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Abstract

We calculate the quarkonic O(α2
s) massive operator matrix elements ∆AQg(N),∆APS

Qq(N)

and ∆ANS
qq,Q(N) for the twist–2 operators which contribute to the heavy flavor Wilson

coefficients in polarized deeply inelastic scattering in the region Q2 � m2 to O(ε) in the
case of the inclusive heavy flavor contributions. The evaluation is performed in Mellin space,
without applying the integration-by-parts method. The result is given in terms of harmonic
sums. This leads to a significant compactification of the operator matrix elements derived
previously in [1], which we partly confirm, and also partly correct. The results allow to
determine the heavy flavor Wilson coefficients for g1(x,Q2) to O(α2

s) for all but the power
suppressed terms ∝ (m2/Q2)k, k ≥ 1. The results in z-space are also presented. We also
discuss the small x effects in the polarized case. Numerical results are presented and we
compute the matching coefficients in the two–mass variable flavor number scheme.



1 Introduction

The question of the composition of the nucleon spin in terms of partonic degrees of freedom has
attracted much interest after the initial experimental finding [2] that the polarizations of the
three light quarks alone do not provide the required value of 1/2. Subsequently, the polarized
nucleon structure functions have been measured in great detail by various experiments [3].1 To
determine the different contributions to the nucleon spin, both the flavor dependence as well as
the contribution due to the gluons and angular excitations at virtualities Q2 in the perturbative
region have to be studied in more detail in the future [7] experimentally. Since the nucleon
spin contributions are related to the first moments of the respective distribution functions, it is
desirable to measure to very small values of x, i.e. to highest possible hadronic energies, cf. [8].
A detailed treatment of the flavor structure requires the inclusion of heavy flavor. As in the
unpolarized case [9–17] this contribution is driven by the gluon and sea–quark densities. The
Wilson coefficients are known to first order in the whole kinematic range [18, 19].2 The photo–
production cross section for polarized scattering has been calculated to next-to-leading order
(NLO) in [21]. Very recently also the NLO corrections for polarized deep–inelastic production
of tagged heavy quarks have been computed in [22], partly numerically, retaining also the power
corrections. Previously, only the deep inelastic scattering cross section in the case Q2 � m2,
with m the heavy quark mass, had been calculated in Ref. [1]. Exclusive data on charm–quark
pair production in polarized deep–inelastic scattering are available only in the region of very
low photon virtualities [23] at present. However, the inclusive measurement of the structure
functions g1(x,Q2) and g2(x,Q2) contains the heavy flavor contributions for hadronic masses
W 2 ≥ (2m + mN)2, with mN the nucleon mass. The scaling violations of the heavy quark
contributions to the structure functions are different from those of the light partons. Therefore
one may not model these contributions in a simple manner changing the number of active massless
flavors. Numerical illustrations for the leading order (LO) contributions were given in [24] using
the parton densities [25]. In Ref. [26] the LO heavy charm contributions were accounted for in
the fit explicitly.

Quantitative comparisons between the results of [9] and [10, 11] show that the approxima-
tion Q2 � m2 is valid for heavy flavor contributions to the structure function F1(x,Q2) for
Q2/m2 >∼ 10, i.e. Q2 >∼ 22.5 GeV2 in the case of charm. A similar approximation should hold in
the case of the polarized structure function g1(x,Q2). By comparing the pure singlet contri-
butions in the full and asymptotic kinematics [27], one finds e.g. Q2/m2 > 10 at x = 10−4,
Q2/m2 > 50 at x = 10−2 and Q2/m2 > 110 at x = 0.5 allowing for a deviation from the exact
two–loop result by 3%.

In the present paper we re-calculate for the first time the heavy flavor contributions to the
longitudinally polarized structure function g1(x,Q2) analytically to O(a2

s), with as = αs/(4π), in
the asymptotic region Q2 � m2. We will consider the case of inclusive heavy flavor corrections in
the following.3 At the time when Ref. [1] was published, the understanding of polarized processes
in D dimensions has still been under development [1, 31–35] and results on the loop level need
to be checked.

The contributions to the structure function g2(x,Q2) can be obtained by using the Wandzura–
Wilczek relation [36] at the level of twist–2 operators [37,38]. The general validity of this relation
was shown in Ref. [37] using the covariant parton model [39]. This also applies to the heavy

1For theoretical surveys see [4–6].
2For a fast, precise numerical implementation of the heavy corrections in Mellin space see [20].
3Tagged heavy flavor corrections, Ref. [1], can be considered up to two–loop order. Starting with three–loop

order this separation is not possible in the inclusive case [14,28–30].
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flavor contributions [24]. The Wandzura–Wilczek relation holds also in the case of diffractive
scattering [40], the target mass corrections [41,42] and for non–forward scattering [43].

As has been outlined in Ref. [10] already in the case of the twist–2 contributions, the asymp-
totic heavy flavor corrections factorize into massive operator matrix elements (OMEs) and the
light flavor Wilson coefficients [31] as a consequence of the renormalization group equations. In
calculating the polarized heavy flavor Wilson coefficients to O(a2

s), we proceed in the same way
as followed in the unpolarized case [11]. Furthermore, we calculate newly the O(ε) terms at
this order for the unrenormalized OMEs in the Larin scheme [44]. They contribute to the O(a3

s)
corrections through renormalization.4 Later on we will translate the two–loop results into the
scheme used in [32,46–49].

The calculation was performed in Mellin space without applying the integration-by-parts
method [50] for the Feynman diagrams. This leads to much more compact representations in
terms of harmonic sums [51] both for the individual diagrams and the final results. In the course
of the calculation we use representations through Mellin–Barnes integrals [11,52] and generalized
hypergeometric functions [53].5

The flavor non–singlet and pure singlet results are known analytically to two–loop order,
including the power corrections [10,27,55], and the asymptotic non–singlet three–loop corrections
have been calculated in [30]. Phenomenological applications were given in [56] in the non–singlet

case. Furthermore, the polarized three-loop operator matrix elements ∆A
PS,(3)
Qq ,∆A

PS,(3)
qq,Q ,∆A

S,(3)
qg,Q

and ∆A
(3)
gg,Q in the single mass case [57–59] and the OMEs ∆A

NS,(3)
qq,Q ,∆A

PS,(3)
Qq ,∆A

(3)
gg,Q and ∆A

(3)
gq,Q

in the two–mass case have been computed [60–63].
In the present paper we deal with corrections of a single heavy quark and NF massless quarks

and also consider the first two–mass contributions to O(a2
s). The paper is organized as follows. In

Section 2 we summarize main relations, such as the differential cross sections for polarized deeply
inelastic scattering and the leading order heavy flavor corrections, and give a brief outline on
the representation of the asymptotic heavy flavor corrections at next-to-leading order (NLO). In
Section 3 we summarize details of the renormalization of the massive operator matrix elements.
The polarized gluonic and quarkonic massive operator matrix elements at two–loop order are
calculated in Section 4 in the Larin scheme [44] (for other schemes see [64]). Since the specific
prescriptions of γ5 and the Levi–Civita pseudo–tensor in D = 4 + ε dimensions violate Ward–
identities, a finite renormalization has to be performed to transform all related quantities, i.e. the
massive operator matrix elements, the massless Wilson coefficients and the parton distribution
functions into the M scheme, cf. [32, 46–48]. We describe in detail the different treatments in
Refs. [1, 31, 34], in which partly mixed concepts were used, to understand and correct the final
result of the previous calculation [1]. In particular, also a recalculation of the massless two–loop
pure singlet Wilson coefficient is needed for this comparison, cf. Ref. [27].6

We checked our results for a number of moments with the help of the Mellin–Barnes method
numerically. The mathematical structure of the results is discussed. Again, it can be represented
in terms of a few basic harmonic sums in a more compact form if compared to the results given
in Ref. [1]. There are no new sums appearing if compared to the unpolarized calculation given
in [16]. We also specify the 1st moment of the heavy flavor Wilson coefficient. The small
x behaviour of these quantities is of special interest. We discuss it in the context of other
quantities with leading small x singularity at N = 0 to clarify the present status. Numerical

4For the calculation of the moments of the unpolarized massive OMEs, see [14, 15]. Corresponding moments
in the case of transversity were obtained in [45] to O(a3s), with complete results at O(a2s).

5For a survey on other calculation methods see [54].
6Very recently also the three–loop massless polarized Wilson coefficients have been calculated in the Larin

scheme [65].
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results are presented in Section 5. In Section 6 we present also the gluonic 2–loop OMEs, which
contribute in the variable flavor number scheme (VFNS), cf. e.g. [66]. Section 7 contains the
conclusions. In Appendix A, the results for the individual Feynman diagrams are presented.
Technical details of the calculation are given in Appendix B. The asymptotic polarized heavy
quark Wilson coefficients are listed both in momentum fraction z–space and Mellin N space in
Appendix C, where we also correct results given in [1].

2 Heavy flavor structure functions in polarized deep–inelastic

scattering

The process of deeply inelastic longitudinally polarized charged lepton scattering off longitudi-
nally (L) or transversely (T) polarized nucleons in the case of single photon exchange7 is given
by

l±N → l′
±
X . (1)

The differential scattering cross sections read

d3σ

dxdydθ
=
yα2

Q4
LµνWµν , (2)

cf. [38], where x = Q2/2P.q and y = P.q/k.P are the Bjorken variables, P and k are the
incoming nucleon and lepton 4–momenta, q = k − k′ is the 4–momentum transfer, Q2 = −q2, θ
the azimuthal angle of the final state lepton, and Lµν and Wµν denote the leptonic and hadronic
tensors. We consider the asymmetries A(x, y, θ)L,T between the differential cross sections for
opposite nucleon polarization both in the longitudinal and transverse case

A(x, y, θ)L,T =
d3σ→L,T
dxdydθ

− d3σ←L,T
dxdydθ

, (3)

which projects onto the polarized parts of both the leptonic and hadronic tensors, LAµν and WA
µν .

The hadronic tensor at the level of the twist τ = 2 contributions is then determined by two
nucleon structure functions

WA
µν = iεµνλσ

[
qλSσ

P.q
g1(x,Q2) +

qλ(P.qSσ − S.qP σ)

(P.q)2
g2(x,Q2)

]
. (4)

Here S denotes the nucleon spin vector

SL = (0, 0, 0,M)

ST = M(0, cos(θ̄), sin(θ̄), 0) , (5)

in the longitudinally and transversely polarized cases, with θ̄ a fixed angle in the plane transverse
to the proton beam direction, and εµνλσ is the Levi–Civita symbol.

One obtains [38,41]8

A(x, y)L = 4λ
α2

Q2

[(
2− y − 2xym2

N

s

)
g1(x,Q2) + 4

yxm2
N

s
g2(x,Q2)

]
(6)

7For the scattering cross sections in the case of also electro–weak contributions see Refs. [38, 41].
8The QED radiative corrections were calculated in Ref. [67] and are contained in the present release of the

code HECTOR [68].
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A(x, y, θ̄, θ)T = −8λ
α2

Q2

√
m2
N

s

√
x

y

[
1− y − xym2

N

S

]
cos(θ̄ − θ)[yg1(x,Q2) + 2g2(x,Q2)], (7)

where α = e2/(4π) is the fine structure constant, λ the degree of polarization, mN the nucleon
mass, and s = (P + k)2. In the case of A(x, y)L the dependence on θ is trivial and has been
integrated out. The structure function g1(x,Q2) has the following representation to O(α2

s)

gτ=2
1 (x,Q2) = gτ=2,light

1 (x,Q2) + gτ=2,heavy
1 (x,Q2), (8)

where we account for the heavy flavor contributions in the asymptotic region, with

xgτ=2,light
1 (x,Q2) =

x

2

{
1

NF

NF∑
k=1

e2
k

[
∆CS

q ⊗∆Σ + ∆CS
g ⊗∆G

]
+ ∆CNS

q ∆NS

}
, (9)

xgτ=2,heavy
1 (x,Q2) = xgτ=2,c

1 (x,Q2) + xgτ=2,b
1 (x,Q2) + xgτ=2,cb

1 (x,Q2), (10)

with NF = 3. The heavy flavor corrections contain both one and two heavy flavor contributions.
The polarized singlet and non–singlet distribution functions are given by

∆Σ =

NF∑
k=1

(∆fk + ∆fk̄) , (11)

∆NS =

NF∑
k=1

[
e2
k −

1

NF

NF∑
i=1

e2
i

]
(∆fk + ∆fk̄) , (12)

and ∆G denotes the polarized gluon distribution and all parton distributions depend on x, the
factorization scale µ2 and the number of massless flavors NF , with (1/NF )

∑NF

i=1 e
2
i = 2/9 for

NF = 3. The massless quarkonic Wilson coefficient, ∆CS
q , is given by

∆CS
q = ∆CNS

q + ∆CPS
q , (13)

where ∆CPS
q contributes from O(a2

s) onward; ⊗ denotes the Mellin convolution

[A⊗B](z) =

∫ 1

0

∫ 1

0

dxdy δ(z − xy) A(x)B(y) . (14)

By using the Mellin transform

M[F (z)](N) =

∫ 1

0

dzzN−1F (z), (15)

one obtains

M[[A⊗B](z)](N) = M[A(z)](N) ·M[B(z)](N). (16)

The heavy quark contributions in the asymptotic region are given by the single heavy flavor
corrections to two–loop order

xgτ=2,Q
1 (x,Q2) =

x

2

{
1

NF

NF∑
k=1

e2
k∆L

S
g,1

(
x,NF1,

Q2

µ2
,
m2

µ2

)
⊗G+ ∆LNS

q,1

(
x,NF1,

Q2

µ2
,
m2

µ2

)
⊗∆NS
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+e2
Q

[
∆HPS

q,1

(
x,NF1,

Q2

µ2

)
⊗∆Σ + ∆HS

g,1

(
x,NF1,

Q2

µ2
,
m2

µ2

)
⊗∆G

]}
,

(17)

with NF1 = NF + 1. The single mass heavy flavor Wilson coefficients are

∆LNS
q,1 = a2

s∆L
NS,(2)
q,1 (18)

∆LS
g,1 = a2

s∆L
S,(2)
g,1 (19)

∆HPS
q,1 = a2

s∆H
PS,(2)
q,1 (20)

∆HS
g,1 = as∆H

S,(1)
g,1 + a2

s∆H
S,(1)
g,1 , (21)

with as = αs/(4π) the strong coupling constant. The two–mass corrections are given by [60]

xgτ=2,cb
1 (x,Q2) = a2

s

x

2

∫ 1

x

dz

z
∆Htwo−mass

g (z,Q2,mc,mb)(z)∆G
(x
z
,Q2

)
, (22)

with

∆Htwo−mass
g (z) =

32

3
T 2
F

{
(1− 2z)(e2

c + e2
b) ln

(
Q2

m2
c

)
ln

(
Q2

m2
b

)
−
(
e2
c ln

(
Q2

m2
b

)
+ e2

b ln

(
Q2

m2
c

))
[

(3− 4z)− (1− 2z) ln

(
1− z
z

)]}
, (23)

and eQ the charge of the heavy quark.9

The massless two–loop Wilson coefficients are given in [69–73] and the massive Wilson coef-

ficients ∆L
NS,(2)
q,1 ,∆L

S,(2)
g,1 ,∆H

PS,(2)
q,1 and ∆H

S,(2)
g,1 are given in Appendix C and ∆H

S,(1)
g,1 in (25).

The twist–2 heavy flavor contributions to the structure function g1(x,Q2) are calculated using
the collinear parton model. This is not possible in the case of the structure function g2(x,Q2).
As shown in Ref. [24], for the gluonic contributions the Wandzura–Wilczek relation also holds
for the heavy flavor contributions

gτ=2
2 (x,Q2) = −gτ=2

1 (x,Q2) +

∫ 1

x

dz

z
gτ=2

1 (z,Q2) , (24)

which can be proven in the covariant parton model and derived from the analytic continuation
of the moments obtained in the light cone expansion [24,37,38,41]. Here the twist expansion is
necessary.

At leading order the heavy flavor Wilson corrections are known in the whole kinematic region,
[18,19]

∆H
(1)
g,1

(
z,
m2

Q2

)
= 4TF

[
β(3− 4z)− (1− 2z) ln

∣∣∣∣1 + β

1− β

∣∣∣∣] , (25)

where β denotes the center of mass (cms) velocity of the heavy quarks,

β =

√
1− 4m2

Q2

z

1− z . (26)

9The double-logarithmic two–mass correction to F2(x,Q2) in [66], Eq. (21), has to be corrected by the factor
−(e2c + e2b).
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The support of ∆H
(1)
g,1 (z,m2/Q2) is given by z ε [0, 1/a], where a = 1 + 4m2/Q2 and m denotes

the heavy quark mass. As it is well know, the first moment of the Wilson coefficient vanishes∫ 1/a

0

dz∆H
(1)
g,1

(
z,
m2

Q2

)
= 0 , (27)

which has a phenomenological implication on the heavy flavor contributions to polarized struc-
ture functions, resulting into an oscillatory profile [24]. The unpolarized heavy flavor Wilson
coefficients [9–11] do not obey a relation like (27) but exhibit a rising behaviour towards small
values of x.

