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Abstract The critical behaviour of magnetically charged
AdS black holes based on rational non-linear electrodynam-
ics (RNED) in an extended phase space is investigated herein.
The cosmological constant is considered as thermodynamic
pressure, and the black hole mass is identified with the chem-
ical enthalpy. An analogy with the van der Walls liquid—gas
system is found, and the critical exponents coincide with
those of the van der Waals system. The thermodynamics of
RNED-AJS black holes and phase transitions are studied,
and new thermodynamic quantities conjugated to the non-
linear parameter of RNED and magnetic charge are defined.
The consistency of the first law of black hole thermodynam-
ics and the Smarr formula is demonstrated.

1 Introduction

Nowadays, black holes are treated as thermodynamic sys-
tems [1-3], with the area of a black hole being the entropy
and its surface gravity identified with the temperature [4,5].
This has advanced our understanding of the link between
gravity and quantum physics. The consideration of anti-de
Sitter (AdS) spacetime with a negative cosmological con-
stant gave rise to the phase behaviour of black holes [6].
An important step was later made to consider a holographic
picture where black holes are a system which is dual to con-
formal field theories [7-9]. The study of the holography has
led to progress in solving problems in quantum chromody-
namics [10] and condensed matter physics [11,12]. It was
recently proposed that the cosmological constant plays arole
of pressure which is a conjugate to volume in black hole
thermodynamics. This has allowed scientists to compare the
phase transitions in black holes with those in liquid—gas ther-
modynamics [13—16]. Various aspects of Born—Infeld (BI)
electrodynamics in AdS spacetime with a negative cosmo-
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logical constant were studied in [17-23], and an analogy to
van der Waals fluids in black hole physics was found. In
this paper, we study the thermodynamics in the framework
of rational non-linear electrodynamics (RNED) [24,25] cou-
pled to gravity with a negative cosmological constant. Pre-
vious studies [25] have considered the thermodynamics in
asymptotically flat spacetime in the framework of Einstein’s
theory of relativity without the cosmological constant. As a
result, pressure was not introduced, the pressure—volume (P-
V) term was absent in black hole thermodynamics, and there
was no analogy with van der Vaals fluid. In addition, in [25],
the local stability of black holes for the canonical ensemble
(the charge is fixed) was investigated by calculating the spe-
cific heat. In the present paper, we study the global black hole
stability by analysing the Gibbs free energy within the grand
canonical ensemble in extended phase space. The RNED
model possesses attractive properties such as the absence
of singularity of charges at the origin and finite electrostatic
energy. Similar features take place in Born—Infeld electrody-
namics. In addition, RNED coupled to gravity describes the
inflation of the universe [26] and provides the correct shadow
of the M87* black hole [27]. Electrically charged black holes
within RNED coupled to gravity without the cosmological
constant were studied in [28]. Here, we investigate magnet-
ically charged black holes in the framework of gravity with
the cosmological constant.

The structure of the paper is as follows. In Sect. 2 we
obtain the RNED-AdS metric function with the asymptotic
as r — oo and r — 0. When the Schwarzschild mass is
zero, the solution is non-singular, with the de Sitter core as
r — 0. The extended thermodynamic phase space including
a negative cosmological constant as pressure with the conju-
gate volume and coupling 8 of RNED is analysed in Sect. 3.
We find the thermodynamic magnetic potential and the
thermodynamic conjugate to the coupling. The generalized
Smarr relation is obtained. The black hole thermodynamics is
studied in Sect. 4. We obtain critical values of the specific
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volume, critical temperature and critical pressure. The Gibbs
free energy is analysed in Sect. 4.1. The black hole mass is
considered as a chemical enthalpy. We depict the pressure
and the critical isotherms. In Sect. 4.2, the critical exponents
are established. Section 5 is a summary.

We use units withc =1, =1and kg = 1.

