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Preamble

In the past years various new hadronic states were discovered in the charm and bottom meson
sector by experiments like Belle, BES and Babar. Many of these states fit into the conventional cc̄
or bb̄meson spectrum, but a growing number of them does not. Especially, the charged ones which
can definitely be no conventional hadrons motivate the term ”exotic“ hadrons to classify particles
which are neither conventional baryons nor conventional mesons. Their substructure is not yet
clear due to the often poor experimental knowledge and there are many different interpretations
for these exotic particles. One very popular idea is the hadronic molecule interpretation which
states that two ordinary hadrons can form a loosely bound pair similar to the deuteron made of a
proton and a neutron. However, in the latter system it is known that after adding a third nucleon
there appears a three particle bound state, the triton. The emergence of such a three-body state
can be explained by the Efimov effect as a low-energy universality phenomenon. The question
which will be answered in this work is if there exists also an Efimov effect in systems of hadronic
molecules which scatter off a third meson or baryon. Since the number of candidate systems is
large (and still growing due to ongoing experiments) it is useful to find a general expression that
tells us if the Efimov effect is present. Moreover, this expression should only depend on the basic
particle properties like mass, spin and isospin. Such a relation will be derived in this work for a
generic three particle system that can be described in a pionless effective field theory. It will then
be applied to a set of possible hadronic molecule systems in order to check if the Efimov effect
occurs. The thesis is organized as follows: after an introduction of quantum chromodynamics
and a review of the classification of hadrons we continue with a summary, firstly, of experimental
observations concerning exotic hadrons, secondly, of the idea of effective field theories and thirdly,
of basic scattering theory. In chapter 2 the three identical boson system will be discussed in order
to explain the Efimov effect more quantitatively. With this knowledge it is possible to derive
the mentioned general expression regarding the existence of Efimov physics in a generic three
particle system. After the detailed derivation in chapter 3 (using the information given in the
appendices) the results will be applied to scattering processes where known hadronic molecules
as well as hypothetical ones are involved. This is done in order to either search for the Efimov
effect or – for the hypothetical molecular states – to predict under which conditions an Efimov
trimer is expected. For system without Efimov effect we will calculate in chapter 5 for a selected
example S-wave observables of the in this case elastic scattering process. The thesis is completed
by a summary of the results and an outlook on further work that can be done based on this work.
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Chapter 1

Introduction and theoretical
background

1.1 Quantum chromodynamics and conventional hadrons

Nature is described by four main forces: gravity, electromagnetic, weak and strong force. While
gravity is up to now not yet – in a well established way – quantized, the latter three are com-
bined within the standard model of particle physics. Namely, one uses the concept of quantum
field theories with local gauge invariance (gauge theories) to describe electromagnetic, weak and
strong interactions. On the one hand quantum electrodynamics (QED), i.e. the theory of the
electromagnetic and – with some extensions – also of the weak force (electroweak unification),
is perturbative. This is the case because the corresponding running coupling constant is much
smaller than 1 for a wide energy range. On the other hand the strong force described by quan-
tum chromodynamics (QCD) has a coupling constant whose running is much faster. Hence, for
a wide energy range, especially in the region of hadron formation, it is of the order of 1 and
thus, one cannot use perturbation theory. Apart from this subtlety (which is further discussed
in section 1.3) the standard model of particle physics contains twelve fundamental fermions (as
well as twelve anti-fermions) and twelve gauge bosons (the photon γ, W±- and Z0-boson as well
as eight gluons) which are the carriers of the electroweak and strong force. One half of the funda-
mental fermions are leptons (electron (e−), muon (µ−), tauon (τ−) and the three corresponding
neutrinos νe, νµ, ντ ) and the other half are quarks. As the latter are the constituents of hadrons
we focus on them in more detail. The quarks are grouped into three (weak isospin) doublets

(
u
d

)
,

(
c
s

)
,

(
t
b

)
, (1.1)

and named up (u), down (d), strange (s), charm (c), bottom (b) and top (t), also known as
quark flavors. Besides the properties summarized in Tab. 1.1 quarks also carry a color charge
with three degrees of freedom (sometimes referred to as ”red“, ”blue“ and ”green“). The color
interactions are described in terms of quantum chromodynamics whose underlying group is the
SU(3)c color gauge group. There are eight gauge bosons in the theory called gluons (g) which
themselves carry color and anti-color. As already mentioned a bound state made of quarks is
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d u s c b t

Q – electric charge −1
3

+2
3
−1

3
+2

3
−1

3
+2

3

I – isospin 1
2

1
2

0 0 0 0

I3 – isospin z-component −1
2

+1
2

0 0 0 0

S – strangeness 0 0 −1 0 0 0

C – charm 0 0 0 1 0 0

B – bottomness 0 0 0 0 −1 0

T – topness 0 0 0 0 0 1

Table 1.1: Additive quantum numbers of the quarks, from Ref. [2].

called a hadron. Furthermore, we know that due to confinement (i.e. due to the fact that there
is no experimental evidence for free colored particles (e.g. free quarks), see e.g. Ref. [2]) such
a bound state must be color-neutral, i.e. it must be a color singlet which is invariant under
SU(3)c transformations. Following Ref. [1] a quark qi with color index i transforms under the
fundamental representation 3c of SU(3)c and an anti-quark q̄i under the 3̄c. Therefore one can
form a SU(3)c invariant object in two ways: firstly, one can combine a quark and an anti-quark
via qiδij q̄j so that it is in the 1c (the singlet) of 3c ⊗ 3̄c = 1c ⊕ 8c. These qiq̄i objects are called
mesons. Secondly, one can use the total antisymmetric tensor εijk to form a three quark color-
neutral object εijk qiqjqk known as baryon or a color singlet three anti-quark state εijk q̄iq̄j q̄k,
the anti-baryon. At first glance, it seems that conventional mesons, baryons and anti-baryons
are the only possible hadrons in the standard model. However, one can combine these already
color-neutral objects to color-singlets with more than three quarks. These states are referred to
as exotic hadrons and will be discussed in more detail in section 1.2.

It is known that the masses of the three lightest quarks u, d and s (obtained in the MS scheme
at a scale of 2 GeV) are [2]

mu = 2.3+0.7
−0.5 MeV , md = 4.8+0.5

−0.3 MeV , ms = 95± 5 MeV , (1.2)

and thus relatively close to each other especially compared to the much heavier charm (mc ∼
1.3 GeV), bottom (mb ∼ 4.2 GeV) and top (mt ∼ 173 GeV) quarks (for a detailed discussion of
the methods used to deduce the quark masses see Ref. [2]). Therefore one assumes an approxi-
mate SU(3)f flavor symmetry for the three lightest quark flavors. Hence, quantum mechanics
induce that the bound states of the three lightest quarks will mix. For mesons this motivates
their representation in a multiplet with 3f⊗ 3̄f = 1f⊕8f ground states with angular momentum
L = 0 classified by charge Q, isospin I and strangeness S. Since the quarks a fermions with spin
1/2 the total spin of the corresponding mesons can be either 0 or 1. Thus, there are two nonets
(i.e. a singlet plus an octet), one for pseudoscalar (JP = 0−) mesons shown in Fig. 1.1(a) and
one for vector mesons (JP = 1−), see Fig. 1.1(b). The former pseudoscalar multiplet contains an
isospin doublet with strangeness S = +1 identified with the two pseudoscalar kaons, an isospin
anti-doublet with strangeness S = −1 (the pseudoscalar anti-kaons), an isospin triplet of π+, π0,
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π− without strangeness and in addition the two particles η and η′ with Q = I = S = 0 which are
superpositions of the SU(3)f flavor octet and singlet states η8 and η1 (see for example Ref. [2,3]).
The same pattern is also found in the vector meson nonet where the pseudoscalar kaons are
replaced by their vector counterparts (indicated by a ∗ superscript). The vector iso-triplet gets
the symbol ρ and the two SU(3)f octet / singlet superpositional states with Q = I = S = 0 are
named ω and ϕ (note, that their mixing is different from that of η and η′ [2, 3]).
For the baryons one has to keep in mind that they are fermions, consequently, their wave function

|baryon〉 = |color〉 × |flavor〉 × |spin〉 × |space〉 , (1.3)

must be antisymmetric. Following Ref. [2] it is known that the color wave function is antisym-
metric and the spatial part is symmetric for angular momentum L = 0 (ground state). Thus,
|flavor, spin〉 must be symmetric, too. Combining both the SU(3)f flavor group of the light
quarks and the SU(2) spin group, one can treat a quark q as an element of a SU(6). Group
theory states (see e.g. Ref. [2]) that the direct product of three 6’s can be decomposed into four
multiplets which are either symmetric, antisymmetric or of mixed symmetry:

6⊗ 6⊗ 6 = 56sym ⊕ 70mixed ⊕ 70mixed ⊕ 20antisym . (1.4)

As mentioned above we need a symmetric representation for flavor and spin. Hence, the 56sym is
the right choice. Since it is more common to treat quark flavor and spin separately we decompose
the symmetric 56-plet again into two ground state SU(3)f flavor multiplets where each belongs
to a fixed spin quantum number [2]:

56sym = 410f ⊕ 28f , (1.5)

with a superscript (2J + 1) which defines the total spin J of the three quark state. Namely,
one finds a spin 3/2 flavor decuplet and a spin 1/2 flavor octet, where the elements in both
are classified by their electric charge Q, strangeness S and isospin I. In the octet (Fig. 1.1(c))
one has the nucleon isospin doublet of the proton and neutron as well as a strangeness S = −1
iso-triplet (Σ+, Σ0, Σ−) and iso-singlet (Λ) and finally, a double-strange iso-doublet containing
the two Ξ baryons with zero and negative charge. In the decuplet (Fig. 1.1(d)) one finds the ∆
resonances and the spin 3/2 states of Σ and Ξ and furthermore the Ω− with strangeness S = −3.

Up to know we have only considered the three lightest quarks, but of course there are also hadrons
made of charm and bottom quarks (note, that due to its very short life time the top quark is not
relevant in hadron formation [2]). In order to take such states into account one can extend the
SU(3)f flavor group to a SU(4)f or even a SU(5)f flavor symmetry by adding c and b quarks.
However, since charm and bottom quarks are much heavier than u, d and s these symmetries
are badly broken. Hence, the quantum mechanical mixture between a state with e.g. an u quark
replaced by a c is negligible small. The three dimensional multiplets for the SU(4)f containing
the charm quark can be found for example in Ref. [2].
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Ξ0Ξ−

Q

S

I3
−1

2
+1

2

0

−2

+1

−1

Σ0 Λ

(c) spin 1/2 baryons
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Σ∗− Σ∗0 Σ∗+
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S

Q

I3

0

−2

+1
2

−1
2

+1

−1

(d) spin 3/2 baryons

Figure 1.1: SU(3)f pseudoscalar (a) and vector (b) meson nonets as well as SU(3)f spin 1/2
baryon octet (c) and spin 3/2 baryon decuplet (d). The particles contain u, d and s quarks
and the quantum numbers vary from negative to positive values as indicated by the axes: electric
charge Q, third component of the isospin I3 from left to right and strangeness S from bottom to
top.
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1.2 Exotic hadrons

In the previous section we have argued that mesons, baryons and anti-baryons are the conven-
tional color-singlets of the standard model (see Fig. 1.2). However, there are in principle more
allowed states: combinations like qq are indeed forbidden as they are not color-neutral, but the
present knowledge of QCD does not forbid states made of more than three quarks. In few words:
the combination of two SU(3)c invariants is still invariant. Thus, one could construct so-called
exotic hadrons via the combinations q̄qq̄q, q̄qqqq, q̄qq̄q̄q̄, qqqqqq, q̄q̄q̄q̄q̄q̄ and qqqq̄q̄q̄ or – in prin-
ciple – via combinations with even more quarks, grouped in the same manner. Additionally, also
q̄qg quark–gluon combinations or even pure gluonic bound states like gg are not forbidden since
they are color-neutral. Although all these states are referred to as exotic hadrons there is a more
precise classification which takes into account their substructure: starting from behind there are
on the one hand glueballs (gg) [4–6] and hybrids (q̄qg) [4, 7] where gluons are explicit degrees of
freedom and on the other hand pure quark states with various numbers of quarks and anti-quarks
which are called tetra-, penta- or hexaquarks in case of four, five or six constituents, respectively.
These multi-quark states are compact objects which are tightly bound by the strong force, i.e.
by quark–gluon interactions.
A different type of exotic hadrons are hadronic molecules whose concept was introduced in
Refs. [12–14,56,57]. They are defined as multi-quark states with at least four constituents (q̄qq̄q)
where the quarks cluster into conventional mesons, baryons or anti-baryons which are clearly se-
parated and only bound by the nuclear force, i.e. light-meson (dominantly pion) exchange. Thus,
hadronic molecules are extended objects in contrast to the compact tetraquarks, pentaquarks,
etc. A sketch of the substructure of exotic hadrons is shown in Fig. 1.3.
Obviously, a particle which contains for example four quarks could be either a tetraquark or a
hadronic molecule. Moreover, even the decay products of such a particle do – in general – not
exclude one or the other substructure. A fully solved QCD would answer the question which
explanation for a given particle is the right one. However, we are far from understanding this
theory completely. Hence, there is still an intensive discussion about the exact substructure of
the up to now discovered exotic hadrons.

q̄q

Meson

q qq

Baryon

q̄ q̄q̄

Anti-baryon

Figure 1.2: Conventional hadrons.

1.2.1 Experimental results

Considering the results of a large number of finished or still running experiments like BaBar, Belle,
BES or LHCb, it is clear that the mentioned discussion about the substructure of exotic hadrons
is not an academic one. The former three experiments are located at so-called B-factories,
i.e. e+e− colliders originally built for charmonium (cc̄) and bottomonium (bb̄) spectroscopy
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objects

compact
bound

tightly

Figure 1.3: Exotic hadrons.

[15–17]. The latter analyzes the collision of protons or lead nuclei at extremely high center-of-
mass energies of up to 8 TeV [18]. Contrary to the expectations the B-factories discovered a
large number of states which do not fit into the scheme of conventional hadrons. Furthermore,
some of these states are even charged so that it is clear (because of their definitely present cc̄
content) that they must contain more than two quarks and thus must be exotic. The experiments
observed among other states the electrically neutral X(3872) [20] and Y (4260) [21] as well as
the charged Zc(3900) [22–24], Zc(4020) [25–28], Zc(4430) [29–31] and the somewhat controversial
states Z1(4051), Z2(4250) [32] in the charmonium sector. Also in the bottomonium sector two
states were found, the Zb(10610) and the Z ′b(10650) [33]. An overview of the experimentally
observed XYZ states and their possible substructure in the charmonium and bottomonium sector
can be found in [34, 35] and most recent in Ref. [19] where Cleven et al. reviewed the particles
above in full detail.
Besides these relatively heavy states without any open strangeness, charm or bottomness there
additionally are at least two particles, D∗s0(2317) and Ds1(2460), whose masses are only half as
large and which carry open charm and strangeness. They were seen by BaBar [36] and by CLEO-
c [37]. Soon after their discovery it was proposed that they could be D(∗)K molecules [43, 44]
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rather than conventional mesons with cs̄ quark content (later the molecule interpretation was
also discussed in Refs. [45–48]). A possible third candidate of this type is the D∗s1(2700) seen by
Belle [59] which could be a D1K molecule, however, due to its decay into D0K+ it is more likely
a radial excited D∗s0 as already indicated by its name.
As last candidates for exotic hadrons we mention the long known resonances a0(980) and f0(980)
whose exact substructure is a widely discussed subject. A theoretical discussion of the possible
substructure of all these states can be found in Refs. [60–62] and from an experimental view in
Ref. [63].

1.3 Effective field theory

In section 1.1 we have already noted that QCD is not perturbative in the energy region of hadron
formation. The self-energy corrections to the gluons which are present due to the fact that gluons
themselves carry color, yield a strong coupling constant αs which becomes weaker for higher
energies (asymptotic freedom). In fact, for energies around 1 GeV, αs is of order 1 and hence
perturbation theory breaks down (for a review of experimental results concerning the running of
αs see Ref. [2]). It is thus necessary to find a different approach to describe QCD at low energies.
Indeed, effective field theories (EFT’s) are a perfectly suitable choice since they are designed to
perform calculations in the low-energy regime of quantum field theory (QFT). The basic idea is
that a physical phenomenon at a given energy scale E0 is not affected by the details of high-energy
effects at E � E0. A semi-classical example would be the scattering of a low-energy photon with
wavelength 500nm off a crystal. Since the wavelength is too large to resolve the lattice structure
of the crystal, Bragg-scattering as a high-energy phenomenon is not relevant. Following the ideas
of Weinberg [64] one needs to identify two scales in a system to construct an EFT: one low-energy
scale m and one high-energy scale Λ which define an expansion parameter m/Λ. It allows to
arrange all – in general infinitely many – terms in the effective Lagrangian density which are
allowed by the symmetries of the original full theory in powers of this expansion parameter. As
long as m/Λ < 1 one knows that a term proportional to (m/Λ)n+1 is less important than a
term proportional to (m/Λ)n. In this way one obtains a power-counting scheme which allows
to calculate observables up to a certain order, knowing that the contribution of all higher order
terms is small and thus can be neglected. Moreover, it is possible to use experimental data to fit
unknown constants (so-called low-energy constants, LEC’s). These constants are prefactors of
the terms in the effective Lagrangian, so it is in principle possible to calculate observables to an
arbitrary high order as long as enough experimental input is available. However, one subtlety of
EFT’s is that they are not renormalizable because new parameters (the LEC’S) appear in them
if one goes to higher orders. In fact, this distinguishes an EFT from conventional perturbation
theory in which independently of the considered order, the number of parameters is fixed in a
way that the theory can be renormalized. Furthermore, the expansion parameter in an EFT is
not assumed to be fundamental in physics. Consequently, the effective scales can change in a
way that the expansion parameter m/Λ becomes of order 1 or even larger and hence a series in
m/Λ does not converge anymore and the EFT breaks down. In terms of the photon example
this means that the effective theory breaks down if the photon wavelength becomes of the order
of the lattice spacing in the crystal since Bragg-scattering cannot be neglected anymore. Thus,
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one has to ensure that the expansion parameter of an EFT is indeed small in the energy region
where one wants to investigate the original theory.

1.3.1 EFT’s for QCD

After this rather general introduction to EFT’s two important effective theories for low-energy
QCD are presented.

Chiral perturbation theory

For energies up to few GeV where the interaction of nucleons (or other heavier hadrons) can
be described by pion exchange (or if one includes the strange quark, also by kaon or eta-meson
exchange) a famous EFT called chiral perturbation theory (ChPT) based on the work of Weinberg
in Ref. [65] and of Gasser and Leutwyler in Refs. [66, 67] exists. This theory uses the fact
that the masses of the two (or, including s, three) lightest quarks are relatively small (see
Eq. (1.1)). Hence, one can impose chiral symmetry which states that in a vector gauge theory
with massless fermions, the right- and left-handed components of the latter can be transformed
independently. Due to the existence of the quark condensate and the pion decay constant fπ 6=
0 the chiral symmetry is spontaneously broken with the three pions being the corresponding
Goldstone bosons. To be more precisely the pions are pseudo-Goldstone bosons since the chiral
symmetry is only an approximate symmetry because u and d quarks are not massless in nature.
In fact, the mass of the quarks is also the reason why one cannot construct a ChPT including
the very massive charm, bottom or top quarks. A extensive overview of ChPT can be found in
Ref. [68].

Pionless effective field theory

As mentioned above ChPT is valid up to a few GeV, but especially in nuclear physics the energies
are often even smaller, i.e. in the range of a few MeV. The question arises if one can construct
an effective field theory also in this energy region. Indeed, this is possible: for energies where the
pion exchange between heavy hadrons like nucleons is not relevant one can treat these hadrons
as non-relativistic point-like particles which only interact via contact interactions. Such a theory
with an expansion parameter Q/mπ with Q being the internal momentum is called pionless
effective field theory (EFT(/π)). This was introduced in Refs. [69, 71–73]. It was derived for
nucleon–nucleon interactions and is a commonly used tool in nuclear physics [74–77]. Especially
the deuteron was very successfully analyzed in EFT(/π) (see Refs. [71–73, 78, 79, 93]). Since one
can treat the deuteron as a simple hadronic molecule made of two nucleons, one concludes that
EFT(/π) might also be suitable for the description of other hadronic molecules as long as their
constituents have masses of the order of 1 GeV or more and their binding momenta (which
define the internal momenta) are much smaller than the pion mass. However, also for lighter
(but still reasonably heavier than pions) constituents or binding momenta around mπ one could
use a pionless effective field theory to obtain at least some first insights into such a system.
A comprehensive review of EFT(/π) and the universality in few-body physics can be found in
Ref. [80].
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1.4 Basic scattering theory

In this section we derive all relations of the effective range expansion (ERE) in scattering theory
up to second order (next-to leading order, NLO) for the sake of completeness. However, through-
out this thesis we will only consider the leading order (LO) effective range expansion.
We start with quantum mechanics and follow Refs. [81,82]: for a finite range potential V which
falls off sufficiently fast for large r the wave function of a scattered particle has the following
asymptotic form:

ψ(r) = eiki·r + f(k, θ)
eikf r

r
, (1.6)

where the scattering amplitude f(k, θ) depends on the modulus k := |ki| = |kf | of the incoming
(index i) and outgoing momenta (index f) and on the angle θ between those, i.e. k2 cos θ = ki ·kf .
If one considers a central potential V (r) ≡ V (r) one can expand the scattering amplitude in
partial waves with angular momentum L. Ignoring additional spin for the moment the expansion
has the form [81,82]:

f(k, θ) =
1

k

∑

L

(2L+ 1)eiδL sin(δL)PL(cos θ) , (1.7)

with the Legendre polynomials PL and a phase shift δL. As we will deal with S-wave states in
the following chapters we will now assume L = 0 and conclude from Eq. (1.7) that the scattering
amplitude f is independent of θ and thus only a function of k. Since S-wave scattering is
spherical symmetric one can furthermore integrate the incoming plane wave in Eq. (1.6) over the
solid angle to find

∫
dΩ

4π
eiki·r =

sin(kr)

kr
, (1.8)

which can be written as

sin(kr)

kr
= − 1

2i

e−ikr

kr
+

1

2i

eikr

kr
. (1.9)

As only the outgoing wave eikr can be affected by the scattering process and since the particle
number is conserved, the only possible modification due to the potential is a phase shift δ ≡ δL=0

in the outgoing wave, that is,

eikr
scattering−→ ei(kr+2δ) = eikr + 2ieikreiδ sin δ . (1.10)

Hence, the asymptotic wave function in case of S-wave scattering has the form:

ψ = eiki·r +
eiδ sin δ

k

eikf r

r
, (1.11)

which has to be compared with Eq. (1.6) in order to find a relation for the scattering amplitude
in terms of the phase shift:

f(k) =
eiδ sin δ

k
=

1

k

sin δ

cos δ − i sin δ
=

1

k cot δ − ik . (1.12)
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Bethe has shown in Refs. [83, 84] that for a finite range potential one can expand k cot δ about
k = 0 yielding up to second order

k cot δ = −1

a
+

1

2
r0k

2 + ... , (1.13)

where the scattering length a and the effective range r0 were introduced (the reason why this
approximation is called effective range expansion). Next, one can use Eq. (1.13) and Eq. (1.12)
to finally get the second order ERE S-wave scattering amplitude:

fERENLO(k) =
1

− 1
a

+ 1
2
r0k2 − ik . (1.14)

In the next step we identify a relation between the quantum mechanical scattering amplitude
f and the interaction part T of the scattering matrix S = 1 + T in quantum field theory. For
this purpose we again consider the wave function ψ of Eq. (1.6) which obeys the Schrödinger
equation

(H0 − E)ψ = −V ψ , (1.15)

where H0 is the free Hamilton operator. Inverting this equation one finds that for 1/(H0 − E)
being the inverse of the operator H0 − E it holds:

ψ = − 1

H0 − E
V ψ = φ− 1

H0 − E
V ψ , (1.16)

with the free particle solution φ = eiki·r which fulfills (H0 −E)φ = 0. However, a particle can in
general undergo multiple scattering processes. In order to take this fact into account one has to
extend Eq. (1.16) using the T -matrix:

ψ = φ− 1

H0 − E
Tφ . (1.17)

The derivation of this relation can be found for example in Ref. [1] where it is shown that one
can schematically define the T -matrix in the following way:

T := V + V
1

H0 − E
V + V

1

H0 − E
V

1

H0 − E
V + ... = V + V

1

H0 − E
T . (1.18)

With this knowledge one can show that the quantum mechanical S-wave scattering amplitude f
is related to the QFT T -matrix by

T (k) =
2π

µ
f(k) , (1.19)

where the prefactor 2π/µ (with reduced mass µ) accounts for the different normalization in QFT.
According to Eq. (1.19) the T -matrix itself is often called scattering amplitude and we will do
so, too. Using what we have found in Eq. (1.14) one obtains the following first and second order
ERE S-wave scattering amplitude (or T -matrix):

TERE
LO (k) = −2π

µ

1
1
a

+ ik
(1.20)

TERE
NLO (k) = −2π

µ

1
1
a
− 1

2
r0k2 + ik

, (1.21)

from which, however, we need in the following chapters only the LO relation.
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Im k

Re k

Figure 1.4: Poles of the S-matrix in the complex momentum plane of k. Bound states corres-
pond to poles marked by a dot on the positive imaginary axis, virtual states to the ones marked
by diamonds on the negative imaginary axis. The remaining crosses and squares indicate poles
on the second sheet, i.e. in the lower half of the k-plane. They are either identified as resonances
(being states with definite quantum numbers so that one can interpret them as particles) if they
are close to the positive real axis (crosses) or else as non-resonant background scattering effects
(which could not be interpreted as particles) if they are far away from the positive real axis
(squares).

1.4.1 Some remarks on resonances, bound and virtual states

The scattering of two particles might be affected by inelastic effects due to intermediate two-body
states which are either resonances, bound or virtual states. These states correspond to poles in
the S-matrix (or equivalently in the T -matrix since S = 1+T ) and are classified by the position
of the respective pole in the complex momentum plane as it is for example explained in Ref. [82].
A bound state of two particles with masses m1 and m2 (and reduced mass µ) corresponds to a
pole at k = iγ with γ > 0, namely, to a pole with vanishing real part, but non-zero imaginary
part. The energy of this state is EB = k2/(2µ) = −γ2/(2µ) < 0 which is identified with the
(negative) binding energy. Moreover, this relation also motivates the term binding momentum
for γ. Note, that we will define (using the bound state mass M12) a quantity B := m1 +m2−M12

which has positive values for bound states so that B = −EB and call B as well ”binding energy“.
Using B instead of EB one can write γ as γ =

√−2µEB =
√

2µB which will be repeatedly used
in this work. For energies below its threshold m1 + m2 + EB = m1 + m2 − B a bound state
is stable according to the force which has generated it (which is the strong force for hadron–
hadron scattering). However, there could be other forces in nature which can cause a decay of a
bound state also below threshold via the decay of its constituents (in our case of hadrons these
forces would be the electromagnetic or weak force). Next, we consider virtual states which are
in some sense the counterparts of bound states with the difference that they are located on the

12



second sheet, i.e. in the lower half of the k-plane. They lie on the negative imaginary axis again
corresponding to a pole at k = iγ, but with γ < 0. Their energy EB = k2/(2µ) = −γ2/(2µ) < 0
is the same as for bound states. However, the quantity B = m1 + m2 − M12 is negative for
virtual states which thus are sometimes called anti-bound. Since the sum of the constituent
masses (m1 +m2) is smaller than the mass of the two-body state (M12), virtual states cannot be
observed in nature. But due to the corresponding pole in the S-matrix they affect the scattering
of the two particles. The ”binding momentum“ γ of virtual states is negative, but also the binding
energy B is smaller than zero. Hence, one must modify the relation between them according to

γ = sgn(B)
√

2µ|B| , (1.22)

which is valid for both bound and virtual states. Finally, resonances are dynamically generated
states located on the second sheet somewhere below, but close to the positive real axis. They
thus have a rather small imaginary part (−ki, ki > 0) of the momentum, but also a non-vanishing
real part (kr) corresponding to a kinetic energy which is the reason for their widths as it can be
seen from

E =
k2

2µ
=

(kr − iki)2

2µ
=
k2
r − k2

i − 2ikrki
2µ

:= Er − i
Γ

2
, (1.23)

where Er is the resonance position and Γ the resonance width. From Eq. (1.23) it is also clear
that the widths grows as the imaginary part of k becomes larger. Hence, a resonance far away
from the real axis (i.e. with a large imaginary part ki) is so broad that it cannot be interpreted
as particle anymore, but rather as some non-resonant background in the scattering process.
In Fig. 1.4 we have summarized the classification of resonances, bound and virtual states by
sketching the corresponding poles of the S-matrix in the complex momentum plane of k.
In general hadronic molecules can be either bound or virtual states or resonances since all of
them can be considered as particles with definite quantum numbers. However, we will below use
the binding momentum as variable in the scattering amplitudes of processes including hadronic
molecules. Hence, the particles we consider as molecular states should be either bound or virtual
states where γ is well-defined. Nevertheless, one can – motivated by the often large experimental
errors in the masses – argue that one could also assign to resonances which are located not too
far away from the imaginary axis at least an approximate binding momentum.

1.4.2 Pole position and effective range expansion

In the first part of this section the ERE amplitude was derived. Now we will relate the pole posi-
tion k = iγ of bound states to this expansion. Considering Eq. (1.14) or equivalently Eq. (1.20)
one concludes that the scattering amplitude f(k) or T (k) has a pole for a vanishing denominator.
At LO this leads to

−1

a
− ik = −1

a
+ γ

!
= 0 , (1.24)

which yields

γ =
1

a
. (1.25)
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At NLO the denominator of the scattering amplitude is a function of k2 and hence one finds

−1

a
+

1

2
r0k

2 − ik = −1

a
− 1

2
r0γ

2 + γ
!

= 0 . (1.26)

This quadratic equation has two solutions

γ1,2 =
1

r0

± 1

r0

√
1− 2

r0

a
. (1.27)

For a large scattering length a� r0 being much larger than the effective range r0 one can expand
the square root in Eq. (1.27) using

√
1− x ≈ 1− x/2 +O(x2) (valid for small x) to obtain

γ1,2 =
1

r0

± 1

r0

(
1− r0

a

)
=

{
2
r0
− 1

a

a�r0≈ 2
r0

1
a

, (1.28)

where γ1 ≈ 2/r0 corresponds to a deeply bound pole and where γ2 = 1/a reproduces the result
Eq. (1.25) found at LO which corresponds to a shallow bound state with energy EB = γ2

2/(2µ) =
1/(2µa2) which only depends on the scattering length.
Note, that the same derivation can be done for virtual states with a pole also at k = iγ, but with
γ < 0 and hence one concludes from Eq. (1.25) that virtual states have a negative scattering
length.
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Chapter 2

Universality and the Efimov effect

So far we have only considered two-body systems. In the following we move on to three-body
physics, in particular we discuss the phenomenon of the emergence of a three-body bound state
spectrum in systems with large scattering length. This effect is an example of the universal scaling
behavior of systems with large scattering length (universality) and known as Efimov effect. It
was proposed by Efimov [85], theoretically proven in Ref. [86, 87] and experimentally observed,
first in Ref. [100] (which is also reviewed in Ref. [88]). In a system of three identical spin- and
isospinless bosons with divergent scattering length the Efimov effect leads to an infinite number
of three-body bound states (trimers) whose binding energies B3 are geometrically spaced and
which accumulate at the three-body scattering threshold. The spacing is defined by the so-called
scaling factor :

B
(n+1)
3

B
(n)
3

≈ 515.03 . (2.1)

Naively, one expects that in a scattering process the parameters of the ERE are all of the same
order which is defined by the interaction range R of the corresponding potential V (r) → 0 for
r > R. Up to second order (i.e. NLO) this would mean that the S-wave scattering length a and
effective range r0 would scale as R. However, there could be systems where the scattering length
is large, that is, much larger than the interaction range a� R and hence much larger than the
effective range a� r0 ∼ R. Such systems with a large scattering length a→∞ (i.e. systems in
the resonant limit) exhibit a so-called universal scaling behavior, meaning that observables can
be given in terms of the scattering length only. Besides in system where the scattering length
a � r0 ∼ R itself is large one finds an universal behavior also in systems where the interaction
range goes to zero (scaling or zero-range limit).
Although there are no systems with divergent scattering length in nature, there are systems
with reasonably large a. For example the nucleon–nucleon 1S0 system with scattering length
aNN = −18.7(6) fm [89] which is approximately an order of magnitude larger than the effective
range r0,NN = 2.75(11) fm [90] in this channel. Moreover, systems treated in pionless EFT
only interact via contact interactions (see section 1.3) which means that the interaction range is
zero. Therefore every system that can be described in EFT(/π) is universal up to higher order
corrections. Hence, the scattering of two particles with large, but finite scattering length has an
universal scaling behavior as long as it is allowed (γ < mπ) to analyze it in EFT(/π) where the
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interaction range is zero. Consequently, an accordant three particle system could be affected by
the Efimov effect with an exact scaling behavior like that in Eq. (2.1). However, although the
number is constant for all n it must not necessarily be 515.03. A further difference for systems
with finite scattering length is that the trimer spectrum is cut off at the two-body (dimer)
threshold B2. Hence, there are not infinitely many Efimov trimers, but only as much as are
fitting into the energy region B

(0)
3 < E < B2.

The Efimov effect and universality in few-body systems in general are discussed in Ref. [80] of
Hammer and Braaten which in particular also contains a review of many important methods in
EFT(/π) like the concept of dimer auxiliary fields. The following summary is based on this work.

2.1 Efimov effect for identical bosons

We consider a system of three identical particles ψ of mass m, but without spin or isospin degrees
of freedom. Additionally, we assume that they have a two-body interaction with large scattering
length and a three-body interaction. In the scaling limit, namely, for a vanishing interaction
range, such a system can be described by the non-relativistic Lagrangian density [80]

L = ψ†
(
i∂t +

∇2

2m

)
ψ − g2

(
ψ†ψ

)2 − g3

(
ψ†ψ

)3
. (2.2)

Here, we use the so-called dimer field trick [91, 92] instead of the Lagrangian introduced in
Eq. (2.2). Therefore we introduce an auxiliary dimer field d which represents a two-body bound
state of two ψ particles. With this new field one can write down a new Lagrangian density,

Ld = ψ†
(
i∂t +

∇2

2m

)
ψ + g2 d

†d− g2

(
d†ψ2 +

(
ψ†
)2
d
)
− g3 d

†dψ†ψ , (2.3)

which is equivalent to Eq. (2.2). This equivalence can be seen by eliminating the d field from
Eq. (2.3) using its equation of motion as it is shown in Ref. [80]. We note, that there is no
kinetic term for the dimer field (which would contain time derivatives) and thus it is not dynamic.
Nevertheless, it interacts with the field ψ via the last two terms in Eq. (2.3). The first interaction
term proportional to g2 thereby describes the decay of the dimer field into two boson fields ψ.
Thus, it leads to self-energy corrections to the constant bare propagator i/g2 of the field d. At
the end, these corrections allow the dimer field to propagate in space and time. To show this
explicitly we consider the Dyson equation shown in Fig. 2.1(a) as an infinite series of Feynman
diagrams where a thick solid line represents the bare and a double line the full propagator of the
dimer field.
Naming the full one as iD(p0,p) and the bare one iD0 = i/g2 one can – according to Fig. 2.1(a)
– write down a relation for the full propagator:

iD(p0,p) = iD0 + iD0 iΣ iD0 + iD0 iΣ iD0 iΣ iD0 + ...

= iD0

[ ∞∑

n=0

(
−ΣD0

)n
]

=
iD0

1− (−ΣD0)
=

i

(D0)−1 + Σ
, (2.4)
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(a)

iΣ(p0,p) =

(b)

Figure 2.1: Dyson equation for the dimer field in the three identical boson system as infinite
series of boson loops. A thick solid line represents the bare and a double line the full dimer
field propagator while a single line stands for the ψ propagator (a). Self-energy diagram for the
identical boson system. The single lines in the loop represent the boson fields ψ (b).

where we have introduced the self-energy Σ and used the geometric series to simplify the infinite
sum. In order to find an expression for the self-energy we firstly identify the corresponding
Feynman diagram (Fig. 2.1(b)) and then use the Feynman rules following from the Lagrangian
in Eq. (2.3) to obtain

Σ(p0,p) = 2g2
2

∫
d4q

(2π)4

1

p0 + q0 − 1
2m

(
p
2

+ q
)2

+ iε

1

−q0 − 1
2m

(
p
2
− q

)2
+ iε

, (2.5)

with the loop momentum (q0,q). We have used that the non-relativistic propagator of the field
ψ is given by

iS(p0,p) =
i

p0 − |p|
2

2m
+ iε

. (2.6)

Note, that the extra factor of 2 in Eq. (2.5) is a symmetry factor due to the fact that the bosons
are identical. Applying the residue theorem one can carry out the integral over dq0 yielding

Σ(p0,p) = 2g2
2

∫
d3q

(2π)3

i m

q2 −mp0 + p2

4
− iε

, (2.7)

which can now be calculated in dimensional regularization with a scale µ using the relation

∫
ddq

1

(q2 + 2 q · k − b2)α
= (−1)

d
2 iπ

d
2

Γ
(
α− d

2

)

Γ(α)

[
−k2 − b2

] d
2
−α

, (2.8)

which can be found in many QFT textbooks, for example in Ref. [1]. In D = 4 dimensions (i.e.
d = D − 1), with k = 0 and Γ(−1/2) = −2

√
π we thus end up with:

Σ(p0,p) = lim
D→4

(
2g2

2 µ
D−4

∫
dD−1q

(2π)D−1

i m

q2 −mp0 + p2

4
− iε

)
= −mg

2
2

2π

√
−mp0 +

p2

4
− iε . (2.9)
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i Tel =

Figure 2.2: Elastic scattering amplitude of two identical bosons ψ with an intermediate dimer
state d.

Hence, the full propagator of the dimer field can according to Eq. (2.4) be written as

iD(p0,p) =
i

g2 − mg22
2π

√
−mp0 + p2

4
− iε

= − 2π

mg2
2

i

− 2π
mg2

+
√
−mp0 + p2

4
− iε

. (2.10)

In the next step we relate the full propagator to the binding momentum γ of the dimer. Hence,
we consider the elastic scattering of two boson with an intermediate dimer state (Fig. 2.2). The
corresponding amplitude is given by

Tel(k) = −4g2
2D

(
p0 = E =

k2

m
,p = 0

)
=

8π

m

1

− 2π
mg2

+
√
−k2 − iε

= −8π

m

1
2π
mg2

+ ik
, (2.11)

with k being the modulus of the incoming and outgoing momenta which are equal in an elastic
process. Additionally, we have taken into account a symmetry factor of 4 due to the identical
bosons. Comparing this result with the leading order ERE amplitude in Eq. (1.20) we deduce
that the scattering length and thus the binding momentum (cf. LO version of Eq. (1.25)) can
be identified as

1

a
≡ γ =

2π

mg2

. (2.12)

This allows us to finally write the full propagator of the dimer field as

iD(p0,p) = − 2π

mg2
2

i

−γ +
√
−mp0 + p2

4
− iε

. (2.13)

Moreover, this leads to a wave function renormalization constant Z defined as the residue of the
pole in the full propagator [1] and given by

Z =
4π γ

g2
2m

2
. (2.14)

2.1.1 Three-body scattering amplitude

The considerations above provide in some sense a tool box for the following. Namely, the deter-
mination of the three-body scattering amplitude, known as Skorniakov–Ter-Martirosian (STM)
equation [94, 95]. Firstly, we note that this task is reasonably simpler using an auxiliary dimer
field instead of using the Lagrangian in Eq. (2.2). Still following Ref. [80] we have to solve the
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Figure 2.3: Integral equation for the three-body scattering of identical bosons using the dimer
field trick. A black square represent a two-body dimer–boson vertex and the black dot the three-
body vertex.

integral equation shown in Fig. 2.3 in terms of Feynman diagrams. This representation can be
understood in the sense that the repeatedly insertion of the right-hand-side into itself will gen-
erate all allowed diagrams with an arbitrary number of bosons. The corresponding scattering
amplitude is – using the Feynman rules according to the Lagrangian density Eq. (2.2) – in the
center-of-mass system given by

t(E,k,p) = −
[

4g2
2

E − k2

2m
− p2

2m
− (k+p)2

2m
+ iε

+ g3

]

+ i

∫
d4q

(2π)4
t(E,k,q)

D(E + q0,q)

−q0 − q2

2m
+ iε

[
4g2

2

E + q0 − p2

2m
− (p+q)2

2m
+ iε

+ g3

]
, (2.15)

with incoming 4-momentum k, outgoing one p, the center-of-mass energy E and a symmetry
factor of 4 in front of g2

2. Applying the residue theorem to solve the dq0 integration sets q0 =
−q2/(2m). After multiplying with the wave function renormalization derived in Eq. (2.14), one
ends up with the following equation for the renormalized amplitude T := Z t:

T (E,k,p) = − Z
[

4g2
2

E − k2

2m
− p2

2m
− (k+p)2

2m
+ iε

+ g3

]

+

∫
d3q

(2π)3
T (E,k,q)D

(
E − q2

2m
,q

)[
4g2

2

E − q2

2m
− p2

2m
− (p+q)2

2m
+ iε

+ g3

]
.

(2.16)

We will now restrict ourselves to the analysis of the S-wave three-body system. As explained in
appendix D one can project out the L = 0 partial wave by applying the projection operator

1

2

∫ 1

−1

d cos(θ) PL(cos θ) .

The remaining integral over d3q can be rewritten in spherical coordinates and hence one ends up –
after carrying out the integrals over the angles – with an expression proportional to the Legendre
function of the second kind QL (see appendix D). In Eq. (D.15) it was derived a representation
of QL=0 in terms of the logarithm. Hence, the three-body scattering amplitude in Eq. (2.16) only
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depends on the moduli of the momenta and reads:

T (E, k, p) =
16π γ

m

[
1

2kp
ln

(
p2 + pk + k2 − E − iε
p2 − pk + k2 − E − iε

)
− 1

4m

g3

g2
2

]

+
4

π

∫ Λ

0

dq
q2 T (E, k, q)

−γ +
√
−mE + 3

4
q2 − iε

[
1

2qp
ln

(
p2 + pq + q2 − E − iε
p2 − pq + q2 − E − iε

)
− 1

4m

g3

g2
2

]
,

(2.17)

where the remaining integral over dq is regularized by a cutoff Λ. To account for a correct
renormalization it is now convenient to introduce a cutoff dependent coupling constant H(Λ) [80],

g3 = −4mg2
2

Λ2
H(Λ) , (2.18)

which yields

T (E, k, p) =
16π γ

m

[
1

2kp
ln

(
p2 + pk + k2 − E − iε
p2 − pk + k2 − E − iε

)
+
H(Λ)

Λ2

]

+
4

π

∫ Λ

0

dq
q2 T (E, k, q)

−γ +
√
−mE + 3

4
q2 − iε

[
1

2qp
ln

(
p2 + pq + q2 − E − iε
p2 − pq + q2 − E − iε

)
+
H(Λ)

Λ2

]
.

(2.19)

Note, that the equation above is equivalent to Eq. (336) in Ref. [80] up to the fact that the mass
of the bosons is not set to m = 1. As discussed in Ref. [80] the function H(Λ) must compensate
every change in the cutoff Λ so that the amplitude itself is well-behaved in the limit of Λ going
to infinity. However, H(Λ) is proportional to the three-body coupling g3. Hence, one concludes
that in a system without a three-body interaction it holds H = 0 and the divergent part of the
amplitude drops out. In the other case where g3 6= 0 one thus needs a three-body observable in
order to find the physical value of H(Λ) which ensures the right behavior of the amplitude in the
limit Λ→∞. In fact, a three-body bound state with binding energy E3 = −B3 corresponds to
a pole in Eq. (2.19) exactly at the energy E = −B3. Thus, one can fix the cutoff dependence of
H(Λ) by determining the poles in Eq. (2.19) for a varying cutoff and searching for the right pole
position E = −B3. If this is done one can calculate for every cutoff Λ the corresponding value
of H. In Ref. [80] it is shown that a numerical determination of H yields

H(Λ) =
cos
[
s0 ln

(
Λ
Λ∗

)
+ arctan (s0)

]

cos
[
s0 ln

(
Λ
Λ∗

)
− arctan (s0)

] , (2.20)

which depends on two parameters: on the one hand Λ∗ which must be fixed using a three-body
observable and on the other hand the scaling parameter s0 = 1.00624 which is independent of
the three-body interaction and which can be determined as discussed in the next subsection.
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Transcendental equation for the scaling parameter

As mentioned previously the scaling parameter s0 = 1.00624 is not affected by any three-body
physics. Therefore one can assume for simplicity that g3 = 0 and hence, that H(Λ) vanishes
(according to the fact that there always exists a cutoff Λ so that H(Λ) = 0). In Eq. (2.19) one
can then take the limit of Λ→∞ and one finds

T (E, k, p) =
16π γ

m

1

2kp
ln

(
p2 + pk + k2 − E − iε
p2 − pk + k2 − E − iε

)

+
4

π

∫ ∞

0

dq
q2 T (E, k, q)

−γ +
√
−mE + 3

4
q2 − iε

1

2qp
ln

(
p2 + pq + q2 − E − iε
p2 − pq + q2 − E − iε

)
. (2.21)

This equation is scale invariant and symmetric under the change q → 1/q (”inversion invariant“).
In Ref. [80] it is argued that this invariance causes that in the limit of asymptotic large outgoing
momenta p the amplitude T (E, k, p) has a solution in form of a power law ps. Furthermore,
the authors motivate that in the limit p → ∞ one can neglect the inhomogeneous term and in
addition all variables E and γ which are proportional to the incoming momentum k � p→∞.
Consequently, one ends up with

T (p) =
4√
3π

∫ ∞

0

dq

p
T (q) ln

(
p2 + pq + q2

p2 − pq + q2

)
. (2.22)

Redefining the amplitude via T̃ (p) = pT (p),

T̃ (p) =
4√
3π

∫ ∞

0

dq

q
T̃ (q) ln

(
p2 + pq + q2

p2 − pq + q2

)
, (2.23)

and inserting the power law solution T̃ (p) ∼ ps yields in the asymptotic momentum limit

ps =
4√
3π

∫ ∞

0

dq qs−1 ln

(
p2 + pq + q2

p2 − pq + q2

)
. (2.24)

Following Ref. [80] it is useful to substitute X = q/p so that Eq. (2.24) finally simplifies to the
relation

1 =
4√
3π

∫ ∞

0

dX Xs−1 ln

(
X + 1

X
+ 1

X + 1
X
− 1

)
. (2.25)

The remaining integral is related to a Mellin transform (see e.g. Ref. [168]) and can be analytically
solved. Hence, one obtains a transcendental equation for the scaling parameter s [80]:

1 =
8√
3π

1

s

sin
(
π
6
s
)

cos
(
π
2
s
) . (2.26)

This equation has a purely imaginary solution s = is0 with s0 = 1.00624. Thus, Eq. (2.26) is the
relation which defines the scaling parameter s0 in the three-body problem. As a remark, note
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that one could have found Eq. (2.26) also by rewriting the logarithm in terms of the Legendre
function of the second kind using Eq. (D.15),

ln

(
X + 1

X
+ 1

X + 1
X
− 1

)
= 2Q0

(
X +

1

X

)
,

and considering the results discussed in appendix E.
The purely imaginary solution of Eq. (2.26) tells us that the amplitude T̃ (p) ∼ ps has not one
uniquely determined real solution, but instead two linearly independent complex solutions (see
also Ref. [167]). Consequently, there is a discrete scaling invariance, that is, a discrete scaling
factor exp(π/s0) in the system of three identical bosons. This discrete scaling invariance is
manifestly an effect of Efimov physics [80] and one concludes that a different system of three
particles which has not a purely imaginary exponent in the power law solution will not be affected
by the Efimov effect, meaning that there is no three-body bound state (the Efimov trimer) in
such a system. It is therefore important to note on the one hand that one does not need an
explicit three-body force in the Lagrangian density in order to check if a three particle system is
affected by the Efimov effect. On the other hand Eq. (2.26) is not an universal relation; it was
derived for a system of three identical, spin- and isospinless bosons, but it will most probably
change if one or more of these properties are changed. These facts motivate the following work:
we will derive an analogous transcendental equation depending on some parameters in order
to describe a large number of different three particle systems (including spin, isospin, identical
or distinguishable bosons and fermions, etc.). Such an equation allows to simply check for an
(almost) arbitrary three particle system if the scaling parameter has a purely imaginary solution,
that is, to check if the Efimov effect is present in the considered system. Moreover, this can
be done without any knowledge of possible three-body physics (corresponding to the available
experimental data of most hadronic molecule candidates) since in the above derivation we have
set the three-body coupling constant H equal to zero anyway. Only to obtain cutoff independent
three-body observables would require to fix H(Λ) to its physical value.

2.2 Efimov physics in cold atoms and halo nuclei

Up to now the discussion of the Efimov effect as an universality phenomenon was restricted to
nuclear physics and – where this work focuses on – to hadronic molecules, i.e. particle physics.
Besides these applications the Efimov effect is also an important phenomenon in cold atoms and
halo nuclei. The former are atoms which are trapped (e.g. in a magneto-optical trap) and cooled
down by different techniques like laser cooling until they reach temperatures very close to zero
Kelvin (for an overview of this topic see for example Ref. [96]). At such low temperatures – which
are equivalent to low energies – quantum effects become important and thus cold atoms are a
perfect testing ground for phenomena like Bose-Einstein condensation, but in fact also for the
Efimov effect. Especially, the existence of Feshbach resonances [97–99] which allow to fine-tune
the scattering length of a two-atom state to be ”large“, leads to many experimental observations
of the Efimov effect. In bosonic systems it was found using cesium [100,101], potassium [102] or
lithium [103, 104] isotopes, but also in a fermionic system of a different lithium isotope Efimov
physics were observed [105,106]. The mentioned experiments have in common that they use the
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indirect detection method of an enhanced recombination rate [109–111], but there are also direct
observations of Efimov trimers [107,108].
The second field where universality effects are important are halo nuclei. The idea behind this
term is that some isotopes of a few different elements can be interpreted as a compact, deeply
bound core and one or more orbiting nucleons (halo-nucleons) [112–115]. This picture has led
to the development of the so-called Halo EFT where one treats the core and the halo-nucleons
as shallowly bound few-body system. The expansion parameter is R/a with R being the range
of the core–halo-nucleon interaction and its scattering length a [116, 117]. Both, core and halo-
nucleons are described as non-relativistic fields and hence the degrees of freedom in the theory are
drastically reduced (for more details on Halo EFT see the reviews in Refs. [118,119]). Examples
for halo nuclei are – besides others – 11Li with two surrounding neutrons, 11Be with one neutron
or 8B with a halo-proton [120]. Thus, one concludes that there are in particular also three-body
systems made of a core and two nucleons. Since the core–nucleon two-body scattering length a
is expected to be large compared to the range R of the core–nucleon interaction, it is likely that
such a system might be affected by the Efimov effect. Indeed, there was much effort to quantify
this assumption about the Efimov effect in halo nuclei [121–127] (see the review in Ref. [128]).
The final conclusion of this subsection is that Efimov physics are an important part of many
different fields in physics which – at least on the first sight – deal with very different subjects.
Already at this point we want to emphasize that the considerations in the following chapters are
not restricted to hadronic molecules and in particular that the final transcendental equation for
the scaling parameter (which tells us if the Efimov effect exists in a system) can also be applied
to a system of cold atoms or to a three-body halo nucleus.
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Chapter 3

Efimov effect in a general three particle
system

In section 2.1 we have explained how the Efimov effect occurs in a system of three identical spin-
and isospinless bosons. At the end we showed a transcendental equation for the exponent s of
the power law solution in the limit of asymptotic large momenta. In case of S-wave scattering
we have found:

1 =
8√
3

1

s

sin
(
π
6
s
)

cos
(
π
2
s
) . (3.1)

From the derivation of this equation we know that its structure depends on the following particle
properties: species (bosons, fermions or mixture), relation of masses as well as angular momen-
tum, spin and isospin quantum numbers of the dimer and its constituents. The question is now:
how will this equation change if one changes one or more of these properties? To answer this
question we will derive a general transcendental equation with a number of parameters represen-
ting various three particle configurations. However, choosing one specific three particle system
with known dimer states the parameters straightforwardly reduce to numbers and at the end one
simply has to find the eigenvalues of a real matrix.

3.1 General dimer states

Let us consider three isospin multiplets A1, A2, A3 and their corresponding anti-multiplets Ā1,
Ā2, Ā3 which are related via the G-parity operator G,

Āi = GAi = CeiπI2Ai , (3.2)

where C is the charge conjugation operator and eiπI2 represents a rotation in isospin space around
the I2 axis, that is, a change from I3 = ±1/2 to I3 = ∓1/2. Because Āi = GAi their masses are
equal and hence there are only three mass parameters m1, m2 and m3. Nevertheless, we treat
Āi and Ai as independent states since we work in a non-relativistic theory.

24



A general system of three particles P1, P2, P3 can contain both particles and anti-particles. We
define these particles is terms of the multiplets introduced above:

P1 := a1A1 + b1Ā1

P2 := a2A2 + b2Ā2

P3 := a3A3 + b3Ā3 , (3.3)

with ai = {0, 1} and bi = {1, 0} ∀ i ∈ {1, 2, 3}. Hence, choosing e.g. the system P1 = N̄ , P2 = N ,
P3 = Λ this would fix the parameters to be b1 = a2 = a3 = 1 and a1 = b2 = b3 = 0.
We assume that these particles have shallow two-body bound or virtual states dij which we will
for simplicity both call ”dimers“ (and which in general are isospin multiplets as well). Since
the dimer d12 between particle P1 and P2 is physically identical to the dimer d21 between P2

and P1 there only are three different dimers in the system. Note, that mathematically dij 6= dji
due to possible fermion minus signs from interchanging Pi and Pj (physically such a minus sign
can be absorbed into the coupling constant which does not affect the observables). Thus, one
has to choose one convention for the order of appearance of Pi and Pj, but which of them is
irrelevant since the observables are independent of this choice (of course if one does not mix both
conventions). We will use the convention

dij ∼ PjPi with i < j ∈ {1, 2, 3} , (3.4)

and the three possible dimers are thus given as d12, d13 and d23.

3.1.1 Dimer flavor wave function

The possible flavor wave functions for a dimer dij are

dij = AjAi (3.5)

dij = ĀjĀi (3.6)

dij =





1√
2

(
ĀjAi + ηijAjĀi

)
, if baryon number and flavor are 0 and Ai 6= Aj

ηijĀjAi , if baryon number and flavor are 0 and Ai = Aj

ĀjAi , else

. (3.7)

In the third equation above the dimer has well-defined G-parity with G-parity quantum number
ηij = ±1 if the baryon number and the flavor meaning strangeness, charm, beauty (bottomness)
and – for completeness although hadrons containing top quarks does not exist due to the short
lifetime of t quarks – topness are all equal to zero. This condition implies that for Ai 6= Aj (e.g.
B̄∗B) the combinations ĀjAi and AjĀi have the same quark content with the same quantum
numbers and masses. Thus, a possible dimer must be a superposition of both states. The G-
parity quantum number ηij in Eq. (3.7) fixes the sign within the superposition in the following
manner: the G-parity eigenstate dij must fulfill Gdij = ηijdij and since quantum mechanics tell
us that there could be a phase eiϕ between the two states of the superposition, we start with the
general wave function

dij =
1√
2

(
ĀjAi + eiϕAjĀi

)
=

1√
2

(
ĀjAi + eiϕG

(
ĀjAi

))
, (3.8)

25



and apply G to both sides:

Gdij = G 1√
2

(
ĀjAi + eiϕG

(
ĀjAi

))
=

1√
2

(
GĀjAi + eiϕ

(
ĀjAi

))

!
= ηijdij =

1√
2

(
ηijĀjAi + ηije

iϕG
(
ĀjAi

))
. (3.9)

Comparing the coefficients one finds that for ηij = ±1 the phase factor must be eiϕ = ±1. There-
fore one can replace in Eq. (3.8) the phase factor by the G-parity quantum number which leads
to the wave function in Eq. (3.7). In the case with Ai = Aj (e.g. B̄∗B∗) the prefactor ηij does
not affect observables since later on it could be absorbed in the coupling constant. However, for
the sake of consistency and to distinguish this case from the ”else“ case where G-parity is not a
good quantum number we will keep it.
Using ai and bi one can parametrize the flavor wave function in a way that for a given system P1,
P2, P3 (which fixes all ai’s and bi’s to be either 0 or 1) the correct wave function is automatically
generated. For this we introduce two short-hand notations. Firstly, we need a parameter which
tells us if the considered dimer has a well-defined G-parity. This is the case if the following quan-
tum numbers of the dimer are zero: baryon number, strangeness, charm, bottomness (beauty)
and topness must vanish because only hadrons consisting either solely of up and down quarks or
an arbitrary number of qq̄ pairs of heavier quarks are up to a sign invariant under the application
of the G-parity operator G. In order to avoid the lengthy combination of Kronecker-deltas which
ensure the vanishing of all the quantum numbers we instead define:

δη|1| := δbaryon number 0 × δstrangeness 0 × δcharm 0 × δbeauty 0 × δtopness 0 , (3.10)

motivated by the fact that if the right-hand-side is 1, i.e. if all mentioned quantum numbers
indeed vanish, then the dimer is a G-parity eigenstate with corresponding quantum number
η = ±1 = |1|. The second short-hand notation is:

δAiAj =

{
1 , if Ai is identical to Aj, i.e. Ai = Aj

0 , else
. (3.11)

Note here, that

δPiPj = 1 ⇒ δAiAj = 1 ,

δAiAj = 1 ; δPiPj = 1 . (3.12)

With this notation one can parametrize the dimer flavor wave function as follows:

dij = aiaj AjAi + bibj ĀjĀi

+ δηij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj)

[
(ηij)

δAiAj ĀjAi +
(
1− δAiAj

)
ηijAjĀi

]

+
(
1− δηij |1|

)
biajĀjAi ∀ i < j ∈ {1, 2, 3} . (3.13)

To clarify this notation let us consider the three particle system B̄∗BB∗. Consequently, we
have P1 = B̄∗, P2 = B, P3 = B∗ and thus A1 = A3 = B∗, A2 = B and b1 = a2 = a3 = 1,
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a1 = b2 = b3 = 0. Furthermore, we conclude from the quark content of the three particles that
δη12|1| = δη13|1| = 1, but δη23|1| = 0. With this information we can write down the possible dimers:

d12 = 1×
[

1√
2

+ 0×
(

1− 1√
2

)]
(1× 1 + 0× 0)

[
(η12)0 B̄B∗ + (1− 0) η12BB̄

∗]

=
1√
2

(
B̄B∗ + η12BB̄

∗) (3.14)

d13 = 1×
[

1√
2

+ 1×
(

1− 1√
2

)]
(1× 1 + 0× 0)

[
(η13)1 B̄∗B∗ + (1− 1) η13B

∗B̄∗
]

= η13B̄
∗B∗ (3.15)

d23 = 1× 1×B∗B = B∗B . (3.16)

The next step is now to identify the physical dimers in the system, i.e. those bound or virtual
states which exist in nature (or in the used theory). In the case above one finds on the one hand
that there is the Zb(10610) as B̄∗B bound state and on the other hand the Z ′b(10650) as a B̄∗B∗

bound state [33]. A BB∗ state is not known so far. Therefore one has to erase d23 from the
theory and only keeps d12 and d13 in a further analysis.

