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Abstract The critical behaviour of magnetically charged
AdS black holes based on rational non-linear electrodynam-
ics (RNED) in an extended phase space is investigated herein.
The cosmological constant is considered as thermodynamic
pressure, and the black hole mass is identified with the chem-
ical enthalpy. An analogy with the van der Walls liquid–gas
system is found, and the critical exponents coincide with
those of the van der Waals system. The thermodynamics of
RNED-AdS black holes and phase transitions are studied,
and new thermodynamic quantities conjugated to the non-
linear parameter of RNED and magnetic charge are defined.
The consistency of the first law of black hole thermodynam-
ics and the Smarr formula is demonstrated.

1 Introduction

Nowadays, black holes are treated as thermodynamic sys-
tems [1–3], with the area of a black hole being the entropy
and its surface gravity identified with the temperature [4,5].
This has advanced our understanding of the link between
gravity and quantum physics. The consideration of anti-de
Sitter (AdS) spacetime with a negative cosmological con-
stant gave rise to the phase behaviour of black holes [6].
An important step was later made to consider a holographic
picture where black holes are a system which is dual to con-
formal field theories [7–9]. The study of the holography has
led to progress in solving problems in quantum chromody-
namics [10] and condensed matter physics [11,12]. It was
recently proposed that the cosmological constant plays a role
of pressure which is a conjugate to volume in black hole
thermodynamics. This has allowed scientists to compare the
phase transitions in black holes with those in liquid–gas ther-
modynamics [13–16]. Various aspects of Born–Infeld (BI)
electrodynamics in AdS spacetime with a negative cosmo-
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logical constant were studied in [17–23], and an analogy to
van der Waals fluids in black hole physics was found. In
this paper, we study the thermodynamics in the framework
of rational non-linear electrodynamics (RNED) [24,25] cou-
pled to gravity with a negative cosmological constant. Pre-
vious studies [25] have considered the thermodynamics in
asymptotically flat spacetime in the framework of Einstein’s
theory of relativity without the cosmological constant. As a
result, pressure was not introduced, the pressure–volume (P-
V) term was absent in black hole thermodynamics, and there
was no analogy with van der Vaals fluid. In addition, in [25],
the local stability of black holes for the canonical ensemble
(the charge is fixed) was investigated by calculating the spe-
cific heat. In the present paper, we study the global black hole
stability by analysing the Gibbs free energy within the grand
canonical ensemble in extended phase space. The RNED
model possesses attractive properties such as the absence
of singularity of charges at the origin and finite electrostatic
energy. Similar features take place in Born–Infeld electrody-
namics. In addition, RNED coupled to gravity describes the
inflation of the universe [26] and provides the correct shadow
of the M87* black hole [27]. Electrically charged black holes
within RNED coupled to gravity without the cosmological
constant were studied in [28]. Here, we investigate magnet-
ically charged black holes in the framework of gravity with
the cosmological constant.

The structure of the paper is as follows. In Sect. 2 we
obtain the RNED-AdS metric function with the asymptotic
as r → ∞ and r → 0. When the Schwarzschild mass is
zero, the solution is non-singular, with the de Sitter core as
r → 0. The extended thermodynamic phase space including
a negative cosmological constant as pressure with the conju-
gate volume and coupling β of RNED is analysed in Sect. 3.
We find the thermodynamic magnetic potential and the
thermodynamic conjugate to the coupling. The generalized
Smarr relation is obtained. The black hole thermodynamics is
studied in Sect. 4. We obtain critical values of the specific
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volume, critical temperature and critical pressure. The Gibbs
free energy is analysed in Sect. 4.1. The black hole mass is
considered as a chemical enthalpy. We depict the pressure
and the critical isotherms. In Sect. 4.2, the critical exponents
are established. Section 5 is a summary.

We use units with c = 1, h̄ = 1 and kB = 1.

