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Addendum

Since the initial version of this report was written, the Particle
Data Group has given some specific¢ advice about the confidence limit
problem discussed here (Physics Letters 170B, 55(1986)). They indeed
endorse Method 4, the Bayesian method. They do, however, add a caveat
that the method can give absurd results if applied thoughtlessly, as has
been emphasized in this paper. At any rate there is now an authoritative
(though still very brief) reference to which one can refer when wishing
to explain his derivation of a confidence limit. If the limitations are
respected, this reference would bring some uniformity to the field and
this report would become superfluous.

I have also spent some time studying the mathematical foundations of
the likelihood method (using Kendall and Stuart) as applied to limits on
branching ratios. I have convinced myself that the worries expressed
above about possible failure of the likelihood theorems in these cases
are unfounded.
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A. Introduction

An unsystematic survey of the physics literature concerned with the
measurement .of upper limits to small quantities shows a variety of sta-
tistical methods in use. An adaptation of methods to specific experi-
mental problems explains some of this variety, but it is clear that the
lack of an authoritative reference which deals with the real situations
facing experimenters is responsible for much of it. Despite this lack,
quite a few papers give a very scant explanation of their methods,
apparently in the belief that there is general agreement on methods and
that their particular procedure is obvious. This is frequently not the
case. The arithmetic involved is usually simple, but it can be very
difficult to reproduce the limit which is given.

Most books on statistics discuss only central confidence limits, and
do not deal in any detail with the question of upper limits. Two of the
most advanced books on the subject, Kendall and Stuart™ and Eadie et al?2,
do go into considerable detail on the basic principles involved. They
show in the general case how to determine a non-central confidence
interval, the limiting case of which is an upper (or lower) limit. They
do not, however, discuss the practical problems that arise. The Particle
Data Group does not appear to have published anything on the subject
(except the material dealing with central intervals and simple Poisson
limits in the bluebook) despite several references by Daum et al%d to a
"prescription” of the PDG. All this suggests that an elementary
discussion of the problems involved with upper limits would be useful.

One source of the diversity in methods is the division between
"Bayesian" and "classical" statistics. It happens that the calculation
of upper limits is one of the few areas where these two approaches give
different results as far as normal use by physicists is concerned. Since
the controversy between Bayesian and classical statisticians has been
going on for a long time, it is unlikely to be resolved here. Many
scientists have been advocates of the Bayesian viewpoint, arguing that it
is most like the actual scientific view, but two of the most respected
statistical references!:? used by physicists are clearly classical. To
recapitulate the problems with the Bayesian approach: (1) one has to
develop the concept of a probability distribution for a constant of
nature; (2) one needs to know the prior probability distribution for this
constant; (3) total lack of knowledge is conventionally represented by a
uniform distribution, but there seems to be no convincing way of
specifying what function of the constant is to be uniform (e.g. m,“ or
m,). Justifications of (1) and (2) point to the effect of prior
experimental knowledge on "degrees of belief" in the value of a quantity.
No one seems to have attempted to incorporate this previous knowledge
into a real data analysis formally except to include logical constraints
(e.g. a square cannot be negative) in an UL analysis. (It would be
interesting to see a Bayesian conclusion drawn about the flux of magnetic
monopoles, based on the two candidate events so far seen. This is
precisely the sort of sparse data situation where Bayesian theorists
suggest that their method is most powerful.) Kendall~ and Eadie? both



consider the Bayesian viewpoint, but they come down on the side of
classical statistics: Only experimental quantities have probability
distributions. The 90% confidence level upper limit on a physical
constant deduced from an experimental value is that value of the constant
for which an experimental value as small as the observed one would be
expected in less than 10% of identical experiments. In other words, if
the true value were any bigger than this upper limit, the chances of a
fluctuation .to the small value actually observed would be at most 10%.

B. The Normal Distribution

To illustrate the problem in its simplest form, consider an experiment
in which an intrinsically positive physical quantity X = A-B is calcu-
lated from measured quantities A * o4 and B £ og. Assuming for
simplicity that A and B are normally distributed, X is also normal with
known o“= gp“+ op“.

Consider the gituation where A and B are nearly equal. An example
would be my2 = E, “- Pyz, which is essentially the experiment of Daum et
al =", If the true value X, is in fact zero, an unbiased estimator of
Xo,» ©.8. X = A-B, will be negative in half of all experiments. As
Kendall and Stuartl remark in several places (see section 27.34), this is
a case in which a biased estimator, e.g. Max(X,0), is clearly preferable
to an absurd one.