The massive contribution to the structure function g1(x,Q2) at O(as) is given by

xgQQ1 (x,Q2) =
x

2
e2
Qas(Q

2)

∫ 1

ax

dz

z
∆H

(1)
g,1

(
x

z
,
m2

Q2

)
∆G(z,Q2) . (28)

At asymptotic values Q2 � m2 one obtains the leading order heavy flavor Wilson coefficient

∆H
(1),as
g,1

(
z,
m2

Q2

)
= 4TF

[
(3− 4z) + (2z − 1) ln

(
1− z
z

)
+ (2z − 1) ln

(
Q2

m2

)]
(29)

and a = 1. The factor in front of the logarithmic term ln(Q2/m2) in (29) is the leading order

polarized splitting function P
(0)
qg (z)

P (0)
qg (z) = 8TF

[
z2 − (1− z)2

]
= 8TF [2z − 1] . (30)

The sum–rule (27) also holds in the asymptotic case extending the range of integration to z ε [0, 1],∫ 1

0

dz∆H
as,(1)
g,1

(
z,
m2

Q2

)
= 0 . (31)

Note that H
(1)
g,1 does not depend on the factorization scale µ2 due to the absence of collinear

singularities.
As has been shown in Ref. [10] the asymptotic heavy flavor Wilson coefficients obey a factor-

ized form given by certain Mellin–convolutions of the massive OMEs and the massless Wilson
coefficients. The expression at one– and two–loop order in the tagged heavy flavor case were
given in Ref. [10]. In the inclusive case the general structure of the Wilson coefficients is [14]

∆HS(1)
g1,g

(
Q2

m2

)
= ∆Ĉ(1)

g1,g

(
Q2

µ2

)
+ ∆A

(1)
Qg

(
µ2

m2

)
, (32)

∆HS(2)
g1,g

(
Q2

µ2
,
m2

µ2

)
= ∆Ĉ(2)

g1,g

(
Q2

µ2

)
+ ∆A

(1)
Qg

(
µ2

m2

)
⊗∆C(1)

g1,q

(
Q2

µ2

)
+ ∆A

(2)
Qg

(
µ2

m2

)
+∆A

(2)
gg,Q

(
µ2

m2

)
∆C̃ ,(1)

g1,g

(
Q2

µ2

)
, (33)

∆HPS(2)
g1,q

(
Q2

m2
,
m2

µ2

)
= ∆ĈPS,(2)

g1,q

(
Q2

µ2

)
+ ∆A

PS,(2)
Qq

(
µ2

m2

)
, (34)

∆LNS(2)
g1,q

(
Q2

m2
,
m2

µ2

)
= ∆Ĉ

NS,(2)
g1,q,Q

(
Q2

µ2

)
+ ∆A

NS,(2)
qq,Q

(
µ2

m2

)
+ ∆LNS(2),massless

g1,q

(
Q2

m2
,
m2

µ2

)
,

(35)

∆LS(2)
g1,g

(
Q2

m2
,
m2

µ2

)
= ∆A

(2)
gg,Q

(
µ2

m2

)
NF∆C̃ ,(1)

g1,g

(
Q2

µ2

)
, (36)
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with

∆LNS,(2),massless
g1,q

= −β0,Q ln

(
m2

µ2

)[
P (0)
qq (z) ln

(
Q2

µ2

)
+ c(1)

g1,q
(z)

]
(37)

and

β0,Q = −4

3
TF . (38)

Note the difference between the definition of ∆L
NS(2)
g1,q in [1] and (35), cf. [55]. Since

∆L
NS(2)
g1,q

(
Q2

m2 ,
m2

µ2

)
−∆L

NS,(2),massless
g1,q is finite in D = 4 dimensions [1,55], there is no finite renor-

malization for this quantity, and ∆L
NS,(2),massless
g1,q is a pure bubble correction of the massless

one–loop Wilson coefficient, which is known in the MS scheme too.

The massless Wilson coefficient ∆Ĉ
(1)
g1,g

(
Q2

µ2

)
depends on the factorization scale µ2. This

dependence cancels, however, against that of the massive OME in ∆H
S(1)
g1,g .

In measuring the structure functions g1(x,Q2) and g2(x,Q2) the inclusive relations apply.
Here also heavy flavor corrections with massless di-quark final states and virtual heavy flavor
corrections contribute.10 The massless coefficient functions, related to NH heavy quarks, are
denoted by

∆Ĉg1;k

(
Q2

µ2

)
= ∆Cg1;k

(
Q2

µ2
, NL +NH

)
−∆Cg1;k

(
Q2

µ2
, NL

)
, (39)

where NL is the number of light flavors. In the following we will consider the case of a single
heavy quark, i.e. NH = 1.

The representation of the polarized two–loop massless Wilson coefficients in Ref. [31] have
been corrected several times. They are partly given in the Larin scheme and partly in the M
scheme, see also the comment in [1] on the calculation of A

(2)
Qg there. For clear reference we present

the pure singlet and gluonic contributions in the M scheme using harmonic polylogarithms (or
alternatively, harmonic sums) in Appendix C. The massless flavor non–singlet Wilson coefficient
is the same as for the unpolarized structure function xF3 and it has been calculated in [69] to
three–loop order. The two–loop results were obtained in [70, 71]. In [72] it has been mentioned
that the final result on the two–loop massless Wilson coefficients of [31] for g1 have been confirmed
in the M scheme. We have checked that our results also agree with the corresponding FORTRAN

program by W. van Neerven [73].
In the following, we will use the notation f̂ , Eq. (39), also for the splitting functions and

anomalous dimensions

f̂ = f(NF + 1)− f(NF ). (40)

The operator matrix elements AS,NS
k,i obey the expansion

∆AS,NS
k,i

(
m2

µ2

)
= 〈i|Ok|i〉 = δk,i +

∞∑
l=1

als∆A
S,NS,(l)
k,i , k, i = q, g. (41)

The twist–2 operators Ok form the massive OMEs between partonic states |i〉, which are related
by collinear factorization to the initial–state nucleon states |N〉.

10In Ref. [55] it has been shown that otherwise the polarized Bjorken sum-rule cannot be obtained.
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The operator matrix elements AS,NS
k,i (m2/µ2, x) are process independent quantities. They are

calculated from the diagrams in Figures 2–5 of Ref. [11], for the polarized local non–singlet,
singlet and gluon operators

O{µ1...µN}q,r (x) = iN−1S

[
ψ(x)γ5γ

µ1Dµ2 . . . DµN
λr
2
ψ(x)

]
− trace terms, (42)

O{µ1...µN}q (x) = iN−1S
[
ψ(x)γ5γ

µ1Dµ2 . . . DµNψ(x)
]
− trace terms, (43)

O{µ1...µN}g (x) = 2iN−2SSp
[
εµ1αβγTr

(
F a
βγ(x)Dµ2 . . . DµN−1F µN

α,a

)]
− trace terms . (44)

Here ψ(x) denotes the quark field, λr the SU(3) (light) flavor matrix, Dµ the covariant derivative
including the gluon fields, F a

αβ the gluon field strength tensor, with a the SU(3)c color index.
The trace (Sp) is over color space. The curly brackets {. . .} in the l.h.s. of Eqs. (42–44) and
the symbol S in the r.h.s. denote symmetrization of all Lorentz indices, which projects onto the
twist–2 operators. The corresponding Feynman rules are obtained by replacing

∆/ → ∆/γ5 (45)

in the unpolarized Feynman rules of the operator insertions given in Figure 1 of Ref. [11] and
Figures 8 and 9 of Ref. [14], and introducing the Levi–Civita symbol εµαβγ into the gluonic OME.

The expansion coefficients of the unrenormalized OMEs A
S,NS,(l)
k,i have the representation

∆A
S,NS,(l)
k,i =

∞∑
m=−l

εl∆a
(l),m
k,i . (46)

In the present calculation we need the following coefficients

∆a
(1),0
Qg = 0, ∆a

(1),1
Qg = ∆a

(1)
Qg, ∆a

NS,(2),0
qq,Q = ∆a

NS,(2)
qq,Q , ∆a

PS,(2),0
Qq = ∆a

PS,(2)
Qq ,

∆a
(2),0
Qg = ∆a

(2)
Qg. (47)

We also calculate the O(ε) terms at two–loop order, denoted by a bar, for later use at the
three–loop level.

The massless Wilson coefficients to O(a2
s) are given by, cf. [74],

∆C(1)
g1,g

=
1

2
∆P (0)

qg ln

(
Q2

µ2

)
+ c(1)

g1,g
, (48)

∆C(2)
g1,g

=

[
1

8
∆P (0)

qg

[
∆P (0)

gg + ∆P (0)
qq

]
− 1

4
β0∆P (0)

qg

]
ln2

(
Q2

µ2

)

+

[
1

2
∆P (1)

qg +

(
1

2
∆P (0)

gg − β0

)
c(1)
g1,g

+
1

2
∆P (0)

qg c
(1)
g1,q

]
ln

(
Q2

µ2

)
+ c(2)

g1,g
, (49)

CPS,(2)
g1,q

=
1

8
∆P (0)

qg ∆P (0)
gq ln2

(
Q2

µ2

)
+

[
1

2
∆PPS,(1)

qg +
1

2
P (0)
gq c

(1)
g1,g

]
ln

(
Q2

µ2

)
+ cPS,(2)

g1,g
, (50)

CNS,(2)
g1,q

=

[
1

8
∆P (0)

qq

2 − 1

4
β0∆P (0)

qq

]
ln2

(
Q2

µ2

)

+

[
1

2
∆PNS−,(1)

qq +

(
1

2
∆P (0)

qq − β0c
(1)
g1,q

)
c(1)
g1,q

]
ln

(
Q2

µ2

)
+ c(2)

g1,q
. (51)
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Here c
(k)
i denotes the contribution to ∆C

(k)
i for Q2 = µ2 and β0 is the lowest order expansion

coefficient of the QCD β–function,

β0 =
11

3
CA −

4

3
NFTF , (52)

with CA = Nc, CF = (N2
c −1)/(2Nc), TF = 1/2 and NF denotes the number of light quark flavors

and Nc = 3 for QCD. ζk =
∑∞

l=1(1/lk), k ∈ N, k ≥ 2 denote values of the Riemann ζ–function

at integer argument and P
(PS,NS),(k−1)
ij , c

(k)
g1,i

are the kth order splitting and coefficient functions.
For the different N–dependent functions we use the shorthand notation F (N) ≡ F .

The splitting functions ∆P
(k)
ij (N) are related to the anomalous dimensions ∆γ

(k)
ij by

∆P
(k)
ij = −∆γ

(k)
ij , (53)

used in other representations. In the representation in Mellin N space the corresponding quan-
tities depend on nested harmonic sums, S~a, [51], which are recursively defined by

Sa1,...,al(N) =
N∑
k=1

(sign(a1))k

k|a1|
Sa2,...,al(k) , S∅ = 1, ai ∈ Z\{0}. (54)

At LO and NLO the splitting functions [34,46–48,75,76] in the M scheme are given by11

∆P (0)
qq = CF

[
2(2 + 3N + 3N2)

N(N + 1)
− 8S1

]
(55)

∆P (0)
qg = 8TFNF

N − 1

N(N + 1)
(56)

∆P (0)
gq = 4CF

N + 2

N(N + 1)
(57)

∆P (0)
gg = CA

[
2(24 + 11N + 11N2)

3N(N + 1)
− 8S1

]
− 8

3
TFNF (58)

∆P̂ (1),NS
qq = CFTFNF

4

3

{
−8S2 +

40

3
S1 −

3N4 + 6N3 + 47N2 + 20N − 12

3N2(N + 1)2

}
(59)

∆P (1),PS
qq = −CFTFNF

16(N + 2)(1 + 2N +N3)

N3(N + 1)3
(60)

∆P (1)
qg = CFTFNF

[
8(N − 1)

(
2−N + 10N3 + 5N4

)
N3(N + 1)3

− 32(N − 1)

N2(N + 1)
S1

+
16(N − 1)

N(N + 1)
[S2

1 − S2]

]
+ CATFNF

[
16
(
N5 +N4 − 4N3 + 3N2 − 7N − 2

)
N3(1 +N)3

+
64

N(1 +N)2
S1 −

16(N − 1)

N(1 +N)
[S2

1 + S2 + 2S−2]

]
. (61)

The first order polarized Wilson coefficients cg1,q and cg1,g for Q2 = µ2 read [19,27,31,77,78]

c(1)
g1,q

= CF

[
−(2 + 3N)

(
3N2 − 1

)
N2(N + 1)

+
3N2 + 3N − 2

N(N + 1)
S1 + 2[S2

1 − S2]

]
(62)

11Here and in the following we drop the factor 1
2 [1−(−1)N ] and the integer moments are taken at the odd integers

N ≥ 1. Note the partly different normalizations comparing the splitting functions given in Refs. [34,46–48,75,76].
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c(1)
g1,g

= −4TFNF
N − 1

N(N + 1)

[
N − 1

N
+ S1

]
. (63)

The first moment of c
(1)
g1,q yields −3CF in accordance with the Bjorken sum rule in the massless

case [79] and [80]. The 2nd order contributions were given in [31,72,73].

3 Renormalization

In the following we briefly summarize the renormalization of the polarized massive operator ma-
trix elements and Wilson coefficients to O(a2

s). It has been considered for the case of tagged
heavy flavor in Ref. [10]. We will consider the inclusive case since we deal with the structure
function g1(x,Q2) and follow Ref. [14]12, where the renormalization has been performed in the
unpolarized case. Since we use the Larin prescription [44], we perform subsequently a finite renor-
malization to the M scheme given in Ref. [32,46–48], which is the only additional renormalization
step beyond those described in Ref. [14].

The unrenormalized polarized OMEs obey the series expansion

∆
ˆ̂
Aij = δij +

∞∑
k=1

âks∆
ˆ̂
A

(k)
ij , (64)

In the renormalized case, the corresponding expansion reads

∆Aij = δij +
∞∑
k=1

aks∆A
(k)
ij , (65)

with as the renormalized coupling constant in the MS scheme. One performs i) the mass renor-
malization, ii) the coupling constant renormalization, iii) the renormalization of the local op-
erators by ultraviolet Z–factors, and for the massless sub-sets of the diagrams iv) one removes
the collinear singularities. By this one obtains the renormalized OMEs given in [14], Eqs. (4.16,
4.22, 4.35) and the renormalized asymptotic massive Wilson coefficients in Eqs. (2.11, 2.14, 2.15).
These expressions can be written in terms of the anomalous dimensions, massless Wilson coeffi-
cients, the expansion coefficients of the unrenormalized heavy quark mass, the QCD β-function
and the expansion coefficients of the massive OMEs up to two–loop order.

Yet these expressions are given in the Larin scheme used in the present calculation. The
massless Wilson coefficients to two–loop order transform from the Larin scheme to the M scheme
[32] by

∆C(1),NS,M
g1,q

= ∆C(1),NS,L
g1,g

− z(1)
qq (66)

∆C(2),NS,M
g1,q

= ∆C(2),NS,L
g1,g

+ z(1)
qq

2 − z(2),NS
qq − z(1)

qq ∆C(1),NS,L
g1,q

(67)

∆C(2),PS,M
g1,q

= ∆C(2),PS,L
g1,g

− z(2),PS
qq (68)

∆C(1),M
g1,g

= ∆C(1),L
g1,g

(69)

∆C(2),M
g1,g

= ∆C(2),L
g1,g

. (70)

The relations can also be determined considering the massless physical evolution coefficients
associated to the pair of observables {FA, FB} = {g1(x,Q2), dg1(x,Q2)/d ln(Q2)}, cf. Ref. [81,

12Note that the renormalization applied in [1, 9, 10] is not generally valid in the case of inclusive structure
functions.