2 RNED-AdS solution

The action of Einstein-RNED theory in AdS spacetime is
given by

I =
∫

d4x
√−g

(
R − 2�

16πGN
+ L(F)

)
, (1)

where the negative cosmological constant is � = −3/ l2,
with l being the AdS radius. The RNED Lagrangian [24] in
Gaussian units reads

L(F) = − F
4π(1 + 2βF)

, (2)

with F = FμνFμν/4 = (B2 −E2)/2, Fμν = ∂μAν −∂ν Aμ.
The maximum electric field in the origin is E(0) = 1/

√
β

[24]. By varying action (1) with respect to gμν and Aμ, one
can obtain the equations of gravitational and electromagnetic
fields as follows

Rμν − 1

2
gμνR + �gμν = 8πGNTμν, (3)

∂μ

(√−gLF Fμν
) = 0, (4)

where R is the Ricci scalar and Rμν is the Ricci tensor.
The energy–momentum symmetric tensor of electromagnetic
fields can be found by the variation of L (F) with respect to
the metric tensor, and it is given by

Tμν = FμρF
ρ

ν LF + gμνL (F) , (5)

and LF = ∂L(F)/∂F .
We consider the four-dimensional static spherical sym-

metric line element

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (6)

The spherical symmetry leads to the tensor Fμν which
involves only the radial electric field F01 = −F10 and radial
magnetic field F23 = −F32 = qm sin(θ), where qm is the
magnetic charge. The energy–momentum tensor becomes
diagonal with T 0

0 = T r
r and T θ

θ = T φ
φ . The metric func-

tion, within general relativity, with spherical symmetry is
given by

f (r) = 1 − 2m(r)GN

r
, (7)

where the mass function is [29]

m(r) = m0 + 4π

∫ r

0
ρ(r)r2dr, (8)

where m0 is the integration constant corresponding to the
Schwarzschild mass, and ρ is the energy density, which also
includes the term due to the cosmological constant. In the
following, we consider only magnetic black holes because
the electrically charged black holes (for models which have
Maxwell’s weak-field limit) lead to singularities [29].

Now, we will study the static magnetic black holes. Taking
into account that the electric charge qe = 0, F = q2

m/(2r4)

(qm is a magnetic charge), we obtain from Eq. (5) the mag-
netic energy density plus the term corresponding to the neg-
ative cosmological constant

ρ = q2
m

8π(r4 + βq2
m)

− 3

8πGNl2
. (9)

With the help of Eqs. (8) and (9), one finds the mass function

m(r) = m0 + q3/2
m

8
√

2β1/4

[
ln

(
r2 − √

2qmβ1/4r + qm
√

β

r2 + √
2qmβ1/4r + qm

√
β

)

+2 arctan

(√
qmβ1/4 + √

2r√
qmβ1/4

)

−2 arctan

(√
qmβ1/4 − √

2r√
qmβ1/4

)]
− r3

2GNl2
. (10)

The black hole magnetic mass is given by [25]

mM = 4π

∫ ∞

0

q2
m

8π(r4 + βq2
m)

r2dr = πq3/2
m

4
√

2β1/4

≈ 0.56
q3/2

m

β1/4 . (11)

Equation (11) shows that at the limit β = 0 (Maxwell’s case),
the magnetic energy becomes infinite. Making use of Eqs. (7)
and (10), we obtain the metric function

f (r) = 1 − 2m0GN

r
− q3/2

m GNg(r)

4
√

2β1/4r
+ r2

l2
, (12)

where

g(r) ≡ ln

(
r2 − √

2qmβ1/4r + qm
√

β

r2 + √
2qmβ1/4r + qm

√
β

)

+2 arctan

(√
qmβ1/4 + √

2r√
qmβ1/4

)

−2 arctan

(√
qmβ1/4 − √

2r√
qmβ1/4

)
.

In general relativity without the cosmological constant
(neglecting r2/ l2 in Eq. (12)), the metric function as r → ∞
approaches [25]
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Fig. 1 The plot of the function f (r) at m0 = 0, GN = 1 and l = 10

f (r) = 1 − 2(m0 + mM )GN

r

+q2
mGN

r2 + O(r−5) as r → ∞. (13)

In this case, the correction to the Reissner–Nordström solu-
tion, according to Eq. (13), is in the order of O(r−5). The
total mass (ADM mass) of the black hole M ≡ m0 + mM

includes the Schwarzschild mass m0 and the magnetic mass
mM . It is worth noting that if we put m0 = 0, i.e the black
hole mass is the magnetic mass, as r → 0, from Eq. (12), we
find the asymptotic with a de Sitter core

f (r) = 1 − GNr2

β
+ r2

l2
+ GNr6

7β2q2
m

− GNr10

11β3q4
m

+O(r12) as r → 0. (14)

The solution (14) is regular because at r = 0, we have f (0) =
1. The plot of the metric function (12) is depicted in Fig. 1
at m0 = 0, GN = 1, l = 10 for different parameters qm and
β. Figure 1 shows that black holes can have two horizons,
one extreme horizon or no horizons depending on model
parameters.

