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Introduction

In the past two decades the so-called �CDM model of cosmological structure
formation has been spectacularly confirmed by a large amount of experimental data.
In particular, the observations of the Cosmic Microwave Background anisotropies
(both in temperature and polarization) from satellite experiments as WMAP, Ref. [1],
and Planck, Ref. [2], as well from ground based experiment as Atacama Cosmology
Telescope (ACT), Ref. [3], and South Pole Telescope (SPT), Ref. [4], have shown a
perfect agreement with the simplest inflationary model based on primordial adiabatic
and Gaussian perturbations.

Clearly the improving accuracy of the CMB measurements opens the window for
testing extensions of the standard �CDM scenario. Between the possible extensions
that we can consider, probably the most relevant are those connected with particle
physics, as neutrino and dark matter. Indeed, we are close in testing the same
neutrino and dark matter properties both with cosmological data and laboratory
experiments. This overlap between cosmology and particle physics is extremely
interesting since any conflict between the results could indicate the presence of new
physics.

The research subject of this PhD thesis goes exactly in this direction: to identify
possible hints for new physics in the most recent cosmological data. Hints that could
also actually been tested in current and nearly future particle physics experiments.

My thesis is organized as follows: in the first three chapters I will briefly introduce
the theory of cosmological structure formation and its main observables.

In particular, in Chapter 1 I will describe the Standard (unperturbed) Cosmo-
logical Model, based on the assumption of homogeneity and isotropy of the Universe
(Cosmological Principle) at scale larger than 100Mpc. This assumption allow us to
describe the evolution of the Universe through the Friedmann equations, introducing
a set of cosmological parameters that we can constrain comparing theory with
experimental data. I will then discuss the thermal history of the Universe from the
Hot Big Bang to the production of the Cosmic Microwave Background (CMB) with
a special emphasis on Big Bang Nucleosynthesis and the importance of the Cosmic
Neutrino Background.

In Chapter 2 I will discuss cosmological structure formation and linear pertubation
theory. I will follow the evolution of the primordial perturbations introducing small
fluctuations at the first order in the homogeneous Universe. I will perturb the
metric and the Einstein equations in order to study the growth of scalar and tensor
perturbations and I will consider the Boltzmann equation in order to take into account
the interactions between the several components of the Universe. Afterwards, I will
describe the initial conditions of this set of di�erential equations considering a period
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of exponential expansion of the Universe, introduced to solve the problems of the
standard cosmological model: Inflation. Finally, I will define the scalar and tensor
power spectra, as a function of the inflationary potential.

In Chapter 3 I will discuss the statistic of the perturbations, defining the correla-
tion function and the power spectrum in Fourier space. I will expand the two-point
correlation function of the temperature perturbations of the CMB in Legendre
polynomials, introducing one of the main tools of research in cosmology: the CMB
angular power spectrum of temperature and polarization. Afterwards, I will describe
in detail the sources of temperature anisotropies, primary and secondary. Finally, I
will discuss the matter power spectrum and the primordial CMB bispectrum.

In Chapter 4 I will discuss the damping tail of the CMB angular power spectrum
of the temperature anisotropies, and which are the main parameters a�ecting it. In
particular, I will focus on the current constraints on the neutrino e�ective number
Ne� and the lensing amplitude AL from ground based experiments as the South
Pole Telescope, Ref. [4], and the Atacama Cosmology Telescope, Ref. [3], in tension
between them, and satellite experiments, as WMAP9, Ref. [1], and Planck, Ref.
[2]. Finally, I will try to explain the non-standard value of AL, in tension with the
standard value at 2-‡ c.l., measured by the Planck satellite, see Ref. [5], considering
non-standard neutrino properties, as the rest frame sound speed c2

e� and the viscosity
parameter c2

vis. This Chapter is based on the following published work:

• E. Di Valentino, S. Galli, M. Lattanzi, A. Melchiorri, P. Natoli, L. Pagano, N.
Said, "Tickling the CMB damping tail: scrutinizing the tension between the
ACT and SPT experiments", Phys. Rev. D88 (2013) 2, 023501 (2013);

• N. Said, E. Di Valentino, M. Gerbino, "Planck constraints on the e�ective
neutrino number and the CMB power spectrum lensing amplitude", Phys. Rev.
D88 (2013) 2, 023513;

• M. Gerbino, E. Di Valentino, N. Said, "Neutrino anisotropies after Planck",
Phys. Rev. D88 (2013) 6, 063538.

In Chapter 5 I will place limits on models containing relativistic species at
decoupling epoch, as the (3 + 1) and (3 + 2) sterile neutrino models and extended
dark sectors with additional light species. I will present new constraints on the
neutrino e�ective number Ne� and the e�ective mass of the sterile neutrino ms

e�
combining the Planck data, see Ref. [2], with both the HST measurements of H0
from Ref. [6] and the full shape of the galaxy power spectrum from the Baryon
Acoustic Oscillation Spectroscopic Survey BOSS Data Release 9 from Ref. [7]. This
Chapter presents the work published in:

• E. Di Valentino, A. Melchiorri, O. Mena, "Dark radiation sterile neutrino
candidates after Planck data", JCAP 1311 (2013) 018.

In Chapter 6 I will present up to date cosmological bounds on the sum of active
neutrino masses as well as extended cosmological scenarios with additional thermal
relics, as thermal axions or sterile neutrino species. I will include in the analyses the
new Baryon Acoustic Oscillation Spectroscopic Survey BOSS Data Release 11 from
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Ref. [8] finding that, when adding the constraints on ‡8 and �m from the Planck
Cluster catalog on galaxy number counts from Ref. [9], the total sum of the active
neutrino masses

q
m‹ = 0.3eV is favoured a 3-‡ c.l.. Finally, when considering the

detection of B mode polarization from BICEP2, Ref. [10], experiment, a combined
analysis with CMB data in a �CDM + r model favours Ne� = 4.00 ± 0.41. However,
this detection has been recently questioned by the Planck collaboration, see Ref. [?],
since this signal could be completely explained by a polarization signal from galactic
dust. This Chapter is based on the work published in:

• E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri, O. Mena, "Relic
Neutrinos, thermal axions and cosmology in early 2014", Phys. Rev. D90
(2014), 043507.

In Chapter 7 I will discuss the Curvaton scenario and the possible residual
isocurvature perturbations that can be imprinted in the cosmic neutrino component
after the decay of the Curvaton field. Firstly, I will discuss the forecasts obtained
using the Fisher matrix techniques on constraining the amplitude of the neutrino
isocurvature density –NID and the neutrino e�ective number Ne� for a set of future
CMB experiments. Secondly, I will translate these bounds in terms of the background
neutrino degeneracy parameter › and the corresponding perturbation amplitude,
and I will compare these with the bounds derived from Big Bang Nucleosynthesis.
Finally, I will present the constraints obtained from the public Planck data, see
Ref. [2], on these parameters –NID and Ne� at the same time, also including the
Hubble Space Telescope measurements on the Hubble constant H0 from Ref. [6].
This Chapter explains the work presented in the following published papers:

• E. Di Valentino, M. Lattanzi, G. Mangano, A. Melchiorri, P. D. Serpico,
"Future constraints on neutrino isocurvature perturbations in the Curvaton
scenario", Phys. Rev. D85 (2012), 043511;

• E. Di Valentino, A. Melchiorri, "Planck constraints on neutrino isocurvature
density perturbations", Phys. Rev. D90 (2014) 8, 083531.

In Chapter 8 I will discuss the possibility that axion particles account for the
total amount of cold dark matter in the Universe, providing constraints on their
masses given by Planck data, see Ref. [2], combined with BOSS DR11 from Ref. [8]
and BICEP2 measurements, Ref. [10], in several extended cosmological scenarios.
In this Chapter I follow the published work:

• E. Di Valentino, E. Giusarma, M. Lattanzi, A. Melchiorri, O. Mena, "Axion
cold dark matter: status after Planck and BICEP2", Phys. Rev. D90 (2014),
043534.

In Chapter 9 I will discuss the possibility that the 2-‡ tension between the
abundance of primordial deuterium obtained from the Lyman-alpha absorption-line
system, see Ref. [11], and that one computed using the Planck data, Ref. [5], is due
to the uncertainty on the rate of the capture radiative reaction d(p, “)3He converting
deuterium into helium. I will conclude that Planck data are able to constrain the rate
of this process, providing a value closer to the theoretical one than the experimental
one. This Chapter refers to the published work:
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• E. Di Valentino, C. Gustavino, G. Lesgourgues, G. Mangano, A. Melchiorri,
G. Miele, O. Pisanti, "Probing nuclear rates with Planck and BICEP2", Phys.
Rev. D90 (2014), 023543.

In Chapter 10 I will constrain the spectral index of the tensor perturbations nT

considering the detection of B mode polarization from BICEP2, Ref. [10], experiment.
Moreover, I will show the impact on this constraint of a possible unaccounted, dust
component, finding that, while a dust component compatible with the dust template
presented in Ref. [10] does not alter our conclusions, a component four times larger
drastically change our results. In this chapter I will present the results of the works
published before the results from the Planck collaboration, see Ref. [?], for which
the BICEP2 detection could be completely due to a polarization signal from galactic
dust. These works are:

• E. Di Valentino, A. Melchiorri, L. Pagano, "Testing the inflationary null
energy condition with current and future cosmic microwave background data",
Int.J.Mod.Phys. D20 (2011), 1183-1189,

• M. Gerbino, A. Marchini, L. Pagano, L. Salvati, E. Di Valentino, A. Melchiorri,
"Blue Gravity Waves from BICEP2 ?", Phys. Rev. D90 (2014), 047301.

Finally, in Chapter 11 I will describe the Bispectrum, the three-point correlation
function of the CMB temperature anisotropies, produced by a cross correlation
between the Weak Lensing signal and the Integrated Sachs-Wolfe e�ect, and how
this e�ect could be used to constrain parameters of modified gravity models, as well
as cosmological parameters of the neutrino background. Although the constraining
power of the Bispectrum is less than the one achievable by the CMB angular power
spectrum, it provides, in any case, an independent way to bound the parameters,
useful for a cross check the results. This Chapter is based on the published works:

• E. Di Valentino, A. Melchiorri, V. Salvatelli, A. Silvestri, "Parametrised modi-
fied gravity and the CMB Bispectrum", Phys. Rev. D86 (2012), 063517.

• E. Di Valentino, M. Gerbino, A. Melchiorri, "Dark radiation and the CMB
bispectrum", Phys. Rev. D87 (2013) 10, 103523.
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Chapter 1

The Standard Cosmological
Model

1.1 Introduction

Modern cosmology was probably born between 1915, when Albert Einstein published
his first paper on General Relativity, and 1927, when George Lemaître, making use
of General Relativity, first derived what we now call the "Hubble law", proposing an
expanding Universe to explain the recession velocity of the galaxies and suggesting
an estimated value of the rate of expansion. Two years later Edwin Hubble confirmed
the existence of that law and determined a value for the constant that now bears
his name. Hubble and Lemaître inferred the recession velocity of the objects from
their redshifts, many of which were earlier measured and related to velocity by Vesto
Slipher in 1917.

In 1948 G. Gamow, R. Alpher and R. Herman theorized that the Universe
originated from a hot "Big Bang", explaining the observed amount of light elements
in the Universe with primordial nucleosynthesis (Big Bang Nucleosynthesis, BBN).
The early Universe, in this theory, was mainly composed by ionized matter and
electromagnetic radiation in thermodynamic equilibrium. This primordial plasma
cooled with the expansion of the Universe, passing through a phase of recombination,
when electrons and protons combined into neutral hydrogen atoms and decoupling, in
which the Universe became subsequently trasparent to the motion of photons. One of
the major prediction of this theory was therefore the existence of a Cosmic Microwave
Background (CMB) radiation that permeates the entire observable Universe. After
the discovery of the CMB radiation by Arno Penzias and Robert Wilson in 1964,
a model of cosmological structure formation started to be developed that could
explain the observed structure of the local Universe made of galaxies and cluster
of galaxies, starting from a nearly isotropic and homogeneous universe as observed
from the CMB. In this picture, developed by several scientists in the 1970s and
1980s, the present structure of the Universe, characterized by large voids and great
concentrations of matter and filaments, formed starting from small fluctuations of
the matter density in a nearly homogeneous state.

In this chapter we first introduce the homogeneous and isotropic cosmological
model that provides a relatively good description of the Universe at early times (at
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the epoch of BBN, for example) and/or on very large scales, approximately at more
than 100Mpc (see e.g. Refs. [12, 13]) where density fluctuations are small. This
assumption is called the ’Cosmological Principle’, that means that there are neither
preferred places nor preferred directions in the Universe.

Cosmological observations such as the distribution of the galaxies clusters in
the sky and the amplitude of the CMB anisotropies confirm that the Cosmological
Principle is a very accurate zero-th order approximation. As we will see in the next
chapters, the CMB anisotropies, roughly one part over 105, and density fluctuations
on large scales can be treated as a first order perturbations of the homogeneous
Universe.

Thanks the Cosmological Principle the evolution of the Universe can be de-
scribed through the Friedmann equations, obtained using the Friedmann-Lemaître-
Robertson-Walker’s metric in the Einstein equation.

1.2 The Friedmann-Lemaître-Robertson-Walker metric
of the Universe

In General Relativity a matter-energy distribution curves gravitationally the metric
structure of the space-time.

Once we have fixed a four-dimensional coordinate system {x–}, with – = 0, 1, 2, 3,
the infinitesimal distance between two events is given by the invariant line elements
ds2:

ds2 = gµ‹dxµdx‹ (1.1)

that can describe both a flat (Minkowsky’s) and a curved space-time. Splitting
the temporal, spatial and mix component, we obtain:

ds2 = g00c2dt2 + 2g0idxicdt + ‡ijdxidxj (1.2)

where dt is the infinitesimal time, dx the infinitesimal space and ‡ij the spatial
metric. The spatial variables are called comoving coordinates because they are
independent from time, and describe, for example, the position of an object in the
expanding Universe reference frame.

We can introduce the Einstein equations:

Gµ‹ = Rµ‹ ≠ 1
2gµ‹R = 8fiG

c2 T µ‹ + �gµ‹ (1.3)

that connect the geometry of the space-time (left hand side), the Einstein tensor
Gµ‹ , with its energy content in the same point of the space-time (right hand side),
the energy-momentum tensor Tµ‹ . In these equations the Einstein tensor Gµ‹

depends on the Ricci’s tensor Rµ‹ , the scalar curvature R (i.e. from the first two
derivatives of the tensor metric) and the tensor metric itself gµ‹ .

The Einstein equations are highly non linear, but introducing the Cosmological
Principle, that means the homogeneity and the isotropy of the space-time, we can
simplify the problem starting from a simpler metric. The isotropy, i.e. no preferred
directions (g0i = 0), and the homogeneity, i.e. that the density is independent
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from the position but depends only on time, implies necessarily the rotational and
translational symmetry. While the time synchronization, i.e. the assumption that
the time is the same everywhere, implies that, in order to have dt1 = Ô

g00dt2,
g00 = 1. In this way we obtain that the infinitesimal distance between two events in
the space-time, considering the comoving polar coordinates (r, ◊, „), constant for any
point at any time, is given by the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric:

ds2 = c2dt2 ≠ a2 (t)
C

dr2

1 ≠ kr2 + r2
1
d◊2 + sin2◊d„2

2D

. (1.4)

In the equation (1.4) we have introduced the adimensional scale factor a(t), that
describes the way in which the distances in the Universe contract or expand in
function of time. It is usually normalized so that a(t0) = 1 at present time. Only
at scales much larger than 100Mpc, or at very early times, the Universe expansion
could be treated as the ideal, homogeneous and isotropic expansion described by the
scale factor. In this way the physical distance between two points in the Universe is
obtained taking the comoving distance times the corresponding scale factor:

x̨(t) = a(t)r̨. (1.5)

The curvature of the Universe k introduced in (1.4), is proportional to the inverse
of the curvature radius R squared (k Ã R≠2) and can be positive, null or negative.
At these values corresponds an open (two lines that start moving parallel diverge),
spatially flat (two lines moving parallel always keep the same distance) or closed
(two lines that start moving parallel converge) Universe.

Using the change of coordinates r æ ‰≠1(r) we can rewrite the spatial part of
(1.4) in this way:

dr2

1 ≠ kr2 + r2
1
d◊2 + sin2◊d„2

2
= dr2 + ‰2(r)

1
d◊2 + sin2◊d„2

2
(1.6)

where

‰(r) =

Y
__]

__[

sin(x) k > 0
x k = 0
sinh(x) k < 0

(1.7)

Lastly we can introduce the new time quantity:

d· = dt

a(t) (1.8)

called conformal time, that is the comoving distance traveled by light at the time t,
along the geodetic ds2 = 0. With · the metric will be:

gµ‹dxµdx‹ = a2(t)
1
d·2 ≠ ‡ijdxidxj

2
. (1.9)
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Figure 1.1. Evolution of the squared Hubble parameter to grow of a, in a Universe in
which the expansion is given by the radiation (a≠4), the matter (a≠3), the curvature
(a≠2) and the cosmological constant (cst), [14].

1.2.1 The Friedmann equations
The scale factor a(t) evolves according to the Friedmann equations, obtained plugging
the FLRW metric (1.4) in the Einsten’s equations.

The Ricci’s tensor (1.3) is defined by the Christo�el’s symbol:

Rµ‹ = �–
µ–,‹ ≠ �–

µ‹,– + �–
µfl�fl

µ– ≠ �fl
µ‹�–

fl– (1.10)

linked to the metric by:

�–
—“ = 1

2g–fl (gfl—,“ + gfl“,— ≠ g—“,fl) (1.11)

Considering all the components of the Universe (radiation, matter, etc.) as
perfect fluids, these can be described completely by the two parameters of density
fl =

q
i fli and pressure P =

q
i Pi: fl and P are independent of time and the

pressure is the same in all directions. So, the energy-momentum tensor has the
simple diagonal shape:

T µ‹ =

Q

ccca

fl 0 0 0
0 ≠P 0 0
0 0 ≠P 0
0 0 0 ≠P

R

dddb . (1.12)

The formal approach to calculate the pressure and density of each component is,
in general, to calculate its distribution function f(x̨, p̨, t), that provides the fraction
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of particles that has position x̨ and momentum p̨ at the time t, and then to compute
pressure and density. So we can write:

fli = gi

⁄
d3p

(2fi~)3 fi (x̨, p̨) E(p) (1.13)

Pi = gi

⁄
d3p

(2fi~)3 fi (x̨, p̨) p2

3E(p) (1.14)

where gi are the degrees of freedom, and where the distribution functions f are
independent of time and equal to:

f = 1
e(E≠µ)/kT ± 1

(1.15)

In these equation the sign ≠ is for bosons, i.e. for particles that have an integer spin,
such as photons, and follow, in a homogeneous Universe, a Bose-Einstein distribution
function, while the sign + is for fermions, i.e. for particles with a half integer spin,
such as neutrinos, that instead have a Dirac-Fermi distribution function. For almost
all the particles at almost all times in the Universe, the chemical potential µ can be
neglected because is much smaller than the temperature. So is su�cient to measure
their temperature to compute their density.

The first Friedmann equation, with c=1, is obtained from the first component
(µ, ‹) = (0, 0) of the eq. (1.3):

H2 =
3

ȧ

a

42
= 8fiG

3 fl ≠ k

a2 + �
3 (1.16)

Here we have introduced a possible cosmological constant and defined the Hubble
constant parameter H, that represents the rate of the expansion of the Universe at
time t. The derivatives are respect to time. Conventionally H is parameterized in
the following way:

H = da/dt

a
= 100h

km/s

Mpc
(1.17)

where h is the reduced Hubble constant that is dimensionless.
The second Friedmann equation can be obtained combining the eq. (1.16) with

the trace of the eq. (1.3):

ä

a
= ≠4fiG

3 (fl + 3P ) + �
3 (1.18)

The first and second Friedmann equations provide the dependence on time of the
expansion rate and acceleration of the Universe.

In order to solve the Friedmann equations respect to P , fl and a(t), we introduce
the equation of state that links pressure and density. For a perfect fluid we have:

P = wfl (1.19)

where w is a constant that depends on the component considered. For the matter,
radiation and cosmological constant components we have:
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w =

Y
__]

__[

0, matter
1
3 , radiation
≠1, cosmological constant

(1.20)

If we plug the FLRW metric, eq. (1.4), in the conservation equation of the
energy-momentum tensor T µ‹

;‹ = 0 (i.e. its covariant derivatives respect to ‹ are
equal to zero), we have the continuity equation, that is not independent from the
two Friedmann equations:

fl̇ + 3H (fl + P ) = 0. (1.21)

The latter, introducing the eq. (1.19), becomes

dfl

fl
= ≠3 (1 + w) da

a
(1.22)

Integrating this last equation (we assume w as constant with time) we have the
density fl as a function of the scale factor a(t):

fl(a) = fl0
1

a(t)3(1+w) (1.23)

where with fl0 we denote the density today. Considering the di�erent components of
matter m, radiation r an cosmological constant �, we have:

flm = fl0
m

a3 , (1.24)

flr = fl0
r

a4 , (1.25)

fl� = fl0
�. (1.26)

We can define the critical density, for every fixed value of the Hubble parameter,
as follows:

flc = 3H2

8fiG
= 10≠29h2g/cm3 (1.27)

and rewrite the eq. (1.16) as

flm

flc
+ flr

flc
+ fl�

flc
+ flk

flc
= 1 (1.28)

where we introduced the quantities:

fl� = �
8fiG

, (1.29)

and a curvature density

flk = ≠ 3k

8fiGa2 = fl0
k

a2 . (1.30)



1.2 The Friedmann-Lemaître-Robertson-Walker metric of the Universe 7

If we call the density parameter the ratio between the density of a physical
component x today and the critical density:

�x = fl0
x

fl0
c

(1.31)

the eq. (1.28) becomes at present time:

�0 =
ÿ

i

�i = �m + �� + �r = 1 ≠ �k. (1.32)

In this equation we denote with �m the matter contribution, divided in (ordi-
nary matter) barionic �b and Cold Dark Matter �CDM , with �� the cosmological
constant, and with �r the radiation, due to the relativistic components, photons and
neutrinos in relativistic regime. Cosmological constant and Dark Matter are two
phenomenological solutions to problem that cannot be explained with known physics,
namely the accelerated expansion of the Universe and the problem of missing matter.
We also introduced the total density parameter �0, that provides an indipendent
way to constrain the curvature of the Universe, via the parameter k in �k:

Y
_]

_[

�0 > 1,
q

fl > flc, �k < 0, k > 0, closed
�0 = 1,

q
fl = flc, �k = 0, k = 0, flat

�0 < 1,
q

fl < flc, �k > 0, k < 0, open

Z
_̂

_\
(1.33)

Considering how the density parameter of the di�erent component depends on
the scale factor a(t), we can write the eq. (1.16) as:

H2 =
3

ȧ

a

42
= H2

0

3�r

a4 + �m

a3 + �k

a2 + ��

4
(1.34)

So, while a is increasing with time, the di�erent components will dominate the
expansion of the Universe at di�erent times. The H2 as a function of a is shown
in Figure 1.1. Primarily, for the smallest value of a(t), the Universe expansion is
driven by radiation, then it will be matter dominated, after curvature dominated
and finally in the cosmological constant period1.

The second Friedmann equation (1.18) becomes:

≠ 1
H2

0

3
ä

a

4
= �r

a4 + 1
2

�m

a3 ≠ �� (1.35)

and we can define the deceleration parameter q0 as

q0 = ≠ 1
H2

0

3
ä

a

4

t=t
0

. (1.36)

If q0 is negative the Universe is accelerating, else decelerating. The presence of ��
gives a negative q0.

Finally, solving the eq. (1.34) for the di�erent epochs of the Universe, we obtain
the evolution of the scale factor a with time. We can demonstrate that, considering

1This is true in general, also if the observations prefer a negligible curvature and the cosmological
constant must be confirmed.
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the initial condition a(t = 0) = 0 and a(t0) = 1 (where t0 is ’today’), and fixing the
curvature k = 0 (flat Universe), in the radiation epoch we have:

3
ȧ

a

42
= �r

H2
0

a4 ∆ a(t) =
1

�rH0
21/2

t1/2; (1.37)

in the matter epoch:
3

ȧ

a

42
= �m

H2
0

a3 ∆ a(t) =
33

2


�mH0

42/3
t2/3; (1.38)

and in the cosmological constant epoch:
3

ȧ

a

42
= ��H2

0 ∆ a(t) = e
Ô

�
�

H
0

(t≠t
0

). (1.39)

As we will see in the next chapters, current observations provided from the Planck
experiment, see Ref. [5], are in agreement with an Universe with parameters with
values of about: H0 = 68Km/s/Mpc, �m = 0.32, �� = 0.68, �r ≥ 5 ◊ 10≠5, and
k = 0 (i.e. flat Universe). This model is now practically a "cosmological standard
model" and is often referred in the literature as �CDM model. The �CDM model
provides an accurate description of the Universe evolution from the primordial, hot,
uniform era to now.

1.2.2 The cosmological redshift

In an expanding Universe we expect a stretching of the path of the travelling
photons and consequently a red-shifting of their wavelength. There is an important
relationship between the observed cosmological redshift z and the value of scale
factor a at the time of photon emission.

The photon path in the space-time is described by a nil ds = 0 four-dimensional
geodetic: c2dt2 = a2(t)dr2. Given an electromagnetic wave, we define the emitted
wavelength ⁄e as the distance between two consecutive peaks in its (laboratory) rest
frame, and the observed wavelength ⁄o the distance between two consecutive peaks
in the observer’s rest frame, that is moving following the expansion of the Universe
respect to the source.

The redshift is then defined as:

z = ⁄o ≠ ⁄e

⁄e
. (1.40)

If we account that also the wavelength will follow the expansion of the Universe
according to:

⁄(t) = a(t)⁄0 (1.41)

we arrive at:

a(to)
a(te) = ⁄o

⁄e
= 1 + z. (1.42)
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This means that, given a distant object, the redshift that we observe depends
only on the ratio between the two scale factors and not on the manner in which
the transition from a(te) to a(to) happened. Using the normalization a(t0) = 1, we
obtain:

1 + z = a≠1(te). (1.43)

1.2.3 The Hubble law

As we discussed in the previous sections, our Universe is expanding and we have
defined as H the rate of its expansion. Moreover, we have introduced the redshift
z as the quantity with which we quantify the shift of the spectral lines of distant
sources, such as galaxies.

Georges Lemaître and Edwin Hubble found that the redshift of objects increased
with their distance. If we interpret this shift as a Doppler e�ect, we have that
further objects appear to recede faster from us: the Universe is in expansion. In
first approximation, for redshifts much smaller than one (z π 1), we can derive the
Hubble law, that relate distance and redshift of an object, in this way:

cz = H0DL (1.44)

where H0, the Hubble constant, is the expansion rate of the Universe today, and DL

the luminosity distance of the object. The luminosity distance is defined as:

DL =
3

L

4fif

41/2
(1.45)

where L is the known luminosity of the source, and f is the observed photons flux.
Indeed the true and general relationship between distance and redshift, valid

also for larger redshifts, is more complicated. Moreover, the interpretation of the
cosmological redshift as a Doppler e�ect is not correct, because is not due to peculiar
velocities of the objects, but to the expansion of the space-time.

1.3 The hot Big Bang

The primordial Universe was made of a hot and homogeneous expanding plasma,
with high energy density and temperature. Radiation, i.e. photons and neutrinos,
and relativistic matter were kept in thermodynamic equilibrium through particle-
antiparticle annihilation and pairs creation reactions, until the rate of these reactions
� = n‡ < v >, with n the particles density, ‡ the cross section and < v > the
average velocity, was greater than or equal to the rate of the Universe expansion
H. When this condition was no longer verified, we have the decoupling between
the particle species. In cosmology, two decoupling epochs are of particular interest
since they provide observable consequences: the neutrino decoupling, with important
implications for BBN and CMB, since it fixes the total relativistic energy content
today, and the photon decoupling, observable today as the CMB.
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1.3.1 The Universe cooling

From the first law of thermodynamics we know that:

dE = d(flV ) = ≠pdV + TdS, (1.46)

where E, V and S are, respectively, the energy, the volume and the entropy of the
considered system. Therefore, we have:

S = E + PV

T
= (fl + P )V

T
. (1.47)

Defined the entropy density as follows:

s = S

V
(1.48)

we have:

s = fl + P

T
. (1.49)

Using the distribution functions fi defined in eq. (1.15), and considering the energy
density introduced in the eq. (1.13) for relativistic particles with m π T :

fli = gi

⁄
d3p

(2fi~)3 E(p)fi(x̨, p̨) (1.50)

we obtain in the two di�erent cases:

fl =
I

flB = gB
fi2

30 T 4, bosons

flF = 7
8gF

fi2

30 T 4, fermions
(1.51)

Therefore the plasma total density will be:

flr = gtot
fi2

30T 4 (1.52)

with

gtot =
ÿ

b

gB + 7
8

ÿ

f

gF . (1.53)

Remembering that a perfect fluid follows the equation of state 1.19, the plasma will
have P = (1/3)fl, and then

s = 4
3

fl

T
= 2fi2

45 gtotT
3. (1.54)

We remind that the pressure Pi can be expressed as an integral over the distri-
bution function fi defined in eq. (1.15) in the following way, eq. (1.14) :

Pi = gi

⁄
d3p

(2fi~)3 fi(x̨, p̨) p2

3E(p) . (1.55)
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We know that for almost all particles, the chemical potential µ is much smaller
than the temperature, so, in good approximation, we can consider the distribution
function only dependent on E/T . Therefore, we can write:

ˆPi

ˆT
= fli + Pi

T
. (1.56)

We can demonstrate, using this relationship (see Ref. [13]), that the entropy density
of the Universe scales as a≠3:

sa3 = const. (1.57)

Combining the eq. (1.54) with the eq. (1.57), we can conclude that

T Ã 1
a(t) 3

Ô
gtot

, (1.58)

and, when gtot = const, also the temperature scales as a≠1.
While expanding, the Universe cools, passing through several fundamental phases,

as we will see in the following subsections.