11



82]13. One considers the evolution equation

d

dt

(
FA
FB

)
= −1

4

(
KAA KAB

KBA KBB

)(
FA
FB

)
, (71)

with t = −(2/β0) ln(as(Q
2)/as(Q

2
0)). The scheme–invariant singlet evolution coefficients in the

massless case read 14

K
(0)
d1 =

1

4

[
γ(0)
qq γ

(0)
gg − γ(0)

qg γ
(0)
gq

]
, (72)

K
(0)
dd = γ(0)

qq + γ(0)
gg , (73)

K
(1)
d1 =

β0

γ
(0)
qg

[
c

(1)
1,g

(
β0γ

(0)
qq +

1

2
(γ(0)
gg − γ(0)

qq )γ(0)
qq

)
+

1

2
γ(1)
qg γ

(0)
qq

]
+ β0c

(1)
1,q

[
−β0 +

1

2
(γ(0)
gg + γ(0)

qq )

]
+

1

4
(γ(1)
gg γ

(0)
qq + γ(1)

qq γ
(0)
gg − γ(1)

qg γ
(0)
gq − γ(1)

gq γ
(0)
qg )− β0c

(1)
1,gγ

(0)
gq +

β1

2β0

(
γ(0)
qg γ

(0)
gq − γ(0)

gg γ
(0)
qq

)
−1

2
β0γ

(1)
qq , (74)

K
(1)
dd = 4β0c

(1)
1,q + γ(1)

qq + γ(1)
gg + 2β0

γ
(1)
qg

γ
(0)
qg

− β1

β0

(
2β0 + γ(0)

qq + γ(0)
gg

)
+

2c
(1)
1,gβ0

γ
(0)
qg

(
2β0 + γ(0)

gg − γ(0)
qq

)
,

(75)

K
(2)
d1 = −γ

(2)
gq γ

(0)
qg

4
− γ

(1)
gq γ

(1)
qg

4
− γ

(0)
gq γ

(2)
qg

4
+
γ

(2)
gg γ

(0)
qq

4
+
γ

(1)
gg γ

(1)
qq

4
+
γ

(0)
gg γ

(2)
qq

4

+β0

(
−c

(1)
1,q

2
γ

(0)
gg

2
+ c

(2)
1,qγ

(0)
gg +

c
(1)
1,qγ

(1)
gg

2
− 2c

(2)
1,gγ

(0)
gq + 2c

(1)
1,gc

(1)
1,qγ

(0)
gq −

3c
(1)
1,gγ

(1)
gq

2
− c

(1)
1,q

2
γ

(0)
qq

2

+c
(2)
1,qγ

(0)
qq +

c
(1)
1,qγ

(1)
qq

2
− γ(2)

qq +
1

γ
(0)
qg

2

(
−1

2
c

(1)
1,g

2
γ(0)
gg

2
γ(0)
qq − c(1)

1,gγ
(0)
gg γ

(1)
qg γ

(0)
qq −

γ
(1)
qg

2
γ

(0)
qq

2

+c
(1)
1,g

2
γ(0)
gg γ

(0)
qq

2
+ c

(1)
1,gγ

(1)
qg γ

(0)
qq

2 − 1

2
c

(1)
1,g

2
γ(0)
qq

3

)
+

1

γ
(0)
qg

(
1

2
c

(1)
1,g

2
γ(0)
gg γ

(0)
gq +

c
(1)
1,gγ

(0)
gq γ

(1)
qg

2

+c
(2)
1,gγ

(0)
gg γ

(0)
qq + c

(1)
1,gγ

(1)
gg γ

(0)
qq −

3

2
c

(1)
1,g

2
γ(0)
gq γ

(0)
qq + γ(2)

qg γ
(0)
qq − c(2)

1,gγ
(0)
qq

2
+
c

(1)
1,gγ

(0)
gg γ

(1)
qq

2

+
γ

(1)
qg γ

(1)
qq

2
− 3

2
c

(1)
1,gγ

(0)
qq γ

(1)
qq + c

(1)
1,gc

(1)
1,qγ

(0)
qq (−γ(0)

gg + γ(0)
qq )

)
+ β1

(
−c(1)

1,q +
c

(1)
1,gγ

(0)
qq

γ
(0)
qg

))

+β1

(
c

(1)
1,gγ

(0)
gq +

γ
(1)
qq

2
− 1

2
c

(1)
1,q(γ

(0)
gg + γ(0)

qq ) +
−c(1)

1,gγ
(0)
gg γ

(0)
qq − γ(1)

qg γ
(0)
qq + c

(1)
1,gγ

(0)
qq

2

2γ
(0)
qg

)

+
1

β0

(
β2

(γ(0)
gq γ

(0)
qg

2
− γ

(0)
gg γ

(0)
qq

2

)
+ β1

(
γ

(1)
gq γ

(0)
qg

2
+
γ

(0)
gq γ

(1)
qg

2
− γ

(1)
gg γ

(0)
qq

2
− γ

(0)
gg γ

(1)
qq

2

))

+β2
0

(
3c

(1)
1,q

2 − 4c
(2)
1,q +

1

γ
(0)
qg

(
c

(1)
1,g

2
γ(0)
gq + c

(1)
1,qγ

(1)
qg + 4c

(2)
1,gγ

(0)
qq + c

(1)
1,gγ

(1)
qq + c

(1)
1,gc

(1)
1,q(γ

(0)
gg

13We corrected typos in [81].
14To 1– and 2–loop order they were given in Refs. [78,83]. Here we drop the ∆ in front of the γij and cl.
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−5γ(0)
qq )
)

+
1

γ
(0)
qg

2

(
−2c

(1)
1,gγ

(1)
qg γ

(0)
qq + 2c

(1)
1,g

2
γ(0)
qq (−γ(0)

gg + γ(0)
qq )
))
− 3β2

1

4β2
0

(
γ(0)
gq γ

(0)
qg − γ(0)

gg γ
(0)
qq

)
+β3

0

2c
(1)
1,gc

(1)
1,q

γ
(0)
qg

− 2c
(1)
1,g

2
γ

(0)
qq

γ
(0)
qg

2

 , (76)

K
(2)
dd = −4β0(c

(1)
1,q)

2 + 8β0c
(2)
1,q +

β0

(γ
(0)
qg )2

{(
c

(1)
1,g

)2
[
−8β2

0 − 8β0(γ(0)
gg − γ(0)

qq )− 2(γ(0)
gg − γ(0)

qq )2

]

+c
(1)
1,g

[
− 4γ(0)

gg γ
(1)
qg + 4γ(1)

qg γ
(0)
qq − 8β0γ

(1)
qg

]
− 2(γ(1)

qg )2

}
+

β0

γ
(0)
qg

{
c

(2)
1,g

(
16β0 + 4(γ(0)

gg

−γ(0)
qq )
)

+ c
(1)
1,gc

(1)
1,q

(
− 16β0 + (−4γ(0)

gg + 4γ(0)
qq )
)

+ c
(1)
1,g(8β1 + (4γ(1)

gg − 4γ(1)
qq ))

−4
(
c

(1)
1,g

)2

γ(0)
gq + 4γ(2)

qg

}
+
β2

β0

[
−4β0 + (−γ(0)

gg − γ(0)
qq )

]
+
β2

1

β2
0

(2β0 + γ(0)
gg + γ(0)

qq )

−β1

β0

(γ(1)
gg + γ(1)

qq ) + γ(2)
gg + γ(2)

qq . (77)

The transformation relations for the anomalous dimensions up to 3–loop order are given e.g.
in [48], Eqs. (19–29). Since the scheme–invariant evolution equations do not affect phase space
logarithms such as ln(Q2/m2), which occur additionally in the heavy flavor Wilson coefficients,
the massless case is extended to the single mass case by

c
(1)
1,g → c

(1)
1,g + ∆H

(1)
1,g , (78)

c
(2)
1,g → c

(2)
1,g + ∆H

(2)
1,g + ∆L

(2)
1,g, (79)

c
(2)
1,q → c

(2)
1,q + ∆H

(2),PS
1,q , (80)

with [14]

∆H
(1)
1,g = −∆γ̂

(0)
qg

2
ln

(
Q2

m2

)
+ c̃

(1)
1,g, (81)

∆H
(2)
1,g = −∆γ̂

(0)
qg

8

[
∆γ(0)

gg −∆γ(0)
qq + 2β0 + 4β0,Q

]
ln2

(
Q2

m2

)
− ∆γ̂

(1)
qg

2
ln

(
Q2

m2

)
+
ζ2

8
∆γ̂(0)

qg

(
∆γ(0)

gg −∆γ(0)
qq + 2β0

)
+ ∆a

(2)
Qg + c̃

(2)
1,g −

∆γ̂
(0)
qg

2
ln

(
Q2

m2

)
c

(1)
1,q

+β0,Q ln

(
Q2

m2

)
c̃

(1)
1,g, (82)

∆L
(2)
1,g = β0,Q ln

(
Q2

m2

)
c̃

(1)
1,g, (83)

∆H
(2),PS
1,q = −1

8
∆γ̂(0)

qg ∆γ(0)
gq ln2

(
Q2

m2

)
− 1

2
∆γ̂(1),PS

qq ln

(
Q2

m2

)
+

1

8
∆γ̂(0)

qg ∆γ(0)
gq ζ2 + a

(2),PS
Qq + c̃

(2)
1,q.

(84)

The double–mass corrections to O(a2
s) are scheme–invariant, as are ∆H

(1)
1,g and ∆L

(2)
1,g and the

following relations are implied,

∆a
(2),PS,M
Qq = ∆a

(2),PS,L
Qq + z(2),PS

qq (85)
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∆a
(2),M
Qg = ∆a

(2),L
Qg , (86)

Here the functions determining the finite renormalization are, cf. [46],

z(1)
qq = − 8CF

N(N + 1)
(87)

z(2),NS
qq = −CFTFNF

16(3 +N − 5N2)

9N2(N + 1)2
+ CACF

(
− 4V2

9N3(N + 1)3

− 16

N(N + 1)
S−2

)
+ C2

F

(
8V1

N3(N + 1)3
+ 16

1 + 2N

N2(N + 1)2
S1

+
16

N(N + 1)
S2 +

32

N(N + 1)
S−2

)
(88)

z(2),PS
qq = −CFTFNF

8(2 +N)(N2 −N − 1)

N3(N + 1)3
, (89)

with

V1 = 2N4 +N3 + 8N2 + 5N + 2, (90)

V2 = 103N4 + 140N3 + 58N2 + 21N + 36, (91)

cf. [32].
Because of the Ward–Takahashi identity in the flavor non–singlet case, which implies to use

anticommuting γ5 along the external massless quark line, one obtains ∆L
(2),NS,M
g1,g directly. It can

also be extracted from the inclusive full phase space calculation in Ref. [55]. In the pure singlet
case the asymptotic expression can be obtained in a similar manner from a result in [27]. In

both cases only very few Feynman diagrams contribute, unlike the case for A
(2)
Qg and H

(2)
g1,g.

4 The polarized operator matrix elements

The massless QCD Wilson coefficients for polarized deeply inelastic scattering were calculated
to O(a2

s) in Ref. [31, 72, 73] in the M scheme. To derive the corresponding heavy flavor Wilson
coefficients we calculate the corresponding massive operator matrix elements. We use first the
Larin prescription for γ5, [44], which has been applied in the calculation of the massless Wilson
coefficients in [31,72,73].15. The Dirac-matrix γ5 is represented in D dimensions by

γ5 =
i

24
εµνρσγ

µγνγργσ, (92)

/∆γ5 =
i

6
εµνρσ∆µγνγργσ . (93)

The Levi–Civita symbol will be contracted later with a second Levi–Civita symbol emerging in
the general expression for the Green’s functions

Ĝab
Q,µν = ∆Â

(N)
Qg δ

ab(∆.p)N−1εµναβ∆αpβ , (94)

Ĝij
l = ∆Â

(N)
lq δij(∆.p)N−1∆/ γ5. (95)

15See also footnote 5 in [76], in which the calculation is perform using the CFP method [85].
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In D dimensions we apply the following relation, [84],

εµνρσε
αλτγ = −Det

[
gβω
]
, β = α, λ, τ, γ , ω = µ, ν, ρ, σ .

The projectors for the quarkonic and the gluonic OMEs in the Larin scheme read

PqĜ
ij
l = −δij

i(∆.p)−N−1

4Nc(D − 2)(D − 3)
εµνp∆tr

[
p/γµγνĜij

l

]
(96)

PgĜ
ab
µν =

δab

N2
c − 1

1

(D − 2)(D − 3)
(∆.p)−N−1εµνρσ∆ρpσĜ

ab
µν . (97)

In its practical application there are further requirements which we will describe in Section 4.3.
In combining the massless Wilson coefficients with the massive operator matrix elements,

(32–35), and the parton densities, we obtain the scheme–invariant structure functions provided
that all definitions are carried out in the same scheme.

In the following we will first present the results for the operator matrix elements obtained
in the Larin scheme and then perform the finite renormalization to the M scheme. We will first
derive the unrenormalized operator matrix elements, after the mass renormalization has been
carried out.

4.1 The O(as) operator matrix element

The polarized leading order massive operator matrix element is obtained from diagram in Fig-
ure 2a of Ref. [11], using the Feynman rules [34, 47]. Diagram 2b vanishes. Due to the crossing
relations of the forward Compton amplitude [38] corresponding to the present process the overall
factor

1

2

[
1− (−1)N

]
, N ε N, N ≥ 1, (98)

is implied, which we drop in the operator matrix elements in the following. To obtain the results
in z–space, the analytic continuation to complex values of N is performed from the odd integers.
For the unrenormalized operator matrix element one obtains to O(ε2)16

∆Â
(1)
Qg =

1

as
AQga = −SεTF

(
m2

µ2

)ε/2
1

ε
exp

{
∞∑
l=2

ζl
l

(ε
2

)l} 8(N − 1)

N(N + 1)

= SεTF

(
m2

µ2

)ε/2 [
−1

ε
− ζ2

8
ε− ζ3

24
ε2

]
8(N − 1)

N(N + 1)
+O(ε3)

= Sε

(
m2

µ2

)ε/2 [
−1

ε
∆P̂ (0)

qg (N) + ∆a
(1)
Qg + ε∆a

(1)
Qg + ε2∆a

(1)
Qg

]
+O(ε3) , (99)

with

Sε = exp
[ε

2
(γE − ln(4π))

]
(100)

and γE the Euler–Mascheroni constant.17 The matrix element (99) is proportional to the leading

order splitting function P̂
(0)
qg and one has

∆a(1)
qg (N) = 0, (101)

16Note a misprint in Eq. (51) of Ref. [11] which needs to be corrected. There the exponents of m2/µ2 should
be ε/2 in all places.

17At the end of the calculation Sε is set to one, as part of the renormalization in the MS scheme.
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∆a(1)
qg = −ζ2

8
∆P̂ (0)

qg , (102)

∆a
(1)
qg = − ζ3

24
∆P̂ (0)

qg . (103)

The renormalized one–loop operator matrix element is given by

∆A
(1)
Qg = ∆Â

(1)
Qg + (Z−1)1

qg = −1

2
∆P̂ (0)

qg ln

(
m2

µ2

)
, (104)

with

(Z−1)qg = Sε
1

ε
∆P̂ (0)

qg . (105)

Eq. (29) yields then the corresponding expression of H
(1)
Qg (z,Q2)

∆H
(1),as
Qg,g1

(z) =

[
1

2
∆P (0)

qg (z) ln

(
Q2

m2

)
+ c

(1)
g1 (z)

]
. (106)

At O(as) there is no finite renormalization due to the treatment of γ5. In Mellin space one has

∆H
(1),as
Qg,g1

(N) ∝ (N − 1) , (107)

cf. (101, 62), and the first moment vanishes.

4.2 The O(a2
s) operator matrix element ∆A

(2)
Qg

We express the unrenormalized operator matrix element ∆A
(2)
Qg, after mass renormalization, in

terms of splitting functions and the contributions of O(ε0, ε), cf. [14], by

∆Â
(2)
Qg = S2

ε

(
m2

µ2

)ε[
1

ε2

{1

2
∆γ̂(0)

qg (∆γ(0)
qq −∆γ(0)

gg − 2β0 − 4β0,Q)
}

+
1

2ε

{
∆γ̂(1)

qg − 2δm
(−1)
1 ∆γ̂(0)

qg

}
+ ∆a

(2)
Qg − δm

(0)
1 ∆γ̂(0)

qg −
1

2
∆γ̂(0)

qg β0,Qζ2

+ε

(
∆ā

(2)
Qg − δm

(1)
1 ∆γ̂(0)

qg −
1

12
∆γ̂(0)

qg β0,Qζ2

)]
(108)

or the corresponding expression in z space. Here the expansion coefficients of the unrenormalized
mass m̂ are given by

m̂ = m

[
1 + âs

(
m2

µ2

)ε/2]
+O(â2

s) (109)

δm1 =
1

ε
δm

(1)
1 + δm

(0)
1 + εδm

(1)
1 +O(ε2). (110)

After performing charge– and operator renormalization and subtracting the collinear singu-
larities one obtains

∆Â
(2)
Qg =

{1

8
∆γ̂(0)

qg (∆γ(0)
qq −∆γ(0)

gg − 2β0 − 4β0,Q)
}

ln2

(
m2

µ2

)
+

∆γ̂
(1)
qg

2
ln

(
m2

µ2

)
16



+∆a
(2)
Qg +

1

8
∆γ̂(0)

qg (∆γgg −∆γqq + 2β0) . (111)

While the leading order anomalous dimensions are scheme–independent, at NLO ∆γ̂
(1)
qg is different

in the Larin and M scheme.

In an earlier version of Ref. [31], ∆
ˆ̃
P

(1)

qg (N) was used as anomalous dimension departing
from the M scheme. Therefore, in Ref. [1] the finite renormalization (??) as a corresponding

one in c
(2)
g1 (z), [31], was not used calculating ∆A

(2)
Qg, and analogously, ∆A

(2),PS
Qq . We refer to the

final version of [31] for the two–loop Wilson coefficients in the M scheme and apply the finite

renormalizations to ∆A
(2)
Qg and ∆A

(2),PS
Qq .

