based on
LL states and analyze the structure of equations, and in
Sec. IV, we present solutions corresponding to three
specific perturbations and discuss the physical implications
of them. We further show it is not possible to obtain more
solutions for more general perturbations. We will argue
that it is an artifact of the collisionless limit; in Sec. V we
summarize the results and discuss future directions.
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Throughout this paper, we primarily study the chiral
medium consisting of right-handed fermions with charge
Q ¼ jej. Contribution of left-handed fermions will be added
when comparing with field theoretic results. For simplicity,
we set e ¼ 1 and reinstate it in the end.We use the following
nonstandard convention pμ ¼ ðp0; p1; p2; p3Þ for conven-
ience. The magnetic field points in the x3 direction.

II. GENERALITIES OF PHOTON SELF-ENERGY
IN A MAGNETIZED MEDIUM

The photon self-energy in the imaginary time formalism
is defined by [63]

Πμν
E ðx; x0Þ ¼ hT̂ðJμEðxÞJνEðx0ÞÞi ¼

δJμEðxÞ
δAE

ν ðx0Þ
; ð1Þ

where T̂ denotes time ordering in Euclidean time. We can
rewrite (1) in a simpler form in momentum space:

δJμEðqÞ ¼ Πμν
E ðqÞδAE

ν ðqÞ: ð2Þ

Note that the Euclidean frequency q4 takes discrete values
of Matsubara frequencies 2πnT, with T being temperature.
It can be analytically continued to the complex frequency
plane. Taking q4 → iðq0 þ iϵÞ, we obtain the more useful
retarded photon self-energy

δJμðqÞ ¼ Πμν
R ðqÞδAνðqÞ; ð3Þ

with J4EðqÞ → iJ0ðqÞ and A4
EðqÞ → iA0ðqÞ. Equation (3)

expresses the current as a response to external electromag-
netic field perturbation, which can be studied in kinetic
theory. We will mainly study retarded self-energy in
the paper.
For a parity breaking chiral medium consisting of right-

handed fermions, Πμν
R is, in general, not symmetric in the

Lorentz indices. Nevertheless, Πμν
R is still constrained by an

anomalous Ward identity. To derive an anomalous Ward
identity in the regime of the strong magnetic field, we note
that there is an effective dimensional reduction from
3þ 1D to 1þ 1D. In this regime, the most interesting
perturbations are time and longitudinal components of
photon fields δA0 ≡ a0 and δA3 ≡ a3. For the right-handed
current indicated by the subscript r in the background
magnetic field, the Ward identity is given by

∂μJ
μ
r ¼ 1

ð2πÞ2 E3B: ð4Þ

Here, E3 ¼ ∂0a3 − ∂3a0 is an electric field induced by
perturbations. With the Fourier transforming equation (4)
and doing variation with respect to a0 and a3, we obtain the
following constraints:

qμΠ
μ0
R;r ¼

1

ð2πÞ2 ð−q3ÞB;

qμΠ
μ3
R;r ¼

1

ð2πÞ2 q0B: ð5Þ

Note that the anomalous Ward identity (5) is satisfied
by the correlator of the right-handed and vector current
Πμν

R;r ≡ hJμrJνiR. To obtain the self-energy of the photon, the
correlator of the left-handed and vector current Πμν

R;l ≡
hJμl JνiR needs to be added. The photon self-energy given
by the sum of the right-handed and left-handed contribu-
tions is nonanomalous, as required by conservation of the
vector current. With an abuse of language, we will use self-
energy to refer to Πμν

R;r and Πμν
R;l as well.

III. CHIRAL KINETIC EQUATIONS
WITH LANDAU LEVELS

The chiral kinetic equations with Landau level states of
the right-handed fermion are given by [22]

Δ0j0 þ Δiji ¼ 0;

p0j0 þ piji ¼ 0;

Δ0ji þ Δij0 þ 2ϵijkpjjk ¼ 0;

−p0ji − pij0 þ
1

2
ϵijkΔjjk ¼ 0; ð6Þ

with Δμ ¼ ∂X
μ − ðFμν þ fμνÞ ∂

∂pν
for μ ¼ 0, 1, 2, 3. We

use greek letters for spacetime indices and small roman
letters for spatial indices. Fμν corresponds to the back-
ground magnetic field with the only nonvanishing compo-
nents F12 ¼ −F21 ¼ −B. fμν ¼ ∂X

μaν − ∂X
ν aμ corresponds

to the perturbation of the electromagnetic field.
Equation (6) is derived based on an expansion in ℏ or,
equivalently, in ∂X with fμν ∼Oð∂XÞ but B ∼Oð∂0

XÞ. It is
valid up to Oð∂XÞ and to all order in B, which implicitly
assumes the hierarchy of scales ∂X ≪ p. Solving (6) we
can obtain jμ and the momentum integral of jμ gives the
induced current Jμ

JμðXÞ ¼
Z

d4pjμðX; pÞ: ð7Þ

In the absence of perturbation, the background in the lowest
Landau level (LLL) approximation is given by

j0¼j3¼ 2

ð2πÞ3δðp0þp3Þe−p2
T=Bfðjp0jÞ; j1¼j2¼0; ð8Þ

with p2
T ¼ p2

1 þ p2
2 and f�ðjp0jÞ ¼ 1

eðjp0 j∓μrÞ=Tþ1
being the

Fermi-Dirac distribution. The upper/lower sign is for
positively/negatively charged LLL states. The subscript r
in μ indicates it is a chemical potential for right-handed
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fermions. Higher LL states are massive from the 1þ 1D
point of view with mass ∼

ffiffiffiffiffiffi
nB

p
; thus, their contributions

are exponentially suppressed ∼e−
ffiffiffiffiffi
nB

p
=T in the large B limit.