1.3.2 The Planck Era

In the earliest moments of life of the Universe, the theories place the quantum gravity,
in which we have the quantization of the gravity and the loss of validity of both
General Relativity and quantum mechanics. In this phase, at about t < 10≠43s after
the Big Bang and T ≥ 1019GeV , starts the Planck era. All the fundamental forces
(electromagnetic, weak and strong) are unified in a single one force, in which the
particles are in thermal equilibrium.

From the uncertainty principle of Heisenberg �E · �t Ø ~, we can compute the
typical quantities of the Planck era. The most massive object that can be described
by General Relativity is a black hole with radius R and mass M = Rc2/G. Its energy
is equal to E = Rc4/G. Considering that the time traveled by light is t = R/c, we
can define the Planck radius RP :

RP =
3

G~
c3

4 1

2 ≥ 10≠33cm, (1.59)

from which we derive the so called Planck mass:

MP =
3

c~
G

4 1

2 ≥ 10≠5g; (1.60)

and

tP =
3

G~
c5

4 1

2 ≥ 10≠43s, (1.61)

EP =
A

c5~
G

B 1

2

≥ 1019GeV, (1.62)
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TP =≥ 1032K. (1.63)

Using the natural units c = ~ = 1, we can express everything in mass unit G = M≠2
P .

1.3.3 Inflation and baryogenesis
During inflation (in the first ≥ 10≠30s), we have an exponential expansion of the
Universe, driven by the Inflaton field (see Section 2.7). After the Inflaton decay, the
released energy will produce particle-antiparticle pairs, that annihilate themselves
istantaneously for the very high temperature and the relativistic velocities. For the
symmetry of the creation and destruction processes, we expect that all the baryonic
matter produced should disappear totally. Nevertheless in the Universe we observe
the baryons, while the anti-baryons are almost totally absent. We need processes
that provide an excess of particles respect to antiparticles: we call it Baryogenesis
Era (1017GeV > T > 102GeV , t ≥ 10≠33s). These physical processes are allowed
in the Grand Unified Theories GUTs and break several symmetries: the baryonic
number conservation, the charge conjugation (C) and this latter combined with
the parity (CP ). The simplest theory GUT has a symmetry SU(5), that breaks
spontaneously in SU(3) ◊ SU(2) ◊ U(1) falling below the scale EGUT = 1015GeV ,
at tGUT = 10≠37s. The direct result will be the separation between the strong force
and the electroweak force, with the formation of gluons g, quark-antiquark (qq̄) pairs
and magnetic monopoles.

1.3.4 Electroweak transition
In the meantime the Universe continues to cool, and at a temperature of about TEW =
102GeV , i.e. tEW = 10≠11s, we have the separation between the electromagnetic
force and the weak force, due to breaking of the SU(2) ◊ U(1) symmetry. In this
phase the leptons acquire mass and the old bosons, intemediaries of the electroweak
force, divide them between massive bosons, mediators of the weak interaction, i.e.
Z0 and W ±, and those massless of the electromagnetic force, i.e. the photons “.

1.3.5 Quark-hadron transition
At a temperature of about TQH ƒ 200 ≠ 300MeV , correspondig to tQH ƒ 10≠5s,
we have the last symmetry breaking, with the resulting confinement of quarks in
hadrons: states qqq (baryons) and qq̄ (mesons), held together thanks to the strong
force.

1.3.6 The Cosmic Neutrino Background
Neutrinos are initially coupled to the rest of the primeval plasma through these
weak interactions:

‹ + e≠ ¡ ‹ + e≠, (1.64)

n + ‹e ¡ p+ + e≠, (1.65)
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n + e+ ¡ p+ + ‹̄e. (1.66)

At that time, they have a momentum spectrum with an equilibrium Fermi-Dirac
distribution at temperature T equal to:

feq(p) = 1
e(p≠µ‹)/T + 1

, (1.67)

where p is the momentum and µ‹ is the neutrino chemical potential, that is di�erent
from zero if there is a neutrino-antineutrino asymmmetry, see Ref. [15, 16, 17, 18].
Their weak interaction rate is

�‹ = È‡‹n‹Í , (1.68)

with ‡‹ Ã G2
F the cross section of the electron-neutrino process, GF the Fermi

constant and n‹ the neutrino number density. Neutrinos decouple from the rest
of the plasma, when the rate of the interaction reactions, which keep them in
thermodynamic equilibrium with the primeval plasma, becomes smaller than the
expansion rate of the Universe

H =
Û

8fifl

3M2
P l

, (1.69)

where fl is the total energy density and MP l the Planck mass. According to Ref. [15],
if we consider �‹ ¥ G2

F T 5 and H ¥ T 2/MP l, approximating the numerical factor to
unity, we obtain a decoupling temperature of about Tdec ¥ 1MeV .

Therefore, in the standard cosmological model, a Cosmic Neutrino Background
(CNB) is expected to be formed when the temperature falls below T ≥ 1MeV , and
the Universe cannot transform anymore protons into neutrons, that have a di�erence
of masses of 1.293MeV . From this moment neutrinos cease to interact and start to
propagate freely (free streaming). Their distribution remains Fermi-Dirac, but their
temperature falls as a≠1. After neutrinos decoupling, photons start to be heated by
electrons-positrons annihilation:

e≠ + e+ ¡ “ + “. (1.70)

When the Universe temperature falls below T ≥ 0.5MeV , i.e. of order of electron
mass, this reaction above proceeds only in the rightwards direction, producing the
extra photons, that rapidly thermalize. From this moment the ratio between the
temperatures of the backgrounds of neutrinos and photons will be fixed, despite the
temperature decreases with the expansion of the Universe. If neutrinos decouple
istantaneously, we can assume that the entropy transfer of this annihilation did
not a�ect the decoupled neutrinos, and we can calculate the ratio between the
temperature of relic photons and neutrinos, see Ref. [13].

Before the annihilation, at the scale factor a1, to the total entropy density s
contibute massless bosons, such as photons in 2 spin states, with 2fi2T 3/45 for each
spin state; massless fermions, such as electrons in 2 spin states, positrons in 2 spin
states, 3 generation of neutrinos and 3 of anti-neutrinos, each in 1 spin state, with
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(7/8) ◊ (2fi2T 3/45) for each spin state; and massive fermions in negligible way. The
total entropy density will be:

s(a1) = 2fi2

45 T 3
1

5
2 + 7

8(2 + 2 + 3 + 3)
6

= 43fi2

90 T 3
1 , (1.71)

with T1 the common temperature of the several components in a1.
After annihilation, at the scale factor a2, the electrons and positrons do no longer

contribute to the total entropy density, and photons and neutrinos have temperatures
no longer equal. Therefore we have:

s(a2) = 2fi2

45

5
2T 3

“ + 7
86T 3

‹

6
. (1.72)

We know that the total entropy density scales as a≠3, eq. (1.57), so we can equate
(assuming that during the process the total entropy is approximately constant) :

s(a1)a3
1 = s(a2)a3

2 (1.73)

obtaining

43
2 (a1T1)3 = 4

C3
T“

T‹

43
+ 21

8

D

(T‹(a2)a2)3 . (1.74)

Since neutrino temperature scales as a≠1, we have also

a1T1 = a2T‹(a2). (1.75)

So, the ratio between the temperature of relic neutrinos and photons is:

T‹

T“
=

3 4
11

41/3
, (1.76)

that remains the same until now. Therefore we expect today a CNB at a temperature
of about T‹ = T“

1
4
11

21/3 ƒ 1.945K.
If the sum of the active neutrino masses is less than 1eV , they are relativistic

at the decoupling era. The relativistic neutrinos contributes to the present energy
density of the Universe in this way:

flrad = fl“ + fl‹ = g“

A
fi2

30

B

T 4
“ + g‹

A
fi2

30

B 37
8

4
T 4

‹ (1.77)

where we considered the di�erent behavior of bosons and fermions, i.e. their di�erent
distribution functions, eq. (1.51). If we rewrite the latter equation (1.77) as a
function of the photon energy density, that we know perfectly thanks to the CMB
measurements, we obtain:

flrad = fl“

A

1 +
37

8

4 3 4
11

44/3
A

g‹

g“

BB

(1.78)

using the eq. (1.76), that is valid only for instantaneous neutrino decoupling. In fact,
in a more accurate analysis, the neutrino decoupling and the electrons-positrons
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annihilation are su�ciently close in time to produce some residual interactions
between e± and ‹’s. These interactions lead to a slightly smaller increase of the
comoving photon temperature, than the case of istantaneous decoupling. We define
the e�ective number of relativistic degrees of freedom Ne� , the ratio:

Ne� = g‹

g“
(1.79)

expected equal to 3.046, instead of 3 for the di�erent neutrino flavours, to take
into account e�ects for the non-instantaneous neutrino decoupling and neutrino
flavour oscillations, see Ref. [19]. The relic active neutrinos density does not depend
on the nature of neutrinos, either Dirac or Majorana particles. This is because in
the computation of the degrees of freedom, we have to take into account only of
those that are populated and brought into equilibrium before the time of neutrino
decoupling, and are the same in both the cases. The value of Ne� is constrained
at the BBN epoch, comparing experimental data with theoretical predictions on
the primordial abundances of light elements, such as helium 4He and deuterium D,
which also depend on the baryon-to-photon ratio, ÷ = nb/n“ . Moreover, independent
constraints on this paramater Ne� at a later epoch, can be extracted from the power
spectrum of CMB anisotropies. To find a �Ne� = Ne� ≠ 3.046 means to be able
to constrain the dark radiation. This amount of dark radiation could be due to
extra-relics relativistic non-standard particles present at the recombination epoch,
such as hot axions or sterile neutrinos, see Refs. [20, 21]. Otherwise could be due to
the bias given by other e�ects not considered in the standard scenario, such as a
non-zero chemical potential in the neutrino distribution, like in the Curvaton model,
see Refs. [22, 23]. Or also could be due to the degeneracies with parameters that
mimic the same e�ect on the observables or systematics in the experiments. We will
go through these several options in the following chapters.

Therefore, accounting for the di�erent distribution function of bosons (photons)
and fermions (neutrinos), see eq. (1.51), we have that the neutrino density is given
by:

fl‹ = 3.046 ◊ 7
8

3 4
11

44/3
fl“ (1.80)

where the factor 3.046 is for the three neutrino (and antineutrino) flavours (electron,
muon and tau), and the photon density is well measured by the CMB, providing
�‹h2 = 1.68 ◊ 10≠5 for massless neutrinos. In the standard model of particle
physics neutrinos are chargeless massless leptons. Indeed from neutrino oscillation
experiments, we know that neutrinos are massive and the three masses of the mass-
eigenstates are not totally degenerete, but at least, two neutrino states have mass
enough for being non relativistic at present time. So in the non-relativistic regime,
the massive neutrino energy density will be:

�‹ =
ÿ

i

mi
‹

92.5h2eV
(1.81)

with i = e, µ, · .
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1.3.7 Big Bang Nucleosynthesis

With Big Bang Nucleosynthesis we indicate the epoch between 10MeV > T >
0.1MeV and 10≠2 < t < 102s.

Nuclei may be formed when the temperature is no longer so high to break
the chemical bonds. This happens, in an e�cient way, when the temperature is
significantly lower than the binding energy, due to the very high density of photons,
that have a black body spectrum, respect to the baryons. We introduce ÷ the ratio
between the number density of baryons and photons:

÷ = nb

n“
ƒ 2.68 · 10≠8�bh

2, (1.82)

and the mass fraction Xa of the nucleus a:

Xa = Ana

nb
(1.83)

as the ratio between the mass number A times the number density na of the nucleus
a, and the baryon number density nb. At thermal equilibrium, the non-relativistic
proton number density is:

np = gp

3
mpT

2fi

4 3

2

exp
3

≠(mp ≠ µp)
T

4
, (1.84)

with µ the chemical potential, and the neutron number density is:

nn = gn

3
mnT

2fi

4 3

2

exp
3

≠(mn ≠ µn)
T

4
, (1.85)

with gp = gn = 2 degrees of freedom.
Moreover, is valid the Saha equation:

µa = (A ≠ Z) µn + Zµp, (1.86)

with Z the atomic number. Combining all the equations from the [1.82-1.86] we
obtain:

Xa = gaA
5

2 2
3A≠5

2 ’A≠1
3 fi

1≠A
2

3
T

mb

4 3(A≠1)

2

÷A≠1XZ
p XA≠Z

n e( Ba
T ) (1.87)

where Ba = (A ≠ Z)mn + Zmp ≠ ma is the binding energy of the nucleus a. In order
to have Xa ¥ 1, we need (Ba/T ) ∫ 1, to compensate for a ÷A≠1 very small.

Until the thermal equilibrium is kept, we have the conversion of protons in
neutrons and viceversa, via the processes:

‹ + n ¡ p + e (1.88)

ē + n ¡ p + ‹̄ (1.89)

and the Saha equation (1.86) becomes
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µn = µp. (1.90)

Defined Q = mn ≠ mp ¥ 1.29MeV as the di�erence between neutron and proton
masses, the ratio between the number densities (1.84) and (1.85) is equal to:

nn

np
= Xn

Xp
= exp

3
≠Q

T

4
(1.91)

which is valid until the rate of the reactions (1.88) and (1.89) is greater than H, the
rate of the Universe expansion. When the expansion becomes too fast, neutrons and
protons are no longer in equilibrium and we have the freeze-out of the ratio (1.91) at
the value of 1/6. Only the beta decay of the neutron continues to have place, with a
lifetime ·n ≥ 880s:

n æ p + e + ‹̄ (1.92)

leading the ratio (1.91) at the value of 1/7. At this point starts the primordial
nucleosynthesis, i.e. the formation of the first light nuclei, at the temperature of
about T = 0.8MeV , via the synthesis reactions of Deuterium D, of Helium 3He and
4He, and in small percentages also of Litium 7Li:

n + p ¡ D + “ (1.93)

D + p ¡3 He + “ (1.94)

D + D ¡4 He + “. (1.95)

The heavier elements are produced, instead, subsequently in the synthesis reactions
during the stellar evolution.

The nucleosynthesis allows to discriminate between the several theories of the
standard model, comparing the expected abundances of the di�erent elements with
those observed. For example, assuming that all the free neutrons form 4He, i.e.
nHe = (nn/2), we can compute its primordial abundance, with (nn/np) = (1/7):

Yp = 4n4He

nn + np
= nn

nn

4 · 1
21

1 + np

nn

2 = 0.25. (1.96)

Comparing the deuterium measurements, we can also estimate the baryon density
�bh2 and then ÷.

1.3.8 Recombination

The Universe, thanks to cooling due to the expansion, passes through the phase of
recombination, in which electrons and protons combine into hydrogen atoms (the first
neutral atoms t ≥ 106s), and the phase of decoupling, in which becomes trasparent
to the motion of photons. The Hydrogen has a binding energy of BH = 13.6eV ,
but as explained previously, it will be formed at a temperature smaller than BH
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for the very high density of photons respect to the baryons. We can compute this
temperature Trec using the Saha equation for the reaction:

p + e≠ æ H + “. (1.97)

Considering the Boltzmann statistics for no longer relativistic particles, we have
that the number density of the i ≠ th particle is:

ni ƒ gi
(mikBT )

3

2

~3 exp

A
µi ≠ mic2

KBT

B

. (1.98)

Using the chemical potentials equilibrium µe + µp = µH , and defining the ionization
fraction for the electron xe = ne

ne+nH
(with ne = np) and the binding energy

BH = (mp + me ≠ mH)c2, we obtain the Saha equation:

1 ≠ xe

xe
= n“÷

A
~2

2fimekT

B 3

2

exp
3

B

kT

4
. (1.99)

Replacing the values, we get Trec ƒ 3000K, corresponding to a redshif zrec = 1300.
The recombination of electrons and protons into neutral hydrogen atoms coincides

with the trasparency of the Universe. Before the recombination, all the ordinary
matter in the Universe was under the form of a completely ionized plasma, and the
free electrons caused the opacity of the Universe. The photons interact mainly with
the free electrons via Thomson and Compton scatterings, and with the atoms via
Rayleigh scattering. At the Trec the Thomson scattering

“ + e≠ æ “ + e≠ (1.100)

is the predominant reaction and hinders the photons propagation, because their
free mean path is much smaller than the current dimension of the Universe. Its
rate is equal to � = ne‡ec, where ‡e ƒ 6.65 · 10≠25cm2 is its cross section, and
ne is the free electron number density. The characteristic time of this reaction is
“ = 1/� and in order to have the thermal equilibrium it must be smaller than the
time scale of the Universe expansion: “ < H≠1. When is the radiation to dominate
the Universe expansion, the coupling condition is verified, because H≠1 = 2t and
“ ≥ t3/2. Instead, after the matter-to-radiation equality at z ≥ 3570, during the
matter epoch, H≠1 = 3t/2 and “ ≥ t2: in this case we obtain that the Thomson
scattering ceased to be e�cient just after the decoupling time, at a redshift z ≥ 1100.
At this epoch � falls below the expansion rate H and the Universe becomes trasparent
to the motion of the photons. Therefore, the radiation decouples from the plasma,
with which was in thermodynamics equilibrium, and hereinafter the photons at a
T ƒ 3000K propagate freely until us (free streaming), keeping the shape of the black
body spectrum of the primordial plasma, but cooling with the expansion of the
Universe. At the recombination, each CMB photon had the last scattering and we
can observe this Last Scattering Surface through its emission of light, the CMB.
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1.4 The Cosmic Microwave Background
The Cosmic Microwave Background, predicted for the first time in 1948 by Gamow,
Alpher and Herman as a direct consequence of the hot Big Bang theory, was discovered
accidentally in 1964 by Arno Penzias and Robert Wilson, like a background thermal
noise of a transmission antenna, isotropic and coming from all the directions with the
same intensity. However, was Robert Dicke whom explained this signal as a radiation
coming from the recombination era, and was the FIRAS (Far Infrared Absolute
Spectrophotometer, see Ref. [24]) experiment, of the COBE (Cosmic Background
Explorer, see Ref. [25]) satellite in 1992 to demonstrate its black body spectrum at
a temperature of about T“ = 2.726K.

Until the recombination epoch, as already discussed, we have the thermodynamics
equilibrium of the primordial plasma: a dense, hot, opaque body produces a black
body radiation, given by the Planck distribution. This means that, when photons
decouple, have, in the frequency range [‹, ‹ + d‹] at the temperature T , an energy
density given by the Planck distribution:

P (‹, T ) d‹ = 8fih
3

‹

c

43 3
e

h‹
kBT ≠ 1

4≠1
d‹. (1.101)

The energy density of a photons fluid, with c = 1, is:

fl“ = ‡T 4. (1.102)
where ‡ is the Stephan constant. Due to the Universe expansion, the wavelengths
are redshifted, so the frequencies are reduced as a≠1, while the volume V Ã a≠3.
The result is that the energy density, that is proportional to T 4, eq. (1.102), scales
as a≠4. The consequence will be that the shape of the black body spectrum remains
the same, but its temperature decreases with a≠1.

Today the CMB is a black body with a temperature of about T“ = (2.7255 ±
0.0006)K, see Ref. [5], then going back in time, when the scale factor a was very
small, the temperature and the density of the Universe were so high to allow the
complete thermalization of the matter and the thermodynamics equilibrium of the
plasma (hot Big Bang). The energy density, given by the eq. (1.102), of the CMB is
fl“ ƒ 4≠14Jm≠3, and the photons number density in the Universe is n“ ƒ 411cm≠3.

Defining as · the optical depth (dimensionless), we obtain that the photons flux
intensity, to cross a given thickness, has an attenuation according to the law:

I(t0, z) = I(t)e≠·(z). (1.103)
Though in first approximation the CMB is extremely isotropic, to mimic the temper-
ature homogeneity of the primordial plasma, without small anisotropies the structure
in the Universe that we observe couldn’t exist. The temperature fluctuations, given
a direction of observation (◊, „), are described by the ratio:

�T

T
(◊, „) = T (◊, „)≠ < T >

< T >
(1.104)

and can be due to the primary, at the recombination, and secondary, along the way,
processes. The root mean square of the temperature fluctuations are of order to, see
Ref. [25]:
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K3�T

T

42L1/2

ƒ 10≠5. (1.105)

Moreover, the CMB shows a dipole anisotropy, due to the motion of the Earth
respect to the radiation isotropy rest frame. If ◊ is the angle between the directions
of the Earth’s and photons motions, we obtain:

T = T0

C

1 + v

c
cos◊ + 1

2

3
v

c

42
cos(2◊) + O(v3)

D

. (1.106)

This local e�ect is of order to:
K3�T

T

42

dipole

L1/2

ƒ 10≠3. (1.107)

To study the CMB anisotropies allow us to bound the parameters that describe
the standard cosmological model, through several tools of research, such as the
angular and the matter power spectra, the bispesctrum signal and the Barionic
Acoustic Oscillation (BAO), how we will see in the next chapter.
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Chapter 2

The Perturbed Universe

2.1 Introduction

In the previous chapter we anticipated that the current structures of the Universe
started to form from small fluctuations of the matter density. The linear perturbation
theory, see Ref. [26], is extremely powerful in describing the formation of structures
that we see in the Universe today at scales larger than ≥ 10Mpc.

We start in perturbing the metric tensor, through generic functions of time
and space, as, for example, the scalar fields „ and Â, which will evolve following
perturbed Einstein equations. Then we consider the proper Boltzmann equations,
that, accounting for the interactions between the several elements, describe how the
energy density perturbations depend on „ and Â. We will work mainly in Fourier
space since in this case, in linear perturbation theory, each mode evolves in an
independent way.

2.2 The perturbed metric

As we have seen, the metric can be described by the eq. (1.4):

ds2 = gµ‹ (·, x) dxµdx‹ (2.1)

where in the gµ‹ (·, x) we made esplicit the space dependence.
We can develop the latter as the sum of an unperturbed component (of back-

ground) of a flat, homogeneous and isotropic Universe g0
µ‹ (·), and perturbations of

increasing orders. We consider only the first order term obtaining:

gµ‹ (·, x) = g0
µ‹ (·) + ”gµ‹ (·, x) (2.2)

with |”gµ‹ | π 1. In general we can decompose a symmetric tensor as the sum of a
scalar, a vector and a tensor component. The ”gµ‹ (·, x) can be therefore written:

”gµ‹ (·, x) =
A

2Â wi

wi 2„”ij + hij

B

. (2.3)
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The quantities Â and „ are scalar fields, the w(·, x) is a vector with three
components wi, and h(·, x) is a symmetric 3 ◊ 3 tensor with null trace, with
components hij :

• the scalar component, corresponding to the quantum fluctuations of the Inflaton
field, describes the density perturbations, that, growing with time, produce
the large scale structures;

• the vector component, corresponding to the vector perturbations due to the
generalization of a rotational fluid, is not predicted in the standard cosmological
model 1 during inflation, but anyway produces vortex motion that rapidly
decays;

• the tensor component describes tensor fluctuations created, for example, by
primordial gravitational waves.

To determine the evolution of the metric, we have to perturb at the first order
the Einstein equations (1.3). The theory must be independent by the reference
frame, i.e. covariant for coordinate transformations. We want first to obtain the
FLRW metric in presence of perturbations. We can rewrite the metric (2.1), using
the eq. (2.3), as:

ds2 = a2 (·)
Ó

≠ (1 + 2Â) d·2 + 2wid·dxi +
Ë
(1 ≠ 2„) g(3)

ij + 2hij

È
dxidxj

Ô
(2.4)

with · the conformal time and g(3)
ij the spatial component of the unperturbed FLRW

metric, for which g(3)
ij hij = 0. In this way we decompose the metric, and therefore

the perturbations, in three indipendent components with di�erent transformation
properties: scalar d·2 term; vector d·dxi term; and tensor dxidxj term. Overall we
have 10 fields, but only 6 are independent physical degrees of freedom of the system,
because for General Relativity, we can transform the 4 coordinates of the space-time
without modifying the physics.

We can decompose the vector field w in a longitudinal component wÎ and a
transverse component w‹ respect to the wave vector k̨:

w = wÎ + w‹. (2.5)

The longitudinal component can be written as the gradient of a scalar function
wÎ = Òws, because it satisfies the condition

Ò ◊ wÎ = 0, (2.6)

i.e. is irrotational; while the transverse component is divergenceless:

Ò · w‹ = 0. (2.7)
1Vector perturbations are anyway expected in models with topological defects or inhomogeneous

magnetic fields.
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We find both the longitudinal and transverse terms of the Einstein equations,
G0i and T0i, when we derive the 0i components. The divergence of these equations
selects only longitudinal terms, while the curl only transverse terms. So the two
components can be treated separately, because are completely decoupled.

Similarly we can decompose the tensor field h in three terms with null trace: a
longitudinal component hÎ, a solenoidal component h‹ and a transverse component
hT :

h = hÎ + h‹ + hT , (2.8)

that transform respectively as a scalar term, a vector term and a tensor term. These
components satisfy the relationships:

‘ijkˆiˆkhÎ
ij = 0, (2.9)

ˆiˆjh‹
ij = 0, (2.10)

ˆih
T
ij = 0. (2.11)

Since ˆih
Î
ij is irrotational, we can define:

hÎ
ij =

3
ˆiˆj ≠ 1

3”ijÒ2
4

B, (2.12)

where B is a scalar function. In each point, the perturbation can be described by four
scalar quantities („, Â, wÎ, hÎ), two vector fields (w‹, h‹) and one tensor component
of two dimensions (hT ). The perturbations of each type evolve independently from
each other. The vector terms correspond to the rotational velocity perturbations, that
are damped in all the known theories, while the tensor term is due to gravitational
waves, and is totally decoupled from the scalar term, so we can treat them separately.
Considering only the scalar quantities that derive from wi and hij , we can build
from the two scalar quantities E and B, the vector Ę and the traceless tensor
DijB © Bij ≠ 1

3”ijB,k
,k . The eq. (2.3) becomes

”gµ‹ (·, x) =
A

2Â E,i

E,i 2„”ij + DijB

B

. (2.13)

The metric (2.4) is gauge invariant: the gauge transformations leave unmodified
the background metric, changing the perturbed metric. To choose a gauge means to
choose a coordinate system in which we could represent the physics, that obviously
remains the same. But changing gauge varies also the di�culty to calculate and to
understand the physical meaning of the di�erent quantities. Defined a comoving
coordinates frame for the unperturbed system, we can, for example, choose between:

• the newtonian gauge;

• the synchronous gauge;
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that we are now both going to describe.
The metric in the conformal newtonian gauge corresponds to the choice wi =

hij = 0 (or E = B = 0), i.e. the vector and tensor degrees of freedom are eliminated
from the beginning:

ds2 = a2(·)
Ë
≠ (1 + 2Â) d·2 + (1 ≠ 2„) dxidxi

È
. (2.14)

In this gauge the metric tensor gµ‹ is diagonal, and Â and „ have the clear
physical meaning of, respectively, the Newton’s gravitational potential and the space
curvature. Only when the energy-momentum tensor T µ

‹ has longitudinal components,
the two scalar potentials Â and „ are di�erent.

In the synchronous gauge we have both g00 = ≠1 and g0i = 0 unperturbed, and
Â = wi = 0:

ds2 = a2(·)
Ë
≠d·2 + (”ij + hij) dxidxj

È
. (2.15)

and this implies the possibility of synchronizing the clocks in the whole space-time.
At this choice of gauge are associated the appearance of coordinates singularities,
due to the definition of the coordinates frame by a freely falling observer that can
intersect each other in a point of the spacetime. This point will have two coordinates
label, and spurious gauge modes, because the synchronous gauge doesn’t fix the
gauge degrees of freedom completely. This gauge is preferred in codes (see for
example CAMB, Ref. [27]) that compute the anisotropies and inhomogeneities in
the Universe, because has a better numerical behaviour.

Another possible choice one could consider is the gauge invariant formalism with
the Bardeen variables �A and �B) such that �A = Â and �B = ≠„. This possibility
removes completely the ambiguities of the choice of gauge, to the detriment of the
simplicity of the formalism.

2.3 Scalar perturbation
We now consider scalar perturbations in the conformal newtonian gauge, and, in
order to determine their evolution, we consider the first-order perturbed Einstein
equations (see Ref. [26]). For a perfect fluid the energy-momentum tensor is given
by:

T µ
‹ = Pgµ

‹ + (fl + P ) UµU‹ (2.16)
where fl is the energy density, P is the pressure and Uµ

‹ = dxµ/
Ô≠ds2 is the four-

velocity of the fluid. The four-velocity has components (considering only the first
order perturbations):

U0 = 1
a (1 + 2Â)1/2 ƒ 1

a (1 + Â) (2.17)

U i = 1
a (1 + 2Â)1/2

dxi

d·
ƒ vi

a
(2.18)

U0 = a (1 + 2Â)1/2 ƒ a (1 + Â) (2.19)
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Ui = ≠ a (2„)
(1 + 2Â)1/2 ”ij

dxj

d·
ƒ ≠avi, (2.20)

where vi © dxi

d· is a small coordinate velocity with which the fluid moves. This can
be considered as a perturbation of the same order as ”fl = fl ≠ fl̄ and ”P = P ≠ P̄ .

The components of the perturbed energy-momentum tensor, at first order, are:

T 0
0 = ≠ (fl̄ + ”fl) (2.21)

T 0
i =

1
fl̄ + P̄

2
vi (2.22)

T j
i =

1
P̄ + ”P

2
”j

i . (2.23)

Considering a perfect fluid the non-diagonal terms with i ”= j are zero, otherwise we
should have an anisotropic shear perturbation �i

j in T i
j =

1
P̄ + ”P

2
”j

i + �i
j . This

happens only to the neutrinos before recombination, because photons and baryons
are tightly coupled in a single perfect fluid. This anisotropic perturbation tensor is
defined as the traceless component of T i

j :

�i
j © T i

j ≠ ”i
jT k

k

3 . (2.24)

We can introduce two perturbation quantities, that are the dimensionless density
perturbation ”, i.e. the fractional variation of the energy density respect to the mean
background density fl̄, and the velocity divergence ◊, in this way:

” = fl(x) ≠ fl̄

fl̄
, (2.25)

◊ = Òivi. (2.26)

Of course, we have a ” and ◊ for each fluid component. We have that ” will be negative
in the sub-dense regions, its minimum value is ” = ≠1 when fl = 0, and positive in
over-dense regions, without upper limits. We can use the linear perturbation theory
when |”| remains much smaller than one.