Comparing to (111) the unrenormalized two–loop OME A
(2)
Qg(N) is given in the Larin scheme

by

∆Â
(2)
Qg(N) = S2

ε

(m2

µ2

)ε{ 1

ε2

[
TFCF

(
32

N − 1

N(N + 1)
S1 − 8

(N − 1)(3N2 + 3N + 2)

N2(N + 1)2

)

+TFCA

(
−32

N − 1

N(N + 1)
S1 + 64

N − 1

N2(N + 1)2

)]

+
1

ε

[
TFCF

(
−8

N − 1

N(N + 1)
S2 + 8

N − 1

N(N + 1)
S2

1 − 16
N − 1

N2(N + 1)
S1

+4
(N − 1)(5N4 + 10N3 + 8N2 + 7N + 2)

N3(N + 1)3

)
+ TFCA

(
−16

N − 1

N(N + 1)
β′

−8
N − 1

N(N + 1)
S2 − 8

N − 1

N(N + 1)
S2

1 + 8
N − 1

N(N + 1)
ζ2

+
32

N(N + 1)2
S1 + 8

N5 +N4 − 4N3 + 3N2 − 7N − 2

N3(N + 1)3

)]

+∆a
(2)
Qg + ∆a

(2)
Qg ε

}
,

(112)

with the constant term in ε

∆a
(2)
Qg = CFTF

{
4

N − 1

3N(N + 1)

(
−4S3 + S3

1 + 3S1S2 + 6S1ζ2

)
−4

N4 + 17N3 + 43N2 + 33N + 2

N2(N + 1)2(N + 2)
S2 − 4

3N2 + 3N − 2

N2(N + 1)(N + 2)
S2

1

−2
(N − 1)(3N2 + 3N + 2)

N2(N + 1)2
ζ2 − 4

N3 − 2N2 − 22N − 36

N2(N + 1)(N + 2)
S1

− 2P1

N4(N + 1)4(N + 2)

}

+TFCA

{
4

N − 1

3N(N + 1)

[
12M

[
Li2(x)

1 + x

]
(N + 1) + 3β′′ − 8S3

−S3
1 − 9S1S2 − 12S1β

′ − 12β(N + 1)ζ2 − 3ζ3

]
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−16
N − 1

N(N + 1)2
β′ + 4

N2 + 4N + 5

N(N + 1)2(N + 2)
S2

1

+4
7N3 + 24N2 + 15N − 16

N2(N + 1)2(N + 2)
S2 + 8

(N − 1)(N + 2)

N2(N + 1)2
ζ2

+4
N4 + 4N3 −N2 − 10N + 2

N(N + 1)3(N + 2)
S1 −

4P2

N4(N + 1)4(N + 2)

}
, (113)

At two–loop order single harmonic sums have to be calculated at N = 0. This is done expressing
them first in terms of S±k(N), for which then the analytic continuation

S1(N) = ψ(N + 1) + γE, (114)

Sk(N) =
(−1)k−1

(k − 1)!
ψ(k−1)(N + 1) + ζk, k ≥ 2, (115)

S−1(N) = (−1)Nβ(N + 1)− ln(2), (116)

S−k(N) =
(−1)k+1

(k − 1)!
β(k−1)(N + 1)−

(
1− 1

2k−1

)
ζk, k ≥ 2 (117)

is used, which suggests the following definition

S±k(0) := 0 . (118)

Here, the function β(N) is related to the ψ–function ψ(z) = d ln(Γ(z))/dz by

β(N) =
1

2

[
ψ

(
N + 1

2

)
− ψ

(
N

2

)]
(119)

and we use the short-hand notation

β(k) ≡ β(k)(N + 1), k ∈ N, k ≥ 0, (120)

above and in the following. The polynomials are

P1 = 12N8 + 52N7 + 60N6 − 25N4 − 2N3 + 3N2 + 8N + 4 , (121)

P2 = 2N8 + 10N7 + 22N6 + 36N5 + 29N4 + 4N3 + 33N2 + 12N + 4 . (122)

The corresponding expression in Eq. (A.2) of Ref. [1] differs by a global minus sign compared to
(113), which has to be corrected. The linear term in ε reads

∆a
(2)
Qg = TFCF

{
N − 1

N(N + 1)

(
16S2,1,1 − 8S3,1 − 8S2,1S1 + 3S4 −

4

3
S3S1 −

1

2
S2

2 −
1

6
S4

1 −
8

3
S1ζ3

−S2S
2
1 + 2S2ζ2 − 2S2

1ζ2

)
− 8

S2,1

N2
+

3N2 + 3N − 2

N2(N + 1)(N + 2)

(
2S2S1 +

2

3
S3

1

)
+2

3N4 + 48N3 + 123N2 + 98N + 8

3N2(N + 1)2(2 +N)
S3 +

4(N − 1)

N2(N + 1)
S1ζ2

+
2

3

(N − 1)(3N2 + 3N + 2)

N2(N + 1)2
ζ3 +

P3

N3(N + 1)3(N + 2)
S2 +

N3 − 6N2 − 22N − 36

N2(N + 1)(N + 2)
S2

1

+
P4ζ2

N3(N + 1)3
− 2

2N4 − 4N3 − 3N2 + 20N + 12

N2(N + 1)2(N + 2)
S1 +

P5

N5(N + 1)5(N + 2)

}
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+TFCA

{
N − 1

N(N + 1)

(
16S−2,1,1 − 4S2,1,1 − 8S−3,1 − 8S−2,2 − 4S3,1 +

2

3
β′′′ − 16S−2,1S1

−4β′′S1 + 8β′S2 + 8β′S2
1 + 9S4 +

40

3
S3S1 +

1

2
S2

2 + 5S2S
2
1 +

1

6
S4

1 + 4ζ2β
′ − 2ζ2S2

−2ζ2S
2
1 −

10

3
S1ζ3 −

17

5
ζ2

2

)
− N − 1

N(N + 1)2

(
16S−2,1 + 4β′′ − 16β′S1

)
−16

3

N3 + 7N2 + 8N − 6

N2(N + 1)2(N + 2)
S3 +

2(3N2 − 13)

N(N + 1)2(N + 2)
S1S2 −

2(N2 + 4N + 5)

3N(N + 1)2(N + 2)
S3

1

− 8

(N + 1)2
ζ2S1 −

2

3

(N − 1)(9N + 8)

N2(N + 1)2
ζ3 −

8(N2 + 3)

N(N + 1)3
β′ − P6

N3(N + 1)3(N + 2)
S2

−N
4 + 2N3 − 5N2 − 12N + 2

N(N + 1)3(N + 2)
S2

1 −
2P7

N3(N + 1)3
ζ2 +

2P8

N(N + 1)4(N + 2)
S1

− 2P9

N5(N + 1)5(N + 2)

}
, (123)

and

P3 = 3N6 + 30N5 + 107N4 + 124N3 + 48N2 + 20N + 8 , (124)

P4 = (N − 1)(N4 + 2N3 − 2N2 − 7N − 2) , (125)

P5 = 8N10 + 24N9 − 11N8 − 160N7 − 311N6 − 275N5 − 111N4 − 7N3

+11N2 + 12N + 4 , (126)

P6 = N6 + 18N5 + 63N4 + 84N3 + 30N2 − 64N − 16 , (127)

P7 = N5 −N4 − 4N3 − 3N2 − 7N − 2 , (128)

P8 = 2N5 + 10N4 + 29N3 + 64N2 + 67N + 8 , (129)

P9 = 4N10 + 22N9 + 45N8 + 36N7 − 11N6 − 15N5 + 25N4 − 41N3

−21N2 − 16N − 4 . (130)

The calculation has been performed using FORM [86]. Further mathematical simplifications were
done with the help of MAPLE. The contributions due to the individual diagrams are given in
Appendix A. In the calculation, extensive use was made of the representation of the Feynman-
parameter integrals in terms of generalized hypergeometric functions [53]. Examples are given
in Appendix B. The infinite nested harmonic sums, partly weighted with Beta-functions and
binomials, which occur in the present calculation, are widely the same as in Ref. [11].

We use

M

[
Li2(x)

1 + x

]
(N + 1)− ζ2β(N + 1) = (−1)N+1

[
S−2,1 +

5

8
ζ3

]
(131)

to provide a proper representation for the analytic continuation. The structural relations between
the finite harmonic sums [87] allow to express ∆a

(2)
Qg in terms of just two basic Mellin transforms,

which are meromorphic functions in the complex N–plane with poles at the non–positive integers.
They are related to the harmonic sums S1 and S−2,1. In the present calculation we refrain from
using integration-by-parts for the individual diagrams. Due to this and the consequent use of
Mellin–space representations in terms of polynomial–weighted harmonic sums we obtain very
compact results even for the individual diagrams. As in [11], only one more harmonic sum, S2,1,
occurs, which cancels in the final result. None of the harmonic sums containing the index {−1},
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which has been observed in the case of all known space and time–like single scale processes up
to three–loop orders [28,30,47,48,87–92], which can be written in terms of harmonic sums only.
All other terms can be expressed by half–integer relations and derivatives w.r.t. N .

4.3 The O(a2
s) operator matrix element A

NS,(2)
qq,Q

The diagrams for the non–singlet operator matrix element A
NS,(2)
qq,Q are shown in Figure 5 of

Ref. [11]. Due to the Ward–Takahashi identity, it has to be the same as in the unpolarized
case, i.e. one may treat γ5 as anticommuting in the present case to obtain the OME in the
M scheme, using the quarkonic projector given in [10]. The asymptotic Wilson coefficient is,
however, different from the unpolarized one, cf. Appendix C.

The OME reads, [1, 11,16],

∆Â
NS,(2)
qq,Q

(
m2

µ2
, ε

)
= S2

ε

(
m2

µ2

)ε[
1

ε2
β0,Q∆γ(0)

qq +
1

2ε
∆γ̂

NS,(1)
qq,Q + ∆a

NS,(2)
qq,Q

+∆a
NS,(2)
qq,Q ε

]
. (132)

The renormalized OME is given by

∆A
NS,(2)
qq,Q

(
m2

µ2

)
=

1

4
β0,Q∆γ(0)

qq ln2

(
m2

µ2

)
+

1

2
∆γ̂(1),NS

qq ln

(
m2

µ2

)
+ ∆a(2),NS

qq

−1

4
β0,Q∆γ(0)

qq ζ2. (133)

The constant term is given by

∆a
NS,(2)
qq,Q (N) = TFCF

{
−8

3
S3 −

8

3
ζ2S1 +

40

9
S2 + 2

3N2 + 3N + 2

3N(N + 1)
ζ2 −

224

27
S1

+
219N6 + 657N5 + 1193N4 + 763N3 − 40N2 − 48N + 72

54N3(N + 1)3

}
. (134)

The corresponding expression in [1] is defined without the color factor CFTF . It agrees to the
related quantity in the unpolarized case [10,11]. The linear term in ε is given by

∆a
NS,(2)
qq,Q = TFCF

{
4

3
S4 +

4

3
S2ζ2 −

8

9
S1ζ3 −

20

9
S3 −

20

9
S1ζ2 + 2

3N2 + 3N + 2

9N(N + 1)
ζ3 +

112

27
S2

+
3N4 + 6N3 + 47N2 + 20N − 12

18N2(N + 1)2
ζ2 −

656

81
S1 +

P10

648N4(N + 1)4

}
, (135)

with

P10 = 1551N8 + 6204N7 + 15338N6 + 17868N5 + 8319N4 + 944N3 + 528N2 − 144N − 432 ,

(136)

again the same as in the unpolarized case [16]. The OME (133) in the Larin scheme is given
in [59]. The part of the asymptotic heavy flavor Wilson coefficient corresponding to final heavy
flavor states is, however, the same in the Larin and the M scheme, while that of the massless
quark final state has a finite renormalization, cf. Eq. (323) in Ref. [59].
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4.4 The O(a2
s) operator matrix element A

PS,(2)
Qq

The operator matrix element A
PS,(2)
Qq is obtained from diagrams Figure 4 of Ref. [11]. Here the

contribution due to diagram b vanishes. The unrenormalized OME is given by

∆Â
(2),PS,L
Qq = S2

ε

(
m2

µ2

)ε [
− 1

2ε2
∆γ̂(0)

qg ∆γ(0)
gq +

1

2
∆γ̂(1),PS

qq + ∆a
(2),PS,L
Qq + ∆a

(2),PS,L
Qq ε

]
+O(ε2)

(137)

and the renormalized OME reads

∆A
(2),PS,L
Qq = −∆γ̂

(0)
qg ∆γ

(0)
gq

8
ln2

(
m2

µ2

)
+

1

2
∆γ̂(1),PS

qq ln

(
m2

µ2

)
+ ∆a

(2),PS,L
Qq +

∆γ̂
(0)
qg ∆γ

(0)
gq

8
ζ2.

(138)

The calculation is first performed in the Larin scheme, using the projector (11), Ref. [47], for
diagrams with external massless quark lines in the polarized case.18

The next-to-leading order pure singlet anomalous dimension ∆γ̂
(1),PS
qq is the same in the Larin

and in the M scheme [1,46–48], as well as the asymptotic pure singlet Wilson coefficient. Because
of

∆HPS,(2)

(
N,

Q2

m2
,
µ2

m2

)
= ∆A

(2),PS
Qq

(
N,

µ2

m2

)
+ ∆C̃(2),PS

q (139)

and

∆C̃(2),PS,M
q = ∆C̃(2),PS,L

q − z(2),PS
qq (140)

one has

∆A
(2),PS,M
Qq

(
N,

µ2

m2

)
= ∆A

(2),PS,L
Qq

(
N,

µ2

m2

)
+ z(2),PS

qq . (141)

One obtains the constant term ∆a
(2),PS,L
Qq (N)19

∆a
(2),PS,L
Qq (N) = −4TFCF

N + 2

N2(N + 1)2

[
(N − 1) [2S2 + ζ2]− 4N3 − 4N2 − 3N − 1

N2(N + 1)2

]
.

(142)

The corresponding quantity in Eq. (A.4) of Ref. [1] agrees with (142) defined without the color

factor CFTF there. The term ∆a
(2),PS,L
Qq (N) is given by

∆a
(2),PS,L
Qq = 8CFTF (N + 2)

[
N3 + 2N + 1

4N3(N + 1)3

(
2S2 + ζ2

)
− N − 1

6N2(N + 1)2

(
3S3 + ζ3

)
+
N5 − 7N4 + 6N3 + 7N2 + 4N + 1

4N5(N + 1)5

]
. (143)

18Before [47] there was still some ambiguity in calculating the polarized pure singlet OME, cf. Section 8.2.3
of [93].

19Note a typographical error in [27], Eq. (81). There the ζ2 term shall read −[20(1 − z) + 8(1 + z)H0]ζ2,
switching one sign.
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4.5 Discussion

Our results for the massive operator matrix elements agree with those found in Ref. [1]. There
the calculation was performed in z space and the integration-by-parts method was applied.
In Table 1 all functions contributing to (112) in z space are listed. These are 24 functions.
The O(ε0) term depends on six harmonic sums. Since the single harmonic sums form one

δ(1− z) ln(z) ln2(z) ln3(z) ln(1− z)

ln2(1− z) ln3(1− z) ln(z) ln(1− z) ln(z) ln2(1− z) ln2(z) ln(1− z)

ln(1 + z) ln(z) ln(1 + z) ln2(z) ln(1 + z) ln(z) ln2(1 + z) Li2(1− z)

Li2(−z) ln(z)Li2(1− z) ln(1− z)Li2(1− z) Li3(1− z) S1,2(1− z)

Li3(−z) S1,2(−z) ln(z)Li2(−z) ln(1 + z)Li2(−z)

Table 1: Functions contributing to the results in z–space

equivalence class, cf. [87], the result can be expressed by the two sums S1, S−2,1 only, by applying
structural relations. Compared to the 24 functions needed in [1], we reached a more compact
representation. The O(ε) term depends on the six sums S1, S±2,1, S−3,1, S±2,1,1. The other sums
can be expressed by structural relations. The O(ε0) terms have thus the same complexity as the
two–loop anomalous dimensions, while that of the O(ε0) terms corresponds to the level observed
for two–loop Wilson coefficients and other hard scattering processes which depend on a single
scale, cf. [88].

Let us consider the first moment of the polarized heavy flavor operator matrix elements and
Wilson coefficients in the region Q2 � m2. The splitting functions obey

∆P (0)
qq (N = 1) = 0 (144)

∆P (0)
gg (N = 1) = 2β0 (145)

∆P (0)
qg (N = 1) = 0 (146)

∆P (0)
gq (N = 1) = 6CF (147)

∆P (1)
qg (N = 1) = 0 (148)

∆PPS,(1)
qq (N = 1) = −24TFCF (149)

∆PNS,(1)
qq (N = 1) = 0 . (150)

In Table 2 we illustrate the complexity of our results in Mellin–space quoting the harmonic
sums, which contribute to the individual Feynman diagrams, cf. Appendix A.