For the LLL background, the momentum dependence
factorizes into e−p

2
T=B, which is from the LLL wave

function, and fðjp0jÞ¼fðjp3jÞ. The dispersion p0¼−p3

is due to our nonstandard convention for momentum.
Since (6) is valid to Oð∂XÞ, we seek the solution of jμ

order by order in the following gradient:

δjμ ¼ δjμð0Þ þ δjμð1Þ þ � � � ; ð9Þ

with the subscript indicating the order of the gradient. We
use δ to distinguish the induced jμ from the background
one. The terms of Oð∂2

XÞ are beyond the accuracy of (6).
Substituting (9) into (6), we obtain to order Oð∂0

XÞ and
Oð∂XÞ, respectively,

Diδjið0Þ ¼ 0;

Diδj0ð0Þ þ 2ϵijkpjδjkð0Þ ¼ 0;

p0δj0ð0Þ þ piδjið0Þ ¼ 0;

−p0δjið0Þ − piδj0ð0Þ þ
1

2
ϵijkDjδjkð0Þ ¼ 0; ð10Þ

and

Diδjið1Þ ¼ S;

Diδj0ð1Þ þ 2ϵijkpjδjkð1Þ ¼ V1
i ;

p0δj0ð1Þ þ piδjið1Þ ¼ 0;

−p0δjið1Þ − piδj0ð1Þ þ
1

2
ϵijkDjδjkð1Þ ¼ V2

i ; ð11Þ

with the right-hand side defined as

S ¼ −ðδΔ0j0 þ δΔiji þ ∂0δj0ð0Þ þ ∂iδjið0ÞÞ;
V1
i ¼ −ðδΔ0ji þ δΔij0 þ ∂0δjið0Þ þ ∂iδj0ð0ÞÞ;

V2
i ¼ −

�
1

2
ϵijkδΔjjk þ

1

2
ϵijk∂jδjkð0Þ

�
: ð12Þ

We have defined Di ¼ − ∂
∂pj

Fij and δΔμ ¼ − ∂
∂pν

fμν. We

also use the shorthand notation ∂μ ¼ ∂X
μ . The structure of

the equations are quite informative: (10) and (11) can be
viewed as equations for δjμð0Þ and δjμð1Þ, respectively.

The only difference is that the former are homogeneous
and the latter are inhomogeneous. The homogeneous
equations cannot uniquely determine δjμð0Þ. The source of

inhomogeneous equations involves perturbations and the
undetermined δjμð0Þ. Nevertheless, (10) and (11) can still

be solved thanks to the over-determinacy of the equations.

The situation is similar to conventional CKT, where the
over-determinacy of equations can be used to fix homo-
geneous and inhomogeneous solutions at the same order in
the gradient expansion; see, for example, [64]. In CKTwith
Landau levels, the homogeneous solution δjμð0Þ and inho-

mogeneous solution δjμð1Þ appear at different orders.
Before closing this section, we verify that the first

equation of (11) is consistent with the anomalous Ward
identity. We integrate the equation over the four-momen-
tum and reorganize it as

Z
d4pð∂μδj

μ
ð0ÞÞ ¼ −

Z
d4pðDiδjið1Þ þ δΔ0j0 þ δΔ3j3Þ:

ð13Þ

By our nonstandard convention, we identify the lhs as ∂μJμ.
For the rhs, the first term becomes the boundary term upon
integration over the transverse momentum

Z
d2pTDiδjið1Þ ¼

Z
d2pT

∂
∂pM

BϵMNδjNð0Þ ¼ 0; ð14Þ

with the capital roman letters running over indices in the
plane perpendicular to the background magnetic field
M;N ¼ 1, 2. The second terms can be written explicitly as

Z
d4p

�� ∂
∂pM

f0M þ ∂
∂p3

f03

�
j0

þ
� ∂
∂p0

f30 þ
∂

∂pM
f3M

�
j3
�
: ð15Þ

The terms involving ∂
∂pM

vanish for the same reason as
above. Using (8) and including contributions from both
positively and negatively charged LLL states, we can
combine the remaining terms as

Z
d4p

� ∂
∂p3

−
∂

∂p0

�
f03

2

ð2πÞ3 expð−p
2
T=BÞ

× δðp0 þ p3Þðfþðjp0jÞ − f−ðjp0jÞÞ

¼ E3B
ð2πÞ2

�Z
∞

0

dp0

�
−

∂
∂p0

�
fþðjp0jÞ

−
Z

0

−∞
dp0

�
−

∂
∂p0

�
f−ðjp0jÞ

�

¼ E3B
ð2πÞ2 ðfþð0Þ þ f−ð0ÞÞ ¼

E3B
ð2πÞ2 : ð16Þ

Therefore, we reproduce anomalous Ward identity. There is
a caveat in the above derivation in that we have taken the IR
momentum cutoff Λ to zero. Note that the validity of the
kinetic theory requires p ≫ ∂X; thus, we expect Λ≳ ∂X. It
follows that the factor fþðΛÞ þ f−ðΛÞ ¼ 1þOð∂XÞ. Note
that E3 ∼Oð∂XÞ and B ∼Oð∂0

XÞ. What (16) shows is that
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the anomalous Ward identity is satisfied up to corrections of
Oð∂2

XÞ. We will not attempt to obtain this correction as it lies
beyond the accuracy of the kinetic theory. It is also interesting
to note that in conventional CKT without the background
magnetic field, the anomaly appears by virtue of level
crossing inside the region of jpj < Λ; see, for example,
[34]. InCKTwith the Landau level basis, an anomaly appears
manifestly from the level crossing of the LLL state alone.
Belowwewill simply setΛ ¼ 0 in the remainder of the paper.