3.1.2 Spin and isospin part of the dimer wave function

Up to now we have ignored the spin and isospin degrees of freedom. Therefore we define projection

operators
(
O†ij
)
α,βγ

with combined spin and isospin indices α, β, γ which couple the spin/isospin

of (Ai)β and (Aj)γ to a total dimer spin/isospin of (dij)α. Since the anti-multiplet Āi has the same
spin and isospin structure as the multiplet Ai one finds for the dimer wave function including
flavor, spin and isospin:

(dij)α = aiaj (Aj)β

(
O†ij
)
α,βγ

(Ai)γ + bibj
(
Āj
)
β

(
O†ij
)
α,βγ

(
Āi
)
γ

+ δηij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj)

×
[
(ηij)

δAiAj
(
Āj
)
β

(
O†ij
)
α,βγ

(Ai)γ +
(
1− δAiAj

)
ηij (Aj)β

(
O†ij
)
α,βγ

(
Āi
)
γ

]

+
(
1− δηij |1|

)
biaj

(
Āj
)
β

(
O†ij
)
α,βγ

(Ai)γ ∀ i < j ∈ {1, 2, 3} . (3.17)

If we again consider the Zb, Z
′
b example from the previous subsection to clarify the notation, we

would need the two projection operators O†12 and O†13 which are given by
(
O†12

)
{α=aA},{β=β̃}{γ=cγ̃}

= δca
−i√

2
(τ2τA)β̃γ̃ ,

(
O†13

)
{α=aA},{β=bβ̃}{γ=cγ̃}

= − 1√
2

(Ua)bc
−i√

2
(τ2τA)β̃γ̃ , (3.18)

where {a, b, c} are spin 1 indices, {β̃, γ̃} are isospin 1/2 indices and A is an isospin 1 index. τA
are the Pauli matrices and Ua are the generators of the SO(3) rotation group. Hence, Oij is
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the product of the spin projector and the isospin projector which are completely independent
because they act in different spaces. Consequently, they commute and the trace in this combined
spin/isospin space simply means ”trace in spin space“ times ”trace in isospin space“. More de-
tails on and the derivation of these operators and of all other projectors from 0⊗ 0 up to 1⊗ 1
can be found in appendix A.

Following the usual coupling of spins and isospins like 1/2 ⊗ 1/2 = 0 ⊕ 1 we notice that there
might be more than just one dimer with the same particle content. In order to take this fact into
account we introduce a second dimer d′ij with identical constituents, but different spin/isospin
quantum numbers than dij. Since also the G-parity could change in this case we need in advance
a new parameter η′ij and write:

(
d′ij
)
α

= aiaj (Aj)β

(
O′†ij
)
α,βγ

(Ai)γ + bibj
(
Āj
)
β

(
O′†ij
)
α,βγ

(
Āi
)
γ

+ δη′ij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj)

×
[(
η′ij
)δAiAj (Āj

)
β

(
O′†ij
)
α,βγ

(Ai)γ +
(
1− δAiAj

)
η′ij (Aj)β

(
O′†ij
)
α,βγ

(
Āi
)
γ

]

+
(

1− δη′ij |1|
)
biaj

(
Āj
)
β

(
O′†ij
)
α,βγ

(Ai)γ ∀ i < j ∈ {1, 2, 3} . (3.19)

In general one could continue and define d′′ij, d
′′′
ij and so on. However, for most two particle systems

two states should be enough since in the end not every possible spin/isospin configuration has a
bound or virtual state (e.g. in the NN system there are four possible configurations, but only
the S = 1, I = 0 bound state (the deuteron) and the S = 0, I = 1 virtual state exist in nature).
Therefore we restrict ourselves to only one extra dimer d′ij. However, one could straightforwardly
extend this work to a system with three or more states.

3.1.3 Spatial part of the dimer wave function

Finally, we want to make some comments on the spatial part of the dimer wave function. It
depends on the angular momentum of the constituent particles. Thus, we must specify in which
partial wave the constituent particles are. Since the energy within a bound state rises with the
total angular momentum it is more likely that a dimer is formed in the lowest partial wave. In
fact, as long as there is no physical property which forbids a L = 0 interaction, it is justified to
assume that all dimers are S-wave states. In this work we will ignore the special cases where L
must be unequal to zero and state that:

all dimers are S-wave states. (3.20)

In this case the spatial structure stays trivial:

dij(x) = aiaj Aj(x) Ai(x) + bibj Āj(x) Āi(x) + ... , (3.21)

and we will not write the x dependence explicitly in our equations. Note, that already for a
P -wave dimer there would appear spatial derivatives:

dij(x) = aiaj

[(
i~∇Aj(x)

)
Ai(x) + Aj(x)

(
i~∇Ai(x)

)]
+ ... . (3.22)
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More details on P -wave dimers in EFT can be found in Ref. [129].

3.2 Lagrangian density, vertices and propagators

We are working in a non-relativistic theory. Hence, particles and their corresponding anti-
particles are point-like and treated as independent fields. Therefore all particles have the same
non-relativistic kinetic term in the Lagrangian density independently of their spin. Furthermore,
there only are contact interactions between the fields due to their point-like character. As
explained in section 2.1 one can construct an effective Lagrangian density using auxiliary fields.
To get a general expression which takes into account all different three particle systems, we need
six auxiliary fields representing the six possible dimers dij and d′ij for i < j ∈ {1, 2, 3}. At this
point one has to choose the order of the Lagrangian density: we will only consider leading order
(LO) because already next-to-leading order (NLO) terms depend on the effective range of the
dimers which is very poorly known for hadronic molecules so far. In fact, the two nucleon system
is more or less the only system where effective ranges are measured (one exception is the NΛ

system [130,131]). At LO we need six new parameters ∆
(′)
ij ∈ R and six coupling constants g

(′)
ij for

i < j ∈ {1, 2, 3}. The ∆ parameters can be related to the scattering length of the corresponding
dimer which is at LO related to the – easier measurable – binding momentum via a−1 = γ
(see section 1.3). We name the auxiliary fields like the dimers and find Eq. (3.23) where the
Lagrangian density is given in terms of the isospin multiplet fields A and Ā. Lines 8 to 12 are
the Hermitian conjugation of lines 3 to 7 and the last line stands for the interaction Lagrangian
of d′ij which is achieved by replacing in line 3 to 12 all dij by d′ij, Oij by O′ij, gij by g′ij and ηij by
η′ij. From the Lagrangian density one can deduce the vertex factors describing the interactions
between the dimers and their constituents as well as the propagators of all included particles.
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LLO =
3∑

i=1

(Ai)
†
α

(
i∂t +

∇2

2mi

)
(Ai)α +

3∑

i=1

(Āi)
†
α

(
i∂t +

∇2

2mi

)
(Āi)α

+
3∑

i, j = 1
i < j

(dij)
†
α ∆ij (dij)α +

3∑

i, j = 1
i < j

(
d′ij
)†
α

∆′ij
(
d′ij
)
α

−
3∑

i, j = 1
i < j

(
gij

{
aiaj

(
A†i

)
β

(Oij)α,βγ
(
A†j

)
γ

(dij)α + bibj

(
Ā†i

)
β

(Oij)α,βγ
(
Ā†j

)
γ

(dij)α

+ δηij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj)

×
[
(ηij)

δAiAj

(
Ā†i

)
β

(Oij)α,βγ
(
A†j

)
γ

(dij)α

+
(
1− δAiAj

)
ηij

(
A†i

)
β

(Oij)α,βγ
(
Ā†j

)
γ

(dij)α

]

+
(
1− δηij |1|

)
biaj

(
Ā†i

)
β

(Oij)α,βγ
(
A†j

)
γ

(dij)α

}

+ gij

{
aiaj

(
d†ij

)
α

(Aj)γ

(
O†ij
)
α,γβ

(Ai)β + bibj

(
d†ij

)
α

(
Āj
)
γ

(
O†ij
)
α,γβ

(
Āi
)
β

+ δηij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj)

×
[
(ηij)

δAiAj

(
d†ij

)
α

(Aj)γ

(
O†ij
)
α,γβ

(
Āi
)
β

+
(
1− δAiAj

)
ηij

(
d†ij

)
α

(
Āj
)
γ

(
O†ij
)
α,γβ

(Ai)β

]

+
(
1− δηij |1|

)
biaj

(
d†ij

)
α

(Aj)γ

(
O†ij
)
α,γβ

(
Āi
)
β

})

−
3∑

i, j = 1
i < j

(
gij → g′ij, dij → d′ij, ηij → η′ij, Oij → O′ij

)
(3.23)
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3.2.1 Vertices

The interaction vertices are obtained by collecting all terms with the same number of fields.
Erasing the fields from these terms and multiplying them with a factor i yields the Feynman
rules shown in Fig. 3.1 valid for all indices i, j ∈ {1, 2, 3} with i < j. The two parameters v

(′)
ij

and w
(′)
ij appearing in the vertex factors are defined as

v
(′)
ij := δ

η
(′)
ij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj)

(
η

(′)
ij

)δAiAj
+
(

1− δ
η
(′)
ij |1|

)
biaj , (3.24)

and

w
(′)
ij := δ

η
(′)
ij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj)

(
1− δAiAj

)
η

(′)
ij . (3.25)

At this point we have to make two remarks. Firstly, note that we write
[
(Oij)α,γβ

]†
=
(
O†ij
)
α,βγ

according to projection operators like
[
(τAτ2)αβ

]†
=
(

(τAτ2)†
)
βα

= (τ2τA)βα. The second remark

is on the coupling constants: we use just one symbol gij in front of each interaction term although
the coupling strength between e.g. dij and AjAi must not be same as between dij and ĀjĀi
because the dimer is different in both cases. However, in nature dij ∼ PjPi is always unique
even if bound states between AjAi and between ĀjĀi exist, since Ai and Āi are not the same
particle. Thus, it is justified to only use one coupling constant which could have different values
for different systems.

3.2.2 Propagators

We can read off from Eq. (3.23) the non-relativistic propagators of the point-like multiplets Ai
and Āi:

i (Si)αβ (p0,p) =
iδαβ

p0 − |p|
2

2mi
+ iε

for i = 1, 2, 3 . (3.26)

Hence, all particles propagate forward in time and it is no further work needed. For the dimer
fields the procedure is more complicated since they have a coupling to their constituent fields.
Firstly, we note that at LO the dimer fields themselves are not dynamic. Their bare propagators,

i
(
D

(′)0
ij

)
αβ

(p0,p) = i
δαβ

∆
(′)
ij

, (3.27)

are constant, but they are dressed by loops of their constituent particles. This leads to the Dyson
equation in Fig. 3.2(a) and hence to a possible propagation.
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: −i g
(′)
ij aiaj


O(′)

ij



α,βγ

Ai

Aj

α
β

γ

d
(′)
ij : −i g

(′)
ij bibj


O(′)

ij



α,βγ

Āi

Āj

α
β

γ

d
(′)
ij

: −i g
(′)
ij v

(′)
ij


O(′)

ij



α,βγ

Āi

Aj

α
β

γ

d
(′)
ij : −i g

(′)
ij w

(′)
ij


O(′)

ij



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Ai

Āj

α
β

γ

d
(′)
ij

β

d
(′)
ij

α

Ai

Aj γ

: −i g
(′)
ij aiaj


O(′)†

ij



α,γβ

β

d
(′)
ij

α

Āi

Āj γ

: −i g
(′)
ij bibj


O(′)†

ij



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β

d
(′)
ij

α

Āi

Aj γ

: −i g
(′)
ij v

(′)
ij


O(′)†

ij



α,γβ

β

d
(′)
ij

α

Ai
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: −i g
(′)
ij w

(′)
ij


O(′)†

ij



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Figure 3.1: Vertex factors for all possible interaction terms depending on the parameters a and
b valid ∀ i, j ∈ {1, 2, 3} with i < j. Time and momentum flow from left to right and furthermore

v
(′)
ij and w

(′)
ij are given in Eq. (3.24) and Eq. (3.25).

=
α β α β

+ ...+
α β

Ai

Aj

+
α β

Āi

Āj

+
α β

Āi

Aj

+
α β

Ai

Āj

(a)

= + + +i

Σ

(′)
ij



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γ
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Āi

Āj

Āi
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Figure 3.2: Diagrammatic representation of the Dyson equation. The full dimer propagator is
depicted as double line and the bare ones as thick solid lines (a). Diagrammatic representation
of the dimer self-energy (b).
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Introducing the self-energy
(

Σ
(′)
ij

)
αβ

(p0,p) the full dimer propagator i
(
D

(′)
ij

)
αβ

(p0,p) is given

by

i
(
D

(′)
ij

)
αβ

= i
(
D

(′)0
ij

)
αβ

+ i
(
D

(′)0
ij

)
αγ

i
(

Σ
(′)
ij

)
γρ
i
(
D

(′)0
ij

)
ρβ

+ i
(
D

(′)0
ij

)
αγ

i
(

Σ
(′)
ij

)
γρ
i
(
D

(′)0
ij

)
ρµ
i
(

Σ
(′)
ij

)
µν
i
(
D

(′)0
ij

)
νβ

+ ...

= i
(
D

(′)0
ij

)
αγ

[
(1)γβ + i

(
Σ

(′)
ij

)
γρ
i
(
D

(′)0
ij

)
ρβ

+ i
(

Σ
(′)
ij

)
γρ
i
(
D

(′)0
ij

)
ρµ
i
(

Σ
(′)
ij

)
µν
i
(
D

(′)0
ij

)
νβ

+ ...

]

= i
(
D

(′)0
ij

)
αγ

{ ∞∑

n=0

[
−
(

Σ
(′)
ij

)
γρ

(
D

(′)0
ij

)
ρβ

]n}
. (3.28)

Self-energy

In the next step one needs to determine the self-energy. Therefore we consider all Feynman
diagrams which – depending on the parameters ai and bi – contribute to it (Fig. 3.2(b)) and
conclude:

i
(

Σ
(′)
ij

)
αβ

(p0,p) =
(
g

(′)
ij

)2

Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

[
aiajaiaj + v

(′)
ij v

(′)
ij + w

(′)
ij w

(′)
ij + bibjbibj

]

×
∫

d4q

(2π)4

1

p0 + q0 − 1
2mi

(
p
2

+ q
)2

+ iε

1

−q0 − 1
2mj

(
p
2
− q

)2
+ iε

, (3.29)

with loop momentum (q0,q) and Sij being the symmetry factor of the diagrams shown in
Fig. 3.2(b). Depending on whether Pi is identical to Pj or not the latter is either 1 or 2 (see
appendix B):

Sij =

{
2 , if Pi = Pj

1 , if Pi 6= Pj
. (3.30)

Before we continue it is useful to have a closer look on the term in square brackets: since Pi
cannot be equal to Ai and Āi at once, we know that there only are two possible parameter sets
{ai = 1, bi = 0} or {ai = 0, bi = 1}. Combining this with the set of particle Pj and taking into
account a possible non-vanishing G-parity quantum number, five physical combinations for the
term in square brackets remain:

• ai = aj = 1 ∧ bi = bj = 0 ∧ η
(′)
ij = 0

⇒
[
(aiaj) +

(
v

(′)
ij

)2

+
(
w

(′)
ij

)2

+ (bibj)
2

]
= aiaj = 1

• ai = aj = 0 ∧ bi = bj = 1 ∧ η
(′)
ij = 0

⇒
[
(aiaj) +

(
v

(′)
ij

)2

+
(
w

(′)
ij

)2

+ (bibj)
2

]
= bibj = 1
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• bi = aj = 1 ∧ ai = bj = 0 ∧ η
(′)
ij = 0

⇒
[
(aiaj) +

(
v

(′)
ij

)2

+
(
w

(′)
ij

)2

+ (bibj)
2

]
= biaj = 1

• bi = aj = 1 ∧ ai = bj = 0 ∧ η
(′)
ij = ±1

⇒
[
(aiaj) +

(
v

(′)
ij

)2

+
(
w

(′)
ij

)2

+ (bibj)
2

]
= biaj = 1

• bi = aj = 0 ∧ ai = bj = 1 ∧ η
(′)
ij = ±1

⇒
[
(aiaj) +

(
v

(′)
ij

)2

+
(
w

(′)
ij

)2

+ (bibj)
2

]
= δ

η
(′)
ij |1|

aibj = 1

Hence, one finds

[
(aiaj) +

(
v

(′)
ij

)2

+
(
w

(′)
ij

)2

+ (bibj)
2

]
= 1 ∀ ai, bi . (3.31)

Consequently, the self-energy and therefore the full propagator of the dimer d
(′)
ij are independent

of the species of its constituents. Thus, the self-energy simplifies to

i
(

Σ
(′)
ij

)
αβ

(p0,p) =
(
g

(′)
ij

)2

Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

×
∫

d4q

(2π)4

1

p0 + q0 − 1
2mi

(
p
2

+ q
)2

+ iε

−1

q0 + 1
2mj

(
p
2
− q

)2 − iε
. (3.32)

Using the residue theorem one can perform the integration over q0 which yields after some algebra

i
(

Σ
(′)
ij

)
αβ

(p0,p) =
(
g

(′)
ij

)2

Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

×
∫

d3q

(2π)3

2µiji

q2 − 2µij p0 + p2

4
+
√

1− 4µij
mi+mj

p · q− iε
, (3.33)

where we have written the modulus of a 3-vector as |x| := x and introduced the reduced mass

µij :=
mi mj

mi +mj

, (3.34)

which is obviously equal for both unprimed and primed dimers. The remaining integral can be
calculated in dimensional regularization using a scale µ. As one can found in many textbooks
on QFT (e.g. Ref. [1]) it holds

∫
ddq

1

(q2 + 2 q · k − b2)α
= (−1)

d
2 iπ

d
2

Γ
(
α− d

2

)

Γ(α)

[
−k2 − b2

] d
2
−α

, (3.35)
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which was also applied to the self-energy integral in section 2.1. Thus, in D = 4 dimensions we
have with d = D − 1:
(

Σ
(′)
ij

)
αβ

=
(
g

(′)
ij

)2

Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

× µD−4

∫
dD−1q

(2π)D−1

2µij

q2 − 2µij p0 + p2

4
+
√

1− 4µij
mi+mj

p · q− iε

= 2
(
g

(′)
ij

)2

µij Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

µD−4

(2π)D−1

[
(−1)

D−1
2 i π

D−1
2

Γ
(
α− D−1

2

)

Γ(1)

×
{
−
(

1− 4µij
mi +mj

)
p2

4
−
(

2µij p0 −
p2

4
+ iε

)}D−1
2
−1
]

D→4−→ − 1

2π

(
g

(′)
ij

)2

µij Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

√
−2µij

(
p0 −

p2

2(mi +mj)

)
− iε .

(3.36)

In the last step we took the limit D → 4. This is possible because there is no pole in D = 4
dimensions. However, for D = 3 it is and therefore the S-wave scattering length has an unnatural
scaling behavior as it is discussed for nucleon–nucleon interactions in Ref. [70]. As the same
authors pointed out in Ref. [72], a scattering length of natural size scales as anat ∼ 1/µ since
the scale µ is set by the pion mass where EFT(/π) breaks down. However, the unnatural large
scattering length aNN in the NN system yields aNN � 1/µ. This fact will lead to problems in
the power counting scheme of the EFT. Hence, they introduced in Refs. [71, 72] instead of the
minimal subtraction scheme which only removes poles in four dimensions, a new scheme called
power divergence subtraction (PDS) scheme which subtracts the poles in both three and four

dimensions by a counter term δΣ
(′)
ij so that a correct power counting is restored. Although the

authors only assumed NN interactions the same argument is true for any other system with
unnatural large scattering length. Hence, one should use the PDS scheme also for hadronic
molecules whose scattering length is expected to be rather large. With the PDS scale µPDS
(which we use instead of µ) the corresponding PDS counter term for our problem is given by

(
δΣ

(′)
ij

)
αβ

=
1

2π

(
g

(′)
ij

)2

µij Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

µPDS

D − 3
, (3.37)

and the self-energy is changed to
(

Σ
(′)
ij

)
αβ

PDS−→
(

Σ
(′)
ij

)
αβ

(p0,p) +
(
δΣ

(′)
ij

)
αβ

= 2
(
g

(′)
ij

)2

µij Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

µD−4
PDS

(2π)D−1

[
(−1)

D−1
2 i π

D−1
2

Γ
(
α− D−1

2

)

Γ(1)

×
{
−
(

1− 4µij
mi +mj

)
p2

4
−
(

2µij p0 −
p2

4
+ iε

)}D−1
2
−1
]

+
1

2π

(
g

(′)
ij

)2

µij Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

µPDS

D − 3
, (3.38)
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which yields after taking the limit D → 4

(
Σ

(′)
ij

)
αβ

D→4−→ − 1

2π

(
g

(′)
ij

)2

µij Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

√
−2µij

(
p0 −

p2

2(mi +mj)

)
− iε

+
1

2π

(
g

(′)
ij

)2

µij Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

µPDS

=
1

2π

(
g

(′)
ij

)2

µij Sij

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

×
[
−
√
−2µij

(
p0 −

p2

2(mi +mj)

)
− iε+ µPDS

]
. (3.39)

Before we proceed we shorten this result via the definition

(
Σ̃

(′)
ij

)
(p0,p) :=

1

2π

(
g

(′)
ij

)2

µij Sij

[
−
√
−2µij

(
p0 −

p2

2(mi +mj)

)
− iε+ µPDS

]
, (3.40)

and write:
(

Σ
(′)
ij

)
αβ

(p0,p) =
(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

(
Σ̃

(′)
ij

)
(p0,p) . (3.41)

Now consider the (iso)spin dependent part
(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

. It is not necessary to know

the projection operators in detail: as shown in appendix A all projectors are orthonormal (or at
least orthogonal if one has shifted the normalization factor into the coupling constant within the
Lagrangian Eq. (3.23)). Consequently, it holds

(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

=

((
O(′)
ij

)
α

(
O(′)†
ij

)
β

)

γγ

= Tr

((
O(′)
ij

)
α

(
O(′)†
ij

)
β

)
= c

(′)
ij δαβ , (3.42)

with c
(′)
ij ∈ R. If – as in our case (see appendix A) – all projectors are correctly normalized one

finds that

if O(′)
ij is normalized: c

(′)
ij = 1 ∀ i < j ∈ {1, 2, 3} . (3.43)

Otherwise, c
(′)
ij depends on the in this case changed prefactors in the projection operators and

must be calculated separately. Note, that such a different normalization would be canceled at
another point in the calculation and does not change any observable. Considering again our
example of Zb(10610) and Z ′b(10650) we find (cf. Eq. (3.18)):

(O12){α=aA},{γ=cγ̃}{σ=σ̃}

(
O†12

)
{β=bB},{σ=σ̃}{γ=cγ̃}

= δac
i√
2

(τAτ2)γ̃σ̃ δcb
−i√

2
(τ2τB)σ̃γ̃

=
1

2
δab Tr (τAτ2τ2τB)

=
1

2
δab Tr (τAτB)

= δab δAB , (3.44)
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(O13){α=aA},{γ=cγ̃}{σ=sσ̃}

(
O†13

)
{β=bB},{σ=sσ̃}{γ=cγ̃}

=
−i
2

(Ua)cs (τAτ2)γ̃σ̃
i

2
(Ub)sc (τ2τB)σ̃γ̃

=
1

4
Tr (UaUb) Tr (τAτ2τ2τB)

= δab δAB , (3.45)

as expected since O12 and O13 are indeed normalized. However, we will keep c
(′)
ij in our work to

be as general as possible. Inserting Eq. (3.42) into Eq. (3.41) yields
(

Σ
(′)
ij

)
αβ

(p0,p) = δαβ c
(′)
ij Σ̃

(′)
ij (p0,p) . (3.46)

Together with Eq. (3.27) we can use this result to simplify Eq. (3.28) to

i
(
D

(′)
ij

)
αβ

(p0,p) = i
δαγ

∆
(′)
ij

{ ∞∑

n=0

[
−δγρ c(′)

ij Σ̃
(′)
ij (p0,p)

δρβ

∆
(′)
ij

]n}

= i
δαγ

∆
(′)
ij

{ ∞∑

n=0

(δγβ)n
[
−c(′)

ij Σ̃
(′)
ij (p0,p)

1

∆
(′)
ij

]n}

= i
δαγ

∆
(′)
ij

{ ∞∑

n=0

δγβ

[
−c(′)

ij Σ̃
(′)
ij (p0,p)

1

∆
(′)
ij

]n}

= δαβ
i

∆
(′)
ij

{ ∞∑

n=0

[
−c(′)

ij

(
Σ̃

(′)
ij

)
(p0,p)

1

∆
(′)
ij

]n}

= δαβ
i

∆
(′)
ij

1

1−
(
−c(′)

ij Σ̃
(′)
ij (p0,p) 1

∆
(′)
ij

)

=
iδαβ

∆
(′)
ij + c

(′)
ij Σ̃ij(p0,p)

, (3.47)

where we have used the geometric series in the second to last step. Using the definition of Σ̃ij in
Eq. (3.40) we finally find that the full dimer propagator is given by

i
(
D

(′)
ij

)
αβ

(p0,p) = − 2π i
(
g

(′)
ij

)2

µij Sij c
(′)
ij

× δαβ

−
(

2π ∆
(′)
ij(

g
(′)
ij

)2
µij Sij c

(′)
ij

+ µPDS

)
+

√
−2µij

(
p0 − p2

2(mi+mj)

)
− iε

.

(3.48)

This result can be used to determine the elastic two-body scattering amplitude T el
ij of the particles

Pi and Pj. The advantage is then that one can compare T el
ij with the LO effective range expansion
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amplitude TERE
ij in order to write the full dimer in terms of an observable, namely the binding

momentum γ
(′)
ij instead of the parameter ∆

(′)
ij .

Elastic scattering amplitude

In Fig. 3.3 we consider all possible diagrams which could – depending on the parameters a and

b – contribute to the elastic on-shell scattering amplitude T
(′)el
ij (E = k2/(2µij), 0) of the two

particles Pi and Pj. Written as an equation we get

i
(
T

(′)el
ij

)µν
αβ

(
E =

k2

2µij
, 0

)
= −

(
g

(′)
ij

)2

Sel

[
aiajaiaj + v

(′)
ij v

(′)
ij + w

(′)
ij w

(′)
ij + bibjbibj

]

×
(
O(′)
ij

)
σ,µν

i
(
D

(′)
ij

)
σγ

(
E =

k2

2µij
, 0

)(
O(′)†
ij

)
γ,βα

=
2π i

µij c
(′)
ij

Sel
Sij

(
O(′)
ij

)
γ,µν

(
O(′)†
ij

)
γ,βα

× 1

−
(

2π ∆
(′)
ij(

g
(′)
ij

)2
µij Sij c

(′)
ij

+ µPDS

)
+
√
−k2 − iε

, (3.49)

with symmetry factor Sel (see appendix B),

Sel =

{
4 , if Pi = Pj

1 , if Pi 6= Pj
, (3.50)

and in the second step we have used that the term in square brackets is equal to 1 (cf. Eq. (3.31)).
Due to the −iε in the square root one has to choose its negative branch cut and we end up with
a relation only depending on k:

(
T

(′)el
ij

)µν
αβ

(k) = − 2π

µij c
(′)
ij

Sel
Sij

(
O(′)
ij

)
γ,µν

(
O(′)†
ij

)
γ,βα

1(
2π ∆

(′)
ij(

g
(′)
ij

)2
µij Sij c

(′)
ij

+ µPDS

)
+ ik

. (3.51)

However, it still has some free (iso)spin indices so we apply projection operators to it. In an
elastic scattering process we know that initial and final state (iso)spin must be equal to the

i

T

(′)el
ij



µν

αβ


E = k2

2µij
, 0


 = +

d
(′)
ij

Ai

Aj

Ai

Aj

γ σ

α

β

µ

ν

+
d
(′)
ij

Āi

Āj

Āi

Āj

γ σ

α

β

µ

ν
d
(′)
ij

Ai

Āj

Ai

Āj

γ σ

α

β

µ

ν

Āi

+
d
(′)
ij

Āi

Aj Aj

γ σ

α

β

µ

ν

Figure 3.3: Diagrams contributing to the elastic on-shell scattering amplitude of the two par-
ticles Pi and Pj which correspond to one of the four possible combinations of the multiplets A,
characterized by the parameters a and b.
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(iso)spin of the intermediate dimer. Therefore we conclude that the needed projectors are the
same as those for the vertices within the diagrams in Fig. 3.3. From Eq. (3.42) we know that

O(′)
ij is not necessarily normalized and thus we have to do this now via a factor 1/

√
c

(′)
ij . Note,

that for already normalized projectors c
(′)
ij = 1 and thus nothing is changed by the extra factor.

After projection onto the dimer (iso)spin one still has to average over initial and sum over final
(iso)spins in order to obtain an index-free amplitude:

T
(′)el
ij =

1

dof

∑

η,ρ

(
T

(′)el
ij

)ρ
η

=
1

dof

∑

η,ρ

1√
c

(′)
ij

(
O(′)†
ij

)
ρ,νµ

(
T

(′)el
ij

)µν
αβ

1√
c

(′)
ij

(
O(′)
ij

)
η,αβ

. (3.52)

Here dof stands for ”spin degrees of freedom × isospin degrees of freedom“, i.e. dof = (2J + 1)×
(2I + 1). Inserting what we calculated in Eq. (3.51) leads to

T
(′)el
ij =

1

dof

∑

η,ρ

−2π

µij

(
c

(′)
ij

)2

Sel
Sij

Tr

((
O(′)†
ij

)
ρ

(
O(′)
ij

)
γ

)
Tr

((
O(′)†
ij

)
γ

(
O(′)
ij

)
η

)

× 1(
2π ∆

(′)
ij(

g
(′)
ij

)2
µij Sij c

(′)
ij

+ µPDS

)
+ ik

. (3.53)

Following Eq. (3.42) both traces yield a factor c
(′)
ij and a Kronecker-delta for the (iso)spin indices:

T
(′)el
ij = − 2π

µij

Sel
Sij

1(
2π ∆

(′)
ij(

g
(′)
ij

)2
µij Sij c

(′)
ij

+ µPDS

)
+ ik

1

dof

∑

η,ρ

δρη . (3.54)

The sum over the (iso)spin indices ρ and η reduces to
∑

η,ρ

δρη = δηη = Tr
(
1dim. spin space

)
Tr
(
1dim. isospin space

)

= dim. spin space× dim. isospin space

= spin degrees of freedom× isospin degrees of freedom

= dof . (3.55)

Thus, we end up with

T
(′)el
ij = − 2π

µij

Sel
Sij

1(
2π ∆

(′)
ij(

g
(′)
ij

)2
µij Sij c

(′)
ij

+ µPDS

)
+ ik

, (3.56)

which can be compared to the ERE amplitude (cf. section 1.4),

T
(′)ERE
ij = −

(
2 + 2 δPiPj

)
π

µij

1
1

a
(′)
ij

+ ik
, (3.57)
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where the additional term 2 δPiPj ensures the right normalization in case of identical particles.
Using the definitions of Sel (Eq. (3.50)) and Sij (Eq. (3.30)) we observe that also

Sel
Sij

=

{
4
2

= 2 , if Pi = Pj
1
1

= 1 , if Pi 6= Pj
(3.58)

reproduces the right prefactor in both cases. Therefore we can identify the scattering length a
(′)
ij

which is at LO equivalent to the binding momentum γ
(′)
ij as

1

a
(′)
ij

≡ γ
(′)
ij =

2π ∆
(′)
ij(

g
(′)
ij

)2

µij Sij c
(′)
ij

+ µPDS . (3.59)

Note, that the explicit dependence on the PDS scale µPDS may be shifted into the coupling
constant, but for our purpose this does not cause any problems. Hence, we leave the equation
above unchanged. Furthermore, we can plug it into Eq. (3.48) to find an expression for the LO

full dimer propagator which only depends on observables except for the prefactor
(
g

(′)
ij

)−2

which

is canceled anyway in all following calculations. We find:

i
(
D

(′)
ij

)
αβ

(p0,p) = − 2π i
(
g

(′)
ij

)2

µij Sij c
(′)
ij

δαβ

−γ(′)
ij +

√
−2µij

(
p0 − p2

2(mi+mj)

)
− iε

:= δαβ iD
(′)
ij (p0,p) , (3.60)

where we have defined an expression without (iso)spin indices in the last step.

3.2.3 Wave function renormalization constant

The only missing relation before one can derive a general d
(′)
ij –Pk scattering amplitude is the wave

function renormalization constant Z
(′)
ij . Firstly, we note that the fields Ai and Āi have a wave

function renormalization constant equal to one since they are considered as point-like particles.
Only the dimer fields must be renormalized. From basic QFT we know that Z

(′)
ij is the residue

of the corresponding (full) propagator [1]:
(
Z

(′)
ij

)−1

= i
∂

∂p0

[(
iD

(′)
ij (p0,p)

)−1
]∣∣∣∣
p0=−(γ(′)ij )

2

2µij
, p=0

, (3.61)

where p0 is set to the binding energy B
(′)
ij of the bound or virtual state characterized by the

dimer. As explained in section 1.4.1 we use the definition

γ
(′)
ij ≡ sgn

(
B

(′)
ij

)√
2µij

∣∣∣B(′)
ij

∣∣∣ , (3.62)

for the binding momentum γ
(′)
ij . With the result of Eq. (3.60) we find

Z
(′)
ij =

2π γ
(′)
ij(

g
(′)
ij

)2

µ2
ij Sij c

(′)
ij

. (3.63)
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3.3 General three-body scattering amplitude

In principle one has to analyze d12–P3, d13–P2, d23–P1, d′12–P3, d′13–P2 and d′23–P1 scattering in
order to account for all possible three particle states. Alternatively, but much simpler one can
only calculate d12–P3 scattering and instead change – if necessary – the particle allocation in the
following way:

Particle allocation

1. Choose the three particles of the system (→ e.g. B, B∗, B̄∗).

2. Choose the dimer–particle scattering process you are interested in within this system (→
e.g.

(
BB̄∗

)
–B∗).

3. Allocate the multiplets according to that choice, but always in a way that P3 is scattered
off the dimer d12 (→ e.g. A1 = B, A2 = B∗, A3 = B∗).

4. Set ai, bi in Pi (i ∈ {1, 2, 3}) to either 0 or 1 so that the desired three particle system is
reproduced (→ e.g. a1 = b2 = a3 = 1, b1 = a2 = b3 = 0 ⇒ P1 = B, P2 = B̄∗, P3 = B∗).

d
(′)
ij

Pk

d
(′)
ij

Pk

T
(′)
ij

iT
(′)
ij =

Figure 3.4: Fixing the notation for the dimer–particle scattering amplitudes T
(′)
ij with i, j, k ∈

{1, 2, 3} and i < j, k 6= i, j.

The notation for the mentioned amplitudes is shown in Fig. 3.4. Although with this scheme
we only need to determine d12–P3 scattering it is in general possible that all other scattering
amplitudes contribute to this scattering. Hence, in most cases one has to solve a coupled integral
equation system of all amplitudes. The Feynman diagrams for all six coupled amplitudes are
shown in Fig. C.2 and explained in appendix C. The straightforward, but lengthy task is now
to use the Feynman rules derived in the previous section 3.2 and to determine the coupled
integral equation system. To do so we once more have to fix our notation for (iso)spin indices
and momenta. We will work in the center-of-mass system with incoming 4-momenta k, −k
and outgoing 4-momenta p, −p. Omitting possible ”primes“ for the moment the center-of-mass
energy is

E =
k2

2(mi +mj)
+

k2

2mk

− γij
2µij

. (3.64)

Furthermore, we assign the combined spin and isospin indices as follows:
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• initial state dimer: α,

• initial state single particle: β,

• final state dimer: γ,

• final state single particle: σ,

• intermediate dimer: µ,

• intermediate single particle: ν,

• intermediate exchanged particle: ρ.

Since there only are two different topologies for the Feynman diagrams the notation above leads
to the assignment shown in Fig. 3.5 which is valid for every diagram we need to determine. In
appendix B we have derived the symmetry factor for diagrams like those in Figure 3.5.

(
k2

2(mi +mj)
− γij

2µij
,k

)

(
k2

2mk
,−k

)

α

β

σ

γ


E − k2

2mk
− p2

2mi

k+ q




(
p2

2mi
,−p

)

(
p2

2(mj +mk)
− γjk

2µjk
,p

)

α

β

σ

γ

(
k2

2(mi +mj)
− γij

2µij
,k

)

(
k2

2mk
,−k

)

(
p2

2mk
,−p

)

(
p2

2(mi +mj)
− γij

2µij
,p

)


E − p2

2mk
− q2

2mi

q+ p




(q0,q)

(−q0,−q)

T

ρ

ρ
µ

ν

Figure 3.5: Definition of (iso)spin indices and momenta in the center-of-mass system for both
diagram topologies appearing in the scattering amplitudes.

We found

Sijk = ζijk
(
1 + δPiPj + δPjPk + δPiPj δPjPk

)
, (3.65)

with ζijk defined in Eq. (B.14).
With all these ingredients one finally can write down the coupled integral equation system of
the six amplitudes contributing to the general d12–P3 scattering amplitude corresponding to the
diagrams shown in Figure C.2. For details on the equations see appendix F. In Eq. (F.1) we
have combined all diagrams with the same momentum structure. Furthermore, we added terms
which only differ by a ”primed“ or ”unprimed“ final state dimer. In order to have more compact
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equations we have introduced two short-hand notations f
(h)

(ij)(′)(kn)[′] and f̃
(h)

(ij)(′)(kn)[′] for the sum

over the ai, bi dependent vertex factors:

f
(h)

(ij(′))(kn[′])
:=

{
aiajakan + v

(′)
ij akan + ahŵ

(′)
ij v

[′]
kn + bibjv

[′]
kn + aiajŵ

[′]
kn + bhv

(′)
ij ŵ

[′]
kn + ŵ

(′)
ij bkbn

aiajakan + v
(′)
ij akan + ahŵ

(′)
ij ŵ

[′]
kn + bibjŵ

[′]
kn + aiajv

[′]
kn + bhv

(′)
ij v

[′]
kn + ŵ

(′)
ij bkbn

+ bibjbkbn , for i < k ∧ {j = 2, k = 3 ∨ j = 3, k = 2}
+ bibjbkbn , else

, (3.66)

f̃
(h)

(ij(′))(kn[′])
:=

{
aiajakan + v

(′)
ij bkbn + bhŵ

(′)
ij ŵ

[′]
kn + aiajŵ

[′]
kn + bibjv

[′]
kn + ahv

(′)
ij v

[′]
kn + ŵ

(′)
ij akan

aiajakan + v
(′)
ij bkbn + bhŵ

(′)
ij v

[′]
kn + aiajv

[′]
kn + bibjŵ

[′]
kn + ahv

(′)
ij ŵ

[′]
kn + ŵ

(′)
ij akan

+ bibjbkbn , for
{
i < k ∧ {j = 2, k = 3 ∨ j = 3, k = 2}

}
∨ {i = k ∧ j = n}

+ bibjbkbn , else
,

(3.67)

where it was necessary to replace the vertex factor w
(′)
ij by ŵ

(′)
ij := w

(′)
ij + δAiAj v

(′)
ij because a

diagram like that in Fig. 3.6 yields in general a vertex factor proportional to w13. However, if the
constituents A1 and A3 are identical (although P1 = A1 6= Ā3 = P3) one obtains according to the
vertex rules in Fig. 3.1 a factor v13 instead. In Eq. (F.1) the q0 integration is already performed

d13

A1

A2

T12

d12

Ā3

d12

P3

Figure 3.6: Exemplary diagram to clarify the change of the vertex factor w
(′)
ij → ŵ

(′)
ij := w

(′)
ij +

δAiAj v
(′)
ij which is necessary for not missing out contributions to the molecule–particle scattering

amplitudes.

using the residue theorem: after applying the Feynman rules the terms have the form
∫

d4q

(2π)4
t(E,k,q)

1

−q0 − q2

2mi
+ iε

D(E + q0,q)

E + q0 − p2

2mj
− (p+q)2

2mk
+ iε

=:

∫
d3q

(2π)3

∫
dq0

2π
ϕ(q0) . (3.68)

They are simplified by noting that ϕ(q0) has a (` = 1)-fold pole at q0 = −q2/2mi + iε. Therefore
we used the residue theorem,
∫
dq0

2π
ϕ(q0) = iξResϕ

(
− q2

2mi

+ iε

)
, where Resg(z)(c) =

1

(`− 1)!

∂`−1

∂z`−1

[
(z − c)`g(z)

]∣∣∣∣
z=c

,

with positive winding number ξ = +1 to obtain that Eq. (3.68) is reduced to

−i
∫

d3q

(2π)3
t(E,k,q)D

(
E − q2

2mi

,q

)
1

E − q2

2mi
− p2

2mj
− (p+q)2

2mk
+ iε

, (3.69)
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which is the form appearing in Eq. (F.1). However, neither (iso)spin projection nor wave function

renormalization is applied to the amplitudes
(
t
(′)
ij

)γσ
αβ

. As explained in appendix C there are

factors (1 − δPiPj/2) in front of each diagram and thus in front of each amplitude in Eq. (F.1)
which are chosen according to the rules concerning identical particles explained in appendix C
and reviewed in the box on page 51.

3.3.1 Wave function renormalization

We proceed by applying wave function renormalization to the amplitudes in Eq. (F.1) by multi-
plying each amplitude with the square root of the wave function renormalization constant of the
incoming dimer and with the square root of the wave function renormalization constant of the
outgoing dimer:




(
T̃12

)γσ
αβ(

T̃13

)γσ
αβ(

T̃23

)γσ
αβ(

T̃ ′12

)γσ
αβ(

T̃ ′13

)γσ
αβ(

T̃ ′23

)γσ
αβ




:=
√
Z12




(t12)γσαβ
√
Z12

(t13)γσαβ
√
Z13

(t23)γσαβ
√
Z23

(t′12)γσαβ
√
Z ′12

(t′13)γσαβ
√
Z ′13

(t′23)γσαβ
√
Z ′23



, (3.70)

with Z
(′)
ij given in Eq. (3.63). The renormalized (i.e. physical) amplitudes T̃

(′)
ij are then propor-

tional to
√
γ12/γ

(′)
ij . To get rid of these factors one can redefine all amplitudes via

T
(′)
ij :=

√
γ12

γ
(′)
ij

T̃
(′)
ij . (3.71)

Note, that the d12–P3 scattering amplitude T̃12 = T12 in which we are interested is not changed
by this definition. Thus, we can divide both sides of Eq. (F.1) by i and plug in the full dimer
propagator Eq. (3.60) to find Eq. (F.2) given in appendix F.

3.3.2 Projection on partial wave amplitude

One would expect that the scattering of a particle P3 off the dimer d12 preferentially occurs in the
partial wave with L = 0 because there is no general reason which forbids a S-wave interaction
and one expects the energy of the scattering state to be minimal. Nevertheless, we keep the
equations general and project out the L-th partial wave amplitude T

(′)(L)
ij in Eq. (F.2). For

details on this projection see appendix D, especially for the properties of the Legendre function
of the second kind QL which we use in the following analysis. As a remainder we once more give
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its definition:

QL(β − iε) := (−1)L
1

2

∫ 1

−1

dx
PL(x)

(β − iε) + x
with β ∈ R and |β| 6= 1 . (3.72)

Using Eq. (D.18) one can rewrite all six amplitudes T
(′)
ij (E,k,p) in terms of the partial wave

projected amplitudes T
(′)(L)
ij (E, k, p). The corresponding results can be found in appendix F in

Eq. (F.3) where we have introduced a short-hand notation for the repeatedly appearing Legendre
function:

Qijk
L (q, p;E) := QL

(
mi

qp

(
q2

2µij
+

p2

2µjk
− E

)
− iε

)
, (3.73)

where one has to keep in mind that µij = µji holds by definition.

3.3.3 Spin and isospin projection onto specific scattering channel

Now we can concentrate on the spin and isospin structure: we start by applying projection
operators O

T
(′)
ij

to the amplitudes on the left-hand-side of Eq. (F.3) which couple the (iso)spins

of the dimer d
(′)
ij and the third particle Pk to an incoming (iso)spin state η and an outgoing one

λ:

(
T

(′)
ij

)λ
η

= (OT12)η,αβ
(
T

(′)
ij

)γσ
αβ

(
O†
T

(′)
ij

)

λ,σγ

. (3.74)

Note here, that in general the projection operators OTij and Oij are not the same because the
former couples dimer and particle (iso)spin while the latter couples two particle (iso)spins to the
dimer (iso)spin. To get the full scattering amplitude one still has to average over initial (iso)spin
and to sum over the final one:

T
(′)
ij =

1

dof(η)

∑

η,λ

(
T

(′)
ij

)λ
η

=
1

dof(η)

∑

η,λ

(OT12)η,αβ
(
T

(′)
ij

)γσ
αβ

(
O†
T

(′)
ij

)

λ,σγ

. (3.75)

Similar to what we have done in section 3.2.2 ”dof(η)“ represents the spin degrees of freedom times
the isospin degrees of freedom in the initial state. If we only consider the (iso)spin dependent
terms in Eq. (F.3) the application of the projection operators yields according to Eq. (3.75) the
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structure below:




T12

T13

T23

T ′12

T ′13

T ′23




=
1

dof(η)

∑

η,λ

(OT12)η,αβ




(T12)γσαβ
(T13)γσαβ
(T23)γσαβ
(T ′12)γσαβ
(T ′13)γσαβ
(T ′23)γσαβ







(O†T12)λ,σγ
(O†T13)λ,σγ
(O†T23)λ,σγ
(O†T ′12)λ,σγ
(O†T ′13)λ,σγ
(O†T ′23)λ,σγ




∼




x1

y1

z1

x′1
y′1
z′1




+




x̃1

ỹ1

z̃1

x̃′1
ỹ′1
z̃′1




+




x2

y2

z2

x′2
y′2
z′2



T12 +




x̃2

ỹ2

z̃2

x̃′2
ỹ′2
z̃′2



T12 +




x3

y3

z3

x′3
y′3
z′3



T13 +




x̃3

ỹ3

z̃3

x̃′3
ỹ′3
z̃′3



T13 +




x4

y4

z4

x′4
y′4
z′4



T23 +




x̃4

ỹ4

z̃4

x̃′4
ỹ′4
z̃′4



T23

+




x5

y5

z5

x′5
y′5
z′5



T ′12 +




x̃5

ỹ5

z̃5

x̃′5
ỹ′5
z̃′5



T ′12 +




x6

y6

z6

x′6
y′6
z′6



T ′13 +




x̃6

ỹ6

z̃6

x̃′6
ỹ′6
z̃′6



T ′13 +




x7

y7

z7

x′7
y′7
z′7



T ′23 +




x̃7

ỹ7

z̃7

x̃′7
ỹ′7
z̃′7



T ′23 , (3.76)

where we have introduced new parameters x
(′)
i , y

(′)
i , z

(′)
i , x̃

(′)
i , ỹ

(′)
i and z̃

(′)
i for i ∈ {1, 2, 3, 4, 5, 6, 7}.

Their definition (Eq. (A.40) - Eq. (A.81)) and the derivation of the equation above can be found
in appendix A.2. In the last step we want to combine the pairs of terms proportional to the same
amplitude T

(′)
ij . We know if δPiPj = 1 then

• mi = mj ⇒ µik = µjk,

• v(′)
ij = w

(′)
ij = 0 because Pi = Pj directly induces that there are no mixed terms of ai and bj,

i.e. only ai = aj = 1 or bi = bj = 1 are possible combinations,

• δPiPjf (m)
(ij)(kn) = δPiPj f̃

(m)
(ij)(kn) since for i < k ∧ {j = 2, k = 3 ∨ j = 3, k = 2} (and similarly

for the ”else“ case in the definition of f and f̃) it holds:

δPiPj

(
aiajakan + vijakan + amŵijvkn + bibjvkn + aiajŵkn + bmvijŵkn + ŵijbkbn + bibjbkbn

)

= δPiPj

(
aiajakan + bibjvkn + aiajŵkn + bibjbkbn

)

= δPiPj

(
aiajakan + amvijvkn + ŵijakan + bibjvkn + aiajŵkn + vijbkbn + bmŵijŵkn + bibjbkbn

)
.

Therefore we can factor out not only the amplitude itself, but also the a, b parameter dependent
term and write the amplitudes of the coupled integral equation system for d12–P3 scattering as
shown in Eqs. (F.4 - F.9).
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3.4 Asymptotic behavior

The momentum integrals in the previously mentioned Eqs. (F.4 - F.9) are divergent. Conse-
quently, we introduce a momentum cutoff ΛC to regularize them. In principle, one could proceed
and solve the coupled integral equation system numerically for different three particle systems
in order to find a possible Efimov effect. However, this would mean that we loose all generality
in our equations. More favorably would be a method which keeps this generality. Indeed, one
can consider the approach of asymptotic large off-shell momenta ΛC � q, p � γ

(′)
ij ∼ k ∼ E for

i < j ∈ {1, 2, 3} which has this property. In Ref. [80] and in the references therein it is explained
how one can use asymptotic Faddeev wave functions to derive the conditions under which the
Efimov effect can occur in a system. However, this method does not provide an instruction to
– more or less – directly read off from the properties of the three particles whether the Efimov
effect occurs if the particles have more general spin and isospin quantum numbers and different
scattering channels. The equations themselves are not changed that much considering these ad-
ditional degrees of freedom, but to determine all the parameters therein becomes more involved
for higher spins and isospins. In contrast one can – still using the asymptotic momentum ap-
proach – consider the work in Ref. [166] and follow its applications in Refs. [92, 167]. Here, the
integral equation system is decoupled in order to reduce the problem to the determination of
eigenvalues of a matrix whose entries are spin and isospin dependent. To do so we will see that
one needs to make some assumptions concerning the ratio of masses within the three particle
system. However, these assumptions will match with the given systems if we consider particles
scattering off hadronic molecules. Therefore we will use the second method.
In the mentioned limit of large asymptotic off-shell momenta both, the denominator of the inte-
grand and the argument of the Legendre function QL considerably simplify. Taking into account
that one has to take the limit ε→ 0 in the end, it holds

lim
ε→0

− γ(′)
ij +

√
−2µij

(
E − q2

2mk

− q2

2(mi +mj)

)
− iε

q�E−→ lim
ε→0

− γ(′)
ij +

√
q2µij

(
1

mk

+
1

mi +mj

)
− iε

= −γ(′)
ij + q

√
µij

(
1

mk

+
1

mi +mj

)

q�γij−→
√

µij
µ(ij)k

q , (3.77)

where we have introduced the reduced mass of the dimer d
(′)
ij and particle Pk system,

µ(ij)k =
(mi +mj)mk

mi +mj +mk

. (3.78)
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Moreover, – omitting the particle indices for the moment – the argument of the Legendre function
reduces to

lim
ε→0

m

qp
QL

(
m

qp

(
q2

2µ̃
+
p2

2µ
− E

)
− iε

)
p,q�E−→ lim

ε→0

m

qp
QL

(
m

qp

(
q2

µ̃
+
p2

2µ

)
− iε

)

=
m

qp
QL

(
m

qp

(
q2

2µ̃
+
p2

2µ

))
, (3.79)

if it depends on both q and p. The short-hand notation in Eq. (3.73) can thus be extended via
the definition

Qijk
L (q, p) := lim

ε→0
Qijk
L (q, p; 0) = QL

(
mi

qp

(
q2

2µij
+

p2

2µjk

))
. (3.80)

In the inhomogeneous term where the Legendre function only depends on p and k � p one finds
in the same way

lim
ε→0

m

kp
QL

(
m

kp

(
k2

2µ′
+
p2

2µ
− E

)
− iε

)
p�E,k−→ lim

ε→0

m

kp
QL

(
m

kp

(
p2

2µ

)
− iε

)

=
m

kp
QL

(
m

2µ

p

k

)
. (3.81)

In Ref. [165] one can find a formal argument that one can neglect the contribution of the inhomo-
geneous term compared to the the homogeneous part. As a less formal but more straightforward
method one can instead use that QL(z) can be written in terms of a hypergeometric function

2F1 which is proportional to
∑∞

n=0 z
−(2n+L+1) [164, 165]. Thus, Eq. (3.81) has the following

proportionality:

m

kp
QL

(
m

2µ

p

k

)
∼ m

kp

∞∑

n=0

(
m

2µ

p

k

)−(2n+L+1)

= m
∞∑

n=0

(
2µ

m

)(2n+L+1)
k(2n+L)

p(2n+L+2)

p�k−→ m
∞∑

n=0

(
2µ

m

)(2n+L+1)
1

p(2n+L+2)
� 1 . (3.82)

Consequently, in our further analysis we can for asymptotic large off-shell momenta neglect the
inhomogeneous terms in Eqs. (F.4 - F.9) and replace the denominators of the integrands using
Eq. (3.77) and the Legendre functions via Eq. (3.80). Due to the vanishing inhomogeneities all
amplitudes become independent of k and since E does not appear anymore, too, we simply write
T

(′)
ij (p) ∼

∫
dqT

(′)
ij (q) in the following. Since p is unequal to zero one can additionally define new

amplitudes according to

T̃
(′)
ij (p) := p T

(′)
ij (p) , ∀ i < j ∈ {1, 2, 3} , (3.83)

in order to find Eqs. (F.10 - F.15) written in terms of these new amplitudes and shown in
appendix F.
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3.4.1 Scale and inversion invariance and decoupling of amplitudes

The coupled integral equation system of Eqs. (F.10 - F.15) is scale invariant, but not invariant
under the inversion q → 1/q for large loop momenta. The reason for this is that in each term
QL depends on the momentum q, but with different prefactors in front of q and in front of q−1.
The prefactors themselves are not problematic. As long as in each QL, q and q−1 have the same
one, the equation system is inversion invariant, but if only one of them is different in at least one
QL the invariance is destroyed. However, we know from Refs. [92, 167] that this is an essential
property of a three particle system if one wants to decouple the integral equation system. From
a mathematical point of view the necessity of inversion invariance can be motivated by the fact
that one can factor out the QL’s (which are then equal in each term), write the equations system
as a matrix equation, decouple the amplitudes and insert power law solutions for these decoupled
amplitudes (a power law is the most straightforward choice for a scale and inversion invariant
and physically meaningful amplitude [80]). After these steps one can use a Mellin transform
to calculate the dq integral which leads to transcendental equations for the angular momentum
dependent exponent of the power law s

(L)
i (one equation per amplitude i). These equations have

purely complex solutions, that is, the Efimov effect is present, if a parameter λ (which depends
on spin / isospin factors, symmetry factors, etc.) is larger than a critical value. To apply this
method to our coupled integral equation system and to discuss the related issues in more detail
will be the main task for the rest of this section.

We deduce from Eqs. (F.10 - F.15) that the problematic prefactors mentioned above are caused
by the fact that in general the masses m1, m2 and m3 are different. Thus, only for (approxi-
mately) equal masses the equation system is (approximately) inversion invariant and a (so-called
approximate) Efimov effect could be present in the system. However, if there is not a dimer state

for all combinations of particles (e.g. no d23 and thus no T̃
(′)
23 ) it may exist a scale and inversion

invariant equation subsystem with different masses. To be more precisely a not-existing dimer
state means that there is no resonant interaction with large scattering length between the two
corresponding particles. Nevertheless, they could have a deeply bound two-body state which is
not described by EFT(/π).
As a measure for the mass difference between particles Pi and Pj we define a parameter

εij :=
mi −mj

mi +mj

∀ i, j ∈ {1, 2, 3} , (3.84)

with the following properties:

1− εij =
2mj

mi +mj

, (3.85)

1 + εij =
2mi

mi +mj

, (3.86)

mi

µij
=

2

1− εij
, (3.87)

mj

µij
=

2

1 + εij
, (3.88)
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√
µij
µ(ij)k

=

√
1− εij
1− εik

− 1

4
(1− εij)2 . (3.89)

It can be used to eliminate one mass parameter from the coupled integral equations via

mj =
1 + εij
1− εij

mi . (3.90)

To ensure at least approximate scale and inversion invariance we will see that it is necessary
to have εij � 1 so that one can neglect it and write mj ≈ mi. The error due to this re-
placement depends on the exact value of εij. However, we will assume that it is at most of
the order of the error coming from effective range corrections which are anyway neglected in
our derivation of the coupled integral equations. Which mass can be replaced depends on the
properties of the specific system. In fact, one can identify three possible types of systems:

System types

• Type 1: The full system with shallow P1P2, P1P3 and P2P3 bound or virtual states.

• Type 2: The subsystem with only P1P2 and P1P3 bound or virtual states. Note, that
the subsystem with only P1P2 and P2P3 bound states instead can be transformed into
the first one by interchanging the particle allocation of P1 and P2 which does not change
the dimer d12 in a physical sense. Thus, it is enough to consider the first subsystem.

• Type 3: The subsystem with only P1P2 bound or virtual states (i.e. d12 and d′12). Note,
that one allocates the three particles in the system so that the scattering one is interested
in is always between particle P1 and P2. Since in our framework the scattering of two
particles is only possible if there exists a dimer state (i.e. a two-body state with large
scattering length) between these two particles, this subsystem is the only choice if there
are bound states only between two of the three particles.

At this point we have to make some important remarks: firstly, about not existing PiPj bound
states and secondly, regarding the counting scheme of identical diagrams explained in appendix C.
In general one would transform the coupled integral equation system into a 6×6 matrix equation
because we have started with six amplitudes. However, if there is no PiPj bound or virtual state

in the system one has to erase all terms proportional to T
(′)(L)
ij and thus to T̃

(′)(L)
ij from the ana-

lysis since the corresponding Feynman diagrams do not exist in this case. Mathematically this
is allowed since the characteristic polynomial of a 6× 6 matrix with two rows and columns filled
with zeros is identical to the characteristic polynomial of the same matrix where one has erased
the zero-filled rows and columns. If there is just one PiPj bound or virtual state, i.e. dij exists,

but d′ij not, then one erases all terms proportional to T
′(L)
ij and thus to T̃

′(L)
ij from the analysis,

but keeps the unprimed amplitudes whose Feynman diagrams are still present. Consequently,
there is just one row and column filled with zeros in the 6× 6 matrix which can thus be reduced
to a 5× 5 matrix. The procedure how one deals with not existing dimers is thus clear. But what
happens in case of two identical particles? If Pi and Pj are identical it is clear that also the ampli-

tudes T
(′)(L)
ik and T

(′)(L)
jk are mathematically and physically identical. Therefore one has to erase
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the second amplitude T
(′)(L)
jk from the analysis since the just by hand inserted (cf. appendix C)

factors of (1 − δPiPj/2) in front of the Feynman diagrams are chosen exactly in the way that

one can also neglect these non-zero amplitudes. Consequently, it remain only T
(′)(L)
12 amplitudes

if all three particles are identical. However, this does not mean that one deals with a type 3
system since there are bound states between e.g. P1 and P3, but they are equal to P1P2 bound
states. In summary we have the following rules (remember that a not present dimer means
that there is no resonant interaction with large scattering length between the two particles):

Rules on how to treat not-existing dimers and identical particles in a system

• no dij and no d′ij dimer ⇒ erase all terms proportional to T
(L)
ij and T

′(L)
ij .