Furthermore one has

∆a
(1)
Qg(N = 1) = 0 (151)

∆a
(1)
Qg(N = 1) = 0 (152)

∆a
(2)
Qg(N = 1) = 0 (153)
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∆a
(2)
Qg(N = 1) = 0 (154)

∆a
PS,(2),L
Qq (N = 1) = 3CFTF (155)

∆a
PS,(2)L
Qq (N = 1) =

3

4
CFTF (11 + 4ζ2) (156)

∆a
NS,(2)
qq,Q (N = 1) = 0 (157)

∆a
NS,(2)
qq,Q (N = 1) = 0. (158)

Relations (144, 150,157,158) hold due to conservation of the axial vector current.

Diagram S1 S2 S3 S4 S−2 S−3 S−4 S2,1 S−2,1 S3,1 S−3,1 S−2,2 S2,1,1 S−2,1,1

A ++ −+

B ++ ++ ++ −+ ++ −+ −+

C ++ −+

D ++ ++ −+

E ++ ++ −+ −+

F ++ ++ ++ −+ ++ −+

J ++ −+

L ++ ++ ++ −+ ++ −+ −+

M ++ −+

N ++ ++ ++ −+ ++ ++ −+ ++ ++ −+ −+ −+ −+ −+

PS ++ −+

NS ++ ++ ++ −+

Σ ++ ++ ++ −+ ++ ++ −+ −+ ++ −+ −+ −+ −+ −+

Table 2: Complexity of the results in Mellin space. The first + denotes the contribution of the sum to in
O(ε0), the second + for the O(ε) term and − its absence.

Since

∆Cg,(2)
g1

(Q2/µ2, N = 1) = 0 (159)

holds, cf. [31], one also obtains

∆HQg,(2)
g1

(Q2/m2, N = 1) = 0 (160)

and the first moment of the gluonic contributions to the structure function g1(x,Q2) both for
the heavy and light flavor contributions vanishes, if calculated in the collinear parton model. A
related sum–rule for the gluonic contribution to the photon structure function holds [94].

The first moment of the pure singlet contribution H
PS,(2)
g1,q (Q2/m2, x) is given by

HPS,(2)
g1,q

(Q2/m2, N = 1) = −12 ln

(
Q2

m2

)
+

20

3
+ 16ζ3. (161)

We finally consider the small z behaviour of the corrections calculated in the present paper.20

The leading order small z resummation for the polarized flavor non–singlet and singlet contribu-
tions were studied in [95–100]. Unlike the unpolarized case where the most singular contributions

20For the unpolarized case see [10,17].
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have poles at N = 1 in the perturbative expansion, the leading poles are situated at N = 0 in
the polarized case. From a theoretical point of view, it is interesting to see to which series of
a formal small x expansion the different coefficients belong, in order to compare with ab–initio
calculations of these terms, even though the resummation of these terms alone does not describe
the small x behaviour of the polarized structure functions, since sub–leading terms turn out to
be as important, cf. [96,97].

In the polarized case leading small x terms are of the form

as
[
as ln2(x)

]k
, (162)

for the splitting functions in the M scheme. Only for this case the all order resummation in as
has been derived so far. As has been pointed out in [99] the small x behaviour of the massless
Wilson coefficient is found to be less singular by one power in ln(x), i.e. the O(aks) coefficient
functions behave at most like

ck(x) ∝ aks ln2k−1(x) . (163)

At leading order in as the small x asymptotic behaviour of the polarized heavy flavor Wilson
coefficient is given by

∆HQg,(1),x→0
g1

(Q2/m2, N) = as(Q
2)TF

[
1

N2
+O

(
1

N

)]
∆HQg,(1),x→0

g1
(Q2/m2, x) ∝ as(Q

2)TF ln(z) . (164)

The leading singularity results from the massless one–loop Wilson coefficient, while the massive
operator matrix element behaves like

∆AQg,(1),x→0
g1

(Q2/m2, N) = TF

[
− 1

N
+O (1)

]
ln

(
Q2

m2

)
, (165)

∆AQg,(1),x→0
g1

(Q2/m2, x) ∝ −TF ln

(
Q2

m2

)
. (166)

The logarithmic term ln(Q2/m2) thus belongs to the less singular series at small x.
As it is the case at O(as), the most singular terms at small x for the asymptotic heavy flavor

Wilson coefficient ∆H
S,(2)
Qi (x,Q2) at O(a2

s) are due to the constant terms in Q2. Here the constant
term in the massive operator matrix element, which is vanishing at O(as), contains a term of
same singularity as the massless Wilson coefficients [31],

∆HS,(2),N→0
g1,g

(
Q2

m2
, N

)
= a2

s(Q
2)

{
−8

1

N4
TF (4CA + 3CF ) +O

(
1

N3

)}
,

∆HS,(2),x→0
g1,g

(
Q2

m2
, x

)
∝ a2

s(Q
2)

{
4

3
TF (4CA + 3CF ) ln3(x)

}
, (167)

∆HPS,(2),x→0
g1,q

(
Q2

m2
, N

)
= a2

s(Q
2)

{
− 32

N4
TFCF +O

(
1

N3

)}
,

∆HPS,(2),x→0
g1,q

(
Q2

m2
, x

)
∝ a2

s(Q
2)

{
16

3
TFCF ln3(x)

}
. (168)

The two–loop Wilson coefficients are by one power in ln(x) less singular at small x in the non–
singlet case if compared to the singlet case,

∆LNS,(2),x→0
g1,q

(
Q2

m2
, N

)
= a2

s(Q
2)

{
4

3
CFTF

8

N3

}
+O

(
1

N2

)
,
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∆LNS,(2),x→0
g1,q

(
Q2

m2
, x

)
∝ −4a2

s(Q
2)CFTF ln2(x) . (169)

Furthermore, one has

∆L(2),x→0
g1,g

(
Q2

m2
, N

)
= a2

s(Q
2)

{
16

3
T 2
FNF

1

N2

}
+O

(
1

N

)
,

∆L(2),x→0
g1,g

(
Q2

m2
, x

)
∝ −a2

s(Q
2)

16

3
T 2
FNF ln(x) . (170)

5 Numerical results

In the following we illustrate the heavy flavor contributions to the twist–2 contributions of the
polarized structure functions g1,2(x,Q2) numerically.
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Figure 1: The NLO massless structure function g1(x,Q2) as a function of x for Q2 = 10 GeV2 (full line);
100 GeV2 (dashed line); 1000 GeV2 (dotted line), and 10000 GeV2 (dash–dotted line), [26].
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Figure 2: The NLO massless structure function g2(x,Q2) as a function of x for Q2 = 10 GeV2 (full line);
100 GeV2 (dashed line); 1000 GeV2 (dotted line), and 10000 GeV2 (dash–dotted line), [26].

The massless contributions to xgp1(x,Q2) and xgp2(x,Q2) are shown in Figures 1 and 2 to
NLO. In all illustrations we use the parton distribution functions of Ref. [26] and as(Q

2) at NLO
and all illustrations are made for contributions to the structure functions xgp1,2(x,Q2). In the
small x region both structure functions tend to zero because of their principle shapes, which are
similar to the unpolarized non–singlet structure functions. The change of sign in g2(x,Q2) is due
to the Wandzura–Wilczek relation.
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Figure 3: The O(as) charm contribution the polarized structure function g1(x,Q2) as a function of x for
Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and 10000 GeV2 (dash–dotted
line) for mc = 1.59 GeV and the parton distribution functions [26].
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Figure 4: The O(as) charm contribution the polarized structure function g2(x,Q2) as a function of x for
Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and 10000 GeV2 (dash–dotted
line) for mc = 1.59 GeV and the parton distribution functions [26].

In Figure 3 we illustrate the charm contributions to the structure function g1(x,Q2) at O(as)
for Q2 = 10, 100, 1000 and 10000 GeV2. The values of the charm and bottom quark masses are
used in the on–shell scheme withmc = 1.59 GeV, [101], andmb = 4.78 GeV, [102]. Figure 4 shows
the corresponding contributions for the structure functions g2(x,Q2). The numerical integrals
have been performed using the Fortran code AIND [103]. The contributions to g1 turn out to be
two to three times larger than to g2.
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Figure 5: The O(as) bottom contribution the polarized structure function g1(x,Q2) as a function of x for
Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and 10000 GeV2 (dash–dotted
line) for mb = 4.78 GeV and the parton distribution functions [26].
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Figure 6: The O(as) charm contribution the polarized structure function g2(x,Q2) as a function of x for
Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and 10000 GeV2 (dash–dotted
line) for mb = 4.78 GeV and the parton distribution functions [26].

In Figures 5 and 6 the corresponding contributions due to bottom quarks are shown. They are
suppressed by a factor of ∼ 8 compared with the O(as) terms due to charm quarks. Comparing
Figures 1 and 3, the O(as) charm contribution is suppressed by about one order of magnitude
compared to the massless case for the structure function g1(x,Q2) and similarly for the structure
function g2(x,Q2). Yet for future precision measurements, contributions of this kind become
important.

We turn now to the single mass O(a2
s) contributions.
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Figure 7: The O(a2
s) massive contributions to the structure function gcc1 (x,Q2) for mc = 1.59 GeV as

a function of x for Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and
10000 GeV2 (dash–dotted line), [26]. to be done
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Figure 8: The O(a2
s) massive contributions to the structure function gbb1 (x,Q2) for mc = 4.78 GeV as

a function of x for Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and
10000 GeV2 (dash–dotted line), [26].to be done
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Figure 9: The O(a2
s) massive contributions to the structure function gcc2 (x,Q2) for mc = 1.59 GeV as

a function of x for Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and
10000 GeV2 (dash–dotted line), [26].to be done
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Figure 10: The O(a2
s) massive contributions to the structure function gbb2 (x,Q2) for mc = 4.78 GeV

as a function of x for Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and
10000 GeV2 (dash–dotted line), [26].to be done

At O(a2
s) there are also contributions with two heavy quark lines in single graphs, due to

heavy quark polarization insertions in the external gluon line. Their contributions are illustrated
in Figures 11 and 12. They are smaller in size by factors of 10–20 than the O(as) charm
contributions.
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Figure 11: The O(a2
s) two–mass contribution the polarized structure function g1(x,Q2) as a function of x

for Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and 10000 GeV2 (dash–
dotted line) for mc = 1.59 GeV and mb = 4.78 GeV and the parton distribution functions [26].
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Figure 12: The O(a2
s) two–mass contribution the polarized structure function g2(x,Q2) as a function of x

for Q2 = 10 GeV2 (full line); 100 GeV2 (dashed line); 1000 GeV2 (dotted line), and 10000 GeV2 (dash–
dotted line) for mc = 1.59 GeV and mb = 4.78 GeV and the parton distribution functions [26].

6 The gluonic OMEs for the variable flavor number scheme

The matching between parton densities at large scales Q2 � m2 can be performed by using the
variable flavor number scheme, cf. e.g. [66]. Due to the similar size of mc and mb one often
has to decouple both masses at the same time, see Eqs. (189–193) and (195, 196). Besides the
OMEs given in Section 4 already the polarized gluonic OMEs contribute which we calculate in
the following. For the unrenormalized operator matrix element ∆A

(2)
gq,Q one obtains

∆A
(2)
gq,Q = S2

ε

(
m2

µ2

)ε
(N + 2)

{
1

ε2

32

3N(1 +N)
+

16

ε

[
(2 + 5N)

9N(N + 1)2
− 1

3N(N + 1)
S1

]
+

8
(
22 + 41N + 28N2

)
27N(N + 1)3

− 8(2 + 5N)

9N(N + 1)2
S1 +

4

3N(N + 1)

[
S2

1 + S2 + 2ζ2

]
+ε

[
4
(
98 + 369N + 408N2 + 164N3

)
81N(N + 1)4

−
(

4
(
22 + 41N + 28N2

)
27N(N + 1)3

+
2

3N(N + 1)
S2

)
×S1 +

2(2 + 5N)

9N(N + 1)2
S2

1 −
2

9N(N + 1)
S3

1 +
2(2 + 5N)

9N(N + 1)2
S2 −

4

9N(N + 1)
S3

+

(
4(2 + 5N)

9N(N + 1)2
− 4

3N(N + 1)
S1

)
ζ2 +

8

9N(N + 1)
ζ3

]}
+O(ε2). (171)

The structure of ∆A
(2),L
gq,Q is predicted, cf. [14], by

∆
ˆ̂
A

(2),L
gq,Q =

(
m2

µ2

)ε
S2
ε

[
−2β0,Q

ε2
∆P (0)

gq −
1

2ε
∆P̂ (1)

gq + a
(2)
gq,Q + εa

(2)
gq,Q

]
+O(ε2), (172)

∆A
(2),L
gq,Q = −β0,Q

2
∆P (0)

gq ln2

(
m2

µ2

)
− 1

2
∆P̂ (1)

gq ln

(
m2

µ2

)
+ a

(2)
gq,Q +

β0,Qζ2

2
∆P (0)

gq . (173)

= CFTF

{
8

3

N + 2

N(N + 1)
ln2

(
µ2

m2

)
+ 16(N + 2)

[
S1

3N(N + 1)
− (2 + 5N)

9N(N + 1)2

]
ln

(
µ2

m2

)
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+(N + 2)

[
8
(
22 + 41N + 28N2

)
27N(N + 1)3

− 8(2 + 5N)

9N(N + 1)2
S1 +

4

3N(N + 1)

[
S2

1 + S2

]]}
.

(174)

The unrenormalized OMEs ∆
ˆ̂
A

(1,(2)),L
gg,Q are given by21

∆
ˆ̂
A

(1)
gg,Q =

(
m2

µ2

)ε/2
Sε

(
−2β0,Q

ε

)
exp

[
∞∑
i=2

ζi
i

(ε
2

)i]
, (175)

∆
ˆ̂
A

(2),L
gg,Q =

(
m2

µ2

)ε
S2
ε

{
1

ε2

[
CFTF

16(N − 1)(2 +N)

N2(1 +N)2
+ T 2

F

64

9
+ CATF

(
64

3N(1 +N)

−32

3
S1

)]
+

1

ε

[
−CFTF

4R2

N3(1 +N)3
+ CATF

(
+

16R1

9N2(1 +N)2
− 80

9
S1

)]

+CFTF

(
− R5

3N4(1 +N)4
+

4(N − 1)(2 +N)ζ2

N2(1 +N)2

)
+ CATF

(
2R3

27N3(1 +N)3

−4(47 + 56N)

27(1 +N)
S1 +

16ζ2

3N(1 +N)
− 8

3
S1ζ2

)
+ T 2

F

16

9
ζ2 + ε

[
CFTF

(
− ζ2R7

N3(1 +N)3

− R6

12N5(1 +N)5
+

4(N − 1)(2 +N)ζ3

3N2(1 +N)2

)
+ CATF

(
4ζ2R1

9N2(1 +N)2

+
R4

81N4(1 +N)4
− 2

(
283 + 584N + 328N2

)
81(1 +N)2

S1 −
S2

1

3(1 +N)
+

(1 + 2N)

3(1 +N)
S2

−20

9
ζ2S1 +

16ζ3

9N(1 +N)
− 8

9
S1ζ3

)
+ T 2

F

8

27
ζ3

]
, (176)

with the polynomials

R1 = 3N4 + 6N3 + 16N2 + 13N − 3, (177)

R2 = 3N6 + 9N5 + 7N4 + 3N3 + 8N2 − 2N − 4, (178)

R3 = 15N6 + 45N5 + 374N4 + 601N3 + 161N2 − 24N + 36, (179)

R4 = 3N8 + 12N7 + 2080N6 + 5568N5 + 4602N4 + 1138N3 − 3N2 − 36N − 108, (180)

R5 = 13N8 + 52N7 + 54N6 + 4N5 + 13N4 + 12N2 + 36N + 24, (181)

R6 = 35N10 + 175N9 + 254N8 + 62N7 + 55N6 + 347N5 + 384N4 + 72N3 − 96N2

−120N − 48, (182)

R7 = N6 + 3N5 + 5N4 +N3 − 8N2 + 2N + 4. (183)

In Eqs. (171, 176) we also present the terms of O(ε) which are needed in the calculation of the
NNLO contributions, cf. [14]. Furthermore, one has

∆
ˆ̂
A

(2)
gg,Q =

(
m̂2

µ2

)ε
S2
ε

[
1

2ε2

{
∆P (0)

gq ∆P̂ (0)
qg + 2β0,Q

(
−∆P (0)

gg + 2β0 + 4β0,Q

)}
+

1

2ε

[
−∆P̂ (1)

gg + 4δm
(−1)
1 β0,Q

]
+ a

(2)
gg,Q + 2δm

(0)
1 β0,Q + β2

0,Qζ2

21Please note that (176) replaces Eq. (280) of [104], which contained typographical errors.
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+ε

[
a

(2)
gg,Q + 2δm

(1)
1 β0,Q +

1

6
β0,Qζ3

]]
. (184)

The renormalized OME ∆A
(2)
gg,Q is then given by

∆A
(1)
gg,Q = −β0,Q ln

(
m2

µ2

)
, (185)