Since it is the custom in these cases to quote not the estimate and a
central confidence interval but rather the 90% CL upper limit, the
problem is how to calculate this limit. (One might argue that this
custom is one way that a priori assumptions are incorporated into the
data analysis.) Several possible algorithms for this calculation are
discussed below. The computed upper limit as a function of the measured
value is given in Fig.(l) for each algorithm. The expected fraction of
cases in which the the upper limit will be wrong (i.e. smaller than the
true value) is given in Fig.(2) as a function of the true value.

1. Pure Classical Method

Since the distribution of X is normal N(X,,0), it is straightforward
to calculate the value X;; such that if the true value X, were X, the
probability of obtaining a value as small as the observed X would be =<
10%. The result is X, = X + 1.280. When X < -1.280, X,; is negative,
but this will happen less than 10% of the time. This X, is therefore
consistent with the classical definition of a 90% CL upper limit.

A method that gives a negative upper limit requires some explanation.
As a purely mathematical problem, a fluctuation to a very negative value
of X makes one certain that the value of X, is not very large. For
example, X = -3.00 would imply not that X, < -1.70 with 90% confidence,
but that X, < 0.1 with 99.9% confidence. Physically this is ridiculous.
Such a result would make one pretty certain that there was something wrong
with the experiment, rather than more confident in a small upper limit.

2. Truncated Classical Method3

If negative values of X, were the only problem with Method 1, it could
be cured by truncation: X, = Max[X + 1.28¢, 0]. This limit is violated
less than 10% of the time for any X,, and the limit is never negative.
But another objection to Method 1 is not removed by truncation: the more
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negative the fluctuation (or possibly the systematic error) in an
experiment, the smaller the upper limit. In particular, a very suspect
experiment leads to upper limit 0. This is clearly unsatisfactory.

3. Shifted Classical Method8-11

In order to avoid the problem with Method 2, consider the algorithm
X, = Max(X,0) + 1.280. The rationale for the specific form chosen is as
follows: If.X > 0, X, is identical to the plain classical method which
gives a physically and statistically reasonable upper limit which is
wrong exactly 10% of the time. For X < 0, the mathematical calculation of
Method 1 implies (discounting the possibility of systematic error) that
X, is not very large and that the observed value is a statistical fluctu-
ation. In that case a typical similar experiment would obtain X = 0 and
an upper limit of about 1.280. If the experimenter does not wish to have
a fluctuation lower his limit, an upper limit typical of the intrinsic
sensitivity should be used. (J. Franklin has emphasized this point.)
This algorithm is consistent with that constraint.

4, Bayesian Method4-7,12

A very usual method (what Daum et al% > refer to as "the Particle Data
Group prescription") is to use

X, = X + 03°1[1-0.18(X/0) 1,

where & is the cumulative distribution of the Gaussian function.
This is the "10% of the positive area" method. It can be derived from
the Bayesian discussion given by Eadie? (p. 213). 1Its derivation is
based on using a step function at zero as the prior probability
distribution in order to convey the knowledge that X, = 0. The behavior
of this X, as a function of X is shown in Fig. 1. At large X it is the
same as method 3. (The smooth transition to the classical result is
perhaps the best justification of the prior probability.) For -.6 < X <
1, it is somewhat more conservative than method 3. In particular, for X
= 0 it gives an upper limit that is violated only 5% of the time if X, =
0. For X < -.6 it becomes progressively less conservative than method 3,
but since it always lies above curve 2, it is wrong less than 10% of the
time. It does share the problem of methods 1 and 2 that more negative X
gives progressively smaller values of Xu6»

5. Shifted Bayesian Method?

A very conservative method would be to apply the 90%-10% formula
after shifting the mean of the curve upward to 0 if it were negative. As
in method 3, the rationale would be one of intrinsic experimental
sensitivity. This approach does not make a great deal of sense, since
the Bayesian philosophy is inconsistently applied.

6. Loss of Confidence Algorithm
K. McFarlane has suggested13‘that as X becomes more negative the
upper limit should increase rather than decrease or stay constant. The
idea is that if X is negative by more than 1 or 2 standard deviationms,
then the most likely explanation is that there are uncontrolled
systematic effects in the experiment. The magnitude of the errors are
probably at least as large as the negative value, which is therefore a
measure of the intrinsic sensitivity of the experiment. An example is
given in Fig.(l), corresponding to:
Xy~ MAX(X,0) + 1.280, X > -1.280
= |X]| , X< -1.280
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C. The Poisson Distribution

1. Single Poisson Measurement

The one thing upon which everyone agrees is the case of a simple
Poisson variate. If the classical definition is applied, the result is
that an observation of zero events gives an UL of 2.3, one event gives
3.9, etc. A Bayesian treatment gives identical results, provided that the
prior distribution of the parameter is taken to be uniform. Since
negative values do not enter into consideration, it seems likely that
most people think of this case classically.