2 RNED-AAS solution

The action of Einstein-RNED theory in AdS spacetime is
given by

R —2A

I= /d4x«/—g + L(F) ), )]
167 GN

where the negative cosmological constant is A = —3/12,

with [ being the AdS radius. The RNED Lagrangian [24] in
Gaussian units reads

F

IR TIo)

@
with F = FFVF,, /4 = (B2 —E?)/2, Fyuy = 3,Ay— 3, A,.
The maximum electric field in the origin is E(0) = 1/4/B
[24]. By varying action (1) with respect to g,, and A, one
can obtain the equations of gravitational and electromagnetic
fields as follows

1
Ruv - Egp,vR + Ag;w = SHGNT,LLU! (3
O (V—8LFF"") =0, 4)

where R is the Ricci scalar and Ry, is the Ricci tensor.
The energy—momentum symmetric tensor of electromagnetic
fields can be found by the variation of £ (F) with respect to
the metric tensor, and it is given by

T;w = FupFupﬁf + gu\)[: (F), (5)

and Lr = 0L(F)/oF.
We consider the four-dimensional static spherical sym-
metric line element

ds® = — F(r)di® + %dﬁ +r2 (d92 + sin? 9d¢2) . (6)

The spherical symmetry leads to the tensor F,, which
involves only the radial electric field Fp; = — Fj¢ and radial
magnetic field Fo3 = —F3» = g sin(0), where gp, is the
magnetic charge. The energy—momentum tensor becomes
diagonal with 7,0 = 7,” and 7, = T¢¢. The metric func-
tion, within general relativity, with spherical symmetry is
given by

fry=1-

2m(r)Gn
— )

@ Springer

where the mass function is [29]

m(r) = mo + 4m / ' p(r)rdr, ®)
0

where my is the integration constant corresponding to the
Schwarzschild mass, and p is the energy density, which also
includes the term due to the cosmological constant. In the
following, we consider only magnetic black holes because
the electrically charged black holes (for models which have
Maxwell’s weak-field limit) lead to singularities [29].

Now, we will study the static magnetic black holes. Taking
into account that the electric charge ¢, = 0, F = qrzn /2r%
(gm 1s @ magnetic charge), we obtain from Eq. (5) the mag-
netic energy density plus the term corresponding to the neg-
ative cosmological constant

- am 3
8 (r* + Bg2) 8wGyI%
With the help of Egs. (8) and (9), one finds the mass function
i [in (ﬂ — V2quPVr + qmﬁ)
8v/2p1/4 r2 4+ V2quBY*r + qm/B
JamB' + ﬁr)

(€))

m(r) = mgy +

mﬂl/4
1/4 _ 3
—2 arctan (M>:| i (10)

+2 arctan (

JamBA 26 yI%

The black hole magnetic mass is given by [25]

) C]2 3/2
my = 47t/ —m 24
0

_ Tdm
87 (r* + Bg2) 428174
32

~ 4dm
~ 0.56W. (11)

Equation (11) shows that at the limit 8 = 0 (Maxwell’s case),
the magnetic energy becomes infinite. Making use of Egs. (7)
and (10), we obtain the metric function

2moGy  qu Gng(r)  r?
r 4214 12

fr)y=1- 12)

where

r? — \/2‘]mﬂl/4r + Clm\/B>
24+ V2quBY4r + g /B

SamB + V2r

VampB'/*
a=gl/4 _ /2
—2 arctan M .
\/Qmﬂ /

In general relativity without the cosmological constant

(neglecting 2 /1% in Eq. (12)), the metric function as r — oo
approaches [25]