∆A
(2)
gg,Q =

1

8

{
2β0,Q

(
−∆P (0)

gg + 2β0

)
+ ∆P (0)

gq ∆P (0)
qg + 8β2

0,Q

}
ln2

(
m2

µ2

)
−1

2
∆P̂ (1)

gg ln

(
m2

µ2

)
− ζ2

8

[
2β0,Q

(
−∆P (0)

gg + 2β0

)
+ ∆P (0)

gq ∆P (0)
qg

]
+ a

(2)
gg,Q (186)

=

[
CFTF

4(N − 1)(2 +N)

N2(1 +N)2
+ T 2

F

16

9
+ CATF

(
16

3N(1 +N)
− 8

3
S1

)]
ln2

(
µ2

m2

)

+

[
−CFTF

4R7

N3(1 +N)3
+ CATF

(
− 16R1

9N2(1 +N)2
+

80

9
S1

)]
ln

(
µ2

m2

)

+CATF

(
2R3

27N3(1 +N)3
− 4(47 + 56N)

27(1 +N)
S1

)
+ CFTF

R8

N4(1 +N)4
, (187)

with

R8 = −15N8 − 60N7 − 82N6 − 44N5 − 15N4 − 4N2 − 12N − 8. (188)

The following transition rules hold in the two–flavor VFNS, cf. [66], to next–to–leading order
in Mellin N space

∆fNS,i(NF + 2, µ2) =

{
1 + a2

s(µ
2)
[
∆A

NS,(2,c)
qq,Q + ∆A

NS,(2,b)
qq,Q

]}
∆fNS,i(NF , µ

2), (189)

∆Σ(NF + 2, µ2) =

{
1 + a2

s(µ
2)
[
∆A

NS,(2,c)
qq,Q + ∆A

PS,(2,c)
qq,Q + ∆A

NS,(2,b)
qq,Q + ∆A

PS,(2,b)
qq,Q

]}
×∆Σ(NF , µ

2)

+

{
as(µ

2)
[
∆A

(1,c)
Qg + ∆A

(1,b)
Qg

]
+ a2

s(µ
2)
[
∆A

(2,c)
Qg + ∆A

(2,b)
Qg + ∆A

(2,cb)
Qg

]}
×∆G(NF , µ

2), (190)

∆G(NF + 2, µ2) =

{
1 + as(µ

2)
[
∆A

(1,c)
gg,Q + ∆A

(1,b)
gg,Q

]
+ a2

s(µ
2)
[
∆A

(2,c)
gg,Q + ∆A

(2,b)
gg,Q

+∆A
(2,cb)
gg,Q

]}
∆G(NF , µ

2) + a2
s(µ

2)
[
∆A

(2,c)
gq,Q + ∆A

(2,b)
gq,Q

]
∆Σ(NF , µ

2),

(191)[
∆fc + ∆fc̄

]
(NF + 2, µ2) = a2

s(µ
2)∆A

PS,(2,c)
Qq ∆Σ(NF , µ

2) +

{
as(µ

2)∆A
(1,c)
Qg

+a2
s(µ

2)
[
∆A

(2,c)
Qg +

1

2
∆A

(2,cb)
Qg

]}
∆G(NF , µ

2), (192)
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[
∆fb + ∆fb̄

]
(NF + 2, µ2) = a2

s(µ
2)∆A

PS,(2,b)
Qq ∆Σ(NF , µ

2) +

{
as(µ

2)∆A
(1,b)
Qg

+a2
s(µ

2)
[
∆A

(2,b)
Qg +

1

2
∆A

(2,cb)
Qg

]}
∆G(NF , µ

2), (193)

and

∆fNS,i(NF , µ
2) = ∆qi(µ

2) + ∆q̄i(µ
2). (194)

The two–mass OMEs read

∆A
(2,cb)
Qg = −β0,Q∆γ̂(0)

qg ln

(
µ2

m2
c

)
ln

(
µ2

m2
b

)
, (195)

∆A
(2,cb)
gg,Q = 2β2

0,Q ln

(
µ2

m2
c

)
ln

(
µ2

m2
b

)
. (196)

7 Conclusions

We calculated the two–loop single and double mass corrections to the polarized twist–2 struc-
ture functions g1(x,Q2) and g2(x,Q2) in the asymptotic range Q2 � m2 in analytic form. These
include all corrections, except the power contributions ∝ (m2/Q2)k, k ∈ N, k ≥ 1. Parts of the
results in Ref. [1] were confirmed, and other parts were corrected. In [1] a series of contribu-

tions to the Wilson coefficients of the structure function g1(x,Q2), ∆H
(2)
g and ∆L

(2)
g , were left

out. Also the two–mass corrections were not considered there. We perform the calculation of
the Feynman diagrams using the hypergeometric method [53] for general values of the dimen-
sional parameter ε in the Larin scheme and transform then to the M scheme and do not use
IBP reduction. In Mellin space one obtains more compact results than in momentum fraction
space. In Ref. [1], 24 Nielsen integrals [105] were needed, whereas the N–space result depends
only on two functions using also structural relations [87]. In the small x region the heavy flavor
contributions are suppressed by at least one power of ln(x) if compared to the expected leading
logarithmic behaviour of O((as ln2(x))k) in the massless case. The structure function g2(x,Q2)
is obtained form the structure function g1(x,Q2) by the Wandzura–Wilczek relation at the level
of the twist–2 approximation. The contributions calculated in the present paper are of impor-
tance in precision measurements of the structure functions g1(x,Q2) and g2(x,Q2) at future high
luminosity measurements, e.g. at the EIC [7]. We also presented the polarized NLO expansion
coefficients in the 2–heavy flavor variable flavor number scheme and the next order terms O(ε)
needed for the O(a3

s) massive OMEs.

A Results for the Individual Diagrams

In this appendix we list the results for the individual diagrams to O(ε), prior to renormalization.
The calculation was performed in Feynman gauge. We suppress the argument in S~a(N) ≡ S~a
and the factor

ia2
sS

2
ε

(
m2

µ2

)ε/2
1− (−1)N

2
.
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The notation follows Ref. [11], where also the individual diagrams are depicted.

∆AQga = TFCF

{
1

ε2

[
−16(N − 1)

N2(N + 1)2

]
+

1

ε

[
8

(N − 1)(2N + 1)

N3(N + 1)3

]
− 4(N − 1)

N2(N + 1)2

(
2S2 + ζ2

)
+

4P̂1

N4(N + 1)4
+ ε

[
−4(N − 1)

3N2(N + 1)2

(
3S3 + ζ3

)
+ 2

(N − 1)(2N + 1)

N3(N + 1)3

(
2S2 + ζ2

)
− 2P̂2

N5(N + 1)5

]}
, (197)

P̂1 = (N − 1)(3N4 + 2N3 − 2N2 +N + 1) , (198)

P̂2 = 2N7 + 10N6 + 21N5 + 7N4 − 7N3 − 3N2 +N + 1 . (199)

∆AQgb = TFCF

{
1

ε2

[
32(N − 1)

N(N + 1)

(
S1 − 1

)]
+

1

ε

[
8(N − 1)

N(N + 1)

(
S2

1 − 3S2

)
− 16(N2 + 1)

N(N + 1)2
S1

+
32N

(N + 1)2

]
+

4(N − 1)

3N(N + 1)

(
12S2,1 − 10S3 + 3S1S2 + S3

1 + 6S1ζ2 − 6ζ2

)
− 4(N2 − 7)

N(N + 1)2
S2 −

4(N2 + 1)

N(N + 1)2
S2

1 + 16
N4 + 2N3 +N2 − 2N + 1

N2(N + 1)3
S1

−16
2N3 + 2N2 + 1

N(N + 1)3

+ε

[
N − 1

N(N + 1)

(
−8S2,1,1 + 8S3,1 − 11S4 + 8S2,1S1 +

4

3
S3S1 −

7

2
S2

2 + S2S
2
1 +

1

6
S4

1

−8

3
ζ3 − 6ζ2S2 + 2ζ2S

2
1 +

8

3
S1ζ3

)
+

N2 + 1

N(N + 1)2

(
−8S2,1 − 2S2S1 −

2

3
S3

1 − 4S1ζ2

)
−4

3

N2 − 11

N(N + 1)2
S3 + 4

N4 + 2N3 +N2 + 2N + 1

N2(N + 1)3
S2 +

8Nζ2

(N + 1)2
− 8P̂3S1

N2(N + 1)4

+4
N4 + 2N3 +N2 − 2N + 1

N2(N + 1)3
S2

1 + 8
4N4 + 8N3 + 4N2 + 2N + 3

N(N + 1)4

]}
, (200)

P̂3 = 2N5 + 6N4 + 6N3 + 3N2 + 8N + 2 . (201)

∆AQgc = TFCF

{
1

ε2

[
8(N − 1)

N(N + 1)

]
+

1

ε

[
−4

13N4 + 14N3 + 2N2 + 5N + 2

N2(N + 1)2(N + 2)

]

− 2(N − 1)

N(N + 1)

(
10S2 − ζ2

)
+

2P̂4

N3(N + 1)3(N + 2)
+ ε

[
− 2(N − 1)

3N(N + 1)

(
15S3 − ζ3

)

−13N4 + 14N3 + 2N2 + 5N + 2

N2(N + 1)2(N + 2)
ζ2 + 2

7N3 − 10N − 1

N2(N + 1)2
S2 −

P̂5

N4(N + 1)4(N + 2)

]}
,

(202)

P̂4 = 16N6 + 32N5 − 4N4 − 44N3 − 11N2 − 7N − 2 , (203)

P̂5 = 32N8 + 96N7 + 65N6 − 45N5 − 24N4 + 19N3 + 18N2 + 9N + 2 . (204)
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∆AQgd = TFCF

{
1

ε2

[
16(N − 1)

N(N + 1)

]
+

1

ε

[
8(N − 1)

N(N + 1)
S1 − 8

N3 + 8N2 − 5N − 10

N(N + 1)2(N + 2)

]

+
2(N − 1)

N(N + 1)

(
S2 + S2

1 + 2ζ2

)
− 4

N3 + 6N2 − 11N + 2

N2(N + 1)2
S1 + 8

N4 + 7N3 − 9N + 6

N(N + 1)3(N + 2)

+ε

[
1

3

N − 1

N(N + 1)

(
12S2,1 + 2S3 + 3S2S1 + S3

1 + 4ζ3 + 6ζ2S1

)
−N

3 + 6N2 − 11N + 2

N2(N + 1)2

(
S2 + S2

1

)
− 2

N3 + 8N2 − 5N − 10

N(N + 1)2(N + 2)
ζ2

+4
N4 + 6N3 − 5N2 − 2N + 1

N2(N + 1)3
S1 −

4P̂6

N(N + 1)4(N + 2)

]}
, (205)

P̂6 = 2N5 + 16N4 + 14N3 − 21N2 − 22N − 8 . (206)

∆AQge = TF

(
CF −

CA
2

){ 1

ε2

[
−16(N − 1)

N(N + 1)

]
+

1

ε

[
8S1

N
+

8(N − 1)

N2(N + 1)2

]
+

2(N − 2)

N(N + 2)
S2

1

+2
9N2 + 7N − 10

N(N + 1)(N + 2)
S2 − 4

4N4 + 7N3 + 9N2 + 14N − 8

N2(N + 1)2(N + 2)
S1 −

4P̂7

N3(N + 1)3(N + 2)

− 4(N − 1)

N(1 +N)
ζ2 + ε

[
2

2S2,1 + S1ζ2

N
+

N − 2

3N(N + 2)

(
3S2S1 + S3

1

)
− 4

3

N − 1

N(N + 1)
ζ3

+
2

3

13N2 + 11N − 14

N(N + 1)(N + 2)
S3 −

20N3 + 39N2 + 13N + 2

N(N + 1)2(N + 2)
S2 +

2P̂8S1

N2(N + 1)3(N + 2)

−4N4 + 3N3 + 5N2 + 14N − 8

N2(N + 1)2(N + 2)
S2

1 +
2(N − 1)

N2(N + 1)2
ζ2 +

2P̂9

N4(N + 1)4(N + 2)

]}
, (207)

P̂7 = 2N5 − 13N4 − 28N3 + 4N2 +N + 2 , (208)

P̂8 = 8N5 + 22N4 + 35N3 + 35N2 − 18N − 16 , (209)

P̂9 = 8N7 − 4N6 − 26N5 + 34N4 + 38N3 + 3N2 − 3N − 2 . (210)

∆AQgf = TF

(
CF −

CA
2

){1

ε

[
16(N − 1)

N(N + 1)
S2 − 16

(2N + 1)(N − 1)

N2(N + 1)2
S1

]
− 8(N − 1)

N(N + 1)

(
2S2,1 − S3

)
−4

(2N + 3)(7N + 1)

N2(N + 1)2
S2 − 4

(2N + 1)(N − 1)

N2(N + 1)2
S2

1 + 8
2N3 + 11N2 + 21N + 6

N2(N + 1)3
S1

+ε

[
4(N − 1)

N(N + 1)

(
−2S2,1,1 + 2S4 + S2

2 + S2ζ2

)
+

8(3N + 1)

N2(N + 1)2
S2,1 −

20

3

4N2 + 7N + 1

N2(N + 1)2
S3

+2
(2N + 1)(N − 1)

3N2(N + 1)2

(
−3S2S1 − S3

1 − 6S1ζ2

)
− 2

10N3 + 17N2 + 11N + 2

N2(N + 1)3
S2

+2
2N3 + 11N2 + 21N + 6

N2(N + 1)3
S2

1 − 4
4N4 + 4N3 − 13N2 − 33N − 10

N2(N + 1)4
S1

]}
. (211)

∆AQgj = TFCA

{
1

ε2

[
16

(N + 4)(N − 1)

N2(N + 1)2

]
+

1

ε

[
−8

(N + 4)(N3 + 2N + 1)

N3(N + 1)3

]
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+4
(N + 4)(N − 1)

N2(N + 1)2

(
2S2 + ζ2

)
+ 4

(N + 4)(4N3 − 4N2 − 3N − 1)

(N + 1)4N4

+ε

[
− 2P̂10

N5(N + 1)5
+ 4

(N + 4)(N − 1)

3N2(N + 1)2

(
3S3 + ζ3

)
−2

(N + 4)(N3 + 2N + 1)

N3(N + 1)3

(
2S2 + ζ2

)]}
, (212)

P̂10 = (N + 4)(N5 − 7N4 + 6N3 + 7N2 + 4N + 1) . (213)

∆AQgl = TFCA

{
1

ε2

[
−8(2N − 1)

N(N + 1)
S1 − 16

N3 +N2 − 2N − 1

(N + 1)2N2

]
+

1

ε

[
−2(2N − 1)

N(N + 1)

(
S2 + S2

1

)
+

12S1

N(N + 1)2
+

8P̂11

N3(N + 1)3

]
− 2N − 1

3N(N + 1)

(
12S2,1 + 2S3 + 3S2S1 + S3

1 + 6S1ζ2

)
+

3S2
1

N(N + 1)2
+ 2

7N3 − 2N2 + 4N + 4

N2(N + 1)3
S1 +

8N3 −N + 8

N2(N + 1)2
S2

−4
N3 +N2 − 2N − 1

N2(N + 1)2
ζ2 −

4P̂12

N4(N + 1)4
+ ε

[
2N − 1

N(N + 1)

(
2S2,1,1 − 2S3,1 −

5

4
S4

−2S2,1S1 −
1

3
S3S1 −

9

8
S2

2 −
1

4
S2S

2
1 −

1

24
S4

1 −
1

2
S2ζ2 −

1

2
S2

1ζ2 −
2

3
S1ζ3

)
+

12S2,1 + 3S2S1 + S3
1 + 6ζ2S1

2N(N + 1)2
− P̂13S2

2N3(N + 1)3

+
7N3 − 2N2 + 4N + 4

2N2(N + 1)3
S2

1 −
14N4 + 13N3 + 12N2 + 6N + 8

N2(N + 1)4
S1 +

2P̂14ζ2

N3(N + 1)3

−4

3

N3 +N2 − 2N − 1

N2(N + 1)2
ζ3 +

4N3 −N + 4

N2(N + 1)2
S3 +

2P̂15

N5(N + 1)5

]}
, (214)

P̂11 = (2N + 1)(N4 +N3 + 2N + 1) , (215)

P̂12 = 4N7 + 12N6 + 5N5 + 4N4 − 2N3 − 10N2 − 5N − 1 , (216)

P̂13 = 16N5 + 21N4 + 2N3 − 36N2 − 36N − 8 , (217)

P̂14 = (2N + 1)(N4 +N3 + 2N + 1) , (218)

P̂15 = (2N + 1)(4N8 + 14N7 + 9N6 +N5 −N4 + 6N3 + 7N2 + 4N + 1) . (219)
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order 1/ε2 1/ε 1 ε ε2

A N = 3 −0.22222 0.06481 −0.13343 −0.15367 −0.06208

N = 7 −0.03061 0.00409 −0.01669 −0.01900 −0.00639

B N = 3 4.44444 −1.07407 4.45579 0.515535 3.13754

N = 7 5.46122 0.74491 6.09646 2.97092 5.35587

C N = 3 1.33333 −8.14444 0.13303 −6.55515 −2.64601

N = 7 0.85714 −5.12329 0.14342 −4.10768 −1.59526

D N = 3 2.66666 −0.02222 2.19940 1.03927 1.69331

N = 7 1.71428 0.85340 1.78773 1.56227 1.80130

E N = 3 −2.66667 5 −2.27719 4.89957 0.73208

N = 7 −1.71429 2.97857 −1.3471 2.83548 0.44608

F N = 3 0 0.77777 −5.80092 −2.63560 −6.57334

N = 7 0 1.40105 −3.54227 −0.78565 −3.72466

L N = 3 −9.33333 0.25000 −8.83933 −3.25228 −6.84460

N = 7 −6.73878 −1.86855 −7.09938 −4.56051 −6.501

M N = 3 −0.22222 0.71296 −0.41198 0.69938 −0.11618

N = 7 −0.03061 0.11324 −0.05861 0.11969 −0.01207

N N = 3 −2.22222 1.26851 −1.37562 0.69748 −0.36030

N = 7 −3.19184 −0.50674 −3.39832 −1.7667 −2.97339

Table 3: Numerical moments for N = 3, 7 for the different contributions in the dimensional parameter ε to
the diagrams A−N of Ref. [1].