It is useful to expand all the perturbations in Fourier space, assuming that they
are the sum of plane waves eikr, with kr © k̨ · r̨:

„ =
⁄

eikr„kd3k, (2.27)

Â =
⁄

eikrÂkd3k, (2.28)

” =
⁄

eikr”kd3k, (2.29)

◊ =
⁄

eikr◊kd3k = ik
⁄

eikrvkd3k, (2.30)
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where we have omitted the tilde to indicate the Fourier transforms, and, since we
work always in Fourier space, we will omit also the index k of the perturbations
mode. In the linear perturbation theory, we have the same set of equations for each
wave, but for di�erent wave numbers k, that evolve independently.

The first order perturbed Einstein equations in Fourier space will be (see Ref.
[26]):

k2„ + 3 ȧ

a

3
„̇ + ȧ

a
Â

4
= 4fiGa2fl”, (2.31)

k2
3

„̇ + ȧ

a
Â

4
= 4fiGa2

1
fl̄ + P̄

2
◊, (2.32)

„̈ + ȧ

a

1
Â̇ + 2„̇

2
+

A

2 ä

a
≠ ȧ2

a2

B

Â + k2

3 („ ≠ Â) = 4fi

3 Ga2”P, (2.33)

k2 („ ≠ Â) = 12fiGa2
1
fl̄ + P̄

2
‡, (2.34)

where all the derivatives are respect to the conformal time · , that is related to t as
d· = dt/a, and ‡ is given by

1
fl̄ + P̄

2
‡ © ≠

1
k̂ik̂j ≠ 1

3”ij

2
�i

j . We can note that the
first equation (2.31) is the relativistic generalization of the Poisson equation, and
the latter equation (2.34) demonstrates that the space curvature „ and Newton’s
potential Â are di�erent only if the components of the Universe own an anisotropic
stress ‡, depending on the quadrupole moment of the perturbations.

It is possible to obtain the Euler equation:

◊̇ = ȧ

a
(3w ≠ 1) ◊ ≠ ẇ

1 + w
◊ + k2Â ≠ k2‡ ≠ c2

s

1 + w
k2” (2.35)

with w = P/fl and c2
s = ”P/”fl is the adiabatic sound speed squared.

We have four independent variables for the perturbations („, Â, ” and ◊), then
we need only four linear independent perturbation equations to determine their
evolution, that can be obtained combining the previous equations. For example,
considering a single perfect decoupled fluid, i.e. �i

j = 0 and „ = Â, these could be:

”̇ = (1 + w)
1
3„̇ ≠ ◊

2
≠ 3 ȧ

a

1
c2

s ≠ w
2

”, (2.36)

◊̇ = ≠ ȧ

a
(1 ≠ 3w) ◊ + k2

A
c2

s

1 + w
” + „

B

, (2.37)

k2
3

„̇ + ȧ

a
„

4
= 4fiGa2 (1 + w) fl◊, (2.38)

k2„ + 3 ȧ

a

3
„̇ + ȧ

a
„

4
= 4fiGa2fl”. (2.39)

Finally, we can write the last two equations in a quasi-Poissonian form:

k2„ = 4fiGa2fl
5
” + 3 ȧ

a
(1 + w) ◊

k2

6
. (2.40)
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2.4 Tensor perturbation
In order to study the tensor perturbations we consider the synchronous gauge, see
eq. (2.15):

ds2 = a2(·)
Ë
≠d·2 + (”ij + hij) dxidxj

È
. (2.41)

and in order to determine their evolution, we have to perturb the Einstein equations
without sources, i.e. Tµ‹ = Gµ‹ = 0.

The first order perturbed Christo�el symbols, eq. (1.11), are:

”�0
00 = 0, (2.42)

”�i
00 = 0, (2.43)

”�0
0i = 0, (2.44)

”�k
kµ = 0, (2.45)

”�j
0i = ḣj

i , (2.46)

”�0
ij = 2 ȧ

a
hij + ḣij , (2.47)

”�j
ki = ˆhj

k + ˆkhj
i ≠ ˆjhki. (2.48)

where always the greek letters run from 0 to 3, and the roman from 1 to 3.
We can compute the perturbed Ricci’s tensor components, see eq. (1.10):

”R00 = 0, (2.49)

”R0i = 0, (2.50)

”Rij = ḧij + 2 ȧ

a
ḣij + 2 ä

a
hij + 2

3
ȧ

a

42
hij . (2.51)

Finally, the perturbed Einstein equations (1.3) will be:

”Gi
j = 1

a2

3
ḧi

j + 2 ȧ

a
ḣi

j ≠ ˆkˆkhi
j

4
= 0. (2.52)

Expanding the tensor perturbation in Fourier space:

hij (·, x) =
⁄

hij (·, x) e≠ikrd3k (2.53)

the eq. (2.52) becomes:
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ḧ + 2 ȧ

a
ḣ + k2h = 0 (2.54)

that has an analytical solution of damped harmonic oscillator, called gravitational
wave, if we know the evolution of the scale factor a(t). In fact, without the damping
term, that depends on the expansion of the Universe H = ȧ/a, this should be a
steady wave, propagating with light speed.

We saw that hij satisfies the relationships (2.9) and (2.11), that in Fourier space
become:

hi
i = 0 (2.55)

hj
i kj = 0 (2.56)

that reduce the independent components of the simmetric tensor to two degrees of
freedom. These are the two polarization states of the gravitational wave. If the wave
vector has the components k̨ = (0, 0, k), the previous relationships become:

h11 = ≠h22 (2.57)

hi3 = h3i = 0. (2.58)

Therefore, we can rewrite the equation (2.2) as:

gµ‹ = g0
µ‹ + 2a2(·)hµ‹ , (2.59)

with hµ‹ given by:

hµ‹ =

Q

ccca

0, 0, 0, 0
0, h+, hx, 0
0, hx, h+, 0
0, 0, 0, 0

R

dddb (2.60)

where h+ and hx are simmetric tensors, respectively, divergenceless and traceless. A
result of its divergenceless is that, if the reference frame has the z axis parallel to
the wave vector k̨, that corresponds to the propagation direction of the wave, it will
perturb the space time in the orthogonally (x, y) plane.

As we will see, several inflationary models predict tensor perturbations, with their
amplitude being a sizable fraction of the amplitude of the scalar perturbations. An
imprint of the gravitational waves is expected in the temperature and polarization
anisotropies of the Cosmic Microwave Background.

2.5 The Boltzmann equation
The Boltzmann equation allows us to study the evolution of each energy density
perturbations component, taking into account the interactions with other components
and the metric perturbations.
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In general, the Boltzmann equation describes how a thermodynamic system not
in thermodynamic equilibrium statistically evolves. For each component the general
form of this equation (see Ref. [28]) gives the total derivative of the distribution
function f(t) respect to the time. This can be written as:

df

dt
=

3
ˆf

ˆt

4

force
+

3
ˆf

ˆt

4

diff
+

3
ˆf

ˆt

4

coll
(2.61)

with the force term corresponding to the forces exerted by an external source on
the particles, the di� term taking into account for the particles di�usion, and
coll term describing all the interactions between a specific component and all the
other components, such as the scattering processes. In absence of collisions, the
distribution function of each component f needs to satisfy:

f
3

r̨ + p̨

m
�t, p̨ + F̨�t, t + �t

4
d3r̨d3p̨ = f (r̨, p̨, t) d3r̨d3p̨ (2.62)

which shows that the number of particles, in a given portion of the phase space
volume element d3r̨d3p̨, does not change, when a force F̨ instantly acts on each
particle, that passes from the position r̨ and the momentum p̨ at time t, to the
position r̨ + �r̨ = r̨ + p̨�t/m and the momentum p̨ + �p̨ = p̨ + F̨ �t at time t + �t.
But we have the collisions, so the particle number density will change in the following
way:

dN = f
3

r̨ + p̨

m
�t, p̨ + F̨�t, t + �t

4
d3r̨d3p̨ ≠ f (r̨, p̨, t))d3r̨d3p̨, (2.63)

then

dN =
3

ˆf

ˆt

4

coll
�td3r̨d3p̨ = �fd3r̨d3p̨. (2.64)

with �f the change in the total distribution function. Taking the limits for �t æ 0,
we obtain that the total derivative of f of each component depends only on the
collisional term:

df

dt
=

3
ˆf

ˆt

4

coll
, (2.65)

that in general depends on the distribution functions of all the other components.
In the Universe the phase space volume element expands, so we have to take

into account also the metric perturbations. In the four-dimension space-time the
total derivative of the distribution function of a component of the Universe can be
written as:

df

dt
= ˆf

ˆt
+ ˆf

ˆxi

ˆxi

ˆt
+ ˆf

ˆP µ

ˆP µ

ˆt
. (2.66)

where xi are the components of the position r̨ and P µ is the four-momentum.
Considering an interaction A + B ¡ C + D, we can write the collisional term for
the component A in this way:
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3
ˆf (p̨A)

ˆt

4

coll
= 1

pA

⁄
d3pB

(2fi)3 2E (pB)

⁄
d3pC

(2fi)3 2E (pC)

⁄
d3pD

(2fi)3 2E (pD)
◊ |M |2 (2fi)4 ”(4)

1
P µ

A+B ≠ P µ
C+D

2
{f (p̨C) f (p̨D) ≠ f (p̨A) f (p̨B)}

(2.67)

where |M | is the invariant amplitude of the considered process, and the Dirac’s ”(4)

guarantees the conservation of the four-momentum.

2.6 The growth of linear perturbations
Linear cosmological perturbation theory is based on gravitational instability of a
no longer relativistic gas, compressed by its own gravity countered by a gradient
of pressure. We have that in over-dense regions, respect to the density mean of
the Universe (” > 0), the gravity is stronger than the pressure of the particles and
attracts more matter in the same region by making it denser; while in under-dense
regions (” < 0) happens the contrary and the pressure produces random thermal
motions of the particles, causing a loss of mass of that region that becomes even less
dense. We can describe this process with the following equation:

”̈ + (Pressure ≠ Gravity) ” = 0. (2.68)
From the latter equation we can infer that when the gravity wins, the density
perturbation ” grows exponentially, otherwise oscillates in time. In general, the rate
of growth of the perturbations depends on the di�erent cosmological conditions of
the environments. When the Universe is matter dominated, ” grows in function of
time as a power law, while when is radiation dominated grows only logarithmically.
In order to create structures, the over-dense region has to be both greater than
the Jeans Length, necessary condition to collapse under its own gravity instead of
to oscillate making stable sound wave (hydrostatic equilibrium), and faster in the
collapse (tdyn) than the characteristic time of expansion of the Universe. The Jeans
Length is defined as:

⁄J © cs

A
c2fi

Gfl̄

B1/2

= 2ficstdyn (2.69)

with the sound speed

cs = c
3

dP

dfl

41/2
= c

Ô
w (2.70)

where w > 0 is the parameter of the equation of state of a non relativistic gas. This
is approximately

w ¥ kT

µc2 (2.71)

with T the temperature and µ the mean mass of the particles of the gas. So
the pressure of the gas increases with the temperature, and the pressure gradient
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propagates with the sound speed cs, with the characteristic time tpres ≥ R/cs, in
a region of radius R. The hydrostatic equilibrium is reached when tpres < tdyn, i.e.
when predominates the pressure on the gravity.

In a flat expanding Universe, the Jeans length is:

⁄J = 2fi
32

3

41/2 c
Ô

w

H(t) . (2.72)

Depending on the value of the w, di�erent for the di�erent components, the
density fluctuation will be supported or not by pressure, collapsing or not under its
own gravity. For example, in the radiation dominated Universe, when w = 1/3, the
fluctuations don’t collapse, but produce stable wavelengths: the density fluctuations
are supported by pressure, if are approximately smaller than three times the Hubble
radius cH≠1. We need a component with w ≥ 0 to have collapsed structures. To
produce the observed structures of the Universe the baryons are not enough, because
until they are coupled to the photons they have w ≥ 1/3, and so they could start to
produce structures only after decoupling, when their equation of state w becomes
approximately zero. Therefore, we have to introduce a dark matter component that
does not have pressure gradients, for which the Jeans length is approximately always
negligible, that starts to collapse well before decoupling, and makes gravitational
potential wells into which the ordinary matter falls after its decoupling.

If we move to Fourier space, all the modes evolve in an independent way. In the
beginning they are outside the causal horizon and their behaviour depends on the
chosen gauge. The causal horizon is defined as dh(t) = a(t)

s t
0 dx = a(t)

s t
0

cdtÕ

a(tÕ) and
represents the maximum physical distance on which the photon can propagate at
time t. Then the modes enter into the causal horizon, but their evolution, the same
in either the gauges, depends whether the Universe is radiation or matter dominated,
i.e. if the causal horizon crossing of the wavelengths happens before or after the
equivalence epoch.

To have an idea of the evolution of the perturbations in these di�erent epochs,
we can use a Newtonian approch. The perturbation equations (2.36), (2.37) and
(2.40), in the Newtonian limit, for small scales k ∫ ȧ/a, become (see Ref. [29]):

”̇ = ≠◊, (2.73)

◊̇ = ≠ ȧ

a
◊ + c2

sk2” + k2„, (2.74)

k2„ = ≠4fiGa2fl”, (2.75)

where the latter equation is the Fourier version of the Poisson equation. Deriving
the first equation (2.73), and substituting the other equations (2.74) and (2.75), we
obtain:

”̈ + ȧ

a
”̇ +

1
k2c2

s ≠ 4fiGa2fl
2

” = 0. (2.76)

Now, considering c2
s = 0 and ” for the matter density fluctuations, we have:
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”̈ + ȧ

a
”̇ ≠ 4fiGa2flm” = 0, (2.77)

We can rewrite the latter equation in terms of the density paramater �m = flm/flc.
Moreover, we replace the derivatives respect to the conformal time · , denoted with ≠̇,
with the derivatives respect to time t, denoted with ≠Õ, remembering that d· = dt/a.
We obtain:

”ÕÕ + 2H”Õ ≠ 3
2�mH2” = 0. (2.78)

where H = aÕ/a. During the epoch of radiation, we can approximate �m ¥ 0 and
H = aÕ/a = 1/2t. The eq. (2.78) becomes in this case:

”Õ + 1
t
”Õ = 0, (2.79)

which has a solution of logarithmic growth for the perturbations:

”(t) = B1 + B2lnt. (2.80)

During the epoch of matter, we can approximate �m = 1 and H = 2/3t. The eq.
(2.78) becomes:

”ÕÕ + 4
3t

”Õ ≠ 2
3t2 ” = 0, (2.81)

which has a solution as power law for the perturbations:

”(t) = C1t2/3 + C2t≠1. (2.82)

All the constants values (B1, B2, C1, C2) are determined imposing initial condition
for ”(t). The decaying solution t≠1 is not observed, otherwise we should have a large
amount of structures in the primordial Universe, contrary to our assumptions of
small linear perturbations. Moreover, putting the growing solution in the Poisson
equation (2.75) we have:

k2„ = ≠4fiGa2” = ≠3
2H2a2”. (2.83)

So, we obtain:

k2„ = ≠3
2

4
9t2 t4/3C1t2/3 = const, (2.84)

i.e. the gravitational potential is constant in a Universe matter dominated.
Summarizing, we can consider di�erent scales of the perturbations: when smaller

scales cross the causal horizon, the Universe is radiation dominated and their growth
is slower (logarithmic); instead, when larger scales enter into the causal horizon,
we have the matter dominated epoch and the growth is faster (power law). So we
expect that the large scales will grow more than the small scales.
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2.7 Initial conditions: Inflation

In order to solve the set of di�erential equations driving the evolution of the first
order perturbations, we have to know their initial conditions, that are thought to
be due to the Inflation process. The inflationary paradigm has been introduced
to solve some problems of the standard cosmological model, based on the Hot Big
Bang. Inflation was initially conceived by Alan Guth in 1981, see Ref. [30], to
solve in particular the monopole, the flatness and the horizon problems, and today
represents an entire class of theories without a defined and detailed model. Inflation
needs then to be verified through the general characteristics common to all models:
the evolution of the Inflaton scalar field towards the minimum of the potential
produces an exponentially accelerated expansion of the Universe immediately after
its beginning. Inflation drives the Universe towards an homogeneous and spatially
flat configuration, producing the initial condition for the standard Hot Big Bang.
Simultaneously it expands the quantum fluctuations presents in the matter and in
the space time, providing the small inhomogeneities that will eventually grow into
galaxies and clusters of galaxies.

2.7.1 The flatness problem

While General Relativity allows the possibility of a curved Universe, observations
show that it is nearly flat. This means, from equation (1.33), a total density
parameter today �0 = 1 , i.e.

q
fl = flc and k = 0, but, in the standard Big Bang

model, it is a highly unstable solution that implies an extreme fine tuning of the
initial condition with an Universe with curvature exactly zero. A slight deviation
from � = 1 in the early Universe would produce today a totally di�erent Universe,
because the di�erence from the unity would rapidly grow.

From the second Friedmann equation (1.18) we know that the components of
the Universe for which fl + 3P > 0 produce a decelerated expansion of the Universe
(ä < 0). Imposing the equation of state (1.19), this condition is achieved with
w < ≠1/3. If k = 0, combining the first Friedmann equation (1.16) with the
equation (1.23), we have:

ȧ

a
=

Û
8fiG

3 a≠ 3(1+w)

2 , (2.85)

that integrated gives

a Ã t
2

3(1+w) . (2.86)

We can define the curvature or the flatness deviation C(a) as:

C(a) = |� ≠ 1|a≠2

�a≠3(w+1) = C0a(1+3w), (2.87)

where C0 is the value today. We can see that for a π 1, in the early Universe,
C æ 0: the Universe was very much flatter than today. We can rewrite the above
equation as a funcion of the temperature:
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C(T ) = C0

3
T0
T

41+3w

. (2.88)

Thus, if today T0 ≥ 3K ≥ 10≠12GeV and we assume T = TP ≥ 1019GeV , considering
that the last observations give |�0 ≠ 1| < 0.1, we have CP < 0.1 · 10≠31(1+3w).
Remembering that the Universe is initially radiation dominated, i.e. w = 1/3, the
result is that the di�erence from � = 1 at the Planck era was about 10≠62. We obtain
a similar result when we consider a matter dominated era with w = 0 or any other
components with equation of state w > ≠1/3. In conclusion, an initial deviation
from the flatness, would have produced an immediate collapse of the Universe or
its very rapid cooling. In order to have the initial condition � = 1, we consider the
inflationary solution of the Einstein equations that provides a period in which the
Universe is dominated by an equation of state with w < ≠1/3, that implies a phase
of accelerated expansion ä > 0.

If we consider, for example, an exponential accelerated expansion, i.e. w = ≠1,
we have CP = C01062: even if the initial curvature was CP = 1050, today we
would get �0 = 1 ± 10≠12, an extremely flat Universe. With a phase of exponential
acceleration, the solution � = 1 is stable: whatever primordial geometrical curvature
was present, it has been diluted during the expansion. In this case the flat Universe
is an attractor of the inflationary solution.

For this solution with w = ≠1, we can define the expansion ratio:

log
ae

ai
= �N (2.89)

where ai and ae are the scale factors immediately before and after the inflationary
period, and �N is the number of e-folding2, the time interval in which the exponential
growth increases by a factor of e. We can rewrite the above equation in this way:

3
Te

Ti

42
= e≠2�N , (2.90)

where Ti and Te are the temperatures immediately before and after the inflationary
period. At the end of the inflation, the Universe is radiation dominated with
w = 1/3 and a temperature TGUT = 1015GeV . Repeating the previous calculations,
the curvature today will be C0 = e≠2�N 1054 = 1054≠0.87�N . Comparing with the
observed curvature C0 ≥ 1, the duration of the inflationary period has to be at least
of �N = 62 e-folding.

2.7.2 The horizon problem

The CMB observations show a correlation between di�erent areas of the sky, on scales
larger than the causal horizon size at the time of recombination, when the radiation
was emitted. The causally connected regions at the recombination epoch would
correspond at about 1¶ degree in the sky. But the CMB has the same temperature,

2The definition (2.89) is indeed the totally number NT of e-folding, from the beginning to the
end of the inflation. A stricter definition could be �N = NT ≠ N , where �N = log(a/ai) and
N = log(ae/a). Then we have that �N = NT , if a = ae.
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and in general the Universe has the same characteristics, in all the directions of the
sky.

We can determine if two areas are causally connected by calculating the causal
horizon dh, a region of finite size due to the finite velocity c at which light propagates,
since the information travel at the speed of light. The causal horizon, as stated before,
is defined as the maximum physical distance on which the photon can propagate
between the time t = 0, the beginning of the Universe, and t, that corresponds
to the maximum physical distance between two points that could have exchanged
informations. Using the condition for the light propagation ds2 = 0, and assuming
that the propagation is radial, i.e. d◊ = d„ = 0, from the metric (1.4) we obtain

dt2 = a2(t) dr2

1 ≠ kr2 (2.91)

with c = 1. For a flat Universe the causal horizon will be:

dh =
⁄ t

0
dt = a(t)

⁄ r

0

drÔ
1 ≠ kr2 = a(t)

⁄ t

0

dtÕ

a(tÕ) = a(t)
⁄ Œ

0

daÕ

HaÕ2 . (2.92)

Assuming a(t) ≥ tn and H = H0a≠1/n, the causal horizon can be written as

dh = na
1

n

(1 ≠ n)H0
. (2.93)

Today, with a0 = 1 and n = 2/3, becomes:

dh = 2c

H0
= 6000h≠1Mpc. (2.94)

This is the size of the observable Universe, in a matter dominated Universe. Instead,
if we consider the best fit to the observational data (see Ref. [5]), we have a finite
horizon distance of about:

dh ≥ 3.24c

H0
≥ 14000Mpc. (2.95)

Moreover, we can define the Hubble horizon:

Rh = c

H(t) (2.96)

as the maximum distance that the photon could travel during one expansion time
t = H≠1(t), considering the expansion rate of the Universe fixed at the constant
value H(t). Today we have:

R0 = H≠1
0 = 3000h≠1Mpc. (2.97)

The di�erence between the causal horizon and the Hubble horizon is that, while
dh can only grow, Rh could be both larger or smaller in the past, depending on
the behaviour of H(t). Then if two points are separated by a distance greater than
dh but smaller than Rh, they could be in causal contact in the past, though today
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cannot communicate to each other. Only if their distance is also greater than Rh we
can say that these two points could have never spoken with each other.

We can define the horizon crossing the relationship ⁄ = 1/aH, that is the time
in which a comoving scale perturbation ⁄, i.e. a physical scale perturbation a⁄, cross
the Hubble horizon H≠1.

We want to know what is the distance today of a scale that was in horizon
crossing at the scale factor a. We have to consider the Hubble horizon evolution
together with the scale expansion and to solve the following system of equations
imposing ⁄ = Rh:

Y
_]

_[
Rh = H≠1 = H≠1

0

1
a
a

0

2 3(1+w)

2 = R0
1

a
a

0

2 3(1+w)

2

⁄ = ⁄0
1

a
a

0

2 (2.98)

We obtain:

⁄0 = R0

3
a

a0

4 3(1+w)

2

≠1
(2.99)

that is the maximum distance of two points today that were in causal contact at
the scale factor a. Considering a/a0 = z≠1 and a Universe matter dominated with
w = 0, we can compute what are the sizes today of some scales that were in horizon
crossing at known epochs, such as the decoupling era and the matter-to-radiation
equivalence:

⁄(zdec = 1100) = 95h≠1Mpc (2.100)

⁄(zeq = 2.4 · 104) = 19h≠1Mpc (2.101)

neglecting, for the last one, the radiation contribution to the evolution3.
We can calculate roughly the angular dimension of the causal horizon at the

recombination epoch �◊sky, from the ratio between the values today of the scale
that was in horizon crossing at the decoupling epoch, about 100h≠1Mpc, and the
causal horizon, about 6000h≠1Mpc. We obtain:

�◊sky = 100
6000 · 180

fi
ƒ 0.95¶. (2.102)

This means that if two points of the cosmic background have an angular separation
on the sky greater than about 1¶, they have to be causally disconnected because
haven’t never communicate to each other. The result should be the identification
of separate structures of fixed sizes on the fluctuations of the CMB, because those
regions of dimension greater than the horizon haven’t never interact between them.
The paradox is the isotropy over all the sky of the temperature of the CMB, i.e. of
the photons coming from the last scattering surface, also in causally uncorrelated
regions. The problem is that if these regions have never been in causal contact before
the recombination epoch, there is no way to establish the thermal equilibrium.

3If we integrate numerically the cosmological equations at two components we obtain ⁄eq =
13h≠1Mpc.
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We can solve the horizon problem with the inflationary process. In simple words,
we have to consider that the physical distance of particles initially in causal contact
grows exponentially, while the Hubble horizon remains almost constant. We suppose
to have an inflationary epoch, up to the time te, in which the expansion is driven
by wi < ≠1/3, and at the end of the inflation by wf > ≠1/3. We can rewrite the
system of equations (2.98) as:

Y
_]

_[
Rh = R0

1
a
ae

2 3(1+wi)

2

1
ae
a

0

2 3(1+wf )

2

⁄ = ⁄0
1

a
ae

2 1
ae
a

0

2 (2.103)

Let’s now look for the value a < ae, during inflation, when the Hubble radius today
R0 crossed the horizon, that implies that all the Universe was in causal contact in
a time earlier than te. In this way we have two horizon crossing for all the scales
⁄ < R0, as we can see in Fig. 2.1. First of all we have a comoving inflationary
expansion, faster than the linear growth of the causal horizon: all the scales are
stretched outside the horizon at t < te from the largest one to the smallest one.
Afterwards, at the end of the inflation, is the causal horizon to grow faster and the
several scales re-enter from the smallest one to the largest one (last out æ first in).
In this way we can explain the isotropy of the CMB, because the scales that are
outside the horizon at the decoupling epoch, were all contained inside the horizon
before the inflation.

In order to solve the system of equations (2.103), we impose again ⁄0 = R0. If we
introduce the e-folding number N = log(ae/a), as the minimum number of e-folding
needed to have R0 inside the horizon, and then all the observable Universe in causal
contact, we obtain:

e≠N+N
3(1+wi)

2 =
3

a0
ae

4 3(1+wf )

2

. (2.104)

Assuming Te = 1015GeV , the temperature nedeed to have at the end of the inflation
the baryogenesis and the nucleosynthesis processes, considering a radiation dominated
Universe wf = 1/3, and the temperature of the cosmic background T0 = 10≠12GeV ,
we have

NT ¥ 62
A

1
3(1+wi)

2 ≠ 1

B

log
3

Te

1015GeV

4
. (2.105)

If we take wi = ≠1, we find that NT = 60 solves both the horizon and the curvature
problems. Obviously we can have also N > NT , but the previous scales, expanded
beyond our horizon are forgotten because unobservable. Finally, if we impose that
the scale R0 = 3000h≠1Mpc has always been inside the causal horizon, we obtain
the same number of e-folding of the previous resolutions (NT = 60).

2.7.3 The magnetic monopoles problem
The magnetic monopoles problem is due to the apparent absence of them in the
Universe: these have never been observed, therefore they should be present in
negligible quantities, while are predicted many more. In fact, magnetic monopoles are
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Figure 2.1. The inflation solves the horizon problem. All scales observables today, at
su�ciently early times, were smaller than the causal horizon and therefore causally
connected. With the inflation all scales are stretched outside the Hubble horizon and
re-enter at relatively recent times, [31].

topological defects, that form when a spherical symmetry is broken. These particles
are zero-dimensional (point-like) objects, and, first introduced in order to explain
the quantization of the electric charge in 1931 by Dirac, are important in cosmology
because are an unavoidable prediction of the Grand Unified Theories (GUT), due to
the spontaneous symmetry breaking of the SU(5) æ SU(3) ◊ SU(2) ◊ U(1).

The existence of these particles is cosmologically catastrophic: they are expected
to be supermassive

mM c2 ≥ EGUT ≥ 1012TeV, (2.106)

because are created in the GUT phase transition. Moreover, their number density
and energy density would be, respectively:

nM (tGUT ) ≥ 1
(2ctGUT )3 ≥ 1082m≠3, (2.107)

and

‘M (tGUT ) ≥ (mM c2)nM ≥ 1094TeV m≠3. (2.108)

Therefore, their presence would produce an evolution of the Universe that contradicts
the observational data that we have, anticipating the matter-to-radiation equality.
Inflation could solve this puzzle diluting the monopoles during the accelerated
expansion phase, at a point that they cannot be observed today, because are
expected roughly one per horizon volume.
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2.7.4 The Inflaton dynamics
As we have seen, the problem of the standard cosmological model can be solved
in a simple and elegant way, taking an exponentially accelerated expansion of the
Universe, driven by a physical component with an equation of state (1.19) with
w < ≠1/3. We have to explain what is this physical component and how after
NT = 60 e-foldings we can come back to the radiation dominated evolution, i.e. if
the mathematical solution corresponds to a physical process.

Particle physics showed the existence of scalar fields, such as the Higgs boson,
see Ref. [32, 33]. Inflation postulates the presence of one scalar field, the Inflaton „I ,
that leads an exponential growth of the Universe in an epoch in which its vacuum
energy was the dominant component. The potential energy V („I , T ) of „I is assumed
to vary with the temperature, as in the Figure 2.2. For the temperature T > Tc

the absolute minimum of the energy will be stable and in „I = 0, while when the
temperature falls below T < Tc two minima degenerate are formed in „I ”= 0. The
result is that the point „I = 0 becomes unstable, or of false vacuum, while these new
minima are of true vacuum. When the field „I rolls down towards a new minimum,
produces a spontaneous symmetry breaking, causing the accelerated expansion of
the Universe.