• dij dimer present, but no d′ij dimer ⇒ erase all terms proportional to T
′(L)
ij .

• if Pi = Pj ⇒ keep amplitude T
(′)(L)
ik , but erase all terms proportional to T

(′)(L)
jk .

The advantage of the less straightforward counting scheme of identical diagrams is that one also
needs less parameters which have to be calculated.

3.4.2 Type 1 systems

Consider the full system where bound or virtual states between all three particles exist. Namely,
at least d12, d13 and d23 exist. To have a general expression we also assume the primed dimers to
be present and consequently no amplitude is erased from Eqs. (F.10 - F.15). As we have already
noticed these equations are not inversion invariant for q → 1/q. To achieve this property one
has to ensure that the argument of the Legendre function QL is equal in each term. Thus, it is
required that all three masses are at least approximately equal in order to have a system where
the Efimov effect could at all be present. This means that the mass difference parameters ε12,
ε13 and ε23 must be small and from their definition in Eq. (3.84) follows that one can replace m3

and m2 via

m3 =
1 + ε13

1− ε13

m1 ≈ m1 (for ε13 � 1) , (3.91)

m2 =
1 + ε12

1− ε12

m1 ≈ m1 (for ε12 � 1) . (3.92)

Furthermore, the reduced masses µ13 and µ23 can be replaced by µ12, respectively, since

µ13 =
m1m3

m1 +m3

=
m1m2

1−ε23
1+ε23

m1 +m2

≈ µ12 (for ε23 � 1) , (3.93)

µ23 =
m2m3

m2 +m3

=
m1m2

1−ε13
1+ε13

m1 +m2

≈ µ12 (for ε13 � 1) . (3.94)

Applying these approximations to Eqs. (F.10 - F.15) one can factor out

∫ ΛC

0

dq

q
Q122
L (q, p) =

∫ ΛC

0

dq

q
QL

(
m1

qp

(
q2

2µ12

+
p2

2µ12

))
,
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and write the coupled integral equation system as a 6× 6 matrix equation:




T̃
(L)
12 (p)

T̃
(L)
13 (p)

T̃
(L)
23 (p)

T̃
′(L)
12 (p)

T̃
′(L)
13 (p)

T̃
′(L)
23 (p)




=
(−1)L

π

m1

µ12

1√
µ12
µ(12)2

A1

∫ ΛC

0

dq

q
QL

(
m1

qp

(
q2

2µ12

+
p2

2µ12

))




T̃
(L)
12 (q)

T̃
(L)
13 (q)

T̃
(L)
23 (q)

T̃
′(L)
12 (q)

T̃
′(L)
13 (q)

T̃
′(L)
23 (q)




. (3.95)

Since m1 = m2 or at least m1 ≈ m2 one finds

µ12 ≈
m1m1

m1 +m1

=
m1

2
, (3.96)

and thus

µ12

µ(12)2

≈ m1

2

(m1 +m1) +m1

(m1 +m1)m1

=
m1

2

3m1

2m2
1

=
3

4
. (3.97)

Therefore the matrix equation simplifies to




T̃
(L)
12 (p)

T̃
(L)
13 (p)

T̃
(L)
23 (p)

T̃
′(L)
12 (p)

T̃
′(L)
13 (p)

T̃
′(L)
23 (p)




= (−1)L
4√
3 π
A1

∫ ΛC

0

dq

q
QL

(
q

p
+
p

q

)




T̃
(L)
12 (q)

T̃
(L)
13 (q)

T̃
(L)
23 (q)

T̃
′(L)
12 (q)

T̃
′(L)
13 (q)

T̃
′(L)
23 (q)




, (3.98)

with A1 being a 6× 6 matrix whose columns are given by Eqs. (3.99 - 3.104).
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(A1)i1 =




(
1− δP1P2

2

)
1

S12 c12

[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123 + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213

]

(
1− δP1P2

2

)
(
y2 δP1P2 S123+ỹ2 S213

)

√
S13 S12 c13 c12

f̃
(2)
(12)(13)

(
1− δP1P2

2

)
(
z2 S123+z̃2 δP1P2 S213

)

√
S23 S12 c23 c12

f
(1)
(12)(23)

(
1− δP1P2

2

)
1

S12

√
c′12 c12

[
x′2 δ

(12)
P1P3

f
(3)
(12)(12′) S123 + x̃′2 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213

]

(
1− δP1P2

2

)
(
y′2 δP1P2 S123+ỹ′2 S213

)

√
S13 S12 c′13 c12

f̃
(2)
(12)(13′)

(
1− δP1P2

2

)
(
z′2 S123+z̃′2 δP1P2 S213

)

√
S23 S12 c′23 c12

f
(1)
(12)(23′)




, (3.99)

(A1)i2 =




(
1− δP1P3

2

)
(
x3 δP1P3 S132+x̃3 S312

)

√
S12 S13 c12 c13

f̃
(3)
(13)(12)

(
1− δP1P3

2

)
1

S13 c13

[
y3 δ

(13)
P1P2

f
(1)
(13)(13) S132 + ỹ3 δ

(13)
P2P3

f̃
(3)
(13)(13) S312

]

(
1− δP1P3

2

)
(
z3 S132+z̃3 δP1P3 S312

)

√
S23 S13 c23 c13

f
(1)
(13)(23)

(
1− δP1P3

2

)
(
x′3 δP1P3 S132+x̃′3 S312

)

√
S12 S13 c′12 c13

f̃
(3)
(13)(12′)

(
1− δP1P3

2

)
1

S13

√
c′13 c13

[
y′3 δ

(13)
P1P2

f
(1)
(13)(13′) S132 + ỹ′3 δ

(13)
P2P3

f̃
(3)
(13)(13′) S312

]

(
1− δP1P3

2

)
(
z′3 S132+z̃′3 δP1P3 S312

)

√
S23 S13 c′23 c13

f
(1)
(13)(23′)




, (3.100)
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(A1)i3 =




(
1− δP2P3

2

)
(
x4 δP2P3 S231+x̃4 S321

)

√
S12 S23 c12 c23

f̃
(3)
(23)(12)

(
1− δP2P3

2

)
(
y4 S231+ỹ4 δP2P3 S321

)

√
S13 S23 c13 c23

f
(2)
(23)(13)

(
1− δP2P3

2

)
1

S23 c23

[
z4 δ

(23)
P1P2

f
(2)
(23)(23) S231 + z̃4 δ

(23)
P1P3

f̃
(3)
(23)(23) S321

]

(
1− δP2P3

2

)
(
x′4 δP2P3 S231+x̃′4 S321

)

√
S12 S23 c′12 c23

f̃
(3)
(23)(12′)

(
1− δP2P3

2

)
(
y′4 S231+ỹ′4 δP2P3 S321

)

√
S13 S23 c′13 c23

f
(2)
(23)(13′)

(
1− δP2P3

2

)
1

S23

√
c′23 c23

[
z′4 δ

(23)
P1P2

f
(2)
(23)(23′) S231 + z̃′4 δ

(23)
P1P3

f̃
(3)
(23)(23′) S321

]




, (3.101)

(A1)i4 =




(
1− δP1P2

2

)
1

S12

√
c12 c′12

[
x5 δ

(12′)
P1P3

f
(3)
(12′)(12) S123 + x̃5 δ

(12′)
P2P3

f̃
(3)
(12′)(12) S213

]

(
1− δP1P2

2

)
(
y5 δP1P2 S123+ỹ5 S213

)

√
S13 S12 c13 c′12

f̃
(2)
(12′)(13)

(
1− δP1P2

2

)
(
z5 S123+z̃5 δP1P2 S213

)

√
S23 S12 c23 c′12

f
(1)
(12′)(23)

(
1− δP1P2

2

)
1

S12 c′12

[
x′5 δ

(12′)
P1P3

f
(3)
(12′)(12′) S123 + x̃′5 δ

(12′)
P2P3

f̃
(3)
(12′)(12′) S213

]

(
1− δP1P2

2

)
(
y′5 δP1P2 S123+ỹ′5 S213

)

√
S13 S12 c′13 c

′
12

f̃
(2)
(12′)(13′)

(
1− δP1P2

2

)
(
z′5 S123+z̃′5 δP1P2 S213

)

√
S23 S12 c′23 c

′
12

f
(1)
(12′)(23′)




, (3.102)
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(A1)i5 =




(
1− δP1P3

2

)
(
x6 δP1P3 S132+x̃6 S312

)

√
S12 S13 c12 c′13

f̃
(3)
(13′)(12)

(
1− δP1P3

2

)
1

S13

√
c13 c′13

[
y6 δ

(13′)
P1P2

f
(1)
(13′)(13) S132 + ỹ6 δ

(13′)
P2P3

f̃
(3)
(13′)(13) S312

]

(
1− δP1P3

2

)
(
z6 S132+z̃6 δP1P3 S312

)

√
S23 S13 c23 c′13

f
(1)
(13′)(23)

(
1− δP1P3

2

)
(
x′6 δP1P3 S132+x̃′6 S312

)

√
S12 S13 c′12 c

′
13

f̃
(3)
(13′)(12′)

(
1− δP1P3

2

)
1

S13 c′13

[
y′6 δ

(13′)
P1P2

f
(1)
(13′)(13′) S132 + ỹ′6 δ

(13′)
P2P3

f̃
(3)
(13′)(13′) S312

]

(
1− δP1P3

2

)
(
z′6 S132+z̃′6 δP1P3 S312

)

√
S23 S13 c′23 c

′
13

f
(1)
(13′)(23′)




, (3.103)

(A1)i6 =




(
1− δP2P3

2

)
(
x7 δP2P3 S231+x̃7 S321

)

√
S12 S23 c12 c′23

f̃
(3)
(23′)(12)

(
1− δP2P3

2

)
(
y7 S231+ỹ7 δP2P3 S321

)

√
S13 S23 c13 c′23

f
(2)
(23′)(13)

(
1− δP2P3

2

)
1

S23

√
c23 c′23

[
z7 δ

(23′)
P1P2

f
(2)
(23′)(23) S231 + z̃7 δ

(23′)
P1P3

f̃
(3)
(23′)(23) S321

]

(
1− δP2P3

2

)
(
x′7 δP2P3 S231+x̃′7 S321

)

√
S12 S23 c′12 c

′
23

f̃
(3)
(23′)(12′)

(
1− δP2P3

2

)
(
y′7 S231+ỹ′7 δP2P3 S321

)

√
S13 S23 c′13 c

′
23

f
(2)
(23′)(13′)

(
1− δP2P3

2

)
1

S23 c′23

[
z′7 δ

(23′)
P1P2

f
(2)
(23′)(23′) S231 + z̃′7 δ

(23′)
P1P3

f̃
(3)
(23′)(23′) S321

]




. (3.104)
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As a remainder we once more give the definition of all parameters appearing in the matrix A1:

• Pi := aiAi + biĀi.

• δPiPj =

{
1 , if Pi = Pj

0 , else
and similarly for δAiAj .

• δ(ab
(′))

PiPj
:= δPiPj +

(
δAiAj − δPiPj

)
δ
η
(′)
ab |1|

(
δ
η
(′)
ab |1|
− δAaAb

)
,

with δ
η
(′)
ij |1|

:= δbaryon number 0 × δstrangeness 0 × δcharm 0 × δbeauty 0 × δtopness 0.

• f (h)

(ij(′))(kn[′])
:=

{
aiajakan + v

(′)
ij akan + ahŵ

(′)
ij v

[′]
kn + bibjv

[′]
kn + aiajŵ

[′]
kn + bhv

(′)
ij ŵ

[′]
kn + ŵ

(′)
ij bkbn

aiajakan + v
(′)
ij akan + ahŵ

(′)
ij ŵ

[′]
kn + bibjŵ

[′]
kn + aiajv

[′]
kn + bhv

(′)
ij v

[′]
kn + ŵ

(′)
ij bkbn

asdasdasdasd
+ bibjbkbn , for i < k ∧ {j = 2, k = 3 ∨ j = 3, k = 2}
+ bibjbkbn , else

.

• f̃ (h)

(ij(′))(kn[′])
:=

{
aiajakan + v

(′)
ij bkbn + bhŵ

(′)
ij ŵ

[′]
kn + aiajŵ

[′]
kn + bibjv

[′]
kn + ahv

(′)
ij v

[′]
kn + ŵ

(′)
ij akan

aiajakan + v
(′)
ij bkbn + bhŵ

(′)
ij v

[′]
kn + aiajv

[′]
kn + bibjŵ

[′]
kn + ahv

(′)
ij ŵ

[′]
kn + ŵ

(′)
ij akan

asdasdasd
+ bibjbkbn , for

{
i < k ∧ {j = 2, k = 3 ∨ j = 3, k = 2}

}
∨ {i = k ∧ j = n}

+ bibjbkbn , else
.

• v(′)
ij := δ

η
(′)
ij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj) (η

(′)
ij )δAiAj +

(
1− δ

η
(′)
ij |1|

)
biaj.

• w(′)
ij := δ

η
(′)
ij |1|

[
1√
2

+ δAiAj

(
1− 1√

2

)]
(biaj + aibj)

(
1− δAiAj

)
η

(′)
ij .

• ŵ(′)
ij := w

(′)
ij + δAiAj v

(′)
ij .

• first symmetry factor Sij =

{
2 , if Pi = Pj

1 , else
.

• second symmetry factor: Sijk = ζijk
(
1 + δPiPj + δPjPk + δPiPj δPjPk

)
,
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with fermion minus sign ζijk:

ζijk =





−1 , if





• Pi 6= Pj 6= Pk ∧ only Pi, Pj fermions ∧
{
i > j < k ∨ i > j > k

}

• Pi 6= Pj 6= Pk ∧ only Pj, Pk fermions ∧
{
i < j > k ∨ i > j > k

}

• Pi 6= Pj 6= Pk ∧ Pi, Pj, Pk fermions ∧
{
i > j < k ∨ i < j > k

}

• Pi = Pj 6= Pk ∧ Pi, Pj, Pk fermions ∧ i > k

• Pi = Pk 6= Pj ∧ Pi, Pj, Pk fermions .

• Pi 6= Pj = Pk ∧ only Pj fermion

• Pi 6= Pj = Pk ∧ Pi, Pj, Pk fermions ∧ i < j

• Pi = Pj = Pk ∧ Pi, Pj, Pk fermions

+1 , else

(3.105)

• c(′)
ij is the normalization factor of the (iso)spin operators defined via
(
O(′)
ij

)
α,γσ

(
O(′)†
ij

)
β,σγ

=

((
O(′)
ij

)
α

(
O(′)†
ij

)
β

)

γγ

= Tr

((
O(′)
ij

)
α

(
O(′)†
ij

)
β

)
=: c

(′)
ij δαβ.

Note, that all projectors given explicitly in appendix A are normalized which then implies
that c

(′)
ij = 1 ∀ i < j ∈ {1, 2, 3}.

• x, y, z are spin and isospin dependent real numbers defined in Eqs. (A.40 - A.81) which
can be calculated by hand using the tables in appendix A. A second method would be
to use Mathematica and the 6-J symbol representation explained in the same appendix.
Note, that using one of these two suggested methods implies c

(′)
ij = 1 since both are based

on normalized projectors (see previous point).

In the next step we decouple the amplitudes: the matrix A1 can be diagonalized using an unitary
transformation matrix S which fulfills

S−1A1S = diag
(
λ1, λ2, λ3, λ4, λ5, λ6

)
, (3.106)

with λi (i ∈ {1, 2, 3, 4, 5, 6}) being the eigenvalues of the matrix A1. Applying the transformation
matrix S to Eq. (3.98) and defining a new set of amplitudes,




T̃
(L)
1 (p)

T̃
(L)
2 (p)

T̃
(L)
3 (p)

T̃
(L)
4 (p)

T̃
(L)
5 (p)

T̃
(L)
6 (p)




:= S−1




T̃
(L)
12 (p)

T̃
(L)
13 (p)

T̃
(L)
23 (p)

T̃
′(L)
12 (p)

T̃
′(L)
13 (p)

T̃
′(L)
23 (p)




, (3.107)
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one can write Eq. (3.98) in terms of these decoupled amplitudes:




T̃
(L)
1 (p)

T̃
(L)
2 (p)

T̃
(L)
3 (p)

T̃
(L)
4 (p)

T̃
(L)
5 (p)

T̃
(L)
6 (p)




= (−1)L
4√
3 π

diag
(
λ1, λ2, λ3, λ4, λ5, λ6

)∫ ΛC

0

dq

q
QL

(
q

p
+
p

q

)




T̃
(L)
1 (q)

T̃
(L)
2 (q)

T̃
(L)
3 (q)

T̃
(L)
4 (q)

T̃
(L)
5 (q)

T̃
(L)
6 (q)




.

(3.108)

Each row of this matrix equation leads to one (decoupled) integral equation for T̃
(L)
i (p) which is

in the limit of ΛC going to infinity scale invariant and symmetric under the inversion q → 1/q,
i.e. inversion invariant. As explained in Refs. [80,92] the solutions to the integral equations thus
have – for ΛC →∞ – the form of a power law:

T̃
(L)
i (p) = ps

(L)
i , s

(L)
i ∈ C ∀ i ∈ {1, 2, 3, 4, 5, 6} , (3.109)

which is the most straightforward and physically meaningful solution obeying the mentioned
symmetries. Replacing all amplitudes by their corresponding power law solution one finds




ps
(L)
1

ps
(L)
2

ps
(L)
3

ps
(L)
4

ps
(L)
5

ps
(L)
6




= (−1)L
4√
3 π

diag
(
λ1, λ2, λ3, λ4, λ5, λ6

)∫ ∞

0

dq

q
QL

(
q

p
+
p

q

)




qs
(L)
1

qs
(L)
2

qs
(L)
3

qs
(L)
4

qs
(L)
5

qs
(L)
6




. (3.110)

Note, that we have taken the limit ΛC →∞ which does not cause problems since the remaining
integrals are not divergent anymore. It is now useful to substitute q = Xp [165],




ps
(L)
1

ps
(L)
2

ps
(L)
3

ps
(L)
4

ps
(L)
5

ps
(L)
6




= (−1)L
4√
3 π

diag
(
λ1, λ2, λ3, λ4, λ5, λ6

)∫ ∞

0

dX

X
QL

(
X +

1

X

)




(Xp)s
(L)
1

(Xp)s
(L)
2

(Xp)s
(L)
3

(Xp)s
(L)
4

(Xp)s
(L)
5

(Xp)s
(L)
6




,

(3.111)
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and – as the integral equations are decoupled – to divide the i-th row by ps
(L)
i to get




1
1
1
1
1
1




= (−1)L
4√
3 π

diag
(
λ1, λ2, λ3, λ4, λ5, λ6

)∫ ∞

0

dX




Xs
(L)
1 −1

Xs
(L)
2 −1

Xs
(L)
3 −1

Xs
(L)
4 −1

Xs
(L)
5 −1

Xs
(L)
6 −1




QL

(
X +

1

X

)
, (3.112)

which finally is equivalent to

1 = (−1)L
4√
3 π

λi

∫ ∞

0

dX Xs
(L)
i −1 QL

(
X +

1

X

)
, for i = 1, 2, 3, 4, 5, 6 . (3.113)

To achieve our main goal, namely to verify whether the Efimov effect is present in a given three
particle system or not, we need to check if the parameter s

(L)
i is real or purely imaginary. Since

we know that only in the latter case it is present (see section 2.1 or Refs. [80,167] and references

therein). In order to derive the needed transcendental equation for each s
(L)
i one has to solve the

remaining integral in Eq. (3.113). One method would be to insert for arbitrary L the explicit
form of QL. For L = 0 this is perfectly suitable (see for example Refs. [80,92,167]), but already
for L = 1 one ends up with an integral which cannot be solved in an easy way. Therefore we
follow the work of Grießhammer [165] who derived a general expression for the integral

∫ ∞

0

dX Xs
(L)
i −1 QL

(
X +

1

X

)

using hypergeometric functions and the Mellin transform. We use his derivation to find a solution
to the slightly more general integral

∫ ∞

0

dX Xs
(L)
i −1 QL

(
αX + β

1

X

)
,

where the coefficients of q and 1/q are arbitrary (although we need α = β for the inversion
invariance). In appendix E we deduced in Eq. (E.18) the following result for the Mellin transform
M of the Legendre function of the second kind with the mentioned structure of its argument:

M
[
QL

(
αX + β

1

X

)
, s

(L)
i

]
:=

∫ ∞

0

dX Xs
(L)
i −1QL

(
αX + β

1

X

)

=
√
π 2−(L+2)

(
β

α

) s
(L)
i
2
(

1√
αβ

)L+1 Γ

(
L+s

(L)
i +1

2

)
Γ

(
L−s(L)

i +1

2

)

Γ
(

2L+3
2

)

× 2F1

(
L+ s

(L)
i + 1

2
,
L− s(L)

i + 1

2
;
2L+ 3

2
;

1

4αβ

)
. (3.114)
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Given in terms of the Γ-function and the hypergeometric function

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑

k=0

p∏

i=1

Γ(k + ai)

Γ(ai)

q∏

j=1

Γ(bj)

Γ(k + bj)

zk

k!
, p, q ∈ N . (3.115)

It is known that due to parity conservation only even or odd partial waves can mix. Together
with the argument that one considers low-energy scattering it is thus justified to assume S-wave
scattering or – if L = 0 interactions are forbidden by some symmetry – D-wave scattering alone
and neglect all higher partial wave contributions. In appendix E it is shown that Eq. (3.114)
yields for L = 0

∫ ∞

0

dX Xs
(0)
i −1Q0

(
αX + β

1

X

)
=

(√
β

α

)s
(0)
i

π

s
(0)
i

sin
(
s

(0)
i arcsin

(
1
2

√
1
αβ

))

cos
(
π
2
s

(0)
i

) , (3.116)

and for L = 1

∫ ∞

0

dX Xs
(1)
i −1Q1

(
αX + β

1

X

)
=

(√
β

α

)s
(1)
i

πs
(1)
i[(

s
(1)
i

)2

− 1

] 1

sin
(
π
2
s

(1)
i

)

×
[√

4αβ − 1

s
(1)
i

sin

(
s

(1)
i arcsin

(
1

2

√
1

αβ

))

− cos

(
s

(1)
i arcsin

(
1

2

√
1

αβ

))]
. (3.117)

Plugging these results into Eq. (3.113) one finds with α = β = 1 (since all particles have (roughly)

the same mass) for each parameter s
(0)
i a transcendental equation of the form

1 =
4λi√

3

1

s
(0)
i

sin
(
π
6
s

(0)
i

)

cos
(
π
2
s

(0)
i

) , (3.118)

and for D-wave scattering a similar one for s
(1)
i :

1 =
4 λi√

3

s
(1)
i[(

s
(1)
i

)2

− 1

]
cos
(
π
6
s

(1)
i

)

sin
(
π
2
s

(1)
i

) − 4 λi
1[(

s
(1)
i

)2

− 1

]
sin
(
π
6
s

(1)
i

)

sin
(
π
2
s

(1)
i

) , (3.119)

where we have used that arcsin(1/2) = π/6.
We note that Eq. (3.118) and Eq. (3.119) have exactly the same form as in the three spinless
boson case. This comes not as a surprise because all particles and dimers in a non-relativistic
effective theory are described in the same way. Hence, their momentum and energy dependence
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and their behavior for asymptotic large momenta is independent of their spin, isospin, species
and mass ratios. The latter would in principle influence the overall prefactor of the matrix A1,
but as we must require all masses to be equal, even this prefactor is unchanged compared to the
three boson case. However, all other additional degrees of freedom affect the eigenvalue λi since
they determine the entries of the matrix A1 (for three spinless boson λ1 ≡ λ = 2 is simply the
element of an 1-dimensional matrix). To answer the question whether or not the Efimov effect
appears in a system of three particles P1, P2, P3 one just has to determine the eigenvalues of
the matrix A1 whose elements can be read off from the properties of the three particles. Only
the calculation of the spin and isospin dependent parameters x, y and z needs some effort if one
does it by hand and not with Mathematica using the 6-J symbol notation.
Before we apply this result to different three particle systems we discuss the two remaining types
of three particle systems.

3.4.3 Type 2 systems

In a system without shallow P2P3 bound or virtual states one has – according to the rules derived
at the beginning of this section (see page 51) – to erase all terms proportional to T

(L)
23 and T

′(L)
23

from Eqs. (F.10 - F.15). On the one hand a δ
(12(′))
13 = 1 factor in terms proportional to QL(∼ m2)

sets m1 = m3 and on the other hand δ
(13(′))
12 = 1 yields m1 = m2 in terms with QL(∼ m3). Due

to this fact it is sufficient to set m2 at least approximately equal to m3 in order to get a scale
and inversion invariant system necessary for the Efimov effect. What does this statement mean
in few words? In fact, it means that we are able to analyze a system with two particles of equal
mass and one particle with different mass where only two of the three pairs have a large scatting
length (i.e. a dimer state), if the two equal mass particles are the pair without dimer. Otherwise,
it is not possible to decouple the amplitudes which is necessary for our method.
If we indeed assume ε23 � 1 we can replace in the remaining equations all m3 and µ13 via

m3 =
1 + ε23

1− ε23

m2 ≈ m2 ,

µ13 =
m1m3

m1 +m3

=
m1m2

1−ε23
1+ε23

m1 +m2

≈ µ12 . (3.120)

Together with the modified Kronecker-deltas this leads to a set of equations all proportional to

Q122
L (q, p) = QL

(
m1

qp

(
q2

2µ12
+ p2

2µ12

))
which can be found in Eqs. (3.122 - 3.125). In the same

way as we did for type 1 systems one can now factor out the Legendre function QL and write
Eqs. (3.122 - 3.125) as a 4× 4 matrix equation:



T̃
(L)
12 (p)

T̃
(L)
13 (p)

T̃
′(L)
12 (p)

T̃
′(L)
13 (p)


 =

(−1)L

π

m1

µ12

1√
µ12
µ(12)2

A2

∫ ΛC

0

dq

q
QL

(
m1

qp

(
q2

2µ12

+
p2

2µ12

))



T̃
(L)
12 (q)

T̃
(L)
13 (q)

T̃
′(L)
12 (q)

T̃
′(L)
13 (q)


 , (3.121)

where the matrix A2 has in principle the same entries as for a type 1 system, but with erased
third and sixth row and column as it is shown in Eqs. (3.126 - 3.129).
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T̃
(L)
12 (p) =

(−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12 c12

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)2

×
[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123 m1Q

122
L (q, p) + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x3 δP1P3 S132 + x̃3 S312

)

µ12

√
S12 S13 c12 c13

f̃
(3)
(13)(12)

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ12
µ(12)2

m1Q
122
L (q, p)

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12

√
c12 c′12

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)2

×
[
x5 δ

(12′)
P1P3

f
(3)
(12′)(12) S123 m1Q

122
L (q, p) + x̃5 δ

(12′)
P2P3

f̃
(3)
(12′)(12) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x6 δP1P3 S132 + x̃6 S312

)

µ12

√
S12 S13 c12 c′13

f̃
(3)
(13′)(12)

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ12
µ(12)2

m1Q
122
L (q, p) ,

(3.122)

T̃
(L)
13 (p) =

(−1)L
(

1− δP1P2

2

)
1

π

(
y2 δP1P2 S123 + ỹ2 S213

)

µ12

√
S13 S12 c13 c12

f̃
(2)
(12)(13)

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)2

m1Q
122
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ12 S13 c13

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ12
µ(12)2

×
[
y3 δ

(13)
P1P2

f
(1)
(13)(13) S132 m1Q

122
L (q, p) + ỹ3 δ

(13)
P2P3

f̃
(3)
(13)(13) S312 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

(
y5 δP1P2 S123 + ỹ5 S213

)

µ12

√
S13 S12 c13 c′12

f̃
(2)
(12′)(13)

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)2

m1Q
122
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ12 S13

√
c13 c′13

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ12
µ(12)2

×
[
y6 δ

(13′)
P1P2

f
(1)
(13′)(13) S132 m1Q

122
L (q, p) + ỹ6 δ

(13′)
P2P3

f̃
(3)
(13′)(13) S312 m1Q

122
L (q, p)

]
, (3.123)
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T̃
′(L)
12 (p) =

(−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12

√
c′12 c12

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)2

×
[
x′2 δ

(12)
P1P3

f
(3)
(12)(12′) S123 m1Q

122
L (q, p) + x̃′2 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x′3 δP1P3 S132 + x̃′3 S312

)

µ12

√
S12 S13 c′12 c13

f̃
(3)
(13)(12′)

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ12
µ(12)2

m1Q
122
L (q, p)

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12 c′12

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)2

×
[
x′5 δ

(12′)
P1P3

f
(3)
(12′)(23′) S123 m1Q

122
L (q, p) + x̃′5 δ

(12′)
P2P3

f̃
(3)
(12′)(12′) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x′6 δP1P3 S132 + x̃′6 S312

)

µ12

√
S12 S13 c′12 c

′
13

f̃
(3)
(13′)(12′)

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ12
µ(12)2

m1Q
122
L (q, p) ,

(3.124)

T̃
′(L)
13 (p) =

(−1)L
(

1− δP1P2

2

)
1

π

(
y′2 δP1P2 S123 + ỹ′2 S213

)

µ12

√
S13 S12 c′13 c12

f̃
(2)
(12)(13′)

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)2

m1Q
122
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ12 S13

√
c′13 c13

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ12
µ(12)2

×
[
y′3 δ

(13)
P1P2

f
(1)
(13)(13′) S132 m1Q

122
L (q, p) + ỹ′3 δ

(13)
P2P3

f̃
(3)
(13)(13′) S312 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

(
y′5 δP1P2 S123 + ỹ′5 S213

)

µ12

√
S13 S12 c′13 c

′
12

f̃
(2)
(12′)(13′)

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)2

m1Q
122
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ12 S13 c′13

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ12
µ(12)2

×
[
y′6 δ

(13′)
P1P2

f
(1)
(13′)(13′) S132 m1Q

122
L (q, p) + ỹ′6 δ

(13′)
P2P3

f̃
(3)
(13′)(13′) S312 m1Q

122
L (q, p)

]
. (3.125)
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(A2)i1 =




(
1− δP1P2

2

)
1

S12 c12

[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123 + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213

]

(
1− δP1P2

2

)
(
y2 δP1P2 S123+ỹ2 S213

)

√
S13 S12 c13 c12

f̃
(2)
(12)(13)

(
1− δP1P2

2

)
1

S12

√
c′12 c12

[
x′2 δ

(12)
P1P3

f
(3)
(12)(12′) S123 + x̃′2 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213

]

(
1− δP1P2

2

)
(
y′2 δP1P2 S123+ỹ′2 S213

)

√
S13 S12 c′13 c12

f̃
(2)
(12)(13′)




, (3.126)

(A2)i2 =




(
1− δP1P3

2

)
(
x3 δP1P3 S132+x̃3 S312

)

√
S12 S13 c12 c13

f̃
(3)
(13)(12)

(
1− δP1P3

2

)
1

S13 c13

[
y3 δ

(13)
P1P2

f
(1)
(13)(13) S132 + ỹ3 δ

(13)
P2P3

f̃
(3)
(13)(13) S312

]

(
1− δP1P3

2

)
(
x′3 δP1P3 S132+x̃′3 S312

)

√
S12 S13 c′12 c13

f̃
(3)
(13)(12′)

(
1− δP1P3

2

)
1

S13

√
c′13 c13

[
y′3 δ

(13)
P1P2

f
(1)
(13)(13′) S132 + ỹ′3 δ

(13)
P2P3

f̃
(3)
(13)(13′) S312

]




, (3.127)

(A2)i3 =




(
1− δP1P2

2

)
1

S12

√
c12 c′12

[
x5 δ

(12′)
P1P3

f
(3)
(12′)(12) S123 + x̃5 δ

(12′)
P2P3

f̃
(3)
(12′)(12) S213

]

(
1− δP1P2

2

)
(
y5 δP1P2 S123+ỹ5 S213

)

√
S13 S12 c13 c′12

f̃
(2)
(12′)(13)

(
1− δP1P2

2

)
1

S12 c′12

[
x′5 δ

(12′)
P1P3

f
(3)
(12′)(12′) S123 + x̃′5 δ

(12′)
P2P3

f̃
(3)
(12′)(12′) S213

]

(
1− δP1P2

2

)
(
y′5 δP1P2 S123+ỹ′5 S213

)

√
S13 S12 c′13 c

′
12

f̃
(2)
(12′)(13′)




, (3.128)

(A2)i4 =




(
1− δP1P3

2

)
(
x6 δP1P3 S132+x̃6 S312

)

√
S12 S13 c12 c′13

f̃
(3)
(13′)(12)

(
1− δP1P3

2

)
1

S13

√
c13 c′13

[
y6 δ

(13′)
P1P2

f
(1)
(13′)(13) S132 + ỹ6 δ

(13′)
P2P3

f̃
(3)
(13′)(13) S312

]

(
1− δP1P3

2

)
(
x′6 δP1P3 S132+x̃′6 S312

)

√
S12 S13 c′12 c

′
13

f̃
(3)
(13′)(12′)

(
1− δP1P3

2

)
1

S13 c′13

[
y′6 δ

(13′)
P1P2

f
(1)
(13′)(13′) S132 + ỹ′6 δ

(13′)
P2P3

f̃
(3)
(13′)(13′) S312

]




, (3.129)
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Although the matrices A1 and A2 are almost identical (they just differ by their dimension, but
not by their entries) Eq. (3.98) and Eq. (3.121) have a different, mass dependent prefactor,

respectively, which can affect the result for s
(L)
i in the end.

To find the corresponding transcendental equation for the parameter s
(L)
i we do the same as in the

type 1 case. One applies an unitary transformation under which the amplitudes decouple, namely,
under which A2 becomes diagonal. Since the decoupled amplitudes fulfill scale and inversion

invariant integral equations their replacement by a power law solution ∼ ps
(L)
i (i ∈ {1, 2, 3, 4}) is

justified and hence one finds in the limit ΛC →∞ a similar equation to Eq. (3.113):

1 =
(−1)L

π

m1

µ12

1√
µ12
µ(12)2

λi

∫ ∞

0

dX Xs
(L)
i −1 QL

(
m1

2µ12

(
X +

1

X

))
, (3.130)

where λi are now the eigenvalues of the matrix A2. Considering the argument of the Legendre
function it becomes clear why we had to find the Mellin transform Eq. (3.114) of the more general
QL. Using Eq. (3.116) one finds with α = β = m1/(2µ12) the corresponding transcendental
equation for L = 0

1 =
m1

µ12

√
µ(12)2

µ12

λi
1

s
(0)
i

sin
(
s

(0)
i arcsin

(
µ12
m1

))

cos
(
π
2
s

(0)
i

) (3.131)

⇐⇒ 1 =
4 λi√

4− [(1− ε12)2 − 2]2

1

s
(0)
i

sin
(
s

(0)
i arcsin

(
(1−ε12)

2

))

cos
(
π
2
s

(0)
i

) . (3.132)

In the second representation (Eq. (3.132)) we have with Eq. (3.89) and

4

x
√

4− x2
=

4√
4x2 − x4

=
4√

−(−4x2 + x4)
=

4√
− [(x2 − 2)2 − 4]

=
4√

4− (x2 − 2)2
, (3.133)

rewritten it in terms of the mass difference parameter −1 < ε12 < 1 which must not tend to zero
in a system of type 2. However, if it is very close to zero one directly observers that Eq. (3.132)

looks the same as the determining equation of s
(0)
i for a type 1 system (Eq. (3.118)), but as the

eigenvalues λi can be different for A1 and A2 they lead in general to different results for s
(0)
i . Only

in the case of a type 1 system without a P2P3 dimer where one has to erase all T
(′)
23 amplitudes

so that A1 becomes equal to A2 both equations are equivalent. But this is not surprising since
such a system (type 1 without d

(′)
23) is what we have called type 2. Nevertheless, in general where

ε12 is not close to zero it can have a large effect on s
(0)
i : if one mass is much larger than the other

it tends to ±1. In the limit of ε12 → +1 the right-hand-side of Eq. (3.132) yields 0/0 and hence
one can use the rule of L’Hospital and arcsin(0) = 0 to find

1 = lim
ε12→+1

4 λi√
4− [(1− ε12)2 − 2]2

1

s
(0)
i

sin
(
s

(0)
i arcsin

(
(1−ε12)

2

))

cos
(
π
2
s

(0)
i

)

= − λi

cos
(
π
2
s

(0)
i

) , (3.134)
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which can be solved for s
(0)
i :

s
(0)
i =

2

π
arccos (−λi) =

2

π
[π − arccos (λi)]

= 2 +
2i

π
ln

(
λi + i

√
1− λ2

i

)
, (3.135)

where we have used the complex logarithm to continue the arc-cosine to the region outside the
interval [−1, 1]. For eigenvalues |λi| > 1, s

(0)
i can be purely imaginary and hence the existence of

the Efimov effect is not excluded and one cannot make a general statement about its occurrence.
In the other limit, i.e. ε12 → −1, Eq. (3.132) goes to

1 = lim
ε12→−1

4 λi√
4− [(1− ε12)2 − 2]2

1

s
(0)
i

sin
(
s

(0)
i arcsin

(
(1−ε12)

2

))

cos
(
π
2
s

(0)
i

)

=
λi
0

tan
(
π
2
s(0)
)

s
(0)
i

, (3.136)

with arcsin(x)
x→1−→ π/2. Thus, s

(0)
i tends to infinity, but its sign and in particular the fact

whether it is real or purely imaginary depends on the sign of λi. Using the definition of ε12 =
(m1−m2)/(m1 +m2) we conclude that on the one hand the limit of it going to +1 is equivalent
to m1 � m2 = m3 and on the other hand ε12 → −1 corresponds to m1 � m2 = m3. The
conclusion is thus that one cannot deduce solely from the mass ratio of the particles if there is
an Efimov effect in the system or not.
For completeness we state also the result of Eq. (3.130) for angular momentum L = 1 (cf.
Eq. (3.117)):

1 = − m1

µ12

√
µ(12)2

µ12

λi
s

(1)
i[(

s
(1)
i

)2

− 1

] 1

sin
(
π
2
s

(1)
i

)

×




√(
m1

µ12

)2

− 1

s
(1)
i

sin

(
s

(1)
i arcsin

(
µ12

m1

))
− cos

(
s

(1)
i arcsin

(
µ12

m1

))



⇐⇒ 1 =
4 λi√

4− [(1− ε12)2 − 2]2

s
(1)
i[(

s
(1)
i

)2

− 1

]
cos
(
s

(1)
i arcsin

(
(1−ε12)

2

))

sin
(
π
2
s

(1)
i

)

− 4 λi
(1− ε12)2

1[(
s

(1)
i

)2

− 1

]
sin
(
s

(1)
i arcsin

(
(1−ε12)

2

))

sin
(
π
2
s

(1)
i

) . (3.137)

Taking the limit ε12 → ±1 does not lead to further insights regarding the Efimov effect. Hence,
we omit its derivation. However, besides these subtleties the search for a possible Efimov effect
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is like in the type 1 system reduced to the determination of eigenvalues of a matrix whose entries
can straightforwardly be read off from the properties of the three particles in the system.

Before we continue with the last type of systems we can – as a check – apply the type 2 results
above to a system of either two (identical or distinguishable) bosons or two identical fermions
and a third boson in order to reproduce (in parts) Fig. (53) in the work of Hammer and Braaten
in Ref. [80]. To do so one has to change the particle allocation via P1 = PHB

3 , P2 = PHB
2 and

P3 = PHB
1 since in Ref. [80] a system with mHB

1 = mHB
2 6= mHB

3 is considered which does not fit
in our scheme with m1 6= m2 = m3. Assuming the bosons to be scalars and the fermions to have
spin 1/2 one has the following dimers in the system: d12 and d13. Both with spin 1/2 (there are
no primed dimers) so that the spin 0 scattering channel is the only allowed channel for bosonic
and fermionic configurations. From the particle allocation we read off that S12 = S13 = 1, δPiPj =

δ
(ab)
PiPj

= 0 for i = 1 ∧ j = 2, 3 and that f
(3)
(12)(12) = f̃

(3)
(12)(12) = f

(2)
(12)(13) = f̃

(2)
(12)(13) = 1. Furthermore,

we know from the symmetry factor Sijk derived in appendix B and given in Eq. (B.13) that for
all above mentioned combinations of bosons and fermions it holds S213 = S312 = 1. The matrix
A2 (cf. its first two columns Eq. (3.126) and Eq. (3.127)) simplifies to

A2 =

(
x̃2 δ

(12)
P2P3

x̃3

ỹ2 ỹ3 δ
(13)
P2P3

)
, (3.138)

which is a 2× 2 matrix since we erased all primed variables because there are no primed dimers.
All in all there are three cases left:

• P2 6= P3 bosons: the modified Kronecker-deltas both vanish. Thus, one finds

A2 =

(
0 x̃3

ỹ2 0

)
=

(
0 1
1 0

)
,

where the parameters x̃3 and ỹ2 are calculated using one of the methods explained in the
last two sections of appendix A. The matrix A2 has the eigenvalues λ1,2 = ±1.

• P2 = P3 bosons: the modified Kronecker-deltas yield 1 and in addition it holds T̃13 = T̃12

since P2 = P3. Hence, according to the rules in the box on page 51 one erases T̃13 from the
equations. The result is a number A2 = x̃2 = 1 so that λ1 = 1.

• P2 = P3 fermions: the modified Kronecker-delta yield 1 and as above the matrix A2 again
has a 1× 1 structure, but now the x̃ parameter is −1 so that one finds: A2 = x̃2 = −1 and
thus λ1 = −1.

The non-positive eigenvalues in the fermionic case are already a hint to what is shown in Ref. [172]
and used in a similar framework in Ref. [173]. Namely, that in a system as above the Efimov
effect can only occur in S-wave scattering if the particles are (identical or distinguishable) bosons
or in P -wave scattering if at least two of the particles are fermions. Indeed, one does not find
purely imaginary solutions to Eq. (3.131) for λ1 = −1, independently of the mass factors. In
contrast, for λ1 = 1 the same equation (3.131) yields purely imaginary solutions for arbitrary
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Figure 3.7: Results of type-2-system calculations for two either identical or distinguishable
bosons (pluses) or identical fermions (crosses) P2, P3 and a third boson P1 in comparison with

Fig. (53) in [80] where the solid line describes the scaling factor exp(π/s
(0)
1 ) for P2, P3 being

bosons and the dash-dotted line that for P2, P3 being identical fermions, i.e. exp(π/s
(1)
1 ), as

functions of the mass ratio m1/m3.

mass ratios. Rewriting the mass dependent factors in Eq. (3.131) in terms of m1/m3 = m1/m2

one can reproduce the solid line of Fig. (53) in Ref. [80] which belongs to the two bosonic cases:
we took this figure and used our method to find the ”pluses“ shown in Fig. 3.7 which match
with the solid line as they should. In the same way one can reformulate the P -wave relation
Eq. (3.137) in terms of the mass ratio m1/m3 and search for purely imaginary solutions of s

(1)
1 for

λ1 = −1 in the fermionic case. One finds that for mass ratios m1/m3 & 13.6 such solutions exist
and thus the Efimov effect is present, which agrees with the statements in Refs. [80, 172, 173].
In Fig. 3.7 we have marked the results of our method by crosses which match with the dash-
dotted line for fermions as expected. Note, that the dashed line of Fig. (53) in Ref. [80] which
corresponds to a similar (though different) system of two bosons / fermions and a third boson,
but with a bound state d23 between the particles with equal masses, cannot be described by our
method (see opening words of this section 3.4.3) and is thus not shown in Fig. 3.7.

3.4.4 Type 3 systems

We will now focus on three particle systems of type 3 where only shallow P1P2 dimers exist.
As there is just one pair of particles with large scattering length one would expect that Efimov
physics are not relevant in such a system. Indeed, we will show that the analysis of type 3
systems only yields an Efimov effect if the system can fluctuate into a type 2 system due to a
superposition in the flavor wave function of the respective dimer.
Following the rules on page 51 one has to erase in a type 3 system all terms proportional to
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T
(′)(L)
13 and T

(′)(L)
23 from Eqs. (F.10 - F.15). It remain just two coupled integral equations:

T̃
(L)
12 (p) = (−1)L

(
1− δP1P2

2

)
1

π

1

µ12 S12 c12

∫ ∞

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)3

×
[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123 m2Q

211
L (q, p) + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12

√
c12 c′12

∫ ∞

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)3

×
[
x5 δ

(12′)
P1P3

f
(3)
(12′)(12) S123 m2Q

211
L (q, p) + x̃5 δ

(12′)
P2P3

f̃
(3)
(12′)(12) S213 m1Q

122
L (q, p)

]
,

(3.139)

T̃
′(L)
12 (p) = (−1)L

(
1− δP1P2

2

)
1

π

1

µ12 S12

√
c′12 c12

∫ ∞

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)3

×
[
x′2 δ

(12)
P1P3

f
(3)
(12)(12′) S123 m2Q

211
L (q, p) + x̃′2 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12 c′12

∫ ∞

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)3

×
[
x′5 δ

(12′)
P1P3

f
(3)
(12′)(23′) S123 m2Q

211
L (q, p) + x̃′5 δ

(12′)
P2P3

f̃
(3)
(12′)(12′) S213 m1Q

122
L (q, p)

]
.

(3.140)

We note that each term is proportional either to δ
(12(′))
P1P3

or to δ
(12(′))
P2P3

, but if P1 = P3 (P2 = P3)
there must be an extra P2P3 (P1P3) bound state which is a contradiction to the classification
of type 3 systems. Thus, we conclude that a type 3 system only exists for the special case (cf.
Eq. (C.2))

δ
(12(′))
P1/P2,P3

P1/P2 6=P3
= δA1/A2,A3 δη(′)12 |1|

(
δ
η
(′)
12 |1|
− δA1A2

)
= 1 . (3.141)

Furthermore, it also leads to a contradiction if we assume δ
(12(′))
P1P3

= δ
(12(′))
P2P3

= 1 because this would
imply A1 = A2 = A3, but with A1 = A2 the equation above always yields zero. Therefore one has

to distinguish two cases for which a type 3 system can exist: firstly, δ
(12(′))
P1P3

= 1 and δ
(12(′))
P2P3

= 0.

And secondly, the vice versa case δ
(12(′))
P1P3

= 0 and δ
(12(′))
P2P3

= 1. However, by interchanging the
particle allocation of P1 and P2 one can transform these two cases into each other and we only
have to consider one of them. We chose the first one.
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Case 1: δ
(12(′))
P1P3

= 1 and δ
(12(′))
P2P3

= 0

From the condition δ
(12(′))
P1P3

= 1 for P1 6= P3 it follows that δ
η
(′)
12 |1|

= 1, δA1A2 = 0 and δA1A3 = 1.

Therefore one can conclude that P1 and P2 both are bosons which implies ζ123 = +1 and thus
S123 = 1 as well as S12 = 1. Also concerning the a, b parameters one finds some constraints:
a1a2 = b1b2 = 0, v

(′)
12 = w

(′)
12 = 1/

√
2 and a3 = 1 or b3 = 1. Altogether this leads to

f
(3)

(12(′))(12[′])
=
(
a1a2a1a2 + a3w

(′)
12w

[′]
12 + b3v

(′)
12v

[′]
12 + b1b2b1b2

)
=

1

2
, (3.142)

for all combinations of primed and unprimed variables. Finally, this yields with δP1P2 = 0 (follows
from δA1A2 = 0) the matrix equation below:

(
T̃

(L)
12 (p)

T̃
′(L)
12 (p)

)
=

(−1)L

π

m2

µ12

√
µ(12)1

µ12




x2
c12

x5√
c12c′12

x′2√
c12c′12

x′5
c′12



∫ ΛC

0

dq

q
QL

(
m2

2µ12

(
q

p
+
p

q

))(
T̃

(L)
12 (q)

T̃
′(L)
12 (q)

)
.

(3.143)

Decoupling the amplitudes and inserting the power-law solution ∼ ps
(L)
i one finds in the limit

ΛC →∞ with X = q/p:

1 =
(−1)L

π

m2

µ12

√
µ(12)1

µ12

λi

∫ ∞

0

dX

X

s
(L)
i −1

QL

(
m2

2µ12

(
X +

1

X

))
, for i ∈ {1, 2} , (3.144)

with λi being the eigenvalues of the matrix

A3a =




x2
c12

x5√
c12c′12

x′2√
c12c′12

x′5
c′12


 . (3.145)

For S-wave scattering we deduce from Eq. (3.116) with α = β = m2/(2µ12) the following trans-

cendental equation for s
(0)
i :

1 =
m2

µ12

√
µ(12)1

µ12

λi
1

s
(0)
i

sin
(
s

(0)
i arcsin

(
µ12
m2

))

cos
(
π
2
s

(0)
i

) . (3.146)

This result is very similar to what we have found for the type 2 system. However, this is
not surprising because a system of type 3 only exists in a situation where one deals with a
superposition-dimer d

(′)
12 ∼ Ā2A1 + η

(′)
12A2Ā1 (cf. the properties of P1 and P2 derived above). In

fact, it accounts for the case that one considers a three particle system Ā2A1A3 where neither
A1A3 nor Ā2A3 have a bound or virtual state and which seems to not contribute at all. But as
it can fluctuate into the system A2Ā1A3 where the latter two fields have a dimer state, it does
contribute. Then, we finally note that the fluctuated system is because of A1 = A3 nothing else
then a type 2 system with particles 1 and 2 interchanged compared to what we have discusses
in section 3.4.3. This explains the mentioned similarity and we conclude that type 3 systems are
just a remnant of type 2 ones. Hence, they can be ignored in further analyses.
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3.4.5 Implementation with Mathematica

Considering the matrices A1 and A2 corresponding to type 1 and type 2 three particle systems
we observe that they only depend on a rather small number of parameters like spin and isospin.
Hence, it is relatively straightforward to implement the full calculation of the two mentioned
matrices into a computer program. For this purpose we choose Mathematica since it already
contains a command SixJSymbol which determines the Wigner 6-J symbols for given spins.
Furthermore, one can – after determining the eigenvalues of A1,2 – use the FindRoot command
to find a solution of the transcendental equation for the scaling parameter s which depends
on these eigenvalues. To use such a program in the right way one has, however, to remember
the rules in the box on page 51 in order to assign to the parameters the right input values.
Considering for example the NNN system one has to erase the amplitudes T13, T23 and the
respective primed counterparts. Consequently, one has to set the spins J13 = J23 = no (see com-
ments within the program) to get the right results. The corresponding Mathematica notebook
”Efimov Analysis.nb“ can be found on the attached CD. On start the input parameters are
set to values which correspond to the NNΛ system with the particle allocation P1 = P2 = N ,
P3 = Λ and with the hypertriton as Efimov trimer.
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Chapter 4

Efimov effect in hadronic molecules

After the discussion of the different types of three particle systems in the previous section one
can continue with two possible applications. Firstly, one can apply the derived methods for
the determination of the parameter s(L) to various three particle systems where some particle
scatters off a – more or less – established hadronic molecule, in order to check if the Efimov
effect is present in such a system. The nature of many states appearing below is not completely
understood due to lacking experimental data. We will interpret all of them as S-wave hadronic
molecules. Additionally, we assume that they at least approximately fulfill the conditions that are
necessary to treat them in a pionless EFT (see also section 4.3). The second application will be
that we consider specific combinations of charm and bottom mesons (which are the constituents
of a large number of molecules, cf. Tab. 4.1) and check which spin and isospin configurations
lead to Efimov trimers in the scattering off a third charm or bottom meson. This procedure is
also applied to hypothetical dibaryon systems.
Before we start with this task we want to emphasize that the ideas of treating hadronic molecules
like the X(3872) in EFT(/π) [132] or to search for possible Efimov trimers inX(3872)–D scattering
[133] were already invented by Hammer and Braaten and respective co-workers. Moreover, one
should also mention the work regarding hadronic molecules done in Refs. [134–162] which is in
many aspects the basis for this thesis.

4.1 Established systems

We start with the first application where we discuss the Efimov effect in established molecule
systems. For this purpose we have collected a set of experimentally known bound or virtual
states in Tab. 4.1 which have in common that one can interpret them as hadronic molecules.
Furthermore, one can find the constituent particles of these molecules in the same table where
the given mass of an isospin multiplet has to be understood as the charged/uncharged mean
mass. A short discussion of the applicability of EFT(/π) to the particles in this table can be
found in section 4.3. Before we discus the results of our search for Efimov trimers we start with
two demonstrative examples to clarify the derived method: on the one hand the well-known three
nucleon system with the triton as three-body bound state (discussed e.g. in Refs. [80, 92, 93])
and on the other hand we consider as a ”new“ system the one made of three kaons.
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particle / molecule wave function IG(JP) isospin av. mass [MeV]

K [2] � 1
2
(0−) 495.6

D [2] � 1
2
(0−) 1867.2

D∗ [2] � 1
2
(1−) 2008.6

D1 [2] � 1
2
(1+) 2421.4

B [2] � 1
2
(0−) 5279.4

B∗ [2] � 1
2
(1−) 5325.2

N [2] � 1
2
(1

2

+
) 938.9

Λ [2] � 0(1
2

+
) 1115.7

a0(980) [2] K̄K [40–42,61] 1−(0+) 980

f0(980) [2] K̄K [40–42,61] 0+(0+) 990

D∗s0(2317) [36,37] DK [43, 44,47] 0(0+) 2317.8

Ds1(2460) [36,37] D∗K [43, 44,47] 0(1+) 2459.6

D∗s1(2700) [59] D1K (?) 0(1−) 2709

X(3872) [20] 1√
2

(
D̄∗D +D∗D̄

)
[58] 0+(1+) 3871.7

Zc(3900) [22–24] 1√
2

(
D̄∗D +D∗D̄

)
[49, 50] 1+(1+) 3899.0

Z1(4051) [32] −D̄∗D∗ [51, 52] 1−(1+) 4051

Z2(4250) [32] 1√
2

(
D̄1D −D1D̄

)
[51, 53] 1−(1−) 4248

Z(4430) [29–31] 1√
2

(
D̄∗D1 +D∗D̄1

)
[51, 54] 1+(1−) 4443

Zb(10610) [33] 1√
2

(
B̄∗B +B∗B̄

)
[55] 1+(1+) 10608.4

Z ′b(10650) [33] B̄∗B∗ [55] 1+(1+) 10653.2

Λ(1405) [2] K̄N [56, 57] 0(1
2

−
) 1405.1

3S1 NN PW (deuteron) NN 0(1+) 1875.6
1S0 NN PW NN 1(0−) �

3S1 ΛN PW [38,39] ΛN 1
2
(1+) �

1S0 ΛN PW [38,39] ΛN 1
2
(0−) �

1S0 ΛΛ PW (?) ΛΛ [175] 0(0+) �

Table 4.1: Considered hadrons and their two-body molecule states (PW: partial wave). The
isospin averaged mass is the mean one of the iso-multiplet members. Note, that most of the
molecule wave functions are hypotheses (their first proposal is referenced); especially, the inter-
pretation of D∗s1 = KD1 and the existence of the H-dibaryon ΛΛ are very hypothetical as indicated
by the question marks. Note also, the remarks on the applicability of EFT(/π) in section 4.3. For
each particle the reference for its discovery and properties is given in the first column.
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4.1.1 Three nucleon system

In the NN system it is known that there is one 3S1 partial wave bound state with isospin 0
(the deuteron) and a 1S0 partial wave virtual state being an iso-triplet. Since the three particles
in the system are identical their allocation to the generic particles P1, P2 and P3 is obviously
Pi = N for i = 1, 2, 3. The deuteron will be assigned to the dimer d12 and the virtual 1S0 state
to d′12 with quantum numbers (cf. Tab. 4.1)

I
(
JP
)

(d12) = 0(1+) ,

I
(
JP
)

(d′12) = 1(0−) . (4.1)

Keeping in mind that nucleons have both spin and isospin given by 1/2 one concludes that one
only has – according to the rules in the box on page 51 – to deal with T12 and T ′12. Since all
particles have the same mass we consider a type 1 system where the matrix A1 is a 2× 2 matrix
with elements

(A1)11 =

(
1− δP1P2

2

)
1

S12 c12

[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123 + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213

]
,

(A1)21 =

(
1− δP1P2

2

)
1

S12

√
c′12 c12

[
x′2 δ

(12)
P1P3

f
(3)
(12)(12′) S123 + x̃′2 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213

]
,

(A1)12 =

(
1− δP1P2

2

)
1

S12

√
c12 c′12

[
x5 δ

(12′)
P1P3

f
(3)
(12′)(12) S123 + x̃5 δ

(12′)
P2P3

f̃
(3)
(12′)(12) S213

]
,

(A1)22 =

(
1− δP1P2

2

)
1

S12 c′12

[
x′5 δ

(12′)
P1P3

f
(3)
(12′)(12′) S123 + x̃′5 δ

(12′)
P2P3

f̃
(3)
(12′)(12′) S213

]
.

The particle allocation yields that a1 = a2 = a3 = 1, but all b’s are zero and consequently the
functions f and f̃ return ”1“ independently of their arguments. Furthermore, all Kronecker-
deltas are 1 and the symmetry factors S12 = 2 and S123 = S213 = −4 can be found according
to appendix B. The remaining spin and isospin dependent factors x are determined using one
of the methods explained in appendix A. Depending on spin (S) and isospin (I) channel one
finds using for example the 6-J symbols in Eqs. (A.111 - A.146) with j1 = j2 = i1 = i2 = 1/2,
J12 = I ′12 = 1 and J ′12 = I12 = 0 the following values:

x2 = x̃2 = (−1)2(J+I) × 3

{
1
2

1
2

1
1
2

S 1

}
× 1

{
1
2

1
2

0
1
2

I 0

}
=

{
−1

4
, for S = 1

2
& I = 1

2
1
2
, for S = 3

2
& I = 1

2

,

x′2 = x̃′2 = (−1)2(J+I) ×
√

3

{
1
2

1
2

0
1
2

S 1

}
×
√

3

{
1
2

1
2

1
1
2

I 0

}
=

{
3
4
, for S = 1

2
& I = 1

2

0 , for S = 3
2

& I = 1
2

,

x5 = x̃5 = (−1)2(J+I) ×
√

3

{
1
2

1
2

1
1
2

S 0

}
×
√

3

{
1
2

1
2

0
1
2

I 1

}
=

{
3
4
, for S = 1

2
& I = 1

2

0 , for S = 3
2

& I = 1
2

,

x′5 = x̃′5 = (−1)2(J+I) × 1

{
1
2

1
2

0
1
2

S 0

}
× 3

{
1
2

1
2

1
1
2

I 1

}
=

{
−1

4
, for S = 1

2
& I = 1

2

0 , for S = 3
2

& I = 1
2

.
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All in all the matrix A1 reduces to

AS= 1
2
,I= 1

2
1 =

(
1
2
−3

2

−3
2

1
2

)
, (4.2)

in the spin and isospin 1/2 channel (doublet channel) and to AS= 3
2
,I= 1

2
1 = λ

S= 3
2
,I= 1

2
1 = −1/2 in the

quartet channel with S = 3
2
. The eigenvalues in the former case are λ

S= 1
2
,I= 1

2
1,2 = 2,−1. Plugging

them into the transcendental equation for the S-wave scaling parameter s
(0)
i (Eq. (3.118)) one

obtains that only in the doublet channel s
(0)
1 = 1.00624 i is indeed purely imaginary. Hence,

the Efimov effect is present in the system. This result perfectly coincides with the work done in
Refs. [80, 92].