3 First law of black hole thermodynamics and the
Smarr relation

If one considers that black holes are classical objects, then
there is an analogy between black hole mechanics and ther-
modynamics. The role of temperature is played by the sur-
face gravity, and the event horizon corresponds to entropy
S. Despite the fact that classical black holes have zero tem-
perature, Hawking proved that black holes emit radiation
with a blackbody spectrum [5]. The first law of black hole
thermodynamics reads δM = T δS + �δ J + �δQ, with
black hole mass M , charge Q and angular momentum J ,

where M , J , Q are the extensive, and T , �, � are inten-
sive thermodynamic variables. The disadvantage of the for-
mulated first law of black hole thermodynamics was the
absence of the pressure–volume term PδV . To improve the
first law of black hole thermodynamics, the pressure was
associated with a negative cosmological constant �, which
gives a positive vacuum pressure in spacetime. Then, the
generalized first law of black hole thermodynamics became
δM = T δS+V δP+�δ J+�δQ, with V = ∂M/∂P at con-
stant S, J , Q [30–32]. A comparison of the first law of black
hole mechanics with ordinary thermodynamics requires us
to interpret M as a chemical enthalpy [30], M = U + PV ,
where U is the internal energy.

To obtain the Smarr formula from the first law of black
hole thermodynamics, we consider dimensions of physical
quantities [33] (see also [30]). Let us consider the units with
GN = 1. Then, from the dimensional analysis, we obtain
[M] = L , [S] = L2, [P] = L−2, [J ] = L2, [qm] = L , [β] =
L2. Considering β as a thermodynamic variable and taking
into consideration Euler’s theorem (see [15]) (the Euler scal-
ing argument), we obtain the mass M(S, P, J, qm, β),

M = 2S
∂M

∂S
− 2P

∂M

∂P
+ 2J

∂M

∂ J
+ qm

∂M

∂qm
+ 2β

∂M

∂β
,

(15)

where ∂M/∂β ≡ B is the thermodynamic conjugate to the
coupling β, and the black hole volume V and pressure P are
given by [34,35]

V = 4

3
πr3+, P = − �

8π
= 3

8πl2
. (16)

We consider the non-rotating stationary black hole so that
J = 0. From Eq. (12) and equation f (r+) = 0, where r+ is
the horizon radius, we find (at GN = 1)

M = r+
2

+ r3+
2l2

+ πq3/2
m

4
√

2β1/4
− q3/2

m g(r+)

8
√

2β1/4
. (17)

Making use of Eq. (17), we obtain

δM =
(

1

2
+ 3r2+

2l2
− q3/2

m

8
√

2β1/4

δg(r+)

δr+

)
δr+ − r3+

l3
δl

+
(
q3/2

m g(r+)

32
√

2β5/4
− πq3/2

m

16
√

2β5/4
− q3/2

m

8
√

2β1/4

δg(r+)

δβ

)
δβ

+
(

3πq1/2
m

8
√

2β1/4
− 3q1/2

m g(r+)

16
√

2β1/4
− q3/2

m

8
√

2β1/4

δg(r+)

δqm

)
δqm.

(18)

The Hawking temperature is given by

T = f ′(r)|r=r+
4π

. (19)
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From Eqs. (12) and (19) we obtain the Hawking temperature
(GN = 1)

T = 1

4π

(
1

r+
+ 3r+

l2
− q2

mr+
r4+ + βq2

m

)
, (20)

where we have used the equation

δg(r+)

δr+
= 4

√
2qmβ1/4r2+
r4 + q2

mβ
. (21)

Making use of Eqs. (17), (20) and (21), we obtain

∂M(r+)

∂r+
= 2πr+T . (22)

Then we find the entropy in our case of the RNED-AdS black
hole

S =
∫

dM(r+)

T
=

∫
1

T

∂M(r+)

∂r+
dr+ = πr2+. (23)

Thus, the Bekenstein–Hawking entropy holds. Then, from
relations

δg(r+)

δβ
= −

√
2qmr3+

β3/4(r4+ + βq2
m)

,
δg(r+)

δqm

= − 2
√

2β1/4r3+
q1/2

m (r4+ + βq2
m)

and Eqs. (16), (18), (20) and (23), we obtain the first law of
black hole thermodynamics

δM = T δS + V δP + �mδqm + Bδβ, (24)

where the thermodynamic magnetic potential �m and the
thermodynamic conjugate to the coupling β are given by