Figure 2.2. Example of a potential energy V („
I

, T ) as a function of „
I

. For temperature
T > T

c

the absolute minimum of the energy will be stable and in „
I

= 0, when the
temperature falls below T < T

c

we have a spontaneous symmetry breaking and two
minima degenerate are formed in „

I

”= 0, [34].

The dynamics of inflation, with a scalar field minimally coupled to the gravity,
is described by the following action, see Ref. [31]:

S =
⁄

d4x
Ô≠gL„I

, (2.109)

with g © Det(gµ‹) and L„I
the Lagrangian:

L„I
= 1

2gµ‹ˆµ„Iˆ‹„I ≠ V („I , T ). (2.110)
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The energy-momentum tensor will be:

Tµ‹ = ˆµˆ‹„I ≠ gµ‹

31
2ˆ‡„Iˆ‡„I + V („I , T )

4
, (2.111)

that for a homogeneous and isotropic geometry, takes the perfect fluid form, with
energy density fl and pressure P :

fl„I
= 1

2 „̇2
I + V („I , T ) (2.112)

P„I
= 1

2 „̇2
I ≠ V („I , T ). (2.113)

The resulting equation of state will be:

w„I
© P„I

fl„I

=
1
2 „̇2

I ≠ V („I , T )
1
2 „̇2

I + V („I , T )
(2.114)

which shows that a scalar field can lead to accelerated expansion with w„I
< ≠1/3

if the potential energy V („I , T ) dominates over the kinetic terms „̇2
I .

We can derive the equation of the motion of the scalar field „I :

d

dt

ˆ
!
L„I

a3"

ˆ„̇I

≠ ˆ
!
L„I

a3"

ˆ„I
= 0, (2.115)

„̈I + 3H„̇I + ˆV („I)
ˆ„I

= 0. (2.116)

In this equation the second term 3H is a term of viscosity due to the expansion of
the Universe and the third ≠ˆV („I)/ˆ„I is a forcing term.

If we consider a potential V („I , T ) ≥ const during the inflationary epoch, see
Fig. 2.3, we obtain the slow-roll conditions, that are necessary but not su�cient for
inflation:

„̇2
I π V („I), (2.117)

---„̈I

--- π
----
ˆV

ˆ„I

---- , 3H„̇I . (2.118)

We can rewrite the first (1.16) and the second (1.18) Friedmann equations, using
the fl„I

and the P„I
given by the eq. (2.112) and (2.113):

H2 = 8fi

3m2
P l
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2 „̇2

I + V („I)
6

, (2.119)

3
ä

a

4
= 8fi

3m2
P l

Ë
≠„̇2

I + V („I)
È

, (2.120)

where we used mP l = G≠1/2. In order to compute the scale factor evolution, we
consider the slow-rolling approximation in the eq. (2.119):

3
ȧ

a

42
= 8fi

3m2
P l

V („I), (2.121)
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reheating

Figure 2.3. Example of a possible Inflaton potential energy V („
I

, T ) as a function of the
field „

I

. The accelerated expansion occurs when the potential energy V („
I

, T ), that is
maintained constant during the inflation, dominates over its kinetic energy „̇2

I

, and ends
when this condition is no longer valid, because the kinetic terms grows. At reheating
phase, the energy density of the Inflaton is converted into radiation and allows to create
the Standard Model particles, [31].

from which we obtain the exponentially accelerated expansion:

a Ã et/· , (2.122)

where · is equal to:

· =
A

3m2
P l

8fiV („I)

B1/2

≥ 10≠34s, (2.123)

in the typical model. We have that · ≥ H≠1 ≥ const with time during all the
inflationary period. Moreover, we can calculate the number of e-folding (2.89) in
the range (ti, tf ) in the following way:

N = log
a (tf )
a (ti)

ƒ ≠ 8fi

m2
P l

⁄ „i,f

„i,i

3
dlogV („I)

d„I

4≠1
d„I . (2.124)

Finally, we can rewrite the eq. (2.115) under these slow-rolling assumptions:

„̇I ƒ ≠ 1
3H

ˆV

ˆ„I
. (2.125)

We introduce the slow-roll parameters ‘ and ÷ to quantify the inflationary
dynamics:

‘ © ≠ Ḣ

H2 ƒ m2
P l

16fi

3
V Õ

V

42
, (2.126)
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÷ © ≠ „̈I

H„̇I

ƒ m2
P l

8fi

C3
V ÕÕ

V

4
≠ 1

2

3
V Õ

V

42D

, (2.127)

that have to satisfy the conditions:

‘ π 1 (2.128)

|÷| π 1 (2.129)

that are equivalent to the previous conditions (2.117) and (2.118). In particular they
guarantee that inflation occurs when the potential energy V („I , T ), that is nearly
constant, dominates over its kinetic energy „̇2

I . Inflation ends when the Inflaton
field „I reaches the true vacuum, in the minimum of the potential energy. In fact at
this point, a very large quantity of energy is converted from potential into kinetic,
which grows until the slow-roll conditions are no longer valid. At this point „I

starts to oscillate around the minimum, and the energy density of the Inflaton is
converted into radiation through its decay, allowing particles creation (see Ref. [35]).
This phase is called reheating, since the interactions between the decay products
of the Inflaton heat the temperature of the Universe, after the supercooling of the
inflationary epoch. At the end of Inflation the epoch of radiation domination starts.

In order to solve the standard cosmological model problems, the plateau of the
potential energy V („I , T ) in the Fig. 2.3 has to be enough long to guarantee the
right number of e-folding:

N ≥ Hi
„i,0

„̇I

≥
3

V Õ

V0

4≠1
„i,0 Ø 60, (2.130)

where we defined V („I = 0) = V0 the value of the potential on the plateau, di�erent
from the Vmin = 0 that is the value of the potential at the true vacuum „i,0.

2.8 Primordial perturbations

The homogeneous scalar field „I considered so far, can have, for the Heisenberg
uncertainty principle, random Gaussian quantum-mechanical fluctuations, with zero
mean and a variance di�erent from zero, that are stretched on cosmological scales
by the inflationary process. The same behaviour have the quantum fluctuations of
the metric that can be both tensor and scalar4. Those scalar fluctuations will be
the seeds of the inhomogeneities and the structures we see today in the Universe,
while those tensor fluctuations will generate a primordial background of gravitational
waves. During the superluminal expansion of the Universe the quantum fluctuations
on small scales are amplified on scales much larger than the horizon size, where are
then frozen. The evolution of the fluctuation of a given scale depends wheter its
re-entry in the causal horizon happens before or after the equivalence epoch, i.e.
if the Universe is matter or radiation dominated. In any way, while the density

4The vector perturbations are not predicted in the standard cosmological model.
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fluctuations start to oscillate or grow depending on their nature entering into the
horizon, the tensor perturbations dissipate.

The scalar field „I , so far only function of time, in case of perturbations depends
also on the position:

„I(x, t) = „(0)
I (t) + ”„I(x, t). (2.131)

In the linear perturbation theory, every scale of a physical perturbation ⁄ corresponds
to a mode k = a/⁄ of the Fourier expansion of the inhomogeneous field ”„I :

”„I,k =
⁄

”„Ie≠ik̨·x̨d3x̨. (2.132)

The perturbation has to be compared with the Hubble horizon H≠1. We have that
the scale k < aH is out of the horizon, k > aH is inside the horizon and k ≥ aH is
at horizon crossing.

For the statistics of the perturbations, as we will see in the next section 3.1, we
can define the power spectrum P”a of any perturbed quantity a = a0 + ”a using the
eq. (3.6). Here, in order to define a dimensionless power spectrum P”„I

, we use the
following relationship:

e
”„ú

I

1
k̨

2
”„I

1
k̨Õ

2f
=

32fi

k

43
”3

Dirac(k̨ ≠ k̨Õ)P”„I
(k), (2.133)

where the ”3
Dirac guarantees the independence of the several modes, and the k≠3 to be

dimensionless instead of to have the dimension of a [length]3. We can demonstrate
that the initial conditions of the metric scalar perturbations are related to the
perturbations of the scalar field „I , when coming out from the horizon are frozen.
The relationship converting the power spectrum of the scalar field fluctuations ”„I ,
at horizon crossing, in the final scalar power spectrum of the metric perturbations
PS is given by (see Ref. [13]):

PS(k) =

S

U4
9

A
aH

„̇(0)
I

B2

P”„I
(k)

T

V

k=aH

. (2.134)

We can calculate, following Ref. [13], the power spectra, PT and PS , using quantum
field theory for the tensor and the scalar perturbations, that we express as a function
of the slow-roll parameter ‘, obtaining:

PS(k) =
C

8fi

9
H2

‘m2
P l

D

k=aH

, (2.135)

PT (k) =
C

8fi
H2

m2
P l

D

k=aH

. (2.136)

The power spectra are not calculated for a fixed time, but for the time of horizon
crossing, that is di�erent for each scale k. We can define the scalar nS and the
tensor nT spectral indices as:

PS(k) = AS

3
k

kS0

4nS≠1
, (2.137)
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PT (k) = AT

3
k

kT 0

4nT

, (2.138)

(with kS0 = kT 0 = aH) to quantify the deviations from scale-invariance. The
power spectrum is defined scale invariant if each mode k has the same amplitude in
horizon crossing, i.e. if the di�erent scales have the same power. We have Harrison-
Zel’dovich-Peebles scale invariant spectra5 when nS = 1 and nT = 0. These are the
appropriate values, if H = const during all the inflationary period. However, since
Inflation is a dynamical process that ends at certain point, we expect spectra to
be "nearly" scale-invariant. It is possible to demonstrate that we can rewrite the
spectral indices as a function of the slow-roll parameters in this way:

nS = 1 ≠ 4‘ + 2÷, (2.139)

nT = ≠2‘. (2.140)

Moreover, if H is not totally constant, because V („) slowly varies, then nS is not
perfectly one. We can introduce the running of the spectral indices –S,T :

–S,T = dnS,T

dlogk
, (2.141)

that express the variation of the spectral indices with the scale k.
Another observable quantity is r, the ratio between the tensor and the scalar

spectra, that can be expressed as a function of the slow-roll parameters:

r © PT

PS
= 16‘, (2.142)

Using the eq. (2.140), we can then derive the consistency relation of Inflation:

nT ƒ ≠2‘ = ≠r

8 , (2.143)

that needs to be satisfied if the slow-roll condition is valid.
Finally, we can rewrite the inflationary potential through its Taylor expansion,

obtaining the following relationships:

PS(k) ≥
A

V 3

m6
P l(V Õ)2

B

k=aH

, (2.144)

PT (k) ≥
A

V

m4
P l

B

k=aH

. (2.145)

We can therefore see that by constraining the inflationary parameters nS , nT ,
r, –S and –T , we can reconstruct the inflationary potential: PT æ V , PS æ V Õ,
nS æ V ÕÕ and –S æ V ÕÕÕ.

5By defining the power spectrum using the eq. (3.6), the scale-invariance condition will be
reached when k3P is constant, i.e. does not depend on k.
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Chapter 3

The Cosmic Microwave
Background

3.1 The statistic of perturbations

Taken the density field fl(x̨, ·), we can separate the homogeneous term fl(·) from
the perturbed term ”(x̨, ·) = ”fl/fl:

fl(x̨, ·) = fl(·) (1 + ”(x̨, ·)) , (3.1)

where the ”fl is the di�erence respect to the homogeneous term.
To study the inhomogeneities of a given field means to study the functions ”(x̨, ·)

that are random fields. Since is not possible to find a specific measurement of random
variables in infinite-dimensional vector spaces, the fields are defined specifying the
joint probability distribution for n points. If the random fields are homogeneous and
isotropic, we will have that the one-point distribution doesn’t depend on the position,
while two-points distribution depends only on the scalar quantity x © |x̨1 ≠ x̨2|,
where x1 and x2 are the coordinates of the two points. The ergodic theorem for a
Gaussian stochastic field guarantees that the average of ensemble can be regarded
as a spatial average, see Ref. [36], so:

È” (x̨1)Í = lim
RæŒ

3
4fiR3

⁄

|x̨|<R
”(x̨)d3x̨, (3.2)

where R is the radius of the sphere. Moreover, Gaussianity plus ergodicity implies
that the mean value is È” (x̨)Í = 0. In this case, in order to totally define the
field distribution function, is su�cient to know the covariance matrix Cmn of the
perturbation field taken in two di�erent directions.

If we define the correlation function:

›(x) = È” (x̨1) ” (x̨2)Í , (3.3)

this specifies completely the Gaussian random field, because we have:

Cmn © È” (x̨m) ” (x̨n)Í = › (|x̨m ≠ x̨n|) . (3.4)
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We have seen that in Fourier space the several modes evolve in an indipendent
way. Thus, given the Fourier transform of the field ”(x̨)

”(k̨) =
⁄

”(x̨)e≠ik̨·x̨d3x̨ (3.5)

we can define the power spectrum of the perturbation P (k) as
e
”ú

1
k̨

2
”

1
k̨Õ

2f
= (2fi)3”3

Dirac(k̨ ≠ k̨Õ)P (k), (3.6)

with ”ú(k̨) the complex conjugate. The Wiener-Khintchine theorem states that the
autocorrelation function of a random variable and the power spectrum are Fourier
transform pair:

›(x) = 1
(2fi)3

⁄
P (k)e≠ik̨·x̨d3k̨ (3.7)

In order to study the CMB anisotropies in the next section, we introduce a
system of spherical coordinates in which we are in the origin, and we project the ”
of the three-dimensional space R3 into the � of the two-dimensional surface of the
sphere S2. We then expand the �(◊, „) in spherical harmonics Ylm(◊, „):

�(◊, „) =
Œÿ

l=0

lÿ

m=≠l

almYlm(◊, „), (3.8)

with

Ylm(◊, „) =
Û

(2l + 1)(l ≠ m)!
4fi(l + m)! P m

l (cos◊)ei„, (3.9)

where Pl are the Legendre polynomials. The coe�cients alm are given by:

alm =
⁄

Y ú
lm(◊, „)�(◊, „)d�. (3.10)

In analogy with the three-dimensional case, we define the angular correlation
function c(◊) between two direction in the sky n̂ an n̂Õ:

c(◊) =
+
�(n̂)�(n̂Õ)

,
, (3.11)

and n̂ · n̂Õ = cos◊, and the angular power spectrum Cl:

Èaú
lmalÕmÕÍ = ”llÕ”mmÕCl, (3.12)

that are a Legendre transform pair:

c(◊) = 1
4fi

Œÿ

l=0
(2l + 1)ClPl(cos◊). (3.13)

We can rewrite the coe�cients Cl as:

Cl = 1
(≠1)l

⁄ 1

≠1

dcos◊

2 Pl(cos◊)�(cos◊) (3.14)
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that can be measured experimentally. Given a theoretical model, we can always
compare the theoretically computed Cl with those observed. Considering that in a
two-dimensional space the field is not ergodic, the average of ensemble is not equal
to the spatial average, then the mean value measured is not exact: we can quantify
the statistical error �Cl through the cosmic variance:

�C2
l = 2

2l + 1C2
l . (3.15)

The cosmic variance is an intrinsic limit, un unavoidable source of uncertainty, to
the accurate estimate of the power spectrum, and consequently of the cosmological
parameters, due to the stochastic nature of the problem. Observing only one
realization of the Universe, we have not su�cient samples to the very large scales.
This sampling uncertainty takes into account that each Cl is ‰2 distributed with
(2l + 1) degrees of freedom for our observable volume of Universe. Also an ideal
experiment is subjected to this limit. Moreover, considered a possible partial sky
coverage, the cosmic variance is increased by a factor 1/fsky, where fsky is the
fraction of the sky sampled:

�C2
l = 2

fsky(2l + 1)C2
l , (3.16)

and, in this case, the modes become partially correlated.

3.2 The CMB angular power spectrum

The temperature anisotropies of the CMB can be studied through the linear pertur-
bation theory. Assuming that is the inflation the physical process that generates
the fluctuations, we can consider them adiabatic and Gaussian. The field of the
temperature fluctuations on the celestial sphere can be studied through the expansion
in spherical harmonics, as explained in the previous section. We have:

�T

T
(◊, „) =

Œÿ

l=1

lÿ

m=≠l

almYlm(◊, „), (3.17)

with the coe�cients

alm =
⁄

Y ú
lm(◊, „)�T

T
(◊, „)d� (3.18)

statistically independent and Gaussian distributed that, containing all the infor-
mation about the temperature fluctuations, weighting the contributions of each
spherical harmonic. The expected value for the mean is

ÈalmÍ = 0, (3.19)

while the variance is given by

Èaú
lmalÕmÕÍ = ”llÕ”mmÕCl, (3.20)
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where the ensemble average is over infinite realizations of the Universe, or thanks to
the ergodic principle, over the directions of the sky. In multipole space the average
will be done over m, because in an isotropic Universe we expect that alm have the
same variance for each fixed value of l. The latter equation (3.20) defines the angular
power spectrum Cl for the Cosmic Microwave Background. The Cl’s no longer
depend on m, again because there are not preferred directions of the observation
in the sky. Moreover, the angular power spectrum and the two-point correlation
function are Legendre’s transform pair:

=�T

T
(“̂1)�T

T
(“̂2)

>
= 1

4fi

Œÿ

l=0
(2l + 1)ClPl(“̂1 · “̂2), (3.21)

where “̂ is the direction of the observation.
We have that an estimator for Cl is:

Ĉl =
e
|a2

lm|
f

= 1
2l + 1

ÿ

m

a2
lm, (3.22)

and its variance is the cosmic variance:

�Ĉ2
l = 2

2l + 1C2
l , (3.23)

higher at large scales, small l, than at small ones, and always increased by a factor
1/fsky when we have a partial sky coverage.

In fact the decomposition in multipoles l of the temperature field provides the
contribution of the temperature anisotropies to the CMB temperature fluctuations
on angular scales ◊ = 180¶/l. We have that the coe�cient a00 = 0 because the
monopole l = 0 is the average deviation (T ≠T0)/T0 all over the sky T0, that vanishes.
We have the dipole for l = 1, but the primordial dipole is obscured by the dipole
term due to the peculiar motion of the Earth respect to the reference framework
where the CMB is isotropic . In fact we observe a Doppler e�ect on the CMB photon,
due to the resulting movement of the Earth around the Sun, added to that of the
Sun around the Galactic Center, that moves around the center of mass of the Local
Group, which goes towards the Virgo cluster. The result will be that in the direction
towards which we move, at about 371km/s, we have hotter photons than in the
opposite direction. Usually the dipole is removed from the CMB studies. Finally for
l = 2 we have the quadrupole term, from which we start to study the CMB (Figure
3.1).

3.3 Polarization

The temperature anisotropies that originate from the primordial fluctuations, are
polarized by the Thomson scattering o� free electrons. A combined analysis of
the polarization signal and of the temperature anisotropies allows to evaluate the
consinstency of the standard cosmological model: measuring the CMB polarization
increases the accuracy with which the cosmological parameters are measured. An
important characteristic is the possibility to discriminate, studying the shape of the
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Figure 3.1. The angular power spectrum of the Cosmic Microwave Background, where
D

l

= l(l + 1)C
l

/2fi, [5] .

polarization, between the several sources of the temperature anisotropies: scalar,
vector or tensor.

3.3.1 The Stokes parameters

We remind here some basic notion of electromagnetism. Given a electromagnetic
wave with frequency Ê0, the electric field propagating parallel to the axis ẑ has
components:

Ex = ax(t)cos [Ê0t + ◊x(t)] , (3.24)

Ey = ay(t)sin [Ê0t + ◊y(t)] , (3.25)

that are plane waves oscillating in the plane (x, y), with amplitudes ax,y(t) and phases
◊x,y(t) slowly varying with time1. We introduce the Stokes parameters through the
following time averages:

I ©
e
a2

x

f
+

e
a2

y

f
, (3.26)

Q ©
e
a2

x

f
≠

e
a2

y

f
, (3.27)

U © È2axaycos (◊x ≠ ◊y)Í , (3.28)
1A pure monochromatic and purely polarized wave has amplitude and phase constant with time.



50 3. The Cosmic Microwave Background

V © È2axaysin (◊x ≠ ◊y)Í . (3.29)

where I is the wave’s intensity, Q is the di�erence of intensity between the directions
x̂ and ŷ, U is the di�erence of intensity in a reference frame rotated of 45¶ (i.e. Q
and U are related to the linear polarization) and V is the di�erence of intensity
between left and right circular polarization.

While I and V are invariant under a change of coordinates, Q and U transform
in the following way under rotation of the reference frame of an angle „:

QÕ = Qcos(2„) + Usin(2„) (3.30)

U Õ = ≠Qsin(2„) + Ucos(2„) (3.31)

i.e. as the components of the polarization vector2:

VP = Qx̂ + Uŷ. (3.32)

We can introduce the polarization matrix, that is a tensor of rank 2 on the sphere,
as:

MP = 1
2 (‡0I + ‡xQ + ‡yU + ‡zV ) = 1

2

A
I ≠ Q U ≠ iV

U + iV I + Q

B

(3.33)

with ‡µ © (1, ‡i), where the ‡i are the Pauli matrices. This matrix has the right
property of transformation, which summarize the previous.

Moreover, we can introduce the polarization parameter P as:

P =


Q2 + U2 + V 2

I
(3.34)

that represents the percentage of polarized light respect to the total intentity, and
vary in the range [0, 1].

3.3.2 Thomson Scattering
The main process of interaction between matter and radiation is quantistically the
Compton scattering, when ~Ê ∫ mc2, or classically the Thomson scattering, when
~Ê π mc2. This latter correlates the temperature anisotropies and the polarization.

If the incident radiation is isotropic, then the outgoing radiation is non-polarized,
because for the symmetry of the process, the orthogonal directions of polarization
cancel each other. Otherwise, if the incident radiation shows a quadrupole component,
the Thomson scattering produce a linear polarization. The quadrupole moment of the
CMB originates between the photons-electrons decoupling and the recombination.

We consider a classical model in order to demonstrate that a quadrupole term in
the incident radiation produces an outcoming polarized light, as we can see in Ref.
[37]. The cross section of the Thomson scattering between an electromagnetic wave
and an electron is given by:

2This is not a proper vector because has not a versus.
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d‡

d� = 3‡T

8fi
|‘̂Õ · ‘̂|2, (3.35)

with ‡T the Thomson cross section and ‘̂Õ and ‘̂ the versors of the polarization
vectors (defined in the eq. (3.32)) of the incident and of the scattered waves in the
rest reference frame of the electron, as in the Fig. 3.2.

Figure 3.2. Thomson scattering between a photon and an electron, [37].

Named I Õ and I the intensities of the incident and scattered (along ẑ) waves, we
have I Õ

x = I Õ
y = I Õ/2. We introduce:

Ix = I + Q

2 , (3.36)

Iy = I ≠ Q

2 . (3.37)

We have:

Ix = 3‡T

8fi

5
I Õ

x

!
‘̂Õ
x · ‘̂x

"2 + I Õ
y

1
‘̂Õ
y · ‘̂x

22
6

= 3‡T

16fi
I Õ (3.38)

Iy = 3‡T

8fi

5
I Õ

x

!
‘̂Õ
x · ‘̂y

"2 + I Õ
y

1
‘̂Õ
y · ‘̂y

22
6

= 3‡T

16fi
I Õcos2◊, (3.39)

where ◊ is the angle between the propagation directions of the incident and the
scattered waves (see Figure 3.2). We can rewrite the Stokes parameters for the
scattered wave as:

I = Ix + Iy = 3‡T

16fi
I Õ

1
1 + cos2◊

2
, (3.40)

Q = Ix ≠ Iy = 3‡T

16fi
sin2◊, (3.41)

while in order to calculate U we use eq. (3.30) rotating the reference frame of an
angle fi/4, and considering the QÕ = U and U Õ = ≠Q. Then we have to integrate
over all the possible directions for the incident radiation:
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I = 3‡T

16fi

⁄
d�

1
1 + cos2◊

2
I Õ(◊, „) (3.42)

Q = 3‡T

16fi

⁄
d�sin2◊cos (2„) I Õ(◊, „) (3.43)

U = 3‡T

16fi

⁄
d�sin2◊sin (2„) I Õ(◊, „) (3.44)

while V is homogeneous and decoupled from other parameters. In fact solving
correctly the equations, we see that, if initially the incident wave is not circularly
polarized, it remains the same after the Thomson scattering. However can be
produced through other processes, such as the Bremsstrahlung.

The polarization of the outgoing radiation depends only on the intensity distri-
bution of the incident one. We can expand this quantity in spherical harmonics

I Õ(◊, „) =
ÿ

l,m

almYlm(◊, „), (3.45)

obtaining

I = 3‡T

16fi

58
3

Ô
fia00 + 4

3

Ú
fi

5 a20

6
(3.46)

Q = 3‡T

4fi

Ú
2fi

15 Re(a22) (3.47)

U = ≠3‡T

4fi

Ú
2fi

15 Im(a22). (3.48)

As we can see, there is polarization if we have a quadrupole term (Y22 ”= 0) in the
incident radiation intensity. Also considering a more complex model, with Compton
cross section and Boltzmann equations, we obtain the same conclusions.

3.3.3 E and B modes

Being Q and U dependent on the reference frame, these are not useful to study the
symmetries of the system. We follow Ref. [38] in order to derive the polarization
power spectra of the CMB. We introduce two independent combinations:

(Q ± iU)Õ(n̂) = eû2iÂ(Q ± iU)(n̂) (3.49)

that transform as spinors of spin ±2 under the rotation of an angle Â of the plane
orthogonal to n̂, that is the direction of observation. The expansion in the usual
spherical harmonics is valid for the spin 0. We can generalize the expansion in terms
of the spin s spherical harmonics sYlm(n̂) in this way:

(Q ± iU)(n̂) =
ÿ

l,m

a(±2)
lm [±2Ylm(n̂)] . (3.50)
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The spin s spherical harmonics satisfy the same conditions of orthonormality and
completeness of the spherical harmonics, but have the spin raising and lowering
operators g and ḡ:

(gf)Õ = e≠i(s+1)Âgsf (3.51)

(ḡf)Õ = e≠i(s+1)Âḡsf. (3.52)
Are valid these relationships:

Y
_]

_[
sYlm =

Ë
(l≠s)!
(l+s)!

È1/2
gsYlm, 0 Æ s Æ l

sYlm =
Ë

(l+s)!
(l≠s)!

È1/2
ḡ≠sYlm, ≠l Æ s Æ 0.

(3.53)

Then, by applying twice these operators to the eq. (3.50), we obtain

ḡ2(Q + iU)(n̂) =
ÿ

l,m

5(l + s)!
(l ≠ s)!

61/2
a(2)

lmYlm(n̂) (3.54)

g2(Q ≠ iU)(n̂) =
ÿ

l,m

5(l + s)!
(l ≠ s)!

61/2
a(≠2)

lm Ylm(n̂) (3.55)

that have spin 0, with coe�cients of expansion equal to

a(2)
lm =

5(l + s)!
(l ≠ s)!

6≠1/2 ⁄
d�Y ú

lm(n̂)ḡ2(Q + iU)(n̂) (3.56)

a(≠2)
lm =

5(l + s)!
(l ≠ s)!

6≠1/2 ⁄
d�Y ú

lm(n̂)g2(Q ≠ iU)(n̂). (3.57)

It is convenient to introduce their linear combinations a(E,B),lm:

aE,lm = ≠
Ë
a(2)

lm + a(≠2)
lm

È

2 (3.58)

aB,lm = i

Ë
a(2)

lm ≠ a(≠2)
lm

È

2 (3.59)

and to name â(E,B),lm:

â(E,B),lm =
5(l + s)!

(l ≠ s)!

61/2
a(E,B),lm. (3.60)

Finally we consider the two scalar and pseudoscalar quantities that describe the
polarization:

E(n̂) = ≠1
2

Ë
ḡ2(Q + iU) + g2(Q ≠ iU)

È
=

ÿ

l,m

âE,lmYlm(n̂) (3.61)

B(n̂) = i

2
Ë
ḡ2(Q + iU) ≠ g2(Q ≠ iU)

È
=

ÿ

l,m

âB,lmYlm(n̂) (3.62)
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that are invariant under rotations, but while E remains the same under parity, B
changes sign.

These represent the decomposition of the polarization tensor in a divergence free
term B and a curl free term E. In the Figure 3.3 we can see the patterns formed by
the polarization field around cold (blue) and hot (red) spots in the sky: the E mode
is invariant under reflexion, while the B mode changes pattern.

Figure 3.3. E and B modes polarization patterns, [39].

3.3.4 The polarization power spectra
For symmetry reasons, between temperature and polarization anisotropies we have
4 types of two-points correlation functions: the autocorrelations of the temperature
fluctuations and the E and B modes, named TT , EE and BB, and the cross-
correlation TE between the temperature fluctuations and the E mode, because TB
and EB are zero (opposite parity). The angular power spectra are defined as:

CXY
l © 1

2l + 1
ÿ

m

e
aX

lmaY
lm

f
, (3.63)

with X, Y = T, E, B. We can build the 3 ◊ 3 matrix of the spectra:
Q

ca
CT T

l CT E
l 0

CET
l CEE

l 0
0 0 CBB

l

R

db . (3.64)

Each of these spectra (Figure 3.4) has a di�erent dependence on the cosmological
parameters: by combining the measurements of the several spectra we can better
constrain the parameters, disciminating between the several cosmological models.

A CMB fluctuations map is a possible realization of a statistical ensemble, then
we can extract all the informations at the first order with the power spectrum.
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Figure 3.4. Temperature and polarization spectra, [40].

Indeed, in order to have a more detailed description, we can consider tools of higher
orders, such as the bispectrum (the three-points correlation functions that we will see
in the Section 3.7), that, however, are zero supposing total Gaussianity. The power
spectrum provides the anisotropies amplitude to the several angular resolution.
Temperature quadrupole, i.e. multipole l = 2, can be produced both by scalar
perturbations and by tensor perturbations. We have that:

• Scalar perturbations (density) produce only E modes;

• Vector perturbations (vorticity) produce only B modes;

• Tensor perturbations (gravitational waves) produce both E and B modes.