4.1.2 K̄KK system

In the second detailed example we consider the system K̄KK. From experiment we know that
there are two candidates for hadronic molecules in this system (cf. Tab. 4.1): a0(980) and f0(980).
Both can be interpreted as a K̄K state, but with different quantum numbers [2]:

IG
(
JPC

)
(a0) = 1−(0++)

IG
(
JPC

)
(f0) = 0+(0++) . (4.3)

The kaons K themselves have I(JP ) = 1/2(0−). To answer the question whether or not an
Efimov trimer exists in the system we will analyze a0–K scattering. Namely, following the rules
described in the previous section we allocate the three kaons to the generic three particles P1,
P2 and P3 as follows:

P1 = K̄ ,

P2 = P3 = K . (4.4)

Because of P2 = P3 we have to consider just two dimers (cf. rules in the box on page 51): d12 and
d′12. Since all three particles in the system have the same mass we consider the type 1 results,
i.e. we have to find the matrix A1 and diagonalize it. From the allocation above we can directly
read off almost all parameters needed to determine the elements of A1. Indeed, Eq. (4.4) sets
b1 = a2 = a3 = 1 and a1 = b2 = b3 = 0. Furthermore, we have

δP1P2 = δP1P3 = 0 ,

δP2P3 = 1 ,

δA1A2 = δA1A3 = δA2A3 = 1 , (4.5)

and thus

δ
(ab(′))
PiPj

≡ δPiPj , ∀ a < b ∈ {1, 2, 3} . (4.6)
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It is sufficient to calculate v
(′)
12 and w

(′)
12 since all elements with other indices are erased from A1.

With G-parity quantum numbers η12 = −1 and η′12 = +1 we find

v12 = 1×
[

1√
2

+ 1×
(

1− 1√
2

)]
(1× 1 + 0× 0)× (−1)1 + (1− 1)× 1× 1 = −1 , (4.7)

v′12 = +1 , (4.8)

w12 = w′12 = 0 , (4.9)

which is needed to determine f and f̃ . Also the symmetry factors S12 = 1 and S123 = 2 as well
as S213 = 1 are a consequence of the particle allocation in Eq. (4.4). Obviously, there are no
fermion minus signs (i.e. ζ123 = ζ213 = +1) since all three particles are bosons. The 2× 2 matrix
A1 is thus given by

A1 =




x̃2
c12

− x̃5√
c12c′12

− x̃′2√
c12c′12

x̃′5
c′12


 . (4.10)

The remaining four spin and isospin dependent parameters x̃2, x̃5, x̃′2 and x̃′5 can be calculated
using one of the methods explained in appendix A. All methods have in common that they use
normalized projection operators and hence we know c12 = c′12 = 1. This holds independently of
the scattering channel. However, the x parameters are of course different for different spin and
isospin. While the spin channel is uniquely determined to be 0 the isospin one can be either
1/2 or 3/2. In order to find the x parameters we use in this example their defining equations
in Eqs. (A.43 - A.52). Plugging in the right operator of Tab. A.2 to Tab. A.7 according to the
spin and isospin quantum numbers of a0, f0, K and choose one of the two scattering channels
one has to calculate in the spin 0 & isospin 1/2 channel:

x̃2 =
1

2

−1√
3

(τg)λσ
i√
2

(τmτ2)ρσ
−i√

2
(τ2τg)νρ

−1√
3

(τm)νλ = −1

2
,

x̃′2 =
1

2
δλσ

i√
2

(τmτ2)ρσ
−i√

2
(τ2)νρ

−1√
3

(τm)νλ =

√
3

2
,

x̃5 =
1

2

−1√
3

(τg)λσ
i√
2

(τ2)ρσ
−i√

2
(τ2τg)νρδνλ =

√
3

2
,

x̃′5 =
1

2
δλσ

i√
2

(τ2)ρσ
−i√

2
(τ2)νρδνλ =

1

2
, (4.11)

and in the other possible channel with isospin 3/2 the task is to determine

x̃2 =
1

4

1

3
[(τgτ`)λσ + δg`δλσ]

i√
2

(τmτ2)ρσ
−i√

2
(τ2τg)νρ

1

3
[(τ`τm)νλ + δ`mδνλ] = 1 , (4.12)

since x̃′2 = x̃5 = x̃′5 = 0 because the isoscalar f0 cannot contribute to the second channel. The
numbers above are obtained using the well-known identities for the Pauli matrices summarized
in appendix A.
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The matrix A1 in the spin 0 & isospin 1/2 channel is given by

AS=0,I= 1
2

1 =

(
−1

2
−
√

3
2

−
√

3
2

1
2

)
, (4.13)

and its eigenvalues are λ1 = −1 and λ2 = 1 so that the transcendental equation for L = 0 in
Eq. (3.118) yields

s
(0)
1 = 2 (4.14)

s
(0)
2 = 0.413697 i . (4.15)

Since one solution is indeed purely imaginary we deduce that the Efimov effect is present, but
its scaling factor exp(iπ/s

(0)
2 ) = 1986.14 is rather large.

In the I = 3/2 channel one obtains just a single number, i.e. an 1× 1 matrix AS=0,I= 3
2

1 = 1 = λ1.

For S-wave scattering Eq. (3.118) has a purely imaginary solution s
(0)
1 = 0.413697 i so the Efimov

effect is again present with the same scaling factor of 1986.14 as for isospin 1/2 and we conclude
that there must be in either channel a K̄KK trimer state in the system. As a remark, note that
even if the a0(980) is not a molecule and hence the f0(980) (whose molecular substructure is
more established [174]) is the only remaining dimer in the three kaon system, the scaling factor
of 1986.14 is unchanged.

4.1.3 Summary of other established systems

After those two detailed examples we will now summarize the results for all physically promising
combinations of molecules and single particles in Tab. 4.1. Namely, for all three particle systems
where at least two of the three particles have a bound or virtual state. Depending on the
considered particles we either apply the rules for type 1 or type 2 system. However, the in section 3
derived methods do not provide a straightforward analysis for the following kind of systems: a
system of two particles with (approximately) equal mass and a third particle with different mass
where the equal mass ones have a resonant interaction (i.e. a bound or virtual state) cannot
be analyzed. Hence, we will use the mass difference parameters εij := (mi − mj)/(mi + mj)
introduced in Eq. (3.84) to classify systems where the mass difference is still small enough so
that type 1 system equations are applicable. Therefore one has to compare in each relevant
system the mass difference parameter and the effective range of the corresponding molecule. The
contribution of the latter is already neglected as we have only considered leading order terms in
the effective range expansion. Unfortunately, in almost all two-body systems the effective range
is not known (one exception is the NN system with the deuteron as bound state). Thus, we
have to assume that the corrections from setting εij ≈ 0 are indeed at most of the order of the
effective range corrections. This should be a justified assumption as it can be seen by comparison
with Ref. [167] where the mass difference between nucleons and Λ particles (εN,Λ ≈ 0.1) is also
neglected.
In the same way as described above for the NNN and K̄KK system one finds for all other
systems the matrices which needs to be diagonalized in order to find their eigenvalues λi. We
plug these eigenvalues into the transcendental equation for the S- and P -wave scaling parameter
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s
(0,1)
i given in Eqs. (3.118, 3.119) for type 1 or in Eqs. (3.131, 3.137) for type 2 systems. Note,

however, that it is shown in Refs. [80, 172, 173] that for symmetry reasons some boson/fermion
configurations can only occur in even or odd partial wave channels, respectively. For instance in
a three boson system the Efimov effect can only be present in the S-wave channel.
In Tab. 4.2 we have summarized all systems where the Efimov effect occurs. One observes that
– concerning fully bosonic systems – only in the K̄KK and in the scattering of charm mesons
off the not so well-established KD1 molecule D∗s1(2700) the Efimov effect is present. Is the
molecule in the latter scattering process a D∗s0(2317) or a Ds1(2460) instead one finds no Efi-
mov trimer since the mass ratio ε12 = εK,D(∗) is not large enough to push the factor in front

of the trigonometric functions in the transcendental equation for s(0) above a critical value so
that s(0) becomes purely imaginary. Also in all (according to Tab. 4.1) possible combinations of
three charm mesons or of three bottom mesons (both analyzed using the type 1 scheme since
the mass difference is reasonable small) there is no Efimov effect. The conditions under which
such meson–meson molecules would be affected by Efimov physics will be discussed in the next
section.
Next, we focus on systems consisting of fermions only. Besides the already known results con-
cerning the NNN [80, 92] and NNΛ system [167] one finds evidence for Efimov trimers in the
scattering of a nucleon off a H-dibaryon (ΛΛ) which was suggested by Jaffe in Ref. [175]. A
further extension with more dibaryon states like NΣ, NΞ, ΛΣ, ΛΞ, ΣΣ, ΣΞ, ΞΞ or even with Ω
combinations could be possible, but there is up to now no experimental evidence for such dimers.
However, we will discus some issues concerning them in the next section.
As a third alternative there could be molecules consisting of a baryon and a meson. An ex-
ample for such a two-body system is the Λ(1405) lying just below the K̄N threshold so that
its interpretation as a virtual kaon–nucleon state is justified (see also Refs. [176, 177]). The two
corresponding three particle states are thus NK̄K̄ and K̄NN . The former fits into the type 2 sys-
tem scheme, but is not affected by Efimov physics. Unfortunately, the latter cannot be analyzed
because the two equal mass particles (the nucleons) can form a bound (3S1 partial wave) and a
virtual (1S0 partial wave) state. However, if one chooses one specific isospin channel, namely the
one corresponding to the system K−pp, the type 2 method is applicable to K̄NN since the two
protons have no dimer state. This gives us the opportunity to check whether the theoretically
predicted [178–180], but not yet experimentally confirmed [181,182] K−pp three particle bound
state can be interpreted as Efimov trimer in the scattering of a proton off a Λ(1405). Indeed,
we found in the K̄NN isospin 1/2 channel with I3 = +1/2 fixed that there is an Efimov effect
which gives rise to a K−pp trimer. Its existence would thus support the interpretation of the
Λ(1405) as hadronic molecule.
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system channel scaling parameter Im
(
s(0)
)

scaling factor exp
(

i π
s(0)

)

K̄KK
S = 0 & I = 1

2
0.413697 1986.14

S = 0 & I = 3
2

0.413697 1986.14

KD1D (?) S = 1 & I = 1
2

0.231624 777104.0

KD1D
∗ (?)

S = 0 & I = 1
2

0.231624 777104.0

S = 1 & I = 1
2

0.231624 777104.0

S = 2 & I = 1
2

0.231624 777104.0

KD1D1 (?)

S = 0 & I = 1
2

0.231624 777104.0

S = 1 & I = 1
2

0 �
S = 2 & I = 1

2
0.231624 777104.0

NNN

S = 1
2

& I = 1
2

1.00624 22.69

S = 1
2

& I = 3
2

0 �
S = 3

2
& I = 1

2
0 �

NNΛ

S = 1
2

& I = 0 1.00624 22.69

S = 1
2

& I = 1 1.00624 22.69

S = 3
2

& I = 0 1.00624 22.69

S = 3
2

& I = 1 0 �

NΛΛ
S = 1

2
& I = 1

2
1.00624 22.69

S = 3
2

& I = 1
2

0 �

K−pp
S = 0 & I = 1

2
0.605355 179.41

S = 1 & I = 1
2

0.605355 179.41

Table 4.2: Overview of the considered three particle systems according to Tab. 4.1 in which
the Efimov effect is present. Shown is the imaginary part of the (in this case purely imaginary)
S-wave scaling parameter s(0) and the corresponding scaling factor exp

(
i π
s(0)

)
. Note, that there

is no P -wave Efimov trimer because of symmetry reason such a state can only be present for
specific boson / fermion configuration as it is shown in Refs. [80, 172, 173]. The question mark
indicates that the D∗s1 = KD1 molecule interpretation is very hypothetical.
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4.2 Hypothetical systems

After our analysis of a large number of more or less established molecules scattering off a third
particle we now consider some hypothetical two-body bound states in order to identify the spin
and isospin quantum numbers which would lead to Efimov trimers in corresponding scattering
processes. For all these systems we assume that one indeed can treat them in EFT(/π). Namely,
we assume that their binding momenta are at most of the order of the pion mass so that one can
obtain at least some first estimates (see also section 4.3). We will focus on three different systems:
firstly, one can assume that besides the known D̄D (B̄B) charm and bottom mesons also DD
(BB) bound states exist (a possible explanation for the fact that they are not yet discovered
at one of the B-factories would be that one needs at least four charm or bottom mesons since
they are produced in anti-particle–particle pairs). Secondly, one can consider the known charm
and bottom molecules, but change their quantum numbers to other values. Thirdly, one can
consider the large number of hypothetical dibaryon bound states. However, all these two-body
systems have in common that – choosing an appropriate third particle scattering off the molecule
– the corresponding three-body systems consists of identical particles or at least of multiplet–
anti-multiplet combinations. Therefore the number of parameters in our type 1 system analyses
reduces and additionally the remaining ones are more restricted.

4.2.1 Hypothetical charm and bottom meson systems

Assuming that there is a shallow dimer in the system of two charm or bottom mesons, respectively,
one can consider the systems DDD, D∗D∗D∗ or D1D1D1 in the charm sector and BBB, B∗B∗B∗

or B1B1B1 in the bottom meson sector. In each system one deals with identical particles.
According to the rules in the box on page 51 one thus has to erase the amplitudes T̃13 and T̃23

from type 1 system equations. The matrix A1 defined in Eqs. (3.99 - 3.104) is thus reduced to a
2× 2 matrix Aid

1 whose elements are:

(
Aid

1

)
11

=

(
1− δP1P2

2

)
1

S12 c12

[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123 + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213

]
,

(
Aid

1

)
21

=

(
1− δP1P2

2

)
1

S12

√
c′12 c12

[
x′2 δ

(12)
P1P3

f
(3)
(12)(12′) S123 + x̃′2 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213

]
,

(
Aid

1

)
12

=

(
1− δP1P2

2

)
1

S12

√
c12 c′12

[
x5 δ

(12′)
P1P3

f
(3)
(12′)(12) S123 + x̃5 δ

(12′)
P2P3

f̃
(3)
(12′)(12) S213

]
,

(
Aid

1

)
22

=

(
1− δP1P2

2

)
1

S12 c′12

[
x′5 δ

(12′)
P1P3

f
(3)
(12′)(12′) S123 + x̃′5 δ

(12′)
P2P3

f̃
(3)
(12′)(12′) S213

]
. (4.16)

From this result it is straightforward to deduce the entries of Aid
1 if there are more than two

different spin/isospin configurations, that is, if there are dimers d′′12, d′′′12, etc. with other quantum
numbers. But firstly, we notice that all (normal and modified) Kronecker-deltas yield 1 for three

identical particles P1 = P2 = P3. Furthermore, f
(.)
(..)(..) = f̃

(.)
(..)(..) = 1 independently of the

arguments since we have ai = 1 for i = 1, 2, 3. Also the symmetry factor S12 = 2 is already fixed.
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Only the second symmetry factor S123 = S213 = ±4 is not unique; it is positive in the case that
the three identical particles are bosons, but negative for fermions. One can thus write for an
arbitrary number of dimer states:

(
Aid

1

)
ab

= ± 1√
c

[(a−1)′]
12 c

[(b−1)′]
12

[
x

[(a−1)′]
2b+(b−1) + x̃

[(a−1)′]
2b+(b−1)

]
, (4.17)

where the plus (minus) sign is for bosons (fermions) and the notation [(a− 1)′] has to be under-
stood in the manner of [3 ′] =̂ ′′′ and so on. In order to get rid of the remaining spin/isospin
parameters we use the 6-J symbol notation explained in appendix A.3. From Eqs. (A.111 -

A.146) we deduce with δP1P2 = 1 that the parameters x
[(a−1)′]
2b+(b−1) and x̃

[(a−1)′]
2b+(b−1) are equal and given

by

x
[(a−1)′]
2b+(b−1) = x̃

[(a−1)′]
2b+(b−1) = (−1)2S

√(
2J

[(a−1)′]
12 + 1

)(
2J

[(b−1)′]
12 + 1

){j1 j1 J
[(a−1)′]
12

j1 S J
[(b−1)′]
12

}

× (−1)2I

√(
2I

[(a−1)′]
12 + 1

)(
2I

[(b−1)′]
12 + 1

){i1 i1 I
[(a−1)′]
12

i1 I I
[(b−1)′]
12

}
, (4.18)

with j1 (i1) being the spin (isospin) of the identical particles P1 = P2 = P3 and S (I) is the
considered spin (isospin) channel. Since we have derived the equation above using normalized
spin and isospin projectors we know that the factors c12 are equal to 1 independently of the
number of primes. Hence, Eq. (4.17) can be written as

(
Aid

1

)
ab

= ± 2(−1)2(S+I)

√(
2J

[(a−1)′]
12 + 1

)(
2J

[(b−1)′]
12 + 1

)√(
2I

[(a−1)′]
12 + 1

)(
2I

[(b−1)′]
12 + 1

)

×
{
j1 j1 J

[(a−1)′]
12

j1 S J
[(b−1)′]
12

}{
i1 i1 I

[(a−1)′]
12

i1 I I
[(b−1)′]
12

}
. (4.19)

Consequently, the existence of the Efimov effect is completely determined by the spin and isospin
structure of the particles and the dimers. The question is now: what do we know about these
degrees of freedom? Firstly, we know from Tab. 4.1 that all charm and bottom mesons are isospin
1/2 particles and secondly, the spin is either 0 for D, B or 1 for D∗, D1, B∗, B1. Thus, one
concludes that on the one hand both pseudoscalar charm (DDD) and bottom (BBB) meson
systems behave exactly the same and on the other hand that the remaining vector (D∗D∗D∗,
B∗B∗B∗) and axialvector (D1D1D1, B1B1B1) meson systems are equivalent in the sense of Efi-
mov physics. To find the spin and isospin configurations leading to an Efimov effect it is thus
necessary to identify all possible two-body quantum numbers J12 and I12 of the dimers. From
the constituent particles we conclude that for all systems i1 ⊗ i1 = 1⊕ 3, i.e. that there are two
molecule states: one with I12 = 1 and one with I ′12 = 0. Concerning spin one has to distinguish
between D or B systems and D∗, B∗, D1 or B1 systems. All in all one finds the combinations
shown in Tab. 4.3 where also the matrix Aid

1 is given. Calculating the eigenvalues for both sys-
tems and for all channels one concludes that for all spin and isospin configurations except for
the S = 0 & I = 3/2 channel of the (axial-)vector system there is always at least one eigenvalue
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λid = 2. Plugging this into the transcendental equation for the S-wave scaling parameter s(0),
Eq. (3.118),

1 =
4λid√

3

1

s(0)

sin
(
π
6
s(0)
)

cos
(
π
2
s(0)
) ,

one finds that s(0) = 1.00624 i is a solution. Hence, a system of three identical charm or bottom
mesons behaves in all channels – except for the mentioned S = 0 & I = 3/2 channel of the
(axial-)vector system – like a three identical boson system with spin- and isospinless particles.
This statement is only true if all theoretically possible two-body spin and isospin configurations
indeed exist in nature. Considering for example the DDD or BBB pseudoscalar systems one
observes that in the case of only a I12(J12) = 0(0) dimer the system has a scaling factor of
s(0) = 0.413697 i. In the case of only an I12(J12) = 1(0) dimer one finds s(0) = 1.00624 i in the
S = 0, I = 3/2 channel, but there is no Efimov effect in the other allowed S = 0, I = 1/2
channel. Since in the (axial-)vector system of charm and bottom mesons the number of present
/ missing two-body configurations is large we will not discuss all of them for every scattering
channel. Instead, we give some qualitative results concerning the existence of the Efimov effect:

Qualitative results for hypothetical identical charm and bottom meson systems

DDD and BBB systems:

• One or two dimers: in a system of three identical pseudoscalar charm or bottom mesons
the Efimov effect is always present in at least one scattering channel independently of
the number and of the quantum numbers of the dimer or the two dimers, respectively.

D∗D∗D∗, D1D1D1, B∗B∗B∗ and B1B1B1 systems:

• Exactly one dimer: in a three identical spin 1 charm or bottom meson system the
Efimov effect does not occur if this dimer has the quantum numbers I12(J12) = 0(0), 1(0)
or 0(1). For the other allowed configurations (1(1), 0(2) and 1(2)) one always finds at
least one scattering channel where Efimov physics are relevant.

• Exactly two dimers: in such a system the Efimov effect does not occur if the two
dimers have the quantum numbers I12(J12) = 0(0) and I ′12(J ′12) = 1(0) or vice versa. All
other combinations lead in at least one scattering channel to an Efimov trimer in the
system.

• More than two dimers: for every configuration of dimers and quantum numbers there
will be an Efimov trimer in at least one scattering channel.

The conclusion is thus that – if these kind of molecules indeed exist in nature – it is very likely
that the Efimov effect is an important property of such a system of three identical charm or
bottom meson systems.
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j1 dimer QN channel QN matrix Aid
1

j1 = 0
J12 = 0 & I12 = 0

J ′12 = 0 & I ′12 = 1

S = 0 & I = 1
2


 1 −

√
3

−
√

3 −1




S = 0 & I = 3
2

2

j1 = 1

J12 = 0 & I12 = 0

J ′12 = 0 & I ′12 = 1

J ′′12 = 1 & I ′′12 = 0

J ′′′12 = 1 & I ′′′12 = 1

J ′′′′12 = 2 & I ′′′′12 = 0

J ′′′′′12 = 2 & I ′′′′′12 = 1

S = 0 & I = 1
2


−1

√
3

√
3 1




S = 0 & I = 3
2

-2

S = 1 & I = 1
2




1
3
− 1√

3
− 1√

3
1

√
5

3
−
√

5√
3

− 1√
3
−1

3
1 1√

3
−
√

5√
3
−
√

5
3

− 1√
3

1 1
2

−
√

3
2

√
5√
12

−
√

5
2

1 1√
3
−
√

3
2

−1
2
−
√

5
2
−
√

5√
12√

5
3
−
√

5√
3

√
5√
12

−
√

5
2

1
6

− 1√
12

−
√

5√
3
−
√

5
3
−
√

5
2
−
√

5√
12
− 1√

12
−1

6




S = 1 & I = 3
2




2
3
− 2√

3
2
√

5
3

− 2√
3

1
√

5√
3

2
√

5
3

√
5√
3

1
3




S = 2 & I = 1
2




1
2
−
√

3
2
−
√

3
2

3
2

−
√

3
2
−1

2
3
2

√
3

2

−
√

3
2

3
2

−1
2

√
3

2

3
2

√
3

2

√
3

2
1
2




S = 2 & I = 3
2


 1 −

√
3

−
√

3 −1




S = 3 & I = 1
2


 1 −

√
3

−
√

3 −1




S = 3 & I = 3
2

2

Table 4.3: All possible spin and isospin configurations (QN: quantum numbers) for the pseu-
doscalar (j1 = 0) meson systems DDD, BBB and for the three spin j1 = 1 charm and bottom
meson systems D∗D∗D∗, D1D1D1, B∗B∗B∗, B1B1B1. The isospin of the identical particles
P1 = P2 = P3 is always i1 = 1/2 and not explicitly given.
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4.2.2 More dimers in existing charm and bottom meson systems

After the discussion of the completely hypothetical three identical meson systems in the previous
subsection we will now consider the experimentally confirmed states in Tab. 4.1. We assume that
there are more bound states in the underlying two-body molecule systems with different spin and
isospin configurations. This is motivated by the fact that the processes in which the molecules are
produced in experiments may favor some or even forbid other configurations because of symmetry.
However, this argument makes sense only for (axial-)vector charm and bottom mesons, i.e. D∗,
D1, B∗ and B1 because for the molecules with one pseudoscalar meson instead we have already
checked in section 4.1.3 that this does not lead to an Efimov effect. This was explicitly done
for the charm molecules X(3872) and Zc(3900) and thus we know that – a not yet discovered –
iso-singlet partner of the Zb(10610) would not change the situation in the bottom sector. This
is clear because except for their masses all relevant quantum numbers for Efimov physics of D
and B as well as of D∗ and B∗ are equal. Since there are no D̄1D1 or B̄1B1 dimers known so far
we restrict ourselves to the vector charm and bottom mesons which behave in the sense of the
Efimov effect completely the same. Hence, it will be sufficient to analyze only one system; the
result will be valid for both D̄∗D∗ and B̄∗B∗.
Consequently, we consider the three particle system P1P2P3 with P1 = Ā1, P2 = P3 = A1, where
A1 is an isospin i1 = 1/2 and spin j1 = 1 field (corresponding to both D∗ and B∗). A two-body
bound state between Ā1 and A1 can thus have the following spin and isospin quantum numbers:

J12 = 0 & I12 = 0, J ′12 = 0 & I ′12 = 1, J ′′12 = 1 & I ′′12 = 0,

J ′′′12 = 1 & I ′′′12 = 1, J ′′′′12 = 2 & I ′′′′12 = 0, J ′′′′′12 = 2 & I ′′′′′12 = 1 .

Although these are the same combinations as in the previous section on three identical mesons
one has to keep in mind that the situation is different. On the one hand particles P1 and P2 are
not identical and on the other hand not all particles have a large scattering length (we do not
consider a hypothetical A1A1 dimer in contrast to what was done above). Indeed, our particle
allocation tells us that b1 = a2 = a3 = 1 and η12 = ±1 for all numbers of primes. Therefore one
finds v12 = η12 and f

(3)

(12)(′)(12)[′] = f̃
(3)

(12)(′)(12)[′] = a3v
(′)
12v

[′]
12 = η

(′)
12η

[′]
12 which also holds for all numbers

and combinations of primes. Concerning the modified Kronecker-deltas one gets δ
(12)
P1P3

= 0 and
δP2P3 = 1 and similarly for primed symbols. Finally, the relevant symmetry factors are S12 = 1,
S123 = +2 and S213 = +1 as we deal with bosons. All together and with the ”multiple prime“
notation from the previous section 4.2.1 this leads to a matrix AĀAA1 whose elements are given
by

(
AĀAA1

)
ab

= x̃
[(a−1)′]
2b+(b−1) η

[(a−1)′]
12 η

[(b−1)′]
12

= η
[(a−1)′]
12 η

[(b−1)′]
12 (−1)2(S+I)(−1)J

[(a−1)′]
12 +J

[(b−1)′]
12 +I

[(a−1)′]
12 +I

[(b−1)′]
12 −4−2

×
√(

2J
[(a−1)′]
12 + 1

)(
2J

[(b−1)′]
12 + 1

)√(
2I

[(a−1)′]
12 + 1

)(
2I

[(b−1)′]
12 + 1

)

×
{
j1 j1 J

[(a−1)′]
12

j1 S J
[(b−1)′]
12

}{
i1 i1 I

[(a−1)′]
12

i1 I I
[(b−1)′]
12

}
. (4.20)
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Here, Eqs. (A.111 - A.146) were used to replace the spin and isospin dependent x̃ parameters by
6-J symbols. Besides a minus sign from the additional phase factor and/or the G-parity quantum
numbers in front, the matrix elements are half as large as those in the identical charm or bottom
meson system (cf. Eq. (4.19)). Hence, one could make a similar table like Tab. 4.3 in order to
deduce that although some elements indeed change their sign the eigenvalues does not. However,
they are divided by two, i.e. λid = λĀAA/2. In Refs. [80,166] it is shown that

1 =
4λ√

3

1

s(0)

sin
(
π
6
s(0)
)

cos
(
π
2
s(0)
)

has a purely imaginary solution (i.e. the Efimov effect occurs) if the eigenvalue λ is larger

than a critical value λC = 3
√

3
2π
≈ 0.826993. Therefore the extra factor of 1/2 compared to the

eigenvalues in D∗D∗D∗ or B∗B∗B∗ systems is an important difference. Indeed, one observes that
the qualitative results concerning the existence of the Efimov effect are changed in comparison
to the previously discussed case:

Qualitative results for extended D̄∗D∗ or B̄∗B∗ hadronic molecules

• Exactly one dimer: in a D̄∗D∗D∗ or B̄∗B∗B∗ system the only dimer quantum numbers
for which the Efimov effect is present (exclusively in the S = 3, I = 3/2 channel) are
I12(J12) = 1(2). For all other configurations (0(0), 1(0), 0(1), 1(1) and 0(2)) Efimov
physics are not relevant.

• Exactly two dimers: an Efimov trimer can be found if the two dimers have the quantum
numbers I12(J12) = 1(1) and I ′12(J ′12) = 0(1), 1(0) or vice versa. In all other cases there
is no Efimov effect.

• Exactly three dimers: in such a system one finds an Efimov trimer in at least one
scattering channel for the dimers with all possible quantum numbers except for I12(J12) =
0(0), I ′12(J ′12) = 0(1) and I ′′12(J ′′12) = 0(2) or any permutation of these regarding the
primes.

• More than three dimers: for all dimer configurations and for all quantum numbers
the Efimov effect will be present in at least one scattering channel.

As it is written in Tab. 4.1 we know that both Z ′b = B̄∗B∗ and its charm analog Z1 = D̄∗D∗ have
the quantum numbers I(J) = 1(1). Therefore one concludes that as soon as an additional D̄∗D∗

or B̄∗B∗ state with either I ′(J ′) = 0(1) or 1(0) or 1(2) is discovered, Efimov physics should be
taken into account in Z1–D∗ and Z ′b–B

∗ scattering.
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4.2.3 Hypothetical dibaryons

Now we focus on fermionic systems: besides the H-dibaryon called ΛΛ bound state which was
predicted by Jaffe in Ref. [175] there are much more candidates for dibaryon states like ΣΣ or
ΞΞ, but also in the charmed or bottom baryons sector there could be states like ΛcΛc. See for
example Refs. [183,184] for a theoretical discussion of some of the candidates and Refs. [185,186]
for lattice calculations regarding dibaryons with Ω’s. Thus, it may be worth the effort to analyze
three identical fermion systems like ΣΣΣ, ΞΞΞ and so on. One has to deal with a system of
identical particles which can be described using the type 1 method. Moreover, the corresponding
matrix A1 is already known from section 4.2.1 where we have derived it for three identical
particles independently of their species:

(
Aid

1

)
ab

= ± 2(−1)2(S+I)

√(
2J

[(a−1)′]
12 + 1

)(
2J

[(b−1)′]
12 + 1

)√(
2I

[(a−1)′]
12 + 1

)(
2I

[(b−1)′]
12 + 1

)

×
{
j1 j1 J

[(a−1)′]
12

j1 S J
[(b−1)′]
12

}{
i1 i1 I

[(a−1)′]
12

i1 I I
[(b−1)′]
12

}
, (4.21)

where the plus sign is valid for bosons and the minus sign for fermions. All dibaryon–baryon
scattering processes can thus be described using the relation above with a minus sign in front.
However, the spin and isospin quantum numbers are less restricted than in the three charm or
bottom meson case in section 4.2.1. Independently of additional charm or bottom quarks (see
for example Ref. [2]) Λ(c,b) ground state baryons have the quantum numbers I(J) = 0(1/2),
Σ(c,b) ground state baryons have I(J) = 1(1/2) and Ξ(c,b) ground states have spin and isospin
I(J) = 1/2(1/2). Only Ω baryons have different quantum numbers if one strange quark is
replaced by a charm or bottom one. Namely, for the ground state one has I(J) (Ω) = 0(3/2),
but I(J) (Ωc,b) = 0(1/2). Hence, we notice that the Ωc,b Ωc,b Ωc,b system is in the sense of Efimov
physics equivalent to the Λ(c,b) Λ(c,b) Λ(c,b) system. Additionally, we deduce that the spin and
isospin quantum numbers of the three Σ(c,b) system are interchanged compared to the D∗D∗D∗,
B∗B∗B∗, etc. systems. Consequently, the eigenvalues in the latter fermionic system have the
same modulus, but the opposite sign as in the bosonic system. In the following we summarize
the qualitative results in the same way as it was done before:

Qualitative results for hypothetical dibaryons

Λ(c,b)Λ(c,b)Λ(c,b) and Ωc,bΩc,bΩc,b systems:

• Exactly one dimer: if spin and isospin of the dimer are I12(J12) = 0(0) one finds no
Efimov trimer while for I12(J12) = 0(1) the Efimov effect occurs in the S = 1/2, I = 0
channel.

• Exactly two dimers: if both allowed dimer states with quantum numbers I12(J12) =
0(0) and I ′12(J ′12) = 0(1) are present in the system, Efimov physics are relevant in the
S = 1/2, I = 0 scattering channel (cf. ΛΛΛ system in Tab. 4.2).
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Σ(c,b)Σ(c,b)Σ(c,b) systems:

• Exactly one dimer: for the dimer quantum numbers I12(J12) = 1(0), 1(1) and 2(1)
there will be at least one scattering channel with an Efimov trimer while for dimers with
I12(J12) = 0(0), 0(1) and 2(0) Efimov physics are not relevant.

• Exactly two dimers: except for the two dimers with quantum numbers I12(J12) = 0(0)
and I ′12(J ′12) = 0(1), 2(0) or the dimers with I12(J12) = 0(1) and I ′12(J ′12) = 2(0), one
finds for all other combinations at least one channel where the Efimov effect occurs.

• More than two dimers: for every possible number of dimers larger than two there is
always at least one scattering channel with an Efimov trimer.

Ξ(c,b)Ξ(c,b)Ξ(c,b) systems:

• Exactly one dimer: only for a dimer with quantum numbers I12(J12) = 1(1) the Efimov
effect is present in the S = 1/2, I = 3/2 and in the S = 3/2, I = 1/2 channel. For the
three other possible dimers one finds no Efimov effect.

• More than one dimer: for an arbitrary number of dimers larger than two one finds
independently of the quantum numbers at least one scattering channel with an Efimov
trimer.

ΩΩΩ systems:

• Exactly one dimer: for a dimer with spin and isospin I12(J12) = 0(0) one finds no
Efimov trimer, but for all other dimers with quantum numbers I12(J12) = 0(1), 0(2) or
0(3) the Efimov effect occurs in the S = 1/2, S = 3/2 or S = 7/2 scattering channel
(with I = 0 being unique).

• More than one dimer: if there is more than one dimer in the system Efimov physics are
relevant in at least one scattering channel independently of the dimer quantum numbers.

In conclusion, one deduces that Efimov physics are an important phenomenon in dibaryon–
baryon scattering and if dibaryon molecules are found in experiments it would be promising to
search for three particle bound states in order to clarify their substructure.

4.3 Summary of the results

In this last part of the current section we will summarize and give some remarks concerning
the results above. First of all we must once again emphasize that the substructure of many of
the considered particles is not clear. Hence, their interpretation as hadronic molecules is just a
hypotheses. However, if this interpretation is correct their treatment in a non-relativistic pionless
effective field theory is justified as long as their binding momenta are smaller than the pion mass
or at least of that order. Calculating the binding momentum γij = sig(Bij)

√
2µij|Bij| using

the binding energy determined with the relation Bij = (mi + mj) −Mdij one observes that the
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mentioned condition is on the one hand clearly fulfilled for a number of particles in Tab. 4.1 like
the X(3872) with binding momentum γX ∼ 15 MeV. On the other hand there are also particles
like the Zc(3900) whose binding momentum |γZc | ∼ 211 MeV is even larger than the pion mass.
However, especially due to the often large uncertainties regarding the masses of the molecule
candidates it should be justified to use EFT(/π) also for the ”problematic“ particles in order to
obtain at least some first insights to the respective molecule–particle scattering. In the same way
we assumed that the binding momenta of the considered hypothetical states are also at most of
the order of mπ so that their treatment in EFT(/π) is possible. Of course, future experiments
could prove this assumption wrong. As a remark, note that one could add pions to the theory to
get a more accurate description of the physical system like it was done for the X(3872) using the
so-called XEFT in Refs. [187,188]. Regarding the Efimov effect we found that only a rather small
number of molecule–particle scattering processes is affected by an intermediate Efimov trimer
(see Tab. 4.2). However, experimental setups possibly restrict the allowed quantum numbers of a
possible molecular state. Thus, there might be a reasonable chance that more states with different
quantum numbers exist in nature. Depending on the exact spin and isospin of these additional
molecules we have shown that the Efimov effect might become important (see box ”Qualitative
results for extended D̄∗D∗D∗ or B̄∗B∗B∗ hadronic molecules“ on page 85). Moreover, there might
exist charm or bottom meson molecules with identical constituents (DDD, B∗B∗B∗, etc.) for
which we have checked that their scattering off a third (identical) particle is most likely affected
by Efimov physics. In fact, only if there is just one dimer with I12(J12) = 0(0), 1(0), 0(1) this
will not be the case (see box ”Qualitative results for hypothetical identical charm and bottom
meson systems“ on page 82). From this point of view it would be very interesting to search for
more molecule states of the ”anti-charm/bottom meson – charm/bottom meson“ type and for the
completely new ”charm/bottom meson – charm/bottom meson“ states. While for the first type
the existing e+e− collider B-factories are not favorable due to symmetry reasons which forbid or
suppress the production of other quantum numbers, they are in principle suitable for the latter
type. However, one would need rather high energies since the charm and bottom mesons are
produced in particle–anti-particle pairs. Consequently, one would need four bottom mesons in
total in order to observe e.g. a BB molecule. Furthermore, we have also found that dibaryon
systems are – with just a few exceptional quantum numbers – affected by the Efimov effect (see
box ”qualitative results for hypothetical dibaryons“ on page 86). Hence, more experimental ef-
fort to discover such states could be worthwhile.
A common feature in all cases is that experimentally observing a molecule–particle scattering
process which is affected by an Efimov trimer would strongly support the molecule interpreta-
tion of the accordant particle. Moreover, discovering even a second Efimov trimer with binding
energy (exp(iπ/s))2 times larger could be seen as almost a proof of the molecular nature of the
corresponding particle. However, it is not clear whether there are observable second trimer states
at all since the Efimov spectrum is cut off at a certain point as explained in section 2.1.

An important remark concerning this work is that – although we exclusively have focused on
them – it is not restricted to hadronic molecules. The derivation in section 3 was completely
general and hence one can apply the presented methods to every particle scattering off a S-wave
dimer as long as either for an arbitrary number of dimer states all masses are (approximately)
equal (type 1 system) or for m1 6= m2 = m3 if there is no d23 dimer (type 2 system). Not
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analyzable with our method are systems with three different particle masses and systems where
exactly two of the three particles have equal mass (and the third an unequal one), but where the
equal mass particles also have a dimer state. However, apart from these subtleties the derived
matrices A1 (type 1) and A2 (type 2) are also valid in the physics of cold atoms or halo nuclei.

As a final remark, we want to emphasize that in all three-body systems of equal mass which
we have discussed, the maximal eigenvalue was λ = 2 corresponding to a scaling parameter of
s = 1.00624 i. Thus, it seems to be the case that there is some kind of minimal scaling factor
exp(π/1.00624)2 ≈ 515.03 in Efimov physics. A further analysis in order to proof or falsify this
conjecture and if it is true to check its possible extension to the unequal mass system should be
worthwhile.
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Chapter 5

Elastic molecule–particle scattering
observables

As it was shown in the previous chapter the up to now known charm and bottom meson molecules
are not affected by Efimov physics if they are scattered off a third charm or bottom meson. How-
ever, the absence of Efimov trimers makes the respective scattering processes elastic. Therefore
one can extract from the given S-wave three-body scattering amplitude the scattering length
and the phase shift as three-body observables.
At this point it is useful to recapitulate the cutoff independence of these observables: in chap-
ter 2.1 it was explained that the existence of a three-body bound state is in some sense indepen-
dent of the exact value of the three-body coupling constant H(Λ) which thus can be set to zero
(according to the argument that there always exists a cutoff Λ0 so that H(Λ0) = 0). However,
some of the observables are – directly or indirectly – affected by a three-body bound state and
therefore via H cutoff dependent. This means that if a three particle bound state is found, the
three-body binding energy B3 and scattering length a3 are functions of Λ. This dependence can
only be removed using an experimentally measured value of either B3 or a3 to fix H(Λ) which
then allows a prediction of the respective other. In contrast, if there is no three-body bound
state then one concludes that there is no three-body force at all. For energies |E| < Λ the re-
maining scattering observables are thus not cutoff dependent. In particular, this fact allows us to
treat molecule–particle scattering at negative energies below the dimer threshold as a two-body
scattering problem (see section 5.2.1). With an existing three-body bound state the situation
would change. According to the Efimov effect such a state would lie below the two-body binding
energy. Thus, the system of a molecule and a particle could form such an Efimov trimer and
hence their scattering would not be elastic anymore.
As a selected example we will discuss the elastic scattering of B and B∗ meson off the two
molecules Zb(10610) and Z ′b(10650) in more detail. All other scattering processes without Efi-
mov trimer, i.e. all elastic processes, could be analyzed in the same way.
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5.1 Elastic S-wave Z
(′)
b –B(∗) scattering

In total there are four different scattering processes where the bottom mesons B and B∗ are
involved: following Tab. 4.1 one has to consider Zb–B, Zb–B

∗, Z ′b–B and Z ′b–B
∗ scattering.

Consequently, one has to deal with the three particle systems BB̄∗B, BB̄∗B∗, B∗B̄∗B and
B∗B̄∗B∗ which will be discussed below. Regarding the notation we will use m and m∗ for the
masses of B, B̄ and B∗, B̄∗ mesons, respectively. Furthermore, µ (γ) is used for the reduced
mass (the binding momentum) of the molecule Zb(10610) and µ′ (γ′) for the reduced mass (the
binding momentum) of Z ′b(10650).

5.1.1 Zb–B scattering amplitude

According to the method derived in chapter 3 we allocate the particles Pi as follows: P1 = P3 = B
and P2 = B̄∗. Hence, we deduce a1 = b2 = a3 = 1 as well as

δP1P2 = δP2P3 = δA1A2 = δA2A3 = 0 ,

δP1P3 = δA1A3 = 1 . (5.1)

Furthermore (cf. Tab. 4.1), the G-parity quantum number is η12 = +1. Firstly, there is no
resonant interaction with large scattering length between the two B mesons and secondly, the
two dimers d12 and d23 are identical. Thus, one has to – according to the rules in the box on
page 51 – erase the latter from the equations. Therefore it remains just one dimer in the system
(cf. Eq. (3.13)),

d12 =
1√
2

(
B̄∗B +B∗B̄

)
, (5.2)

which represents the molecule Zb(10610) with IG(JP ) = 1+(1+). The only remaining amplitude

is thus T
(L)
12 and since we are interested in the scattering process one has to consider the amplitude

in Eq. (F.4) where the asymptotic momentum limit is not yet applied. For S-wave scattering
one finds

T
(0)
12 (E, k, p) =

2 π γ12

µ2
12 S12 c12

×
[
x1 δ

(12)
P1P3

f
(3)
(12)(12) S123

m2

kp
Q211

0 (k, p;E) + x̃1 δ
(12)
P2P3

f̃
(3)
(12)(12) S213

m1

kp
Q122

0 (k, p;E)

]

+
1

π

1

µ12 S12 c12

∫ ∞

0

dq
q2 T

(0)
12 (E, k, q)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

×
[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123

m2

qp
Q211

0 (q, p;E) + x̃2 δ
(12)
P2P3

f̃
(3)
(12)(12) S213

m1

qp
Q122

0 (q, p;E)

]
.

(5.3)
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Using the summary on pages 56 and 57 all other parameters in T
(0)
12 are obtained to be given as

δ
(12)
P1P3

= 1 , δ
(12)
P2P3

= 0 ,

v12 = 1√
2
, w12 = 1√

2
,

f
(3)
(12)(12) = a3w12w12 = 1

2
, f̃

(3)
(12)(12) = a3v12v12 = 1

2
,

S12 = 1 , c12 = 1 ,

S123 = 1 , S213 = 2 ,

spin 1 & isospin 1/2 channel: x1 = x2 = −1
2
, x̃1 = x̃2 = +1

2
,

spin 1 & isospin 3/2 channel: x1 = x2 = +1 , x̃1 = x̃2 = −1 ,

where we have used in the last two lines Eqs. (A.111, A.129) together with the fact that B is a
pseudoscalar and B∗ is vector isospin doublet so that the allowed channels in Zb–B scattering
are spin 1 and either isospin 1/2 or isospin 3/2. Plugging the results into Eq. (5.3) yields

T
(0)
12 (E, k, p) =

{
−1

2

1

}
π
γ12 m2

µ2
12

1

kp
Q211

0 (k, p;E)

+

{
−1

2

1

}
1

2π

m2

µ12

∫ ∞

0

dq
q2 T

(0)
12 (E, k, q) 1

qp
Q211

0 (q, p;E)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

, (5.4)

where the upper entry corresponds to the isospin 1/2 and the lower one to the isospin 3/2
channel. One can now reinsert the short-hand notation for the Legendre function of the second
kind defined in Eq. (3.73) and additionally use Eq. (D.10) which relates it to the logarithm (for
the behavior in the limit ε→ 0 see Eq. (D.15) which was derived in appendix D) in order to find
the representation of the amplitude below:

T
(0)
12 (E, k, p) =

{
−1

2

1

}
π
γ m∗
µ2

1

2kp
ln

[
k2

2µ
+ p2

2µ
− E + kp

m∗
− iε

k2

2µ
+ p2

2µ
− E − kp

m∗
− iε

]

+

{
−1

2

1

}
1

2π

m∗
µ

∫ ∞

0

dq
q2 T

(0)
12 (E, k, q)

−γ +

√
−2µ

(
E − q2

2m
− q2

2(m+m∗)

)
− iε

× 1

2pq
ln

[
q2

2µ
+ p2

2µ
− E + pq

m∗
− iε

q2

2µ
+ p2

2µ
− E − pq

m∗
− iε

]
. (5.5)

Note, that the upper (lower) component still represents isospin 1/2 (isospin 3/2) as before and
that we have replaced m2 by m∗, m1,3 by m, µ12 by µ being the reduced mass of the Zb(10610)
and γ12 by γ being its binding momentum.

5.1.2 Zb–B
∗ scattering amplitude

The second process we want to analyze is S-wave Zb–B
∗ scattering. Hence, the scalar iso-doublet

B is replaced by the vector B∗. The corresponding three particle system BB̄∗B∗ is allocated to
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the generic particles Pi as follows: P1 = B, P2 = B̄∗ and P3 = B∗. Thus, a1 = b2 = a3 = 1 as
before, but in contrast to the Zb–B case it holds

δP1P2 = δP1P3 = δP2P3 = δA1A2 = δA1A3 = 0 ,

δA2A3 = 1 . (5.6)

While both two-body systems BB̄∗ and B∗B̄∗ are G-parity eigenstates (leading to δη12|1| =
δη23|1| = 1), the combination BB∗ is not and hence δη13|1| = 0. According to Eq. (3.13) there are
three different dimers in the system:

d12 =
1√
2

(
B̄∗B + η12B

∗B̄
)
, (5.7)

d13 = BB∗ , (5.8)

d23 = η23B̄
∗B∗ . (5.9)

From Tab. 4.1 we deduce that only d12 =̂ Zb(10610) and d23 =̂ Z ′b(10650) are present in nature.
Thus, one can on the one hand insert the quantum numbers IG(JP ) = 1+(1+) for both states
and on the other hand erase all d13 contributions. Since there are no states with other quantum
numbers than 1+(1+) one has to erase all primed amplitudes, too (see page 51). The coupled

scattering amplitudes T
(L)
12 and T

(L)
23 are given by the S-wave projected versions of Eq. (F.4) and

Eq. (F.6) without T
(L)
13 and without primed amplitudes T

′(L)
ij . Before we write them down we

note that also the modified Kronecker-deltas are zero except for δ
(12)
P2P3

= 1 and hence we find

T
(0)
12 (E, k, p) =

2 π γ12 x̃1 f̃
(3)
(12)(12) S213

µ2
12 S12 c12

m1

kp
Q122

0 (k, p;E)

+
1

π

x̃2 f̃
(3)
(12)(12) S213

µ12 S12 c12

∫ ∞

0

dq
q2 T

(0)
12 (E, k, q) m1

qp
Q122

0 (q, p;E)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+
1

π

x̃4 f̃
(3)
(23)(12) S321

µ12

√
S12 S23 c12 c23

∫ ∞

0

dq
q2 T

(0)
23 (E, k, q) m2

qp
Q213

0 (q, p;E)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

,

(5.10)

and

T
(0)
23 (E, k, p) =

2 π γ12 z1 f
(1)
(12)(23) S123

µ23 µ12

√
S23 S12 c23 c12

m2

kp
Q231

0 (k, p;E)

+
1

π

z2 f
(1)
(12)(23) S123

µ23

√
S23 S12 c23 c12

∫ ∞

0

dq
q2 T

(0)
12 (E, k, q) m2

qp
Q231

0 (q, p;E)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

.

(5.11)
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The three particles P1, P2 and P3 are distinguishable bosons in the Zb–B
∗ system. Hence, all

symmetry factors are equal to 1 independently of their indices. Using the summarized definitions
on page 56 one obtains for the f and f̃ factors

f̃
(3)
(12)(12) =

1

2
, f̃

(3)
(23)(12) =

1√
2
, f

(1)
(12)(23) =

1√
2
. (5.12)

The remaining x̃ and z parameters are spin and isospin dependent. Depending on the respective
channel the results of appendix A.3 lead to the values summarized in Tab. 5.1. Since normalized
projectors are considered in the mentioned method it is directly implied that all factors cij are

equal to one. One observes that in the spin 0 and 2 channels only the amplitude T
(0)
12 contributes

while for spin 1 both amplitudes are part of a coupled system. In the former case one finds

T
(0)
12 (E, k, p) =

{
−1

2

1

}
π
γ m

µ2

1

2pk
ln

[
k2

2µ
+ p2

2µ′ − E + pk
m
− iε

k2

2µ
+ p2

2µ′ − E −
pk
m
− iε

]

+

{
−1

2

1

}
1

2π

m

µ

∫ ∞

0

dq
q2 T

(0)
12 (E, k, q)

−γ +

√
−2µ

(
E − q2

2m∗
− q2

2(m+m∗)

)
− iε

× 1

2pq
ln

[
q2

2µ
+ p2

2µ′ − E + pq
m
− iε

q2

2µ
+ p2

2µ′ − E −
pq
m
− iε

]
, (5.13)

where the upper components represent the spin 0 or spin 2 channel with isospin 1/2 and the
lower ones are valid for spin 0 or spin 2 with isospin 3/2. Furthermore, the short-hand notation
for the Legendre function was replaced according to Eq. (3.73) and Eq. (D.10) as in the previous
section. The coupled integral equation system for the spin 1 channel is then given by

T
(0)
12 (E, k, p) =

{
1
2

−1

}
π
γ m

µ2

1

2pk
ln

[
k2

2µ
+ p2

2µ′ − E + pk
m
− iε

k2

2µ
+ p2

2µ′ − E −
pk
m
− iε

]

+

{
1
2

−1

}
1

2π

m

µ

∫ ∞

0

dq
q2 T

(0)
12 (E, k, q)

−γ +

√
−2µ

(
E − q2

2m∗
− q2

2(m+m∗)

)
− iε

× 1

2pq
ln

[
q2

2µ
+ p2

2µ′ − E + pq
m
− iε

q2

2µ
+ p2

2µ′ − E −
pq
m
− iε

]

+

{
−1

2

1

}
1√
2π

m∗
µ

∫ ∞

0

dq
q2 T

(0)
23 (E, k, q)

−γ′ +
√
−2µ′

(
E − q2

2m
− q2

2(m∗+m∗)

)
− iε

× 1

2pq
ln

[
q2

2µ
+ p2

2µ
− E + pq

m∗
− iε

q2

2µ
+ p2

2µ
− E − pq

m∗
− iε

]
, (5.14)
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T
(0)
23 (E, k, p) =

{
−1

2

1

}√
2π
γ m∗
µ′ µ

1

2pk
ln

[
k2

2µ′ + p2

2µ
− E + pk

m∗
− iε

k2

2µ′ + p2

2µ
− E − pk

m∗
− iε

]

+

{
−1

2

1

}
1√
2π

m∗
µ′

∫ ∞

0

dq
q2 T

(0)
12 (E, k, q)

−γ +

√
−2µ

(
E − q2

2m∗
− q2

2(m+m∗)

)
− iε

× 1

2pq
ln

[
q2

2µ′ + p2

2µ
− E + pq

m∗
− iε

q2

2µ′ + p2

2µ
− E − pq

m∗
− iε

]
, (5.15)

where again the upper entries must be used for isospin 1/2 and the lower ones for isospin 3/2.
Moreover, it holds m1 = m, m2 = m3 = m∗, µ12 = µ, µ23 = µ′, γ12 = γ and γ23 = γ′ with the
notation introduced at the beginning of this section on elastic Z

(′)
b –B(∗) scattering.

x̃1 x̃2 x̃4 z1 z2

spin 0 & isospin 1/2 −1
2
−1

2
0 0 0

spin 0 & isospin 3/2 1 1 0 0 0

spin 1 & isospin 1/2 1
2

1
2
−1

2
−1

2
−1

2

spin 1 & isospin 3/2 −1 −1 1 1 1

spin 2 & isospin 1/2 −1
2
−1

2
0 0 0

spin 2 & isospin 3/2 1 1 0 0 0

Table 5.1: Spin and isospin channel dependent parameters for Zb–B
∗ scattering.

5.1.3 Z ′b–B scattering amplitude

The three particle system P1 = B∗, P2 = B̄∗ and P3 = B again leads to a1 = b2 = a3 = 1, but it
holds

δP1P2 = δP1P3 = δP2P3 = δA1A3 = δA2A3 = 0 ,

δA1A2 = 1 . (5.16)

This is not surprising since compared to the previous section on Zb–B
∗ scattering we simply

interchanged the particle allocation of P1 and P2. Therefore one has to deal with the same two
dimers

d12 = (η12 = +1) B̄∗B∗ , (5.17)

d23 =
1√
2

(
B̄∗B + (η23 = +1)B∗B̄

)
, (5.18)

representing the Zb(10610) and the Z ′b(10650), but now d12 is interpreted as the latter. Again
there is no d13 = B∗B dimer and there are no primed ones at all in the system. However, in
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contrast to the above discussed case there are less scattering channels because the spin 1⊗ 0 = 1
is fixed. Applying δ

(12)
P1P3

= δ
(12)
P2P3

= δ
(23)
P1P3

= 0 and δ
(23)
P1P2

= 1 to the corresponding amplitudes T
(L)
12

(Eq. (F.4)) and T
(L)
23 (Eq. (F.6)) and projecting both onto S-waves one ends up with

T
(0)
12 (E, k, p) =

1

π

x̃4 f̃
(3)
(23)(12) S321

µ12

√
S12 S23 c12 c23

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q) m2

qp
Q213
L (q, p;E)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

,

(5.19)

and

T
(0)
23 (E, k, p) =

2 π γ12 z1 f
(1)
(12)(23) S123

µ23 µ12

√
S23 S12 c23 c12

m2

kp
Q231
L (k, p;E)

+
1

π

z2 f
(1)
(12)(23) S123

µ23

√
S23 S12 c23 c12

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q) m2

qp
Q231
L (q, p;E)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+
1

π

z4 f
(2)
(23)(23) S231

µ23 S23 c23

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q) m3

qp
Q322
L (q, p;E)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

. (5.20)

The remaining parameters are according to their definitions on pages 56 and 57 given by

Sij = Sijk = 1 , ∀ i, j, k ∈ {1, 2, 3} ,

regarding the symmetry factors and by

f̃
(3)
(23)(12) =

1√
2
, f

(1)
(12)(23) =

1√
2
, f

(1)
(13)(23) =

1√
2
, f

(2)
(23)(23) =

1

2
.

Moreover, one needs the values given in Tab. 5.2 which are obtained using the methods presented
in appendix A.3, i.e. cij = 1 for all i < j ∈ {1, 2, 3}.

x̃4 z1 z2 z4

spin 1 & isospin 1/2 1
2

1
2

1
2

1
2

spin 1 & isospin 3/2 −1 −1 −1 −1

Table 5.2: Spin and isospin channel dependent parameters for Z ′b–B scattering.

With the notation that upper entries are for isospin 1/2 and lower ones for isospin 3/2 this yields
the coupled integral equation system below (with m1 = m2 = m∗, m3 = m, µ12 = µ′, µ23 = µ,
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γ12 = γ′ and γ23 = γ):

T
(0)
12 (E, k, p) =

{
1
2

−1

}
1√
2π

m∗
µ′

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q)

−γ +

√
−2µ

(
E − q2

2m∗
− q2

2(m∗+m)

)
− iε

× 1

2pq
ln

[
q2

2µ′ + p2

2µ
− E + pq

m∗
− iε

q2

2µ′ + p2

2µ
− E − pq

m∗
− iε

]
, (5.21)

T
(0)
23 (E, k, p) =

{
1
2

−1

}√
2π
γ′ m∗
µ µ′

1

2pk
ln

[
k2

2µ
+ p2

2µ
− E + pk

m∗
− iε

k2

2µ
+ p2

2µ
− E − pk

m∗
− iε

]

+

{
1
2

−1

}
1√
2π

m∗
µ

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q)

−γ′ +
√
−2µ′

(
E − q2

2m
− q2

2(m∗+m∗)

)
− iε

× 1

2pq
ln

[
q2

2µ′ + p2

2µ
− E + pq

m∗
− iε

q2

2µ′ + p2

2µ
− E − pq

m∗
− iε

]

+

{
1
2

−1

}
1

2π

m

µ

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q)

−γ +

√
−2µ

(
E − q2

2m∗
− q2

2(m∗+m)

)
− iε

× 1

2pq
ln

[
q2

2µ
+ p2

2µ′ − E + pq
m
− iε

q2

2µ
+ p2

2µ′ − E −
pq
m
− iε

]
, (5.22)

where it was again used that one can – according to Eq. (3.73) and Eq. (D.10) – write the L = 0
Legendre function of the second kind in terms of the logarithm.

5.1.4 Z ′b–B
∗ scattering amplitude

Finally, we consider Z ′b–B
∗ scattering leading to the three particle system P1 = P3 = B∗ and

P2 = B̄∗ which corresponds to a1 = b2 = a3 = 1 and

δP1P2 = δP2P3 = 0 ,

δP1P3 = δA1A2 = δA1A3 = δA2A3 = 1 . (5.23)

From Eq. (3.13) it follows – keeping in mind that there is up to now no experimental evidence
for a B∗B∗ state with large scattering length – that there is just one dimer d12 = η12B̄

∗B∗ in the
system (cf. rules on page 51) whose G-parity is according to Tab. 4.1 given by η12 = +1. The

corresponding S-wave three-body amplitude T
(0)
12 is defined by Eq. (F.4) where one has erased
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all contributions from the other amplitudes:

T
(0)
12 (E, k, p) =

2 π γ12

µ2
12 S12 c12

×
[
x1 δ

(12)
P1P3

f
(3)
(12)(12) S123

m2

kp
Q211
L (k, p;E) + x̃1 δ

(12)
P2P3

f̃
(3)
(12)(12) S213

m1

kp
Q122
L (k, p;E)

]

+
1

π

1

µ12 S12 c12

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

×
[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123

m2

qp
Q211
L (q, p;E) + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213

m1

qp
Q122
L (q, p;E)

]
.