�m = qmr3+
4(r4+ + βq2

m)
+ 3πq1/2

m

8
√

2β1/4
− 3q1/2

m g(r+)

16
√

2β1/4
,

B = q3/2
m g(r+)

32
√

2β5/4
− πq3/2

m

16
√

2β5/4
+ q2

mr
3+

8β(r4+ + βq2
m)

. (25)

The B in the Born–Infeld AdS case was referred to as ‘Born–
Infeld vacuum polarization’ [36]. The presence ofB is needed
for consistency of the Smarr formula. The plot of �m vs r+
is depicted in Fig. 2. According to Fig. 2, when coupling β

increases, the magnetic potential decreases, and at r+ → ∞
it vanishes, �m(∞) = 0. At r+ = 0, �m is the finite value.
The plot of the function B vs r+ is presented in Fig. 3. It
is worth noting that at r+ = 0, the vacuum polarization B
is finite. Figure 3 shows that when coupling β increases,
the absolute value of vacuum polarization decreases, and at
r+ → ∞ it becomes zero, B(∞) = 0.

Making use of Eqs. (16), (17), (23) and (25), one can verify
that the generalized Smarr formula holds,

M = 2ST − 2PV + qm�m + 2βB. (26)
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Fig. 2 The plot of the function �m vs r+ at qm = 1. The solid curve
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Making use of the Bekenstein and Hawking arguments
[4,37], we conclude that the second law of thermodynamics
for AdS black holes also holds. The study of Born–Infeld
electrodynamics in AdS spacetime in the extended phase
space was presented in [38–41].

4 The black hole thermodynamics

Making use of Eq. (20), we obtain the equation of state (EoS)
for the RNED-AdS black hole

P = T

2r+
− 1

8πr2+
+ q2

m

8π(r4+ + βq2
m)

. (27)
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At β = 0, Eq. (27) becomes the EoS for a charged (by lin-
ear Maxwell electrodynamics) AdS black hole [42]. If one
compares the EoS of a charged AdS black hole with the van
der Waals equation, then the specific volume v should be
identified with 2lPr+ [42]. With lP = √

GN = 1, the hori-
zon diameter 2r+ plays the role of the specific volume of the
corresponding fluid. Thus, Eq. (27) becomes

P = T

v
− 1

2πv2 + 2q2
m

π(v4 + 16βq2
m)

. (28)

Equation (28) qualitatively mimics the behaviour of the van
der Waals fluid. Critical points take place at the inflection in
the P − v diagram with

∂P

∂v
= − T

v2 + 1

πv3 − 8q2
mv3

π(v4 + 16βq2
m)2 = 0,

∂2P

∂v2 = 2T

v3 − 3

πv4 − 8q2
mv2(48βq2

m − 5v4)

π(v4 + 16βq2
m)3 = 0. (29)

From Eq. (29) we obtain the equation for the critical points
as follows

8q2
mv6

c (3v4
c − 80βq2

m) − (v4
c + 16βq2

m)3 = 0. (30)

It is difficult to obtain an analytical solution to Eq. (30).
Equation (30) can be represented as the cubic equation for
the parameter β with the solution

β =
√

5v3
c

2
√

6qm
sinh

(
1

3
sinh−1

(
3
√

6

5
√

5qm
vc

))
− v4

c

16q2
m

, (31)

where sinh−1(x) is the inverse hyperbolic sinh function.
Making use of Eq. (31), the function vc vs β with qm = 1
is depicted in Fig. 4. In accordance with Fig. 4, at β > 1.41
(approximately), there are no real solutions to Eq. (30). At
0 < β < 1.41, for each β there are two real solutions for vc.
The expression for the critical temperature follows from Eq.
(27)

Tc = 1

πvc
− 8q2

mv5
c

π(v4
c + 16βq2

m)2 . (32)

Numerical solutions to Eq. (30) and the critical temper-
atures for different values of β are presented in Table 1,
showing two inflection points for each β. The plot of Tc

vs β is depicted in Fig. 5. In accordance with Fig. 5, at
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Fig. 4 The plot of the function vc vs β at qm = 1