gr)y=1In (

+2 arctan (
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ZS“bp'c’”:mO:O’ Gy=1, 1510, =1 ZS“bp"’tZ: Mg=0 Gy=1, 1=10, p=1 where M, J, Q are the extensive, and T, Q, ® are inten-
—B=005 y 4= 1 sive thermodynamic variables. The disadvantage of the for-
o Ez o /7 7 mulated first law of black hole thermodynamics was the
18 , /,/// ~ T K absence of the pressure—volume term P§V. To improve the
-, / 1\/ o first law of black hole thermodynamics, the pressure was
1k ) //’// sl 7 associated with a negative cosmological constant A, which
S N . S Y / K gives a positive vacuum pressure in spacetime. Then, the
os - // 0 i / generalized first law of black hole thermodynamics became
' \// L / SM =TS+ VEP+Q8J+P5Q, withV = dM /9 P atcon-
- -05 \ ! stant S, J, Q [30-32]. A comparison of the first law of black
o | ‘ hole mechanics with ordinary thermodynamics requires us
V - o to interpret M as a chemical enthalpy [30], M = U + PV,

05 - ) 151 - ) where U is the internal energy.

Fig. 1 The plot of the function f(r) atmg =0,Gy = l and/ = 10

2(mo +my)Gy
r

fry=1-

q2Gy

+—— +0O3F¢™) asr — oco.
r

(13)

In this case, the correction to the Reissner—Nordstrom solu-
tion, according to Eq. (13), is in the order of O@G~3). The
total mass (ADM mass) of the black hole M = mqg + my
includes the Schwarzschild mass m and the magnetic mass
m . It is worth noting that if we put my = 0, i.e the black
hole mass is the magnetic mass, as r — 0, from Eq. (12), we
find the asymptotic with a de Sitter core
fy =1 Gt 2 Ot G

B2 8%k 1183,

+0@¢"?) asr — 0.

(14)

The solution (14) isregular because atr = 0, we have f(0) =
1. The plot of the metric function (12) is depicted in Fig. 1
atmy =0, Gy = 1,1 = 10 for different parameters ¢, and
B. Figure 1 shows that black holes can have two horizons,
one extreme horizon or no horizons depending on model
parameters.

3 First law of black hole thermodynamics and the
Smarr relation

If one considers that black holes are classical objects, then
there is an analogy between black hole mechanics and ther-
modynamics. The role of temperature is played by the sur-
face gravity, and the event horizon corresponds to entropy
S. Despite the fact that classical black holes have zero tem-
perature, Hawking proved that black holes emit radiation
with a blackbody spectrum [5]. The first law of black hole
thermodynamics reads M = T4§S + Q8J + ©§Q, with
black hole mass M, charge Q and angular momentum J,

To obtain the Smarr formula from the first law of black
hole thermodynamics, we consider dimensions of physical
quantities [33] (see also [30]). Let us consider the units with
Gy = 1. Then, from the dimensional analysis, we obtain
[M]=L,[S]=L*[P]=L"2[J]=L%Ignl = L,[B] =
L?. Considering 8 as a thermodynamic variable and taking
into consideration Euler’s theorem (see [15]) (the Euler scal-
ing argument), we obtain the mass M (S, P, J, gm, B),

oM oM oM oM

M=25"2 _oplZ 400 L 2 o
9S op T H gy Tamy 2P

oM
B’
(15)
where dM /3B = B is the thermodynamic conjugate to the
coupling B, and the black hole volume V and pressure P are
given by [34,35]
4 A 3

Vg, p=_2 2
37 87 8l

We consider the non-rotating stationary black hole so that
J = 0. From Eq. (12) and equation f(r4) = 0, where ry is
the horizon radius, we find (at Gy = 1)

(16)

3 3/2 3/2
_ T+ T TamT gm 8(r4) (17
2 212 4ﬁﬁ1/4 8«/5,31/4 ’
Making use of Eq. (17), we obtain
3/2
SM = 1 ﬁ_ﬂag('ﬂ*) 8r+—ﬁ51
20202 8284 by I
alsro  mal @ seo),,
32ﬁﬂ5/4 16\5,35/4 8\/231/4 5B
(B 3aalsto) st 5
BV2BY4 16V2pY4 8V2B14 Saqm | T
(18)
The Hawking temperature is given by
/
T — i (r)|r=r+. (19)
4r
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From Egs. (12) and (19) we obtain the Hawking temperature
(Gn=1)