(5.24)

From the summarized definitions on pages 56 and 57 one deduces δ
(12)
P1P3

= 1, but δ
(12)
P2P3

= 0 and

S12 = S123 = 1 ,

S123 = 2 ,

f
(3)
(12)(12) = f̃

(3)
(12)(12) = 1 .

With Eqs. (A.111, A.129) derived in appendix A.3 for normalized projection operators (i.e.
c12 = 1) one additionally finds the values shown in Tab. 5.3 for the spin and isospin dependent x
factors. Hence, one ends up with the following amplitude (with m1 = m2 = m3 = m∗, µ12 = µ′

and γ12 = γ′ as explained at the beginning of section 5.1):

T
(0)
12 (E, k, p) =





1
2

−1
−1

4
1
2

−1
4

1
2





2π
γ′ m∗
µ′2

1

2pk
ln

[
k2

2µ′ + p2

2µ′ − E + pk
m∗
− iε

k2

2µ′ + p2

2µ′ − E −
pk
m∗
− iε

]

+





1
2

−1
−1

4
1
2

−1
4

1
2





1

π

m∗
µ′

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q)

−γ′ +
√
−2µ′

(
E − q2

2m∗
− q2

2(m∗+m∗)

)
− iε

× 1

2pq
ln

[
q2

2µ′ + p2

2µ′ − E + pq
m∗
− iε

q2

2µ′ + p2

2µ′ − E −
pq
m∗
− iε

]
, (5.25)

where the entries in curly brackets represent the channels from top to bottom in the same order
as in Tab. 5.3 and where Eq. (3.73) together with Eq. (D.10) were used to write the Legendre
functions in terms of the logarithm.
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x1 x2 x̃1 x̃2

spin 0 & isospin 1/2 1
2

1
2

1
2

1
2

spin 0 & isospin 3/2 −1 −1 −1 −1

spin 1 & isospin 1/2 −1
4
−1

4
−1

4
−1

4

spin 1 & isospin 3/2 1
2

1
2

1
2

1
2

spin 2 & isospin 1/2 −1
4
−1

4
−1

4
−1

4

spin 2 & isospin 3/2 1
2

1
2

1
2

1
2

Table 5.3: Spin and isospin channel dependent parameters for Z ′b–B
∗ scattering.

5.2 Numerical determination of scattering length and

phase shift

In this section it will be described how the three-body observables scattering length and phase
shift can be deduced from the discretized scattering amplitude, given in form of a matrix equation
T = R+MT. The discretization itself is explained in appendix G. For a single integral equation
describing Z

(′)
b –B(∗) scattering in an arbitrary channel there are three relevant regions of the

center-of-mass energy E (the binding energy of the relevant molecule Zb or Z ′b is denoted as
B(Z) which is equal to either B or B′):

• −B(Z) ≤ E ≤ 0: in terms of the momentum k this energy region translates to 0 ≤ k ≤
kmax where kmax is the root of E(k) which defines the momentum where the molecule
breaks apart into its constituents. Hence, in this region the elastic scattering of a
bottom meson off a molecule takes place.

• −∞ < E < −B(Z): for smaller energies below the molecule threshold there would appear
– if present – three particle bound states due to the Efimov effect.

• 0 < E < ∞: for larger energies the molecule will break apart and one has to deal with
a system of three individual bottom mesons which scatter off each other. However,
this system will not be further discussed in this work.

In a system of two coupled integral equations where both Zb and Z ′b are involved one has to
replace in the second case −∞ < E < −B(Z) by −∞ < E < −max(B,B′) as a trimer state
must lie below both dimer thresholds. In the first case one has to take care of the relation between
the two binding energies B and B′. The elastic two-body scattering Zb–B

∗ only takes place for
B ≥ B′, namely in the energy region −B ≤ E ≤ −B′. In the other case, i.e. for B < B′ both
molecular states can be built of the three bottom mesons. Thus, there is no region where we
would deal with a two-body problem alone. Since there is no straightforward way of describing
such a three-body scattering problem in the used theory we will not analyze it in more detail.
The second coupled system appears in Z ′b–B scattering. Here, the situation is interchanged: for
B < B′ the valid energy region is −B′ ≤ E ≤ −B and the inaccessible case is given by B ≥ B′.
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5.2.1 Method

As we know already from section 4.1 that there is no Efimov effect in Z
(′)
b –B(∗) scattering we

can restrict the discussion to the elastic molecule–particle scattering region. According to the
dimer auxiliary field trick (cf. section 2.1) the molecule is treated as one particle and hence
one can describe molecule–particle scattering in terms of two-body scattering theory which was
discussed in section 1.4. Consequently, one can write for the elastic S-wave amplitude T

(0)
12 in all

four processes:

T
(0)
12 (k) =

2π

µ(12)3

1

k cot δ − ik , (5.26)

with leading order effective range expansion

T
(0)
12 (k) =

2π

µ(12)3

1

− 1
a3
− ik . (5.27)

From the considerations above it is clear that one needs the explicit form of the amplitude
T

(0)
12 (E, k, p). It can be found by numerically solving the inhomogeneous matrix equation T =

R +MT (see appendix G) for a given momentum k, i.e. for a given center-of-mass energy

E ∼ k2. Here, the vector T is given by T = T
(0)
12 for the single integral equations of Zb–B

and Z ′b–B
∗ scattering and by T =

(
T

(0)
12 , T

(0)
23

)T
for the coupled systems of Zb–B

∗ and Z ′b–B

scattering (cf. appendix G). These matrix equations are solved using the ZGESV routine of the
LAPACK library which is documented in Ref. [190].
Thus, one concludes from Eq. (5.27) that the three-body molecule–particle scattering length a3

can be determined via

a3 = −µ(12)3

2π
Re
[
T

(0)
12 (0)

]
. (5.28)

In a numerical calculation one sets k = p1 (i.e. k is equal to the first mesh point, cf. appendix G)

instead of exactly zero and uses T
(0)
12 (k) ≡ T

(0)
12 (E = k2/(2µ(12)3), k, p = k). This approach is

justified since for a typical number of 100 mesh points one gets p1 < 0.005 even for large cutoffs
Λ ∼ 10000 MeV. Therefore p1 is sufficiently close to 0 and hence no extrapolation is needed.
The second observable, namely the scattering phase shift, can be determined as a function of the
momentum k by rearranging Eq. (5.26):

δ(k) = arccot

(
2π

µ(12)3

1

k
Re

[
1

T
(0)
12 (k)

])
. (5.29)

Note, that for each k one has to take – after solving the matrix equation – that part of the
amplitude T

(0)
12 (k) which corresponds to the pole contribution, that is, in the discretized version

TN−1 or TN−2 depending on the number of poles in the scattering process (cf. appendix G).
Besides the predictions one can use Eq. (5.26) in the form

− 2π

µ(12)3

Im

[
1

T (k)

]
= k , (5.30)

as a check for the numerics used, in the sense that a linear dependence is from a numerical point
of view very sensitive to any programming error.
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5.2.2 Results

The (coupled) integral equations derived in section 5.1 will now be analyzed using the numerical
methods explained in the previous section and in appendix G. The binding energies needed as
input for these calculations are obtained by Cleven et al. via an analysis of bottom meson loops
in the framework of hadronic molecules which is presented in Ref. [139]. The values are:

B = 4.7+2.3
−2.2 MeV , (5.31)

B′ = 0.11+0.14
−0.06 MeV , (5.32)

which lead – according to Eq. (1.22) – to the binding momenta

γ = 157.9+38.6
−37.0 MeV , (5.33)

γ′ = 24.20+15.40
−6.60 MeV . (5.34)

Hence, one observes that the value for the Zb(10610) is larger than the pion mass which in
principle contradicts the application of EFT(/π), however, due to the large uncertainties of γ it
is not excluded that the binding momentum of Zb is below mπ (though close to it) so that one
can use a pionless EFT at least to obtain some first insights.

Discussion of Zb–B scattering

As a consequence of the fact that there is no Efimov effect in the system, the elastic scattering
Zb–B is completely described by the formulae in section 5.2.1 which lead to cutoff independent
values for the two observables, Zb–B scattering length a3 and S-wave phase shift δ(k). The
scattering length in the I = 3/2 & S = 1 channel is given by

a
I= 3

2
,S=1

3 = −15.13 fm , (5.35)

and the corresponding phase shift in this channel is shown as a function of k in Fig. 5.1. As it
is known from basic scattering theory [81,82] a positive phase shift corresponds to an attractive
potential between the two scattering particles. However, such a potential can only induce a

S-wave bound state if the scattering length is also positive. Since a
I= 3

2
,S=1

3 is negative this
observation agrees with the absence of the Efimov effect in the system. From Fig. 5.1 we conclude
that the scattering length in the other channel with I = 1/2 & S = 1 must be positive since the
phase shift is negative. This is indeed the case:

a
I= 1

2
,S=1

3 = 0.62 fm . (5.36)

Discussion of Zb–B
∗ scattering

In the same way as for Zb–B scattering one can analyze the coupled Zb–B
∗ system. Again one

can predict the scattering length and the phase shift in all six isospin-spin channels of the elastic
scattering process. Since the projection onto some of the isospin and spin states yields identical
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Figure 5.1: S-wave phase shift δ as function of the momentum k for both channels in elastic
Zb–B scattering.

prefactors, there only remain four different values and curves. The latter are shown in Fig. 5.2
and the scattering lengths are given by

a
I= 3

2
,S=0,2

3 = −15.66 fm , (5.37)

a
I= 1

2
,S=0,2

3 = 0.62 fm , (5.38)

a
I= 3

2
,S=1

3 = 0.88 fm , (5.39)

a
I= 1

2
,S=1

3 = −1.97 fm . (5.40)

Thus, the correlation between the signs of δ and a3 agrees with the missing Efimov trimers.

Discussion of Z ′b–B scattering

It is already known that there is no Efimov effect in the Z ′b–B system. But moreover, it holds
B ' 4.7 MeV ≥ 0.1 MeV ' B′. Thus, it is not possible (according to section 5.2.1) to extract
other observables for this process. A different approach would be necessary to deal with such a
non-trivial three-body system which is beyond the aim of this work.

102



0 50 100 150 200
k / MeV

-20

0

20

40

60

δ 
/ d

eg

I = 3/2, S = 0,2 channel
I = 1/2, S = 0,2 channel
I = 3/2, S = 1 channel
I = 1/2, S = 1 channel

Figure 5.2: S-wave phase shift δ as function of the momentum k for all six channels in elastic
Zb–B

∗ scattering. Note, that the S = 0 and S = 2 spin channels yield the same result.

Discussion of Z ′b–B
∗ scattering

Finally, the analysis of Z ′b–B
∗ scattering allows us to obtain the scattering lengths and the phase

shifts which are shown in Fig. 5.3 and given by

a
I= 3

2
,S=1,2

3 = a
I= 1

2
,S=0

3 = −99.02 fm , (5.41)

a
I= 1

2
,S=1,2

3 = 4.03 fm , (5.42)

a
I= 3

2
,S=0

3 = 9.61 fm . (5.43)

One observes that the absolute value of the scattering length in the I = 3/2 & S = 1, 2 and in
the I = 1/2 & S = 0 channel is almost two orders of magnitude larger than in all other processes
and channels. In Ref. [82] it is explained that for a growing attractive potential, the scattering
length a3 tends to minus infinity until it appears a bound state in the system which causes at
B3 = 0, that a3 changes its sign to positive infinity. Hence, for B3 > 0, a3 is positive and finite.
Consequently, the large absolute value of the scattering length indicates that the interaction
between Z ′b and B∗ is just quite not strong enough to from a bound state.
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Figure 5.3: S-wave phase shift δ as function of the momentum k for all six channels in elastic
Z ′b–B

∗ scattering. Note, that for each isospin state the S = 1 and S = 2 spin channels yield the
same result and additionally that the I = 1/2 & S = 0 result is equivalent to that of I = 3/2 &
S = 1, 2.
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Chapter 6

Conclusion and outlook

In this work we considered the generic three-body scattering of a particle off a S-wave dimer in a
pionless non-relativistic effective field theory. This was done in order to derive a transcendental
equation whose solution tells us whether or not the corresponding three-body system is affected
by Efimov physics. For this purpose we made the assumption that the constituents of the two-
body bound or virtual state are heavy compared to pions, but that their binding momentum
is rather small, i.e. at most of the order of the pion mass, so that EFT(/π) is applicable. The
method we have used to search for Efimov trimers in a three particle system was to decouple
the molecule–particle scattering amplitudes within the coupled integral equation system in the
limit of asymptotic large momenta, that is, to diagonalize the matrix whose elements contain
all information about spin, isospin, flavor normalization factors and symmetry factors. Unfor-
tunately, the decoupling / diagonalizing is only possible if one imposes some constraints on the
masses and the existence of shallow dimer states between some particles. We found two types of
systems which are suitable for this method: type 1 must have (approximately) equal masses (but
no further constraints) and type 2 must have m2 = m3 or m1 = m3 (remember the freedom in
the allocation of particles 1 and 2) with the restriction that the equal mass particles must have
no bound or virtual state (i.e. they do not have a large scattering length). Only systems made
of two equal mass particles with a dimer and a third particle of different mass and in addition
systems where all particles have different masses cannot be described by the presented method.
However, especially in a system with three unequal masses whose difference is so large that even
the approximation of equal masses is not justified, it is relatively unlikely that such particles at
all have a bound state explained by the strong force. Besides these subtleties there are no more
constraints. Hence, one finally finds a transcendental equation for the scaling parameter s which
can have – depending on the eigenvalues of the matrix and on the mass ratios – a purely imaginary
solution which corresponds to the existence of the Efimov effect. Although this method could
be used in many different fields of few-body physics (e.g. cold atoms or halo nuclei) we applied
it to hadronic molecules scattering off a third particle which has a large scattering length with
at least one of the constituents of the molecule. Indeed, we found that a couple of established
particles – interpreted as hadronic molecules – are affected by Efimov physics. In particular, the
three kaon system K̄KK has a reasonably small scaling factor of 1986.14. In the up to now
known charm and bottom meson system no Efimov effect was found. Instead, we have analyzed
the – due to the absence of Efimov trimers – elastic Z

(′)
b –B(∗) scattering as a selected example in
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order to obtain three-body observables like S-wave scattering length and phase shift in systems
without Efimov effect using EFT(/π). We have also checked that hypothetical molecules made of
identical bosons (with spin and isospin) or fermions have for most spin and isospin configurations
an intermediate Efimov trimer state in their scattering off a third identical boson or fermion.
Although it might be experimentally challenging to find such new states it might also be worth
the effort because the existence of trimer states would be hard to explain in the tightly bound
diquark picture, but would emerge naturally in the hadronic molecule interpretation. Hence, in
this sense this work provides in principle a further method to clarify the nature of – at least some
– exotic particles in the charmonium and bottomonium sector.
As an outlook one can say that the extension of this work to P -wave or even higher L dimer
states would be a nice feature, especially in cold atoms or halo nuclei where the existence of
higher partial wave dimers is more common than in the hadronic molecule sector. Furthermore,
an inclusion of higher order terms would obviously improve the quality of the results. However, it
would require more experimental knowledge about the scattering length and the effective range of
the particles. Also the extension of the used pionless EFT to a EFT with explicit pions (XEFT)
would be useful, especially for the not so shallowly bound molecular states. Independently of
the theoretical effort it is expected that the planned or already running experiments like Belle II,
BES III or LHCb will provide more data which could help improving the theoretical predictions.
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Appendix A

Spin and isospin projection operators

In the first part of the appendix our goal is to explain the structure of the combined spin and
isospin projection operators Oij. In the second part we focus on the projection onto a specific
scattering channel in order to derive the defining equations for the parameters x, y and z. Finally,
in the last subsection we will discuss the relation between these parameters and the Wigner 6-J
symbol which gives us the opportunity to determine them for arbitrary spin and isospin without
explicit knowledge of the projection operators. Since spin and isospin are described equivalently
we derive all relations only considering spin. To generalize the results to isospin is straightforward
(in fact, it corresponds to simply renaming all variables).

A.1 Combined spin and isospin projection operators

We start with some conventions regarding the matrix elements defining a generic scattering
amplitude T ∼ 〈out| ... |in〉 with ket and bra vectors defined according to the conventions of
Ref. [1]:

〈k,p| ∼ 〈0| âpâk ,
|k,p〉 ∼ â†kâ

†
p |0〉 . (A.1)

Hence, it holds

(〈k,p|)† = (〈0| âpâk)† = â†kâ
†
p |0〉 = |k,p〉 . (A.2)

Here, âp is the annihilation and â†p is the creation operator which annihilates and creates a state
with momentum p, respectively. Again following the conventions of Ref. [1] the field used in the
Lagrangian density A is related to â and A† to â† by a Fourier transform. Thus, we will use the
fields A and A† as synonyms for annihilation and creation operators, respectively. Since we are
working in a non-relativistic theory it holds that the contraction of a state with momentum p
and the operator A yields 1, i.e.

〈p|A† = 1 ,

A |p〉 = 1 . (A.3)
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= i T
˜β γ̃
α̃ (k,p,q)

(Ai)˜β

(Aj)γ̃

α̃

˜
β

γ̃

(dij)α̃
k p

q

Figure A.1: Diagrammatic representation of a generic dimer decay. The corresponding ampli-

tude T
β̃ γ̃

α̃ depends on the incoming and outgoing spin indices.

Adding spin degrees of freedom to the theory the fields Aα̃ become proportional to polarization
vectors (~εα̃)

α̃
for which we use the same symbol independently of the exact spin. In fact, for

α̃ = � being a scalar spin ”index“ the polarization vector becomes ~εα̃ = 1. For α̃ = α ∈ {1, 2}
being a spin 1/2 index one gets a non-relativistic two dimensional spinor ~εα̃ = ~χα and for
α̃ = i ∈ {1, 2, 3} being a spin 1 index ~εα̃ = ~εi is the usual polarization vector of vector particles.
The contractions in Eq. (A.3) are thus changed to contractions of a state with momentum p and
spin α̃ with the operator Aα̃ where α̃ denotes the component of the polarization vector ~εα̃:

〈p, α̃|A†α̃ =
(
~ε †α̃

)
α̃

(p) , (A.4)

Aα̃ |p, α̃〉 = (~εα̃)
α̃

(p) . (A.5)

To clarify the notation consider a state 〈p, (i = 1)| which is contracted with an operator A†i which
is associated to a spin 1 field:

〈p, (i = 1)|A†i = (~ε1)i (p) =




1
0
0



i

=





1 , for i = 1

0 , for i = 2

0 , for i = 3

, (A.6)

where we have used the Cartesian polarization basis.

After this introduction we can continue and use the relations above to derive the projection
operators Oij which appear in the Lagrangian density Eq. (3.23). Note, that the results for
projectors up to spin 1⊗ 1 are collected in Tab. A.1 in section A.4. In order to proof that these
projectors Oij in Tab. A.1 indeed are correct we consider the vertex function of a dimer decaying
into its constituents which is in Fig. A.1 shown as a Feynman diagram (note, that we can restrict
ourselves without loss of generality to the case dij ∼ AjAi). We will compare the numerical value
of the decay amplitude with the corresponding Clebsch-Gordan coefficient. If we ignore for the
moment the non-trivial wave function renormalization of the dimer field dij the decay amplitude
is according to the vertex functions in Fig 3.1 given by

T
β̃ γ̃

α̃ (k,p,q) =
〈
q, β̃; p, γ̃

∣∣∣ aiaj(−gij)
(
A†i

)
β̃

(Oij)α̃,β̃γ̃
(
A†j

)
γ̃

(dij)α̃

∣∣∣k, α̃
〉

= −gij ai aj
(
~ε †
β̃

)

β

(Oij)α̃,β̃γ̃
(
~ε †γ̃

)
γ̃

(~εα̃)
α̃
δ(3)(p + q− k) , (A.7)
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where we have in the second step contracted the operators with the external lines according to
Fig. A.1. If we additionally set the momenta to k = p+q the δ-function yields 1 and we conclude
from phenomenology that the expression

C :=

(
~ε †
β̃

)

β̃

(Oij)α̃,β̃γ̃
(
~ε †γ̃

)
γ̃

(~εα̃)
α̃
, (A.8)

as part of the amplitude T
β̃ γ̃

α̃ (p,q) must be equal to the Clebsch-Gordan coefficient for coupling

spin β̃ of Ai and spin γ̃ of Aj to a total spin α̃ of dij. In the following we will check this condition
exemplary for the spin coupling 1/2 ⊗ 1 → 1/2, but first we give some remarks regarding the
notation.
We write all projectors in terms of non-relativistic spinor indices α, β, γ, ... ∈ {1, 2} and in terms
of the Cartesian polarization vector indices i, j, k, ... ∈ {1, 2, 3} which describe spin 1/2 and spin
1 interactions, respectively. The underlying group of spin 1/2 is SU(2) whose generators are the
three Pauli-matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.9)

and for spin 1 it is the three dimensional rotation group SO(3) which is generated by the matrices

U1 =




0 0 0
0 0 −i
0 i 0


 , U2 =




0 0 i
0 0 0
−i 0 0


 , U3 =




0 −i 0
i 0 0
0 0 0


 . (A.10)

For both groups the generators fulfill besides other properties the following useful relations. For
the Pauli-matrices it holds:

σ2
i = 1 ∀ i ,

Tr(σi) = 0 ∀ i ,
Tr(σiσj) = 2 δij ∀ i, j ,

σiσj = δij 1+ i εijk σk ∀ i, j ,
[σi, σj] = 2i εijk σk ∀ i, j ,
{σi, σj} = 2δij 1 ∀ i, j . (A.11)

And similarly the matrices Ui fulfill:

(Ui)jk ≡ −i εijk ∀ i, j, k ,
Tr(Ui) = 0 ∀ i ,

Tr(UiUj) = 2 δij ∀ i, j ,
(UiUj)k` = δij δk` − δi`δkj ∀ i, j, k, ` ,
[Ui, Uj] = i εijk Uk ∀ i, j . (A.12)
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The spin indices we are working with are given in the Cartesian polarization basis, namely, they
correspond to the spin 1/2 polarization vectors ~χα and the spin 1 polarization vectors ~εi given
by

{
~χ1 =

(
1
0

)
, ~χ2 =

(
0
1

)}
and



~ε1 =




1
0
0


 , ~ε2 =




0
1
0


 , ~ε3 =




0
0
1





 , (A.13)

respectively. Since ~χ1,2 are the eigenvectors to the eigenvalues λ1,2 = ±1/2 of the matrix σ3/2
one can directly identify ~χα with the physical spin states defined by their magnetic quantum
number m:

~χ1 =̂m = +
1

2
,

~χ2 =̂m = −1

2
. (A.14)

In the spin 1 case one has to perform a change of basis from Cartesian ({~ε1, ~ε2, ~ε3}) to spherical
({~ε+, ~ε0, ~ε−}) polarization vectors where the momentum p points in z-direction. The latter can
be identified with physical spin states m = 0, ±1 in the following manner:

~ε+ = − 1√
2

(~ε1 + i~ε2) = − 1√
2




1
i
0


 =̂m = +1 ,

~ε0 = ~ε3 =




0
0
1


 =̂m = 0 ,

~ε− =
1√
2

(~ε1 − i~ε2) =
1√
2




1
−i
0


 =̂m = −1 , (A.15)

meaning that ~ε+, ~ε0 and ~ε− are the normalized eigenvectors to the eigenvalues +1, 0 and −1 of
the generator U3. Alternatively, one can maintain the Cartesian basis indices in the Lagrangian
density and insert

j = − 1√
2

(1 + i2) for a m = +1 state,

j =
1√
2

(1− i2) for a m = −1 state,

j = 3 for a m = 0 state, (A.16)

instead (note, that the i on the right-hand-side is the imaginary unit while j on the left is a spin
index). This is the method we will use.
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Ket spin vectors |j,m〉 are then related to the polarization vectors via

~χα =

∣∣∣∣
1

2
,
1

2

〉
, for α = 1 ,

~χα =

∣∣∣∣
1

2
,−1

2

〉
, for α = 2 ,

~εi = |1, 1〉 , for i = − 1√
2
(1 + i2) ,

~εi = |1, 0〉 , for i = 3 ,

~εi = |1,−1〉 , for i = − 1√
2
(1− i2) . (A.17)

From the Clebsch-Gordan coefficients it additionally follows that one can identify for spin 3/2
the ket vectors with

~εi ~χα =

∣∣∣∣
3

2
,
3

2

〉
, for

{
i = − 1√

2
(1 + i2), α = 1

}
,

~εi ~χα =

∣∣∣∣
3

2
,
1

2

〉
, for 1√

3

{
i = − 1√

2
(1 + i2), α = 2

}
+
√

2√
3
{i = 3, α = 1} ,

~εi ~χα =

∣∣∣∣
3

2
,−1

2

〉
, for

√
2√
3
{i = 3, α = 2}+ 1√

3

{
i = 1√

2
(1− i2), α = 1

}
,

~εi ~χα =

∣∣∣∣
3

2
,−3

2

〉
, for

{
i = 1√

2
(1− i2), α = 2

}
, (A.18)

and similarly for spin 2:

~εi ~εj = |2, 2〉 , for
{
i = − 1√

2
(1 + i2), j = − 1√

2
(1 + i2)

}
,

~εi ~εj = |2, 1〉 , for 1√
2

{
i = − 1√

2
(1 + i2), j = 3

}
+ 1√

2

{
i = 3, j = − 1√

2
(1 + i2)

}
,

~εi ~εj = |2, 0〉 , for 1√
6

{
i = − 1√

2
(1 + i2), j = 1√

2
(1− i2)

}
+
√

2√
3

{
i = 3, j = 3

}
,

+ 1√
6

{
i = 1√

2
(1− i2), j = − 1√

2
(1 + i2)

}
,

~εi ~εj = |2,−1〉 , for 1√
2

{
i = 3, j = 1√

2
(1− i2)

}
+ 1√

2

{
i = 1√

2
(1− i2), j = 3

}
,

~εi ~εj = |2,−2〉 , for
{
i = 1√

2
(1− i2), j = 1√

2
(1− i2)

}
. (A.19)

The corresponding bra spin vectors 〈j,m| = (|j,m〉)† can be found by Hermitian conjugation of
the relations above.

Let us now consider the coupling
(
J(Ai) = 1/2

)
⊗
(
J(Aj) = 1

)
→
(
J(dij) = 1/2

)
. From

Tab. A.1 we take the corresponding projection operator

(Oij)α̃,β̃γ̃ =
1√
3

(σg)βα ,
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where α̃ = α and β̃ = β are spin 1/2 indices and γ̃ = g is a spin 1 index. Plugging this into
Eq. (A.8) we find

C =
(
~χ †β

)
β

1√
3

(σg)αβ

(
~ε †g

)
g

(~χα)
α

=
1√
3

[(
~χ †β

)
1

((
~ε †g

)
1
− i
(
~ε †g

)
2

)
(~χα)

2
+
(
~χ †β

)
2

((
~ε †g

)
1

+ i
(
~ε †g

)
2

)
(~χα)

1

+
(
~χ †β

)
1

(
~ε †g

)
3

(~χα)
1
−
(
~χ †β

)
2

(
~ε †g

)
3

(~χα)
2

]
. (A.20)

Depending on α, β and g the equation above yields

• for α = 1, β = 1:

C =
1√
3

(
~ε †g

)
3

=





0 , for g = − 1√
2
(1− i2)

1√
3
, for g = 3

0 , for g = 1
2
(1 + i2)

, (A.21)

• for α = 2, β = 1:

C =
1√
3

((
~ε †g

)
1
− i
(
~ε †g

)
2

)
=





1√
3

(
− 1√

2
− i i√

2

)
= 0 , for g = − 1√

2
(1− i2)

0 , for g = 3
1√
3

(
1√
2
− i i√

2

)
=
√

2√
3
, for g = 1

2
(1 + i2)

,

(A.22)

• for α = 1, β = 2:

C =
1√
3

((
~ε †g

)
1

+ i
(
~ε †g

)
2

)
=





1√
3

(
− 1√

2
+ i i√

2

)
= −

√
2√
3
, for g = − 1√

2
(1− i2)

0 , for g = 3
1√
3

(
1√
2

+ i i√
2

)
= 0 , for g = 1

2
(1 + i2)

,

(A.23)

• for α = 2, β = 2:

C = − 1√
3

(
~ε †g

)
3

=





0 , for g = − 1√
2
(1− i2)

− 1√
3
, for g = 3

0 , for g = 1
2
(1 + i2)

. (A.24)
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These results can be compared with the Clebsch-Gordan coefficients in Ref. [2]:
( 〈

1
2
, 1

2

∣∣⊗ 〈1, 1|
) ∣∣1

2
, 1; 1

2
, 1

2

〉
= (−1)

1
2
−1−1

2

(
〈1, 1| ⊗

〈
1
2
, 1

2

∣∣
) ∣∣1, 1

2
; 1

2
, 1

2

〉
= 0 ,

( 〈
1
2
, 1

2

∣∣⊗ 〈1, 0|
) ∣∣1

2
, 1; 1

2
, 1

2

〉
= (−1)

1
2
−1−1

2

(
〈1, 0| ⊗

〈
1
2
, 1

2

∣∣
) ∣∣1, 1

2
; 1

2
, 1

2

〉
= 1√

3
,

( 〈
1
2
, 1

2

∣∣⊗ 〈1,−1|
) ∣∣1

2
, 1; 1

2
, 1

2

〉
= (−1)

1
2
−1−1

2

(
〈1,−1| ⊗
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where it was used that
(
〈j1,m1| ⊗ 〈j2,m2|

)
|j1, j2; J,M〉 = (−1)J−j1−j2

(
〈j2,m2| ⊗ 〈j1,m1|

)
|j2, j1; J,M〉 (A.29)

holds with the standard notation of Ref. [2]. Indeed, one observes that C is equivalent to the
Clebsch-Gordan coefficient of the respective coupling. In the same way one could proof that the
other projectors given in Tab. A.1 are correct.

A.2 Projection onto scattering channel

Up to now the decay amplitude Eq. (A.7) still has free (underlined) indices. In fact, β̃ and γ̃
represent two polarization vectors ~εβ̃ and ~εγ̃ which can be coupled to – in general – more then

one total spin called ρ̃. Hence, the decay amplitude with initial spin state η̃ and final state spin
ρ̃ can be written as

T
ρ̃

η̃ =
1√
c

(
O†T
)
ρ̃,γ̃β̃

T
β̃γ̃

α̃ δα̃η̃ , (A.30)
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where we have introduced an operator OT which projects onto a specific final state ρ̃, i.e. which

couples the spins β̃ and γ̃ to a total spin ρ̃. Since this projector must be normalized in order to do
not over-count some spin states, there is an normalization factor of 1/

√
c added. The Kronecker-

delta δα̃η̃ in Eq. (A.30) is nothing else than the (already normalized) projection operator which
couples ”nothing“ and spin α̃ to spin η̃. To get the full index-free decay amplitude one has – in
the usual way, cf. Ref. [1] – to average over initial and sum over final state spins leading to

T =
1

dof(η̃)

∑

η̃,ρ̃

T
ρ̃

η̃ =
1

dof(η̃)

∑

η̃,ρ̃

1√
c

(
O†T
)
ρ̃,γ̃β̃

T
β̃γ̃

α̃ δα̃η̃ . (A.31)

We now introduce a convention for scattering amplitudes, namely that initial spins are written
as subscript and final state spins as superscript. Next, we consider a generic two-body scattering

amplitude T
γ̃σ̃

α̃β̃
and know from the considerations above that the full amplitude T is given by

T =
1

dof(η̃)

∑

η̃,λ̃

T λ̃η̃ =
1

dof(η̃)

∑

η̃,λ̃

1√
cc′

(
O†T
)
λ̃,σ̃γ̃

T
γ̃σ̃

α̃β̃
(O′T )η̃,α̃β̃ , (A.32)

with η̃ being the total initial and λ̃ being the total final state spin onto which the two operators

O′T and OT project. Note, that for elastic scattering one has to set η̃ = λ̃ as initial and final

state must be equal in this case. The projection operators O(′)
T have the same structure as the

operators O derived above since both couple two spins to a total spin. The only difference is that
the former couple the dimer spin and the spin of the third particle to the scattering channel spin
while the latter couple the spins of the two constituent particles to the spin of the corresponding
dimer. It is thus not necessary to give OT explicitly; it can be deduced from Tab. A.1.
In the derivation of the transcendental equation for different types of systems (cf. section 3)

the deduced scattering amplitudes on the one hand have the same index structure (Tij)
γ̃σ̃

α̃β̃
as the

generic one in Eq. (A.32). On the other hand they are given as integral equation, that is, they
are proportional to themselves and to the other amplitudes Tik and Tjk, but with different final
state indices. To explain the method of projecting onto a specific spin channel it is sufficient to
consider only one example as which we chose the T23(q) contribution to the T13(p) amplitude (cf.
second row of the first diagram on page 158):

(T13)
γ̃σ̃

α̃β̃
∼
〈
p, γ̃;−p, σ̃

∣∣∣
(
d†13

)
γ̃

(A3)ρ̃

(
O†13

)
γ̃,ρ̃ν̃

(A1)ν̃ (T23)µ̃ν̃
α̃β̃

×
(
A†2

)
σ̃

(O23)µ̃,σ̃ρ̃

(
A†3

)
ρ̃

(d23)µ̃

∣∣∣k, α̃;−k, β̃
〉

=
(
~ε †γ̃

)
γ̃

(
~ε †σ̃

)
σ̃

(
O†13

)
γ̃,ρ̃ν̃

(T23)µ̃ν̃
α̃β̃

(O23)µ̃,σ̃ρ̃ (~εα̃)
α̃

(
~εβ̃

)
β̃

= δγ̃γ̃ δσ̃σ̃

(
O†13

)
γ̃,ρ̃ν̃

(T23)µ̃ν̃
α̃β̃

(O23)µ̃,σ̃ρ̃ δα̃α̃ δβ̃β̃

=
(
O†13

)
γ̃,ρ̃ν̃

(T23)
µ̃ν̃

α̃β̃
(O23)µ̃,σ̃ρ̃ , (A.33)
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where we have used in the third step that in Cartesian spin basis (~εα̃)
α̃

= δα̃α̃ holds for all α
which directly follows from the definition in Eq. (A.13). The full index-free amplitude therefore
has the proportionality

T13 =
1

dof(η̃)

∑

η̃,λ̃

(T13)λ̃η̃ ∼
1

dof(η̃)

∑

η̃,λ̃

1√
cT12cT13

(
O†T13

)
λ̃,σ̃γ̃

(
O†13

)
γ̃,ρ̃ν̃

(T23)
µ̃ν̃

α̃β̃
(O23)µ̃,σ̃ρ̃ (OT12)η̃,α̃β̃ .

(A.34)

What we want to achieve is that also the right-hand-side is written in terms of the full amplitude
T23. We know from Eq. (A.32) that

T23 =
1

dof(η̃)

∑

η̃,λ̃

1√
cT12cT23

(
O†T23

)
λ̃,ν̃µ̃

(T23)
µ̃ν̃

α̃β̃
(OT12)η̃,α̃β̃ . (A.35)

Since the projection operators are unitary, i.e.
(
O†T
)
λ̃,ν̃µ̃

(OT )λ̃,µ̃ν̃ = cT dof(λ̃) , (A.36)

we can write Eq. (A.34) as

T13 ∼ y4
1

dof(η̃)

∑

η̃,λ̃

1√
cT12cT23

(
O†T23

)
λ̃,ν̃µ̃

(T23)
µ̃ν̃

α̃β̃
(OT12)η̃,α̃β̃ = y4 T23 , (A.37)

with y4 defined as

y4 :=
1√

cT13cT23

1

dof(λ̃)

(
O†T13

)
λ̃,σ̃γ̃

(
O†13

)
γ̃,ρ̃ν̃

(O23)µ̃,σ̃ρ̃ (OT23)λ̃,µ̃ν̃ . (A.38)

In the same way all other xi, yi, zi, x̃i, ỹi and z̃i parameters can be determined. Their defining
equations are given in Eqs. (A.40 - A.81) where we have assumed that all operators OT are
normalized, i.e. cT = 1, and furthermore changed the notation of indices by removing the
underline. In section A.4 we have given some overview tables (Tab. A.2 to Tab. A.7) for the
normalized projection operators in which the indices are named in the same way as they are
needed to calculate the parameters. Note, however, that independently of the tables it holds

(Oij)µ,ρσ =

{
(Oij)µ,ρσ , if Pi 6= Pj

(Oij)µ,σρ , if Pi = Pj
. (A.39)

because if Pi = Pj there is just one possibility of assigning the indices ρ and σ to the two identical
particles Pi (in contrast to the general case Pi 6= Pj where – depending on the considered diagram

– in a vertex either A†i or A†j is allocated with the index ρ so that according to Eq. (3.4) one has
either a projector (Oij)µ,ρσ or a projector (Oij)µ,σρ in the expression).

x
(′)
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1

dof
(
η̃
)
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(
O†
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12
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O(′)†
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(A.40)
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ỹ
(′)
1 =

1

dof
(
η̃
)
∑

η̃,λ̃

(
O†
T

(′)
13

)
λ̃,σ̃γ̃

(
O12

)
α̃,ρ̃σ̃

(
O(′)†

13

)
γ̃,β̃ρ̃

(
OT12

)
η̃,α̃β̃

(A.62)

z̃
(′)
1 =

1

dof
(
η̃
)
∑

η̃,λ̃

(
O†
T

(′)
23

)
λ̃,σ̃γ̃

(
O12

)
α̃,ρ̃σ̃

(
O(′)†

23

)
γ̃,β̃ρ̃

(
OT12

)
η̃,α̃β̃

(A.63)

x̃
(′)
2 =

1

dof
(
λ̃
)
(
O†
T

(′)
12

)
λ̃,σ̃γ̃

(
O12

)
µ̃,ρ̃σ̃

(
O(′)†

12

)
γ̃,ν̃ρ̃

(
OT12

)
λ̃,µ̃ν̃

(A.64)

ỹ
(′)
2 =

1

dof
(
λ̃
)
(
O†
T

(′)
13

)
λ̃,σ̃γ̃

(
O12

)
µ̃,ρ̃σ̃

(
O(′)†

13

)
γ̃,ν̃ρ̃

(
OT12

)
λ̃,µ̃ν̃

(A.65)

z̃
(′)
2 =

1

dof
(
λ̃
)
(
O†
T

(′)
23

)
λ̃,σ̃γ̃

(
O12

)
µ̃,ρ̃σ̃

(
O(′)†

23

)
γ̃,ν̃ρ̃

(
OT12

)
λ̃,µ̃ν̃

(A.66)

x̃
(′)
3 =

1

dof
(
λ̃
)
(
O†
T

(′)
12

)
λ̃,σ̃γ̃

(
O13

)
µ̃,ρ̃σ̃

(
O(′)†

12

)
γ̃,ν̃ρ̃

(
OT13

)
λ̃,µ̃ν̃

(A.67)

ỹ
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(
OT13

)
λ̃,µ̃ν̃

(A.69)

x̃
(′)
4 =

1

dof
(
λ̃
)
(
O†
T

(′)
12

)
λ̃,σ̃γ̃

(
O23

)
µ̃,ρ̃σ̃

(
O(′)†

12

)
γ̃,ρ̃ν̃

(
OT23

)
λ̃,µ̃ν̃

(A.70)
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ỹ
(′)
4 =

1

dof
(
λ̃
)
(
O†
T

(′)
13

)
λ̃,σ̃γ̃

(
O23

)
µ̃,ρ̃σ̃

(
O(′)†

13

)
γ̃,ρ̃ν̃

(
OT23

)
λ̃,µ̃ν̃

(A.71)

z̃
(′)
4 =

1

dof
(
λ̃
)
(
O†
T

(′)
23

)
λ̃,σ̃γ̃

(
O23

)
µ̃,ρ̃σ̃

(
O(′)†

23

)
γ̃,ν̃ρ̃

(
OT23

)
λ̃,µ̃ν̃

(A.72)

x̃
(′)
5 =

1

dof
(
λ̃
)
(
O†
T

(′)
12

)
λ̃,σ̃γ̃

(
O′12

)
µ̃,ρ̃σ̃

(
O(′)†

12

)
γ̃,ν̃ρ̃

(
OT ′12

)
λ̃,µ̃ν̃

(A.73)

ỹ
(′)
5 =

1

dof
(
λ̃
)
(
O†
T

(′)
13

)
λ̃,σ̃γ̃

(
O′12

)
µ̃,ρ̃σ̃

(
O(′)†

13

)
γ̃,ν̃ρ̃

(
OT ′12

)
λ̃,µ̃ν̃

(A.74)

z̃
(′)
5 =

1

dof
(
ρ̃
)
(
O†
T

(′)
23

)
λ̃,σ̃γ̃

(
O′12

)
µ̃,σ̃σ̃

(
O(′)†

23

)
γ̃,ν̃ρ̃

(
OT ′12

)
λ̃,µ̃ν̃

(A.75)

x̃
(′)
6 =

1

dof
(
λ̃
)
(
O†
T

(′)
12

)
λ̃,σ̃γ̃

(
O′13

)
µ̃,ρ̃σ̃

(
O(′)†

12

)
γ̃,ν̃ρ̃

(
OT ′13

)
λ̃,µ̃ν̃

(A.76)

ỹ
(′)
6 =

1

dof
(
λ̃
)
(
O†
T

(′)
13

)
λ̃,σ̃γ̃

(
O′13

)
µ̃,ρ̃σ̃

(
O(′)†

13

)
γ̃,ν̃ρ̃

(
OT ′13

)
λ̃,µ̃ν̃

(A.77)

z̃
(′)
6 =

1

dof
(
λ̃
)
(
O†
T

(′)
23

)
λ̃,σ̃γ̃

(
O′13

)
µ̃,ρ̃σ̃

(
O(′)†

23

)
γ̃,ρ̃ν̃

(
OT ′13

)
λ̃,µ̃ν̃

(A.78)

x̃
(′)
7 =

1

dof
(
λ̃
)
(
O†
T

(′)
12

)
λ̃,σ̃γ̃

(
O′23

)
µ̃,ρ̃σ̃

(
O(′)†

12

)
γ̃,ρ̃ν̃

(
OT ′23

)
λ̃,µ̃ν̃

(A.79)

ỹ
(′)
7 =

1

dof
(
λ̃
)
(
O†
T

(′)
13

)
λ̃,σ̃γ̃

(
O′23

)
µ̃,ρ̃σ̃

(
O(′)†

13

)
γ̃,ρ̃ν̃

(
OT ′23

)
λ̃,µ̃ν̃

(A.80)

z̃
(′)
7 =

1

dof
(
λ̃
)
(
O†
T

(′)
23

)
λ̃,σ̃γ̃

(
O′23

)
µ̃,ρ̃σ̃

(
O(′)†

23

)
γ̃,ν̃ρ̃

(
OT ′23

)
λ̃,µ̃ν̃

(A.81)

A.3 x, y, z parameters and the 6-J-symbol

Wigner introduced the 3-J symbol [169],
(
j1 j2 J
m1 m2 M

)
,

to describe the coupling of two angular momenta j1 and j2 to a total angular momentum J
for given associated magnetic quantum numbers m1, m2 and M . It is related to the usual
Clebsch-Gordan coefficients through [170]

(
〈j1,m1| ⊗ 〈j2,m2|

)
|J,M〉 = (−1)j1−j2+M

√
2J + 1

(
j1 j2 J
m1 m2 −M

)
, (A.82)

and only non-zero if the following properties are fulfilled [170]:
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• m1 ∈ {−|j1|, ..., |j1|}, m2 ∈ {−|j2|, ..., |j2|} and M ∈ {−|J |, ..., |J |},

• m1 +m2 = M ,

• |j1 − j2| ≤ J ≤ j1 + j2,

• j1 + j2 + J ∈ N.

As it is discussed in Ref. [170] there are – besides a large number of Regge symmetries – three
important symmetries of the 3-J symbol: it is invariant under even permutations of its columns,
i.e.

(
j1 j2 J
m1 m2 M

)
=

(
j2 J j1
m2 M m1

)
=

(
J j1 j1

M m1 m2

)
, (A.83)

but receive a phase factor for odd permutations:

(
j1 j2 J
m1 m2 M

)
= (−1)j1+j2+J

(
j2 j1 J
m2 m1 M

)
= (−1)j1+j2+J

(
j1 J j2
m1 M m2

)
. (A.84)

The third property is that also changing the sign of all magnetic quantum numbers yields a
phase:

(
j1 j2 J
−m1 −m2 −M

)
= (−1)j1+j2+J

(
j1 j2 J
m1 m2 M

)
. (A.85)

If we consider Eq. (A.8) and again use that in the Cartesian basis (~εα̃)
α̃

= δα̃α̃ holds (cf.
Eq. (A.13)) we conclude that C can be written as

C :=

(
~ε †
β̃

)

β̃

(Oij)α̃,β̃γ̃
(
~ε †γ̃

)
γ̃

(~εα̃)
α̃

= (Oij)α̃,β̃γ̃ . (A.86)

As it was done in the defining equations for the x, y, z parameters (Eqs. (A.40 - A.81)) we change
the index notation by removing the underline and conclude that

C = (Oij)α̃,β̃γ̃ =
(
〈ji,mi| ⊗ 〈jj,mj|

)
|Jij,Mij〉 , (A.87)

since phenomenology tells us that C is equal to the corresponding Clebsch-Gordan coefficient for
coupling spin ji of particle Ai and spin jj of Aj to the spin Jij of the dimer dij. Consequently,
one can use Eq. (A.82) and write

(Oij)α̃,β̃γ̃ = (−1)ji−jj+Mij
√

2Jij + 1

(
ji jj Jij
mi mj −Mij

)
. (A.88)

However, in the coupled integral equations appear at the same time projectors (Oij)α̃,γ̃β̃ with
interchanged second and third index (note, that ”interchanged“ does not mean ”renamed“ since
in each scattering process the indices are fixed by the particle allocation). Thus, the question
arises how the relation Eq. (A.88) is changed? The operator Oij couples the fields A†i and A†j
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and according to the order of appearance of these particles within the dimer wave function (fixed
in Eq. (3.4)), the second index corresponds to particle Pi and the third to Pj (cf. Lagrangian
density in Eq. (3.23)). However, this is only true for distinguishable particles Pi and Pj. If
they are identical the swap of them obviously does not change the Clebsch-Gordan coefficient.
Therefore the interchange of second and third index of Oij yields the relation

(Oij)α̃,γ̃β̃ =





(
〈jj,mj| ⊗ 〈ji,mi|

)
|Jij,Mij〉 , for Pi 6= Pj(

〈ji,mi| ⊗ 〈jj,mj|
)
|Jij,Mij〉 , for Pi = Pj

, (A.89)

where the total spin Jij is of course not changed. However, in the upper case this is not our
convention regarding the order of the constituents within a dimer wave function. Hence, we
remember the relation in Eq. (A.29) and write

(Oij)α̃,γ̃β̃ = (−1)(1−δPiPj )(Jij−ji−jj)
(
〈ji,mi| ⊗ 〈jj,mj|

)
|Jij,Mij〉 , (A.90)

which holds for the same set of indices fixed in Eq. (A.87) and where the factor δPiPj ensures
that nothing is changed if the particles are identical. Since the right-hand-side yields a (real)
Clebsch-Gordan coefficient it is Hermitian and thus the left-hand-side must be. Consequently,
Hermitian conjugation does not change Eq. (A.87). In summary we thus find with the help of

Eq. (A.88) for a (due to the particle allocation) fixed set of indices α̃, β̃, γ̃ and i < j ∈ {1, 2, 3}:

(Oij)α̃,β̃γ̃ =
(
〈ji,mi| ⊗ 〈jj,mj|

)
|Jij,Mij〉 = (−1)ji−jj+Mij

√
2Jij + 1

(
ji jj Jij
mi mj −Mij

)
,

(A.91)

(Oij)α̃,γ̃β̃ =
(
〈jj,mj| ⊗ 〈ji,mi|

)
|Jij,Mij〉 = (−1)(1−δPiPj )(Jij−ji−jj)

(
〈ji,mi| ⊗ 〈jj,mj|

)
|Jij,Mij〉

= (−1)(1−δPiPj )(Jij−ji−jj)(−1)ji−jj+Mij
√

2Jij + 1

(
ji jj Jij
mi mj −Mij

)

= (−1)ji−jj+Mij+(1−δPiPj )(Jij−ji−jj)√2Jij + 1

(
ji jj Jij
mi mj −Mij

)
, (A.92)

(
O†ij
)
α̃,γ̃β̃

=
[
(Oij)α̃,β̃γ̃

]†
=

[
(−1)ji−jj+Mij

√
2Jij + 1

(
ji jj Jij
mi mj −Mij

)]†

= (−1)ji−jj+Mij
√

2Jij + 1

(
ji jj Jij
mi mj −Mij

)
, (A.93)

(
O†ij
)
α̃,β̃γ̃

=
[
(Oij)α̃,γ̃β̃

]†
=

[
(−1)Jij−2jj+Mij

√
2Jij + 1

(
ji jj Jij
mi mj −Mij

)]†

= (−1)ji−jj+Mij+(1−δPiPj )(Jij−ji−jj)√2Jij + 1

(
ji jj Jij
mi mj −Mij

)
. (A.94)

These results allow us to write the x, y, z parameters in terms of 3-J symbols. Before we do so
keep in mind that in all Feynman diagrams in appendix C the exchanged particle has the index
ρ, i.e. ρ̃ in the detailed notation of the current section. Hence, depending on the particle Pi, ρ̃
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is either the second or the third index of the projection operator O. With our convention fixed
in Eq. (3.4) it is then also fixed that

(Oij) .̃ , .̃ ρ̃ =
(
〈ji,mi| ⊗ 〈jj,mj|

)
|Jij,Mij〉

= (−1)ji−jj+Mij
√

2Jij + 1

(
ji jj Jij
mi mj −Mij

)
, for i < j ∈ {1, 2, 3} ,

and the relation for (Oij) .̃ ,ρ̃ .̃ is determined by Eq. (A.92). Note, that there is no convention
regarding the channel projectors OTij ; they are simply chosen in the way that the dimer spin
comes first. Thus, one can apply Eq. (A.91) in the form

(
OTij

)
λ̃,µ̃ν̃

=
(
〈Jij,Mij| ⊗ 〈jk,mk|

) ∣∣J(ij)k,M(ij)k

〉

= (−1)Jij−jk+M
√

2J + 1

(
Jij jk J
Mij mk −M

)
, for i < j ∈ {1, 2, 3} .

As an example for this method we again consider y4 derived in the previous section:

y4 =
1

dof(λ̃)

∑

λ̃,σ̃,γ̃,µ̃,ν̃,ρ̃

(
O†T13

)
λ̃,σ̃γ̃

(
O†13

)
γ̃,ρ̃ν̃

(O23)µ̃,σ̃ρ̃ (OT23)λ̃,µ̃ν̃ .

For simplicity we below assume that all particles are distinguishable. Nevertheless, everything
works out in the same way if some particles are identical; one only has to keep in mind that
the indices of some operators O might be interchanged to ensure the right order according to
Eq. (3.4). In terms of 3-J symbols y4 is given by

y4 =
1

dof(λ̃)

∑

λ̃,σ̃,γ̃,µ̃,ν̃,ρ̃

(−1)J13−j2+M
√

2J + 1

(
J13 j2 J

M13(γ̃) m2(σ̃) −M(λ̃)

)

× (−1)j1−j3+M13
√

2J13 + 1

(
j1 j3 J13

m1(ν̃) m3(ρ̃) −M13(γ̃)

)

× (−1)j2−j3+M23
√

2J23 + 1

(
j2 j3 J23

m2(σ̃) m3(ρ̃) −M23(µ̃)

)

× (−1)J23−j1+M
√

2J + 1

(
J23 j1 J

M23(µ̃) m1(ν̃) −M(λ̃)

)
, (A.95)

where we have made the sum over spin indices explicit and used the variables J and M for
the spin channel λ̃ and its magnetic quantum number. Since each magnetic quantum number
implicitly depends on the corresponding index we have written m ≡ m(̃.) to emphasize this
fact. In this sense the summation over all spin indices can be expressed as a summation over all
magnetic quantum numbers. Furthermore, we know from quantum mechanics that (2J + 1) is

the dimension of the associated spin space and thus (2J + 1) = dof(λ̃) holds. Thus, Eq. (A.95)

121



simplifies to

y4 =
√

(2J13 + 1)(2J23 + 1)

|j1|∑

m1=−|j1|

|j2|∑

m2=−|j2|

|j3|∑

m3=−|j3|

|J13|∑

M13=−|J13|

|J23|∑

M23=−|J23|

|J |∑

M=−|J |

× (−1)J13+J23−2j3+M13+M23+2M

(
J13 j2 J
M13 m2 −M

)(
j2 j3 J23

m2 m3 −M23

)

×
(
j1 j3 J13

m1 m3 −M13

)(
J23 j1 J
M23 m1 −M

)
. (A.96)

One observes that the substitution M13 → −M13 does not change the sum in y4 since M13 ∈
{−|J13|, ..., |J13|}:

y4 =
√

(2J13 + 1)(2J23 + 1)

|j1|∑

m1=−|j1|

|j2|∑

m2=−|j2|

|j3|∑

m3=−|j3|

|J13|∑

M13=−|J13|

|J23|∑

M23=−|J23|

|J |∑

M=−|J |

× (−1)J13+J23−2j3−M13+M23+2M

(
J13 j2 J
−M13 m2 −M

)(
j2 j3 J23

m2 m3 −M23

)

×
(
j1 j3 J13

m1 m3 M13

)(
J23 j1 J
M23 m1 −M

)
. (A.97)

Using the symmetry properties of the 3-J symbol given in Eq. (A.83) and Eq. (A.85) yields

y4 =
√

(2J13 + 1)(2J23 + 1)

|j|∑

m=−|j|
(−1)J13+J23−2j3−M13+M23+2M

× (−1)j2+J+J13

(
j2 J J13

−m2 M M13

)(
j2 j3 J23

m2 m3 −M23

)

× (−1)j1+j3+J13

(
j1 j3 J13

−m1 −m3 −M13

)(
j1 J J23

m1 −M M23

)
, (A.98)

with
∑

m being a placeholder for all sums over magnetic quantum numbers.

Now consider the so-called 6-J symbol,

{
j1 j2 J12

j3 J J23

}
,

introduced by Wigner in the same work of Ref. [169]. It is used to describe the coupling of
three spins j1, j2 and j3 to a total spin J with two intermediate spins J12 and J23 coming
from the coupling of j1 with j2 and j2 with j3, respectively. More precisely, it is related to the
Clebsch-Gordan coefficient

〈(j1, (j2, j3)J23) J | ((j1, j2)J12, j3) J〉 , (A.99)
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which couples the incoming spins according to j1⊗ j2 → J12 and J12⊗ j3 → J while in the ”out“
state one has j2 ⊗ j3 → J23 and j1 ⊗ J23 → J . Keep in mind that the order of the respective
spins is important since due to Eq. (A.29) swapping leads to possible phase factors. Following
Ref. [170] we know that the coefficient Eq. (A.99) is related to the Racah W-coefficient via

W (j1j2Jj3; J12J23) =
1√

(2J12 + 1)(2J23 + 1)
〈(j1, (j2, j3)J23) J | ((j1, j2)J12, j3) J〉 , (A.100)

which itself can be written in terms of the 6-J symbol

W (j1j2Jj3; J12J23) = (−1)j1+j2+j3+J

{
j1 j2 J12

j3 J J23

}
. (A.101)

Consequently, one finds that the 6-J symbol above is proportional to the Clebsch-Gordan co-
efficient for the coupling of incoming spins j1 ⊗ j2 → J12, J12 ⊗ j3 → J and outgoing spins
j2 ⊗ j3 → J23, j1 ⊗ J23 → J :

〈(j1, (j2, j3)J23) J | ((j1, j2)J12, j3) J〉 = (−1)j1+j2+j3+J
√

(2J12 + 1)(2J23 + 1)

{
j1 j2 J12

j3 J J23

}
.