0 < β < 0.42 (approximately) there is one critical tem-
perature (for each β), but for 0.42 < β < 1.41, two critical
temperatures. It is worth noting that Fig. 4 also shows that
for each β, there are two real positive critical points vc, but
for the interval 0 < β < 0.42, only one vc gives the physi-
cal positive critical temperature. At the point vc, we have a
second-order phase transition. The P−v diagrams are given
in Figs. 6 and 7 for some values of T . According to Fig. 6,
for qm = β = 1, there are two critical values, vc1 ≈ 2.94305
(Tc1 = 0.0402936) and vc2 ≈ 4.45663 (Tc2 = 0.0448542).
Thus, there are inflection points, and the EoS in our case is
more complicated compared to the van der Waals gas EoS
and similar to the Born–Infeld AdS case. Figure 7 shows the
non-critical behaviour of P−v diagrams for T = 1, 2, 3 and
4. The critical pressure is given by

Pc = 1

2πv2
c

+ 2q2
m(16βq2

m − 3v4
c )

π(v4
c + 16βq2

m)2 . (33)

The plot of Pc vs β is presented in Fig. 8. According to
Fig. 8, at 0 < β < 0.77 (approximately), there is one critical
pressure (for each β), but for 0.77 < β < 1.41, two. Also,
for each β, there are two real positive solutions to Eq. (30)

Table 1 Critical values of the specific volume and temperature at qm = 1

β 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

vc1 2.397 2.538 2.674 2.808 2.943 3.084 3.235 3.413 3.693

Tc1 0.0218 0.0288 0.0339 0.0375 0.0403 0.0424 0.0439 0.0451 0.04592

vc2 4.675 4.628 4.577 4.4557 4.457 4.383 4.294 4.175 3.951

Tc2 0.0441 0.0443 0.0445 0.0447 0.0449 0.0451 0.0453 0.0456 0.04594
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for critical points vc, but for the interval 0 < β < 0.77, only
one vc gives the physical positive critical pressure. Making
use of Eqs. (32) and (33), one obtains the critical ratio

ρc = Pcvc

Tc
= (v4

c + 16βq2
m)2 + 4q2

mv2
c (16βq2

m − 3v4
c )

2[(v4
c + 16βq2

m)2 − 8q2
mv6

c ] ,

(34)

where β is given by Eq. (31). The plot of ρc vs β at qm = 1
is depicted in Fig. 9. At β = 0, we obtain ρc = 3/8 as for
a van der Waals fluid. In accordance with Fig. 9, the critical
ratio in our model decreases with β.
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4.1 The Gibbs free energy

Let us consider the expression for the Gibbs free energy for
a fixed charge, coupling β and pressure

G = M − T S. (35)

Here, M is considered as a chemical enthalpy that is the
total energy of a system with its internal energy U and the
energy PV to displace the vacuum energy of its environment:
M = U + PV . From Eqs. (16) and (35) (at GN = 1), we
obtain

G = r+
2

+ 4πr3+P

3
+ πq3/2

m

4
√

2β1/4
− q3/2

m g(r+)

8
√

2β1/4
− πTr2+,

(36)

where r+ is a function of P and T (see Eq. (27)). The plot of
G vs T is depicted in Fig. 10. The behaviour of G depends
on pressure P and coupling β. As an example, we consider
the case with β = 0.6 where there is one physical critical
point (see Table 1 and Figs. 5 and 8), and vc ≈ 4.6745,
Tc ≈ 0.0441 and Pc ≈ 0.0035. The behaviour of the Gibbs
free energy is similar to the RN-AdS black hole with one
critical point and the corresponding first-order phase transi-
tion between small and large black holes (in subplots 1 and
2). In this case, there is a point at which two black holes have
equal free energy. One can see two branches of black holes
with a cusp, and the Gibbs free energy shows “swallowtail”
behaviour with a first-order phase transition between two
branches for P < Pc. Subplots 3 and 4 in Fig. 10 display a
characteristic shape similar to the Hawking–Page behaviour
for the Schwarzschild-AdS case, and there is no first-order
phase transition in the system for P > Pc.

4.2 Critical exponents

We expand the critical values in small parameter β as

vc = 2
√

6qm − 7

9
√

6

β

qm
+ O(β2),

Tc = 1

3
√

6πqm
+ 1

108
√

6π

β

q3
m

+ O(β2),

Pc = 1

96πq2
m

+ 7

10368π

β

q4
m

+ O(β2). (37)

It is worth noting that the critical point (37) at β = 0 is
the same as in charged AdS black hole [36], but there are
corrections due to coupling β. The critical ratio ρc vs β is
depicted in Fig. 9, and the analytical expression for small β

is given by

ρc = 3

8
+ 1

96

β

q2
m

+ O(β2). (38)