About the 10% of the CMB radiation is polarized. In order to study the CMB
polarization we have to note that the B mode has two di�erent contributions: the
first one is due to the gravitational waves produced in the primordial Universe,
the second one is due to the gravitational lensing that mix the E modes and the
B modes, converting the E modes in the B modes. To detect the primordial B
modes allows to study the tensor modes, so the inflationary models. The primordial
contribution can be dominant for angular scales smaller than 2¶, as we can see in
Figure 3.4, but its amplitude depends on the unknown energy scale with which are
generated the gravitational waves in a primordial phase, and could be too small to
be detected. Instead, the B modes due to the gravitational lensing are detectable at
smaller angular scales and contain informations related to the other cosmological
parameters, such as dark matter, dark energy or spatial curvature.
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In the Figure 3.4 we can see, moreover, that the peaks of the temperature power
spectrum and EE polarization are out of phase of fi/2. Moreover, the EE and BB
spectra are dominated to the large scales, i.e. l Æ 10, from the reionization signal.
It is important to note that the position and the height of the reionization peak
in the CMB polarization spectra are fundamental to determine the optical depth
to reionization · , as defined in the eq. (3.76). This parameter suppress the peaks
amplitude in the polarization and temperature spectra, but in the latter its e�ect is
completely degenerate with other parameters.

3.4 Primary anisotropies
The CMB photons temperature is a�ected by the imprints of the previous coupling of
the photons with other fields, such as gravity, density and velocity. The anisotropies
that originate on the last scattering surface, are called primary and are from three
processes independent of the frequency:

• The Sachs-Wolfe e�ect, due to the gravitational potential fluctuations present
on the last scattering surface, for which photons are redshifted coming out
from a potential well (� < 0), and viceversa (Sachs and Wolfe 1967 in Ref.
[41]);

• The e�ect due to the intrinsic adiabatic fluctuations of the photon plus baryon
fluid, for which photons di�using from over-dense regions (”b > 0) are hotter,
and viceversa (Silk 1968 in Ref. [42]);

• The Doppler e�ect, due to the bulk motion, i.e. the peculiar velocity, during
decoupling of the di�erent regions of the last scattering surface, for which
photons emerging from regions that move in opposite direction to the observer
(vb > 0) are redshifted, and viceversa (Sunyaev and Zel’dovich 1970 in Ref.
[43]).

Primary temperature fluctuation is simply given by the linear sum of the previous
three contributions:

�T

T
(n̂) = [� + � + n̂ · v̨b]t=tLS

(3.65)

where � © �T/T = ”b/3, tLS is the time of the last scattering, and n̂ the direction
of observation. So, the measured mean squared temperature fluctuations is:

K3�T

T

42L

= (� + �)2 + (n̂ · v̨b)2 . (3.66)

We can identify three di�erent regions on the angular power spectrum (Figure 3.5),
that refer to the temperature fluctuations behavior as a function of the di�erent
scales, or multipoles l:

• 2 Æ l < 100, the Sachs-Wolfe plateau;

• 100 Æ l < 800, the acoustic waves or the Doppler peaks;

• l Ø 800, the damping tail.
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Figure 3.5. The regions of the angular power spectrum: the ISW Rise (secondary e�ect);
Sachs-Wolfe Plateau; Acoustic Peaks; and Damping Tail, [44].

3.4.1 The Sachs-Wolfe plateau
We have the Sachs-Wolfe plateau on scales greater than the horizon at decoupling,
that correspond to the angular scales greater than 2¶, and is due to the combined
e�ect of gravity and density fluctuations.

As we said, photons coming out from the potential wells are redshifted, while those
from the potential peaks blueshifted. Named Â the fluctuation of the gravitational
potential �, we have

3
”T

T

4

g
= ”�

� = ≠ |Â|
c2 . (3.67)

On the contrary, photons di�using from over-dense regions, that are hotter, will be
blueshifted and from sub-dense regions redshifted. Remembering that fl Ã ⁄≠3 and
T Ã ⁄≠1, we have

3
”T

T

4

d
= 1

3
”flb

flb
= 1

3”b. (3.68)

From the Newtonian limit of the metric in General Relativity, we know that

”b = 2 |Â|
c2 , (3.69)

then
3

”T

T

4

d
= 2

3
|Â|
c2 . (3.70)
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Being the over-dense regions also potential wells, thanks to the adiabaticity of the
perturbation, the total temperature fluctuation will be

”T

T
=

3
”T

T

4

d
+

3
”T

T

4

g
= ≠1

3
|Â|
c2 , (3.71)

in favor of the gravity.

3.4.2 The Doppler peaks

We have acoustic waves, or Doppler peaks, on angular scales between 0.1¶ and 2¶,
for the combined e�ect of the (� + �) and the Doppler terms.

The coupled fluid of baryons and photons falls into the potential wells of the
dark matter, that, thanks a negligible Jeans length, are formed before. However
in the falling, the fluid becomes over-dense and the radiation pressure grows until
rejects it out. This process can be well described by a harmonic oscillator, see the
Figure 3.6.

Figure 3.6. The fluid of baryons and photons coupled adiabatically falls into the potential
wells of the dark matter, supported by the radiation pressure that reject it out. This
process can be well described from a harmonic oscillator. Without baryons (a), we do
not have the acoustic wave because the two contribution of density and velocity of the
fluid cancel each other. Otherwise the baryon-drag (b) produce the acoustic peaks, [45].

The dynamics of a fluid of density fl, velocity v̨ and pressure P , is governed by
the continuity equation (2.73), the Euler equation (2.74) and the Poisson equation
(2.75). In tight-coupling approximation, i.e. for the simultaneity of decoupling and
recombination, the dynamics of the fluid depends on the only variable � © �T/T =
”b/3. We can write the solution for a single mode k in Fourier space of the previous
equations, as a harmonic oscillator with a forcing term independent of time:
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�(t) = ≠(1 + R)� + B1cos(kcst) + B2sin(kcst), (3.72)
where R © (3flb)/(4fl“) is time independent, B1 and B2 are coe�cients fixed by the
initial condition and cs = c/


3(1 + R)1/2 is the sound speed in the medium. All

the scales into the horizon, represented by the several Fourier modes, are described
as acoustic waves that propagate with the same velocity cs: at the recombination
epoch the smallest scales have done the higher number of oscillations.

If in the harmonic oscillator model, eq. (3.72), we take R = 0 (and cs = c/
Ô

3),
i.e. we ignore the baryonic contribution, and we assume an adiabatic perturbation,
we can separate the contribution due to the ” field from the one due to the Doppler
e�ect. Initially, neglecting the Doppler e�ect, we obtain:

�(t) = ≠� + 1
3�cos(kcst). (3.73)

The (�+�) term has a cosinusoidal oscillation with peaks for kcstLS integer multiple
of fi. This means that a single scale which has done half-oscillation at recombination,
is in the maximum compression when is in the potential wells, and in the maximum
rarefaction on the peaks. This scale produce the highest �T/T , and the first
peak of the CMB power spectrum, due to the ” contribution. Moreover, the scale
corresponding to the half of the previous scale, has done a complete oscillation at
recombination, and is in the maximum compression on the potential peaks, and in
the maximum rarefaction in the wells. This latter scale corresponds to the second
acoustic peak of the CMB power spectrum, due to the ” contribution. In conclusion,
the odd acoustic peaks, of the CMB power spectrum, correspond to the maximum
compression in the potential wells, and the even acoustic peaks to the maximum
compression on the potential peaks.

Instead, if we consider only the Doppler e�ect, we have:
5�T

T

6

Doppler
= i

3�sin(kcst), (3.74)

out of phase by fi/2 respect to the contribution due to the ” field. Ignoring the
baryonic contribution (R = 0), the two e�ects, that have the same amplitude and are
summed in quadrature, cancel each other producing the cancellation of the acoustic
waves (upper right plot of the Figure 3.6). In other words, is constant the sum of
the kinetic energy, due to the velocity of the fluid, and the potential energy, due
to the compression. Indeed, thanks to the R > 0 (and cs < c/

Ô
3) the cosinusoidal

oscillations, due to the density and gravity terms, are larger than those sinusoidal,
due to the Doppler e�ect, because baryons contribute in a non-negligible way to the
deep of the potential wells. We have:

�(t) = 1
3(1 + 3R)�cos(kcst) ≠ (1 + R)�. (3.75)

In this case, since the amplitude of the peaks depends on the baryon density, increas-
ing R corresponds to increasing the odd peaks respect to the even. Therefore, the
sum in quadrature of the temperature fluctuations is no longer constant, producing
the acoustic peaks (lower right plot of the Figure 3.6). The baryon-drag moves the
energy balance in favor of the energy potential.
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3.5 Secondary anisotropies

The secondary anisotropies originate after recombination, during the travel of the
photons from the last scattering surface to the observer (0 Æ z Æ 103). The physical
processes producing these secondary anisotropies are of two kind. The first ones
we have are those due to the interactions with the gravitational potential between
recombination and today (Figure 3.7):

• Integrated Sachs-Wolfe e�ect (ISW), early and late;

• Rees-Sciama e�ect (RS);

• Gravitational Weak Lensing (WL).

The second ones we have are those due to the scattering with the free electrons
(Figure 3.8). In fact, the Universe between 6 < z < 100 passes through the phase of
reionization and the photons of the CMB will be again a�ected from the baryons
velocity and overdensity, erasing the old or producing new temperature anisotropies.
These are:

• Sunyaev-Zel’dovich e�ect (SZ), thermal and kinetic;

• Ostriker-Vishniac e�ect (OV);

• Reionization.

Figure 3.7. Power spectrum of the secondary anisotropies due to the interactions with the
gravitational potential, [46].
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Figure 3.8. Power spectrum of the secondary anisotropies due to the scattering with the
free electrons, [47].

3.5.1 Integrated Sachs-Wolfe e�ect

The Integrated Sachs-Wolfe, see Ref. [41], is the e�ect for which photons are
gravitationally redshifted, or blueshifted, crossing a varying with time gravitational
potential (Â̇ ”= 0). The di�erence respect to the primary SW e�ect is that, instead
of occurring at the last scattering surface, is integrated along the photon’s path
between the last scattering surface and the observer.

If in the time between the photon falling in and coming out from a potential
well, this latter changes with time, the di�erence between the photon blueshift
and redshift, crossing the potential well, can produce a net change of its energy.
If the Universe is matter dominated, the spatial curvature is negligible, and the
linear perturbation theory is valid, the ISW e�ect is zero, because in this case Â is
constant with time. In a realistic cosmological model the matter radiation equality
occurs no long before the last scattering, so, during this and shortly afterwards, the
matter dominated approximation is not completely correct. Then, we can distinguish
(Figure 3.9) the Early ISW, that occurs immediately after the photons decoupling,
when matter does not completely dominate over radiation, and the Late ISW, that
arise quite recently, when the dark energy, or the cosmological constant, starts
to dominate the Universe expansion, changing the gravitational potential. The
gravitational potential produces anisotropies only if the scale k≠1 of the perturbation
is comparable to the time scale of its decay. Otherwise, if the wavelength is much
shorter, it crosses many overdensities and underdensities, and the contributions of
the di�erent ISW terms cancel with each other. The ISW a�ects the CMB angular
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power spectrum for l Æ 200, being the time scale for the potential decay about of
order of the horizon size at last scattering.

Figure 3.9. Secondary anisotropies: di�erence between Early ISW and Late ISW, [45].

3.5.2 Rees-Sciama e�ect

The Rees-Sciama e�ect, see Ref. [48], is a ISW e�ect due to the non-linear growth
with time of the gravitational potential from the collapse of structures at very late
times. This e�ect is smaller than the primary anisotropies of about two order of
magnitude, as we can see in Figure 3.7, and its relevant angular scale is of 5 ≠ 10
arcminutes, i.e. that one of galaxy clusters and superclusters.

3.5.3 Gravitational Weak Lensing

The structures present a large scales, beside producing secondary anisotropies, distort
the primary through gravitational lensing. If a pair of photons moves towards the
observer, forming initially an angle ◊ between their directions of propagation, for
the lensing e�ect the observer will see an angle ◊ + ”◊, where ”◊ is the distorsion of
light (few arcmin). This distorsion is called Weak Lensing e�ect, see Ref. [49], and
the result is the smearing of the oscillations of the CMB angular power spectrum at
small scale.

3.5.4 Sunyaev-Zel’dovich e�ect

The Sunyaev-Zel’dovich e�ect, see Ref. [43], is due to the inverse Compton3 scattering
of the low energy CMB photons with the high energy free electrons of the hot ionized
gas in a cluster of galaxies. This e�ect a�ects the small angular scales, is frequency
dependent and can be divided in:

3In the rest reference frame of the relativistic particle, we can see the inverse Compton scattering
as Thomson scattering.
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• Thermal: photons, crossing the cluster, are scattered by the random motion of
free electrons, from which receive energy, deforming the black body spectrum:
we have a temperature reduction for the lowest frequencies (Rayleigh-Jeans
part) and an increase for the highest (Wien part);

• Kinetic: photons have a preferred direction of Thomson scattering, due to the
bulk motion with a peculiar velocity of the hot ionized gas with a cluster at
low redshift, and they will be redshifted or blueshifted for the Doppler e�ect,
without to distort the power spectrum.

3.5.5 Ostriker-Vishniac e�ect
The Ostriker-Vishniac e�ect, see Ref. [50], is a kinetic SZ e�ect, due to the photons
scattering o� ionized regions or clouds with bulk peculiar velocities at high redshift.
This e�ect generate temperature fluctuations on angular scale of order of 1 arcmin,
when we consider the second order perturbation theory for small inhomogeneities,
while at the first order vanishes.

3.5.6 Reionization
The Universe at late time reionized and again CMB photons scattered o� free
electrons, reaching the observer from a di�erent direction respect to the initial one.
Reionization is demonstrated by the absorption spectra of high redshift quasar, but
the sources that produce it are still discussed. This CMB photons mixing occurs
at angular scale smaller than the horizon size at the time of reionization, then the
angular scales increases as the redshift of the scattering decreases. However this
process is contrasted by the free electrons density reduction that corresponds to
the decrease of the probability that this scattering happens. The final e�ect is a
decrease of the power in the spectra for l > 10, while the power at large scales
remains unchanged. The power spectrum is suppressed by a factor e2· , where · is

· =
⁄ ÷

0

÷reion

d÷ne‡T a (3.76)

the optical depth to reionization, ÷reion is the conformal time at reionization, ne the
electrons number density and ‡T the cross section of the Thomson scattering.

The parameter · suppress the peaks amplitude in the temperature power spec-
trum, but its e�ect is completely degenerate with other cosmological parameters.
On the contrary, the reionization signal dominates the position and the height of
the peaks in the polarization spectra to the large scale l Æ 10, allowing to better
constrain · .

3.5.7 The visibility function
So far we considered an istantaneous last scattering surface at z = 1100, that
means the contemporaneity of recombination and decoupling. Indeed this has a
thickness, that we can describe through a visibility function g(z), which depends on
the probability of having the last scattering increasing the fraction of free electrons
Xe with time. We can write:
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g(z) = e≠Ÿ ‡T Xene

1 + z
, (3.77)

with Ÿ the optical depth of the last scattering surface:

Ÿ =
⁄ ÷

0

÷
d÷Õne‡T a. (3.78)

The temperature fluctuations will be modulated from the visibility function in this
way:

�T

T
(n̂) =

⁄ Œ

0

Ë
g(z) (� + � + n̂ · v̨b) + e≠· H≠1�̇

È
dz, (3.79)

where
s Œ

0

1
e≠· H≠1�̇

2
dz is the ISW e�ect.

In conclusion, we can calculate the CMB angular power spectrum fixing a model
of Universe through the values of its parameters, and following in this scenario the
evolution of the photons distribution function, obtained integrating the Boltzmann
equations (2.61). Changing the model, the shape of the theoretical spectrum is
modified (Figure 3.10).

Figure 3.10. Parameter sensitivity of the CMB angular power spectrum, to vary of
perturbations, [45].

The angular power spectrum depends mainly on some cosmological parameters,
see Ref. [51]:
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• �0, because, decreasing, reduces the angular scale of a given physical scale,
changing the curvature of the Universe, and shifts the peaks towards higher l;

• H0, that, decreasing, increases the last scattering surface distance, delaying
the matter to radiation equivalence, and shifts the peaks towards higher l;

• �bh2, that is Ã R: if �b = 0 there is not baryon-drag and acoustic peaks, but
growing �b ”= 0 increases the gravitational potential, enhancing the amplitude
of the odd peaks respect to the even;

• �, that, growing, increases the last scattering surface distance, accelerating
the Universe expansion, so the Late ISW e�ect enhances the power of the
spectrum for l æ 0;

• nS , the tilt of the primordial power spectrum that, increasing, enhances the
slope, therefore the power, of the angular power spectrum at smaller angular
scales (higher l).

3.6 The matter power spectrum
As discussed, the large scale modes evolve very much di�erently than the small scale
modes, depending on the time of the horizon crossing, before or after the matter-to-
radiation equivalence. We have that the amplitude of the matter perturbation is
constant out of the horizon, and, within the horizon, grows logarithmically during
the radiation domination and linearly with the scale factor a during the matter
domination. However, all the modes evolve in the same way at the late time, and in
this epoch we can study the distribution of the matter.

When perturbations evolve in the matter dominated Universe within the horizon,
we can factorize their dependences on the scale k and the scale factor a, see Ref. [13].
We name these two factors, independent each other, respectively Transfer function
T (k), which describes the evolution of perturbations depending on their dimension:

T (k) © „(k, alate)
„Large≠Scale(k, alate) , (3.80)

valid for a ∫ alate that is taken in a very late time, and Growth function D(a):

D(a) = a
„(a)

„(alate) . (3.81)

The primordial potential decreased by a small amount on large scales, as we can
see in Ref. [13], then we have „Large≠Scale(k, alate) = (9/10)„P (k̨), where „P is the
value of the potential during the inflation. Moreover, we have the T (k) = 1 on large
scales and D(a) = a in the matter dominated Universe. In conclusion we can write
the evolution of the perturbation as:

„(k̨, a) = 9
10„P (k̨)T (k)D(a)

a
, (3.82)

always valid for a ∫ alate. Using the Poisson equation in Fourier space:
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k2„ = 4fiGfla2”m, (3.83)

we can write the matter overdensity today as:

”(k̨, a) = 3
5

k2

�mH2
0

„P (k̨)T (k)D(a). (3.84)

We can derive the matter power spectrum, see eq. (3.6), in terms of the primordial
power spectrum of the scalar fluctuations PS(k), eq. (2.137):

Pdm(k, a) = 9
25

k4

�2
mH4

0
PS(k)T 2(k)D2(a). (3.85)

Considering PS(k) Ã k≠3knS≠1 we obtain:

Pdm(k, a) Ã knS T 2(k)D2(a). (3.86)

In Figure 3.11 we can see the behavior of the matter power spectrum, fixing �m as
a function of �b: Pdm Ã k on large scales, because nS ƒ 1 and T (k) = 1, while on
small scales Pdm is a decreasing function of k, because the smallest scales, by entering
into the horizon before the matter domination, will be more suppressed when the
metric perturbation decay. The point of turnover in the power spectrum corresponds
at the scale that is in horizon crossing at the matter-to-radiation equality.

Figure 3.11. An example of the matter power spectrum in the �CDM model for a fixed
value of �

m

. By increasing the amount of baryons, we increase the amplitudes of the
acoustic oscillations (BAO) and the suppression of the power at the small scales, [52].



3.7 Primordial non Gaussianities and the CMB Bispectrum 67

However, this perturbations power spectrum is not that one observed in the
visible matter with the galaxies surveys P ú, but the two spectra are proportional
through a bias factor b:

P ú = b2Pdm. (3.87)

Moreover, we have to introduce a window function W which takes into account that
only a sample of the galaxy distribution is observed, then we will have a convolution
of Pdm with this one. W is equal to V ≠1 inside a sphere of radius R and volume V ,
and zero outside, while in Fourier space is:

Wk = 3sin(kr) ≠ krcos(kr)
(kr)3 . (3.88)

Obviously, we can derive only the statistical properties of the observed spectrum,
therefore we introduce the variance of the field:

‡2
R =

⁄
Pdm(k)Wk(kr)d3k. (3.89)

Very important in the matter power spectrum measurements is ‡8, the root mean
squared of the fluctuations over a volume of radius 8h≠1Mpc . This is constrained
with the detection of the Baryon Acoustic Oscillations (BAO) that, due to the e�ect
of the oscillations of baryons, which are tightly coupled to photons before decoupling
and then oscillate with them, are imprinted at small scales in the matter power
spectrum.

3.7 Primordial non Gaussianities and the CMB Bispec-
trum

As discussed in the previous section, primordial perturbations are expected to be
Gaussian and all the CMB statistics should be mostly described by the angular
power spectrum (i.e. the two point correlation function). However it is interesting to
also consider the possibility of non-Gaussianities, either primordial, either produced
lately and the three point correlation function. Given, for example, a primordial
non-Gaussian density fluctuation of the gravitational potential Â(k), we have

ÈÂ(k1)Â(k2)Â(k3)Í = P (3)
Â (k1, k2, k3)”Dirac(k1 + k2 + k3), (3.90)

where P (3)
Â (k1, k2, k3) is the spatial bispectrum of the gravitational potential. The

angular three point correlation function used to investigate the possible non-Gaussian
features of the CMB can be written as:
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where, as usual, we consider the expansion of the CMB temperature anisotropies in
spherical harmonics Ylm(n̂) with multipoles
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alm =
⁄

d2n̂Y ú
lm(n̂)�T

T
(n̂). (3.92)

We can split the multipoles alm into two parts:

alm = aL
lm + aNL

lm , (3.93)

where aL
lm is that one Gaussian and aNL

lm is that one non-Gaussian. We define the
angular CMB bispectrum as the harmonic conjugate of the three point correlation
function:
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that, ignoring the second order terms in aNL
lm , can be written as:
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The rotational invariance of the CMB sky implies that we can decompose
Bm
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in this way:
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where we have that the matrix is the Wigner 3j symbol and Bl
1

l
2

l
3

is the angle
averaged bispectrum, i.e. the observational quantity. The Wigner 3j symbol ensures
that the bispectrum satisfies the triangle conditions |li ≠ lj | Æ lk Æ li + lj for all
permutation of indices i, j, k, and the selection rules m1 + m2 + m3 = 0 and
l1 + l2 + l3 = even.

Obviously, in order to calculate the correct bispectrum signal we have to take into
account the proper initial conditions after the end of the inflation in the Universe
radiation dominated. These initial condition reflect the nature of the cosmological
perturbations, that can be adiabatic or isocurvature or mixed if there are extra
degrees of freedom (for example the Curvaton field) other than the Inflaton field „I

(see Ref. [53]), depending on the scenario considered.
It is possible to describe the contribution of non-linear e�ects to the curvature

perturbations, introducing a phenomenological parameter that we can compare with
the experimental measurements. Therefore, in order to study the amplitude and
angular structure of the non-Gaussian signal, we define the kernel fNL(k1, k2, k3)
writing the non-Gaussian part of the primordial gravitational potential as a double
convolution in Fourier space:

„NL(k3) = 1
(2fi)3

⁄
d3k1d3k2”(3)(k1+k2+k3)„L(k1)„L(k2)fNL(k1, k2, k3), (3.97)

where „L(k) is the Gaussian part of the primordial gravitational potential. The
simplest choise, widely used in the literature, is to take fNL(k1, k2, k3) = fNL, where
the constant fNL is a phenomenological parameter introduced to parameterize the
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level of non-Gaussianity. In this model, in real space, we can write the curvature
perturbations as:

„(x) = „L(x) + fNL

Ë
„2

L(x) ≠
e
„2

L(x)
fÈ

. (3.98)

where the first term is the linear contribution and the second one the quadratic
correction. Taking fNL = 0 we obtain again the linear approximaxion, i.e. Gaus-
sian perturbations. The CMB angular bispectrum for a constant kernel has been
calculated by Ref. [54], but it is possible to demonstrate that is important to
include the momentum dependence in the data analysis (see Ref. [55]), because
the non-Gaussian signal in standard slow-roll inflation scenario comes from the
momentum-dependent part of fNL(k1, k2, k3). However, being „ ≥ 10≠5, the second
term at right of the equation (3.98) is „ ≥ 10≠5fNL, smaller than the first one, and
a constant parameterization is enough to provide the non-Gaussianity level.

The non-Gaussianity, or non-linearity, parameter fNL can also be expressed in
terms of the standard slow-roll parameters ‘ and ÷ as (see Ref. [56, 57, 58]):

fNL ≥ 3‘ ≠ 2÷. (3.99)

It is important to note that the parameterization (3.98) is valid only for local non-
Gaussianity (squezeed), k1 π k2 ≥ k3, predicted, for example, from the standard
inflationary models, and is not valid for equilateral configurations, k1 ≥ k2 ≥ k3.
Moreover, sources of non-Gaussian signals are also the secondary anisotropies of
the CMB, that have to be removed in order to detect the primordial non-Gaussian
anisotropies, as the bispectrum resulting from the 2nd order Rees-Sciama e�ect (see
for example Ref. [59, 60]), or the cross correlation between the gravitational lensing
and the Integrated Sachs-Wolfe (ISW) e�ect, and the cross-correlation between the
gravitational lensing with the Sunyaev-ZelÕdovich (SZ) e�ect (see for example Ref.
[61]).
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Chapter 4

Constraining Cosmological
Parameters from recent
observations of the Damping
Tail of the CMB angular
spectrum

The measurements of the CMB damping tail, corresponding to the multipole range
going from l ≥ 700 up to l ≥ 3000 of the anisotropies power spectra, play a key role
in the determination of crucial parameters as the relativistic number of degrees of
freedom Ne� , the primordial Helium abundance Yp and the running dnS/d ln k of
the scalar spectral index.

While Yp does not represent a free parameter of the theory, because can be
determined unambigously assuming standard BBN, dnS/d ln k is expected to be
negligible in most inflationary models. On the other hand, we saw that the e�ective
number of relativistic degrees of freedom Ne� practically parametrizes the energy
density of relativistic particles in the early Universe. Deviations from the standard
value due to a non-vanishing neutrino chemical potential are possible but bound to
be small. A detection of Ne� ”= 3.046 could indicate the presence of physics beyond
the standard model of particle physics, like the existence of a yet unknown particle,
e.g., a sterile neutrino or an axion (see next chapters).

In general, the small-scale CMB anisotropies are sensitive to the ionisation and
expansion history at the time of recombination. In fact, a great e�ort has been put
towards taking into account all processes relevant to the standard recombination
picture, and assessing how the corresponding uncertainties propagate to the C¸’s and
to the parameter estimates, see Refs. [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73].
Currently, standard recombination physics is believed to be under control, with
a consensus emerging between the two recombination codes HyRec, see Ref. [72],
and CosmoRec, see Ref. [70], whose results on the ionisation history agree at
a level of 10≠3 at z ≥ 1100. On the other hand, a non-standard recombination
history is a possibility from the theoretical point of view. This includes delayed
recombination scenarios, see Ref. [74], related, for example, to the presence of
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decaying or annihilating particles, see Refs. [75, 76, 77, 78, 79, 80, 81, 82], or to
the variation of fundamental constants, see Refs. [83, 84, 85]. Model-independent
constraints on the allowed deviations from the standard reionization history from
recent CMB data have been discussed in Refs. [86, 87].

Moreover, the damping tail is also a�ected by other physical e�ects generally
taking place at a much later epoch respect to the recombination. These include
the extragalactic foreground emission of point sources, radio galaxies, the Sunyaev-
Zel’dovich e�ect and similar unresolved backgrounds, that are well identified by their
spectral and angular dependence and have in general a minimal correlation with the
cosmological parameters.

Furthermore, the CMB damping tail is a�ected by the lensing of CMB photons
by dark matter clumps along the line of sight. This e�ect is linear and depends
on cosmological parameters that also a�ect the primary CMB spectrum. However,
the lensing amplitude is strictly dependent on the growth of perturbations, and can
be significant di�erent if, for example, general relativity is not the correct theory
to describe gravity at the very large scales, but the accelerated expansion of our
Universe is indeed provided by modified gravity. We can introduce a calibration
parameter AL to test the correct amplitude of the lensing signal, as in Ref. [88],
in such a way that AL = 0 corresponds to the complete absence of lensing, while
AL = 1 is the expected value assuming general relativity. In fact, this parameter
simply rescales the lensing potential:

C„„
l æ ALC„„

l (4.1)

where C„„
l is the power spectrum of the lensing field. A detection of AL very di�erent

from unity would hint that general relativity is not the correct theory to describe
gravity at the cosmological scales.

4.1 The state-of-the-art
While the WMAP satellite hasn’t measured accurately the CMB damping tail,
observing just up to multipole l ≥ 1200, the Atacama Cosmology Telescope (ACT),
see Ref. [89], and the South Pole Telescope (SPT), see Refs. [90, 91], have both
provided exquisitely precise observations of them, hinting for deviations from the
simplest �CDM model when combined with the results from 7 years of observations
from the WMAP satellite (WMAP7, Ref. [92]). Instead the newest Planck satellite
measured alone the whole CMB damping tail without the possible problems of
calibration that we could have when combining the high-l experiments with the
WMAP data.

WMAP alone was unable to constrain the e�ective neutrino number, providing
7 years of observations Ne� > 2.7 at 95% c.l. (see Table 8 in Ref. [92]) and 9
years of observations Ne� > 1.7 at 95% c.l. (see Table 7 in Ref. [1]). The SPT
experiment confirmed an indication for a value for Ne� > 3.046, more marginal when
considering only the WMAP7+SPT data with Ne� = 3.62 ± 0.48 at 68% c.l., but
more significant when combining the SPT data with the measurement of the Hubble
constant H0 = 73.8 ± 2.4km s≠1 Mpc≠1 from the Hubble Space Telescope (HST),
see Ref. [6], and with information from Baryonic Acoustic Oscillation (BAO) data
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(see Table 4 in Ref. [90]), yielding a final value of Ne� = 3.71 ± 0.35. Meanwhile,
the ACT collaboration presented a similar analysis obtaining di�erent results. The
WMAP7+ACT data alone constrained Ne� = 2.78 ± 0.55, i.e. perfectly consistent
with the standard expectations 3.046, and also combining the ACT data with HST
and BAO measurements Ne� = 3.52 ± 0.39 (see Table III in Ref. [89]). Finally, the
Planck data, combined with the polarization of WMAP9, provided Ne� = 3.51±0.39
at 68% c.l., suggesting the presence of a dark radiation component at 91.1% c.l.