∆AQgm = TFCA

{
1

ε2

[
− 16(N − 1)

N2(N + 1)2

]
+

1

ε

[
4
N4 + 7N3 + 3N2 + 3N + 2

N3(N + 1)3

]

− 4(N − 1)

N2(N + 1)2

(
2S2 + ζ2

)
− 2P̂16

N4(N + 1)4
+ ε

[
−4(N − 1)

3N2(N + 1)2

(
3S3 + ζ3

)
+
N4 + 7N3 + 3N2 + 3N + 2

N3(N + 1)3

(
2S2 + ζ2

)
− P̂17

N5(N + 1)5

]}
, (220)

P̂16 = 6N5 + 5N4 +N3 − 13N2 − 5N − 2 , (221)

P̂17 = 3N6 − 10N5 − 9N4 − 29N3 − 18N2 − 7N − 2 . (222)

∆AQgn = TFCA

{
1

ε2

[
−8(2N − 3)

N(N + 1)
S1 + 8

N3 +N − 4

N2(N + 1)2

]
+

1

ε

[
−16(N − 1)

N(N + 1)
S−2 +

2(2N − 1)

N(N + 1)
S2

−2(2N − 3)

N(N + 1)
S2

1 + 4
N3 − 2N2 + 8N + 2

N2(N + 1)2
S1 − 4

2N4 + 3N3 + 8N2 +N + 8

N2(N + 1)3

]

+
8(N − 1)

N(N + 1)

(
2S−2,1 − S−3 − 2S−2S1

)
+

4S2,1

N(N + 1)
− 2N − 3

3N(N + 1)

(
S3

1 + 6S1ζ2

)
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− 2(8N − 9)

3N(N + 1)
S3 −

10N − 11

N(N + 1)
S2S1 −

16(N − 1)

N(N + 1)2
S−2 +

N3 − 10N2 − 20N − 22

N2(N + 1)2
S2

+
N3 − 2N2 + 8N + 2

N2(N + 1)2
S2

1 + 2
N3 +N − 4

N2(N + 1)2
ζ2 − 2

2N4 + 2N3 − 4N2 − 35N − 12

N2(N + 1)3
S1

+
2P̂18

N2(N + 1)4
+ ε

[
4(N − 1)

N(N + 1)

(
−4S−2,1,1 + 2S−3,1 + 2S−2,2 − S−4 + 4S−2,1S1

−2S−3S1 − 2S−2S2 − 2S−2S
2
1 − S−2ζ2

)
+

8(N − 1)

N(N + 1)2

(
2S−2,1 − S−3 − 2S−2S1

)
+

2(4N − 3)

N(N + 1)
S3,1 −

2N − 1

2N(N + 1)

(
4S2,1,1 − 4S2,1S1 − S2ζ2

)
− 2N − 3

24N(N + 1)

(
30S4

+S4
1 + 12S2

1ζ2 + 16S1ζ3

)
− 38N − 39

3N(N + 1)
S3S1 +

3(10N − 7)

8N(N + 1)
S2

2 −
18N − 19

4N(N + 1)
S2S

2
1 + 2

N3 + 2N2 + 4N + 2

N2(N + 1)2
S2,1

+
N3 − 38N2 − 10N − 34

3N2(N + 1)2
S3 +

N3 − 2N2 + 8N + 2

6N2(N + 1)2
S3

1 +
N3 − 18N2 + 24N + 2

2N2(N + 1)2
S2S1

+
N3 − 2N2 + 8N + 2

N2(N + 1)2
S1ζ2 +

2

3

N3 +N − 4

N2(N + 1)2
ζ3 +

8(N2 + 3)

N(N + 1)3
S−2

−2N4 − 18N3 − 20N2 − 3N + 36

2N2(N + 1)3
S2 −

2N4 + 2N3 − 4N2 − 35N − 12

2N2(N + 1)3
S2

1

−2N4 + 3N3 + 8N2 +N + 8

N2(N + 1)3
ζ2 +

P̂19

N2(N + 1)4
S1 −

P̂20

N2(N + 1)5

]}
, (223)

P̂18 = 4N5 + 10N4 + 11N3 − 16N2 − 19N − 24 , (224)

P̂19 = 4N5 + 8N4 − 10N2 + 51N + 20 , (225)

P̂20 = 8N6 + 28N5 + 42N4 + 19N3 + 24N2 + 13N + 40 . (226)
Furthermore, one has

∆AQgg = ∆AQgh = ∆AQgi = ∆AQgk = ∆AQgo = ∆AQgp = ∆AQgq = ∆AQgr = ∆AQgr′

= ∆AQgs = ∆AQgt = 0 . (227)

In Table 3 we show, for comparison, numerical values for some moments of the diagrams calcu-
lated above.

The non–singlet diagrams are the same as in the unpolarized case, cf. [11, 16]. These sums
were calculated both with the help of integral representations and by applying the package
Sigma, [106,107]. Sample calculations can be found in [16,108].

B Representations through generalized hypergeometric series

In the present calculation the Feynman diagrams were evaluated without using the integration-
by-parts method. As an example, we describe in the following the evaluation of a 5–propagator
integral emerging in diagram f , see Figure 3, Ref. [11].

If (N) =
N−2∑
i=0

∫ 1

0

∫ 1

0

dDq dDk

(2π)D(2π)D
(∆q)i(∆k)N−2−i

(q2 −m2)((q −p)2 −m2)(k2 −m2)((k −p)2 −m2)2(k −q)2
.
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(228)

The diagram has a 4–dimensional Feynman parameterization over the generalized unit-cube.
After the momentum integrals are carried out one obtains

If (N) =
(∆p)N−2Γ(1− ε)
(4π)4+ε(m2)1−ε

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dudzdydx
(1− u)−ε/2z−ε/2(1− z)ε/2−1

(1− u+ uz)1−ε(x− y)[(
zyu+ x(1− zu)

)N−1

−
(

(1− u)x+ uy
)N−1

]
. (229)

It is useful to apply the following transformations of variables, cf. [109],

x′ := xy , y′ :=
x(1− y)

1− xy ,

x = x′ + y′ − x′y′ , y =
x′

y′ + x′ − x′y′ ,

∂(x, y)

∂(x′, y′)
=

1− x′
x′ + y′ − x′y′ , (230)

which yields∫ 1

0

∫ 1

0

dxdyf(x, y)(xy)N =

∫ 1

0

∫ 1

0

dx′dy′
(1− x′)(x′)N
x′ + y′ − x′y′f

(
y′ + x′ − x′y′, x′

x′ + y′ − x′y′
)
. (231)

Similarly, terms of the form (x− y)N can be combined using

x > y : x < y :

x′ := x− y , x′ := y − x ,

y′ :=
y

1− x+ y
, y′ :=

1− y
1 + x− y ,

x = x′ + y′ − x′y′ , x = (1− x′)(1− y′) ,
y = (1− x′)y′ , y = 1− (1− x′)y′ ,

∂(x, y)

∂(x′, y′)
= 1− x′ . ∂(x, y)

∂(x′, y′)
= 1− x′ , (232)

leading to, cf. [109],∫ 1

0

∫ 1

0

dxdyf(x, y)(x− y)N =

∫ 1

0

∫ 1

0

dx′dy′x′
N

(1− x′)
(
f(y′ + x′ − x′y′, (1− x′)y′)

+(−1)Nf((1− y′)(1− x′), 1− (1− x′)y′)
)
. (233)

The substitution (230) u′ := uz and shifting z′ → 1− z , u′ → 1− u afterwards, yields

If (N) =
(∆p)N−2Γ(1− ε)
(4π)4+ε(m2)1−ε

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dudzdydx
(1− u)−ε/2z−ε/2(1− z)ε/2−1

(1− u+ uz)1−ε(x− y)[(
(1− u)y + ux

)N−1

−
(

(1− u)x+ uy
)N−1

]
. (234)
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Now transformation (232) is used by setting x′ := ±(x− y). Thus

If (N) =
(∆p)N−2Γ(1− ε)
(4π)4+ε(m2)1−ε

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dudzdy′dx′
(1− u)−ε/2z−ε/2(1− z)ε/2−1

(1− u+ uz)1−ε
1− x′
x′[(

y′(1− x′) + ux′
)N−1

−
(
y′(1− x′) + x′(1− u)

)N−1

−
(

1− ux′ − y′(1− x′)
)N−1

+
(

1− x′ + ux′ − y′(1− x′)
)N−1

]
. (235)

This form allows to perform the y′-integration. Further we set x = x′, u→ 1− u, giving

If (N) =
2(∆p)N−2Γ(1− ε)
(4π)4+ε(m2)1−εN

∫ 1

0

∫ 1

0

∫ 1

0

dudzdx
u−ε/2z−ε/2(1− z)ε/2−1

(u+ z − uz)1−εx

[
xNuN − xN(1− u)N

+(1− ux)N − (1− x(1− u))N

]

=
2(∆p)N−2Γ(1− ε)
(4π)4+ε(m2)1−εN

[
1

N

∫ 1

0

∫ 1

0

dudz
u−ε/2z−ε/2(1− z)ε/2−1

(u+ z − uz)1−ε

[
uN − (1− u)N

]
+

N∑
i=1

(
N

i

)
(−1)i

i

u−ε/2z−ε/2(1− z)ε/2−1

(u+ z − uz)1−ε

[
ui − (1− u)i

] ]

=
2(∆p)N−2Γ(1− ε)
(4π)4+ε(m2)1−εN

N∑
i=1

{(
N

i

)
(−1)i + δi,N

}
1

i

∫ 1

0

∫ 1

0

dudz
u−ε/2z−ε/2(1− z)ε/2−1

(u+ z − uz)1−ε

×
[
ui − (1− u)i

]
. (236)

Here also the x–integral was carried out. The latter expression can now be rewritten in terms of
a generalized hypergeometric series [53] by applying

I1 =

∫ 1

0

∫ 1

0

dydw(1− w)awb(1− y)cyd[1− y(1− w)]−e

= B(d+ 1, c+ 1)
∞∑
k=0

(e)k(d+ 1)k
k!(2 + d+ c)k

∫ 1

0

dw(1− w)a+kwb

= B(d+ 1, c+ 1)B(a+ 1, b+ 1)3F2

[
e, d+ 1, a+ 1

2 + d+ c, 2 + a+ b
; 1

]
. (237)

Here (a)k =
∏k

l=0(a + l) denotes the Pochhammer–Appell symbol and B(a, b) is Euler’s Beta-
function. One thus obtains

If (N) =
S2
ε (∆p)

N−2

(4π)4(m2)1−ε exp

{
∞∑
l=2

ζl
l
εl

}
2π

N sin(π
2
ε)

N∑
j=1

{(
N

j

)
(−1)j + δj,N

}

×
{

Γ(j)Γ(j + 1− ε
2
)

Γ(j + 2− ε)Γ(j + 1 + ε
2
)
− B(1− ε

2
, 1 + j)

j
3F2

[
1− ε, ε

2
, j + 1

1, j + 2− ε
2

; 1

]}
.

(238)
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Note that although (238) is a double sum, the summation parameters and the variable N are not
nested. This expression can be expanded in ε and calculated using the sums given in Appendix B
of Ref. [11].

The same kind of transformation was performed to obtain a result for the 5–propagator
integral of diagram n. Although a little more work is needed, it could be treated in a quite
similar manner as diagram f . One of the most important aspects is to write all sums which have
to be introduced in such a way that there is no nesting of summation indexes with N . Note that
in the case of only 3 massive propagators, analytic results for fixed values of N can be obtained
quite easily by choosing the momentum flow in such a way that one momentum follows the
massive propagators. Thus no denominator structure emerges in the parameter integral. One
obtains

In(N) =
N−2∑
j=0

∫
dDq

(2π)D

∫
dDk

(2π)D
(∆q)j(∆q −∆k)N−2−j

(q2−m2)((q−p)2−m2)((k − q)2−m2)(k −p)2k2

=
Γ(1− ε)(∆p)N−2

(4π)4+ε(m2)1−ε

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dwdydvdz
N−2∑
i=0

(1− w)wε/2−1(1− y)1−ε/2y−ε/2(1− y)j

×(1− w)j(z − v)j(y((1− w)v + wz) + (1− y)z)N−j−2 . (239)

Calculating (239) for arbitrary values of N analytically involves some work, while for fixed values
of N , (239) decomposes into a finite sum of Beta-functions, which can be handled by MAPLE. The
general N expression reads

In =

∫
dq

(2π)D

∫
dk

(2π)D
(∆q)N−1−(∆k)N−1

(∆q−∆k)

1

(q2−m2)((q−p)2−m2)(k2−m2)(q−k −p)2(k−q)2

=
(∆p)N−2Γ(1− ε)
(4π)4+ε(m2)1−ε

{
B(N + 1− ε/2, 1− ε/2)

(
(−1)N − 1

N2
B(N + 1, ε/2)

−2(N + 1) + ε

N(N + 1)ε
B(N + 2, ε/2) + (−1)N

B(N + 1, ε/2 + 1)

N(N + 1)
3F2

[
ε/2 + 1, N + 1, 1
N + 2, N + 2 + ε/2

; 1

])

−
N−1∑
l=1

(
N − 1

l

)
(−1)lB(l + 1− ε/2, 2− ε/2)

l−1∑
k=0

(−1)k
B(k + 2, ε/2)B(k + 2, N − 1− k)

k + 1

− 1

N

N−1∑
l=1

(
N − 1

l

)
(−1)lB(l + 1− ε/2, 2− ε/2)

l−1∑
k=0

B(k + 2, ε/2)

k + 1

+

[
N−1∑
l=0

(
N − 1

l

)
(−1)lB(l + 1− ε/2, 2− ε/2)

]

×
∫ 1

0

∫ 1

0

dxdv (1− x)ε/2−1vN−1 (ln(v(1− x) + x)− ln(v(1− x)))

}
(240)

=
S2
ε (∆p)

N−2

(4π)4(m2)1−ε exp

{
∞∑
l=2

ζl
l
εl

}
1

N(N + 1)

{
1

ε

[
4S1(N) + 2

(−1)N − 1

N

]

+2S−2(N)− S2(N) + S2
1(N) +

2(3N + 1)S1(N)

N(N + 1)
+ 2

(−1)N − 1

N(N + 1)
+O(ε)

}
, (241)
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where ∫ 1

0

∫ 1

0

dxdv (1− x)ε/2−1vN−1 (ln(v(1− x) + x)− ln(v(1− x)))

=
4

ε2N
+

2

εN2
− B(1 + ε/2, 1)

N(N + 1)
3F2

[
1, 1 + ε/2, 1
N + 2, 2 + ε/2

; 1

]
. (242)

C The heavy quark O(a2
s) Wilson coefficients for Q2 � m2

In the following we give the representation of the heavy quark two–loop polarized Wilson coef-
ficients for Q2 � m2 in z– and N space and correct some errors in [1]. Furthermore, for the
case of the inclusive heavy flavor corrections, further conceptual changes w.r.t. [1] are necessary.
The structure of the Wilson coefficients has been given in Eqs. (32–36). In Ref. [1] the Wilson

coefficient ∆L
(2)
g,g1 has not been considered.

In the following we set both the factorization and renormalization scales µ2 = Q2. Thus
the asymptotic heavy flavor Wilson coefficients depend on the logarithms ln(Q2/m2

Q) only, with
mQ = mc or mb.