IV. SELF-ENERGY FROM SOLUTIONS
TO KINETIC EQUATIONS

In this section, we present solutions to (10) and (11),
which allow us to extract components of self-energy in
different kinematics, which in fact correspond to different
states. After presenting three simple solutions, we will
show that no more solutions are possible. Wewill argue that
this is an artifact of the collisionless limit.

A. Parallel E field: Chiral magnetic wave

We begin with the case of the parallel E field, which can
be induced by either a0ðt; x3Þ or a3ðt; x3Þ. This case can be
simplified by noting that the parallel electric field only
induces the longitudinal motion of LLL states, which is
classical. Therefore, the motion leads only to the redis-
tribution of LLL states like in classical kinetic theory. On
the other hand, we show in [22] that the LLL state with
arbitrary distribution fðp0Þ satisfies the CKT equation (6)
[65]. Note that (10) is nothing but truncation of (6) to order
Oð∂0

XÞ. Thus, a solution corresponding to the redistribution
of LLL states with a slow-varying fðp0; XÞ satisfies (10)
automatically. Since we don’t expect solution other than
redistribution of LLL states, we set δjμð1Þ ¼ 0. In order for

(11) to hold, we need to require the inhomogeneous terms
to vanish: S ¼ V1

i ¼ V2
i ¼ 0. This allows us to fix δjμð0Þ

from the following constraint equations:

f03

� ∂
∂p3

−
∂

∂p0

�
j0 − ð∂0 þ ∂3Þδj0ð0Þ ¼ 0: ð17Þ

In arriving at (17), we have used the property of the LLL
state δj0ð0Þ ¼ δj3ð0Þ and assumed all ∂M to vanish because the

field perturbation f03 ¼ ∂0a3 − ∂3a0 is independent on xT .
Equation (17) can be solved easily in momentum space as

δj0ð0Þ ¼ δj3ð0Þ ¼
2

ð2πÞ3 expð−p
2
T=BÞδðp0 þ p3Þ

× f0ðp0Þ
q3

q0 þ iϵþ q3
a0;

δj0ð0Þ ¼ δj3ð0Þ ¼ −
2

ð2πÞ3 expð−p
2
T=BÞδðp0 þ p3Þ

× f0ðp0Þ
q0

q0 þ iϵþ q3
a3; ð18Þ

for perturbations a0ðt; x3Þ and a3ðt; x3Þ, respectively. Again
fðp0Þ can be f�ðjp0jÞ for solutions corresponding to
positively and negatively charged LLL states. We have
made the substitution q0 → q0 þ iϵ so that the solution
corresponds to the retarded response.
Integrating the solution (18) over the four-momentum

and using the following identity

Z
∞

0

dp0f0þðjp0jÞ −
Z

0

−∞
dp0f0−ðjp0jÞ

¼ −fþð0Þ − f−ð0Þ ¼ −1; ð19Þ

we obtain the following retarded self-energy components
from (3):

Π00
R;rðq0; q3Þ ¼ Π30

R;rðq0; q3Þ ¼ −
e3B
ð2πÞ2

q3
q0 þ iϵþ q3

;

Π03
R;rðq0; q3Þ ¼ Π33

R;rðq0; q3Þ ¼
e3B
ð2πÞ2

q0
q0 þ iϵþ q3

: ð20Þ

We have reinstated the powers of e in the above. Note that
(20) is independent of temperature and chemical potential.
This is because the integration over p0 only picks up
boundary terms at p0 ¼ 0, similar to (16). We can verify
(20) indeed satisfies (5). The pole of Πμν

R;r gives the
dispersion relation q0 þ q3 ¼ 0 of the collective excitation
of the chiral medium. It corresponds to a wave propagating
with the speed of light in the x3 direction. In fact, this is
nothing but the chiral magnetic wave in the limit of the
strong magnetic field [15].
It is also interesting to note that Πμν

R;r is not symmetric
with respect to Lorentz indices. The reason is that the states
consisting of right-handed fermions are not parity invariant.
Applying parity transformation on (20), we obtain the
components of self-energy for the medium consisting of
left-handed fermions

Π00
R;lðq0; q3Þ ¼ −Π30

R;lðq0; q3Þ ¼
e3B
ð2πÞ2

q3
q0 þ iϵ − q3

;

−Π03
R;lðq0; q3Þ ¼ Π33

R;lðq0; q3Þ ¼
e3B
ð2πÞ2

q0
q0 þ iϵ − q3

: ð21Þ

These results can also be obtained from explicit solutions of
the chiral kinetic theory for the left-handed medium, which
we collect in Appendix A. Adding up contributions from
both left-handed and right handed fermions, we obtain the
following components of self-energy for the parity invari-
ant state:
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Π00
R ðq0; q3Þ ¼

e3B
ð2πÞ2

2q23
ðq0 þ iϵÞ2 − q23

;

Π03
R ðq0; q3Þ ¼ Π30

R ðq0; q3Þ ¼ −
e3B
ð2πÞ2

2q0q3
ðq0 þ iϵÞ2 − q23

;

Π33
R ðq0; q3Þ ¼

e3B
ð2πÞ2

2q20
ðq0 þ iϵÞ2 − q23

: ð22Þ

These agree with field theoretic results in the LLL
approximation up to an overall factor of e−q

2
T=B [66].

The exponential factor is at least Oð∂2
XÞ, which lies beyond

the accuracy of our current chiral kinetic equation.