2
T — 1 1 n 3ry _ Y4m’+ ’ (20)
4 \ry 2t + Bk

where we have used the equation

8g(ry)  42qmp'*r:

21
ory r*+ g3 B D
Making use of Egs. (17), (20) and (21), we obtain
oM
D) o, (22)
3r+

Then we find the entropy in our case of the RNED-AdS black
hole

dM 1 oM
S :/ (r+) = / — (r+)dr+ = nrf_. (23)
T T 8r+

Thus, the Bekenstein-Hawking entropy holds. Then, from
relations

8g(ry) _ _ 2qmri 5g(r4)
5B B34re + BgZ)”  8dm
o
12

qm(r} + Bgd)

and Egs. (16), (18), (20) and (23), we obtain the first law of
black hole thermodynamics

SM =T8S + V5P + ®ndqm + BSB, 24

where the thermodynamic magnetic potential @, and the
thermodynamic conjugate to the coupling 8 are given by

_ awri Smanl” 3anl g0r)
a0t +Bgd)  8V2BY4 16v2BY4°
3/2 3/2
— (Im/ g(}"+) _ ]Tqm/ qgnri (25)
3242854 16V285/4  8B(ri + Bgd)’

The B in the Born—Infeld AdS case was referred to as ‘Born—
Infeld vacuum polarization’ [36]. The presence of B is needed
for consistency of the Smarr formula. The plot of &y, vs 4
is depicted in Fig. 2. According to Fig. 2, when coupling B
increases, the magnetic potential decreases, and at v — 00
it vanishes, &, (0c0) = 0. At ry = 0, &y, is the finite value.
The plot of the function 5 vs ry is presented in Fig. 3. It
is worth noting that at »; = 0, the vacuum polarization B
is finite. Figure 3 shows that when coupling B increases,
the absolute value of vacuum polarization decreases, and at
r4 — 00 it becomes zero, B(co) = 0.

Making use of Egs. (16), (17), (23) and (25), one can verify
that the generalized Smarr formula holds,

M =25T —2PV + gm®Pm + 28B. (26)

@ Springer

Fig. 2 The plot of the function ®p, vs r4 at gm = 1. The solid curve
is for B = 0.05, the dashed curve corresponds to = 0.1, and the
dashed/dotted curve corresponds to 8 = 0.5

———PB=0.05
~ — =01
- — B=05 |

Ty

Fig. 3 The plot of vacuum polarization B vs ry at g = 1. The solid
curve is for B = 0.05, the dashed curve corresponds to 8 = 0.1, and
the dashed/dotted curve corresponds to 8 = 0.5

Making use of the Bekenstein and Hawking arguments
[4,37], we conclude that the second law of thermodynamics
for AdS black holes also holds. The study of Born-Infeld
electrodynamics in AdS spacetime in the extended phase
space was presented in [38—41].

4 The black hole thermodynamics

Making use of Eq. (20), we obtain the equation of state (EoS)
for the RNED-AdS black hole
T 1 q%

P=—- + : 27
2ry  8nrr 8w (ri + Bqgd) @7
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At B = 0, Eq. (27) becomes the EoS for a charged (by lin-
ear Maxwell electrodynamics) AdS black hole [42]. If one
compares the EoS of a charged AdS black hole with the van
der Waals equation, then the specific volume v should be
identified with 2/ pry [42]. With [p = /Gy = 1, the hori-
zon diameter 2r4 plays the role of the specific volume of the
corresponding fluid. Thus, Eq. (27) becomes

T 1 2¢2,

P=—— .
v 2mv? mw(v* +168¢2)