Interestingly, the two datasets ACT and SPT were in tension also for the bounds
on the lensing amplitude parameter. While the SPT dataset was fully compatible
with the standard expectation, with AL = 0.86+0.15

≠0.13 at 68% c.l. (see Ref. [91]), the
ACT data suggested a 2-‡ deviation from the standard value, with AL = 1.70±0.38 at
68% c.l.. At that time, the most recent bound on this parameter from WMAP alone
was for 5 years of observations (WMAP5), see Ref. [93], and equal to AL = 2.5+1.3

≠1.2
at 68% c.l. (see Table II in Ref. [88]). Planck data, combined with the polarization
of WMAP9, have instead provided the constraint AL = 1.22+0.11

≠0.13 at 68% c.l., hinting
for a value greater than the standard at about 94.3% c.l..

In this chapter (but see also Ref. [94]) we further investigate these discrepancies
between the two high-l experiments ACT and SPT by improving their analyses
in three ways. First of all, we perform our analyses allowing both Ne� and AL
parameters to vary at the same time, allowing to better identify the tension between
the two experiments. Secondly, we add the latest dataset from nine years of
observations coming from the WMAP satellite (WMAP9) as in Ref. [1], while
both ACT and SPT teams used the previous 7-year WMAP dataset in their papers.
Thirdly, (see also Ref. [95]), we perform again the same analysis, varying both Ne�
and AL parameters at the same time, but considering in this case the more recent
Planck dataset combined with the polarization of WMAP9.

Finally, (see Ref. [96]), we present new constraints on the rest-frame sound speed,
c2

e� , and the viscosity parameter, c2
vis, of the Cosmic Neutrino Background from the

measurements of the Planck satellite, finding a correlation between these neutrino
parameters and AL. We conclude that the anomalous large value of AL measured
by Planck could also be connected to non-standard neutrino properties.

4.2 SPT and ACT combined with WMAP9

Our first analysis (see Ref. [94] for more details) is based on a modified version of
the public CosmoMC, see Ref. [97], Monte Carlo Markov Chain code, considering
the following CMB data: WMAP9, Ref. [1], SPT, Ref. [90], and ACT, Ref. [89],
including measurements up to a maximum multipole number of lmax = 3750. Since
ACT and SPT dataset provided di�erent results on Ne� and AL, we consider them
separately: i.e. we split the analysis in two: WMAP9+ACT and WMAP9+SPT.
We also consider the e�ect of including additional dataset, like the measurements
of the HST, Ref. [6], i.e. a Gaussian prior on the Hubble constant H0 = 73.8 ±
2.4 km s≠1 Mpc≠1, and information from measurements of BAO from galaxy surveys,
i.e. combining 6dFGRS from Ref. [98], SDSS-DR7 from Ref. [99], SDSS-DR9 from
Ref. [7] and WiggleZ from Ref. [100].

We sample the standard six-dimensional set of cosmological parameters, adopting
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flat priors on them: the baryon and cold dark matter densities �bh2 and �ch2,
the ratio of the sound horizon to the angular diameter distance at decoupling ◊,
the optical depth to reionization · , the scalar spectral index ns and the overall
normalization of the spectrum As at k = 0.05Mpc≠1. As discussed, we also consider
variations in the e�ective number of relativistic degrees of freedom Ne� and in the
lensing amplitude parameter AL, taking the flat priors 1 < Ne� < 10 and 0 < AL < 4.
In our basic runs, we don’t consider the e�ect of massive neutrinos, but we performed
additional runs in which we allowed for a non-vanishing neutrino mass, parametrized
by means of the neutrino fraction f‹ © �‹/�c. We always assume standard BBN,
so that the Helium abundance Yp is uniquely determined by the values of �bh2 and
Ne� . Then, in order to assess the convergence of our MCMC chains, we compute
the Gelman and Rubin R ≠ 1 parameter demanding that R ≠ 1 < 0.03.

In Table 4.1 we report the constraints on the considered parameters from each run
WMAP9+SPT, WMAP9+ACT, WMAP9+SPT+HST+BAO and WMAP9+ACT+HST+BAO.
As we can see, the ACT and SPT provide significantly di�erent constraints on the
Ne� and AL parameters. We plot in figure 4.1 and 4.2 the 2-D constraints on the
Ne� vs AL plane respectively for the CMB only case and for the CMB+HST+BAO
analysis.
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Figure 4.1. Constraints in the AL - Ne� plane from a CMB only analysis. The blue
contour includes the ACT data while the red contour refers to the SPT data. The line
at AL = 1 indicates the standard expectations based on General Relativity. The line
at Ne� = 3.046 indicates the prediction from the standard model with three neutrino
flavours, [94].

As we can see, the central values for Ne� and AL obtained from WMAP9+ACT
analysis are outside the 95% confidence level of the WMAP9+SPT and vice-versa. In
particular, the ACT dataset point towards a value of Ne� consistent with Ne� = 3.046,
while (as it can be seen from Table 4.1 and Figure 4.2), preferring at the same
time an exotic high value for the lensing potential, with AL larger than unity
at more than 95% c.l. when we includ the BAO and HST datasets. We found
AL = 1.70+0.77

≠0.67 at 95% c.l. for the WMAP+ACT analysis and AL = 1.64+0.67
≠0.63 at
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Figure 4.2. Constraints in the AL - Ne� plane from a CMB analysis including the HST
prior and BAO. The blue contour includes the ACT data while the red contour refers to
the SPT data. The lines at AL = 1 and Ne� = 3.046 indicate the expected values for
the parameters, [94].

95% c.l. for the WMAP+ACT+BAO+HST. We have the opposite for the SPT
data: while SPT is consistent with AL = 1, it constrains Ne� to a larger value than
the standard expectation. When we include the HST and BAO data, we found
that not only data suggest a value of Ne� > 3.04 at more than 95% c.l., but also a
value of AL smaller than one at about 68% c.l.. Namely, we obtain that AL < 1.00
at 95% c.l. from WMAP9+SPT+BAO+HST while AL > 1.03 at 95% c.l. from
WMAP9+ACT+BAO+HST, i.e. for the lensing parameter the SPT and ACT
datasets provide constraints in disagreement at more than 95% c.l..

We note that the tension between the ACT and SPT datasets is not limited to
the AL or Ne� parameters, but also the constraints on H0, ns, �bh2 and �ch2 are
quite di�erent, although the discrepancy is less significant (see Figures 4.3 and 4.4).
We note however that these discrepancies could also be explained by varying the
recombination history, see e.g. Ref. [87].

So far, all neutrinos were considered as relativistic and massless. Since the SPT
dataset provided a detection at 95% c.l. for a neutrino mass with �m‹ = 0.48 ± 0.21
in a WMAP7+SPT+BAO+HST analysis (see Ref. [90]), we now also consider
massive neutrinos.

In table 4.2 we report the constraints on cosmological parameters from the
WMAP9+SPT+HST+BAO and WMAP9+ACT+HST+BAO datasets respectively
when we included a variation in the neutrino masses in two cases: varying AL and
fixing AL = 1.

As we can see, while the ACT dataset does not favour the presence of neutrino
masses, the SPT dataset gives �m‹ = 0.43 ± 0.19 at 68% c.l. in the case of AL = 1.
This is consistent with the results reported in Ref. [90] considering the di�erent
WMAP and BAO datasets. However, by varying AL, the evidence for a neutrino
mass vanishes, as also clearly seen in Figure 4.5.
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We can better understand what is happening by looking at the constraints in the
AL vs �m‹ plane in Figure 4.7, in which we have a degeneracy between AL and �m‹ :
a larger value of �m‹ decreases the lensing signal and can be compensated with a
larger AL. Since the SPT dataset prefers smaller values of the lensing parameter, by
taking AL = 1 forces the neutrino mass to be more consistent with the data.

Fynally, the inclusion of a neutrino mass exacerbate the lensing problem for ACT,
indeed the lensing parameter AL is even higher when we consider massive neutrinos
(see Table 4.2).
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Figure 4.5. Posterior distribution function for the total neutrino mass parameter �m
‹

from a SPT+WMAP+BAO+HST analysis in the case of fixing lensing to AL = 1 and
letting it to vary. As we can see, if we let the AL parameter to vary the small indication
for a neutrino mass from the SPT analysis vanishes, [94].

In conclusion, the discrepancy between the ACT and SPT datasets is not signifi-
cantly at more than the 95% confidence level. The SPT experiment confirms the
previous indications for a "dark radiation" component with Ne� = 3.78 ± 0.33 at 68%
c.l.; in particular we have found that Ne� > 3.16 at more than 95% c.l., while the
ACT experiment is fully consistent with Ne� = 3.046 even when we include the HST
and BAO datasets. Moreover, ACT presents a value for the lensing parameter that
is o� by more than 95% from the expected value AL = 1. This deviation is more
di�cult to explain from a physical point of view, calling for more drastic changes in
the cosmological model: for example assuming a modification to General Relativity.
On the contrary, the SPT experiment is compatible with AL = 1 but suggests a
value AL < 1 at about 68% c.l. especially when we include the BAO and HST data.

4.3 Constraints from the Planck 2013 dataset
The precise measurements of the CMB temperature anisotropies released by the
Planck collaboration, see Ref. [2], are providing the tightest constraints on cosmo-
logical parameters to date (see Ref. [5]).

In this section (see also Ref. [95]), we use this dataset to constrain the neutrino
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Figure 4.6. Posterior distribution function for the total neutrino mass parameter �m
‹

from a ACT+WMAP+BAO+HST analysis in the case of fixing lensing to AL = 1 and
letting it to vary. As we can see, to let the AL parameter to vary weakens the constraints
from ACT, [94].
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Figure 4.7. Constraints in the AL vs �m
‹

plane for the SPT+WMAP+BAO+HST
and ACT+WMAP+BAO+HST datasets. A degeneracy is present between the two
parameters: larger values for AL let larger neutrino masses to be more consistent with
the data. The SPT indication for a neutrino mass is driven by the low value of AL
obtained in the neutrino massless case, [94].
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e�ective number Ne� and the lensing amplitude AL simultaneously, while the Planck
collaboration presented results in Ref. [5] on Ne� and AL separately.

Our main CMB dataset consists in the Planck public data release of March
2013, see Ref. [2]. We compare this dataset with the theoretical models using the
CAMspec likelihood version 6.2 for high multipoles and the commander version 4.1
likelihood for low multipoles, see Ref. [101]. We also consider the WMAP low-l
likelihood for polarization, see Ref. [102], and we name this combination of data
as “PLANCK+WP". For BAO surveys we include SDSS-DR7 from Ref. [99] at
redshift z = 0.35, SDSS-DR9 from Ref. [7] at z = 0.57 and WiggleZ from Ref. [103]
at z = 0.44, 0.60, and 0.73. Finally, we include the measurements for the Hubble
constant H0 from the analysis of Ref. [6] and we refer to this dataset as HST.

For the analysis method we use the version March 2013 of the publicly available
Monte Carlo Markov Chain package cosmomc, Ref. [97], which include the support
for the Planck Likelihood Code v1.0 (see http://cosmologist.info/cosmomc/)
and implements an e�cient sampling of the space using the fast/slow parameters
decorrelation, see Ref. [104]. The plots shown are obtained via the python codes
included in the cosmomc package.

We run again over the six-dimensional space of standard cosmological parameters,
considering purely adiabatic initial conditions and imposing spatial flatness: the
baryon and cold dark matter densities �b and �c, the ratio of the sound horizon
to the angular diameter distance at decoupling ◊, the reionization optical depth · ,
the scalar spectral index nS , and the overall normalization of the spectrum AS at
k = 0.05Mpc≠1. In addiction we consider the number of neutrinos species (assumed
massless) Ne� and the lensing amplitude parameter AL, assuming the flat priors:
1.047 Æ Ne� Æ 10 and 0.0 Æ AL Æ 4.0. We choose to work with massless neutrinos,
but it is worth to remember that the inclusion of a neutrino mass (fix or variable)
could change significantly the results. As shown in Fig. 26 in Ref. [5] the massive
neutrinos can have strong impact on the lensing amplitude. In the previous section
we showed how allowing the neutrino mass to vary leads to higher values of AL,
as well depicted by the WMAP9+ACT+BAO+HST dataset, for which we have
AL = 1.64 ± 0.32 in the case of massless neutrinos, and AL = 1.82 ± 0.38 when
their mass is allowed to vary. In our runs, we also marginalize over the foreground
parameters as in Refs. [101, 5].

We show the posteriors on the cosmological parameters obtained using the
Planck+WP dataset in Table 4.3.

As we can see, the Planck+WP dataset provide an indication for a larger value
of both Ne� and AL: Ne� = 3.71 ± 0.40 and AL = 1.25 ± 0.13 at 68% c.l.. The
constraint on Ne� reported by the Planck collaboration for the same dataset is
Ne� = 3.51 ± 0.39 at 68% c.l., but it is obtained fixing AL = 1: the slightly larger
value obtained in our analysis clearly shows that there is a small correlation between
these two parameters.

We can compare these results with the ones obtained in the previous section for
the ACT and SPT dataset. The Planck+WP result on Ne� is perfectly consistent
with the WMAP9+SPT constraint, while there is a tension with the WMAP9+SPT
result on AL. Vice-versa, the WMAP9+ACT constraint on Ne� is clearly in tension
with the Planck+WP result, while there is a better agreement with the bound on the
lensing parameter AL. We plot in Figures 4.8 and 4.9 the 1-D posterior distribution

http://cosmologist.info/cosmomc/
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Parameter Planck+WP
�bh2 0.02306 ± 0.00051
�ch2 0.1239 ± 0.0054

◊ 1.04124 ± 0.00077
· 0.095 ± 0.015
ns 0.996 ± 0.018

log[1010As] 3.111 ± 0.034
Ne� 3.71 ± 0.40
AL 1.25 ± 0.13
�� 0.736 ± 0.022

t0[Gyr] 13.08 ± 0.38
�m 0.264 ± 0.022

H0[km/s/Mpc] 74.9 ± 3.7
Table 4.3. Constraints at 68% confidence level on cosmological parameters from our

analysis using Planck+WP, [95].

functions respectively for Ne� and AL coming from these three analyses, while in
Figure 4.10 we report the constraints in the 2-D Ne� ≠ AL plane.

In general we obtain that the Planck+WP dataset is in better agreement with
the WMAP9+SPT dataset than the WMAP9+ACT on most of the parameters, as
the Hubble constant H0, the matter density �m and the scalar spectral index nS . A
similar conclusion was reached by the SPT collaboration, see Ref. [105]. However,
when fixing AL = 1, we have that Plank+WP was in better agreement with the
WMAP9+ACT dataset, as reported in Ref. [5] .

In Table 4.4 we show how, allowing the lensing parameter to vary, can lead to
changes in the constraints on the number of relativistic species, while the variation
of Ne� has minor consequences on the value of AL.

Moreover, we report the results obtained from the Planck+WP+HST, Planck+WP+BAO
and Planck+WP+HST+BAO analyses in the three columns of Table 4.5, respectively,
where we named Planck+WP as ”CMB”. We show the 1-D posterior probability
distributions for Ne� and AL in Figures 4.11, 4.12, 4.13 and 4.14, and the 2-D
confidence regions for Ne� and AL in Figures 4.15 and 4.16 for all the dataset
combinations discussed: CMB, CMB+HST, CMB+BAO and CMB+BAO+HST.

Our results are in perfect agreement with those already presented in Ref. [5].
In fact, the introduction of the BAO dataset shifts the values of Ne� and AL in a
better consistency with the standard expectation, while the inclusion of the HST
dataset mantains the Planck+WP mean values of the parameters, reducing the
error bars and therefore increasing the hints for new physics. In particular, for the
CMB+HST case, both Ne� and AL have larger values than expected at more than
95% confidence level. Combining both BAO and HST, the final e�ect is to lower
the value of AL = 1.17 ± 0.10, still not in full agreement with the expected value of
unity, and to lower the number of neutrinos species as well, giving Ne� = 3.56 ± 0.27,
at almost 2 ≠ ‡ away from the standard value.

In conclusion, the hints for new physics from the Planck+WP dataset are
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Figure 4.8. Comparison of the results for Planck+WP, WMAP9+SPT and WMAP9+ACT
datasets in terms of the 1-D posterior distribution functions for Ne� , [95].

Figure 4.9. Comparison of the results for Planck+WP, WMAP9+SPT and WMAP9+ACT
datasets in terms of the 1-D posterior distribution functions for AL, [95].
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Figure 4.10. Comparison of the 2-D posterior distribution function from the Planck+WP,
WMAP9+ACT and WMAP9+SPT datasets in the Ne� ≠ AL plane. We show contours
for 68% and 95% confidence level, [95].

Parameter CMB+HST CMB+BAO CMB+BAO+HST
�bh2 0.022953 ± 0.00035 0.02246 ± 0.00031 0.02262 ± 0.00028
�ch2 0.1234 ± 0.0050 0.1232 ± 0.0053 0.1260 ± 0.0049

◊ 1.04123 ± 0.00077 1.04112 ± 0.00078 1.04085 ± 0.00075
· 0.094 ± 0.014 0.087 ± 0.013 0.089 ± 0.013
ns 0.992 ± 0.011 0.974 ± 0.011 0.9815 ± 0.0088

log[1010As] 3.108 ± 0.030 3.093 ± 0.030 3.103 ± 0.029
Ne� 3.63 ± 0.27 3.35 ± 0.31 3.56 ± 0.27
AL 1.24 ± 0.12 1.16 ± 0.10 1.17 ± 0.10
�� 0.733 ± 0.014 0.706 ± 0.011 0.7119 ± 0.0094

t0[Gyr] 13.15 ± 0.23 13.47 ± 0.28 13.27 ± 0.23
�m 0.267 ± 0.014 0.294 ± 0.011 0.2881 ± 0.0094

H0[km/s/Mpc] 74.0 ± 2.0 70.4 ± 1.9 71.8 ± 1.6
Table 4.5. Constraints at 68% confidence level on cosmological parameters from our

analysis using CMB+HST, CMB+BAO and CMB+BAO+HST, [95].



86
4. Constraining Cosmological Parameters from recent observations of the

Damping Tail of the CMB angular spectrum

Figure 4.11. Comparison of the 1-D posterior distribution functions from the CMB-only
(Planck+WP) and CMB+BAO datasets for Ne� , [95].

Figure 4.12. Comparison of the 1-D posterior distribution functions from the CMB-only
(Planck+WP) and CMB+BAO datasets for AL, [95].



4.3 Constraints from the Planck 2013 dataset 87

Figure 4.13. Comparison of the 1-D posterior distribution functions from the CMB+HST
(Planck+WP) and CMB+BAO+HST datasets for Ne� , [95].

Figure 4.14. Comparison of the 1-D posterior distribution functions from the CMB+HST
(Planck+WP) and CMB+BAO+HST datasets for AL, [95].
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Figure 4.15. Comparison of the 2-D posterior distribution functions from the CMB-only
and CMB+BAO datasets in the Ne� ≠ AL parameters plane. The contours shown are
at 68% and at 95% confidence level, [95].

Figure 4.16. Comparison of the 2-D posterior distribution functions from the CMB+HST
and CMB+BAO+HST datasets in the Ne� ≠ AL parameters plane. The contours shown
are at 68% and at 95% confidence level, [95].
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confirmed and reinforced when the HST measurements are included and are weakened
when the BAO dataset is considered. Instead, the CMB+HST+BAO analysis also
suggests the presence of anomalous values but at smaller statistical significance.

The next Planck data release, expected around the end of 2014, with the full
mission and polarization data, will provide more precise, CMB only, constraints on
the neutrino number and the lensing amplitude and will certainly confirm or falsify
these current hints for new physics.

4.4 Planck Constraints on Anisotropies of the Cosmic
Neutrino Background

Figure 4.17. One-dimensional posterior probabilities of the parameter c2
e� for the indicated

models for Planck+WP. The vertical dashed line indicates the expected value in the
standard model, [96].

The Planck satellite, see Refs. [2, 5, 101] measurements, although in excellent
agreement with expectations of the standard �CDM cosmological model, clearly
opens the opportunity to further test some of its assumptions and to possibly identify
the presence of new physics.

Following recent analyses (see e.g. Refs. [95, 106, 107, 108, 109]), in this section
(but see also Ref. [96]) we test some properties of the Cosmic Neutrino Background
(CNB).

The Planck experiment, see Ref. [5], reporting the bound Ne� = 3.51 ± 0.39 at
68% c.l., provided evidence for the neutrino background at the level of about nine
standard deviations. However, the slightly higher value for Ne� suggests that we
can have new physics in the neutrino sector. Moreover, the Planck data suggest an
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Figure 4.18. One-dimensional posterior probabilities of the parameter c2
e� for the indicated

models for Planck+EX. The vertical dashed line indicates the expected value in the
standard model, [96].

Figure 4.19. One-dimensional posterior probabilities of the parameter c2
e� for the indicated

models for Planck+L. The vertical dashed line indicates the expected value in the
standard model. We have a di�erent range in the x axes for this dataset respect to the
others, [96].
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Figure 4.20. One-dimensional posterior probabilities of the parameter c2
vis for the indicated

models for Planck+WP. The vertical dashed line indicates the expected value in the
standard model, [96].

Figure 4.21. One-dimensional posterior probabilities of the parameter c2
vis for the indicated

models for Planck+EX. The vertical dashed line indicates the expected value in the
standard model, [96].
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Figure 4.22. One-dimensional posterior probabilities of the parameter c2
vis for the indicated

models for Planck+L. The vertical dashed line indicates the expected value in the
standard model, [96].

Figure 4.23. One-dimensional posterior probabilities of the parameter AL for the indicated
models for Planck+WP. The vertical dashed line indicates the expected value in the
standard model, [96].



4.4 Planck Constraints on Anisotropies of the Cosmic Neutrino Background 93

Figure 4.24. One-dimensional posterior probabilities of the parameter AL for the indicated
models for Planck+EX. The vertical dashed line indicates the expected value in the
standard model, [96].

Figure 4.25. One-dimensional posterior probabilities of the parameter AL for the indicated
models for Planck+L. The vertical dashed line indicates the expected value in the
standard model. We have a di�erent range in the x axes for this dataset respect to the
others, [96].
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anomalous value for the lensing amplitude of AL = 1.22+0.11
≠0.13 at 68% c.l.. Finally, as

we saw in the previous section, allowing a simultaneous variation in Ne� and AL in
the analysis provides Ne� = 3.71 ± 0.40 and AL = 1.25 ± 0.13 at 68% c.l., suggesting
the presence of some anomalies at higher significance.

Here we consider a di�erent modification to the CNB: we fix Ne� = 3.046
but we modify the CNB clustering properties as first proposed in Ref. [110]. By
following Ref. [111], the CNB can be modelled as a Generalized Dark Matter (GDM)
component with a set of equations, describing the evolution of perturbations, given
by (see Refs. [107, 111, 112]):

”̇‹ = ȧ

a

1
1 ≠ 3c2

e�
2 3

”‹ + 3 ȧ
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q‹

k

4
≠ k

3
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3
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3kfi‹ (4.3)

fi̇‹ = 3 c2
vis

32
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15‡
4

≠ 3
5kF‹,3 (4.4)

2l + 1
k

Ḟ‹,l ≠ lF‹,l≠1 = ≠ (l + 1) F‹,l+1 l Ø 3 (4.5)

where c2
e� is the sound speed in the CNB rest frame and describes pressure fluctua-

tions respect to density perturbations, and c2
vis is the “viscosity” parameter which

parametrizes the anisotropic stress. Standard neutrinos have c2
e� = c2

vis = 1/3, and
the observation of deviations from the standard values could hint for non-standard
physics. Constraints on these parameters have been set by several authors (see e.g.
Refs. [106, 107, 113]), using cosmological data previous to Planck.

In Ref. [108] the authors found that, assuming Ne� = 3.046, the case c2
e� =

c2
vis = 1/3 was ruled out at the level of two standard deviation, and in Ref. [107] the

authors found that current cosmological data from the South Pole Telescope SPT,
Refs. [90, 91], excluded the standard value of c2

vis = 1/3 at 2 ≠ ‡ level, pointing
towards a lower value.

Here we bound the values of the neutrino perturbation parameters using the
Planck data, also considering the possible degeneracies between c2

e� , c2
vis and the

temperature power spectrum lensing amplitude AL.
We sample a six-dimensional set of standard cosmological parameters, imposing

flat priors: the baryon and cold dark matter densities �b and �c, the angular
size of the sound horizon at decoupling ◊, and the optical depth to reionization · ,
the scalar spectral index nS and the overall normalization of the spectrum AS at
k = 0.05Mpc≠1, always considering purely adiabatic initial conditions spatial flatness.
We vary the Helium abundance Yp assuming a Big Bang Nucleosynthesis (BBN)
consistency (given Ne� and �b, Yp is a determined function of them). Moreover,
we vary the e�ective sound speed c2

e� , the viscosity parameter c2
vis and the lensing

amplitude parameter AL, adopting the following flat priors: 0 Æ c2
vis, c2

e� Æ 1 and
0 Æ AL Æ 4. Firstly, we consider them in pair (c2

e� ≠ c2
vis, c2

e� ≠ AL, c2
vis ≠ AL), fixing

the third parameter at its standard value (AL = 1, c2
vis = 1/3, c2

e� = 1/3). Finally,
we analyze the three parameters all together.

Concerning the datasets, we use the Planck temperature power spectrum in
combination with the WMAP low-l likelihood for polarization, Ref. [102]. We refer
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to this combination as Planck+WP.
We also consider the inclusion of additional datasets: a Gaussian prior on the

Hubble constant H0 = 73.8 ± 2.4 km s≠1 Mpc≠1 from the HST measurements in
Ref. [6], measurements of Baryon Acoustic Oscillations (BAO) from galaxy surveys,
combining three datasets: SDSS-DR7 freo Ref. [99], SDSS-DR9 from Ref. [114] and
6dF Galaxy Survey from Ref. [115]. We refer to this combination as Planck+EX.

Since the information on the lensing amplitude derived from the trispectrum
does not hint at the high value of the lensing parameter allowed by the temperature
power spectrum (see discussion in Ref. [5]), we also investigate the impact of the
addition of the Planck lensing likelihood from Ref. [9] to the Planck+WP dataset,
and we refer to this combination as Planck+L.

Our analysis method is based on the publicly available Monte Carlo Markov
Chain package, Refs. [97, 104] (version released in March 2013), using the Gelman
and Rubin statistic as convergence diagnostic.

We show our results in Table 4.6, Table 4.7 and Table 4.8 in the form of the 68%
confidence level, i.e. the interval containing 68% of the total posterior probability
centered on the mean.

Firstly, by allowing both c2
e� and c2

vis to vary, we obtain posterior values in
disagreement with the standard model (see Table 4.6 or Figures 4.17 and 4.20):
c2

vis = 0.60 ± 0.18 at 68% c.l., greater than the standard value at about 1.5 standard
deviations, c2

e� = 0.304 ± 0.013 at 68% c.l., smaller than the standard value at
more than 95% c.l.. The addition of BAO and HST datasets only improves the
constraining power (see Table 4.7 and Figures 4.18 and 4.21). The addition of the
lensing power spectrum (see Table 4.8) alleviates the disagreement respect to the
standard values for the neutrino parameters (see Figures 4.19, 4.22 and 4.25).

Secondly, when we allow the lensing amplitude parameter to vary (see Table
4.6 and Figures 4.17, 4.20 and 4.23), in the c2

vis + AL case, we recover the standard
value of the viscosity parameter c2

vis = 0.35 ± 0.12, and similarly, in the c2
e� + AL

case, c2
e� is in agreement with the expected value c2

e� = 0.321 ± 0.014. However, AL
is still in disagreement with the standard value at more than 1-‡ level (respectively,
AL = 1.20 ± 0.12 and AL = 1.16 ± 0.13), showing a degeneracy with the clustering
parameters c2

vis and c2
e� (see Figures 4.26, 4.27, 4.28 and 4.29). Also in these cases,

the addition of BAO and HST allows to get tighter constraints (see Table 4.7 and
Figures 4.18 and 4.21). The addition of the lensing power spectrum (see Table
4.8), allowing the lensing amplitude to vary, produces a further shift of parameters
towards the expected values in the standard scenario, within 1-‡.

Finally, when we allow all the three parameters to vary, their posteriors are in
good agreement with the standard model, considering all the three combinations
of datasets. For example, we get c2

e� = 0.311 ± 0.019, c2
vis = 0.51 ± 0.22 and

AL = 1.08 ± 0.18 for the Planck+WP case (see Table 4.6 or Figures 4.17 and 4.20).
As we can see from Tables 4.6, 4.7 and 4.8, varying the neutrino parameters

results in pronounced variations in other cosmological parameters, in particular the
scalar spectral index nS and the scalar amplitude AS . A similar analysis has been
performed in Ref. [112] considering the viscosity c2

vis. We can see in Figures 4.30
and 4.32 a negative correlation between c2

e� and the inflationary parameters, and in
Figures 4.31 and 4.33 a positive between c2

vis and these ones.
In conclusion, in this section we presented constraints on the clustering properties
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Figure 4.26. Two-dimensional posterior probabilities in the c2
vis ≠AL plane for the indicated

datasets and models. The dashed lines indicate the expected values in the standard
model, [96].

Figure 4.27. Two-dimensional posterior probabilities in the c2
e� ≠AL plane for the indicated

datasets and models. The dashed lines indicate the expected values in the standard
model, [96].
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Figure 4.28. Two-dimensional posterior probabilities in the c2
vis ≠AL plane for the indicated

datasets and models. The dashed lines indicate the expected values in the standard
model, [96].