B. Static perpendicular E field: Drift state

Next we consider the case of static perpendicular E
induced by a0ðxTÞ. We begin by solving for δj0ð1Þ and δj3ð1Þ
from the third and i ¼ 3 component of the fourth equations
of (11) to obtain

� δj0ð1Þ
δj3ð1Þ

�
¼ 1

p2
0 − p2

3

�−p0pMδjMð1Þ − p3
1
2
ϵMNDMδjNð1Þ

p3pMδjMð1Þ þ p0
1
2
ϵMNDMδjNð1Þ

�
:

ð23Þ

We proceed with the following ansatz:

δjMð1Þ ∝ expð−p2
T=BÞδðp0 þ p3Þ; ð24Þ

which converts (11) to the following equivalent equations:

BδjMð1Þ
2ðp0 þp3Þ

−p0δjMð1Þ ¼ −
1

2
ϵMNEN

∂
∂p0

j0 −
1

2
ϵMN∂Nδj3ð0Þ;

2ϵMNpMδjNð1Þ ¼ −
2EMpM

B
j0;

ϵMNδjNð1ÞB

p0 þp3

þ 2ϵMNδjNð1Þp3 ¼ EM
∂

∂p0

j0 þ ∂Mδj0ð0Þ; ð25Þ

with EN ¼ −∂Na0 being the perpendicular electric field
perturbation. Equation (25) adopts the following solution:

δj0ð0Þ ¼ δj3ð0Þ ¼ a0

�
−δ0ðp0 þ p3Þ −

2p0

B
δðp0 þ p3Þ

�

× expð−p2
T=BÞfðp0Þ;

δjMð1Þ ¼
ϵMNEN

B
δðp0 þ p3Þ expð−p2

T=BÞfðp0Þ;

δj0ð1Þ ¼ δj3ð1Þ ¼
ϵMNpMEN

B
δ0ðp0 þ p3Þ expð−p2

T=BÞfðp0Þ:
ð26Þ

Using δ0ðp0þp3Þfðp0Þ¼−δðp0þp3Þf0ðp0Þ, we see that
the zeroth order solution δjμð0Þ is simply a redistribution of

LLL states with δfðp0Þ ¼ a0ðf0ðp0Þ − 2p0

B fðp0ÞÞ; thus,
(10) is automatically satisfied.
Integrating the solution over the four-momentum and

using the following integrals:

Z
∞

0

dp0p0fþðjp0jÞ −
Z

0

−∞
dp0p0f−ðjp0jÞ ¼

π2T2

6
þ μ2r

2
;

Z
∞

0

dp0fþðjp0jÞ −
Z

0

−∞
dp0f−ðjp0jÞ ¼ μr;

we find the following components of self-energy after
reinstating powers of e:

Π00
R;rðqMÞ ¼ Π30

R;rðqMÞ ¼ −
e2

ð2πÞ2
�
eBþ π2T2

3
þ μ2r

�
;

ΠM0
R;rðqMÞ ¼ −

e2

ð2πÞ2 iϵ
MNqNμr: ð27Þ

Equation (27) satisfies (5) trivially because q0 ¼ q3 ¼ 0.
Note that δj0ð1Þ and δj3ð1Þ are the odd function of pT , which

vanishes upon integration over pT, and thus do not
contribute to self-energy. A counterpart for the left-handed
contribution can be obtained by parity transformation as in
the previous case. Note that under parity transformation
μr → μl, we arrive at

Π00
R;lðqMÞ ¼ −Π30

R;lðqMÞ ¼ −
e2

ð2πÞ2
�
eBþ π2T2

3
þ μ2l

�
;

−ΠM0
R;l ðqMÞ ¼

e2

ð2πÞ2 iϵ
MNqNμl: ð28Þ

Adding up contributions from both (27) and (28), we obtain
the following nonvanishing components for photon self-
energy:

Π00
R ðqMÞ ¼ −

2e2

ð2πÞ2
�
eBþ π2T2

3
þ μ2 þ μ25

�
;

Π30
R ðqMÞ ¼ −

4e2

ð2πÞ2 μμ5;

ΠM0
R ðqMÞ ¼ −

2e2

ð2πÞ2 iϵ
MNqNμ; ð29Þ

with μ ¼ ðμr þ μlÞ=2 and μ5 ¼ ðμr − μlÞ=2. Note that
unlike the case of the parallel electric field, the case of
the perpendicular electric field gives rise to medium
dependent self-energy components. In particular, the
medium dependent terms in Π00

R and Π30
R would not appear

in the static limit q0 → 0 of (22). The difference can be
understood as follows: the solutions from parallel and
perpendicular electric fields correspond to a different state:
the parallel electric field leads to the redistribution of LLL
states, while the perpendicular electric field leads to a drift
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state, with the medium drifting with a velocity orthogonal
to both EM and B. In the drift state, Hall current is expected
and is consistent with ΠM0