The value ρc = 3/8 takes place for the van der Waals fluid.
The critical exponents show the physical quantity behaviour
in the vicinity of the critical points which do not depend on
details of the system. The exponent α defines the behaviour
of the specific heat at the constant volume

Cv = T
∂S

∂T
∝ |t |−α, (39)

where t = (T − Tc)/Tc. Because the entropy S = πr2+ =
(3V/(4π))2/3 is constant, we have Cv = 0, and therefore
α = 0. Let us define the quantities [15]

p = P

Pc
, ν = v

vc
= 3

√
ω + 1, τ = T

Tc
= t + 1. (40)

Taking into account Eq. (28), we obtain

p = τ

νρc
− 1

2πν2Pcv2
c

+ 2q2
m

π Pc(ν4v4
c + 16βq2

m)
, (41)

where Pc is given by Eq. (33). One can expand p in small
parameters t and ω near the critical point

p = 1 + At − Btω − Cω3 − Dtω2 + O(ω4), (42)

where

A = 1

ρc
, B = 1

3ρc
, D = − 2

9ρc
,

C = 14

81ρc
− 20

81π Pcv2
c

−8q2
mv8

c [(16βq2
m)2 + 224βq2

mv4
c − 35v8

c ]
81π Pcv4

c (v4
c + 16βq2

m)4 . (43)

We included in Eq. (42) the additional term Dtω2, compared
to [15], which is in the same order as ω3. The small β expan-
sion gives

C = 4

81
+ O(β).
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It is worth noting that value 4/81 is realized in the RN-AdS
case [15]. We will follow the same avenue as in [15] to obtain
critical exponents. Making use of Eq. (40), we obtain

dP = −Pc(Bt + 2Dtω + 3Cω2)dω. (44)

By using Maxwell’s equal area law [36], one finds [15]

ωl(Bt + Dtωl + Cω2
l ) = ωs(Bt + Dtωs + Cω2

s ), (45)∫ ωs

ωl

ωdP = 0, (46)

where ωs and ωl correspond to the small and large black
holes, respectively. The solution to Eqs. (45) and (46) is given
by

ωl = −Dt + √
D2t2 − 4BCt

2C
,

ωs = −Dt − √
D2t2 − 4BCt

2C
. (47)

At D = 0, Eq. (47) becomes the solution obtained in [36].
Equation (47) is satisfied in the leading order up to O(t5/2).
We use the following definitions: the difference of the large
and small black hole volume on the given isotherm vl −
vs, isothermal compressibility κT, |P − Pc| on the critical
isotherm T = Tc,

η = vl − vs ∝ |t |β, κT = −1

v

∂v

∂P
|T ∝ |t |−γ ,

|P − Pc| ∝ |v − vc|δ. (48)

Following the procedure of [36], one obtains the same values
of critical exponents as in the BI-AdS case

β = 1

2
, γ = 3, δ = 3. (49)

We have studied critical exponents in the vicinity of the crit-
ical point for a small non-linearity parameter β and obtained
the result as in the mean field theory. Thus, we have the
same universality class as for the van der Waals fluid. When
parameter β is not small, we cannot expand the critical tem-
perature and pressure in β. Therefore, equalities in Eq. (40)
will not hold, and the non-linearity of electromagnetism will
influence the the critical exponents.

5 Summary

We have studied the thermodynamic behaviour of RNED
charged black holes in an extended thermodynamic phase
space. In this approach, the cosmological constant is identi-
fied with a thermodynamic pressure, and the mass of the black
hole is the chemical enthalpy. We show an analogy with the
van der Walls liquid–gas system, with the specific volume in
the van der Waals equation being the diameter of the event
horizon (atGN = 1). The critical ratio ρc = Pcvc/Tc is equal

to the van der Waals value of 3/8 plus corrections O(β) due
to coupling β. The critical exponents coincide with those of
the van der Waals system, similar to the BI-AdS case. The
thermodynamics of the RNED-AdS model was investigated,
showing the critical behaviour and phase transitions. The
phase space includes the conjugate pair (B, β). A thermody-
namic quantityB conjugated to the non-linear parameter β of
RNED has been defined. We have demonstrated the consis-
tency of the first law of black hole thermodynamics and the
Smarr formula which depends on the quantities B, �m intro-
duced. The critical points and phase transitions also depend
on the RNED parameter β. Therefore, black hole thermody-
namics (and black hole physics) is modified in our model of
RNED-AdS. The critical exponents were calculated, and are
the same as in the BI-AdS case.
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