The massive asymptotic polarized flavor non–singlet Wilson coefficient [1], Eq. (B.4), reads

∆LNS,(2),[1]

(
z,
Q2

m2

)
= TFCF

{
4

3

1 + z2

1− z ln2

(
Q2

m2

)

+

[
1 + z2

1− z

(
8

3
ln(1− z)− 16

3
ln (z)− 58

9

)
− 2 + 6 z

]
ln

(
Q2

m2

)

+
1 + z2

1− z

[
−8

3
Li2 (1− z)− 8

3
ζ2 −

16

3
ln(z) ln(1− z) +

4

3
ln2(1− z)

+4 ln2(z)− 58

9
ln(1− z) +

134

9
ln(z) +

359

27

]
− (2− 6 z) ln (1− z)

+

(
10

3
− 10 z

)
ln (z) +

19

3
− 19 z

}
. (243)

In Ref. [1] the higher functions are expressed in terms of polylogarithms [110] and Nielsen-
integrals [105]. They obey the following integral representations

Sn,p(x) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0

dz

z
lnn−1(z) lnp(1− xz) (244)

Lin(x) = Sn−1,1(x) . (245)

In Eq. (243) the variable z obeys z ∈ [0, Q2/(m2 + Q2) < 1], since only real heavy quark
production has been considered in [1]. Approaching the region z ∼ 1 the +-prescription has to
be used, and z ∈ [0, 1]. Furthermore, a soft and virtual term has to be added, cf. [1]. This is
not the complete result, however, since a term containing other virtual initial state corrections
with massless quark final states is yet missing [55, 56] and the foregoing result still violates the
polarized Bjorken sum rule, since there is a logarithmic correction in the limit Q2 � m2. To
obtain the correct expression one has to consider the inclusive heavy flavor Wilson coefficient
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for a structure function, cf. [55, 56].22 In particular, its first moment does not yield the correct
result for the Bjorken sum rule. Relations of this kind are used in the tagged flavor case, see
also [22]. They do not apply to the structure functions. The polarized flavor non–singlet Wilson
coefficient is given in the MS scheme due to the Ward–Takahashi [111] identity, which can be
used since the local operator is located on the massless fermion line.

∆LNS,(2),MS

(
N,

Q2

m2

)
= CFTF

{
−4

3
ln2

(
Q2

m2

)(
−2 + 3N + 3N2

2N(1 +N)
+ 2S1

)
+

(
2T1

9N2(1 +N)2

+
80

9
S1 −

16

3
S2

)
ln

(
Q2

m2

)
+

T4

27N3(1 +N)3
+

(
− 2T3

27N2(1 +N)2

+
8

3
S2

)
S1 −

2
(
− 6 + 29N + 29N2

)
9N(1 +N)

S2
1 +

2
(
− 2 + 35N + 35N2

)
3N(1 +N)

S2

−8

9
S3

1 −
112

9
S3 +

16

3
S2,1

}
, (246)

with

T1 = −3N4 − 6N3 − 47N2 − 20N + 12, (247)

T2 = 57N4 + 96N3 + 65N2 − 10N − 24, (248)

T3 = 359N4 + 772N3 + 335N2 + 30N + 72, (249)

T4 = 795N6 + 2043N5 + 2075N4 + 517N3 − 298N2 + 156N + 216. (250)

The first moment of (246) yields 8a2
sCFTF for µ2 = Q2 in accordance with the polarized Bjorken

sum rule [79] for a single quark flavor, shifting NF → NF + 1 in the limit Q2 � m2. For a
detailed discussion of the finite mass effects see Ref. [55].

The corresponding expression in z space are represented using harmonic polylogarithms [112],
which are the iterative integrals over the alphabet

A =

{
f0 =

1

z
, f1 =

1

1− z , f−1 =
1

1 + z

}
, (251)

and are given by

Hb,~a(z) =

∫ z

0

dy

y
fb(y)H~a(y), H∅ = 1, b, ai ∈ {0, 1,−1}. (252)

In the following we use the shorthand notation H~a(z) ≡ H~a.
One obtains

∆LNS,(2),MS

(
z,
Q2

m2

)
= CFTF

{[
1

1− z

[
8

3
ln2

(
Q2

m2

)
+

718

27
+

16

9

(
5 + 3H0

)
ln

(
Q2

m2

)

+
268

9
H0 + 8H2

0 +
116

9
H1 +

16

3
H0H1 +

8

3
H2

1 +
16

3
H0,1 −

32

3
ζ2

]]
+

22It is very well possible that different analysis programmes still refer to the results of Ref. [1], which has to be
corrected.
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+

(
2 ln2

(
Q2

m2

)
+

2

3
ln

(
Q2

m2

)
+

265

9

)
δ(1− z)

−4

3
(1 + z) ln2

(
Q2

m2

)
− 4

27
(47 + 218z) +

(
−8

9
(11z − 1)

−8

3
(1 + z)H0

)
ln

(
Q2

m2

)
− 8

9
(13 + 28z)H0 − 4(1 + z)H2

0

+

(
−8

9
(5 + 14z)− 8

3
(1 + z)H0

)
H1 −

4

3
(1 + z)

[
H2

1 + 2H0,1 − 4ζ2

]}
.

(253)

The corresponding expression in the Larin scheme is given in [59]. Here the +-distribution is
defined by ∫ 1

0

dz[f(z)]+g(z) =

∫ 1

0

dz[f(z)− f(1)]g(z) . (254)

The Mellin convolution of the different contributions in (253) are defined by [113](
f(z)

1− z

)
+

⊗ g(z) =

∫ 1

z

dy
f(y)

1− y

[
1

y
g

(
z

y

)
− g(z)

]
− g(z)

∫ z

0

dy
f(y)

1− y (255)

δ(1− z)⊗ g(z) = g(z) (256)

f(z)⊗ g(z) =

∫ 1

z

dy

y
f

(
z

y

)
g(y). (257)

In the pure singlet case one obtains in Mellin space for the massive Wilson coefficient in the
Larin scheme

∆HPS,(2),L

(
N,

Q2

m2

)
= CFTF

{
−4(N − 1)(2 +N)

N2(1 +N)2
ln2

(
Q2

m2

)
− 8(2 +N)

(
1 + 2N +N3

)
N3(1 +N)3

× ln

(
Q2

m2

)
+

8T5

(N − 1)N4(1 +N)4(2 +N)
+

4(N − 1)(2 +N)

N2(1 +N)2

×[S2
1 − 3S2] +

8(2 +N)
(
2 +N −N2 + 2N3

)
N3(1 +N)3

S1

− 64

(N − 1)N(1 +N)(2 +N)
S−2

}
, (258)

T5 = 3N8 + 10N7 −N6 − 22N5 − 14N4 − 18N3 − 30N2 + 8. (259)

The corresponding result in z space reads

∆HPS,(2),L

(
z,
Q2

m2

)
= CFTF

{
− [20(1− z) + 8(1 + z)H0] ln2

(
Q2

m2

)
+ 8[(1− z)− (1− 3z)H0

−(1 + z)H2
0 ] ln

(
Q2

m2

)
+

592

3
(1− z) +

(
256

3
(2− z)− 32(1 + z)ζ2

)
H0

−32(1 + z)3

3z
H−1H0 +

8

3

(
21 + 2z2

)
H2

0 +
16

3
(1 + z)H3

0 + 8(1− z)
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×(11 + 10H0)H1 + 20(1− z)H2
1 − 16

[
(1− 3z)− 2(1 + z)H0

]
H0,1

+
32(1 + z)3

3z
H0,−1 − 16(1 + z)(2H0,0,1 − (1 + z)H0,1,1)

−32

3

(
9− 3z + z2

)
ζ2 + 16(1 + z)ζ3

}
, (260)

which agrees with Eq. (B.3) of Ref. [1]. For the pure singlet Wilson coefficient H
PS,(2)
Qq there is

no finite transformation to the M scheme at O(a2
s) since the correction to the massive OME and

the massless Wilson coefficient compensate each other.
The gluonic Wilson coefficient ∆H

S,(2)
Qg is given by

∆H
S,(2)
Qg (N) =

{
−T 2

F

16(N − 1)

3N(1 +N)
+ CFTF

[
2(N − 1)

(
2 + 3N + 3N2

)
N2(1 +N)2

− 8(N − 1)S1

N(1 +N)

]

+CATF

[
− 16(N − 1)

N2(1 +N)2
+

8(N − 1)S1

N(1 +N)

]}
ln2

(
Q2

m2

)
+

{
CFTF

[
− 4(N − 1)T8

N3(1 +N)3

+
(N − 1)

(
16S2

1 − 16S2

)
N(1 +N)

+
4(N − 1)

(
− 6−N + 3N2

)
S1

N2(1 +N)2

]
+ T 2

F

[
16(N − 1)2

3N2(1 +N)

+
16(N − 1)S1

3N(1 +N)

]
+ CATF

[
8T11

N3(1 +N)3
− (N − 1)

(
8S2

1 + 8S2 + 16S−2

)
N(1 +N)

+
32S1

N(1 +N)2

]}
ln

(
Q2

m2

)
+ CATF

[
4S2T7

N2(1 +N)2(2 +N)
− 16S1T13

N3(1 +N)3(2 +N)

− 8T14

(N − 1)N4(1 +N)4(2 +N)2
+

(N − 1)
(
32S1S2 − 16S2,1

)
N(1 +N)

−4
(
12−N +N2 + 2N3

)
S2

1

N2(1 +N)(2 +N)
+

8
(
− 2 + 3N + 3N2

)
S3

N(1 +N)(2 +N)

+

(
16T6

(N − 1)N(1 +N)(2 +N)2
+

32S1

2 +N

)
S−2 −

8(N − 2)(3 +N)S−3

N(1 +N)(2 +N)

−16
(
2 +N +N2

)
S−2,1

N(1 +N)(2 +N)
− 24

(
2 +N +N2

)
N(1 +N)(2 +N)

ζ3

]

+CFTF

[
− 2S2

1T9

N2(1 +N)2(2 +N)
+

2S2T10

N2(1 +N)2(2 +N)
+

4S1T12

N3(1 +N)3(2 +N)

+
4T15

(N − 1)N4(1 +N)4(2 +N)2
+

N − 1

N(1 +N)

(
− 8S3

1 + 8S1S2 + 16S2,1

)
−16

(
2 +N +N2

)
S3

N(1 +N)(2 +N)
+

(
16
(
10 +N +N2

)
(N − 1)(2 +N)2

− 128S1

N(1 +N)(2 +N)

)
S−2

− 64S−3

N(1 +N)(2 +N)
+

128S−2,1

N(1 +N)(2 +N)
+

48
(
2 +N +N2

)
N(1 +N)(2 +N)

ζ3

]
, (261)

with

T6 = N4 + 3N3 − 4N2 − 8N − 4, (262)

46



T7 = 2N4 −N3 − 24N2 − 17N + 28, (263)

T8 = 4N4 + 5N3 + 3N2 − 4N − 4, (264)

T9 = 9N4 + 6N3 − 35N2 − 16N + 20, (265)

T10 = 11N4 + 42N3 + 47N2 + 32N + 12, (266)

T11 = N5 +N4 − 4N3 + 3N2 − 7N − 2, (267)

T12 = 2N6 + 5N5 − 22N4 − 95N3 − 114N2 − 24N + 16, (268)

T13 = 2N6 + 5N5 − 3N4 − 7N3 + 2N2 − 11N − 8, (269)

T14 = N10 + 3N9 − 15N8 − 56N7 − 8N6 + 90N5 + 60N4 + 67N3 + 86N2

−12N − 24, (270)

T15 = 5N10 + 23N9 + 31N8 −N7 + 54N6 + 268N5 + 342N4 + 98N3 − 60N2

−8N + 16. (271)

The rightmost pole in (261) is located at N = 1, as expected. In z space it reads

∆H
S,(2)
Qg (z) =

{
−T 2

F

16

3
(−1 + 2z) + CATF

[
48(−1 + z)− 16(1 + z)H0 + 8(−1 + 2z)H1

]
+CFTF

(
6 + (−1 + 2z)

(
− 4H0 − 8H1

)}
ln

(
Q2

m2

)
+

{
T 2
F

[
16

3
(−3 + 4z)

+(−1 + 2z)

(
16

3
H0 +

16

3
H1

)]
+ CATF

[
−8(−12 + 11z) + (1 + 2z)

×
(
− 16H−1H0 − 8H2

0 + 16H0,−1

)
+ 8(1 + 8z)H0 − 32(−1 + z)H1

−8(−1 + 2z)H2
1 − 16ζ2

]
+ CFTF

[
4(−17 + 13z) + (−1 + 2z)

(
8H2

0 + 32H0H1

+16H2
1 − 8H0,1

)
+ 16(−3 + 2z)H0 + 4(−17 + 20z)H1 − 24(−1 + 2z)ζ2

]}

× ln

(
Q2

m2

)
+ CATF

{
−8

3
(−101 + 104z) + (1 + 2z)

(
16H−1H0,1 − 16H0,1,−1

−16H0,−1,1

)
+ (−1 + 2z)

(
− 16H0H

2
1 + 16H1H0,1

)
+

4

3

(
194− 163z + 6z2

)
H0

−16
(
2 + 3z + 9z2 + 11z3

)
H−1H0

3z
+ 16z2H2

−1H0 +

(
2

3

(
126− 48z + 41z2

)
−4
(
− 3− 6z + 2z2

)
H−1

)
H2

0 +
8

3
(3 + 4z)H3

0 + 4
(
43− 53z + 2z2

)
H1

−4
(
− 53 + 56z + z2

)
H0H1 + 4

(
3− 6z + 2z2

)
H2

0H1 + 2
(
19− 24z + z2

)
H2

1

+4
(
− 19 + 28z + 2z2

)
H0,1 − 8

(
− 7− 10z + 2z2

)
H0H0,1 +

(
−32z2H−1

+
16
(
2 + 3z + 9z2 + 11z3

)
3z

+ 8
(
− 3− 6z + 2z2

)
H0

)
H0,−1 + 8

(
− 9− 10z

+2z2
)
H0,0,1 − 8

(
− 3− 6z + 2z2

)
H0,0,−1 + 48H0,1,1 + 32z2H0,−1,−1
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+

(
−4

3

(
114− 84z + 47z2

)
− 32(2 + z)H0 − 16(−1 + z)2H1 + 16

(
− 1− 2z

+z2
)
H−1

)
ζ2 − 8

(
− 1− 10z + 4z2

)
ζ3

}
+ CFTF

{
−20

3
(−20 + 17z)

+(−1 + 2z)
(
− 8

3
H3

0 − 16H0H
2
1 − 8H3

1 − 16H1H0,1 + 24H0,1,1

)
− 8

3

(
− 46

+53z + 6z2
)
H0 +

16
(
4 + 12z2 + 13z3

)
3z

H−1H0 − 32(1 + z)2H2
−1H0

+

(
−4

3

(
− 27 + 6z + 23z2

)
+ 16(1 + z)2H−1

)
H2

0 − 4
(
− 47 + 41z + 4z2

)
H1

+8
(
8− 14z + z2

)
H0H1 − 16z2H2

0H1 − 2
(
− 33 + 40z + 2z2

)
H2

1 − 16
(
− 6 + z2

)
×H0,1 + 32(−1 + z)2H0H0,1 +

(
−16

(
4 + 12z2 + 13z3

)
3z

− 32(−1 + z)2H0

+64(1 + z)2H−1

)
H0,−1 − 32(−1 + z)2H0,0,1 + 32

(
1− 6z + z2

)
H0,0,−1

−64(1 + z)2H0,−1,−1 +

(
8

3

(
− 60 + 42z + 29z2

)
+ (−1 + 2z)

(
32H0 + 16H1

)
+32z2H1 − 32(1 + z)2H−1

)
ζ2 + 8

(
1 + 14z + 8z2

)
ζ3

}
. (272)

To compare with the representation of H
S,(2)
Qg (z) in [1], Eq. (B.2), we use the relation

Li3

[
1− z
1 + z

]
− Li3

[
−1− z

1 + z

]
= −1

2
H2
−1H0 −H−1H0H1 −

1

2
H0H

2
1 +

(
H1 +H−1

)
×
(
H0,1 +H0,−1 −

3

2
ζ2

)
−H0,1,1(z)−H0,1,−1(z)

−H0,−1,1(z)−H0,−1,−1(z) +
7

4
ζ3. (273)

The expressions corresponding to Eqs. (261, 272) in Ref. [1] do not agree with our results.
Our result differs by

16

3

(N − 1)

N(N + 1)

{
3CFTF
N

− T 2
F

[
ln2

(
Q2

m2

)
−
(
N − 1

N
+ S1

)
ln

(
Q2

m2

)]}
(274)

from that in Eq. (B.2) of Ref. [1]. The renormalization formulae in [1] are different from those
in [14], which fully refer to the MS scheme for charge renormalization, being related to the O(T 2

F )
terms.

Finally, the Wilson coefficient ∆L
(2)
g reads

∆L(2)
g (N) =

16

3

N − 1

N(N + 1)
T 2
FNF

[
N − 1

N
+ S1

]
ln

(
Q2

m2

)
. (275)

It is a gluonic single heavy quark correction to virtual photon–gluon fusion with NF massless
final state quarks. In z space one has

∆L(2)
g (z) =

16

3
T 2
FNF [4z − 3 + (2z − 1)(H0 +H1)] ln

(
Q2

m2

)
. (276)
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Furthermore, the two–mass corrections (22) contribute. Both the latter contributions have not
been considered in [1].
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[48] J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, JHEP 01 (2022) 193
[arXiv:2111.12401 [hep-ph]].
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