Equation (28) qualitatively mimics the behaviour of the van

der Waals fluid. Critical points take place at the inflection in
the P — v diagram with

(28)

oP T 1 8qz v

v v 3wt + 16822

2P 2T 3 8qiv*(48Bq2 — 5u*)
or_s 2 =0. (29
9?2 v mt (vt +168¢2)3

From Eq. (29) we obtain the equation for the critical points
as follows

8qmv(3v — 80Bqg) — (v¢ +16Bg7)° = 0. (30)

It is difficult to obtain an analytical solution to Eq. (30).
Equation (30) can be represented as the cubic equation for
the parameter 8 with the solution

503 1 36 4
B= V50 sinh (L sinn—t (20 i) )-—=5%. 3D
2\/6 m 3 5\/§Qm 16qm

where sinh~!(x) is the inverse hyperbolic sinh function.
Making use of Eq. (31), the function v, vs § with g, = 1
is depicted in Fig. 4. In accordance with Fig. 4, at 8 > 1.41
(approximately), there are no real solutions to Eq. (30). At
0 < B < 1.41, for each B there are two real solutions for v..
The expression for the critical temperature follows from Eq.
27

o ! 84702

- %m¥% 32
v 7w+ 16B8¢2)? (32)

Numerical solutions to Eq. (30) and the critical temper-
atures for different values of B are presented in Table 1,
showing two inflection points for each g. The plot of Tt
vs B is depicted in Fig. 5. In accordance with Fig. 5, at

Table 1 Critical values of the specific volume and temperature at g, = 1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

§

Fig. 4 The plot of the function v, vs § at g, = 1

0 < B < 0.42 (approximately) there is one critical tem-
perature (for each ), but for 0.42 < 8 < 1.41, two critical
temperatures. It is worth noting that Fig. 4 also shows that
for each B, there are two real positive critical points v, but
for the interval 0 < B < 0.42, only one v, gives the physi-
cal positive critical temperature. At the point v., we have a
second-order phase transition. The P — v diagrams are given
in Figs. 6 and 7 for some values of 7. According to Fig. 6,
for gm = B = 1, there are two critical values, v.; ~ 2.94305
(Te1 = 0.0402936) and vy ~ 4.45663 (Tco = 0.0448542).
Thus, there are inflection points, and the EoS in our case is
more complicated compared to the van der Waals gas EoS
and similar to the Born—Infeld AdS case. Figure 7 shows the
non-critical behaviour of P — v diagrams for 7 = 1, 2, 3 and
4. The critical pressure is given by

1 2¢2(16Bg2 — 3v})

(v} +16892)% ©3)

c = 2
27 vs

The plot of P, vs B is presented in Fig. 8. According to
Fig. 8,at0 < B < 0.77 (approximately), there is one critical
pressure (for each g), but for 0.77 < g < 1.41, two. Also,
for each B, there are two real positive solutions to Eq. (30)

B 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Vel 2.397 2.538 2.674 2.808 2.943 3.084 3.235 3.413 3.693
Tc1 0.0218 0.0288 0.0339 0.0375 0.0403 0.0424 0.0439 0.0451 0.04592
) 4.675 4.628 4.577 4.4557 4.457 4.383 4.294 4.175 3.951
T 0.0441 0.0443 0.0445 0.0447 0.0449 0.0451 0.0453 0.0456 0.04594
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Fig. 5 The plot of the critical temperature 7, vs 8 at g, = 1

x 10
7 T
T=035
6. — — — T=0.0402936 |
o — - — T=0.0448542
s o - - —T=0,05
4t~ T
! \7‘¥“\\\\\\\\\\
4 [ s T T
o 2,/"/ ;\\“\\_\R\\‘
/
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0
-1
-2
_3 ! ! ! ! ! !
2 4 6 8 10 12 14 16