(A.102)

In Ref. [170] it is shown that the 6-J symbol has certain symmetries: firstly, it is invariant under
any permutation of columns,
{
j1 j2 j3

j4 j5 j6

}
=

{
j2 j3 j1

j5 j6 j4

}
=

{
j3 j1 j2

j6 j4 j5

}
=

{
j2 j1 j3

j5 j4 j6

}
=

{
j1 j3 j2

j4 j6 j5

}
=

{
j3 j2 j1

j6 j5 j4

}
,

(A.103)

and secondly, it is also invariant if one interchanges the upper and lower argument in each of any
two columns [170]:

{
j1 j2 j3

j4 j5 j6

}
=

{
j1 j5 j6

j4 j2 j3

}
=

{
j4 j5 j3

j1 j2 j6

}
=

{
j4 j2 j6

j1 j5 j3

}
. (A.104)

From the considerations above it is clear that the x, y, z parameters should be related to the 6-J
symbol. Using again our example parameter y4 one can indeed show that this is the case: from
the diagram in Fig. A.2 to which y4 is proportional, one observes that y4 is the coefficient for the
coupling of spins (j2 ⊗ j3 → J23)⊗ j1 → J in the ”in“ state and (j1 ⊗ j3 → J13)⊗ j2 → J in the
outgoing one (remember our convention that the dimer is coupled with the left-over particle to a
total spin J and not vice versa). Comparing this with the relation in Eq. (A.102) one concludes
that one has to interchange j1 with j3 as well as j2 with J13. Thus, with the help of Eq. (A.29)
one finds

y4 = 〈((j1, j3)J13, j2) J | ((j2, j3)J23, j1) J〉
= (−1)J−J13−j2(−1)J13−j1−j3 〈(j2, (j3, j1)J13) J | ((j2, j3)J23, j1) J〉

= (−1)J−J13−j2(−1)J13−j1−j3(−1)j1+j2+j3+J
√

(2J23 + 1)(2J13 + 1)

{
j2 j3 J23

j1 J J13

}

= (−1)2J
√

(2J23 + 1)(2J13 + 1)

{
j1 j3 J13

j2 J J23

}
, (A.105)
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Figure A.2: Diagram to which y4 is proportional.

where we have used Eq. (A.102) in the third and the symmetry properties in Eq. (A.104) in the
fourth step.
In order to check that Eq. (A.105) is a correct representation of the parameter y4 we will verify
that it is equivalent to what we have found in Eq. (A.97). In Ref. [170] it is shown that the 6-J
symbol can be defined in terms of 3-J symbols:

{
j1 j3 J13

j2 J J23

}
=

|j|∑

m=−|j|
(−1)j1−m1+j3−m3+J13−M13+j2−m2+J−M+J23−M23

(
j1 j3 J13

−m1 −m3 −M13

)

×
(
j1 J J23

m1 −M M23

)(
j2 j3 J23

m2 m3 −M23

)(
j2 J J13

−m2 M M13

)
. (A.106)

Hence, we can replace the product of four 3-J symbols in Eq. (A.97) by the 6-J symbol times
the corresponding phase factor in Eq. (A.106) to obtain

y4 =
√

(2J13 + 1)(2J23 + 1)

{
j1 j3 J13

j2 J J23

} |j|∑

m=−|j|
(−1)J13+J23−2j3−M13+M23+2M

× (−1)j2+J+J13(−1)j1+j3+J13(−1)j1−m1+j3−m3+J13−M13+j2−m2+J−M+J23−M23 . (A.107)

In order to simplify the sum over the phase factor

|j|∑

m=−|j|
(−1)4J13+2J23+2J+2j1+2j2−2M13+M−m1−m2−m3 ,

we use that the second condition for a non-vanishing 3-J symbol given on page 118 yields in our
case

−m1 −m3 = M13 ⇒ −(m1 +m3) = M13

−m2 +M = −M13 ⇒ M −m2 = −M13 . (A.108)

Furthermore, the first condition on page 118 implies that among others (J13−M13) ∈ N so that
the factor (−1)2(J13−M13) = 1. Similarly, (−1)2(J13+j2+J) = (−1)2(J23+j1+J) = 1 since the fourth
condition on page 118 tells us that the respective combinations in the exponent are also integers.
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The phase factor is thus equal to

|j|∑

m=−|j|
(−1)4J13+2J23+2J+2j1+2j2−2M13+M−m1−m2−m3 =

|j|∑

m=−|j|
(−1)2J13+2J23+2J+2j1+2j2(−1)2(J13−M13)

= (−1)2J13+2J23+2J+2j1+2j2

= (−1)2(J13+j2+J)(−1)2(J23+j1+J)(−1)−2J

= (−1)−2J = (−1)2J . (A.109)

Therefore the parameter y4 in Eq. (A.107) gets the compact form

y4 = (−1)2J
√

(2J13 + 1)(2J23 + 1)

{
j1 j3 J13

j2 J J23

}
, (A.110)

which is equivalent to Eq. (A.105). Hence, we conclude that indeed both representations Eq. (A.97)
and Eq. (A.105) for the parameter y4 are correct.
The advantage of the 6-J symbol notation in y4 is that in contrast to the definition of y4 in the
previous section (Eq. (A.38)) it is not necessary to have the projection operators O explicitly
given. It is sufficient to know the spin of the three particles and corresponding dimers as well
as the scattering channel. This allows us to analyze systems consisting of particles with spins
higher than 1 which undergo scattering processes in channels higher than 2, where the projection
operators are more and more complicated or even not known.
In the same way as we derived Eq. (A.105) (or equivalently Eq. (A.110)) one can deduce ex-
pressions for all other x, y, z parameters in terms of 6-J symbols. For instance, one can – using
Eq. (A.102) – deduce x

(′)
2 from

x
(′)
2 = δ

(12)
P1P3

〈(
(j2, j3)J

(′)
23 , j1

)
J
∣∣∣ ((j1, j2)J12, j3)

〉
=
〈(

(j1, j2)J
(′)
12 , j1

)
J
∣∣∣ ((j1, j2)J12, j1)

〉

= (−1)2J

√(
2J

(′)
12 + 1

)
(2J12 + 1)

{
j1 j2 J

(′)
12

j1 J J12

}
,

and y
(′)
2 from

y
(′)
2 = δP1P2

〈(
(j2, j3)J

(′)
23 , j1

)
J
∣∣∣ ((j1, j2)J12, j3)

〉
=
〈(

(j1, j3)J
(′)
13 , j1

)
J
∣∣∣ ((j1, j1)J12, j3)

〉

= (−1)(1−δP1P3 )(J
(′)
13−j1−j3)

〈(
(j3, j1)J

(′)
13 , j1

)
J
∣∣∣ ((j1, j1)J12, j3)

〉

= (−1)
2J+(1−δP1P3)

(
J
(′)
13−j1−j3

)√(
2J

(′)
13 + 1

)
(2J12 + 1)

{
j3 j1 J

(′)
13

j1 J J12

}
.

Note, that the Kronecker-delta in front of the Clebsch-Gordan coefficient originally stands in
front of the corresponding diagram. Therefore the diagram itself is changed before one applies
the Feynman rules and thus one must not interchange the spins within the Clebsch-Gordan
coefficient in the first line; they are interchanged due to the different vertex factor one has to
apply for the changed diagram. However, in the second line of y

(′)
2 we indeed swap the spins in
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the coefficient and thus pick up a phase factor (as long as P1 6= P3).
The results are summarized in Eqs. (A.111 - A.146) where we notice that the parameters with
index ”1“ are identical to those with index ”2“. Keep in mind that we have derived all relations
in terms of spin only. Consequently, one has to multiply the results of the x, y, z, parameters for
spin with the results for isospin to get the full spin and isospin dependent parameter. However,
we do not give the isospin formulae explicitly since spin and isospin behave analogously. Hence,
one simply has to replace all j’s and J ’s by i’s and I’s for the latter. As a practical remark in
the application of the 6-J symbol method, note that in Mathematica the command SixJSymbol

provides an automated calculation of 6-J symbols for given spins.

x
(′)
1,2 = (−1)2J

√(
2J

(′)
12 + 1

)
(2J12 + 1)

{
j1 j2 J

(′)
12

j1 J J12

}
(A.111)

y
(′)
1,2 = (−1)

2J+(1−δP1P3)
(
J
(′)
13−j1−j3

)√(
2J

(′)
13 + 1

)
(2J12 + 1)

{
j3 j1 J

(′)
13

j1 J J12

}
(A.112)

z
(′)
1,2 = (−1)

2J+(1−δP2P3)
(
J
(′)
23−j2−j3

)√(
2J

(′)
23 + 1

)
(2J12 + 1)

{
j3 j2 J

(′)
23

j1 J J12

}
(A.113)

x
(′)
3 = (−1)

2J+(1−δP1P2)
(
J
(′)
12−j1−j2

)√(
2J

(′)
12 + 1

)
(2J13 + 1)

{
j2 j1 J

(′)
12

j1 J J13

}
(A.114)

y
(′)
3 = (−1)2J

√(
2J

(′)
13 + 1

)
(2J13 + 1)

{
j1 j3 J

(′)
13

j1 J J13

}
(A.115)

z
(′)
3 = (−1)2J

√(
2J

(′)
23 + 1

)
(2J13 + 1)

{
j2 j3 J

(′)
23

j1 J J13

}
(A.116)

x
(′)
4 = (−1)2J

√(
2J

(′)
12 + 1

)
(2J23 + 1)

{
j1 j2 J

(′)
12

j2 J J23

}
(A.117)

y
(′)
4 = (−1)2J

√(
2J

(′)
13 + 1

)
(2J23 + 1)

{
j1 j3 J

(′)
13

j2 J J23

}
(A.118)

z
(′)
4 = (−1)2J

√(
2J

(′)
23 + 1

)
(2J23 + 1)

{
j2 j3 J

(′)
23

j2 J J23

}
(A.119)

x
(′)
5 = (−1)2J

√(
2J

(′)
12 + 1

)
(2J ′12 + 1)

{
j1 j2 J

(′)
12

j1 J J ′12

}
(A.120)

y
(′)
5 = (−1)

2J+(1−δP1P3)
(
J
(′)
13−j1−j3

)√(
2J

(′)
13 + 1

)
(2J ′12 + 1)

{
j3 j1 J

(′)
13

j1 J J ′12

}
(A.121)

z
(′)
5 = (−1)

2J+(1−δP2P3)
(
J
(′)
23−j2−j3

)√(
2J

(′)
23 + 1

)
(2J ′12 + 1)

{
j3 j2 J

(′)
23

j1 J J ′12

}
(A.122)
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x
(′)
6 = (−1)

2J+(1−δP1P2)
(
J
(′)
12−j1−j2

)√(
2J

(′)
12 + 1

)
(2J ′13 + 1)

{
j2 j1 J

(′)
12

j1 J J ′13

}
(A.123)

y
(′)
6 = (−1)2J

√(
2J

(′)
13 + 1

)
(2J ′13 + 1)

{
j1 j3 J

(′)
13

j1 J J ′13

}
(A.124)

z
(′)
6 = (−1)2J

√(
2J

(′)
23 + 1

)
(2J ′13 + 1)

{
j2 j3 J

(′)
23

j1 J J ′13

}
(A.125)

x
(′)
7 = (−1)2J

√(
2J

(′)
12 + 1

)
(2J ′23 + 1)

{
j1 j2 J

(′)
12

j2 J J ′23

}
(A.126)

y
(′)
7 = (−1)2J

√(
2J

(′)
13 + 1

)
(2J ′23 + 1)

{
j1 j3 J

(′)
13

j2 J J ′23

}
(A.127)

z
(′)
7 = (−1)2J

√(
2J

(′)
23 + 1

)
(2J ′23 + 1)

{
j2 j3 J

(′)
23

j2 J J ′23

}
(A.128)

x̃
(′)
1,2 = (−1)

2J+(1−δP1P2)
(
J12+J

(′)
12−2j1−2j2

)√(
2J

(′)
12 + 1

)
(2J12 + 1)

{
j2 j1 J

(′)
12

j2 J J12

}
(A.129)

ỹ
(′)
1,2 = (−1)

2J+(1−δP1P2)(J12−j1−j2)+(1−δP1P3)
(
J
(′)
13−j1−j3

)√(
2J

(′)
13 + 1

)
(2J12 + 1)

{
j3 j1 J

(′)
13

j2 J J12

}

(A.130)

z̃
(′)
1,2 = (−1)

2J+(1−δP2P3)
(
J
(′)
23−j2−j3

)√(
2J

(′)
23 + 1

)
(2J12 + 1)

{
j3 j2 J

(′)
23

j2 J J12

}
(A.131)

x̃
(′)
3 = (−1)

2J+(1−δP1P3)(J13−j1−j3)+(1−δP1P2)
(
J
(′)
12−j1−j2

)√(
2J

(′)
12 + 1

)
(2J13 + 1)

{
j2 j1 J

(′)
12

j3 J J13

}

(A.132)

ỹ
(′)
3 = (−1)

2J+(1−δP1P3)
(
J13+J

(′)
13−2j1−2j3

)√(
2J

(′)
13 + 1

)
(2J13 + 1)

{
j3 j1 J

(′)
13

j3 J J13

}
(A.133)

z̃
(′)
3 = (−1)2J

√(
2J

(′)
23 + 1

)
(2J13 + 1)

{
j2 j3 J

(′)
23

j3 J J13

}
(A.134)

x̃
(′)
4 = (−1)2J+(1−δP2P3)(J23−j2−j3)

√(
2J

(′)
12 + 1

)
(2J23 + 1)

{
j1 j2 J

(′)
12

j3 J J23

}
(A.135)

ỹ
(′)
4 = (−1)2J

√(
2J

(′)
13 + 1

)
(2J23 + 1)

{
j1 j3 J

(′)
13

j3 J J23

}
(A.136)

z̃
(′)
4 = (−1)

2J+(1−δP2P3)
(
J23+J

(′)
23−2j2−2j3

)√(
2J

(′)
23 + 1

)
(2J23 + 1)

{
j3 j2 J

(′)
23

j3 J J23

}
(A.137)
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x̃
(′)
5 = (−1)

2J+(1−δP1P2)
(
J12+J

(′)
12−2j1−2j2

)√(
2J

(′)
12 + 1

)
(2J ′12 + 1)

{
j2 j1 J

(′)
12

j2 J J ′12

}
(A.138)

ỹ
(′)
5 = (−1)

2J+(1−δP1P2)(J ′12−j1−j2)+(1−δP1P3)
(
J
(′)
13−j1−j3

)√(
2J

(′)
13 + 1

)
(2J ′12 + 1)

{
j3 j1 J

(′)
13

j2 J J ′12

}

(A.139)

z̃
(′)
5 = (−1)

2J+(1−δP2P3)
(
J
(′)
23−j2−j3

)√(
2J

(′)
23 + 1

)
(2J ′12 + 1)

{
j3 j2 J

(′)
23

j2 J J ′12

}
(A.140)

x̃
(′)
6 = (−1)

2J+(1−δP1P3)(J ′13−j1−j3)+(1−δP1P2)
(
J
(′)
12−j1−j2

)√(
2J

(′)
12 + 1

)
(2J ′13 + 1)

{
j2 j1 J

(′)
12

j3 J J ′13

}

(A.141)

ỹ
(′)
6 = (−1)

2J+(1−δP1P3)
(
J13+J

(′)
13−2j1−2j3

)√(
2J

(′)
13 + 1

)
(2J ′13 + 1)

{
j1 j3 J

(′)
13

j1 J J ′13

}
(A.142)

z̃
(′)
6 = (−1)2J

√(
2J

(′)
23 + 1

)
(2J ′13 + 1)

{
j2 j3 J

(′)
23

j3 J J ′13

}
(A.143)

x̃
(′)
7 = (−1)2J+(1−δP2P3)(J ′23−j2−j3)

√(
2J

(′)
12 + 1

)
(2J ′23 + 1)

{
j1 j2 J

(′)
12

j3 J J ′23

}
(A.144)

ỹ
(′)
7 = (−1)2J

√(
2J

(′)
13 + 1

)
(2J ′23 + 1)

{
j1 j3 J

(′)
13

j3 J J ′23

}
(A.145)

z̃
(′)
7 = (−1)

2J+(1−δP2P3)
(
J23+J

(′)
23−2j2−2j3

)√(
2J

(′)
23 + 1

)
(2J ′23 + 1)

{
j3 j2 J

(′)
23

j3 J J ′23

}
(A.146)
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A.4 Projection operator summary tables

J (Ai)β̃ ⊗ J (Aj)γ̃ → J (dij)α̃ index assignment projection operator (Oij)α̃,β̃γ̃

0 ⊗ 0 → 0

α̃ = � spin 0 index

β̃ = � spin 0 index
γ̃ = � spin 0 index

1

0 ⊗ 1
2
→ 1

2

α̃ = α spin 1/2 index

β̃ = � spin 0 index
γ̃ = γ spin 1/2 index

δαγ

0 ⊗ 1 → 1

α̃ = i spin 1 index

β̃ = � spin 0 index
γ̃ = k spin 1 index

δik

1
2
⊗ 0 → 1

2

α̃ = α spin 1/2 index

β̃ = β spin 1/2 index
γ̃ = � spin 0 index

δαβ

1
2
⊗ 1

2
→ 0

α̃ = � spin 0 index

β̃ = β spin 1/2 index
γ̃ = γ spin 1/2 index

i√
2

(σ2)βγ

1
2
⊗ 1

2
→ 1

α̃ = i spin 1 index

β̃ = β spin 1/2 index
γ̃ = γ spin 1/2 index

i√
2

(σiσ2)βγ

1
2
⊗ 1 → 1

2

α̃ = α spin 1/2 index

β̃ = β spin 1/2 index
γ̃ = k spin 1 index

1√
3

(σk)βα

1 ⊗ 0 → 1

α̃ = i spin 1 index

β̃ = j spin 1 index
γ̃ = � spin 0 index

δij

1 ⊗ 1
2
→ 1

2

α̃ = α spin 1/2 index

β̃ = j spin 1 index
γ̃ = γ spin 1/2 index

− 1√
3

(σj)γα

1 ⊗ 1 → 0

α̃ = � spin 0 index

β̃ = j spin 1 index
γ̃ = k spin 1 index

− 1√
3
δjk

1 ⊗ 1 → 1

α̃ = i spin 1 index

β̃ = j spin 1 index
γ̃ = k spin 1 index

− 1√
2

(Ui)jk

Table A.1: Summary of spin projection operators where the indices {α, β, γ...} ∈ {1, 2} re-
present spin 1

2
, indices {i, j, k...} ∈ {1, 2, 3} represent spin 1, σi are the SU(2) generators (Pauli

matrices) and Ui are the generators of SO(3).

129



J (Ai)σ̃ ⊗ J (Aj)ρ̃ → J
(
d

(′)
ij

)
µ̃

index assignment projection operator
(
O(′)
ij

)
µ̃,σ̃ρ̃

0 ⊗ 0 → 0
µ̃ = � spin 0 index
σ̃ = � spin 0 index
ρ̃ = � spin 0 index

1

0 ⊗ 1
2
→ 1

2

µ̃ = µ spin 1/2 index
σ̃ = � spin 0 index
ρ̃ = ρ spin 1/2 index

δµρ

0 ⊗ 1 → 1
µ̃ = m spin 1 index
σ̃ = � spin 0 index
ρ̃ = r spin 1 index

δmr

1
2
⊗ 0 → 1

2

µ̃ = µ spin 1/2 index
σ̃ = σ spin 1/2 index
ρ̃ = � spin 0 index

δµσ

1
2
⊗ 1

2
→ 0

µ̃ = � spin 0 index
σ̃ = σ spin 1/2 index
ρ̃ = ρ spin 1/2 index

i√
2

(σ2)σρ

1
2
⊗ 1

2
→ 1

µ̃ = m spin 1 index
σ̃ = σ spin 1/2 index
ρ̃ = ρ spin 1/2 index

i√
2

(σmσ2)σρ

1
2
⊗ 1 → 1

2

µ̃ = µ spin 1/2 index
σ̃ = σ spin 1/2 index
ρ̃ = r spin 1 index

1√
3

(σr)σµ

1 ⊗ 0 → 1
µ̃ = m spin 1 index
σ̃ = s spin 1 index
ρ̃ = � spin 0 index

δms

1 ⊗ 1
2
→ 1

2

µ̃ = µ spin 1/2 index
σ̃ = s spin 1 index
ρ̃ = ρ spin 1/2 index

− 1√
3

(σs)ρµ

1 ⊗ 1 → 0
µ̃ = � spin 0 index
σ̃ = s spin 1 index
ρ̃ = r spin 1 index

− 1√
3
δsr

1 ⊗ 1 → 1
µ̃ = m spin 1 index
σ̃ = s spin 1 index
ρ̃ = r spin 1 index

− 1√
2

(Um)sr

Table A.2: Summary of spin projection operators where the indices are chosen according to
their appearance in the x, y, z parameters Eqs. (A.40 - A.81).
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J (Ai)ρ̃ ⊗ J (Aj)σ̃ → J
(
d

(′)
ij

)
µ̃

index assignment projection operator
(
O(′)
ij

)
µ̃,ρ̃σ̃

0 ⊗ 0 → 0
µ̃ = � spin 0 index
ρ̃ = � spin 0 index
σ̃ = � spin 0 index

1

0 ⊗ 1
2
→ 1

2

µ̃ = µ spin 1/2 index
ρ̃ = � spin 0 index
σ̃ = σ spin 1/2 index

δµσ

0 ⊗ 1 → 1
µ̃ = m spin 1 index
ρ̃ = � spin 0 index
σ̃ = s spin 1 index

δms

1
2
⊗ 0 → 1

2

µ̃ = µ spin 1/2 index
ρ̃ = ρ spin 1/2 index
σ̃ = � spin 0 index

δµρ

1
2
⊗ 1

2
→ 0

µ̃ = � spin 0 index
ρ̃ = ρ spin 1/2 index
σ̃ = σ spin 1/2 index

i√
2

(σ2)ρσ

1
2
⊗ 1

2
→ 1

µ̃ = m spin 1 index
ρ̃ = ρ spin 1/2 index
σ̃ = σ spin 1/2 index

i√
2

(σmσ2)ρσ

1
2
⊗ 1 → 1

2

µ̃ = µ spin 1/2 index
ρ̃ = ρ spin 1/2 index
σ̃ = s spin 1 index

1√
3

(σs)ρµ

1 ⊗ 0 → 1
µ̃ = m spin 1 index
ρ̃ = r spin 1 index
σ̃ = � spin 0 index

δmr

1 ⊗ 1
2
→ 1

2

µ̃ = µ spin 1/2 index
ρ̃ = r spin 1 index
σ̃ = σ spin 1/2 index

− 1√
3

(σr)σµ

1 ⊗ 1 → 0
µ̃ = � spin 0 index
ρ̃ = r spin 1 index
σ̃ = s spin 1 index

− 1√
3
δrs

1 ⊗ 1 → 1
µ̃ = m spin 1 index
ρ̃ = r spin 1 index
σ̃ = s spin 1 index

− 1√
2

(Um)rs

Table A.3: Summary of spin projection operators where the indices are chosen according to
their appearance in the x, y, z parameters Eqs. (A.40 - A.81).
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J (Ai)ν̃ ⊗ J (Aj)ρ̃ → J
(
d

(′)
ij

)
γ̃

index assignment projection operator
(
O(′)†
ij

)
γ̃,ρ̃ν̃

0 ⊗ 0 → 0
γ̃ = � spin 0 index
ν̃ = � spin 0 index
ρ̃ = � spin 0 index

1

0 ⊗ 1
2
→ 1

2

γ̃ = γ spin 1/2 index
ν̃ = � spin 0 index
ρ̃ = ρ spin 1/2 index

δργ

0 ⊗ 1 → 1
γ̃ = g spin 1 index
ν̃ = � spin 0 index
ρ̃ = r spin 1 index

δrg

1
2
⊗ 0 → 1

2

γ̃ = γ spin 1/2 index
ν̃ = ν spin 1/2 index
ρ̃ = � spin 0 index

δνγ

1
2
⊗ 1

2
→ 0

γ̃ = � spin 0 index
ν̃ = ν spin 1/2 index
ρ̃ = ρ spin 1/2 index

− i√
2

(σ2)ρν

1
2
⊗ 1

2
→ 1

γ̃ = g spin 1 index
ν̃ = ν spin 1/2 index
ρ̃ = ρ spin 1/2 index

− i√
2

(σ2σg)ρν

1
2
⊗ 1 → 1

2

γ̃ = γ spin 1/2 index
ν̃ = ν spin 1/2 index
ρ̃ = r spin 1 index

1√
3

(σr)γν

1 ⊗ 0 → 1
γ̃ = g spin 1 index
ν̃ = n spin 1 index
ρ̃ = � spin 0 index

δng

1 ⊗ 1
2
→ 1

2

γ̃ = γ spin 1/2 index
ν̃ = n spin 1 index
ρ̃ = ρ spin 1/2 index

− 1√
3

(σn)γρ

1 ⊗ 1 → 0
γ̃ = � spin 0 index
ν̃ = n spin 1 index
ρ̃ = r spin 1 index

− 1√
3
δrn

1 ⊗ 1 → 1
γ̃ = g spin 1 index
ν̃ = n spin 1 index
ρ̃ = r spin 1 index

− 1√
2

(Ug)rn

Table A.4: Summary of spin projection operators where the indices are chosen according to
their appearance in the x, y, z parameters Eqs. (A.40 - A.81).
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J (Ai)ρ̃ ⊗ J (Aj)ν̃ → J
(
d

(′)
ij

)
γ̃

index assignment projection operator
(
O(′)†
ij

)
γ̃,ν̃ρ̃

0 ⊗ 0 → 0
γ̃ = � spin 0 index
ρ̃ = � spin 0 index
ν̃ = � spin 0 index

1

0 ⊗ 1
2
→ 1

2

γ̃ = γ spin 1/2 index
ρ̃ = � spin 0 index
ν̃ = ν spin 1/2 index

δνγ

0 ⊗ 1 → 1
γ̃ = g spin 1 index
ρ̃ = � spin 0 index
ν̃ = n spin 1 index

δng

1
2
⊗ 0 → 1

2

γ̃ = γ spin 1/2 index
ρ̃ = ρ spin 1/2 index
ν̃ = � spin 0 index

δργ

1
2
⊗ 1

2
→ 0

γ̃ = � spin 0 index
ρ̃ = ρ spin 1/2 index
ν̃ = ν spin 1/2 index

− i√
2

(σ2)νρ

1
2
⊗ 1

2
→ 1

γ̃ = g spin 1 index
ρ̃ = ρ spin 1/2 index
ν̃ = ν spin 1/2 index

− i√
2

(σ2σg)νρ

1
2
⊗ 1 → 1

2

γ̃ = γ spin 1/2 index
ρ̃ = ρ spin 1/2 index
ν̃ = n spin 1 index

1√
3

(σn)γρ

1 ⊗ 0 → 1
γ̃ = g spin 1 index
ρ̃ = r spin 1 index
ν̃ = � spin 0 index

δrg

1 ⊗ 1
2
→ 1

2

γ̃ = γ spin 1/2 index
ρ̃ = r spin 1 index
ν̃ = ν spin 1/2 index

− 1√
3

(σr)γν

1 ⊗ 1 → 0
γ̃ = � spin 0 index
ρ̃ = r spin 1 index
ν̃ = n spin 1 index

− 1√
3
δnr

1 ⊗ 1 → 1
γ̃ = g spin 1 index
ρ̃ = r spin 1 index
ν̃ = n spin 1 index

− 1√
2

(Ug)nr

Table A.5: Summary of spin projection operators where the indices are chosen according to
their appearance in the x, y, z parameters Eqs. (A.40 - A.81).
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J
(
d

(′)
ij

)
µ̃
⊗ J (Ak)ν̃ → channel λ̃ index assignment projection operator

(
O
T

(′)
ij

)
λ̃,µ̃ν̃

0 ⊗ 0 → 0
λ̃ = � spin 0 index
µ̃ = � spin 0 index
ν̃ = � spin 0 index

1

0 ⊗ 1
2
→ 1

2

λ̃ = λ spin 1/2 index
µ̃ = � spin 0 index
ν̃ = ν spin 1/2 index

δλν

0 ⊗ 1 → 1
λ̃ = ` spin 1 index
µ̃ = � spin 0 index
ν̃ = n spin 1 index

δ`n

1
2
⊗ 0 → 1

2

λ̃ = λ spin 1/2 index
µ̃ = µ spin 1/2 index
ν̃ = � spin 0 index

δλµ

1
2
⊗ 1

2
→ 0

λ̃ = � spin 0 index
µ̃ = µ spin 1/2 index
ν̃ = ν spin 1/2 index

i√
2

(σ2)µν

1
2
⊗ 1

2
→ 1

λ̃ = ` spin 1 index
µ̃ = µ spin 1/2 index
ν̃ = ν spin 1/2 index

i√
2

(σ`σ2)µν

1
2
⊗ 1 → 1

2

λ̃ = λ spin 1/2 index
µ̃ = µ spin 1/2 index
ν̃ = n spin 1 index

1√
3

(σn)µλ

1
2
⊗ 1 → 3

2

λ̃ = `λ spin 3/2 index
µ̃ = µ spin 1/2 index
ν̃ = n spin 1 index

1
3

[
(σ`σn)µλ + δ`nδµλ

]

1 ⊗ 0 → 1
λ̃ = ` spin 1 index
µ̃ = m spin 1 index
ν̃ = � spin 0 index

δ`m

1 ⊗ 1
2
→ 1

2

λ̃ = λ spin 1/2 index
µ̃ = m spin 1 index
ν̃ = ν spin 1/2 index

− 1√
3

(σm)νλ

1 ⊗ 1
2
→ 3

2

λ̃ = `λ spin 3/2 index
µ̃ = m spin 1 index
ν̃ = ν spin 1/2 index

1
3

[(σ`σm)νλ + δ`mδνλ]

1 ⊗ 1 → 0
λ̃ = � spin 0 index
µ̃ = m spin 1 index
ν̃ = n spin 1 index

− 1√
3
δmn

1 ⊗ 1 → 1
λ̃ = ` spin 1 index
µ̃ = m spin 1 index
ν̃ = n spin 1 index

− 1√
2

(U`)mn

1 ⊗ 1 → 2
λ̃ = `k spin 2 index
µ̃ = m spin 1 index
ν̃ = n spin 1 index

1
2

[
δ`mδkn + δ`nδkm − 2

3
δ`kδmn

]

Table A.6: Summary of spin projectors where the indices are chosen according to their appearance in
the x, y, z parameters Eqs. (A.40 - A.81). 134



J
(
d

(′)
ij

)
γ̃
⊗ J (Ak)σ̃ → channel λ̃ index assignment projection operator

(
O†
T

(′)
ij

)
λ̃,σ̃γ̃

0 ⊗ 0 → 0
λ̃ = � spin 0 index
γ̃ = � spin 0 index
σ̃ = � spin 0 index

1

0 ⊗ 1
2
→ 1

2

λ̃ = λ spin 1/2 index
γ̃ = � spin 0 index
σ̃ = σ spin 1/2 index

δσλ

0 ⊗ 1 → 1
λ̃ = ` spin 1 index
γ̃ = � spin 0 index
σ̃ = s spin 1 index

δs`

1
2
⊗ 0 → 1

2

λ̃ = λ spin 1/2 index
γ̃ = γ spin 1/2 index
σ̃ = � spin 0 index

δγλ

1
2
⊗ 1

2
→ 0

λ̃ = � spin 0 index
γ̃ = γ spin 1/2 index
σ̃ = σ spin 1/2 index

− i√
2

(σ2)σγ

1
2
⊗ 1

2
→ 1

λ̃ = ` spin 1 index
γ̃ = γ spin 1/2 index
σ̃ = σ spin 1/2 index

− i√
2

(σ2σ`)σγ

1
2
⊗ 1 → 1

2

λ̃ = λ spin 1/2 index
γ̃ = γ spin 1/2 index
σ̃ = s spin 1 index

1√
3

(σs)λγ

1
2
⊗ 1 → 3

2

λ̃ = `λ spin 3/2 index
γ̃ = γ spin 1/2 index
σ̃ = s spin 1 index

1
3

[
(σsσ`)λγ + δs`δλγ

]

1 ⊗ 0 → 1
λ̃ = ` spin 1 index
γ̃ = g spin 1 index
σ̃ = � spin 0 index

δg`

1 ⊗ 1
2
→ 1

2

λ̃ = λ spin 1/2 index
γ̃ = g spin 1 index
σ̃ = σ spin 1/2 index

− 1√
3

(σg)λσ

1 ⊗ 1
2
→ 3

2

λ̃ = `λ spin 3/2 index
γ̃ = g spin 1 index
σ̃ = σ spin 1/2 index

1
3

[
(σgσ`)λσ + δg`δλσ

]

1 ⊗ 1 → 0
λ̃ = � spin 0 index
γ̃ = g spin 1 index
σ̃ = s spin 1 index

− 1√
3
δsg

1 ⊗ 1 → 1
λ̃ = ` spin 1 index
γ̃ = g spin 1 index
σ̃ = s spin 1 index

− 1√
2

(U`)sg

1 ⊗ 1 → 2
λ̃ = `k spin 2 index
γ̃ = g spin 1 index
σ̃ = s spin 1 index

1
2

[
δg`δsk + δs`δgk − 2

3
δk`δsg

]

Table A.7: Summary of spin projectors where the indices are chosen according to their appearance in
the x, y, z parameters Eqs. (A.40 - A.81). 135



Appendix B

Symmetry factors

In this section we will determine the symmetry factors of the different diagram topologies ap-
pearing in this work. For this purpose we completely ignore spin and isospin degrees of freedom
and consider without loss of generality only the part dij(x) ∼ Aj(x)Ai(x) of the dimer wave
function. Namely, we ignore the terms proportional to Āj(x)Āi(x) etc. since they lead to the
same symmetry factors. The notation follows section A.1 where we have fixed in Eq. (A.1) how
bra or ket vectors with arbitrary momentum are related to the vacuum state |0〉. Since the field

A(†)(x) ∼ â
(†)
p is related by a Fourier transform to the respective creation or annihilation opera-

tors we use the name of the fields (A
(†)
i , d

(†)
ij , ...) as a representation for those (note, that one can

distinguish them by their argument: the field depends on coordinate variables and the creation
and annihilation operators depend on momenta). The only important property of a particle in
this section is whether it is a fermion or a boson since the former can cause additional minus
signs. Therefore it is useful to extend the notation and replace Ai by Fi if the corresponding
particle is a fermion. In the same way we write for fermionic dimers fij instead of dij where the
latter is still used for bosons. The equal time anticommutators of two fermion fields are then
given by (cf. Ref. [1])

{
Fi(x), F †j (y)

}
= δij δ

(3)(x− y) ,
{
Fi(x), Fj(y)

}
=
{
F †i (x), F †j (y)

}
= 0 . (B.1)

Consequently, the creation and annihilation operator (also for fermions there is just one, re-
spectively, since we consider a non-relativistic theory without anti-particles) obey equal time
anticommutators [1],

{(
Fi

)(p)

α
,
(
F †j

)(q)

β

}
= δij δαβ (2π)3δ(3)(p− q) ,

{(
Fi

)(p)

α
,
(
Fj

)(q)

β

}
=

{(
F †i

)(p)

α
,
(
F †j

)(q)

β

}
= 0 , (B.2)

where we have added combined spin and isospin indices α and β for completeness although we
will neglect these degrees of freedom in the following. Furthermore, we have used – as explained
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above – the same symbol F for the operators as for the fields themselves, but with explicit de-
pendence on the momenta. Below we will neglect this explicit dependence and instead write in
this section Fi(x) if the field itself is meant.
In simple words, the interchange of any two fermion fields or operators yields a factor of (−1).
Only in vertices it holds for operator combinations like (d†ijFjFi) that for Pi = Pj the two now
identical fermion operators Fi within this vertex commute since they are annihilated at the same
point and time. As a remark, note that there are of course no spinless fermions in nature so
the latter statement is a simplification: more precisely one observes that two identical fermions
in such a vertex must be in different spin states due to the Pauli exclusion principle, that is,
(d†ij)α(O†ij)α,γβ(Fi)γ(Fi)β. Adding a third fermion (F †k )η from the right to the system it is clear

that one can directly contract (Fi)β with (F †k )η. For the other contraction (yielding the same
diagram) where γ and η has to be coupled one picks up a minus sign from interchanging (Fi)β
and (Fi)γ. However, this minus sign is canceled by the projection operator Oij 6= 1 which is for
particles with spin not trivial. At the end one always finds a factor of ”2“ for contractions like
that. This factor would be absent if one particle in the vertex is Fj 6= Fi so that the particles are

distinguishable because the contractions of (F †k )η with these fields lead to two different diagrams.
Hence, we conclude that the simplification mentioned above leads to the correct result and is
thus justified. Furthermore, one has to keep in mind that a contracted pair of two fermions,
FiF

†
j , commutes with all other fields.

In the following we have to deal with three different topologies which define the symmetry factors
Sij, Sel and Sijk. The procedure will be to write down the matrix element of the amplitude T for
each diagram topology with regard to identical particles. Then one can analyze all combinations
of fermionic and bosonic fields which are possible in the considered diagram so that one can
determine the right contractions and thus its symmetry factor S via T ∼ 〈out| ... |in〉 ∼ S.
The LaTex stylefile simplewick.sty used to type the contractions in this work was provided in
Ref. [171].

B.1 Symmetry factor Sij of self-energy diagrams

The topology of self-energy diagrams is shown in Fig. B.1. Incoming and outgoing dimers dij
have the same momentum p and the particles in the loop Ai and Aj are distinguishable if Pi 6= Pj,
but in the special case where Pi = Pj it holds that Aj ≡ Ai. Keep in mind that the order of
the operators Ai and Aj is fixed by the convention dij ∼ AjAi for i < j ∈ {1, 2, 3} in Eq. (3.4).
Thus, for all dimers dij with i < j the self-energy amplitude TSE can be read off from Fig. B.1:

TSE ∼ 〈p|
(
d†ijO†ijAjAi

)(
A†iA

†
jOijdij

)
|p〉

= 〈0| dij
(
d†ijAjAi

)(
A†iA

†
jdij

)
d†ij |0〉 , ∀ i < j ∈ {1, 2, 3} , (B.3)

where we have used in the second step that the projection operators Oij = 1 for spin- and
isospinless fields. Before we continue we have to distinguish two cases, namely whether Pi is
identical to Pj or not. We start with the first.
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p p

Ai

Aj

dij diji TSE =

Figure B.1: Topology of self-energy diagrams with equal incoming and outgoing momentum p.
The particles in the loop can be either distinguishable (Ai 6= Aj) or identical (Aj ≡ Ai).

Case 1: Pi 6= Pj

The symmetry factor Sij depends on the particle species. Thus, we have to consider four addi-
tional cases regarding the fermionic or bosonic nature of the particles:

• only bosons:

TSE ∼ 〈0|dij(d†ijAjAi)(A†iA†jdij)d†ij|0〉 = 〈0|dijd†ijAiA†iAjA†jdijd†ij|0〉 ∼ Sij = +1 ,

• Ai = Fi is a fermion ⇒ dij = fij is a fermion:

TSE ∼ 〈0|fij(f †ijAjFi)(F †i A†jfij)f †ij|0〉 = 〈0|fijf †ijFiF †i AjA†jfijf †ij|0〉 ∼ Sij = +1 ,

• Aj = Fj is a fermion ⇒ dij = fij is a fermion:

TSE ∼ 〈0|fij(f †ijFjAi)(A†iF †j fij)f †ij|0〉 = 〈0|fijf †ijAiA†iFjF †j fijf †ij|0〉 ∼ Sij = +1 ,

• Ai = Fi, Aj = Fj are fermions:

TSE ∼ 〈0|dij(d†ijFjFi)(F †i F †j dij)d†ij|0〉 = 〈0|dijd†ijFiF †i FjF †j dijd†ij|0〉 ∼ Sij = +1 .

Next, we consider the case with identical particles.

Case 2: Pi = Pj

Since Pi = Pj the field Aj is identical to Ai. Thus, there are only two additional cases left: either
Ai is a fermion or not. However, now there are more allowed contractions leading to the same
diagram. We find:

• only bosons:

TSE ∼ 〈0|dijd†ij[(AiAi)(A†iA†i ) + (AiAi)(A
†
iA
†
i )]dijd

†
ij|0〉

= 2 〈0|dijd†ijAiA†iAiA†idijd†ij|0〉 ∼ Sij = +2 ,
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i Tel =
dij

Ai

Aj

Ai

Aj

p

q

p

q

Figure B.2: Topology of a generic two-body scattering process. Since elastic scattering is con-
sidered the momenta p and q are equal in initial and final state. The scattered particles can be
either distinguishable (Ai 6= Aj) or identical (Aj ≡ Ai).

• Ai = Fi is a fermion:

TSE ∼ 〈0|dijd†ij[(FiFi)(F †i F †i ) + (FiFi)(F
†
i F
†
i )]dijd

†
ij|0〉

= 2 〈0|dijd†ijFiF †i FiF †i dijd†ij|0〉 ∼ Sij = +2 .

In summary we conclude that there are no minus signs independently of the number of fermions
in the system and that for identical particles one gets an additional factor of two:

Sij =

{
2 , if Pi = Pj

1 , if Pi 6= Pj
. (B.4)

B.2 Symmetry factor Sel of two-body elastic scattering

diagrams

We consider the elastic scattering of two particles Pi and Pj. A generic diagram for this process
is shown in Fig. B.2. For i < j ∈ {1, 2, 3} the corresponding amplitude Tel is proportional to

Tel ∼ 〈p,q|
(
A†iA

†
jOijdij

)(
d†ijOijAjAi

)
|p,q〉

= 〈0|AjAi
(
A†iA

†
jdij

)(
d†ijAjAi

)
A†iA

†
j |0〉 , ∀ i < j ∈ {1, 2, 3} , (B.5)

where the projection operators are set to 1 since we ignore spin and isospin. Again, one has
to analyze the two cases with distinguishable or identical particles separately. However, in
both cases one has to untangle the contractions to find the symmetry factor Sel for all possible
diagrams.

Case 1: Pi 6= Pj

We have to deal with four combinations of bosons and/or fermions:

• only bosons:

Tel ∼ 〈0|AjAi(A†iA†jdij)(d†ijAjAi)A†iA†j |0〉 = 〈0|AjA†jAiA†idijd†ijAiA†iAjA†j |0〉 ∼ Sel = +1 ,
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• Ai = Fi is a fermion ⇒ dij = fij is a fermion:

Tel ∼ 〈0|AjFi(F †i A†jfij)(f †ijAjFi)F †i A†j |0〉 = 〈0|AjA†jFiF †i fijf †ijFiF †i AjA†j |0〉 ∼ Sel = +1 ,

• Aj = Fj is a fermion ⇒ dij = fij is a fermion:

Tel ∼ 〈0|FjAi(A†iF †j fij)(f †ijFjAi)A†iF †j |0〉 = 〈0|FjF †jAiA†ifijf †ijAiA†iFjF †j |0〉 ∼ Sel = +1 ,

• Ai = Fi, Aj = Fj are fermions:

Tel ∼ 〈0|FjFi(F †i F †j dij)(d†ijFjFi)F †i F †j |0〉 = 〈0|FjF †j FiF †i dijd†ijFiF †i FjF †j |0〉 ∼ Sel = +1 .

And for Pi = Pj one finds the results below.

Case 2: Pi = Pj

We have to deal with just two combinations, either only bosons or only fermions. However, there
exist four different contractions:

• only bosons:

Tel ∼ 〈0|AiAi(A†iA†idij)(d†ijAiAi)A†iA†i |0〉+ 〈0|AiAi(A†iA†idij)(d†ijAiAi)A†iA†i |0〉

+ 〈0|AiAi(A†iA†idij)(d†ijAiAi)A†iA†i |0〉+ 〈0|AiAi(A†iA†idij)(d†ijAiAi)A†iA†i |0〉

= 4 〈0|AiA†iAiA†idijd†ijAiA†iAiA†i |0〉 ∼ Sel = +4 ,

• Ai = Fi is a fermion:

Tel ∼ 〈0|FiFi(F †i F †i dij)(d†ijFiFi)F †i F †i |0〉+ 〈0|FiFi(F †i F †i dij)(d†ijFiFi)F †i F †i |0〉

+ 〈0|FiFi(F †i F †i dij)(d†ijFiFi)F †i F †i |0〉+ 〈0|FiFi(F †i F †i dij)(d†ijFiFi)F †i F †i |0〉

= 4 〈0|FiF †i FiF †i dijd†ijFiF †i FiF †i |0〉 ∼ Sel = +4 .

As for the self-energy diagram also here no additional minus signs appear due to fermionic
constituents of the dimer dij. However, in contrast to the previous section identical particles
yield a factor of ”4“ and thus one finds in summary:

Sel =

{
4 , if Pi = Pj

1 , if Pi 6= Pj
. (B.6)
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djk

dij

Ak

Aj

Ai

i Tijk =

q

p k

r

Figure B.3: Topology of a generic exchange diagram in dimer–particle scattering with incoming
momenta p, q and outgoing ones k, r. All three fields Ai, Aj and Ak are in general considered
as distinguishable, but may be identical (e.g. Aj ≡ Ai) in some special cases. Note, that there
are no constraints for the particle indices i, j, k ∈ {1, 2, 3}.

B.3 Symmetry factor Sijk of dimer–particle scattering

diagrams

In dimer–particle scattering diagrams whose topology is shown in Fig. B.3 one has to be more
carefully with the indices of the particles. In the previous two subsections it only appeared
one dimer in each diagram and since we defined the dimer states dij only for i < j ∈ {1, 2, 3}
(cf. section 3.1) there was no doubt about the right order of the constituents. However, in
the diagram Fig. B.3 and the corresponding amplitude Tijk the hierarchy of the indices is not
fixed, that is, i, j, k ∈ {1, 2, 3} and there are no constraints like i < j. Consider for example
the diagrams with on the one hand i = 1 and j = 2 and on the other hand with i = 2 and
j = 1. Both topologies are allowed and do appear in our considerations. As the order of the
constituents of the dimers d21 ≡ d12 and d12 themselves is fixed to be A2A1 (see Eq. (3.4)), we
conclude that in this section the order of Ai and Aj depends on the hierarchy of their indices.
For the dimer dij and the projection operator Oij (which will be set to 1 as we ignore spin and
isospin anyway) the order of their indices does not matter as indicated above. However, due the
already mentioned convention in Eq. (3.4), dij ∼ AjAi for i < j ∈ {1, 2, 3}, the order of Ai and
Aj is fixed. Hence, the operator with the larger index appears firstly. The amplitude Tijk is thus
different for varying hierarchy of the indices i, j, k ∈ {1, 2, 3}. One finds

Tijk ∼ 〈k, r| d†jkO†jk
{

(AkAj) , j ≤ k
(AjAk) , j > k

}{
(A†iA

†
j) , i ≤ j

(A†jA
†
i ) , i > j

}
Oijdij |p,q〉

= 〈0| djkAid†jk





(AkAj)(A
†
iA
†
j) , i ≤ j ≤ k

(AkAj)(A
†
jA
†
i ) , i > j ≤ k

(AjAk)(A
†
iA
†
j) , i ≤ j > k

(AjAk)(A
†
jA
†
i ) , i > j > k




dijd

†
ijA
†
k |0〉 , (B.7)
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where we have set the projection operator O to 1 and combined the conditions of the vertex
contributions. Furthermore, one can move A†k two steps to left which does not yield any minus

sign independently of the particle species and already contract the two dimer operators dijd
†
ij on

the right:

Tijk ∼ 〈0| djkAid†jk





(AkAj)(A
†
iA
†
j) , i ≤ j ≤ k

(AkAj)(A
†
jA
†
i ) , i > j ≤ k

(AjAk)(A
†
iA
†
j) , i ≤ j > k

(AjAk)(A
†
jA
†
i ) , i > j > k




A†kdijd

†
ij |0〉 . (B.8)

One proceeds and analyzes all contractions for different combinations of fermions and bosons
with regard to possibly identical particles. We start with the case where all particles are dis-
tinguishable.

Case 1: Pi 6= Pj 6= Pk

Here all operators Ai, Aj and Ak are distinguishable so one has to consider eight different boson
/ fermion configurations:

• only bosons:

Tijk ∼ 〈0| djkd†jk





Ai(AkAj)(A
†
iA
†
j)A

†
k , i ≤ j ≤ k

Ai(AkAj)(A
†
jA
†
i )A

†
k , i > j ≤ k

Ai(AjAk)(A
†
iA
†
j)A

†
k , i ≤ j > k

Ai(AjAk)(A
†
jA
†
i )A

†
k , i > j > k





dijd
†
ij |0〉

= 〈0| djkd†jk





AiA
†
iAjA

†
jAkA

†
k , i ≤ j ≤ k

AiA
†
iAjA

†
jAkA

†
k , i > j ≤ k

AiA
†
iAjA

†
jAkA

†
k , i ≤ j > k

AiA
†
iAjA

†
jAkA

†
k , i > j > k





dijd
†
ij |0〉

∼ Sijk = +1 ,
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• Ai = Fi is a fermion ⇒ dij = fij is a fermion:

Tijk ∼ 〈0| djkd†jk





Fi(AkAj)(F
†
i A
†
j)A

†
k , i ≤ j ≤ k

Fi(AkAj)(A
†
jF
†
i )A†k , i > j ≤ k

Fi(AjAk)(F
†
i A
†
j)A

†
k , i ≤ j > k

Fi(AjAk)(A
†
jF
†
i )A†k , i > j > k





fijf
†
ij |0〉

= 〈0| djkd†jk





FiF
†
i AjA

†
jAkA

†
k , i ≤ j ≤ k

FiF
†
i AjA

†
jAkA

†
k , i > j ≤ k

FiF
†
i AjA

†
jAkA

†
k , i ≤ j > k

FiF
†
i AjA

†
jAkA

†
k , i > j > k





fijf
†
ij |0〉

∼ Sijk = +1 ,

• Aj = Fj is a fermion ⇒ dij = fij, djk = fjk are fermions:

Tijk ∼ 〈0| fjkf †jk





Ai(AkFj)(A
†
iF
†
j )A†k , i ≤ j ≤ k

Ai(AkFj)(F
†
jA
†
i )A

†
k , i > j ≤ k

Ai(FjAk)(A
†
iF
†
j )A†k , i ≤ j > k

Ai(FjAk)(F
†
jA
†
i )A

†
k , i > j > k





fijf
†
ij |0〉

= 〈0| fjkf †jk





AiA
†
iFjF

†
jAkA

†
k , i ≤ j ≤ k

AiA
†
iFjF

†
jAkA

†
k , i > j ≤ k

AiA
†
iFjF

†
jAkA

†
k , i ≤ j > k

AiA
†
iFjF

†
jAkA

†
k , i > j > k





fijf
†
ij |0〉

∼ Sijk = +1 ,
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• Ak = Fk is a fermion ⇒ djk = fjk is a fermion:

Tijk ∼ 〈0| fjkf †jk





Ai(FkAj)(A
†
iA
†
j)F

†
k , i ≤ j ≤ k

Ai(FkAj)(A
†
jA
†
i )F

†
k , i > j ≤ k

Ai(AjFk)(A
†
iA
†
j)F

†
k , i ≤ j > k

Ai(AjFk)(A
†
jA
†
i )F

†
k , i > j > k





dijd
†
ij |0〉

= 〈0| fjkf †jk





AiA
†
iAjA

†
jFkF

†
k , i ≤ j ≤ k

AiA
†
iAjA

†
jFkF

†
k , i > j ≤ k

AiA
†
iAjA

†
jFkF

†
k , i ≤ j > k

AiA
†
iAjA

†
jFkF

†
k , i > j > k





dijd
†
ij |0〉

∼ Sijk = +1 ,

• Ai = Fi, Aj = Fj are fermions ⇒ djk = fjk is a fermion:

Tijk ∼ 〈0| − fjkf †jk





Fi(AkFj)(F
†
i F
†
j )A†k , i ≤ j ≤ k

Fi(AkFj)(F
†
j F
†
i )A†k , i > j ≤ k

Fi(FjAk)(F
†
i F
†
j )A†k , i ≤ j > k

Fi(FjAk)(F
†
j F
†
i )A†k , i > j > k





dijd
†
ij |0〉

= 〈0| − fjkf †jk





− FiF †i FjF †jAkA†k , i ≤ j ≤ k

FiF
†
i FjF

†
jAkA

†
k , i > j ≤ k

− FiF †i FjF †jAkA†k , i ≤ j > k

FiF
†
i FjF

†
jAkA

†
k , i > j > k





dijd
†
ij |0〉

∼ Sijk =





+1 , i ≤ j ≤ k

−1 , i > j ≤ k

+1 , i ≤ j > k

−1 , i > j > k

,
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• Ai = Fi, Ak = Fk are fermions ⇒ dij = fij, djk = fjk are fermions:

Tijk ∼ 〈0| − fjkf †jk





Fi(FkAj)(F
†
i A
†
j)F

†
k , i ≤ j ≤ k

Fi(FkAj)(A
†
jF
†
i )F †k , i > j ≤ k

Fi(AjFk)(F
†
i A
†
j)F

†
k , i ≤ j > k

Fi(AjFk)(A
†
jF
†
i )F †k , i > j > k





fijf
†
ij |0〉

= 〈0| − fjkf †jk





− FiF †i AjA†jFkF †k , i ≤ j ≤ k

− FiF †i AjA†jFkF †k , i > j ≤ k

− FiF †i AjA†jFkF †k , i ≤ j > k

− FiF †i AjA†jFkF †k , i > j > k





fijf
†
ij |0〉

∼ Sijk = +1 ,

• Aj = Fj, Ak = Fk are fermions ⇒ dij = fij is a fermion:

Tijk ∼ 〈0| djkd†jk





Ai(FkFj)(A
†
iF
†
j )F †k , i ≤ j ≤ k

Ai(FkFj)(F
†
jA
†
i )F

†
k , i > j ≤ k

Ai(FjFk)(A
†
iF
†
j )F †k , i ≤ j > k

Ai(FjFk)(F
†
jA
†
i )F

†
k , i > j > k





fijf
†
ij |0〉

= 〈0| djkd†jk





AiA
†
iFjF

†
j FkF

†
k , i ≤ j ≤ k

AiA
†
iFjF

†
j FkF

†
k , i > j ≤ k

− AiA†iFjF †j FkF †k , i ≤ j > k

− AiA†iFjF †j FkF †k , i > j > k





fijf
†
ij |0〉

∼ Sijk =





+1 , i ≤ j ≤ k

+1 , i > j ≤ k

−1 , i ≤ j > k

−1 , i > j > k

,
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• Ai = Fi, Aj = Fj, Ak = Fk are fermions:

Tijk ∼ 〈0| djkd†jk





Fi(FkFj)(F
†
i F
†
j )F †k , i ≤ j ≤ k

Fi(FkFj)(F
†
j F
†
i )F †k , i > j ≤ k

Fi(FjFk)(F
†
i F
†
j )F †k , i ≤ j > k

Fi(FjFk)(F
†
j F
†
i )F †k , i > j > k





dijd
†
ij |0〉

= 〈0| djkd†jk





FiF
†
i FjF

†
j FkF

†
k , i ≤ j ≤ k

− FiF †i FjF †j FkF †k , i > j ≤ k

− FiF †i FjF †j FkF †k , i ≤ j > k

FiF
†
i FjF

†
j FkF

†
k , i > j > k





dijd
†
ij |0〉

∼ Sijk =





+1 , i ≤ j ≤ k

−1 , i > j ≤ k

−1 , i ≤ j > k

+1 , i > j > k

.

Next, we consider the case Pi = Pj 6= Pk.

Case 2: Pi = Pj 6= Pk

The amplitude Tijk in Eq. (B.8) is for Pi = Pj 6= Pk reduced to

Tijk ∼ 〈0| dikAid†ik
{

(AkAi)(A
†
iA
†
k) , i ≤ k

(AiAk)(A
†
iA
†
k) , i > k

}
A†kdijd

†
ij |0〉 , (B.9)

and the four different combinations of bosons and fermions yield the following symmetry factors:

• only bosons:

Tijk ∼ 〈0| dikd†ik




Ai(AkAi)(A

†
iA
†
i )A

†
k + Ai(AkAi)(A

†
iA
†
i )A

†
k , i ≤ k

Ai(AiAk)(A
†
iA
†
i )A

†
k + Ai(AiAk)(A

†
iA
†
i )A

†
k , i > k




dijd

†
ij |0〉

= 2 〈0| dikd†ik




AiA

†
iAiA

†
iAkA

†
k , i ≤ k

AiA
†
iAiA

†
iAkA

†
k , i > k



 dijd

†
ij |0〉

∼ Sijk = +2 ,
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• Ai = Fi is a fermion ⇒ dik = fik is a fermion:

Tijk ∼ 〈0| − fikf †ik




Fi(AkFi)(F

†
i F
†
i )A†k + Fi(AkFi)(F

†
i F
†
i )A†k , i ≤ k

Fi(FiAk)(F
†
i F
†
i )A†k + Fi(FiAk)(F

†
i F
†
i )A†k , i > k




dijd

†
ij |0〉

= 2 〈0| − fikf †ik




− FiF †i FiF †i AkA†k , i ≤ k

− FiF †i FiF †i AkA†k , i > k



 dijd

†
ij |0〉

∼ Sijk = +2 ,

• Ak = Fk is a fermion ⇒ dik = fik is a fermion:

Tijk ∼ 〈0| fikf †ik




Ai(FkAi)(A

†
iA
†
i )F

†
k + Ai(FkAi)(A

†
iA
†
i )F

†
k , i ≤ k

Ai(AiFk)(A
†
iA
†
i )F

†
k + Ai(AiFk)(A

†
iA
†
i )F

†
k , i > k




dijd

†
ij |0〉

= 2 〈0| fikf †ik




AiA

†
iAiA

†
iFkF

†
k , i ≤ k

AiA
†
iAiA

†
iFkF

†
k , i > k



 dijd

†
ij |0〉

∼ Sijk = +2 ,

• Ai = Fi, Ak = Fk are fermions:

Tijk ∼ 〈0| dikd†ik




Fi(FkFi)(F

†
i F
†
i )F †k + Fi(FkFi)(F

†
i F
†
i )F †k , i ≤ k

Fi(FiFk)(F
†
i F
†
i )F †k + Fi(FiFk)(F

†
i F
†
i )F †k , i > k




dijd

†
ij |0〉

= 2 〈0| dikd†ik





FiF
†
i FiF

†
i FkF

†
k , i ≤ k

− FiF †i FiF †i FkF †k , i > k



 dijd

†
ij |0〉

∼ Sijk =

{
+2 , i ≤ k

−2 , i > k
.

Case 3: Pi = Pk 6= Pj

We continue with the analysis of the diagram in Fig. B.3 for Pi = Pk 6= Pj. The corresponding
amplitude is given by (cf. Eq. (B.8))

Tijk ∼ 〈0| dijAid†ij
{

(AjAi)(A
†
iA
†
j) , i ≤ j

(AiAj)(A
†
jA
†
i ) , i > j

}
A†idijd

†
ij |0〉 . (B.10)

Consequently, we have to consider four different cases regarding the particle species:
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• only bosons:

Tijk ∼ 〈0| dijd†ij




Ai(AjAi)(A

†
iA
†
j)A

†
i , i ≤ j

Ai(AiAj)(A
†
jA
†
i )A

†
i , i > j




dijd

†
ij |0〉

= 〈0| dijd†ij




AiA

†
iAjA

†
jAiA

†
i , i ≤ j

AiA
†
iAjA

†
jAiA

†
i , i > j



 dijd

†
ij |0〉

∼ Sijk = +1 ,

• Ai = Fi is a fermion ⇒ dij = fij is a fermion:

Tijk ∼ 〈0| − fijf †ij




Fi(AjFi)(F

†
i A
†
j)F

†
i , i ≤ j

Fi(FiAj)(A
†
jF
†
i )F †i , i > j




fijf

†
ij |0〉

= 〈0| − fijf †ij




− FiF †i AjA†jFiF †i , i ≤ j

− FiF †i AjA†jFiF †i , i > j



 fijf

†
ij |0〉

∼ Sijk = +1 ,

• Aj = Fj is a fermion ⇒ dij = fij is a fermion:

Tijk ∼ 〈0| fijf †ij




Ai(FjAi)(A

†
iF
†
j )A†i , i ≤ j

Ai(AiFj)(F
†
jA
†
i )A

†
i , i > j




fijf

†
ij |0〉

= 〈0| fijf †ij




AiA

†
iFjF

†
jAiA

†
i , i ≤ j

AiA
†
iFjF

†
jAiA

†
i , i > j



 fijf

†
ij |0〉

∼ Sijk = +1 ,

• Ai = Fi, Aj = Fj are fermions:

Tijk ∼ 〈0| dijd†ij




Fi(FjFi)(F

†
i F
†
j )F †i , i ≤ j

Fi(FiFj)(F
†
j F
†
i )F †i , i > j




dijd

†
ij |0〉

= 〈0| dijd†ij




− FiF †i FjF †j FiF †i , i ≤ j

− FiF †i FjF †j FiF †i , i > j



 dijd

†
ij |0〉

∼ Sijk = −1 .
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Case 4: Pi 6= Pj = Pk

In the second to last possible configuration of identical particles where Pi 6= Pj = Pk the ampli-
tude of the diagram in Fig. B.3 yields

Tijk ∼ 〈0| djkAid†jk
{

(AjAj)(A
†
iA
†
j) , i ≤ j

(AjAj)(A
†
jA
†
i ) , i > j

}
A†jdijd

†
ij |0〉 , (B.11)

and the symmetry factor Sijk for different fermion / boson combinations is listed below:

• only bosons:

Tijk ∼ 〈0| djkd†jk




Ai(AjAj)(A

†
iA
†
j)A

†
j + Ai(AjAj)(A

†
iA
†
j)A

†
j , i ≤ j

Ai(AjAj)(A
†
jA
†
i )A

†
j + Ai(AjAj)(A

†
jA
†
i )A

†
j , i > j




dijd

†
ij |0〉

= 2 〈0| djkd†jk




AiA

†
iAjA

†
jAjA

†
j , i ≤ j

AiA
†
iAjA

†
jAjA

†
j , i > j



 dijd

†
ij |0〉

∼ Sijk = +2 ,

• Ai = Fi is a fermion ⇒ dij = fij is a fermion:

Tijk ∼ 〈0| djkd†jk




Fi(AjAj)(F

†
i A
†
j)A

†
j + Fi(AjAj)(F

†
i A
†
j)A

†
j , i ≤ j

Fi(AjAj)(A
†
jF
†
i )A†j + Fi(AjAj)(A

†
jF
†
i )A†j , i > j




fijf

†
ij |0〉

= 2 〈0| djkd†jk




FiF

†
i AjA

†
jAjA

†
j , i ≤ j

FiF
†
i AjA

†
jAjA

†
j , i > j



 fijf

†
ij |0〉

∼ Sijk = +2 ,

• Aj = Fj is a fermion ⇒ dij = fij is a fermion:

Tijk ∼ 〈0| djkd†jk




Ai(FjFj)(A

†
iF
†
j )F †j + Ai(FjFj)(A

†
iF
†
j )F †j , i ≤ j

Ai(FjFj)(F
†
jA
†
i )F

†
j + Ai(FjFj)(F

†
jA
†
i )F

†
j , i > j




fijf

†
ij |0〉

= 2 〈0| djkd†jk




− AiA†iFjF †j FjF †j , i ≤ j

− AiA†iFjF †j FjF †j , i > j



 fijf

†
ij |0〉

∼ Sijk = −2 ,
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• Ai = Fi, Aj = Fj are fermions:

Tijk ∼ 〈0| djkd†jk




Fi(FjFj)(F

†
i F
†
j )F †j + Fi(FjFj)(F

†
i F
†
j )F †j , i ≤ j

Fi(FjFj)(F
†
j F
†
i )F †j + Fi(FjFj)(F

†
j F
†
i )F †j , i > j




dijd

†
ij |0〉

= 2 〈0| djkd†jk




− FiF †i FjF †j FjF †j , i ≤ j

FiF
†
i FjF

†
j FjF

†
j , i > j



 dijd

†
ij |0〉

∼ Sijk =

{
−2 , i ≤ j

+2 , i > j
.