R above. Π00
R and Π30

R give the
deviation of charge density and current density of the drift
state from those of the background. Interestingly, the
deviation coincides with the 00 component of the self-
energy in the chiral medium without the background
magnetic field [67].
We can gain further insight into the drift state by

“boosting” the equilibrium state. It is not difficult to see
that by boosting the equilibrium medium to a velocity

− ϵMNEN
B , we will then have the orthogonal electric field EM

and background magnetic field B [68]. To describe it more
quantitatively, we use the covariant form of the background
solution

jμ ¼ 2

ð2πÞ3 δðp · ðuþ bÞÞe−p2
T=Bfðp · uÞðuþ bÞμ; ð30Þ

which generalizes the solution in the medium frame to
arbitrary frame. We verify in Appendix B that it indeed
satisfies the covariant chiral kinetic equations to the lowest
order in gradient. Here uμ and bμ denote fluid velocity and
magnetic direction and p2

T ¼ −p2 þ ðp · uÞ2 − ðp · bÞ2. uμ
and bμ are orthogonal to each other u · b ¼ 0. In the
medium frame, we have uμ ¼ ð1; 0; 0; 0Þ and bμ ¼
ð0; 0; 0; 1Þ. Under the boost, we have δuM ¼ ϵMNEN

B ∼
Oð∂XÞ and δb ¼ 0. It is easy to see that δuM leads to
δjMð1Þ. The remaining corrections are not from covariance

and are only present in δj0 and δj3. At zeroth order δj0ð0Þ
and δj3ð0Þ come from the fact that the electric field

perturbation is not constant but xT dependent. In fact, a0
in (26) should be interpreted as a0 ∼ EM=∂M; thus, the
zeroth order correction characterizes the redistribution
of LL states in response to perturbation. A similar correc-
tion to the zeroth order solution is also present in chiral
kinetic theory without the background field [33]. At the
first order, δj0ð1Þ and δj3ð1Þ are entirely determined by δjMð1Þ
from (23), which as we discussed above is not sensitive to
the xT dependence of the perturbation. Note that
δ0ðp0 þ p3Þfðp0Þ ¼ −δðp0 þ p3Þf0ðp0Þ. It is suggestive
to interpret δj0ð1Þ and δj3ð1Þ as a modification of the

distribution function fðp0Þ → fðp0Þ − ϵMNpMEN
B f0ðp0Þ ¼

fðp0 −
ϵMNpMEN

B Þ, or p0 → p0 −
ϵMNpMEN

B . This is analogous
to the side-jump effect in the momentum in the absence of a
background field [38,69]. Note that since our background
solution is homogeneous in coordinate, a possible jump in
coordinate is not visible from our comparison. We should
not confuse the frame vector frequently used in the
description of the side jump with the fluid velocity uμ.
The latter is needed to define the magnetic field in the
background.

C. Static perpendicular B field: Tilted state

We turn to the case of the static perpendicular magnetic
field induced by a3ðxTÞ. The analysis is similar to the
previous subsection. We will not spell out the details. With
the ansatz δjMð1Þ ∝ expð−p2

T=BÞδðp0 þ p3Þ, we obtain the

following solution:

δj0ð0Þ ¼ δj3ð0Þ ¼
�
−
2p0

B
δðp0 þp3Þ expð−p2

T=BÞfðp0Þ
�
a3;

δj0ð1Þ ¼ δj3ð1Þ ¼
pMB⊥

M

B
δ0ðp0 þp3Þexpð−p2

T=BÞfðp0Þ;

δjMð1Þ ¼
B⊥
M

B
δðp0 þp3Þexpð−p2

T=BÞfðp0Þ; ð31Þ

with B⊥
M ¼ −ϵMN∂Na3 being the perpendicular magnetic

field. It gives rise to the following components of self-
energy:

Π03
R;rðqMÞ ¼ Π33

R;rðqMÞ ¼ −
e2

ð2πÞ2
�
π2T2

3
þ μ2r

�
;

ΠM3
R;rðqMÞ ¼ −

e2

ð2πÞ2 iϵ
MNqNμr; ð32Þ

which again satisfies (5) trivially as q0 ¼ q3 ¼ 0. The
contribution from left-handed fermions can be obtained by
the parity transformation to give

− Π03
R;lðqMÞ ¼ Π33

R;lðqMÞ ¼ −
e2

ð2πÞ2
�
π2T2

3
þ μ2l

�
;

ΠM3
R;l ðqMÞ ¼

e2

ð2πÞ2 iϵ
MNqNμl: ð33Þ

The combined photon self-energy components are

Π03
R ¼ −

4e2

ð2πÞ2 μμ5;

Π33
R ðqMÞ ¼ −

2e2

ð2πÞ2
�
π2T2

3
þ μ2 þ μ25

�
;

ΠM3
R ðqMÞ ¼ −

2e2

ð2πÞ2 iϵ
MNqNμ5: ð34Þ

Comparing (32) with the static limit of 03 and 33
components of (22), which vanishes identically, we see
the difference is also medium dependent. We can see that
ΠM3

R gives precisely the chiral magnetic effect due to B⊥:

JM ¼ ΠM3
R a3 ¼ −

2e2

ð2πÞ2 ϵ
MN∂Na3μ5 ¼

2e2

ð2πÞ2 μ5B
⊥
M: ð35Þ

ΠM3
R also agrees with components of parity odd self-energy

in the absence of the background field [33], which is
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responsible for the chiral magnetic effect. These particular
components of self-energy actually give rise to chiral
plasma instability [67]. We can see some trace from the
backreaction of the induced chiral magnetic current to the
electromagnetic field. The induced magnetic field ΔB can
be found by solving the Maxwell equation

ð∇ × ΔBÞM ¼ JM; ð36Þ

with the solution given byΔBi ¼ 2e2

ð2πÞ2 μ5a3δi3. It can lead to

the enhancement of the background magnetic field.
However, to answer the question dynamically, we need
to know the self-energy beyond the static limit.
Let us again compare the tilted state with the equilibrium

state rotated in such a way that the background magnetic
field coincides with that of the tilted state [70]. We can use
the covariant form of the background solution (30) with
δbM ¼ B⊥

M=B and δu ¼ 0. δbM gives precisely δjMð1Þ from
the covariant factor ðuþ bÞμ. The remaining difference
between the tilted state and equilibrium state is in δj0

and δj3. The tilted state is not entirely equivalent to the
rotated equilibrium state because of the xT dependence of
the perpendicular magnetic field. The xT dependence leads
to the difference in δj0ð0Þ and δj3ð0Þ. On the contrary,

δj0ð1Þ and δj3ð1Þ are fixed by δjMð1Þ through (23); thus, they

are not sensitive to the xT dependence of the perturbation.
Using δ0ðp0 þ p3Þfðp0Þ ¼ −δðp0 þ p3Þf0ðp0Þ, we inter-
pret δj0ð1Þ and δj3ð1Þ as modifications of the distribution

function: fðp0Þ → fðp0Þ − pMBM
B f0ðp0Þ ¼ fðp0 −

pMBM
B Þ,

or p0 → p0 −
pMBM

B . Like in the case of the drift state, it
is suggestive to interpret the modification of distribution
function as an analog to the side-jump effect in the
momentum in the absence of the background field
[38,69]. Since our background solution is homogeneous
in the coordinate, a possible jump in coordinate is not
visible. We stress that this is a new effect due to the
background field: the conventional side jump is manifested
through the boost, and in our case the side jump can be
manifested through both boost δu and rotation δb, as we see
in both the drift state and tilted state, respectively.

D. No more solutions

Finally, we look for solutions for more general pertur-
bations without using the ansatz. Since the background is
LLL states in equilibrium and the zeroth order solution
δjμð0Þ is a redistribution of LLL [71], we have j0 ¼ j3
and δj0ð0Þ ¼ δj3ð0Þ with all other components vanishing. It

follows that S ¼ V1
3 and

1
2
ϵMNV1

N ¼ V2
M. We can eliminate

redundant equations in (11) to obtain

DMδjMð1Þ ¼ 2ϵMNpMδjNð1Þ;�
1

2
ϵMNDN þ pM

�
ðδj0ð1Þ − δj3ð1ÞÞ þ ðp0 þ p3ÞδjMð1Þ ¼ 0;

2ϵMNpMδjNð1Þ ¼ −ððδΔ0 þ δΔ3Þj0 þ ð∂0 þ ∂3Þδj0ð0ÞÞ;

ðp0 − p3ÞϵMNδjNð1Þ þ
�
1

2
DM þ ϵMNpN

�
ðδj0ð1Þ þ δj3ð1ÞÞ

¼ −ðδΔMj0 þ ∂Mδj0ð0ÞÞ: ð37Þ

To proceed, we define AM by pulling out a factor of e−p
2
T=B

from δjMð1Þ:

δjMð1Þ ¼ e−p
2
T=BAM: ð38Þ

AM are functions of p and q. The solutions for static
perpendicular electric and magnetic fields correspond to
AM being independent of pM. Plugging (38) into (37) and
dividing out the common factor e−p

2
T=B, we obtain

ϵMN ∂
∂pN

AM ¼ 0; ð39aÞ

−
1

p0−p3

�
2pM−

B
2

∂
∂pM

�
B
2

∂
∂pK

AKþðp0þp3ÞAM ¼ 0;

ð39bÞ

2ϵMNpMAN ¼ −ðδΔ0 þ δΔ3Þδðp0 þ p3Þfðp0Þ
− δðp0 þ p3Þð∂0 þ ∂3Þgðp0; XÞ; ð39cÞ

ðp0−p3ÞϵMNANþ
−1

p0þp3

B
2
ϵMN ∂

∂pN

��
2pK−

B
2

∂
∂pK

�
AK

�

¼−δΔMδðp0þp3Þfðp0Þ−δðp0þp3Þ∂Mgðp0;XÞ: ð39dÞ

We have defined δj0ð0Þ ¼ δðp0 þ p3Þe−p2
T=Bgðp0; XÞ. We

already know δjμð0Þ corresponds to the redistribution of LLL
states, so g has to be a function of p0 and X only. Below we
will show that this is not possible except for the special
cases presented in the above subsections. We first apply
ϵMN ∂