Fig. 6 The plot of the function P vs v at g, = B = 1. The critical
isotherms correspond to 7¢; = 0.0402936 and Tip = 0.0448542

for critical points v, but for the interval 0 < 8 < 0.77, only
one v, gives the physical positive critical pressure. Making
use of Egs. (32) and (33), one obtains the critical ratio

Pcve
C:

_ (¢ £ 16B43)* + 4qm vz (168 — 3v8)
. 2[(v¢ + 16Bg3)? — 8q%v8] ’
(34)

where S is given by Eq. (31). The plot of p. vs B at gy = 1
is depicted in Fig. 9. At 8 = 0, we obtain p. = 3/8 as for
a van der Waals fluid. In accordance with Fig. 9, the critical
ratio in our model decreases with f.

@ Springer
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Fig. 8 The plot of the critical pressure P vs B at gm = 1
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Fig. 9 The plot of the critical ratio p. vs B
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Subplot 1: $=0.6, P=0.001 Subplot 2: 3=0.6, P=0.002

1.4 1
1.2 0.8
o O]
1 0.6
0.8 0.4
0.02 0.03 0.04 0.05 0.06 0.03 0.04 0.05 0.06
T T

Subplot 3: $=0.6, P=0.004 Subplot 4: $=0.6, P=0.005

0 0
O] o
-1 -1
-2 -2
0.02 0.04 0.06 0.08 0.02 004 006 0.08 0.1
T T

Fig. 10 The plot of the Gibbs free energy G vs T withgy, = 1,8 = 0.6

4.1 The Gibbs free energy

Let us consider the expression for the Gibbs free energy for
a fixed charge, coupling § and pressure

G=M-TS. (35)

Here, M is considered as a chemical enthalpy that is the
total energy of a system with its internal energy U and the
energy PV todisplace the vacuum energy of its environment:
M = U + PV. From Egs. (16) and (35) (at Gy = 1), we
obtain

3/2 3/2
HQm/ CIm/ gry) 2

TV VI
(36)

’%
ry 4mriP
G=—
2 + 3

where 74 is a function of P and T (see Eq. (27)). The plot of
G vs T is depicted in Fig. 10. The behaviour of G depends
on pressure P and coupling . As an example, we consider
the case with 8 = 0.6 where there is one physical critical
point (see Table 1 and Figs. 5 and 8), and v, ~ 4.6745,
T. ~ 0.0441 and P, ~ 0.0035. The behaviour of the Gibbs
free energy is similar to the RN-AdS black hole with one
critical point and the corresponding first-order phase transi-
tion between small and large black holes (in subplots 1 and
2). In this case, there is a point at which two black holes have
equal free energy. One can see two branches of black holes
with a cusp, and the Gibbs free energy shows “swallowtail”
behaviour with a first-order phase transition between two
branches for P < P.. Subplots 3 and 4 in Fig. 10 display a
characteristic shape similar to the Hawking—Page behaviour
for the Schwarzschild-AdS case, and there is no first-order
phase transition in the system for P > P..

4.2 Critical exponents

We expand the critical values in small parameter 8 as

ve = 2ogm — —— L 1 o),
m
1 1 B 5
Tc = + — + O )
3W6rgm  108y/6m 43 P
1 T B 2
P = Z 4+ 0. 37
¢ 96mq2, " 103687 gt 6% 37)

It is worth noting that the critical point (37) at 8 = 0 is
the same as in charged AdS black hole [36], but there are
corrections due to coupling 8. The critical ratio p; vs B is
depicted in Fig. 9, and the analytical expression for small 8
is given by
3 1 B 2

Pc—g‘i-%%‘i‘o(ﬁ ). (38)
The value p. = 3/8 takes place for the van der Waals fluid.
The critical exponents show the physical quantity behaviour
in the vicinity of the critical points which do not depend on
details of the system. The exponent « defines the behaviour
of the specific heat at the constant volume

as N
Cvaa—To<|t| @ (39

where t = (T — T)/T.. Because the entropy S = nr_%_ =
3Vv/ (471))2/ 3 is constant, we have C, = 0, and therefore
o = 0. Let us define the quantities [15]