Case 5: Pi = Pj = Pk

Finally, we consider the case where all particles are identical, i.e. Pi = Pj = Pk. Hence, there
only are two cases: all particles are either bosons or fermions. Furthermore, the corresponding
amplitude,

Tijk ∼ 〈0| dAid†(AiAi)(A†iA†i )A†idd† |0〉 , (B.12)

has no explicit index dependence since for only one index there is no hierarchy left in the system
(note, that we have written dij ≡ djk := d for simplicity). We find for

• only bosons:

Tijk ∼ 〈0| dd†
[
Ai(AiAi)(A

†
iA
†
i )A

†
i + Ai(AiAi)(A

†
iA
†
i )A

†
i

+ Ai(AiAi)(A
†
iA
†
i )A

†
i + Ai(AiAi)(A

†
iA
†
i )A

†
i

]
dd† |0〉

= 4 〈0| dd†AiA†iAiA†iAiA†idd† |0〉
∼ Sijk = +4 ,

• only fermions (Ai = Fi):

Tijk ∼ 〈0| dd†
[
Fi(FiFi)(F

†
i F
†
i )F †i + Fi(FiFi)(F

†
i F
†
i )F †i

+ Fi(FiFi)(F
†
i F
†
i )F †i + Fi(FiFi)(F

†
i F
†
i )F †i

]
dd† |0〉

= 4 〈0| dd†
[
− FiF †i FiF †i FiF †i

]
dd† |0〉

∼ Sijk = −4 ,
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Summary

Collecting the results for all different configurations one can summarize them by the following
formula for the symmetry factor Sijk:

Sijk = ζijk
(
1 + δPiPj + δPjPk + δPiPj δPjPk

)
, (B.13)

where ζijk is either +1 or −1 depending on the particle species, the hierarchy between the indices
and the fact whether some of the particles are identical or not. It is defined as:

ζijk :=





−1 , if





• Pi 6= Pj 6= Pk ∧ only Pi, Pj fermions ∧
{
i > j < k ∨ i > j > k

}

• Pi 6= Pj 6= Pk ∧ only Pj, Pk fermions ∧
{
i < j > k ∨ i > j > k

}

• Pi 6= Pj 6= Pk ∧ Pi, Pj, Pk fermions ∧
{
i > j < k ∨ i < j > k

}

• Pi = Pj 6= Pk ∧ Pi, Pj, Pk fermions ∧ i > k

• Pi = Pk 6= Pj ∧ Pi, Pj, Pk fermions .

• Pi 6= Pj = Pk ∧ only Pj fermion

• Pi 6= Pj = Pk ∧ Pi, Pj, Pk fermions ∧ i < j

• Pi = Pj = Pk ∧ Pi, Pj, Pk fermions

+1 , else

(B.14)

Note, that in each case the particles which are not mentioned to be fermions must be bosons, so
the conditions are unique.
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Appendix C

Feynman diagrams contributing to
d12–P3 dimer–particle scattering

In order to find a completely general expression for the d12–P3 scattering amplitude it is necessary
to identify all contributing Feynman diagrams. This is done in Figure C.2 and with the remarks
below we want to motivate this result.

It is obvious that some diagrams only contribute if at least two of the three particles are identical.
This is the reason for the Kronecker-delta δPiPj ,

δPiPj =

{
1 , if Pi = Pj, i.e. Pi and Pj are identical particles

0 , if Pi 6= Pj, i.e. Pi and Pj are distinguishable particles
, (C.1)

in front of some diagrams. Moreover, we have to take into account the structure of the dimer
wave function of G-parity eigenstates made of a superposition of distinguishable particles, e.g.
d12 = 1√

2
(Ā1A2 +A1Ā2). Choosing for example the three particle system P1 = Ā1, P2 = A2, P3 =

A3 = A1 the normal δP1P3 = 0 vanishes. However, since the two terms in the wave function
can fluctuate into each other we know that the diagram in Fig. C.1 does contribute to the three
particle system: within the blob d12 is in the state Ā1A2 and thus contributes together with
P3 = A3 = A1 to the chosen three particle system P1 = Ā1, P2 = A2, P3 = A3 = A1. After the
blob and during the propagation to the next vertex it fluctuates into A1Ā2 and decays into A1

and Ā2. The latter recombines with P3 = A1 to d12 which can change its state again so that
in the final state one founds the same particle content as in the initial one. Thus, a prefactor
δP1P3 , which forbids such a contribution, cannot be right. For this we have introduced a modified

Kronecker-delta δ
(ab(′))
PiPj

which solves this inconsistency:

δ
(ab(′))
PiPj

:= δPiPj +
(
δAiAj − δPiPj

)
δ
η
(′)
ab |1|

(
δ
η
(′)
ab |1|
− δAaAb

)
, (C.2)

where the first factor of the additional term ensures that nothing must changed if Pi = Pj. The

second factor checks if the dimer d
(′)
ab is a G-parity eigenstate and if this is true the last factor

finally checks if there is a superposition in the wave function (Aa 6= Ab) or just a single term
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P3=A1=δP1P3

d23

Ā2

A1

T12

d12

A3

d12

P3
d12

Ā2

A1

T12

d12

A1

d12

A1

iT12 ∼ δP1P3︸ ︷︷ ︸

P1=Ā1 6=A1=A3=P3= 0

(a)

P3=A1=δ
(12)
P1P3

d23

Ā2

A1

T12

d12

A3

d12

P3
d12

Ā2

A1

T12

d12

A1

d12

A1

iT12 ∼ δ
(12)
P1P3︸ ︷︷ ︸

P1=Ā1 6=A1=A3=P3= 0 + (0− 1) × 1× (1− 0) = 1

(b)

Figure C.1: For d12 being a G-parity eigenstate with a superposition of states in the wave func-
tion, the shown diagram contributes to the amplitude T12. However, with a ”normal“ Kronecker-
delta, δP1P3 = 0, it does not (a). Since this is wrong one must introduce a modified Kronecker-

delta, δ
(12)
P1P3

= 1, (cf. Eq. (C.2)) to get the right result (b).

(Aa = Ab). Note, however, that not every Kronecker-delta has to be modified.
Unfortunately, it is then not anymore ensured that the number of particles and of anti-particles
is conserved separately. Considering Figure C.1(b) we see that δ

(12)
P1P3

= 1 also for P3 = Ā1 which
leads to a contradiction of particle conservation. Thus, we need in advance a prefactor a2 to
restore it. In the same way we have added by hand a or b factors to some diagrams in Figure C.2.

As a second issue one observes that some diagrams become identical if two or all three particles
are identical. Thus, one would count them twice (two identical particles) or even six times (three
identical particles). Therefore we could define a new parameter n representing the number of
identical particles,

n =





1 , if P1 6= P2 6= P3

2 , if P1 = P2 6= P3 ∨ P1 6= P2 = P3 ∨ P1 = P3 6= P2

3 , if P1 = P2 = P3

, (C.3)

to avoid double-counting of diagrams. This straightforward procedure simply takes all diagrams
into account and divides at the end by the number of identical ones. Hence, in some sense one
does a lot of effort to determine diagrams which are equal to others. Therefore we introduce
a different and a bit less straightforward approach to account for possibly identical diagrams.
We do the following: whenever two amplitudes become identical because of identical particles
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(e.g. for P1 = P2 the amplitudes T
(′)
13 and T

(′)
23 are equal) one simply erases one of them from the

equations. Thus, there is no double-counting except for the situation that in T
(′)
ij the particles

Pi = Pj are identical. To correct the appearing factor of 2 we must put in by hand the additional
factors of

(
1− δPiPj/2

)
in front of the diagrams. The advantage of this more complicated notation

is that one needs to calculate less parameters and thus has more clear equations.
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Figure C.2: All diagrams contributing to a general d12–P3 scattering amplitude. The extra factors of (1−δPiPj/2) correspond

to the special counting scheme for diagrams becoming equal under some circumstances. The modified Kronecker-deltas δ
(ab(′))
PiPj

are defined in Eq. (C.2).
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Ā3

Ā1
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Ā1

A2




0
0
0

δP1P3

δP1P2

1


 d′23

d12

A3

A2

A1




0
0
0

δP2P3

1
δP1P2


 d′13

d12

A3

A1

A2

+ + ++




0
0
0

δP2P3

1
δP1P2







0
0
0

δP1P3

δP1P2

1


 d′23A3

Ā1
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Ā1

Ā2
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Ā3

d12

P3

+




0
0
0

δ
(12)
P2P3

b3
b2

δP1P2b2


 d′13

A1

Ā2
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Ā1

T12

d12

Ā3
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Ā1

A2

T12

d12

A3

d12

P3

+




δ
(12)
P1P3

δP1P2

1
0
0
0


 d23

A2

Ā1
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Ā1

d12

P3

+




0
0
0

δP2P3

1

δ
(23)
P1P2


 d′13

Ā3
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Ā3

A2

T23

d23

Ā1
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Ā2

T23

d23

A1

d12

P3

+




1
δP2P3

δ
(23)
P1P3

0
0
0


 d12

Ā2
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Ā2

Ā1
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Ā1

A2

T ′
12

d′12

Ā3
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Ā3

d12

P3

+




δ
(12′)
P2P3

1
δP1P2

0
0
0


 d13

A1

A2

T ′
12

d′12

Ā3
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[
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Ā3

T ′
13

d′13

A2

d12

P3

+




δP1P3

δ
(13′)
P1P2

1
0
0
0


 d23

Ā3
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Ā2

d12

P3

+




δP1P3

δ
(13′)
P1P2

1
0
0
0


 d23

Ā3
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Ā1

T ′
13

d′13

A2

d12

P3

+




1

δ
(13′)
P2P3

δP1P3

0
0
0


 d12

Ā1
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Ā2

T ′
23

d′23

Ā1
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Ā3

T ′
23

d′23

Ā1
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Appendix D

Projection on L-th partial wave

A scattering amplitude T (E,k,p) can be expanded in partial waves as

T (E,k,p) =
∞∑

L=0

(2L+ 1) T (L)(E, k, p)PL(cos θ) , (D.1)

with the Legendre polynomial (i.e. Legendre function of the first kind) PL and θ = ^(k,p) being
the angle between incoming and outgoing momenta whose moduli we write as k and p. Since
the Legendre polynomials are orthogonal,

∫ 1

−1

d cos θ PL(cos θ)P`(cos θ) =
2

2L+ 1
δL` , (D.2)

one can project out the L-th partial wave using an operator defined via

T (L)(E, k, p) =
1

2

∫ 1

−1

d cos(θ) PL(cos θ)T (E,k,p) . (D.3)

In Fig. D.1 we have defined the angles between the momenta of a scattering amplitude T (E,k,p).
Following Ref. [163] in this system it holds the useful relation

PL(cosψ) =
4π

2L+ 1

L∑

m=−L
Y ∗Lm (θ′, ϕ′)YLm (θ, ϕ)

= PL(cos θ)PL (cos θ′) + 2
L∑

m=1

(L−m)!

(L+m)!
PmL (cos θ)PmL (cos θ′) cos [m (ϕ− ϕ′)] , (D.4)

where YLm are the spherical harmonics and PmL are the associated Legendre polynomials.

In the following we will project out the L-th partial wave of the d
(′)
ij –Pk scattering amplitudes

contributing to Eq. (F.2). For the moment we will ignore all terms which do not depend on the

162



~p
~q

~k

z

y

x

θ′

θ

ψ

ϕ

ϕ′

Figure D.1: Definition of angles between the different momenta of a scattering amplitude
T (E,k,p) where we have chosen p so that it points in z direction.

momenta k, p, q or their moduli k, p, q and write

T
(′)
ij (E,k,p) ∼ 1

E − k2

2m3
− p2

2m1
− (k+p)2

2m2
+ iε

+
1

E − k2

2m3
− p2

2m2
− (k+p)2

2m1
+ iε

+
3∑

i, j, k = 1
i < j
k 6= i, j

∫
d3q

(2π)3

Tij(E,k,q)

−γij +

√
−2µij

(
E − q2

2mk
− q2

2(mi+mj)

)
− iε

×


 1

E − q2

2mk
− p2

2mi
− (q+p)2

2mj
+ iε

+
1

E − q2

2mk
− p2

2mj
− (q+p)2

2mi
+ iε




+
3∑

i, j, k = 1
i < j
k 6= i, j

∫
d3q

(2π)3

T ′ij(E,k,q)

−γ′ij +

√
−2µij

(
E − q2

2mk
− q2

2(mi+mj)

)
− iε

×


 1

E − q2

2mk
− p2

2mi
− (q+p)2

2mj
+ iε

+
1

E − q2

2mk
− p2

2mj
− (q+p)2

2mi
+ iε


 .

(D.5)

If one applies the projection operator Eq. (D.3) and define according to Fig. D.1 the angles
θ = ^ (k,p), θ′ = ^ (q,p) and ψ = ^ (k,q) one can rewrite the d3q integral in spherical
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coordinates q, θ′, ϕ′ so that Eq. (D.5) reads

T
(′)(L)
ij (E, k, p) =

1

2

∫ 1

−1

d cos θ PL(cos θ)T
(′)
ij (E,k,p) ∼

1

2

∫ 1

−1

d cos θ
PL(cos θ)

E − k2

2µ23
− p2

2µ12
− kp

m2
cos θ + iε

+
1

2

∫ 1

−1

d cos θ
PL(cos θ)

E − k2

2µ13
− p2

2µ12
− kp

m1
cos θ + iε

+
3∑

i, j, k = 1
i < j
k 6= i, j

1

(2π)3

1

2

∫ 1

−1

d cos θPL(cos θ)

∫ ∞

0

dq

∫ 1

−1

d cos θ′
∫ 2π

0

dϕ′

×




q2
∑∞

`=0(2`+ 1)T
(`)
ij (E, k, q)P`(cosψ)

−γij +

√
−2µij

(
E − q2

2mk
− q2

2(mi+mj)

)
− iε

+
q2
∑∞

`=0(2`+ 1)T
′(`)
ij (E, k, q)P`(cosψ)

−γ′ij +

√
−2µij

(
E − q2

2mk
− q2

2(mi+mj)

)
− iε




×
(

1

E − q2

2µkj
− p2

2µij
− qp

mj
cos θ′ + iε

+
1

E − q2

2µki
− p2

2µij
− qp

mi
cos θ′ + iε

)
, (D.6)

where Eq. (D.1) was used to replace the amplitudes on the right-hand-side by their partial wave
expansions and µij is the reduced mass defined in Eq. (3.34).
Consider the dϕ′ integral. From Eq. (D.4) we know that P`(cosψ) depends on ϕ′. In fact, it is
the only ϕ′ dependent term in the integral and hence we find

∫ 2π

0

dϕ′P`(cosψ) = P`(cos θ)P`(cos θ′)

∫ 2π

0

dϕ′

+ 2
∑̀

m=1

(`−m)!

(`+m)!
Pm` (cos θ)Pm` (cos θ′)

∫ 2π

0

dϕ′ cos [m (ϕ− ϕ′)]
︸ ︷︷ ︸

= 0 ∀m ∈ N
= 2πP`(cos θ)P`(cos θ′) . (D.7)

Thus, the second term of Eq. (D.6) is now proportional to the product PL(cos θ)P`(cos θ). To-
gether with the d cos θ integration the mentioned product yields due to the orthogonality relation
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Eq. (D.2) just a factor of 2δL`/(2L+ 1) and one ends up with

T
(′)(L)
ij (E, k, p) ∼ − m2

kp

1

2

∫ 1

−1

d cos θ
PL(cos θ)

m2

kp

(
k2

2µ23
+ p2

2µ12
− E

)
+ cos θ − iε

− m1

kp

1

2

∫ 1

−1

d cos θ
PL(cos θ)

m1

kp

(
k2

2µ13
+ p2

2µ12
− E

)
+ cos θ − iε

− 1

2π2

3∑

i, j, k = 1
i < j
k 6= i, j

∫ ∞

0

dq




q2T
(L)
ij (E, k, q)

−γij +

√
−2µij

(
E − q2

2mk
− q2

2(mi+mj)

)
− iε

+
q2T

′(L)
ij (E, k, q)

−γ′ij +

√
−2µij

(
E − q2

2mk
− q2

2(mi+mj)

)
− iε




×


mj

qp

1

2

∫ 1

−1

d cos θ′
PL(cos θ′)

mj
qp

(
q2

2µkj
+ p2

2µij
− E

)
+ cos θ′ − iε

+
mi

qp

1

2

∫ 1

−1

d cos θ′
PL(cos θ′)

mi
qp

(
q2

2µki
+ p2

2µij
− E

)
+ cos θ′ − iε


 . (D.8)

Now the question arises how one deals with the remaining d cos θ(′) integrals proportional to the
Legendre polynomials? For this purpose we firstly define a short-hand-notation for this kind of
integral:

QL(β − iε) := (−1)L
1

2

∫ 1

−1

dx
PL(x)

(β − iε) + x
, with β ∈ R \ {−1,+1} . (D.9)

The restriction that |β| 6= 1 is necessary since at these two points QL(β − iε) becomes singular.
Note, that Eq. (D.9) coincides with the definition of the Legendre function of the second kind
with complex argument introduced in Ref. [164]; we will point out this connection below in more
detail.
Motivated by the fact that we assume low energy scattering of P3 off the dimer d12, one can argue
– similarly to section 3.1.3 where the S-wave dimer approach was justified – that also d12–P3

scattering is dominated by S-wave interactions. Therefore it is a convenient method [80] to set
L = 0 which simplifies Eq. (D.9) according to P0(x) = 1 ∀ x ∈ R to

Q0(β − iε) =
1

2

∫ 1

−1

dx
1

(β − iε) + x
=

1

2

[
ln (β + 1− iε)− ln (β − 1− iε)

]
. (D.10)

In the limit ε→ 0 we have to distinguish three cases for β 6= ±1:
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• −1 < β < 1: ⇒ β + 1 = |β + 1| ∧ β − 1 = −|β − 1|, with |β ± 1| ∈ R+

⇒ lim
ε→0

Q0(β − iε) =
1

2

[
ln (|β + 1|)− ln (−|β − 1|)

]

=
1

2

[
ln (|β + 1|)− ln (|β − 1|)− i arg(−|β − 1|)

]

=
1

2

[
ln (|β + 1|)− ln (|β − 1|)− iπ

]

=
1

2

[
ln

( |β + 1|
|β − 1|

)
− iπ

]
=

1

2

[
ln

(∣∣∣∣
β + 1

β − 1

∣∣∣∣
)
− iπ

]
, (D.11)

• β < 1: ⇒ β ± 1 = −|β ± 1|, with |β ± 1| ∈ R+

⇒ lim
ε→0

Q0(β − iε) =
1

2

[
ln (−|β + 1|)− ln (−|β − 1|)

]

=
1

2

[
ln (|β + 1|) + i arg(−|β + 1|)− ln (|β − 1|)− i arg(−|β − 1|)

]

=
1

2

[
ln (|β + 1|) + iπ − ln (|β − 1|)− iπ

]

=
1

2

[
ln

( |β + 1|
|β − 1|

)]
=

1

2

[
ln

(∣∣∣∣
β + 1

β − 1

∣∣∣∣
)]

, (D.12)

• β > 1: ⇒ β ± 1 = |β ± 1|, with |β ± 1| ∈ R+

⇒ lim
ε→0

Q0(β − iε) =
1

2

[
ln (−|β + 1|)− ln (−|β − 1|)

]

=
1

2

[
ln (|β + 1|)− ln (|β − 1|)

]

=
1

2

[
ln

( |β + 1|
|β − 1|

)]
=

1

2

[
ln

(∣∣∣∣
β + 1

β − 1

∣∣∣∣
)]

. (D.13)

Here, we have used that the logarithm of a complex number can be written as

ln(−x) = ln(| − x|) + i arg(−x) = ln(x) + iπ , x ∈ R+ . (D.14)

In summary we thus find

lim
ε→0

Q0(β − iε) =





1
2

[
ln
(∣∣∣β+1

β−1

∣∣∣
)
− iπ

]
, if |β| < 1

1
2

ln
(∣∣∣β+1

β−1

∣∣∣
)
, else

. (D.15)

This result could then be plugged into Eq. (D.8) so that one could determine the d12–P3 S-wave
scattering amplitude which corresponds to an approximation sufficient for most three particle
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systems. However, ignoring this fact for the moment, one can in the same way determine the
limit of Q1(β − iε) for ε going to zero:

lim
ε→0

Q1(β − iε) = lim
ε→0

1

2

∫ 1

−1

dx
x

(β − iε) + x

= lim
ε→0

1

2
(β − iε)

[
ln (β + 1− iε)− ln (β − 1− iε)

]
− 1

=





β
2

[
ln
(∣∣∣β+1

β−1

∣∣∣
)
− iπ

]
− 1 , if |β| < 1

β
2

ln
(∣∣∣β+1

β−1

∣∣∣
)
− 1 , else

. (D.16)

Already at this point we notice that – especially due to the (−1)L factor in Eq. (D.9) – both
results for L = 0 and for L = 1 are quite similar to the first two Legendre functions of the second
kind, which we call Q̃L. In fact, the only difference between QL and Q̃L is that the denominator
in the logarithm is not |β − 1|, but |1 − β|. From this we conclude that the standard Legendre
functions of the second kind are real valued for |β| < 1, but complex outside the interval [−1, 1];
in contrast to QL where the situation is interchanged (note, that the singularities at ±1 are not
affected). However, this difference is not surprising since the Legendre differential equation,

d

dx

[(
1− x2

) dy(x)

dx

]
+ L(L+ 1)y(x) = 0 , with L ∈ N+ and |x| < 1 , (D.17)

with two linearly independent solutions y(x) = APL(x) +BQ̃L(x) is only defined on the interval

[−1, 1]. Therefore one chooses the brunch cut of the complex logarithm in Q̃L so that it is real
inside this interval. Doing it the other way around (complex inside the interval [−1, 1]) one ends
up with QL. Consequently, we conclude that QL are the Legendre functions of the second kind
with a non-standard convention regarding the brunch cut of the complex logarithm [164]. We
will thus also refer to QL as Legendre function of the second kind. If necessary we would add the
term ”standard“ (”non-standard“) Legendre function of the second kind if Q̃L (QL) is meant (as
it was done above).
Although we have already found an explicit expression for Q0 and Q1 and know from the low-
energy scattering approximation that higher partial waves need not to be taken into account,
we will keep the general QL in our scattering amplitude. This is done on the one hand because
we will later on derive results where the explicit form of QL leads to integrals which cannot
be straightforwardly calculated anyway. On the other hand because we simply want to claim a
high level of generality in this work. Therefore we end up with a partial wave projected d

(′)
ij –Pk
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scattering amplitude given by

T
(′)(L)
ij (E, k, p) ∼

− m2

kp
QL

(
m2

kp

(
k2

2µ23

+
p2

2µ12

− E
)
− iε

)
− m1

kp
QL

(
m1

kp

(
k2

2µ13

+
p2

2µ12

− E
)
− iε

)

− 1

2π2

3∑

i, j, k = 1
i < j
k 6= i, j

∫ ∞

0

dq




q2T
(L)
ij (E, k, q)

−γij +

√
−2µij

(
E − q2

2mk
− q2

2(mi+mj)

)
− iε

+
q2T

′(L)
ij (E, k, q)

−γ′ij +

√
−2µij

(
E − q2

2mk
− q2

2(mi+mj)

)
− iε




×
[
mj

qp
QL

(
mj

qp

(
q2

2µkj
+

p2

2µij
− E

)
− iε

)
+
mi

qp
QL

(
mi

qp

(
q2

2µki
+

p2

2µij
− E

)
− iε

)]
,

(D.18)

and thus Eq. (F.2) simplifies to Eq. (F.3) shown in appendix F.
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Appendix E

Mellin transform of Legendre functions
of the second kind

In this section we want to calculate the integral

∫ ∞

0

dXXs(L)−1QL

(
αX + β

1

X

)
, (E.1)

which repeatedly appears in the derivation of the transcendental equations for type 1, type 2
and type 3 systems. For this purpose we closely follow the work of Grießhammer in Ref. [165].
Hence, we firstly notice that the Mellin transform of a function f(z) is defined as [168]

M [f(z), s] :=

∫ ∞

0

dzzs−1f(z) . (E.2)

Therefore Eq. (E.1) is nothing else then the Mellin transform of the Legendre function of the
second kind:

M
[
QL

(
αX + β

1

X

)
, s(L)

]
:=

∫ ∞

0

dXX
(L)−1QL

(
αX + β

1

X

)
. (E.3)

Comparing our definition of QL (see Eq. (D.9)),

QL(z) := (−1)L
1

2

∫ 1

−1

dx
PL(x)

z + x
,

with that of Grießhammer (cf. Eq. (2.4) in Ref. [165]),

Q
(HG)
L (z) :=

1

2

∫ 1

−1

dx
PL(x)

z − x ,

we observe that

QL(z) = (−1)L+1Q
(HG)
L (−z) . (E.4)
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However, in Eq. (A.7) in the appendix of Ref. [165] it is shown that Q
(HG)
L can be expressed

in terms of hypergeometric functions which additionally are expressed in a series representation
[164]. Using the same method we find for QL the following result:

QL(z) =

√
πΓ(L+ 1)

2L+1Γ
(
L
2

+ 1
)

Γ
(
L+1

2

)
∞∑

n=0

Γ
(
L
2

+ 1 + n
)

Γ
(
L+1

2
+ n
)

Γ
(
L+ 3

2
+ n
)

Γ (n+ 1)
(−1)−2nz−(2n+L+1) , (E.5)

which is indeed equivalent to the representation of Q
(HG)
L (z) since (−1)−2n = 1 for all n ∈ N.

However, in contrast to Ref. [165] we consider the argument z = αX + βX−1. Thus, the Mellin
transform in Eq. (E.3) is given as

M
[
QL

(
αX + β

1

X

)
, s(L)

]
=

√
π Γ(L+ 1)

2L+1Γ
(
L
2

+ 1
)

Γ
(
L+1

2

)
∞∑

n=0

Γ
(
L
2

+ 1 + n
)

Γ
(
L+1

2
+ n
)

Γ
(
L+ 3

2
+ n
)

Γ (n+ 1)

× α−(2n+L+1)

∫ ∞

0

dXX2n+L+s(L)

(
X2 +

β

α

)−(2n+L+1)

. (E.6)

As it is done in Ref. [165] the integral over X can be solved using Ref. [164] or even with
Mathematica:

∫ ∞

0

dXX2n+L+s(L)

(
X2 +

β

α

)−(2n+L+1)

=
1

2

(
β

α

) 1
2

(−1−L−n2+s(L))

×
Γ
(
n+ L+s(L)+1

2

)
Γ
(
n+ L−s(L)+1

2

)

Γ (2n+ L+ 1)
, (E.7)

if β/α > 0, 1 +L+ 2n > Re(s(L)) and 1 +L+ 2n+ Re(s(L)) > 0 holds. Note, that since L, n ≥ 0
the second condition (1 +L+ 2n > Re(s(L))) directly implies the third and additionally we know
that for µ and µ̃ being placeholders for various combinations of µij and µik it holds

β

α
=
m

2µ

2µ̃

m
=
µ̃

µ
> 0 , ∀ µ, µ̃ . (E.8)

Finally, it is shown in Ref. [165] that the remaining condition 1 + L + 2n > Re(s(L)) is also
fulfilled. Thus, it is indeed allowed to write the Mellin transform Eq. (E.6) as

M
[
QL

(
αX + β

1

X

)
, s(L)

]
=

1

2

√
π Γ(L+ 1)

2L+1Γ
(
L
2

+ 1
)

Γ
(
L+1

2

)
∞∑

n=0

Γ
(
L
2

+ 1 + n
)

Γ
(
L+1

2
+ n
)

Γ
(
L+ 3

2
+ n
)

Γ (n+ 1)

×
(

1√
αβ

)2n+L+1(
β

α

) s(L)

2 Γ
(
n+ L+s(L)+1

2

)
Γ
(
n+ L−s(L)+1

2

)

Γ (2n+ L+ 1)
.

(E.9)

In the next step we use the well-known identity Γ(z + 1) = z Γ(z) and the Legendre doubling
formula,

Γ
(z

2

)
Γ

(
z + 1

2

)
=

π

2z−1
Γ(z) , ∀ z ∈ C \ {0,−1,−2, ...} , (E.10)
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to simplify the term

I :=
Γ(L+ 1)

2L+1Γ
(
L
2

+ 1
)

Γ
(
L+1

2

) Γ
(
L
2

+ 1 + n
)

Γ
(
L+1

2
+ n
)

Γ (2n+ L+ 1)
, (E.11)

appearing in the Mellin transform above. Since Eq. (E.10) is only valid for z < 0 we can use it
solely in the case of L > 0. Then it holds:

• Γ
(
L
2

+ 1
)

Γ
(
L+1

2

)
= L

2
Γ
(
L
2

)
Γ
(
L+1

2

)
= L

√
π

2L
Γ(L),

• Γ
(
L
2

+ 1 + n
)

Γ
(
L+1

2
+ n
)

= L+2n
2

Γ
(
L+2n

2

)
Γ
(
L+2n+1

2

)
= (L+ 2n)

√
π

2L+2nΓ (L+ 2n),

and thus I = 2−(L+1) 4−n. Plugging this result for I into Eq. (E.9) one finds for L > 0

M
[
QL

(
αX + β

1

X

)
, s(L)

]
=

√
π

2L+2

(
β

α

) s(L)

2
(

1√
αβ

)L+1

×
∞∑

n=0

Γ
(
n+ L+s(L)+1

2

)
Γ
(
n+ L−s(L)+1

2

)

Γ
(
L+ 3

2
+ n
)

Γ (n+ 1)
(4αβ)−n . (E.12)

Using the series representation of the hypergeometric functions pFq [164],

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑

k=0

p∏

i=1

Γ(k + ai)

Γ(ai)

q∏

j=1

Γ(bj)

Γ(k + bj)

zk

k!
, p, q ∈ N , (E.13)

one concludes that also Eq. (E.12) can be written in terms of 2F1:

M
[
QL

(
αX + β

1

X

)
, s(L)

]
=

√
π

2L+2

(
β

α

) s(L)

2
(

1√
αβ

)L+1 Γ
(
L+s(L)+1

2

)
Γ
(
L−s(L)+1

2

)

Γ
(

2L+3
2

)

× 2F1

(
L+ s(L) + 1

2
,
L− s(L) + 1

2
;
2L+ 3

2
;

1

4αβ

)
, (E.14)

valid for L > 0.
In order to show that this result also holds for S-waves we insert L = 0 explicitly into Eq. (E.9)
and use Γ(1) = 1, Γ(1/2) =

√
π and Γ(z + 1) = z Γ(z) to deduce

M
[
Q0

(
αX + β

1

X

)
, s(0)

]
=

√
π

2

1√
αβ

(
β

α

) s(0)

2 Γ
(
s(0)+1

2

)
Γ
(
−s(0)+1

2

)

Γ
(

3
2

)

×
∞∑

n=0

Γ
(
n+ s(0)+1

2

)
Γ
(
n+ −s(0)+1

2

)

Γ
(
s(0)+1

2

)
Γ
(
−s(0)+1

2

) Γ
(

3
2

)

Γ
(
n+ 3

2

)
(

1

4αβ

)n
1

n!

× 4nΓ(n+ 1)Γ
(
n+ 1

2

)

Γ(2n+ 1)Γ
(

1
2

) . (E.15)
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For n = 0 we observe that the last term in the equation above yields 1, but also for n > 0 one
can show with the Legendre doubling formula that

4nΓ(n+ 1)Γ
(
n+ 1

2

)

Γ(2n+ 1)Γ
(

1
2

) n6=0
=

4nnΓ(n)Γ
(
n+ 1

2

)

2nΓ(2n)Γ
(

1
2

) =
4nΓ

(
2n
2

)
Γ
(

2n+1
2

)

2Γ(2n)
√
π

n6=0
=

4n
√
π 2−(2n−1)Γ(2n)

2Γ(2n)
√
π

=
4n

22n−1 × 2
= 1 . (E.16)

Therefore Eq. (E.15) is equivalent to

M
[
Q0

(
αX + β

1

X

)
, s(0)

]
=

√
π

2

1√
αβ

(
β

α

) s(0)

2 Γ
(
s(0)+1

2

)
Γ
(
−s(0)+1

2

)

Γ
(

3
2

)

× 2F1

(
s(0) + 1

2
,
−s(0) + 1

2
;
3

2
;

1

4αβ

)
, (E.17)

and we conclude that the relation

M
[
QL

(
αX + β

1

X

)
, s(L)

]
=

√
π

2L+2

(
β

α

) s(L)

2
(

1√
αβ

)L+1 Γ
(
L+s(L)+1

2

)
Γ
(
L−s(L)+1

2

)

Γ
(

2L+3
2

)

× 2F1

(
L+ s(L) + 1

2
,
L− s(L) + 1

2
;
2L+ 3

2
;

1

4αβ

)
, (E.18)

holds for all partial waves L ≥ 0.
In particular, we can use the FunctionExpand command implemented in Mathematica to write
Eq. (E.18) for L = 0 and for L = 1 in terms of trigonometric functions. The following identities
hold in the S-wave case:

• Γ
(
L+s(L)+1

2

)
Γ
(
L−s(L)+1

2

)∣∣∣
L=0

= Γ
(
s(0)+1

2

)
Γ
(
−s(0)+1

2

)
= π

cos(π2 s(0))
,

• Γ
(

2L+3
2

)∣∣
L=0

= Γ
(

3
2

)
=
√
π

2
,

• 2F1

(
L+s(L)+1

2
, L−s

(L)+1
2

; 2L+3
2

; z
)∣∣∣

L=0
= 2F1

(
s(0)+1

2
, −s

(0)+1
2

; 3
2
; z
)

=
sin(s(0) arcsin(

√
z))

s(0)
√
z

.

Also for the P -wave case the FunctionExpand command provides:

• Γ
(
L+s(L)+1

2

)
Γ
(
L−s(L)+1

2

)∣∣∣
L=1

= Γ
(

1+s(1)+1
2

)
Γ
(

1−s(1)+1
2

)
= πs(1)

2
1

sin(π2 s(1))
,

• Γ
(

2L+3
2

)∣∣
L=1

= Γ
(
1 + 3

2

)
= 3

√
π

4
,

• 2F1

(
L+s(L)+1

2
, L−s

(L)+1
2

; 2L+3
2

; z
)∣∣∣

L=1
= 2F1

(
1+s(1)+1

2
, 1−s(1)+1

2
; 2+3

2
; z
)

g = 3

[(s(1))2−1]z

[ √
1−z

s(1)
√
z

sin

(
s(1) arcsin (

√
z)

)
− cos

(
s(1) arcsin (

√
z)

)]
.
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Therefore we find for L = 0 that the Mellin transform of Legendre function of the second kind
is given by

M
[
Q0

(
αX + β

1

X

)
, s(0)

]
=

∫ ∞

0

dX Xs
(0)
i −1Q0

(
αX + β

1

X

)

=

(√
β

α

)s(0)

π

s(0)

sin
(
s(0) arcsin

(
1
2

√
1
αβ

))

cos
(
π
2
s(0)
) , (E.19)

and similarly for L = 1:

M
[
Q1

(
αX + β

1

X

)
, s(1)

]
=

∫ ∞

0

dX Xs(1)−1Q1

(
αX + β

1

X

)

=

(√
β

α

)s(1)

πs(1)

[
(s(1))

2 − 1
] 1

sin
(
π
2
s(1)
)

×
[√

4αβ − 1

s(1)
sin

(
s(1) arcsin

(
1

2

√
1

αβ

))

− cos

(
s(1) arcsin

(
1

2

√
1

αβ

))]
. (E.20)

These two equations correspond to Eq. (3.116) and Eq. (3.117) which are repeatedly used in the
derivation of the transcendental equation for systems of type 1, type 2 and type 3.

173



Appendix F

Three-body scattering amplitude
equations

The very long expressions of the three-body scattering amplitudes corresponding to the Feynman
diagrams shown in appendix C are summarized here in order to keep the main part of this work
more legible. In the respective parts of section 3.3 the according equation numbers are referenced.

174



Three-body scattering amplitudes where all terms with the same momentum structure are combined and where terms
which only differ by a ”primed“ or ”unprimed“ final state dimer are added together. Furthermore, the dq0 integration is
already performed using the residue theorem as explained in section 3.3.

i




(t12)γσαβ
(t13)γσαβ
(t23)γσαβ
(t′12)γσαβ
(t′13)γσαβ
(t′23)γσαβ




(E,k,p) =

(−i)
(

1− δP1P2

2

)
S123

1

E − k2

2m3
− p2

2m1
− (k+p)2

2m2
+ iε

g12(O12)α,σρ




g∗12(O†12)γ,ρβ
g∗13(O†13)γ,βρ
g∗23(O†23)γ,βρ
g′∗12(O′†12)γ,ρβ
g′∗13(O′†13)γ,βρ
g′∗23(O′†23)γ,βρ







δ
(12)
P1P3

δP1P2

1

δ
(12)
P1P3

δP1P2

1







f
(3)
(12)(12)

f
(1)
(12)(13)

f
(1)
(12)(23)

f
(3)
(12)(12′)

f
(1)
(12)(13′)

f
(1)
(12)(23′)




+ (−i)
(

1− δP1P2

2

)
S213

1

E − k2

2m3
− p2

2m2
− (k+p)2

2m1
+ iε

g12(O12)α,ρσ




g∗12(O†12)γ,βρ
g∗13(O†13)γ,βρ
g∗23(O†23)γ,βρ
g′∗12(O′†12)γ,βρ
g′∗13(O′†13)γ,βρ
g′∗23(O′†23)γ,βρ







δ
(12)
P2P3

1
δP1P2

δ
(12)
P2P3

1
δP1P2







f̃
(3)
(12)(12)

f̃
(2)
(12)(13)

f̃
(2)
(12)(23)

f̃
(3)
(12)(12′)

f̃
(2)
(12)(13′)

f̃
(2)
(12)(23′)




+

(
1− δP1P2

2

)
S123

∫
d3q

(2π)3
i (t12)µναβ (E,k,q)

D12

(
E − q2

2m3
,q
)

E − q2

2m3
− p2

2m1
− (p+q)2

2m2
+ iε

g12(O12)µ,σρ




g∗12(O†12)γ,ρν
g∗13(O†13)γ,νρ
g∗23(O†23)γ,νρ
g′∗12(O′†12)γ,ρν
g′∗13(O′†13)γ,νρ
g′∗23(O′†23)γ,νρ







δ
(12)
P1P3

δP1P2

1

δ
(12)
P1P3

δP1P2

1







f
(3)
(12)(12)

f
(1)
(12)(13)

f
(1)
(12)(23)

f
(3)
(12)(12′)

f
(1)
(12)(13′)

f
(1)
(12)(23′)



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+

(
1− δP1P2

2

)
S213

∫
d3q

(2π)3
i (t12)µναβ (E,k,q)

D12

(
E − q2

2m3
,q
)

E − q2

2m3
− p2

2m2
− (p+q)2

2m1
+ iε

g12(O12)µ,ρσ




g∗12(O†12)γ,νρ
g∗13(O†13)γ,νρ
g∗23(O†23)γ,νρ
g′∗12(O′†12)γ,νρ
g′∗13(O′†13)γ,νρ
g′∗23(O′†23)γ,νρ







δ
(12)
P2P3

1
δP1P2

δ
(12)
P2P3

1
δP1P2







f̃
(3)
(12)(12)

f̃
(2)
(12)(13)

f̃
(2)
(12)(23)

f̃
(3)
(12)(12′)

f̃
(2)
(12)(13′)

f̃
(2)
(12)(23′)




+

(
1− δP1P3

2

)
S132

∫
d3q

(2π)3
i (t13)µναβ (E,k,q)

D13

(
E − q2

2m2
,q
)

E − q2

2m2
− p2

2m1
− (p+q)2

2m3
+ iε

g13(O13)µ,σρ




g∗12(O†12)γ,νρ
g∗13(O†13)γ,ρν
g∗23(O†23)γ,ρν
g′∗12(O′†12)γ,νρ
g′∗13(O′†13)γ,ρν
g′∗23(O′†23)γ,ρν







δP1P3

δ
(13)
P1P2

1
δP1P3

δ
(13)
P1P2

1







f
(3)
(13)(12)

f
(1)
(13)(13)

f
(1)
(13)(23)

f
(3)
(13)(12′)

f
(1)
(13)(13′)

f
(1)
(13)(23′)




+

(
1− δP1P3

2

)
S312

∫
d3q

(2π)3
i (t13)µναβ (E,k,q)

D13

(
E − q2

2m2
,q
)

E − q2

2m2
− p2

2m3
− (p+q)2

2m1
+ iε

g13(O13)µ,ρσ




g∗12(O†12)γ,νρ
g∗13(O†13)γ,νρ
g∗23(O†23)γ,ρν
g′∗12(O′†12)γ,νρ
g′∗13(O′†13)γ,νρ
g′∗23(O′†23)γ,ρν







1

δ
(13)
P2P3

δP1P3

1

δ
(13)
P2P3

δP1P3







f̃
(3)
(13)(12)

f̃
(3)
(13)(13)

f̃
(3)
(13)(23)

f̃
(3)
(13)(12′)

f̃
(3)
(13)(13′)

f̃
(3)
(13)(23′)




+

(
1− δP2P3

2

)
S231

∫
d3q

(2π)3
i (t23)µναβ (E,k,q)

D23

(
E − q2

2m1
,q
)

E − q2

2m1
− p2

2m2
− (p+q)2

2m3
+ iε

g23(O23)µ,σρ




g∗12(O†12)γ,ρν
g∗13(O†13)γ,ρν
g∗23(O†23)γ,ρν
g′∗12(O′†12)γ,ρν
g′∗13(O′†13)γ,ρν
g′∗23(O′†23)γ,ρν







δP2P3

1

δ
(23)
P1P2

δP2P3

1

δ
(23)
P1P2







f
(3)
(23)(12)

f
(2)
(23)(13)

f
(2)
(23)(23)

f
(3)
(23)(12′)

f
(2)
(23)(13′)

f
(2)
(23)(23′)



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+

(
1− δP2P3

2

)
S321

∫
d3q

(2π)3
i (t23)µναβ (E,k,q)

D23

(
E − q2

2m1
,q
)

E − q2

2m1
− p2

2m3
− (p+q)2

2m2
+ iε

g23(O23)µ,ρσ




g∗12(O†12)γ,ρν
g∗13(O†13)γ,ρν
g∗23(O†23)γ,νρ
g′∗12(O′†12)γ,ρν
g′∗13(O′†13)γ,ρν
g′∗23(O′†23)γ,νρ







1
δP2P3

δ
(23)
P1P3

1
δP2P3

δ
(23)
P1P3







f̃
(3)
(23)(12)

f̃
(3)
(23)(13)

f̃
(3)
(23)(23)

f̃
(3)
(23)(12′)

f̃
(3)
(23)(13′)

f̃
(3)
(23)(23′)




+

(
1− δP1P2

2

)
S123

∫
d3q

(2π)3
i (t′12)

µν
αβ (E,k,q)

D′12

(
E − q2

2m3
,q
)

E − q2

2m3
− p2

2m1
− (p+q)2

2m2
+ iε

g′12(O′12)µ,σρ




g∗12(O†12)γ,ρν
g∗13(O†13)γ,νρ
g∗23(O†23)γ,νρ
g′∗12(O′†12)γ,ρν
g′∗13(O′†13)γ,νρ
g′∗23(O′†23)γ,νρ







δ
(12′)
P1P3

δP1P2

1

δ
(12′)
P1P3

δP1P2

1







f
(3)
(12′)(12)

f
(1)
(12′)(13)

f
(1)
(12′)(23)

f
(3)
(12′)(23′)

f
(1)
(12′)(13′)

f
(1)
(12′)(23′)




+

(
1− δP1P2

2

)
S213

∫
d3q

(2π)3
i (t′12)

µν
αβ (E,k,q)

D′12

(
E − q2

2m3
,q
)

E − q2

2m3
− p2

2m2
− (p+q)2

2m1
+ iε

g′12(O′12)µ,ρσ




g∗12(O†12)γ,νρ
g∗13(O†13)γ,νρ
g∗23(O†23)γ,νρ
g′∗12(O′†12)γ,νρ
g′∗13(O′†13)γ,νρ
g′∗23(O′†23)γ,νρ







δ
(12′)
P2P3

1
δP1P2

δ
(12′)
P2P3

1
δP1P2







f̃
(3)
(12′)(12)

f̃
(2)
(12′)(13)

f̃
(2)
(12′)(23)

f̃
(3)
(12′)(12′)

f̃
(2)
(12′)(13′)

f̃
(2)
(12′)(23′)




+

(
1− δP1P3

2

)
S132

∫
d3q

(2π)3
i (t′13)

µν
αβ (E,k,q)

D′13

(
E − q2

2m2
,q
)

E − q2

2m2
− p2

2m1
− (p+q)2

2m3
+ iε

g′13(O′13)µ,σρ




g∗12(O†12)γ,νρ
g∗13(O†13)γ,ρν
g∗23(O†23)γ,ρν
g′∗12(O′†12)γ,νρ
g′∗13(O′†13)γ,ρν
g′∗23(O′†23)γ,ρν







δP1P3

δ
(13′)
P1P2

1
δP1P3

δ
(13′)
P1P2

1







f
(3)
(13′)(12)

f
(1)
(13′)(13)

f
(1)
(13′)(23)

f
(3)
(13′)(12′)

f
(1)
(13′)(13′)

f
(1)
(13′)(23′)



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+

(
1− δP1P3

2

)
S312

∫
d3q

(2π)3
i (t′13)

µν
αβ (E,k,q)

D′13

(
E − q2

2m2
,q
)

E − q2

2m2
− p2

2m3
− (p+q)2

2m1
+ iε

g′13(O′13)µ,ρσ




g∗12(O†12)γ,νρ
g∗13(O†13)γ,νρ
g∗23(O†23)γ,ρν
g′∗12(O′†12)γ,νρ
g′∗13(O′†13)γ,νρ
g′∗23(O′†23)γ,ρν







1

δ
(13′)
P2P3

δP1P3

1

δ
(13′)
P2P3

δP1P3







f̃
(3)
(13′)(12)

f̃
(3)
(13′)(13)

f̃
(3)
(13′)(23)

f̃
(3)
(13′)(12′)

f̃
(3)
(13′)(13′)

f̃
(3)
(13′)(23′)




+

(
1− δP2P3

2

)
S231

∫
d3q

(2π)3
i (t′23)

µν
αβ (E,k,q)

D′23

(
E − q2

2m1
,q
)

E − q2

2m1
− p2

2m2
− (p+q)2

2m3
+ iε

g′23(O′23)µ,σρ




g∗12(O†12)γ,ρν
g∗13(O†13)γ,ρν
g∗23(O†23)γ,ρν
g′∗12(O′†12)γ,ρν
g′∗13(O′†13)γ,ρν
g′∗23(O′†23)γ,ρν







δP2P3

1

δ
(23′)
P1P2

δP2P3

1

δ
(23′)
P1P2







f
(3)
(23′)(12)

f
(2)
(23′)(13)

f
(2)
(23′)(23)

f
(3)
(23′)(12′)

f
(2)
(23′)(13′)

f
(2)
(23′)(23′)




+

(
1− δP2P3

2

)
S321

∫
d3q

(2π)3
i (t′23)

µν
αβ (E,k,q)

D′23

(
E − q2

2m1
,q
)

E − q2

2m1
− p2

2m3
− (p+q)2

2m2
+ iε

g′23(O′23)µ,ρσ




g∗12(O†12)γ,ρν
g∗13(O†13)γ,ρν
g∗23(O†23)γ,νρ
g′∗12(O′†12)γ,ρν
g′∗13(O′†13)γ,ρν
g′∗23(O′†23)γ,νρ







1
δP2P3

δ
(23′)
P1P3

1
δP2P3

δ
(23′)
P1P3







f̃
(3)
(23′)(12)

f̃
(3)
(23′)(13)

f̃
(3)
(23′)(23)

f̃
(3)
(23′)(12′)

f̃
(3)
(23′)(13′)

f̃
(3)
(23′)(23′)




(F.1)
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Three-body scattering amplitudes after applying wave function renormalization (see section 3.3.1). Additionally, the
full dimer propagators are plugged in explicitly.




(T12)γσαβ
(T13)γσαβ
(T23)γσαβ
(T ′12)γσαβ
(T ′13)γσαβ
(T ′23)γσαβ




(E,k,p) =

−
(

1− δP1P2

2

)




(µ2
12 S12 c12)

−1

(
µ13 µ12

√
S13 S12 c13 c12

)−1

(
µ23 µ12

√
S23 S12 c23 c12

)−1

(
µ2

12 S12

√
c′12 c12

)−1

(
µ13 µ12

√
S13 S12 c′13 c12

)−1

(
µ23 µ12

√
S23 S12 c′23 c12

)−1




S123 2π γ12 (O12)α,σρ

E − k2

2m3
− p2

2m1
− (k+p)2

2m2
+ iε




(O†12)γ,ρβ
(O†13)γ,βρ
(O†23)γ,βρ
(O′†12)γ,ρβ
(O′†13)γ,βρ
(O′†23)γ,βρ







δ
(12)
P1P3

δP1P2

1

δ
(12)
P1P3

δP1P2

1







f
(3)
(12)(12)

f
(1)
(12)(13)

f
(1)
(12)(23)

f
(3)
(12)(12′)

f
(1)
(12)(13′)

f
(1)
(12)(23′)




−
(

1− δP1P2

2

)




(µ2
12 S12 c12)

−1

(
µ13 µ12

√
S13S12 c13c12

)−1

(
µ23 µ12

√
S23S12 c23c12

)−1

(
µ2

12S12

√
c′12c12

)−1

(
µ13 µ12

√
S13S12 c′13c12

)−1

(
µ23 µ12

√
S23S12 c′23c12

)−1




S213 2π γ12 (O12)α,ρσ

E − k2

2m3
− p2

2m2
− (k+p)2

2m1
+ iε




(O†12)γ,βρ
(O†13)γ,βρ
(O†23)γ,βρ
(O′†12)γ,βρ
(O′†13)γ,βρ
(O′†23)γ,βρ







δ
(12)
P2P3

1
δP1P2

δ
(12)
P2P3

1
δP1P2







f̃
(3)
(12)(12)

f̃
(2)
(12)(13)

f̃
(2)
(12)(23)

f̃
(3)
(12)(12′)

f̃
(2)
(12)(13′)

f̃
(2)
(12)(23′)



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−
(

1− δP1P2

2

)
S123 2π




(µ12 S12 c12)−1

(
µ13

√
S13 S12 c13 c12

)−1

(
µ23

√
S23 S12 c23 c12

)−1

(
µ12 S12

√
c′12 c12

)−1

(
µ13

√
S13 S12 c′13 c12

)−1

(
µ23

√
S23 S12 c′23 c12

)−1




(O12)µ,σρ




(O†12)γ,ρν
(O†13)γ,νρ
(O†23)γ,νρ
(O′†12)γ,ρν
(O′†13)γ,νρ
(O′†23)γ,νρ







δ
(12)
P1P3

δP1P2

1

δ
(12)
P1P3

δP1P2

1







f
(3)
(12)(12)

f
(1)
(12)(13)

f
(1)
(12)(23)

f
(3)
(12)(12′)

f
(1)
(12)(13′)

f
(1)
(12)(23′)




×
∫

d3q

(2π)3

(T12)µναβ (E,k,q)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

1

E − q2

2m3
− p2

2m1
− (p+q)2

2m2
+ iε

−
(

1− δP1P2

2

)
S213 2π




(µ12 S12 c12)−1

(
µ13

√
S13 S12 c13 c12

)−1

(
µ23

√
S23 S12 c23 c12

)−1

(
µ12 S12

√
c′12 c12

)−1

(
µ13

√
S13 S12 c′13 c12

)−1

(
µ23

√
S23 S12 c′23 c12

)−1




(O12)µ,ρσ




(O†12)γ,νρ
(O†13)γ,νρ
(O†23)γ,νρ
(O′†12)γ,νρ
(O′†13)γ,νρ
(O′†23)γ,νρ







δ
(12)
P2P3

1
δP1P2

δ
(12)
P2P3

1
δP1P2







f̃
(3)
(12)(12)

f̃
(2)
(12)(13)

f̃
(2)
(12)(23)

f̃
(3)
(12)(12′)

f̃
(2)
(12)(13′)

f̃
(2)
(12)(23′)




×
∫

d3q

(2π)3

(T12)µναβ (E,k,q)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

1

E − q2

2m3
− p2

2m2
− (p+q)2

2m1
+ iε
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−
(

1− δP1P3

2

)
S132 2π




(
µ12

√
S12 S13 c12 c13

)−1

(µ13 S13 c13)−1

(
µ23

√
S23 S13 c23 c13

)−1

(
µ12

√
S12 S13 c′12 c13

)−1

(
µ13 S13

√
c′13 c13

)−1

(
µ23

√
S23 S13 c′23 c13

)−1




(O13)µ,σρ




(O†12)γ,νρ
(O†13)γ,ρν
(O†23)γ,ρν
(O′†12)γ,νρ
(O′†13)γ,ρν
(O′†23)γ,ρν







δP1P3

δ
(13)
P1P2

1
δP1P3

δ
(13)
P1P2

1







f
(3)
(13)(12)

f
(1)
(13)(13)

f
(1)
(13)(23)

f
(3)
(13)(12′)

f
(1)
(13)(13′)

f
(1)
(13)(23′)




×
∫

d3q

(2π)3

(T13)µναβ (E,k,q)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

1

E − q2

2m2
− p2

2m1
− (p+q)2

2m3
+ iε

−
(

1− δP1P3

2

)
S312 2π




(
µ12

√
S12 S13 c12 c13

)−1

(µ13 S13 c13)−1

(
µ23

√
S23 S13 c23 c13

)−1

(
µ12

√
S12 S13 c′12 c13

)−1

(
µ13 S13

√
c′13 c13

)−1

(
µ23

√
S23 S13 c′23 c13

)−1




(O13)µ,ρσ




(O†12)γ,νρ
(O†13)γ,νρ
(O†23)γ,ρν
(O′†12)γ,νρ
(O′†13)γ,νρ
(O′†23)γ,ρν







1

δ
(13)
P2P3

δP1P3

1

δ
(13)
P2P3

δP1P3







f̃
(3)
(13)(12)

f̃
(3)
(13)(13)

f̃
(3)
(13)(23)

f̃
(3)
(13)(12′)

f̃
(3)
(13)(13′)

f̃
(3)
(13)(23′)




×
∫

d3q

(2π)3

(T13)µναβ (E,k,q)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

1

E − q2

2m2
− p2

2m3
− (p+q)2

2m1
+ iε
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−
(

1− δP2P3

2

)
S231 2π




(
µ12

√
S12 S23 c12 c23

)−1

(
µ13

√
S13 S23 c13 c23

)−1

(µ23 S23 c23)−1

(
µ12

√
S12 S23 c′12 c23

)−1

(
µ13

√
S13 S23 c′13 c23

)−1

(
µ23 S23

√
c′23 c23

)−1




(O23)µ,σρ




(O†12)γ,ρν
(O†13)γ,ρν
(O†23)γ,ρν
(O′†12)γ,ρν
(O′†13)γ,ρν
(O′†23)γ,ρν







δP2P3

1

δ
(23)
P1P2

δP2P3

1

δ
(23)
P1P2







f
(3)
(23)(12)

f
(2)
(23)(13)

f
(2)
(23)(23)

f
(3)
(23)(12′)

f
(2)
(23)(13′)

f
(2)
(23)(23′)




×
∫

d3q

(2π)3

(T23)µναβ (E,k,q)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

1

E − q2

2m1
− p2

2m2
− (p+q)2

2m3
+ iε

−
(

1− δP2P3

2

)
S321 2π




(
µ12

√
S12 S23 c12 c23

)−1

(
µ13

√
S13 S23 c13 c23

)−1

(µ23 S23 c23)−1

(
µ12

√
S12 S23 c′12 c23

)−1

(
µ13

√
S13 S23 c′13 c23

)−1

(
µ23 S23

√
c′23 c23

)−1




(O23)µ,ρσ




(O†12)γ,ρν
(O†13)γ,ρν
(O†23)γ,νρ
(O′†12)γ,ρν
(O′†13)γ,ρν
(O′†23)γ,νρ







1
δP2P3

δ
(23)
P1P3

1
δP2P3

δ
(23)
P1P3







f̃
(3)
(23)(12)

f̃
(3)
(23)(13)

f̃
(3)
(23)(23)

f̃
(3)
(23)(12′)

f̃
(3)
(23)(13′)

f̃
(3)
(23)(23′)




×
∫

d3q

(2π)3

(T23)µναβ (E,k,q)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

1

E − q2

2m1
− p2

2m3
− (p+q)2

2m2
+ iε
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−
(

1− δP1P2

2

)
S123 2π




(
µ12 S12

√
c12 c′12

)−1

(
µ13

√
S13 S12 c13 c′12

)−1

(
µ23

√
S23 S12 c23 c′12

)−1

(µ12 S12 c
′
12)−1

(
µ13

√
S13 S12 c′13 c

′
12

)−1

(
µ23

√
S23 S12 c′23 c

′
12

)−1




(O′12)µ,σρ




(O†12)γ,ρν
(O†13)γ,νρ
(O†23)γ,νρ
(O′†12)γ,ρν
(O′†13)γ,νρ
(O′†23)γ,νρ







δ
(12′)
P1P3

δP1P2

1

δ
(12′)
P1P3

δP1P2

1







f
(3)
(12′)(12)

f
(1)
(12′)(13)

f
(1)
(12′)(23)

f
(3)
(12′)(23′)

f
(1)
(12′)(13′)

f
(1)
(12′)(23′)




×
∫

d3q

(2π)3

(T ′12)µναβ (E,k,q)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

1

E − q2

2m3
− p2

2m1
− (p+q)2

2m2
+ iε

−
(

1− δP1P2

2

)
S213 2π




(
µ12 S12

√
c12 c′12

)−1

(
µ13

√
S13 S12 c13 c′12

)−1

(
µ23

√
S23 S12 c23 c′12

)−1

(µ12 S12 c
′
12)−1

(
µ13

√
S13 S12 c′13 c

′
12

)−1

(
µ23

√
S23 S12 c′23 c

′
12

)−1




(O′12)µ,ρσ




(O†12)γ,νρ
(O†13)γ,νρ
(O†23)γ,νρ
(O′†12)γ,νρ
(O′†13)γ,νρ
(O′†23)γ,νρ







δ
(12′)
P2P3

1
δP1P2

δ
(12′)
P2P3

1
δP1P2







f̃
(3)
(12′)(12)

f̃
(2)
(12′)(13)

f̃
(2)
(12′)(23)

f̃
(3)
(12′)(12′)

f̃
(2)
(12′)(13′)

f̃
(2)
(12′)(23′)




×
∫

d3q

(2π)3

(T ′12)µναβ (E,k,q)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

1

E − q2

2m3
− p2

2m2
− (p+q)2

2m1
+ iε

183



−
(

1− δP1P3

2

)
S132 2π




(
µ12

√
S12 S13 c12 c′13

)−1

(
µ13 S13

√
c13 c′13

)−1

(
µ23

√
S23 S13 c23 c′13

)−1

(
µ12

√
S12 S13 c′12 c

′
13

)−1

(µ13 S13 c
′
13)−1

(
µ23

√
S23 S13 c′23 c

′
13

)−1




(O′13)µ,σρ




(O†12)γ,νρ
(O†13)γ,ρν
(O†23)γ,ρν
(O′†12)γ,νρ
(O′†13)γ,ρν
(O′†23)γ,ρν







δP1P3

δ
(13′)
P1P2

1
δP1P3

δ
(13′)
P1P2

1







f
(3)
(13′)(12)

f
(1)
(13′)(13)

f
(1)
(13′)(23)

f
(3)
(13′)(12′)

f
(1)
(13′)(13′)

f
(1)
(13′)(23′)




×
∫

d3q

(2π)3

(T ′13)µναβ (E,k,q)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

1

E − q2

2m2
− p2

2m1
− (p+q)2

2m3
+ iε

−
(

1− δP1P3

2

)
S312 2π




(
µ12

√
S12 S13 c12 c′13

)−1

(
µ13 S13

√
c13 c′13

)−1

(
µ23

√
S23 S13 c23 c′13

)−1

(
µ12

√
S12 S13 c′12 c

′
13

)−1

(µ13 S13 c
′
13)−1

(
µ23

√
S23 S13 c′23 c

′
13

)−1




(O′13)µ,ρσ




(O†12)γ,νρ
(O†13)γ,νρ
(O†23)γ,ρν
(O′†12)γ,νρ
(O′†13)γ,νρ
(O′†23)γ,ρν







1

δ
(13′)
P2P3

δP1P3

1

δ
(13′)
P2P3

δP1P3







f̃
(3)
(13′)(12)

f̃
(3)
(13′)(13)

f̃
(3)
(13′)(23)

f̃
(3)
(13′)(12′)

f̃
(3)
(13′)(13′)

f̃
(3)
(13′)(23′)




×
∫

d3q

(2π)3

(T ′13)µναβ (E,k,q)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

1

E − q2

2m2
− p2

2m3
− (p+q)2

2m1
+ iε
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−
(

1− δP2P3

2

)
S231 2π




(
µ12

√
S12 S23 c12 c′23

)−1

(
µ13

√
S13 S23 c13 c′23

)−1

(
µ23 S23

√
c23 c′23

)−1

(
µ12

√
S12 S23 c′12 c

′
23

)−1

(
µ13

√
S13 S23 c′13 c

′
23

)−1

(µ23 S23 c
′
23)−1




(O′23)µ,σρ




(O†12)γ,ρν
(O†13)γ,ρν
(O†23)γ,ρν
(O′†12)γ,ρν
(O′†13)γ,ρν
(O′†23)γ,ρν







δP2P3

1

δ
(23′)
P1P2

δP2P3

1

δ
(23′)
P1P2







f
(3)
(23′)(12)

f
(2)
(23′)(13)

f
(2)
(23′)(23)

f
(3)
(23′)(12′)

f
(2)
(23′)(13′)

f
(2)
(23′)(23′)




×
∫

d3q

(2π)3

(T ′23)µναβ (E,k,q)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

1

E − q2

2m1
− p2

2m2
− (p+q)2

2m3
+ iε

−
(

1− δP2P3

2

)
S321 2π




(
µ12

√
S12 S23 c12 c′23

)−1

(
µ13

√
S13 S23 c13 c′23

)−1

(
µ23 S23

√
c23 c′23

)−1

(
µ12

√
S12 S23 c′12 c

′
23

)−1

(
µ13

√
S13 S23 c′13 c

′
23

)−1

(µ23 S23 c
′
23)−1




(O′23)µ,ρσ




(O†12)γ,ρν
(O†13)γ,ρν
(O†23)γ,νρ
(O′†12)γ,ρν
(O′†13)γ,ρν
(O′†23)γ,νρ







1
δP2P3

δ
(23′)
P1P3

1
δP2P3

δ
(23′)
P1P3







f̃
(3)
(23′)(12)

f̃
(3)
(23′)(13)

f̃
(3)
(23′)(23)

f̃
(3)
(23′)(12′)

f̃
(3)
(23′)(13′)

f̃
(3)
(23′)(23′)




×
∫

d3q

(2π)3

(T ′23)µναβ (E,k,q)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

1

E − q2

2m1
− p2

2m3
− (p+q)2

2m2
+ iε

(F.2)
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Three-body scattering amplitudes after projection onto the L-th partial wave. For details (especially on the notation
Qijk
L ) see section 3.3.2 and appendix D.