∂pN
to (39b) and use (39a) to arrive at

pMϵ
MN ∂

∂pN

∂
∂pK

AK ¼ 0: ð40Þ

We can also apply ϵMNpN to (39b) and use (40) to obtain

ðp0 þ p3ÞϵMNpMAN ¼ 0: ð41Þ

We then multiply (39d) by pM to obtain
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ðp0 − p3ÞpMϵ
MNAN þ −1

p0 þ p3

B
2
ϵMNpM

×
∂

∂pN

�
2pKAK −

B
2

∂
∂pK

AK

�

¼ −pMδΔMδðp0 þ p3Þfðp0Þ
− δðp0 þ p3ÞpM∂Mgðp0; XÞ: ð42Þ

Using (41) to simplify the first term and using (40) to
eliminate the second term in the round bracket on the lhs,
we arrive at

2p0ϵ
MNpMAN þ −B

p0þp3

�
ϵMNpMAN þ ϵMNpMpK

∂
∂pN

AK

�

¼−pMδΔMδðp0þp3Þfðp0Þ−δðp0þp3ÞpM∂Mgðp0;XÞ:
ð43Þ

The second term in the square bracket can be further
simplified using the following identity:

ϵMNpK þ ϵNKpM þ ϵKMpN ¼ 0: ð44Þ

It follows that

ϵMNpMpK
∂

∂pN
AK ¼ −ðϵNKpM þ ϵKMpNÞpM

∂
∂pN

AK

¼ ϵMNpMpK
∂

∂pK
AN; ð45Þ

where we have used (39a) and relabeled indices in the
second equality. We can then rewrite the square bracket of
(43) as

�
ϵMNpMAN þ ϵMNpMpK

∂
∂pN

AK

�

¼ ϵMNpM

�
1þ ∂

∂pK

�
AN ¼ ϵMN ∂

∂pK
pMAN: ð46Þ

With this, we arrive at the following simple form
of (43):

�
2p0 þ

−B
p0 þ p3

�
ϵMNpMAN

¼ −pMδΔMδðp0 þ p3Þfðp0Þ
− δðp0 þ p3ÞpM∂Mgðp0; XÞ: ð47Þ

We can now plug (39c) into the above and compare the
coefficients of δðp0 þ p3Þ and δ0ðp0 þ p3Þ to determine
gðp0Þ. Note that the coefficients have to be matched

separately rather than using δ0ðp0 þ p3Þ ¼ − δðp0þp3Þ
p0þp3

,

which involves the dropping of boundary terms and is
not always justified. We end up with two expressions
for g:

g ¼ f̃30f0ðp0Þ
iðq0 þ q3Þ

;

g ¼ ð2p0f̃30 − 2pMf̃M0Þf0ðp0Þ − 2p0

B ð2pMf̃0M þ 2pMf̃3MÞfðp0Þ
2iðp0ðq0 þ q3Þ − pMqMÞ

; ð48Þ

with f̃μν ¼ iðqμaν − qνaμÞ. It is easy to verify that (48)
includes all three cases we discussed above: in the case of
the parallel electric field, two expressions of (48) give the
same result; in the case of the static perpendicular electric
or magnetic field, only the second expression should be
used. In all three cases, g is independent of pT . This is a
necessary condition for δj0ð0Þ to be a valid zeroth order
solution as stressed above. However, any other field
perturbations would not allow for a pT independent g;
thus, no more solutions can be found.
The lack of a nontrivial solution may sound odd. Indeed,

it is actually an artifact of the collisionless limit we work in.
In the absence of interaction between LL states, the

dynamics of LL states is restricted to classical longitudinal
motion. This can be induced by the parallel electric field
leading to the chiral magnetic wave. The perpendicular
electric or magnetic fields necessarily lead to the quantum
transition between LL states. Although our background and
the zeroth order solutions are restricted to be LLL states in
equilibrium and its redistribution, the medium dependent
contribution to self-energy components in (29) and (34)
effectively go beyond LLL approximation. This is can be
seen by noting the field theoretic results of the self-energy
in LLL approximation is always proportional to B from the
density of states of LLL, but the medium dependent
contributions are OðB0Þ, which is likely due to higher
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LL contributions. As remarked above, the quantum tran-
sition from LLL to higher LL is not possible without
interaction. The only possible solutions are static ones in
which no dynamics is involved. In other words, although
these static solutions can be found, solutions corresponding
the dynamical realization of these states are not possible in
the absence of collision. The collisionless limit also lies
behind the disagreement of the static limit of (22) and (29).
We expect a consistent limit will be reached by including
collision. We leave it for future work.

V. SUMMARY AND OUTLOOK

By using chiral kinetic theory with Landau level states,
we studied the photon self-energy in magnetized chiral
plasma from the response to electromagnetic field pertur-
bations. In the regime of the strong magnetic field, we
studied the response of chiral plasma to three different field
perturbations: the parallel electric field, and the static
perpendicular electric and static perpendicular magnetic
fields. They give rise to components of self-energy in
different kinematics. The three perturbations lead to the
chiral magnetic wave, drift state, and tilted state, respec-
tively. From the case of the chiral magnetic wave, we obtain
self-energy components, which are in agreement with field
theoretic results up to the accuracy of the chiral kinetic
theory. From the cases of drift state and tilted state, we
obtain components of self-energy in the static case. We also
compared the solutions of the drift state and tilted state with
boosted and rotated background solutions, respectively.
The difference is understood from the spatial dependence
of the perturbations.
We further showed no solution can be found in response

to other more general perturbations. We argued that it is an
artifact of the collisionless limit in which we work. Without
collisions, quantum transition between LL states is not
possible but only the classical motion of the LL state is
allowed. As a result, the drift state and tilted state cannot be
realized dynamically but can only be found as static
solutions. To study more general perturbations, it is crucial
to introduce collision. It can be done by promoting the
photon as a dynamical field, which mediates the interaction
between LL states. It would also allow us to study the self-
energy of LL states and the photon in a systematic way. We
hope to address these in the future.
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APPENDIX A: CHIRAL KINETIC EQUATIONS
FOR LEFT-HANDED FERMION