P T
P v= L —YoFl, t=— =141 (40)

P. Ve T.
Taking into account Eq. (28), we obtain
T 1 23

7 P.(v*v} + 168¢2)’

where P, is given by Eq. (33). One can expand p in small
parameters ¢ and w near the critical point

p= (41)

voe  2mv?Pov?

p =1+ At — Btw — Co® — Dt + O(w*), (42)
where
1 1 2
A = ), B == = ——
Pc 3pc 9pc
14 20

" 8lpe  8lm P

~ 8qmvl(168q5)* + 224Bgm v — 3508] )
81 Povd (v} + 168¢2)* '

We included in Eq. (42) the additional term Dtw?, compared
to [15], which is in the same order as @°. The small B expan-
sion gives

4
C =g +0®).
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It is worth noting that value 4/81 is realized in the RN-AdS
case [15]. We will follow the same avenue as in [15] to obtain
critical exponents. Making use of Eq. (40), we obtain

dP = —P.(Bt + 2Dtw + 3Co*)dw. (44)
By using Maxwell’s equal area law [36], one finds [15]
w|(Bt + Dtw) + Co?) = ws(Bt + Dtws + Cw?),  (45)

Wy
/ wdP =0, (46)
2]

where ws and w) correspond to the small and large black
holes, respectively. The solution to Egs. (45) and (46) is given
by

—Dt ++/D?t2 —4BCt

w =
2C
—Dt — ~/D?t2 —4BCt
ws = . (47)
2C

At D = 0, Eq. (47) becomes the solution obtained in [36].
Equation (47) is satisfied in the leading order up to O(#>/?).
We use the following definitions: the difference of the large
and small black hole volume on the given isotherm v, —
vg, isothermal compressibility kT, |P — P| on the critical
isotherm T = T,

1 ov _
n=uv —uvs x|t KTZ_;_|T0(|t| v,
|P — P| o v — vl (48)

Following the procedure of [36], one obtains the same values
of critical exponents as in the BI-AdS case

1
p=5. r=3 8=3 (49)

We have studied critical exponents in the vicinity of the crit-
ical point for a small non-linearity parameter 8 and obtained
the result as in the mean field theory. Thus, we have the
same universality class as for the van der Waals fluid. When
parameter S is not small, we cannot expand the critical tem-
perature and pressure in 8. Therefore, equalities in Eq. (40)
will not hold, and the non-linearity of electromagnetism will
influence the the critical exponents.

S Summary

We have studied the thermodynamic behaviour of RNED
charged black holes in an extended thermodynamic phase
space. In this approach, the cosmological constant is identi-
fied with a thermodynamic pressure, and the mass of the black
hole is the chemical enthalpy. We show an analogy with the
van der Walls liquid—gas system, with the specific volume in
the van der Waals equation being the diameter of the event
horizon (at Gy = 1). Thecritical ratio p. = P.v./ T¢ is equal

@ Springer

to the van der Waals value of 3/8 plus corrections O(B) due
to coupling B. The critical exponents coincide with those of
the van der Waals system, similar to the BI-AdS case. The
thermodynamics of the RNED-AdS model was investigated,
showing the critical behaviour and phase transitions. The
phase space includes the conjugate pair (8, ). A thermody-
namic quantity B conjugated to the non-linear parameter 8 of
RNED has been defined. We have demonstrated the consis-
tency of the first law of black hole thermodynamics and the
Smarr formula which depends on the quantities B, ®, intro-
duced. The critical points and phase transitions also depend
on the RNED parameter . Therefore, black hole thermody-
namics (and black hole physics) is modified in our model of
RNED-AGJS. The critical exponents were calculated, and are
the same as in the BI-AdS case.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The present study
is a theoretical one, and no data have been generated.]
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