(
T

(L)
12

)γσ
αβ(

T
(L)
13

)γσ
αβ(

T
(L)
23

)γσ
αβ(

T
′(L)
12

)γσ
αβ(

T
′(L)
13

)γσ
αβ(

T
′(L)
23

)γσ
αβ




(E, k, p) =

(−1)L
(

1− δP1P2

2

)
S123 2π γ12




(µ2
12 S12 c12)

−1

(
µ13 µ12

√
S13 S12 c13 c12

)−1

(
µ23 µ12

√
S23 S12 c23 c12

)−1

(
µ2

12 S12

√
c′12 c12

)−1

(
µ13 µ12

√
S13 S12 c′13 c12

)−1

(
µ23 µ12

√
S23 S12 c′23 c12

)−1




(O12)α,σρ




(O†12)γ,ρβ
(O†13)γ,βρ
(O†23)γ,βρ
(O′†12)γ,ρβ
(O′†13)γ,βρ
(O′†23)γ,βρ







δ
(12)
P1P3

δP1P2

1

δ
(12)
P1P3

δP1P2

1







f
(3)
(12)(12)

f
(1)
(12)(13)

f
(1)
(12)(23)

f
(3)
(12)(12′)

f
(1)
(12)(13′)

f
(1)
(12)(23′)




m2

kp
Q231
L (k, p;E)

+ (−1)L
(

1− δP1P2

2

)
S213 2π γ12




(µ2
12 S12 c12)

−1

(
µ13 µ12

√
S13S12 c13c12

)−1

(
µ23 µ12

√
S23S12 c23c12

)−1

(
µ2

12S12

√
c′12c12

)−1

(
µ13 µ12

√
S13S12 c′13c12

)−1

(
µ23 µ12

√
S23S12 c′23c12

)−1




(O12)α,ρσ




(O†12)γ,βρ
(O†13)γ,βρ
(O†23)γ,βρ
(O′†12)γ,βρ
(O′†13)γ,βρ
(O′†23)γ,βρ







δ
(12)
P2P3

1
δP1P2

δ
(12)
P2P3

1
δP1P2







f̃
(3)
(12)(12)

f̃
(2)
(12)(13)

f̃
(2)
(12)(23)

f̃
(3)
(12)(12′)

f̃
(2)
(12)(13′)

f̃
(2)
(12)(23′)




m1

kp
Q132
L (k, p;E)
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+ (−1)L
(

1− δP1P2

2

)
S123

1

π




(µ12 S12 c12)−1

(
µ13

√
S13 S12 c13 c12

)−1

(
µ23

√
S23 S12 c23 c12

)−1

(
µ12 S12

√
c′12 c12

)−1

(
µ13

√
S13 S12 c′13 c12

)−1

(
µ23

√
S23 S12 c′23 c12

)−1




(O12)µ,σρ




(O†12)γ,ρν
(O†13)γ,νρ
(O†23)γ,νρ
(O′†12)γ,ρν
(O′†13)γ,νρ
(O′†23)γ,νρ







δ
(12)
P1P3

δP1P2

1

δ
(12)
P1P3

δP1P2

1







f
(3)
(12)(12)

f
(1)
(12)(13)

f
(1)
(12)(23)

f
(3)
(12)(12′)

f
(1)
(12)(13′)

f
(1)
(12)(23′)




×
∫ ∞

0

dq
q2
(
T

(L)
12

)µν
αβ

(E, k, q)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

m2

qp
Q231
L (q, p;E)

+ (−1)L
(

1− δP1P2

2

)
S213

1

π




(µ12 S12 c12)−1

(
µ13

√
S13 S12 c13 c12

)−1

(
µ23

√
S23 S12 c23 c12

)−1

(
µ12 S12

√
c′12 c12

)−1

(
µ13

√
S13 S12 c′13 c12

)−1

(
µ23

√
S23 S12 c′23 c12

)−1




(O12)µ,ρσ




(O†12)γ,νρ
(O†13)γ,νρ
(O†23)γ,νρ
(O′†12)γ,νρ
(O′†13)γ,νρ
(O′†23)γ,νρ







δ
(12)
P2P3

1
δP1P2

δ
(12)
P2P3

1
δP1P2







f̃
(3)
(12)(12)

f̃
(2)
(12)(13)

f̃
(2)
(12)(23)

f̃
(3)
(12)(12′)

f̃
(2)
(12)(13′)

f̃
(2)
(12)(23′)




×
∫ ∞

0

dq
q2
(
T

(L)
12

)µν
αβ

(E, k, q)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

m1

qp
Q132
L (q, p;E)
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+ (−1)L
(

1− δP1P3

2

)
S132

1

π




(
µ12

√
S12 S13 c12 c13

)−1

(µ13 S13 c13)−1

(
µ23

√
S23 S13 c23 c13

)−1

(
µ12

√
S12 S13 c′12 c13

)−1

(
µ13 S13

√
c′13 c13

)−1

(
µ23

√
S23 S13 c′23 c13

)−1




(O13)µ,σρ




(O†12)γ,νρ
(O†13)γ,ρν
(O†23)γ,ρν
(O′†12)γ,νρ
(O′†13)γ,ρν
(O′†23)γ,ρν







δP1P3

δ
(13)
P1P2

1
δP1P3

δ
(13)
P1P2

1







f
(3)
(13)(12)

f
(1)
(13)(13)

f
(1)
(13)(23)

f
(3)
(13)(12′)

f
(1)
(13)(13′)

f
(1)
(13)(23′)




×
∫ ∞

0

dq
q2
(
T

(L)
13

)µν
αβ

(E, k, q)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

m3

qp
Q321
L (q, p;E)

+ (−1)L
(

1− δP1P3

2

)
S312

1

π




(
µ12

√
S12 S13 c12 c13

)−1

(µ13 S13 c13)−1

(
µ23

√
S23 S13 c23 c13

)−1

(
µ12

√
S12 S13 c′12 c13

)−1

(
µ13 S13

√
c′13 c13

)−1

(
µ23

√
S23 S13 c′23 c13

)−1




(O13)µ,ρσ




(O†12)γ,νρ
(O†13)γ,νρ
(O†23)γ,ρν
(O′†12)γ,νρ
(O′†13)γ,νρ
(O′†23)γ,ρν







1

δ
(13)
P2P3

δP1P3

1

δ
(13)
P2P3

δP1P3







f̃
(3)
(13)(12)

f̃
(3)
(13)(13)

f̃
(3)
(13)(23)

f̃
(3)
(13)(12′)

f̃
(3)
(13)(13′)

f̃
(3)
(13)(23′)




×
∫ ∞

0

dq
q2
(
T

(L)
13

)µν
αβ

(E, k, q)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

m1

qp
Q123
L (q, p;E)
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+ (−1)L
(

1− δP2P3

2

)
S231

1

π




(
µ12

√
S12 S23 c12 c23

)−1

(
µ13

√
S13 S23 c13 c23

)−1

(µ23 S23 c23)−1

(
µ12

√
S12 S23 c′12 c23

)−1

(
µ13

√
S13 S23 c′13 c23

)−1

(
µ23 S23

√
c′23 c23

)−1




(O23)µ,σρ




(O†12)γ,ρν
(O†13)γ,ρν
(O†23)γ,ρν
(O′†12)γ,ρν
(O′†13)γ,ρν
(O′†23)γ,ρν







δP2P3

1

δ
(23)
P1P2

δP2P3

1

δ
(23)
P1P2







f
(3)
(23)(12)

f
(2)
(23)(13)

f
(2)
(23)(23)

f
(3)
(23)(12′)

f
(2)
(23)(13′)

f
(2)
(23)(23′)




×
∫ ∞

0

dq
q2
(
T

(L)
23

)µν
αβ

(E, k, q)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

m3

qp
Q312
L (q, p;E)

+ (−1)L
(

1− δP2P3

2

)
S321

1

π




(
µ12

√
S12 S23 c12 c23

)−1

(
µ13

√
S13 S23 c13 c23

)−1

(µ23 S23 c23)−1

(
µ12

√
S12 S23 c′12 c23

)−1

(
µ13

√
S13 S23 c′13 c23

)−1

(
µ23 S23

√
c′23 c23

)−1




(O23)µ,ρσ




(O†12)γ,ρν
(O†13)γ,ρν
(O†23)γ,νρ
(O′†12)γ,ρν
(O′†13)γ,ρν
(O′†23)γ,νρ







1
δP2P3

δ
(23)
P1P3

1
δP2P3

δ
(23)
P1P3







f̃
(3)
(23)(12)

f̃
(3)
(23)(13)

f̃
(3)
(23)(23)

f̃
(3)
(23)(12′)

f̃
(3)
(23)(13′)

f̃
(3)
(23)(23′)




×
∫ ∞

0

dq
q2
(
T

(L)
23

)µν
αβ

(E, k, q)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

m2

qp
Q213
L (q, p;E)
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+ (−1)L
(

1− δP1P2

2

)
S123

1

π




(
µ12 S12

√
c12 c′12

)−1

(
µ13

√
S13 S12 c13 c′12

)−1

(
µ23

√
S23 S12 c23 c′12

)−1

(µ12 S12 c
′
12)−1

(
µ13

√
S13 S12 c′13 c

′
12

)−1

(
µ23

√
S23 S12 c′23 c

′
12

)−1




(O′12)µ,σρ




(O†12)γ,ρν
(O†13)γ,νρ
(O†23)γ,νρ
(O′†12)γ,ρν
(O′†13)γ,νρ
(O′†23)γ,νρ







δ
(12′)
P1P3

δP1P2

1

δ
(12′)
P1P3

δP1P2

1







f
(3)
(12′)(12)

f
(1)
(12′)(13)

f
(1)
(12′)(23)

f
(3)
(12′)(23′)

f
(1)
(12′)(13′)

f
(1)
(12′)(23′)




×
∫ ∞

0

dq
q2
(
T
′(L)
12

)µν
αβ

(E, k, q)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

m2

qp
Q231
L (q, p;E)

+ (−1)L
(

1− δP1P2

2

)
S213

1

π




(
µ12 S12

√
c12 c′12

)−1

(
µ13

√
S13 S12 c13 c′12

)−1

(
µ23

√
S23 S12 c23 c′12

)−1

(µ12 S12 c
′
12)−1

(
µ13

√
S13 S12 c′13 c

′
12

)−1

(
µ23

√
S23 S12 c′23 c

′
12

)−1




(O′12)µ,ρσ




(O†12)γ,νρ
(O†13)γ,νρ
(O†23)γ,νρ
(O′†12)γ,νρ
(O′†13)γ,νρ
(O′†23)γ,νρ







δ
(12′)
P2P3

1
δP1P2

δ
(12′)
P2P3

1
δP1P2







f̃
(3)
(12′)(12)

f̃
(2)
(12′)(13)

f̃
(2)
(12′)(23)

f̃
(3)
(12′)(12′)

f̃
(2)
(12′)(13′)

f̃
(2)
(12′)(23′)




×
∫ ∞

0

dq
q2
(
T
′(L)
12

)µν
αβ

(E, k, q)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

m1

qp
Q132
L (q, p;E)
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+ (−1)L
(

1− δP1P3

2

)
S132

1

π




(
µ12

√
S12 S13 c12 c′13

)−1

(
µ13 S13

√
c13 c′13

)−1

(
µ23

√
S23 S13 c23 c′13

)−1

(
µ12

√
S12 S13 c′12 c

′
13

)−1

(µ13 S13 c
′
13)−1

(
µ23

√
S23 S13 c′23 c

′
13

)−1




(O′13)µ,σρ




(O†12)γ,νρ
(O†13)γ,ρν
(O†23)γ,ρν
(O′†12)γ,νρ
(O′†13)γ,ρν
(O′†23)γ,ρν







δP1P3

δ
(13′)
P1P2

1
δP1P3

δ
(13′)
P1P2

1







f
(3)
(13′)(12)

f
(1)
(13′)(13)

f
(1)
(13′)(23)

f
(3)
(13′)(12′)

f
(1)
(13′)(13′)

f
(1)
(13′)(23′)




×
∫ ∞

0

dq
q2
(
T
′(L)
13

)µν
αβ

(E, k, q)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

m3

qp
Q321
L (q, p;E)

+ (−1)L
(

1− δP1P3

2

)
S312

1

π




(
µ12

√
S12 S13 c12 c′13

)−1

(
µ13 S13

√
c13 c′13

)−1

(
µ23

√
S23 S13 c23 c′13

)−1

(
µ12

√
S12 S13 c′12 c

′
13

)−1

(µ13 S13 c
′
13)−1

(
µ23

√
S23 S13 c′23 c

′
13

)−1




(O′13)µ,ρσ




(O†12)γ,νρ
(O†13)γ,νρ
(O†23)γ,ρν
(O′†12)γ,νρ
(O′†13)γ,νρ
(O′†23)γ,ρν







1

δ
(13′)
P2P3

δP1P3

1

δ
(13′)
P2P3

δP1P3







f̃
(3)
(13′)(12)

f̃
(3)
(13′)(13)

f̃
(3)
(13′)(23)

f̃
(3)
(13′)(12′)

f̃
(3)
(13′)(13′)

f̃
(3)
(13′)(23′)




×
∫ ∞

0

dq
q2
(
T
′(L)
13

)µν
αβ

(E, k, q)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

m1

qp
Q123
L (q, p;E)
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+ (−1)L
(

1− δP2P3

2

)
S231

1

π




(
µ12

√
S12 S23 c12 c′23

)−1

(
µ13

√
S13 S23 c13 c′23

)−1

(
µ23 S23

√
c23 c′23

)−1

(
µ12

√
S12 S23 c′12 c

′
23

)−1

(
µ13

√
S13 S23 c′13 c

′
23

)−1

(µ23 S23 c
′
23)−1




(O′23)µ,σρ




(O†12)γ,ρν
(O†13)γ,ρν
(O†23)γ,ρν
(O′†12)γ,ρν
(O′†13)γ,ρν
(O′†23)γ,ρν







δP2P3

1

δ
(23′)
P1P2

δP2P3

1

δ
(23′)
P1P2







f
(3)
(23′)(12)

f
(2)
(23′)(13)

f
(2)
(23′)(23)

f
(3)
(23′)(12′)

f
(2)
(23′)(13′)

f
(2)
(23′)(23′)




×
∫ ∞

0

dq
q2
(
T
′(L)
23

)µν
αβ

(E, k, q)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

m3

qp
Q312
L (q, p;E)

+ (−1)L
(

1− δP2P3

2

)
S321

1

π




(
µ12

√
S12 S23 c12 c′23

)−1

(
µ13

√
S13 S23 c13 c′23

)−1

(
µ23 S23

√
c23 c′23

)−1

(
µ12

√
S12 S23 c′12 c

′
23

)−1

(
µ13

√
S13 S23 c′13 c

′
23

)−1

(µ23 S23 c
′
23)−1




(O′23)µ,ρσ




(O†12)γ,ρν
(O†13)γ,ρν
(O†23)γ,νρ
(O′†12)γ,ρν
(O′†13)γ,ρν
(O′†23)γ,νρ







1
δP2P3

δ
(23′)
P1P3

1
δP2P3

δ
(23′)
P1P3







f̃
(3)
(23′)(12)

f̃
(3)
(23′)(13)

f̃
(3)
(23′)(23)

f̃
(3)
(23′)(12′)

f̃
(3)
(23′)(13′)

f̃
(3)
(23′)(23′)




×
∫ ∞

0

dq
q2
(
T
′(L)
23

)µν
αβ

(E, k, q)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

m2

qp
Q213
L (q, p;E) (F.3)

Three-body scattering amplitudes after projection onto a specific isospin and spin channel as explained in section 3.3.3.
For the definition of the xi, yi and zi parameters see appendix A.2.

192



T
(L)
12 (E, k, p) =

(−1)L
(

1− δP1P2

2

)
2 π γ12

µ2
12 S12 c12

[
x1 δ

(12)
P1P3

f
(3)
(12)(12) S123

m2

kp
Q211
L (k, p;E) + x̃1 δ

(12)
P2P3

f̃
(3)
(12)(12) S213

m1

kp
Q122
L (k, p;E)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12 c12

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

×
[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123

m2

qp
Q211
L (q, p;E) + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213

m1

qp
Q122
L (q, p;E)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x3 δP1P3 S132 + x̃3 S312

)

µ12

√
S12 S13 c12 c13

f̃
(3)
(13)(12)

∫ ∞

0

dq
q2 T

(L)
13 (E, k, q) m1

qp
Q123
L (q, p;E)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

+ (−1)L
(

1− δP2P3

2

)
1

π

(
x4 δP2P3 S231 + x̃4 S321

)

µ12

√
S12 S23 c12 c23

f̃
(3)
(23)(12)

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q) m2

qp
Q213
L (q, p;E)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12

√
c12 c′12

∫ ∞

0

dq
q2 T

′(L)
12 (E, k, q)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

×
[
x5 δ

(12′)
P1P3

f
(3)
(12′)(12) S123

m2

qp
Q211
L (q, p;E) + x̃5 δ

(12′)
P2P3

f̃
(3)
(12′)(12) S213

m1

qp
Q122
L (q, p;E)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x6 δP1P3 S132 + x̃6 S312

)

µ12

√
S12 S13 c12 c′13

f̃
(3)
(13′)(12)

∫ ∞

0

dq
q2 T

′(L)
13 (E, k, q) m1

qp
Q123
L (q, p;E)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

+ (−1)L
(

1− δP2P3

2

)
1

π

(
x7 δP2P3 S231 + x̃7 S321

)

µ12

√
S12 S23 c12 c′23

f̃
(3)
(23′)(12)

∫ ∞

0

dq
q2 T

′(L)
23 (E, k, q) m2

qp
Q213
L (q, p;E)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

(F.4)
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T
(L)
13 (E, k, p) =

(−1)L
(

1− δP1P2

2

) 2 π γ12

(
y1 δP1P2 S123 + ỹ1 S213

)

µ13 µ12

√
S13 S12 c13 c12

f̃
(2)
(12)(13)

m1

kp
Q132
L (k, p;E)

+ (−1)L
(

1− δP1P2

2

)
1

π

(
y2 δP1P2 S123 + ỹ2 S213

)

µ13

√
S13 S12 c13 c12

f̃
(2)
(12)(13)

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q) m1

qp
Q132
L (q, p;E)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ13 S13 c13

∫ ∞

0

dq
q2 T

(L)
13 (E, k, q)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

×
[
y3 δ

(13)
P1P2

f
(1)
(13)(13) S132

m3

qp
Q311
L (q, p;E) + ỹ3 δ

(13)
P2P3

f̃
(3)
(13)(13) S312

m1

qp
Q133
L (q, p;E)

]

+ (−1)L
(

1− δP2P3

2

)
1

π

(
y4 S231 + ỹ4 δP2P3 S321

)

µ13

√
S13 S23 c13 c23

f
(2)
(23)(13)

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q) m3

qp
Q312
L (q, p;E)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

+ (−1)L
(

1− δP1P2

2

)
1

π

(
y5 δP1P2 S123 + ỹ5 S213

)

µ13

√
S13 S12 c13 c′12

f̃
(2)
(12′)(13)

∫ ∞

0

dq
q2 T

′(L)
12 (E, k, q) m1

qp
Q132
L (q, p;E)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ13 S13

√
c13 c′13

∫ ∞

0

dq
q2 T

′(L)
13 (E, k, q)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

×
[
y6 δ

(13′)
P1P2

f
(1)
(13′)(13) S132

m3

qp
Q311
L (q, p;E) + ỹ6 δ

(13′)
P2P3

f̃
(3)
(13′)(13) S312

m1

qp
Q133
L (q, p;E)

]

+ (−1)L
(

1− δP2P3

2

)
1

π

(
y7 S231 + ỹ7 δP2P3 S321

)

µ13

√
S13 S23 c13 c′23

f
(2)
(23′)(13)

∫ ∞

0

dq
q2 T

′(L)
23 (E, k, q) m3

qp
Q312
L (q, p;E)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

(F.5)
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T
(L)
23 (E, k, p) =

(−1)L
(

1− δP1P2

2

) 2 π γ12

(
z1 S123 + z̃1 δP1P2 S213

)

µ23 µ12

√
S23 S12 c23 c12

f
(1)
(12)(23)

m2

kp
Q231
L (k, p;E)

+ (−1)L
(

1− δP1P2

2

)
1

π

(
z2 S123 + z̃2 δP1P2 S213

)

µ23

√
S23 S12 c23 c12

f
(1)
(12)(23)

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q) m2

qp
Q231
L (q, p;E)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+ (−1)L
(

1− δP1P3

2

)
1

π

(
z3 S132 + z̃3 δP1P3 S312

)

µ23

√
S23 S13 c23 c13

f
(1)
(13)(23)

∫ ∞

0

dq
q2 T

(L)
13 (E, k, q) m3

qp
Q321
L (q, p;E)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

+ (−1)L
(

1− δP2P3

2

)
1

π

1

µ23 S23 c23

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

×
[
z4 δ

(23)
P1P2

f
(2)
(23)(23) S231

m3

qp
Q322
L (q, p;E) + z̃4 δ

(23)
P1P3

f̃
(3)
(23)(23) S321

m2

qp
Q233
L (q, p;E)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

(
z5 S123 + z̃5 δP1P2 S213

)

µ23

√
S23 S12 c23 c′12

f
(1)
(12′)(23)

∫ ∞

0

dq
q2 T

′(L)
12 (E, k, q) m2

qp
Q231
L (q, p;E)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+ (−1)L
(

1− δP1P3

2

)
1

π

(
z6 S132 + z̃6 δP1P3 S312

)

µ23

√
S23 S13 c23 c′13

f
(1)
(13′)(23)

∫ ∞

0

dq
q2 T

′(L)
13 (E, k, q) m3

qp
Q321
L (q, p;E)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

+ (−1)L
(

1− δP2P3

2

)
1

π

1

µ23 S23

√
c23 c′23

∫ ∞

0

dq
q2 T

′(L)
23 (E, k, q)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

×
[
z7 δ

(23′)
P1P2

f
(2)
(23′)(23) S231

m3

qp
Q322
L (q, p;E) + z̃7 δ

(23′)
P1P3

f̃
(3)
(23′)(23) S321

m2

qp
Q233
L (q, p;E)

]
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T
′(L)
12 (E, k, p) =

(−1)L
(

1− δP1P2

2

)
2 π γ12

µ2
12 S12

√
c′12 c12

[
x′1 δ

(12)
P1P3

f
(3)
(12)(12′) S123

m2

kp
Q211
L (k, p;E) + x̃′1 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213

m1

kp
Q122
L (k, p;E)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12

√
c′12 c12

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

×
[
x′2 δ

(12)
P1P3

f
(3)
(12)(12′) S123

m2

qp
Q211
L (q, p;E) + x̃′2 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213

m1

qp
Q122
L (q, p;E)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x′3 δP1P3 S132 + x̃′3 S312

)

µ12

√
S12 S13 c′12 c13

f̃
(3)
(13)(12′)

∫ ∞

0

dq
q2 T

(L)
13 (E, k, q) m1

qp
Q123
L (q, p;E)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

+ (−1)L
(

1− δP2P3

2

)
1

π

(
x′4 δP2P3 S231 + x̃′4 S321

)

µ12

√
S12 S23 c′12 c23

f̃
(3)
(23)(12′)

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q) m2

qp
Q213
L (q, p;E)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12 c′12

∫ ∞

0

dq
q2 T

′(L)
12 (E, k, q)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

×
[
x′5 δ

(12′)
P1P3

f
(3)
(12′)(23′) S123

m2

qp
Q211
L (q, p;E) + x̃′5 δ

(12′)
P2P3

f̃
(3)
(12′)(12′) S213

m1

qp
Q122
L (q, p;E)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x′6 δP1P3 S132 + x̃′6 S312

)

µ12

√
S12 S13 c′12 c

′
13

f̃
(3)
(13′)(12′)

∫ ∞

0

dq
q2 T

′(L)
13 (E, k, q) m1

qp
Q123
L (q, p;E)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

+ (−1)L
(

1− δP2P3

2

)
1

π

(
x′7 δP2P3 S231 + x̃′7 S321

)

µ12

√
S12 S23 c′12 c

′
23

f̃
(3)
(23′)(12′)

∫ ∞

0

dq
q2 T

′(L)
23 (E, k, q) m2

qp
Q213
L (q, p;E)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε
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T
′(L)
13 (E, k, p) =

(−1)L
(

1− δP1P2

2

) 2 π γ12

(
y′1 δP1P2 S123 + ỹ′1 S213

)

µ13 µ12

√
S13 S12 c′13 c12

f̃
(2)
(12)(13′)

m1

kp
Q132
L (k, p;E)

+ (−1)L
(

1− δP1P2

2

)
1

π

(
y′2 δP1P2 S123 + ỹ′2 S213

)

µ13

√
S13 S12 c′13 c12

f̃
(2)
(12)(13′)

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q) m1

qp
Q132
L (q, p;E)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ13 S13

√
c′13 c13

∫ ∞

0

dq
q2 T

(L)
13 (E, k, q)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

×
[
y′3 δ

(13)
P1P2

f
(1)
(13)(13′) S132

m3

qp
Q311
L (q, p;E) + ỹ′3 δ

(13)
P2P3

f̃
(3)
(13)(13′) S312

m1

qp
Q133
L (q, p;E)

]

+ (−1)L
(

1− δP2P3

2

)
1

π

(
y′4 S231 + ỹ′4 δP2P3 S321

)

µ13

√
S13 S23 c′13 c23

f
(2)
(23)(13′)

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q) m3

qp
Q312
L (q, p;E)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

+ (−1)L
(

1− δP1P2

2

)
1

π

(
y′5 δP1P2 S123 + ỹ′5 S213

)

µ13

√
S13 S12 c′13 c

′
12

f̃
(2)
(12′)(13′)

∫ ∞

0

dq
q2 T

′(L)
12 (E, k, q) m1

qp
Q132
L (q, p;E)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ13 S13 c′13

∫ ∞

0

dq
q2 T

′(L)
13 (E, k, q)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

×
[
y′6 δ

(13′)
P1P2

f
(1)
(13′)(13′) S132

m3

qp
Q311
L (q, p;E) + ỹ′6 δ

(13′)
P2P3

f̃
(3)
(13′)(13′) S312

m1

qp
Q133
L (q, p;E)

]

+ (−1)L
(

1− δP2P3

2

)
1

π

(
y′7 S231 + ỹ′7 δP2P3 S321

)

µ13

√
S13 S23 c′13 c

′
23

f
(2)
(23′)(13′)

∫ ∞

0

dq
q2 T

′(L)
23 (E, k, q) m3

qp
Q312
L (q, p;E)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε
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T
′(L)
23 (E, k, p) =

(−1)L
(

1− δP1P2

2

) 2 π γ12

(
z′1 S123 + z̃′1 δP1P2 S213

)

µ23 µ12

√
S23 S12 c′23 c12

f
(1)
(12)(23′)

m2

kp
Q231
L (k, p;E)

+ (−1)L
(

1− δP1P2

2

)
1

π

(
z′2 S123 + z̃′2 δP1P2 S213

)

µ23

√
S23 S12 c′23 c12

f
(1)
(12)(23′)

∫ ∞

0

dq
q2 T

(L)
12 (E, k, q) m2

qp
Q231
L (q, p;E)

−γ12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+ (−1)L
(

1− δP1P3

2

)
1

π

(
z′3 S132 + z̃′3 δP1P3 S312

)

µ23

√
S23 S13 c′23 c13

f
(1)
(13)(23′)

∫ ∞

0

dq
q2 T

(L)
13 (E, k, q) m3

qp
Q321
L (q, p;E)

−γ13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

+ (−1)L
(

1− δP2P3

2

)
1

π

1

µ23 S23

√
c′23 c23

∫ ∞

0

dq
q2 T

(L)
23 (E, k, q)

−γ23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

×
[
z′4 δ

(23)
P1P2

f
(2)
(23)(23′) S231

m3

qp
Q322
L (q, p;E) + z̃′4 δ

(23)
P1P3

f̃
(3)
(23)(23′) S321

m2

qp
Q233
L (q, p;E)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

(
z′5 S123 + z̃′5 δP1P2 S213

)

µ23

√
S23 S12 c′23 c

′
12

f
(1)
(12′)(23′)

∫ ∞

0

dq
q2 T

′(L)
12 (E, k, q) m2

qp
Q231
L (q, p;E)

−γ′12 +

√
−2µ12

(
E − q2

2m3
− q2

2(m1+m2)

)
− iε

+ (−1)L
(

1− δP1P3

2

)
1

π

(
z′6 S132 + z̃′6 δP1P3 S312

)

µ23

√
S23 S13 c′23 c

′
13

f
(1)
(13′)(23′)

∫ ∞

0

dq
q2 T

′(L)
13 (E, k, q) m3

qp
Q321
L (q, p;E)

−γ′13 +

√
−2µ13

(
E − q2

2m2
− q2

2(m1+m3)

)
− iε

+ (−1)L
(

1− δP2P3

2

)
1

π

1

µ23 S23 c′23

∫ ∞

0

dq
q2 T

′(L)
23 (E, k, q)

−γ′23 +

√
−2µ23

(
E − q2

2m1
− q2

2(m2+m3)

)
− iε

×
[
z′7 δ

(23′)
P1P2

f
(2)
(23′)(23′) S231

m3

qp
Q322
L (q, p;E) + z̃′7 δ

(23′)
P1P3

f̃
(3)
(23′)(23′) S321

m2

qp
Q233
L (q, p;E)

]
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Three-body scattering amplitudes in the limit of asymptotic large off-shell momenta (see section 3.4).

T̃
(L)
12 (p) = (−1)L

(
1− δP1P2

2

)
1

π

1

µ12 S12 c12

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)3

×
[
x2 δ

(12)
P1P3

f
(3)
(12)(12) S123 m2Q

211
L (q, p) + x̃2 δ

(12)
P2P3

f̃
(3)
(12)(12) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x3 δP1P3 S132 + x̃3 S312

)

µ12

√
S12 S13 c12 c13

f̃
(3)
(13)(12)

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ13
µ(13)2

m1Q
123
L (q, p)

+ (−1)L
(

1− δP2P3

2

)
1

π

(
x4 δP2P3 S231 + x̃4 S321

)

µ12

√
S12 S23 c12 c23

f̃
(3)
(23)(12)

∫ ΛC

0

dq

q

T̃
(L)
23 (q)√
µ23
µ(23)1

m2Q
213
L (q, p)

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12

√
c12 c′12

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)3

×
[
x5 δ

(12′)
P1P3

f
(3)
(12′)(12) S123 m2Q

211
L (q, p) + x̃5 δ

(12′)
P2P3

f̃
(3)
(12′)(12) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x6 δP1P3 S132 + x̃6 S312

)

µ12

√
S12 S13 c12 c′13

f̃
(3)
(13′)(12)

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ13
µ(13)2

m1Q
123
L (q, p)

+ (−1)L
(

1− δP2P3

2

)
1

π

(
x7 δP2P3 S231 + x̃7 S321

)

µ12

√
S12 S23 c12 c′23

f̃
(3)
(23′)(12)

∫ ΛC

0

dq

q

T̃
′(L)
23 (q)√

µ23
µ(23)1

m2Q
213
L (q, p) (F.10)
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T̃
(L)
13 (p) = (−1)L

(
1− δP1P2

2

)
1

π

(
y2 δP1P2 S123 + ỹ2 S213

)

µ13

√
S13 S12 c13 c12

f̃
(2)
(12)(13)

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)3

m1Q
132
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ13 S13 c13

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ13
µ(13)2

×
[
y3 δ

(13)
P1P2

f
(1)
(13)(13) S132 m3Q

311
L (q, p) + ỹ3 δ

(13)
P2P3

f̃
(3)
(13)(13) S312 m1Q

133
L (q, p)

]

+ (−1)L
(

1− δP2P3

2

)
1

π

(
y4 S231 + ỹ4 δP2P3 S321

)

µ13

√
S13 S23 c13 c23

f
(2)
(23)(13)

∫ ΛC

0

dq

q

T̃
(L)
23 (q)√
µ23
µ(23)1

m3Q
312
L (q, p)

+ (−1)L
(

1− δP1P2

2

)
1

π

(
y5 δP1P2 S123 + ỹ5 S213

)

µ13

√
S13 S12 c13 c′12

f̃
(2)
(12′)(13)

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)3

m1Q
132
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ13 S13

√
c13 c′13

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ13
µ(13)2

×
[
y6 δ

(13′)
P1P2

f
(1)
(13′)(13) S132 m3Q

311
L (q, p) + ỹ6 δ

(13′)
P2P3

f̃
(3)
(13′)(13) S312 m1Q

133
L (q, p)

]

+ (−1)L
(

1− δP2P3

2

)
1

π

(
y7 S231 + ỹ7 δP2P3 S321

)

µ13

√
S13 S23 c13 c′23

f
(2)
(23′)(13)

∫ ΛC

0

dq

q

T̃
′(L)
23 (q)√

µ23
µ(23)1

m3Q
312
L (q, p) (F.11)
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T̃
(L)
23 (p) = (−1)L

(
1− δP1P2

2

)
1

π

(
z2 S123 + z̃2 δP1P2 S213

)

µ23

√
S23 S12 c23 c12

f
(1)
(12)(23)

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)3

m2Q
231
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

(
z3 S132 + z̃3 δP1P3 S312

)

µ23

√
S23 S13 c23 c13

f
(1)
(13)(23)

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ13
µ(13)2

m3Q
321
L (q, p)

+ (−1)L
(

1− δP2P3

2

)
1

π

1

µ23 S23 c23

∫ ΛC

0

dq

q

T̃
(L)
23 (q)√
µ23
µ(23)1

×
[
z4 δ

(23)
P1P2

f
(2)
(23)(23) S231 m3Q

322
L (q, p) + z̃4 δ

(23)
P1P3

f̃
(3)
(23)(23) S321 m2Q

233
L (q, p)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

(
z5 S123 + z̃5 δP1P2 S213

)

µ23

√
S23 S12 c23 c′12

f
(1)
(12′)(23)

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)3

m2Q
231
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

(
z6 S132 + z̃6 δP1P3 S312

)

µ23

√
S23 S13 c23 c′13

f
(1)
(13′)(23)

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ13
µ(13)2

m3Q
321
L (q, p)

+ (−1)L
(

1− δP2P3

2

)
1

π

1

µ23 S23

√
c23 c′23

∫ ΛC

0

dq

q

T̃
′(L)
23 (q)√

µ23
µ(23)1

×
[
z7 δ

(23′)
P1P2

f
(2)
(23′)(23) S231 m3Q

322
L (q, p) + z̃7 δ

(23′)
P1P3

f̃
(3)
(23′)(23) S321 m2Q

233
L (q, p)

]
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T̃
′(L)
12 (p) = (−1)L

(
1− δP1P2

2

)
1

π

1

µ12 S12

√
c′12 c12

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)3

×
[
x′2 δ

(12)
P1P3

f
(3)
(12)(12′) S123 m2Q

211
L (q, p) + x̃′2 δ

(12)
P2P3

f̃
(3)
(12)(12′) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x′3 δP1P3 S132 + x̃′3 S312

)

µ12

√
S12 S13 c′12 c13

f̃
(3)
(13)(12′)

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ13
µ(13)2

m1Q
123
L (q, p)

+ (−1)L
(

1− δP2P3

2

)
1

π

(
x′4 δP2P3 S231 + x̃′4 S321

)

µ12

√
S12 S23 c′12 c23

f̃
(3)
(23)(12′)

∫ ΛC

0

dq

q

T̃
(L)
23 (q)√
µ23
µ(23)1

m2Q
213
L (q, p)

+ (−1)L
(

1− δP1P2

2

)
1

π

1

µ12 S12 c′12

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)3

×
[
x′5 δ

(12′)
P1P3

f
(3)
(12′)(23′) S123 m2Q

211
L (q, p) + x̃′5 δ

(12′)
P2P3

f̃
(3)
(12′)(12′) S213 m1Q

122
L (q, p)

]

+ (−1)L
(

1− δP1P3

2

)
1

π

(
x′6 δP1P3 S132 + x̃′6 S312

)

µ12

√
S12 S13 c′12 c

′
13

f̃
(3)
(13′)(12′)

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ13
µ(13)2

m1Q
123
L (q, p)

+ (−1)L
(

1− δP2P3

2

)
1

π

(
x′7 δP2P3 S231 + x̃′7 S321

)

µ12

√
S12 S23 c′12 c

′
23

f̃
(3)
(23′)(12′)

∫ ΛC

0

dq

q

T̃
′(L)
23 (q)√

µ23
µ(23)1

m2Q
213
L (q, p) (F.13)
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T̃
′(L)
13 (p) = (−1)L

(
1− δP1P2

2

)
1

π

(
y′2 δP1P2 S123 + ỹ′2 S213

)

µ13

√
S13 S12 c′13 c12

f̃
(2)
(12)(13′)

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)3

m1Q
132
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ13 S13

√
c′13 c13

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ13
µ(13)2

×
[
y′3 δ

(13)
P1P2

f
(1)
(13)(13′) S132 m3Q

311
L (q, p) + ỹ′3 δ

(13)
P2P3

f̃
(3)
(13)(13′) S312 m1Q

133
L (q, p)

]

+ (−1)L
(

1− δP2P3

2

)
1

π

(
y′4 S231 + ỹ′4 δP2P3 S321

)

µ13

√
S13 S23 c′13 c23

f
(2)
(23)(13′)

∫ ΛC

0

dq

q

T̃
(L)
23 (q)√
µ23
µ(23)1

m3Q
312
L (q, p)

+ (−1)L
(

1− δP1P2

2

)
1

π

(
y′5 δP1P2 S123 + ỹ′5 S213

)

µ13

√
S13 S12 c′13 c

′
12

f̃
(2)
(12′)(13′)

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)3

m1Q
132
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

1

µ13 S13 c′13

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ13
µ(13)2

×
[
y′6 δ

(13′)
P1P2

f
(1)
(13′)(13′) S132 m3Q

311
L (q, p) + ỹ′6 δ

(13′)
P2P3

f̃
(3)
(13′)(13′) S312 m1Q

133
L (q, p)

]

+ (−1)L
(

1− δP2P3

2

)
1

π

(
y′7 S231 + ỹ′7 δP2P3 S321

)

µ13

√
S13 S23 c′13 c

′
23

f
(2)
(23′)(13′)

∫ ΛC

0

dq

q

T̃
′(L)
23 (q)√

µ23
µ(23)1

m3Q
312
L (q, p) (F.14)
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T̃
′(L)
23 (p) = (−1)L

(
1− δP1P2

2

)
1

π

(
z′2 S123 + z̃′2 δP1P2 S213

)

µ23

√
S23 S12 c′23 c12

f
(1)
(12)(23′)

∫ ΛC

0

dq

q

T̃
(L)
12 (q)√
µ12
µ(12)3

m2Q
231
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

(
z′3 S132 + z̃′3 δP1P3 S312

)

µ23

√
S23 S13 c′23 c13

f
(1)
(13)(23′)

∫ ΛC

0

dq

q

T̃
(L)
13 (q)√
µ13
µ(13)2

m3Q
321
L (q, p)

+ (−1)L
(

1− δP2P3

2

)
1

π

1

µ23 S23

√
c′23 c23

∫ ΛC

0

dq

q

T̃
(L)
23 (q)√
µ23
µ(23)1

×
[
z′4 δ

(23)
P1P2

f
(2)
(23)(23′) S231 m3Q

322
L (q, p) + z̃′4 δ

(23)
P1P3

f̃
(3)
(23)(23′) S321 m2Q

233
L (q, p)

]

+ (−1)L
(

1− δP1P2

2

)
1

π

(
z′5 S123 + z̃′5 δP1P2 S213

)

µ23

√
S23 S12 c′23 c

′
12

f
(1)
(12′)(23′)

∫ ΛC

0

dq

q

T̃
′(L)
12 (q)√

µ12
µ(12)3

m2Q
231
L (q, p)

+ (−1)L
(

1− δP1P3

2

)
1

π

(
z′6 S132 + z̃′6 δP1P3 S312

)

µ23

√
S23 S13 c′23 c

′
13

f
(1)
(13′)(23′)

∫ ΛC

0

dq

q

T̃
′(L)
13 (q)√

µ13
µ(13)2

m3Q
321
L (q, p)

+ (−1)L
(

1− δP2P3

2

)
1

π

1

µ23 S23 c′23

∫ ΛC

0

dq

q

T̃
′(L)
23 (q)√

µ23
µ(23)1

×
[
z′7 δ

(23′)
P1P2

f
(2)
(23′)(23′) S231 m3Q

322
L (q, p) + z̃′7 δ

(23′)
P1P3

f̃
(3)
(23′)(23′) S321 m2Q

233
L (q, p)

]
(F.15)

204



Appendix G

Numerical implementation of scattering
amplitudes

In section 5.1 we have derived the elastic S-wave three-body scattering amplitudes for all pos-
sible Z

(′)
b –B(∗) scattering processes. In this appendix it will be discussed how one can solve them

numerically in order to extract the three-body observables scattering length and phase shift.
Comparing all scattering processes and their corresponding channels one concludes that all in-
tegral equations have a similar structure. However, there are some differences: on the one hand
they differ in the prefactors determined by the spin and isospin projections. On the other hand
there is a difference due to the different masses and two-body binding momenta of the scattered
particles which affects the momentum independent prefactors as well as the integrand. However,
the numerical treatment of the (coupled) integral equations is universal in the sense that the E,
k, p and q dependence of the amplitudes is always of the same form. The numerical implemen-
tation used to solve these equations follows the method described in Ref. [79].
Firstly, one observes that each integral equation holds for all E and thus k. Therefore we will
suppress their dependence and treat them as parameters which leads to integral equations of the
form

T (p) = R(p) +

∫ ∞

0

dq K̃(p, q)T (q) , (G.1)

where the kernel K̃(p, q) could contain a pole in q depending on the center-of-mass energy and

the binding momentum γ. Thus, we write it as K̃(p, q) = K(p, q)/(q − q0 − iε). The position
of the pole (i.e. q0) can be found by rewriting the scattering amplitudes. It is different in each
scattering process, but does not depend on the specific scattering channel. Furthermore, one has
to replace the upper integration boundary by a momentum cutoff Λ in numerical calculations.
To get rid of the iε prescription in the denominator of K̃(p, q) we carry out the limit ε→ 0 using
the Sokhatsky-Weierstrass theorem,

1

q − q0 ± iε
= PV

1

q − q0

∓ iπ δ(q − q0) , (G.2)
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with the principal value PV. This changes the integral equation Eq. (G.1) to

T (p) = R(p) +

∫ Λ

0

dq
K(p, q) T (q)−K(p, q0) T (q0)

q − q0

+K(p, q0) T (q0)

(
iπ + ln

[
Λ− q0

q0

])
,

(G.3)

where the principal value integral is already evaluated:

PV

∫ Λ

0

dq
1

q − q0

= ln

[
Λ− q0

q0

]
. (G.4)

Eq. (G.3) can be discretized by replacing the integration over q by a summation over discrete
momenta q =: pj with weights wj and setting pi := p. Introducing the notation Ri := R(pi),
Ti := T (pi) and Kij := K(pi, pj) one could write Eq. (G.3) in a discretized form, but as there
are poles in the integral kernel one has to take into account their contribution, too. For this one
has to distinguish three cases, corresponding to the number of poles appearing in the (coupled)
integral equations.
In the trivial case without pole the procedure is straightforward. One uses N mesh points
generated e.g. by the Gauss-Legendre quadrature [189] to numerically calculate the integral

Ti = Ri +
N∑

j=1

wj K̃ij Tj for i = 1, ..., N , (G.5)

which holds for all i = 1, ..., N and thus can be described by a matrix relation

T = R +M(0)
1 T , (G.6)

with
(
M(0)

1

)
ij

= wjK̃ij being a N ×N matrix.

If there is one pole we let N−1 be the number of mesh points and set pN := q0 with corresponding
”weight“ wN = 1 which allows us to write Eq. (G.3) as

Ti = Ri +
N−1∑

j=1

wj
Kij Tj −KiN TN

pj − pN
+KiN TN

(
iπ + ln

[
Λ− pN
pN

])

= Ri +
N−1∑

j=1

wj K̃ij Tj +KiN TN

(
iπ + ln

[
Λ− pN
pN

]
−

N−1∑

k=1

wk
pk − pN

)
, for i = 1, ..., N .

(G.7)

Note, that for i = N there is no special treatment necessary. One has just added an extra mesh
point with a fixed value. Defining a N ×N matrix M(1)

1 ,

(
M(1)

1

)
ij

=

{
wjK̃ij , for j < N

wj Kij

(
iπ + ln

[
Λ−pN
pN

]
−∑N−1

k=1
wk

pk−pN

)
, for j = N

, (G.8)
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Eq. (G.7) can be written as simple matrix relation similarly to the case without pole

T = R +M(1)
1 T . (G.9)

The third case with two poles only occurs in the coupled integral equations. Thus, one has to
generalize the scheme above to a system of two coupled equations. Consider the following system
of such equations:

T1(p) = R1(p) +

∫ Λ

0

dq K̃11(p, q) T1(q) +

∫ Λ

0

dq K̃12(p, q) T2(q) , (G.10)

T2(p) = R2(p) +

∫ Λ

0

dq K̃21(p, q) T1(q) +

∫ Λ

0

dq K̃22(p, q) T2(q) , (G.11)

where it is assumed that the kernels K̃i1, i = 1, 2, have the same pole at q = q0,1 and also that

K̃i2, i = 1, 2, have a common pole at q = q0,2 6= q0,1. Comparing this assumption with the coupled
integral equations in section 5.1 one notices that it is indeed justified. Each integral is discretized
using the same set of mesh points pj := q with weights wj for j = 1, ..., (N − number of poles).
Hence, with the notation introduced above (T1(p) = (T1)i, K12(p, q) = (K12)ij, etc.) one finds

(T1)i = (R1)i +

N−poles∑

j=1

wj (K̃11)ij (T1)j +

N−poles∑

j=1

wj (K̃12)ij (T2)j , for i = 1, ..., N (G.12)

(T2)i = (R2)i +

N−poles∑

j=1

wj (K̃21)ij (T1)j +

N−poles∑

j=1

wj (K̃22)ij (T2)j , for i = 1, ..., N . (G.13)

These two coupled equations can be combined into one matrix equation of the form T = R +
M2 T, where T is a vector with 2N entries,

T =




(T1)1
...

(T1)N
(T2)1

...
(T2)N



, (G.14)

and M2 is a 2N × 2N matrix whose elements (M2)ij are defined by the integral kernels and
depend on the number of poles in those. If there is no pole present in the kernels one finds
M2 ≡M(0)

2 which is given in Eq. (G.18).

In case of a pole in K̃i1 and no one in K̃i2 we define pN := q0,1 and wN := 1 in order to take

care of the pole contribution to the integral. The matrix M2 then has the form of M(1a)
2 given

in Eq. (G.19) where

z(pN) =


iπ + ln

[
Λ− pN
pN

]
−

N−poles∑

k=1

wk
pk − pN


 , (G.15)
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is the pole contribution. Consequently, the (2N)-th column of M(1a)
2 is filled with zeros since

there is no such contribution for the kernels K̃i2 which have no pole.
If the pole distribution is interchanged (i.e. one pole in K̃i2, no pole in K̃i1), the extra mesh
point is given by pN := q0,2 with wN = 1 and the structure of the N -th and the (2N)-th column

is interchanged, too. Therefore M2 ≡M(1b)
2 which is defined in Eq. (G.20). Note, that z(pN) is

different from that in M(1a)
2 because the position of the pole pN is different.

In the last case where both kernels K̃i1 and K̃i2 have a pole, one has to combine the results for
just one pole in the right way. Since there are now N − 2 mesh points one fills up the N element
set with the additional points pN−1 := q0,1 and pN := q0,2. The ”wights” are both equal to one,
i.e. wN−1 = wN = 1. The pole contributions depend as before on the function z(pN) in which
the sum over k now runs from 1 to N−2 instead of N−1. This leads to the matrix in Eq. (G.21)

which we will call M(2)
2 .

Note, that it is in the same way possible to extend the numerical implementation to an arbitrary
number of coupled integral equations. Finally, we will make some remarks on the distribution of
mesh points. Since the wave function falls off very quickly for large momenta it is useful to have
more mesh points in the region of small momenta and less in that of large momenta instead of
an equidistantly distribution. This leads to a faster convergence in the number of mesh points
and can be accomplished in the following way: one calculates a set of (N −poles) mesh points xj
with weights ξj in the interval [0, ln(Λ+1)] using the Gauss-Legendre quadrature implementation
described in Ref. [189] (note, that one could also use a different quadrature scheme). These mesh
points and weights are used to define the mesh points pj and weights wj in the discussion above:

wj = exp(xj) ξj , (G.16)

pj = exp(xj)− 1 . (G.17)

In the continuum this definition corresponds to the substitution q(x) = ex − 1 in the integral∫ Λ

0
dq =

∫ ln(Λ+1)

0
exdx with x ∈ [0, ln(Λ + 1)].
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M(0)
2 =




w1(K̃11)11 · · · wN (K̃11)1N w1(K̃12)11 · · · wN (K̃12)1N
...

...
...

...

w1(K̃11)N1 · · · wN (K̃11)NN w1(K̃12)N1 · · · wN (K̃12)NN
w1(K̃21)11 · · · wN (K̃21)1N w1(K̃22)11 · · · wN (K22)1N

...
...

...
...

w1(K̃21)N1 · · · wN (K̃21)NN w1(K̃22)N1 · · · wN (K̃22)NN




, (G.18)

M(1a)
2 =




w1(K̃11)11 · · · wN−1(K̃11)1,N−1 wN (K11)1N z(pN ) w1(K̃12)11 · · · wN−1(K̃12)1,N−1 0
...

...
...

...
...

w1(K̃11)N1 · · · wN−1(K̃11)N,N−1 wN (K11)NN z(pN ) w1(K̃12)N1 · · · wN−1(K̃12)N,N−1 0

w1(K̃21)11 · · · wN−1(K̃21)1,N−1 wN (K21)1N z(pN ) w1(K̃22)11 · · · wN−1(K̃22)1,N−1 0
...

...
...

...
...

w1(K̃21)N1 · · · wN−1(K̃21)N,N−1 wN (K21)1N z(pN ) w1(K̃22)N1 · · · wN−1(K̃22)N,N−1 0




,

(G.19)

M(1b)
2 =




w1(K̃11)11 · · · wN−1(K̃11)1,N−1 0 w1(K̃12)11 · · · wN−1(K̃12)1,N−1 wN (K12)1N z(pN )
...

...
...

...
...

w1(K̃11)N1 · · · wN−1(K̃11)N,N−1 0 w1(K̃12)N1 · · · wN−1(K̃12)N,N−1 wN (K12)1N z(pN )

w1(K̃21)11 · · · wN−1(K̃21)1,N−1 0 w1(K̃22)11 · · · wN−1(K̃22)1,N−1 wN (K22)1N z(pN )
...

...
...

...
...

w1(K̃21)N1 · · · wN−1(K̃21)N,N−1 0 w1(K̃22)N1 · · · wN−1(K̃22)N,N−1 wN (K22)1N z(pN )




,

(G.20)

M(2)
2 =




w1(K̃11)11 · · · wN−2(K̃11)1,N−2 wN−1(K11)1,N−1 z(pN−1) 0
...

...
...

...

w1(K̃11)N1 · · · wN−2(K̃11)N,N−2 wN−1(K11)N,N−1 z(pN−1) 0

w1(K̃21)11 · · · wN−2(K̃21)1,N−2 wN−1(K21)1,N−1 z(pN−1) 0
...

...
...

...

w1(K̃21)N1 · · · wN−2(K̃21)N,N−2 wN−1(K21)1,N−1 z(pN−1) 0

w1(K̃12)11 · · · wN−2(K̃12)1,N−2 0 wN (K12)1,N z(pN )
...

...
...

...

w1(K̃12)N1 · · · wN−2(K̃12)N,N−2 0 wN (K12)1,N z(pN )

w1(K̃22)11 · · · wN−2(K̃22)1,N−2 0 wN (K22)1,N z(pN )
...

...
...

...

w1(K̃22)N1 · · · wN−2(K̃22)N,N−2 0 wN (K22)1,N z(pN )




. (G.21)
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