The chiral kinetic equation for left-handed fermions can
be derived from the equation of motion for the correspond-
ing Wigner function W:

�
1

2
Δμ− ipμ

�
σ̄μW¼ 0;

�
1

2
Δμþ ipμ

�
Wσ̄μ ¼ 0: ðA1Þ

The difference with the counterpart of right-handed fer-
mions is σμ → σ̄μ. We then decompose the Wigner function
into components jμ as

W ¼ j01þ jiσi: ðA2Þ

This decomposition keeps the integral representation of
current (7) the same for left-handed fermions. The chiral
kinetic equations for components follow immediately
from (A1)

Δ0j0 − Δiji ¼ 0;

p0j0 − piji ¼ 0;

Δ0ji − Δij0 − 2ϵijkpjjk;

−p0ji þ pij0 −
1

2
ϵijkΔjjk ¼ 0: ðA3Þ

They are obtainable from the counterpart of right-handed
fermions by the replacement Δi → −Δi and pi → −pi. It
follows that the contributions of left-handed fermions and
right-handed fermions to self-energy are related by the
replacement qi → −qi, which agrees with what we used in
the text.

APPENDIX B: COVARIANCE OF THE
BACKGROUND SOLUTION

In this appendix, we show the covariance of the back-
ground solution (30). We first write down the covariant
chiral kinetic equations

Δμjμ ¼ 0; ðB1aÞ

−Δμjν þ Δνjμ þ 2ϵμνρσpρjσ ¼ 0; ðB1bÞ

pμjμ ¼ 0; ðB1cÞ

pμjν − pνjμ þ
1

2
ϵμνρσΔρjσ ¼ 0; ðB1dÞ

withΔμ ¼ ∂μ − ∂
∂pν

ðFμν þ fμνÞ. Fμν can be decomposed as
Fμν ¼ ϵμνρσBρuσ þ Eμuν − Eνuμ. Here uμ is a unit vector
corresponding to fluid velocity. Eμ ¼ Fμνuν and Bμ ¼
1
2
ϵμναβuνFαβ are electric and magnetic fieldS in the fluid.

We further define Bμ ¼ Bbμ with bμ being a direction
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vector of the magnetic field. By definition we have u ·b¼0.
The solution (8) corresponds to uμ ¼ ð1; 0; 0; 0Þ and
bμ ¼ ð0; 0; 0; 1Þ. We will not consider a general uμ,
but restrict ourselves to the case with flow uμ ¼
ð1; 0; 0; 0Þ þOð∂XÞ, i.e., flows which deviate from the
static flow only by the gradient term. Thus Eμ ∼Oð∂XÞ,
allowing us to neglect the electric field terms in Δμ. To the
lowest order in gradient Δμ ¼ ∂

∂pν
Bϵμνρσbρuσ .

We begin by noting that (B1d) is equivalent to (B1b).
This can be shown by multiplying (B1d) by ϵαβμν and using
the identity

ϵαβμνϵμνρσ ¼ −2ðδαρδβσ − δασδ
β
ρÞ: ðB2Þ

Below we show at the lowest order in gradient (B1a), that
(B1c) and (B1d) are indeed satisfied by the following
covariant solution:

jμ ∼ ðuþ bÞμδðp · ðuþ bÞÞe−p2
T=Bfðp · uÞ; ðB3Þ

with p2
T ¼ −p2 þ ðp · uÞ2 − ðp · bÞ2. We first see (B1a)

and (B1c) are satisfied by the antisymmetry of the indices
and on-shell conditions:

Δμjμ ∼
∂

∂pν
Bϵμνρσbρuσðuþ bÞμ ¼ 0;

pμjμ ∼ p · ðuþ bÞδðp · ðuþ bÞÞ ¼ 0: ðB4Þ

Equation (B1d) requires some work:

pμjν − pνjμ þ 1

2
ϵμνρσΔρjσ

∼ ðpμðuþ bÞν − pνðuþ bÞμÞ
× δðp · ððuþ bÞÞe−p2

T=Bfðp · uÞ

þ 1

2
ϵμνρσ

∂
∂pλ

Bϵρσαβbαuβðuþ bÞσδðp · ðuþ bÞÞ

× e−p
2
T=Bfðp · uÞ: ðB5Þ

The second term can be simplified by noting that ∂
∂pλ

can
pull out pλ, uλ, and bλ. The last two cases always vanish
when contracting with ϵρσαβbαuβ. Keeping only the pλ

contribution and using the following identity:

ϵμνρσϵρσαβ ¼ −ðδμλδναδσβ þ δμαδνβδ
σ
λ þ δμβδ

ν
λδ

σ
α

− δμλδ
ν
βδ

σ
α − δμβδ

ν
αδ

σ
λ − δμαδνλδ

σ
βÞ; ðB6Þ

we obtain from (B5)

∼p · ðuþ bÞðbμuν − bνuμÞδðp · ðuþ bÞÞe−p2
T=Bfðp · uÞ;

ðB7Þ

which vanishes by the on-shell condition.
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