Figure 4.29. Two-dimensional posterior probabilities in the c2
vis ≠AL plane for the indicated

datasets and models. The dashed lines indicate the expected values in the standard
model, [96].
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Figure 4.30. Degeneracy between the clustering parameters c2
e� and the scalar spectral

index n
S

for the Planck+WP dataset and the indicated models, [96].

Figure 4.31. Degeneracy between the clustering parameters c2
vis and the scalar spectral

index n
S

for the Planck+WP dataset and the indicated models, [96].
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Figure 4.32. Degeneracy between the clustering parameters c2
e� and the scalar amplitude

A
S

for the Planck+WP dataset and the indicated models, [96].

Figure 4.33. Degeneracy between the clustering parameters c2
vis and the scalar amplitude

A
S

for the Planck+WP dataset and the indicated models, [96].
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Figure 4.34. Two-dimensional posterior probabilities in the c2
vis≠c2

e� plane for the indicated
datasets and models. The dashed lines indicate the expected values in the standard
model, [96].

Figure 4.35. Two-dimensional posterior probabilities in the c2
vis≠c2

e� plane for the indicated
datasets and models. The dashed lines indicate the expected values in the standard
model, [96].
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of the CNB, finding that the Planck 2013 dataset hints at anomalous values for
these parameters: c2

vis = 0.60 ± 0.18 at 68% c.l. and c2
e� = 0.304 ± 0.013 at 68% c.l..

When we allow AL to vary we found a better consistency with the standard model
with c2

vis = 0.51 ± 0.22, c2
e� = 0.311 ± 0.019, and AL = 1.08 ± 0.18 at 68% c.l.. The

anomalous large value of AL measured by Planck could then be possibly connected
to non-standard neutrino properties.
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Chapter 5

Physical candidates for an extra
"Dark Radiation" component

As already discussed in the previous chapter, the CMB measurements from the
Planck satellite, combined with measurements of the Hubble constant H0 from the
Hubble Space Telescope (HST) from Ref. [6], gives the constraint Ne� = 3.83 ± 0.54
at 95% c.l.. When low multipole polarization measurements from WMAP9 release,
see Ref. [1], and high multipole CMB data from both the ACT, see Ref. [89], and the
SPT, see Ref. [116], are added in the analysis, the constraint on Ne� is 3.62+0.50

≠0.48 at
95% c.l., see Ref. [5], indicating the presence of an extra dark radiation component
at the ≥ 2.4 ≠ ‡ confidence level.

The simplest scenario to explain this extra dark radiation component includes
extra sterile neutrino species, since there is no fundamental symmetry in nature
forcing a definite number of right-handed (sterile) neutrino species, that are allowed
in the Standard Model fermion content. In any way, there are other possibilities
which are as well closely related to minimal extensions to the standard model of
elementary particles, as thermal axions, or extended dark sectors with additional
relativistic species.

In this chapter (but see also Ref. [20]) we further investigate, in light of the new
observations made by Planck, most of these physical models that could possibly
explain this dark radiation anomaly.

In particular, we focus on the so-called (3 + 2), see Ref. [117], and (3 + 1)
neutrino mass models, see Ref. [118], analyzing the decoupling processes of the
sterile neutrino states in the early Universe and presenting the constraints from a
combined analysis of Planck plus galaxy clustering data from the CMASS sample
data Release 9 (DR9) of the BOSS experiment, see Ref. [119], part of the Sloan
Digital Sky Survey IIII program, see Ref. [120].

Also models containing a dark sector with light species that eventually decouples
from the standard model could contribute to Ne� , as, for instance, asymmetric dark
matter models (see e.g. Refs. [121, 122] and references therein), or extended weakly-
interacting massive particle models (see the recent work presented in Ref. [123]).
Here we follow the formalism from Ref. [122], in which the authors have used a
general approach to describe the dark sector structure, including both light and
heavy relativistic degrees of freedom in the dark sector at the time of decoupling.
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While the light relativistic degrees of freedom correspond to the number of degrees
of freedom that ultimately constitute the dark radiation sector, the heavy relativistic
degrees of freedom correspond to relatively heavy degrees of freedom that will turn
non-relativistic and heat the dark radiation fluid. Here we derive the constraints on
the number of light and heavy degrees of freedom of the dark sector as a function of
its decoupling temperature from the standard model sector.

5.1 Sterile neutrino constraints

A number of studies in the literature have been devoted to constrain the light sterile
massive neutrino thermal abundances, see e.g. Refs. [124, 125, 126, 127, 128, 129,
106, 130]. However, the extra sterile neutrinos do not necessarily need to feature
thermal abundances, depending dramatically their contribution on the mass-energy
density of the Universe on the flavour mixing processes operating at the decoupling
period, see Refs. [131, 132, 133]. The authors of Ref. [134] have shown that the
constraints on Ne� from Planck data can set upper bounds on the sterile neutrino
mixing angles.

The flavor neutrino eigenstates ‹–, – = e, µ, ·, s, p are related to the mass
eigenstates ‹i, i = 1, 2, 3, 4, 5, through a 5 ◊ 5 unitary matrix which we indicate as
U :

‹– = U–i‹i . (5.1)

In the early Universe at temperatures above neutrino decoupling (T > 1 MeV),
sterile neutrinos can result from the oscillations of active neutrinos, and their precise
abundances at decoupling can be computed by means of the density matrix formalism.
We follow Ref. [135], in which the kinetic equations for the density matrix read:

fl̇ = i [Hm + Ve� , fl] ≠ {�, (fl ≠ fleq)} , (5.2)

where Hm = UH0U † is the free neutrino Hamiltonian in the flavor basis, being U is
the unitary mixing matrix. The matrix

fleq = diag(fleq) = I(exp(E/T ) + 1)≠1, (5.3)

with I the identity matrix, refers to the equilibrium value of the density matrix. The
e�ective potential Ve� reads

Ve�,a = ≠CaG2
F T 4E/– , (5.4)

and refers to the interactions of neutrinos with the medium, being GF the Fermi
coupling constant, T the plasma temperature, E the neutrino energy and – = 1/137
the fine structure constant. The constants Ca depend on the neutrino flavor and
are Ce ≥ 0.61 and Cµ,· ≥ 0.17 (for T < mµ), see Ref. [136]. In eq. (5.2) � refers
to the coherence loss in the evolution of the non diagonal terms, and we followed
Ref. [135] to describe this e�ect. The damping factor � is diagonal in the flavor
basis, � = diag(�e, �µ, �· , 0, 0):
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�a = ga
90 ’(3)

7 fi4 G2
F T 4 p , (5.5)

with a = e, µ, · . We computed the values of the ga parameters numerically, ge ƒ 3.6
and gµ = g· ƒ 2.5, see Ref. [137].

In the range of temperatures for neutrino decoupling Ṫ ƒ ≠HT , being H the
Hubble expansion rate:

H(T ) =

Û
4fi3gı(T )

45
T 2

mP l
, (5.6)

where mP l is the Planck mass and gı(T ) is the number of relativistic degrees
of freedom, which depends on the temperature. We neglect the sterile neutrino
thermalization impact on gı(T ), being the temperature dependence of the former
function the standard one with three active neutrinos. Therefore the equation we
need to numerically solve to compute the sterile neutrino abundances at decoupling
reads, see Ref. [131]:

3
ˆfl

ˆT

4
= ≠ 1

HT
(i [Hm + Ve� , fl] ≠ {�, (fl ≠ fleq)}) . (5.7)

We integrate from T ≥ 100 MeV, and follow the sterile neutrino abundance until
T = 1 MeV. For numerical purposes, and accordingly to sterile neutrino searches, we
have set all the fourth and fifth sterile neutrino mixing parameters to zero except
for Ue4,e5 and Uµ4,µ5. Moreover, we fix the parameters for the three active neutrino
mixing to their best fit values from Ref. [138]. Finally we assume for the active
neutrinos a normal hierarchy scheme with m1 = 0 and for the solar and atmospheric
mass splittings the best fit values reported by Ref. [138]. Therefore we fix the sum
of the active neutrino masses to 0.056 eV.

Figures 5.1 and 5.2 depict, respectively, the fourth and the fourth and fifth sterile
neutrino abundances in the (3 + 1) and in the (3 + 2) models, normalized to the
equilibrium distribution, as a function of the temperature for the following mixing
parameters: Ue4 = 0.14, Uµ4 = 0.17 and �m2

14 = 0.93 eV2 (Ue4 = 0.13, Uµ4 = 0.15,
�m2

14 = 0.47 eV2, Ue5 = 0.14, Uµ5 = 0.13 and �m2
15 = 0.87 eV2), which are the

best-fit values obtained in Ref. [139] (see also Ref. [140]) from a global fit to neutrino
oscillation data. Notice that the best-fit values from neutrino oscillation physics
imply that the sterile states will have thermal abundances and therefore some tension
will arise when comparing with the bounds from current cosmological measurements.

We now place bounds on the sterile neutrino mass using di�erent cosmological
observables. Since constraints on sterile neutrino masses are model dependent, we
use the same procedure adopted by the Planck collaboration in Ref. [5], deriving
constraints on an "e�ective" neutrino mass me�

‹,sterile that could then be translated in
constraints on a specific sterile neutrino model. In this framework, we consider one
active massive neutrino with mass of m‹ = 0.06 eV, two active massless neutrino
and a fourth sterile neutrino with a mass me�

‹,sterile © (94.1Ê‹, sterile) eV and that,
when is relativistic, will contribute to the relativistic energy density by increasing
the e�ective neutrino number by a term �Ne� that is however assumed as an extra
free parameter. In few words, a specific model would connect me�

‹,sterile and �Ne�
but in our case the two parameters vary freely.
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Figure 5.1. We show the sterile neutrino abundance relative to the equilibrium ones, as
a function of the temperature, for the (3 + 1) model, using the best fit values for the
mixing angles and mass splittings from Ref. [139], arising from a global fit to neutrino
oscillation data, [20].
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Figure 5.2. We show the sterile neutrino abundances relative to the equilibrium ones, as
a function of the temperature, for the (3 + 2) model, using the best fit values for the
mixing angles and mass splittings from Ref. [139], arising from a global fit to neutrino
oscillation data, [20].
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Our analysis is therefore described by the following set of parameters:

{Êb, Êc, �s, ·, ns, log[1010As], Ne� , me�
‹,sterile} , (5.8)

Êb © �bh2 and Êc © �ch2 being the physical baryon and cold dark matter energy
densities, �s the ratio between the sound horizon and the angular diameter distance
at decoupling, · is the reionization optical depth, ns the scalar spectral index,
As the amplitude of the primordial spectrum and Ne� = 3.046 + �Ne� . Notice
that current cosmological data are sensitive to the total sum of neutrino massesq

m‹ =
q

m‹,active + me�
‹,sterile.

The connection between the neutrino cosmological observables and the neutrino
mixing parameters is non trivial, and only in some cases there exists a direct link
between the two sets of parameters. Even future cosmological data will be unable to
set the precise mixing pattern unless the survey sensitivity to neutrino masses is
much better than the neutrino mass splittings, see Ref. [141].

The priors on these parameters are shown in Tab. 6.1. We used the Boltzmann
CAMB code, Ref. [27] and a Monte Carlo Markov Chain (MCMC) analysis based
on the MCMC package cosmomc, Ref. [97].

Parameter Prior
�bh2 0.005 æ 0.1
�ch2 0.01 æ 0.99
�s 0.5 æ 10
· 0.01 æ 0.8
ns 0.9 æ 1.1

ln (1010As) 2.7 æ 4
Ne� (eV) 3.046 æ 7

me�
‹,sterile (eV) 0 æ 3

Table 5.1. Uniform priors for the cosmological parameters for the MCMC analysis, [20].

For Plack data, we add the high-l and low-l TT likelihoods (including lensing)
and we also add the low-l TE, EE, BB WMAP likelihood, see Ref. [5] for details.
We marginalize over all foregrounds parameters, following Ref. [5]. We also consider
high multipoles data from both SPT, see Refs. [90, 91], and ACT, see Ref. [89],
experiments. We used firstly galaxy clustering data. When dealing with massive
neutrinos, galaxy clustering measurements have large constraining power due to
the clear signature induced by massive neutrinos on the matter power spectrum
at scales larger than their free streaming scale, see Ref. [15]. We therefore also
consider the DR9 CMASS sample of galaxies, Ref. [119], from the BOSS experiment
with an e�ective redshift ze� = 0.57, in the form of full shape power spectrum
measurements (see Refs. [142, 143, 144] for previous studies with BOSS DR9 data
but within the standard three neutrino picture scheme), which have been shown to
provide competitive results to those obtained with geometrical information from
Baryon Acoustic Oscillation measurements, see Ref. [144].

Figure 5.3, shows the results of our MCMC analyses in the (me�
‹,sterile (eV), �ch2)

plane, assuming one sterile neutrino mass state. We found me�
‹,sterile < 0.34 eV at



110 5. Physical candidates for an extra "Dark Radiation" component

95% c.l.. Even if the existence of one extra massive sterile neutrino is perfectly
allowed by cosmological data, the squared mass di�erence required by neutrino
oscillation within (3+1) models (�m2

14 = 0.93 eV2 in Ref. [139]) is much higher than
the one obtained using the cosmological limit quoted above (setting m1 ƒ 0). Figure
5.4 shows the results of our MCMC in the (me�

‹,sterile (eV), 3.046+�Ne�) plane. Notice
that the existence of two fully thermal sterile neutrino states is highly disfavoured by
cosmological data. We found 3.30 < Ne� < 4.43 and

q
me�

‹,sterile < 0.33 eV both at
95% c.l.. Therefore, cosmological measurements compromise the viability of (3 + 2)
neutrino mass models for the mixing parameters preferred by oscillation neutrino
data.

Figure 5.3. 68% and 95% confidence level contours in the (3 + 1) massive sterile neutrino
scenario and in the Ne� massive sterile neutrino case. The figure shows the results of
our MCMC analyses in the (me�

‹,sterile (eV), �ch2) plane, assuming one sterile neutrino
mass state, [20].

We also place constraints on the me�
‹,sterile vs Ne� plane including HST data,

considering a di�erent choice of datasets respect to Ref. [5], namely Planck+HST
and Planck+WP+HighL+HST. The e�ect of the Hubble constant prior was not con-
sidered in Ref. [5]. Figures 5.5 and 5.6 show the results of our MCMC analyses in the
(me�

‹,sterile (eV), Ne�) plane. For Planck+HST (Fig. 5.5) we found me�
‹,sterile < 0.44 eV

and 3.25 < Ne� < 4.37 at 95% CL. In the second case, Planck+WP+HST+HighL
(Fig. 5.6) we found me�

‹,sterile < 0.36 eV and 3.14 < Ne� < 4.15 at 95% c.l..
In summary, in the context of (3 + N) neutrino mass models, the existence of one

additional fully thermal sterile massive neutrino is perfectly allowed by Planck data
combined either with galaxy clustering data or with a prior from HST on the Hubble
constant. In this case, we obtained an upper bound on the mass of the fourth sterile
neutrino m4 < 0.34 eV at 95% c.l., which, for the normal hierarchy scheme and
assuming the mass of the lightest neutrino state m1 = 0, will imply m2

14 ≥ 0.11 eV2
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Figure 5.4. 68% and 95% confidence level contours in the (3 + 1) massive sterile neutrino
scenario and in the Ne� massive sterile neutrino case. The figure shows the results of
our MCMC in the (me�

‹,sterile (eV), 3.046 + �Ne�) plane, [20].

Figure 5.5. Samples in the Ne� ≠ me�
‹,sterile plane, colour-coded by �ch2. The figure shows

the results obtained from the Plack data combined with HST, [20].
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Figure 5.6. Samples in the Ne� ≠ me�
‹,sterile plane, colour-coded by �ch2. The figure shows

the results obtained from the Planck data with WMAP9 polarization, SPT, ACT and
HST, [20].

for sterile neutrino oscillation searches. The existence of two fully non thermal sterile
neutrino massive states is however disfavoured for the cosmological datasets used
in our analyses. This result agrees with the findings of Ref. [130], in which one of
the two massive sterile states within (3 + 2) models was required to be non fully
thermal when including galaxy clustering data in the analyses.

5.2 Extended Dark sector models

Any model containing a dark sector with relativistic degrees of freedom that eventu-
ally decouples from the standard model sector will contribute to Ne� . An example
of these models is the so-called asymmetric dark matter scenario, which, in general,
contains extra radiation degrees of freedom produced by the annihilations of the
thermal dark matter component. Here we follow the general approach of Ref. [122],
in which the dark sector contains both light (gl) and heavy (gh) relativistic degrees
of freedom at the temperature of decoupling TD from the standard model. For high
decoupling temperature, TD > MeV, the contribution to the e�ective number of
relativistic degrees of freedom reads, see Ref. [122]:

�Ne� = 13.56
gıS(TD) 4

3

(gl + gh) 4

3

g
1

3

l

, (5.9)

where gıS(TD) is calculated using the approximated expression given in Ref. [145].
If the dark sector decouples at lower temperatures (TD < MeV), there are two

possibilities for the couplings of the dark sector with the standard model: either the
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dark sector couples to the electromagnetic plasma or it couples to neutrinos. In the
second case, which is the one we consider here,

Ne� = (3 + 4
7

(gh + gl)
4

3

g
1

3

l

)(
3 ◊ 7

4 + gH + gh + gl

3 ◊ 7
4 + gh + gl

)
4

3 , (5.10)

being gH the number of degrees of freedom that become non relativistic between
Big Bang Nucleosynthesis (BBN) and the dark sector decoupling period.

As firstly illustrated in Ref. [122], it is possible to use the measured value of
Ne� to find the required heavy degrees of freedom heating the light dark sector
plasma gh as a function of the dark sector decoupling temperature TD for a fixed
value of gl. Figures 5.7 and 5.8 illustrate the 2-‡ required ranges for gh using
Ne� = 3.62+0.50

≠0.48 and Ne� = 3.83 ± 0.54, respectively, for gH = 0. Notice that at
decoupling temperatures TD > MeV, the standard model relativistic degrees of
freedom will be heated, requiring therefore heating in the dark sector to enhance
the value of �Ne� . On the other hand, at low decoupling temperatures, the number
of the required heavy degrees of freedom gh decreases as �Ne� does. Indeed, for the
case of Ne� = 3.62+0.50

≠0.48 (Ne� = 3.83 ± 0.54), having extra heavy degrees of freedom
is highly (mildly) disfavoured. This is because at low temperatures, the photon
background cannot get extra heating from standard model particles and therefore
an extra heating in the dark sector will increase dramatically the value of Ne� .

  

Figure 5.7. The figure shows the 2 ≠ ‡ required ranges for the number of heavy degrees of
freedom heating the dark sector g

h

using Ne� = 3.62+0.50
≠0.48 for several values of g

l

, the
light degrees of freedom of the dark sector, [20].
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Figure 5.8. The figure shows the 2 ≠ ‡ required ranges for the number of heavy degrees of
freedom heating the dark sector g

h

using Ne� = 3.83 ± 0.54 for several values of g
l

, the
light degrees of freedom of the dark sector, [20].
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Chapter 6

Constraints on the neutrino
sector from Planck plus BOSS
DR11

In standard cosmology, hot, thermal relics are identified with the three light, active
neutrino flavours of the Standard Model of elementary particles. The masses of
these three neutrino states have an impact in the di�erent cosmological observables,
see Refs. [146, 15] for a detailed description. Traditionally, the largest e�ect caused
by neutrino masses on the Cosmic Microwave Background (CMB) anisotropies, is
via the Early Integrated Sachs Wolfe e�ect (ISW). Light active neutrino species
may turn non-relativistic close to the decoupling period, a�ecting the gravitational
potentials and leaving a signature which turns out to be maximal around the first
acoustic oscillation peak in the photon temperature anisotropy spectrum.

More recently, the Planck satellite CMB data, Ref. [5], has opened the window to
tackle the neutrino mass via gravitational lensing measurements: neutrino masses are
expected to leave an imprint on the lensing potential (due to the higher expansion
rate) at scales smaller than the horizon when neutrinos turn non relativistic states, see
Ref. [147]. However, the largest e�ect of neutrino masses on the several cosmological
observables comes from the suppression of galaxy clustering at small scales. Neutrinos,
being hot thermal relics, possess large velocity dispersions. Consequently, the non-
relativistic neutrino overdensities will only cluster at wavelengths larger than their
free streaming scale, reducing the growth of matter density fluctuations at small
scales, see e.g. Refs. [148, 149, 150, 129, 142, 1, 90, 89, 106, 144, 151, 143, 152].

Non degenerate neutrinos have di�erent free streaming scales and in principle,
with perfect measurements of the matter power spectrum, the individual values of
the neutrino masses could be identified. In practice, the former is an extremely
challenging task. Cosmological measurements are, for practical purposes, only
sensitive to the total neutrino mass, i.e. to the sum of the three active neutrino
masses.

CMB measurements from the Planck satellite, including the lensing likelihood
and low-l polarization measurements from WMAP 9-year data, Ref. [102], provide a
limit on the sum of the three active neutrino masses of

q
m‹ < 1.11 eV at 95% c.l..

When a prior on the Hubble constant H0 from the Hubble Space Telescope, Ref. [6],
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is added in the analysis, the constraint is strongly tightened, being
q

m‹ < 0.21 eV
at 95% CL, due to the huge existing degeneracy between H0 and

q
m‹ , see Ref. [129].

The addition of Baryon Acoustic Oscillation (BAO) measurements from the Sloan
Digital Sky Survey (SDSS)-II Data Release 7, see Ref. [153, 99], from the WiggleZ
survey, see Ref. [154], from the Baryon Acoustic Spectroscopic Survey (BOSS), see
Ref. [155], one of the four surveys of SDSS-III, see Ref. [120], Data Release 9, see
Ref. [7], and from 6dF, see Ref. [115], to Planck CMB measurements also significantly
improves the neutrino mass constraints, leading to

q
m‹ < 0.26 eV at 95% c.l. (see

also Ref. [156]).
However, the former bounds are obtained assuming that neutrinos are the only hot

thermal relic component in the Universe. The existence of extra hot relic components,
as sterile neutrino species and/or thermal axions will change the cosmological neutrino
mass constraints, see Refs. [157, 124, 126, 125, 129, 106, 151, 158, 159, 160, 161, 162].
Massless, sterile neutrino-like particles, arise naturally in the context of models which
contain a dark radiation sector that decouples from the Standard Model. A canonical
example are asymmetric dark matter models, in which the extra radiation degrees of
freedom are produced by the annihilations of the thermal dark matter component,
see Ref. [122] and also Refs. [113, 123] for extended weakly-interacting massive
particle models. On the other hand, extra sterile massive, light neutrino species,
whose existence is not forbidden by any fundamental symmetry in nature, may
help in resolving the so-called neutrino oscillation anomalies, see Ref. [163, 139] and
also Refs. [131, 164, 130, 134, 20] for recent results on the preferred sterile neutrino
masses and abundances considering both cosmological and neutrino oscillation
constraints. Another candidate is the thermal axion, see Ref. [165], which constitutes
the most elegant solution to the strong CP problem, i.e. why CP is a respected
symmetry of Quantum Chromodynamics (QCD) despite the existence of a natural,
four dimensional, Lorentz and gauge invariant operator which badly violates CP.
Axions are Pseudo-Nambu-Goldstone bosons associated to a new global U(1)P Q

symmetry, which is spontaneously broken at an energy scale fa. The axion mass is
inversely proportional to the axion coupling constant fa :

ma = ffimfi

fa

Ô
R

1 + R
= 0.6 eV 107 GeV

fa
, (6.1)

where R = 0.553 ± 0.043 is the up-to-down quark masses ratio and ffi = 93 MeV is
the pion decay constant. Axions may be copiously produced in the early Universe via
thermal or non-thermal processes, providing therefore, a possible hot relic candidate
in the thermal case, to be considered together with the standard relic neutrino
background.

Both extra, sterile neutrino species and axions have an associated free streaming
scale, reducing the growth of matter fluctuations at small scales. Indeed, it has
been noticed by several authors, see Refs. [166, 167], that the inclusion of Planck
galaxy cluster number counts data, see Ref. [168], in the cosmological data analyses,
favours a non zero value for the sterile neutrino mass: the free streaming sterile
neutrino nature will reduce the matter power at small (i.e. cluster) scales but will
leave una�ected the scales probed by the CMB. A similar tendency for

q
m‹ > 0

appears, albeit to a smaller extent, see Ref. [166], when considering CFHTLens weak
lensing constraints on the clustering matter amplitude, see Ref. [169].
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Extra dark radiation or light species as neutrinos and axions will also contribute
to the e�ective number of relativistic degrees of freedom Ne� . The canonical value
Ne� = 3.046 corresponds to the three active neutrino contribution. If there are
extra light species at the Big Bang Nucleosynthesis (BBN) epoch, the expansion
rate of the Universe will be higher, leading to a higher freeze out temperature for
the weak interactions which translates into a higher primordial helium fraction. The
measurements of deuterium, see Ref. [11], and helium, see Ref. [170], light element
abundances provide the constraint Ne� = 3.50 ± 0.20, see Ref. [11].

In this chapter (see also Ref. [21]) we analyse the constraints on the three active
neutrino masses, extending the analyses to possible scenarios with additional hot
thermal relics, as sterile neutrino species or axions, using the available cosmological
data in the beginning of the year 2014. The data combination used in our study
includes also the most precise distance BAO constraints from the BOSS Data Release
11 (DR11) results from Ref. [8], see also Refs. [171, 172, 173].

6.1 Cosmological data analyses
The baseline scenario we analyse here is the light active massive neutrino scheme
with three degenerate massive neutrinos, described by the parameters:

{Êb, Êc, �s, ·, ns, log[1010As],
ÿ

m‹} , (6.2)

Êb © �bh2 and Êc © �ch2 being the physical baryon and cold dark matter energy
densities, �s the ratio between the sound horizon and the angular diameter distance
at decoupling, · is the reionization optical depth, ns the scalar spectral index, As

the amplitude of the primordial spectrum and
q

m‹ the sum of the masses of the
three active neutrinos in eV. We then consider simultaneously the presence of two
hot relics, both massive neutrinos and axions, enlarging the former scenario with
one thermal axion of mass ma. The other possibility is the existence of extra dark
radiation species, that we firstly address by introducing a number of massless sterile
neutrino-like species, parametrized via Ne� (together with the baseline three massive
neutrino total mass

q
m‹). The extra additional sterile states, if massive, may

help in resolving the so-called neutrino oscillation anomalies. Consequently, we also
constrained simultaneously the Ne� massive sterile neutrino scenario and the sum
of the three active neutrino masses

q
m‹ . We recall that the e�ective number of

massive sterile neutrino species is represented by �Ne� = Ne� ≠ 3.046, and its mass
is me�

s , which is related to the physical sterile neutrino mass via the relation:

me�
s = (Ts/T‹)3ms = (�Ne�)3/4ms , (6.3)

being Ts (T‹) the current temperature of the sterile (active) neutrino, and assuming
that the sterile states are hot thermal relics with a phase space distribution similar
to the active neutrino ones.

Table 6.1 specifies the priors considered on the di�erent cosmological parameters.
For our numerical analyses, we used the Boltzmann CAMB code, Ref. [27], and
extracted cosmological parameters from current data using a Monte Carlo Markov
Chain (MCMC) analysis based on the publicly available MCMC package cosmomc,
Ref. [97].
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Parameter Prior
�bh2 0.005 æ 0.1
�ch2 0.01 æ 0.99
�s 0.5 æ 10
· 0.01 æ 0.8
ns 0.9 æ 1.1

ln (1010As) 2.7 æ 4q
m‹ [eV] 0.06 æ 3

ma [eV] 0.1 æ 3
Ne� 0(3.046) æ 10

me�
s [eV] 0 æ 3

Table 6.1. Uniform priors for the cosmological parameters considered here. In the case of
the extra relativistic degrees of freedom Ne� , the numbers refer to the massless (massive)
case.

In particular, we ran chains using the Metropolis-Hastings (MH) algorithm to
obtain posterior distributions for the model parameters, given a certain dataset
combination. The only exception is for the measurements of the power spectrum
amplitude that are included in our analysis by post-processing the MH chains that
were previously generated without accounting for these data. The post-processing
is done using the technique of importance sampling; this technique is very reliable
when the posterior distributions obtained after including new data are centered on
the same values as the old distributions, and becomes on the contrary less reliable
the more the new posteriors are shifted with respect to the old ones. The reason for
this fact is that, in this case, one needs to sample from the low-probability tail of
the old distribution, that is poorly explored by the MH algorithm (unless the chains
run for a very long time). We stressed this fact since the inclusion of the data on the
power spectrum amplitude shifts the posterior for some of the model parameters.

All the cases under consideration (additional massless species, massive sterile
neutrinos, and axions) can be studied with none, or minimal, modifications to the
CAMB code. In particular, the massive sterile and axion cases can be reproduced
in the Boltzmann code by means of a suitable reparameterization and by treating,
code-wise, the additional species as massive neutrinos. This relies on the fact that,
for an equilibrium distribution function, the evolution equations only depend on
the mass over temperature ratio mi/Ti and on the total density �i (i = a, s). The
equivalence is perfect for thermal sterile neutrinos, because they have a Fermi-Dirac
distribution function like ordinary neutrinos; instead, this is not the case for thermal
axions since they are described by a Bose-Einstein distribution function. We took
into account in our study the bosonic nature of axions at the background level,
but not in the perturbation equations. However we argue that the error that we
committed in keeping the Fermi-Dirac distribution function in the perturbation
equations for axions is negligible given the uncertainties on the model parameters.
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CMB data

We consider the data on CMB temperature anisotropies measured by the Planck
satellite (including information on the lensing potential) from Refs. [2, 9, 101]
combined with 9-year polarization data from WMAP, Ref. [102], and with additional
temperature data from high-resolution CMB experiments, namely the Atacama
Cosmology Telescope (ACT) from Ref. [174] and the South Pole Telescope (SPT)
from Refs. [116].