2. Difference of Two Poisson Variates

Consider a foreground measurement of ng Poisson distributed events
and a background measurement of mny such events. The estimator of the
signal is s = ng - ny with variance ng + n,. If the samples are
moderately large the estimator will be approximately normally distributed
and the Gaussian methods discussed above can be applied. It is an
interesting, though apEarently little known, fact that the distribution
of s is known exactly. 4 It is not difficult to show that if the true
parameters are pp, and pg for background and signal respectively, then the
distribution of the estimator s is given by ’

P(sing,ip) = expl- (2uptug) ] [ (i) /ip] 3/ 215 [2((uptng) pp) 1/2]

where Ig is the modified Bessel function of order s (s = ng - ny). It
can be shown that this expression has the expected mean and variance, and
that it rapidly approaches normality as the numbers increase.l Given the
estimate pp = ny, from the background experiment, the probability of
obtaining a measured s for any true value kg can be calculated. These
values can then be graphed and used to obtain upper limits following the
mechanics described by Eadie et al (section 9.2). Note that in this case
the variance of the probability distribution depends on the parameter Bg
so that the confidence lines are not straight lines but curves concave
downward as in Eadie’s Fig. 9.6. The effect is to make the upper limit
larger than it would have been if the variance were constant at the

value associated with the point estimate.? This effect is already
incorporated in the treatment of the simple Poisson case, but should be
remembered in making Gaussian approximations to more complicated Poisson
situations. For example, the case s = ng - an, apparently has no
analytic solution and so must be handled by a normal approximationg'l4 or
by a Monte Carlo generation of the distribution.

D. Likelihood and Other Methods’

Although it is not so easy to describe the UL methods used in more
elaborate analyses, such as maximum likelihood, the general ideas and
choices involved are not so different. 1In particular, the significance
of statistical fluctuations is the same. In many cases the likelihood
function is assumed to be normal and then the alternatives discussed
above should be applicable, at least in principle. '

It should be noted that normality is an asymptotic property of the
likelihood function, as is the maximal efficiency of the maximum
likelihood estimator. These properties are guaranteed only as the number
of events becomes very large. It seems to me to be open to question
whether these conditions are met in the typical UL situation. There the
number of data may be large, but it is usually all background, while
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there are very few or zero signal events. The likelihood function
frequently seems to attain its maximum (in the zero derivative sense) at
a negative value, though the full curve is rarely shown in that case.

The standard theorems seem dubious in this situation. It would seem that
the best plan in all cases is to give enough information so that the
reader can evaluate the situation himself. In the likelihood or minimum
x2 methods, that would call for giving the curve all the way to its
maximum (or .minimum), even if the independent variable is unphysical in
that region.

E. Conclusion

The key idea discussed above is that one should avoid having
statistical fluctuations or, worse yet, systematic errors produce a lower
value for an upper limit than would be obtained by the experiment on the
average and in the absence of systematic errors. The shifted classical
algorithm (method 3) seems to me to be the most reasonable alternative
that satisfies this criterion while staying close to a reasonable
understanding of a statistical confidence limit,

The only reasonable alternative would be the Bayesian method (4),
which might be chosen on one of several grounds. If it is chosen on
philosophical grounds, there is not much to say, but one could reasonably
expect a discussion of the reasons for the prior probability distribution
in each case. Method (4) also might be chosen in the belief that it is
mandated by some authority or that it is at least customary. Although
the former belief does not seem to be correct, there is some truth to
the latter, but not so much as to exclude other considerations. Finally
one might simply prefer the perfectly smooth behavior of the Bayesian
formula., As shown in Fig (2), it is not very likely that it will give an
excessively small limit provided negative measurements are due only to
statistical fluctuations. There is the distinct danger that systematic
errors (unfortunately not so rare) will cause a very low limit to be
computed. When large negative values occur, it is clearly necessary to
consider the implications for the reliability of the experiment, as
discussed in method (6).

In any case, since there is a lack of consensus on the statistical
principles involved, it is particularly necessary to give a clear
statement of the procedure used to calculate an upper limit if a reader
is to be able to follow the conclusions.



Figures

Curves giving the 90% confidence upper limit computed from a measured
value according to the various algorithms discussed in the text for
the case of a normal distribution with fixed variance. The
independent variable is the measured value divided by the standard
deviation.

Curves giving the probability that an upper limit will give a value
smaller than the true value of the parameter, for several of the
algorithms discussed in the text. The independent variable is the
true value of the parameter divided by the standard deviation.
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