The likelihood functions associated to these datasets are estimated and combined
using the likelihood code distributed by the Planck collaboration, described in Refs.
[101] and [9], and publicly available at Planck Legacy Archive1. The Planck TT
likelihood is constructed following a hybrid approach: the high-l (l Ø 50) part is
based on a pseudo-Cl technique and uses power spectra estimated from the detectors
of the 100, 143 and 217 GHz frequency channels, while the low-l (l Æ 49) part
uses a Gibbs sampling-based approach and combines data from all frequencies from
30 to 353 GHz. We used Planck TT data up to a maximum multipole number
of lmax = 2500. These are supplemented by the low-l WMAP 9-year polarization
likelihood, that includes multipoles up to l = 23, see Ref. [102]. For what concerns
the small-scale observations, we followed the approach of the Planck collaboration,
as implemented in their likelihood code, and include the ACT spectra presented in
Ref. [174] and the SPT spectra presented in Ref. [116]. In particular, the likelihood
uses the ACT 148 ◊ 148 spectra in the range 1000 < l < 9440, the ACT 148 ◊ 218
and 218 ◊ 218 spectra in the range 1500 < l < 9440, and the SPT 95, 150 and 220
GHz spectra in the range 2000 < l < 10000, as described in Sec. 4.1 of Ref. [5]. The
primary purpose of considering these subsets of the ACT and SPT data is to improve
the constraints on the unresolved foregrounds. Finally, we used the information
on the gravitational lensing power spectrum estimated from the trispectrum of the
Planck maps, as implemented in the Planck lensing likelihood described in Ref. [9].

We refer to the combination of all the above-mentioned data as the CMB dataset.
In our analysis of the CMB dataset, we compute the helium abundance following

the BBN theoretical prediction, in which the helium mass fraction is a function of
�bh2 and Ne� (see the BBN section below) and fix the lensing spectrum normalization
to AL = 1. We marginalized over all foregrounds parameters as described in Ref.
[5].

Large scale structure data

We consider several large scale structure datasets in di�erent forms. First of all, we
includ all the available galaxy survey measurements in the form of Baryon Acoustic
Oscillation (BAO) data. As a novelty, we add to the existing BAO datasets (SDSS
Data Release 7, Ref. [153, 99], WiggleZ survey, Ref. [154], 6dF, Ref. [115]) the
most recent and most accurate BAO measurements to date, arising from the BOSS
Data Release 11 (DR11) results, Ref. [8]. Using approximately a sample of one
million galaxies and covering 8500 squared degrees, the DR11 results provide the

1

http://pla.esac.esa.int/pla/aio/planckProducts.html

http://pla.esac.esa.int/pla/aio/planckProducts.html
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constraints on the spherically averaged distance DV /rd
2 to be 13.42 ± 0.13 and

8.25 ± 0.16 at redshifts z = 0.57 and z = 0.32, respectively. We present the results
separately for DR11 BAO measurements, as well as the combination of the former
results with other previous BAO measurements, referring to them as DR11 and
BAO, respectively.

We also exploit the WiggleZ survey large scale structure measurements in their
full matter power spectrum form from Ref. [176], in order to quantify the benefits
of using shape measurements of the matter power spectrum versus geometrical
BAO information in extended cosmological scenarios with additional degeneracies
among the di�erent parameters, see the earlier work of Refs. [149, 129] where similar
comparisons were performed. This dataset is referred as WZ, and whenever it is
included, the BAO measurement from the WiggleZ survey is not considered in the
BAO dataset.

Supernova luminosity distance and Hubble constant measurements

Supernova luminosity distance measurements from the first three years of the
Supernova Legacy Survey from Ref. [177] are included in the hot thermal dark
matter relic bounds presented here, referring to these data as SNLS.

Our cosmological data analyses also address the e�ect of a Gaussian prior on the
Hubble constant H0 = 73.8 ± 2.4 km/s/Mpc, accordingly with the measurements
from the Hubble Space Telescope, Ref. [6]. We refer to this prior as HST.

Additional datasets: ‡8 measurements

Measurements of the galaxy power shear spectra by tomographic weak lensing
surveys provide a powerful tool to set constraints on the mass distribution in the
Universe. The amplitude and the shape of the weak lensing signal are sensitive
to the normalization of the power spectrum, the so-called ‡8 parameter (which is
the standard deviation of the matter density perturbations in a sphere of radius
8Mpc/h), as well as to the overall matter energy density of the Universe, �m. Using
six tomographic redshift bins spanning from z = 0.28 to z = 1.12, the CFHTLens
survey finds ‡8(�m/0.27)0.46 = 0.774+0.032

≠0.041, see Ref. [169]. We use this constraint in
our analyses, applying this constraint to our Monte Carlo Markov chains.

A strong and independent measurement of the amplitude of the power spectrum
arises from the abundance of clusters as a function of the redshift, being the cluster
redshift distribution a powerful probe of both �m and ‡8. The Planck Sunyaev-
Zeldovich (SZ) selected clusters catalog, which consists of 189 galaxy clusters with
measured redshift in the X range, is the largest SZ cluster sample to date and has
provided the constraint ‡8(�m/0.27)0.3 = 0.782 ± 0.010, see Ref. [168] via the cluster
mass function. We address as well this constraint in our Monte Carlo Markov chain
analyses. These measurements have been included in our analysis by post-processing
the chains that were previously generated without accounting for these data.

2The value of the sound horizon rd used for these values is obtained using the Eisenstein & Hu
fitting formula, see Ref. [175].
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Big Bang Nucleosynthesis

The light elements abundance is also sensitive to several cosmological parameters.
The primordial abundance of deuterium is usually considered as an invaluable
baryometer, since the higher the baryon abundance �bh2, the less deuterium survives.
On the other hand, while the mass fraction of helium-4 4He (Yp) is rather insensitive
to �bh2, it is directly related to the expansion rate at the BBN period, which
strongly depends on the e�ective number of relativistic degrees of freedom Ne� . As
previously stated, if there are extra light species at the BBN epoch, the expansion
rate of the Universe will be higher, leading to a higher freeze out temperature for
the weak interactions which translates into a higher primordial helium fraction Yp.
In our work, Ref. [21], we exploit the primordial deuterium values from Ref. [178]
(D/H)p = (2.87 ± 0.22) ◊ 10≠5 as well as the most recent deuterium measurements
(D/H)p = (2.53 ± 0.04) ◊ 10≠5, Ref. [11], to compare the cosmological constraints
obtained with these two diferent primordial deuterium estimates, including also the
measurements of the helium mass fraction Yp = 0.254 ± 0.003, Ref. [170]. We use
the former constraints in the scenarios in which extra relativistic degrees of freedom
are expected to be present at the BBN period.

Notice that Planck CMB data are also sensitive to the value of Yp via measure-
ments of the CMB damping tail (high multipole region), and therefore we use the
BBN consistency option of the MCMC software exploited here, cosmomc (Ref. [97]),
assuming therefore that the value of the extra relativistic degrees of freedom remains
unchanged between the BBN and the CMB epochs. Then, given a cosmological
model, the theoretical primordial abundance of helium, which is a function of �bh2

and Ne�
3 has been computed, using AlterBBN (Ref. [179]), a numerical code

devoted to calculate the BBN abundances within non standard cosmologies. We
perform a similar calculation for the deuterium primordial abundance, and then fit
the theoretical expectations for the deuterium and helium primordial abundances
(previously computed for the CMB data analyses in the latter case) to the mea-
surements quoted above, adding the resulting likelihood in our MCMC analyses by
means of a postprocessing of our chains.

Consistency of datasets

We derive our constraints on model parameters using di�erent combinations of the
datasets described in the previous sections. However, in a few cases there are tensions
between datasets, that we describe in the following. We also briefly assess, at least
qualitatively, the e�ect on parameters of adding these data.

We use the Planck lensing likelihood in all our analyses. The lensing likelihood
is based on the information encoded in the 4-point correlation function (i.e., the
trispectrum) of CMB temperature anisotropies. On the other hand, lensing also
directly a�ects the CMB power spectrum. As explained in Sec. 5.1 of Ref. [5],
there is a slight tension between the lensing amplitudes that are inferred from
the trispectrum and from the power spectrum. In particular, while the former is
consistent with the value expected in �CDM, the temperature power spectrum

3See for instance the fitting functions provided in Ref. [178], extracted from the numerical results
of the PArthENopE BBN code, Ref. [180].
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shows a mild preference for a higher lensing power. Since the e�ect of increasing
the neutrino mass is similar to that of a smaller lensing amplitude (as both result
in a suppression of power at small scales), including the lensing likelihood tends to
shift the value of the total neutrino mass to larger values, see Ref. [5]. Instead, the
inclusion of the lensing likelihood does not change significantly the constraints on
the e�ective number of relativistic degrees of freedom, at least for the �CDM model.

Another piece of information that is in tension with the corresponding Planck
estimate is the value of the Hubble constant inferred from astrophysical measurements,
as discussed in Sec. 5.3 of Ref. [5]. This includes the HST value used in our
analysis, H0 = 73.8 ± 2.4 km/s/Mpc, that is discrepant with the Planck �CDM
estimate H0 = 67.3 ± 1.2 km/s/Mpc at more than 2-‡, although it should always be
remembered that CMB estimates are highly model dependent. The reasons for this
discrepancy are not yet well understood and are a matter of intense debate in the
community. It is however possible that this tension is relieved in some extensions of
the standard �CDM model. For this reason, we decide to consider the HST data in
some of our enlarged datasets.

Finally, we use the ‡8 measurements from the CHFTLens survey and from the
Planck SZ cluster counts, as reported in Sec. 6.1. These values are however both
discrepant with the value estimated from Planck CMB at the 2-‡ level (see discussion
in Sec. 5.5 of Ref. [5]). This tension has not yet been explained either, but it could
be related to the di�culties in adequately modelling selection biases and calibrating
cluster masses. As in the case of the Hubble constant, however, there is the possibility
that the discrepancy is alleviated in some extended cosmological models (like for
example those that include the neutrino mass as a free parameter). Following the
same rationale as for the inclusion of the HST data, we derived constraints from
enlarged datasets that include the ‡8 measurements. These should however be
regarded as quite un-conservative.

6.2 Results
6.2.1 Massive neutrinos
We now present the results on our baseline scenario with three active neutrino
degenerate species. Table 6.2 depicts the 95% c.l. constraints on the sum of the three
active neutrino masses

q
m‹ . Notice that, without the inclusion of the constraints

on ‡8 and �m the upper limits on the neutrino mass are mostly driven by the
new BOSS DR11 BAO measurements, being the tightest limit

q
m‹ < 0.22 eV

at 95% c.l. from the combination of CMB data, BAO and HST measurements of
the Hubble constant. However, since there exists a well known discrepancy on the
measured value of H0 from the Planck and the HST experiments, see Ref. [5], we
also considered the combination of CMB and BAO data with SNLS Supernovae Ia
luminosity distance measurements. Such a combination provided an upper 95% c.l.
limit of

q
m‹ < 0.23 eV, in perfect agreement with the findings of the recent BOSS

results, see Ref. [172], using the full shape of the clustering correlation function. The
addition of the constraints on ‡8 and �m from the CFHTLens survey displaces the
bounds on the neutrino mass to higher values, the reason for that being the lower
‡8 preferred by CFHTLens weak lensing measurements. Due the poor constraining
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power of the weak lensing data the neutrino mass bounds are not significantly altered.
On the other hand, when adding the constraint on ‡8 and �m from the Planck-SZ
cluster catalog on galaxy number counts, a non zero value for the sum of the three
active neutrino masses of ≥ 0.3 eV is favoured at 4-‡. In particular, the combination
of CMB data with BAO measurements from BOSS DR11, WiggleZ power spectrum
(full shape) data and a prior on H0 from HST after considering the inclusion of
Planck SZ clusters information leads to the value

q
m‹ = 0.24+0.10

≠0.10 eV at 95% c.l..
The combination of weak lensing data and galaxy number counts data is mostly
driven by the latter and therefore the constraints do not change significantly with
respect to the case in which the analyses are performed with galaxy cluster counts
information only. A similar e�ect, although in a slightly di�erent scenario and
di�erent datasets, was found by Refs. [166, 167].

Figures 6.1 and 6.2 illustrate our findings for three possible data combinations:
CMB data, combined with BOSS DR11 BAO measurements, additional BAO
measurements and a prior on the Hubble constant from HST (depicted by the blue
contours); and the same data combination but considering also the ‡8 ≠ �m weak
lensing (galaxy number counts) constraint, depicted by the red (green) contours.
The Figure 6.1 depicts the very well known degeneracy in the (

q
m‹ (eV), H0) plane,

showing the 68% and 95% c.l. allowed contours by the di�erent datasets specified
above. Considering CMB data only, a higher value of

q
m‹ can be compensated

by a decrease on the Hubble constant H0 since the shift induced in the distance to
the last scattering surface caused by a larger

q
m‹ can be compensated by a lower

H0. Notice that when Planck SZ cluster information on the ‡8 ≠ �m relationship
is added, the allowed neutrino mass regions are displaced and a non zero value for
the sum of the three active neutrino masses is favoured at ≥4-‡. The Figure 6.2
shows the 68% and 95% c.l. allowed regions in the (

q
m‹ (eV), ‡8) plane. The

allowed contours of both ‡8 and
q

m‹ are considerably displaced after considering
Planck clusters data. The power spectrum normalization ‡8 has smaller values when
neutrinos are massive (due to the neutrino free streaming nature), being precisely
these smaller values of ‡8 those preferred by galaxy cluster number counts.

6.2.2 Massive neutrinos and thermal axions

We now present the constraints on a scenario including both massive neutrinos and
a thermal axion.

For axion thermalization purposes, only the axion-pion interaction is relevant.
To compute the axion decoupling temperature TD we followed the usual freeze out
condition

�(TD) = H(TD) . (6.4)

The average rate fi + fi æ fi + a is given by, see Ref. [181]:

� = 3
1024fi5

1
f2

a f2
fi

C2
afiI , (6.5)

where
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Figure 6.1. The blue contours show the 68% and 95% c.l. allowed regions from the combi-
nation of CMB data, BOSS DR11 BAO measurements, additional BAO measurements
and a prior on the Hubble constant from HST in the (

q
m

‹

(eV), H0) plane. The red
(green) contours depict the results when the ‡8 ≠ �

m

weak lensing (galaxy number
counts) constraint is added in the analysis, [21].

Figure 6.2. The blue contours show the 68% and 95% c.l. allowed regions from the combi-
nation of CMB data, BOSS DR11 BAO measurements, additional BAO measurements
and a prior on the Hubble constant from HST in the (

q
m

‹

(eV), ‡8) plane. The red
(green) contours depict the results when the ‡8 ≠ �

m

weak lensing (galaxy number
counts) constraint is added in the analysis, [21].
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Cafi = 1 ≠ R

3(1 + R) , (6.6)

is the axion-pion coupling constant, see Ref. [181], and

I = n≠1
a T 8

⁄
dx1dx2

x2
1x2

2
y1y2

f(y1)f(y2) ◊
⁄ 1

≠1
dÊ

(s ≠ m2
fi)3(5s ≠ 2m2

fi)
s2T 4 , (6.7)

where na = (’3/fi2)T 3 is the number density for axions in thermal equilibrium,
f(y) = 1/(ey ≠ 1) denotes the pion distribution function, xi = |p̨i|/T , yi = Ei/T
(i = 1, 2), s = 2(m2

fi + T 2(y1y2 ≠ x1x2Ê)), and we assumed a common mass for the
charged and neutral pions, mfi = 138 MeV.

We numerically solved the freeze out equation (6.4), obtaining the axion decou-
pling temperature TD versus the axion mass ma (or, equivalently, versus the axion
decay constant fa). From the axion decoupling temperature, we can compute the
current axion number density, related to the present photon density n“ = 410.5 ± 0.5
cm≠3 via

na = gıS(T0)
gıS(TD) ◊ n“

2 , (6.8)

where gıS refers to the number of entropic degrees of freedom. At the current
temperature, gıS(T0) = 3.91.

Table 6.3 presents the constraints on the sum of the three active neutrino masses
and on the axion mass (both in eV) for the di�erent cosmological data combinations
considered. Notice that BBN bounds are also quoted here since a thermal axion will
also contribute to the extra radiation component at the BBN period, by an amount
given by:

�Ne� = 4
7

33
2

na

n‹

44/3
, (6.9)

being na the current axion number density and n‹ = 112 cm≠3, the current number
density of each active neutrino plus antineutrino flavour. We applied the BBN
consistency relation in our MCMC analyses of Planck data, to compute the Helium
mass fraction as a function of �Ne� . Nevertheless the bounds on neutrino and axion
masses are not significantly a�ected if the Helium mass fraction is kept fixed for
CMB purposes. Notice that, before applying constraints from Planck SZ Clusters
or CHFTLens constraints on the ‡8 ≠ �m relationship, the most stringent 95% c.l.
bounds, without including BBN bounds, are

q
m‹ < 0.21 eV and ma < 0.59 eV,

considering CMB, BOSS BAO DR11, additional BAO measurements, WiggleZ power
spectrum (full shape) information and the H0 HST prior. These bounds are in
perfect agreement with the findings of Ref. [162], albeit they are slightly tighter,
mostly due to the more accurate new BOSS BAO measurements.

After considering BBN bounds with deuterium estimates from Ref. [11] (Ref.
[178]) and helium constraints from Ref. [170], which constrain the contribution of
the thermal axion to the relativistic degrees of freedom at the BBN epoch, the
95% c.l. bounds quoted above traslate into

q
m‹ < 0.25 eV and ma < 0.57 eV

(
q

m‹ < 0.21 eV and ma < 0.61 eV).
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The addition of weak lensing constraints on the ‡8 ≠ �m relationship from the
CFHTLens experiment makes the neutrino and axion mass bounds weaker, due to
the lower ‡8 preferred by the former dataset, which favours higher values for the
thermal relic masses. If further information on the ‡8 ≠ �m relationship from the
Planck SZ cluster number counts is considered in the MCMC analyses, there exists
evidence for a neutrino mass of ≥ 0.2 eV at the ≥3-‡ level exclusively for the case in
which CMB data is combined with BOSS BAO DR11 measurements and full-shape
power spectrum information from the WiggleZ galaxy survey. There exists as well a
mild evidence (≥2-‡) for an axion mass of 0.6 eV for two isolated cases in which
either the HST H0 prior or SNIa luminosity distance measurements are considered
in combination with all the BAO measurements exploited in the paper. However,
there is no evidence for neutrino and axions masses simultaneously.

Figure 6.3 depicts the 68% and 95% c.l. allowed regions arising from the
combination of CMB data, BOSS DR11 BAO measurements, additional BAO
measurements and a prior on the Hubble constant from HST in the (

q
m‹ (eV),

ma(eV)) plane. Once the Planck SZ cluster number counts information on the
‡8 ≠ �m relationship is added, a non zero value of the axion mass is favoured by
data at the ≥ 2.2‡. The Fig. 6.4 shows the 68% and 95% c.l. contours in the
(
q

m‹ (eV), ma(eV)) plane resulting from the analysis of CMB data, BOSS DR11
BAO measurements, additional BAO measurements - except for the WiggleZ galaxy
survey information which is removed and considered in its full-shape form - and
the HST H0 prior. Notice that no evidence for non-zero neutrino masses nor for
non-zero axion mass appears in this case.

Figure 6.3. The blue contours show the 68% and 95% c.l. allowed regions from the combi-
nation of CMB data, BOSS DR11 BAO measurements, additional BAO measurements
and a prior on the Hubble constant from HST (depicted by the blue contours) in the
(
q

m
‹

(eV), m
a

(eV)) plane. The red (green) contours depict the results when the
‡8 ≠ �

m

weak lensing (galaxy number counts) constraint is added in the analysis, [21].
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Figure 6.4. The blue contours show the 68% and 95% c.l. allowed regions from the
combination of CMB data, WiggleZ full-shape matter power spectrum measurements,
BOSS DR11 BAO measurements, additional BAO measurements and a prior on the
Hubble constant from HST (depicted by the blue contours) in the (

q
m

‹

(eV), m
a

(eV)) plane. The red (green) contours depict the results when the ‡8 ≠ �
m

weak lensing
(galaxy number counts) constraint is added in the analysis, [21].

6.2.3 Massive neutrinos and extra dark radiation species

We now report the constraints resulting when considering both massive neutrinos
and �Ne� massless dark radiation species. These massless species may appear in
extensions of the Standard Model of elementary particles containing a dark sector, as,
for instance, in the so-called asymmetric dark matter scenarios. In all these models,
when the value of Ne� is larger than the canonical 3.046, �Ne� = Ne� ≠ 3.046 is
related to the extra density in massless hot relics. On the other hand, if the value of
Ne� is smaller than the standard 3.046, the active neutrino temperature is reduced
and there are no extra massless species.

Table 6.4 depicts the 95% c.l. constraints on the sum of the three active
neutrino masses

q
m‹ and well as on the total number of dark radiation species

Ne� , corresponding to the contribution from the three active neutrinos plus �Ne�
massless dark radiation species, for the di�erent data combinations explored here.
The bounds on the neutrino mass are less stringent than in standard three neutrino
massive case due to the large degeneracy between

q
m‹ and Ne� , since a larger

number of massless sterile neutrino-like species will increase the radiation content
of the Universe, and, in order to leave unchanged both the matter-to-radiation
equality era and the location of the CMB acoustic peaks, the matter content of the
Universe must also increase, allowing therefore for larger neutrino masses. We foundq

m‹ < 0.31 eV and Ne� = 3.45+0.59
≠0.54 at 95% c.l. from the combination of CMB data

and BOSS DR11 BAO measurements. When the prior on the value of the Hubble
constant from HST is included in the analyses, the mean value of Ne� and the bound
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on the neutrino masses are both mildly larger accordingly to the larger value of H0
preferred by HST data. The Hubble constant H0 and Ne� are positively correlated
through measurements of the CMB, see Ref. [109] for a complete description of
the e�ects of Ne� on the CMB. If the value of Ne� is increased, in order to keep
fixed both the angular location of the acoustic peaks and the matter-to-radiation
equality epoch (to leave unchanged the first peak height via the early ISW e�ect),
the expansion rate is also increased, implying therefore a larger H0 and a shorter
age of the Universe at recombination.

Since HST measurements point to a higher H0 value, a larger value of Ne� will be
favoured by data, which also implies a higher neutrino mass bound due to the strongq

m‹ ≠ Ne� degeneracy. The 95% c.l. constraints from the combination of CMB
data, BOSS DR11 BAO measurements and the HST H0 prior are

q
m‹ < 0.34 eV

and Ne� = 3.57+0.45
≠0.48. Once the Hubble constant prior from the HST experiment is

added in the analyses, there exists a very mild preference (2-‡) for a value of Ne�
larger than the canonical expectation of 3.046, agreeing as well with the results of
Ref. [5].

The addition of the measurements of the deuterium (either from older estimates,
see Ref. [178], or from the most recent measurements from Ref. [11]) and the helium
from Ref. [170] light element abundances, reduce both the mean value and the
errors of Ne� significantly. After the addition of BBN bounds the errors on Ne�
are reduced by a half. Table 6.4 contains the BBN constraints obtained using the
fitting functions for the theoretical deuterium and helium primordial abundances, as
a function of �bh2 and Ne� , of Ref. [178] (extracted from the numerical results of
the PArthENopE BBN code, Ref. [180]). We reported in the table exclusively these
constraints because they are the most conservative ones: we found

q
m‹ < 0.24 eV

and Ne� = 3.25+0.25
≠0.24 at 95% c.l. from the analysis of CMB data, WiggleZ power

spectrum measurements, the HST H0 prior and BBN light elements abundances
information (with the deuterium measurements from Ref. [11]). Notice that there is
no evidence for Ne� > 3 when considering the most recent estimates of primordial
deuterium abundances. However, if we consider instead previous measurements of
deuterium, as those from Ref. [178], there exists a 3.5 ≠ 4‡ preference for Ne� > 3
if HST data is included in the analyses. Without the inclusion of HST data the
preference for Ne� > 3 still persists, albeit at the 2.5 ≠ 3‡ c.l.. As previously stated,
the BBN bounds on Ne� and

q
m‹ quoted in Tab. 6.4 are the most conservative ones

we found. Di�erent bounds are obtained if an alternative fitting function is used in
order to compute the theoretical deuterium and helium primordial abundances. We
performed as well such an exercise, using the fitting functions from Refs. [182, 11]
and, in general, the mean value obtained for Ne� is larger than the constraints
quoted above. In the case in which recent deuterium measurements are considered
in the analysis, the mean value of Ne� is displaced by ≥2-‡ with respect to the
mean values obtained when using the fitting function of Ref. [178]. If previous
deuterium measurements from Ref. [178] are used for our numerical analyses, the
mean value of Ne� is also mildly larger than the mean Ne� values obtained when
applying the fitting functions from Ref. [178]. The upper bound on the sum of
the three active neutrino masses is also larger for the two analyses (with recent
and previous deuterium measurements), due to the degeneracy between Ne� andq

m‹ . As an example, from the analysis of CMB data, WiggleZ power spectrum
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measurements, the HST H0 prior and BBN light elements abundances information
(with recent deuterium measurements from Ref. [11]), our analysis point to the
following values: Ne� = 3.47+0.27

≠0.27 and
q

m‹ < 0.30 eV, both at 95% c.l.. If previous
measurements of deuterium are instead considered, Ref. [178], the 95% c.l. limits
are Ne� = 3.60+0.33

≠0.32 and
q

m‹ < 0.32 eV. Therefore, a preference for Ne� > 3 at the
3.5≠4‡ (2.5≠3‡) c.l. with (without) the HST H0 prior included in the analyses will
always be present in the results obtained with the fitting functions of Refs. [182, 11],
independently of the deuterium measurements exploited.

As in the standard three massive neutrino case, the addition of the constraints
on the ‡8 and �m cosmological parameters from the CFHTLens survey displaces
the bounds on the neutrino mass to higher values. When adding the ‡8 ≠ �m

relationship from the Planck-SZ cluster catalog on galaxy number counts, a non
zero value for the sum of the three active neutrino masses of ≥ 0.35 eV is favoured
at 4-‡. Notice that in this case the preferred mean value for

q
m‹ is higher than in

the three massive neutrino case due to the fact that Ne� is a free parameter and
there exists a large degeneracy among Ne� and

q
m‹ . The combination of CMB

data with BAO measurements from BOSS DR11, WiggleZ power spectrum (full
shape) data and a prior on H0 from HST after considering the inclusion of Planck SZ
clusters information leads to the values

q
m‹ = 0.35+0.17

≠0.16 eV and Ne� = 3.56+0.59
≠0.58

at 95% c.l..
The bounds quoted above have been obtained using the BBN theoretical pre-

diction for helium in the CMB data analysis. However, it is also possible to fix the
helium fraction Yp in the Monte Carlo Markov Chain analyses of CMB data and
assume that Yp is an independent parameter constrained by BBN observations only.
We also performed such an exercise, fixing Yp = 0.24, and we found, in general, larger
values for both the mean value of Ne� and its errors, and, consequently, a slightly
larger bound on the neutrino mass, due to the

q
m‹ ≠Ne� degeneracy. In particular,

we found
q

m‹ < 0.32 eV and Ne� = 3.60+0.67
≠0.65 at 95% c.l. from the combination

of CMB data and BOSS DR11 BAO measurements, and
q

m‹ < 0.34 eV and
Ne� = 3.84+0.60

≠0.56 at 95% c.l. if a prior from HST on the Hubble constant H0 is added
to the former data combination. These findings agree with the results of Ref. [151],
where it is also found that the BBN consistency relation leads to a constraint on
Ne� closer to the canonical value of 3.046 than in the case of fixing Yp = 0.24. Once
BBN measurements are considered in the data analyses, the di�erences between the
analyses with and without the BBN consistency relation included become irrelevant.

Figure 6.5 shows the degeneracy between the
q

m‹ and the total number of
dark radiation species Ne� (which accounts for the contribution of the three active
neutrino species plus �Ne� massless sterile neutrino-like species). The red contours
depict the 68% and 95% c.l. allowed regions resulting from the combination of CMB,
BOSS DR11 BAO measurements, and previous BAO measurements. As the value
of Ne� increases, a larger neutrino mass is allowed, to leave unchanged both the
matter-to-radiation equality era and the angular location of the acoustic peaks, as
well as the height of the first acoustic peak via the early ISW e�ect. The blue region
denotes the results considering the HST H0 prior as well in the analysis: notice that
the allowed regions are shifted towards higher values of Ne� . Figure 6.6 illustrates
the degeneracy between Ne� and the Hubble constant H0. The color coding is
identical to the one used in the Figure 6.5, in which the red contours are related to
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Figure 6.5. The red contours show the 68% and 95% c.l. allowed regions from the
combination of CMB data, BOSS DR11 BAO measurements and additional BAO
measurements in the (

q
m

‹

(eV), Ne�) plane. The blue contours depict the constraints
after a prior on the Hubble constant from HST is added in the analysis, [21].

Figure 6.6. The red contours show the 68% and 95% c.l. allowed regions from the
combination of CMB data, BOSS DR11 BAO measurements and additional BAO
measurements in the (Ne� , H0) plane. The blue contours depict the constraints after a
prior on the Hubble constant from HST is added in the analysis, [21].
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the 68% and 95% c.l. allowed regions from the combination of CMB data, BOSS
DR11 BAO measurements and additional BAO measurements and the blue regions
refer to the constraints after adding a prior on the Hubble constant from the HST
experiment.

6.2.4 Massive neutrinos and extra massive sterile neutrino species
The latest possibility for thermal relics explored in our study is the case in which
there exists three active light massive neutrinos plus one massive sterile neutrino
species characterised by an e�ective mass me�

s , which reads, eq. (6.3):

me�
s = (Ts/T‹)3ms = (�Ne�)3/4ms , (6.10)

being Ts (T‹) the current temperature of the sterile (active) neutrino species, �Ne� ©
Ne� ≠ 3.046 = (Ts/T‹)3 the e�ective number of degrees of freedom associated to the
sterile, and ms its real mass. We assumed an upper prior on the e�ective sterile
neutrino mass me�

s of 3eV , as specified in Table 6.1.
Table 6.5 depicts the 95% c.l. constraints on the active and sterile neutrino

masses as well as on the total number of massive neutrinos Ne� . Notice that the
mean value of Ne� is, in general, slightly larger than in the case in which the sterile
neutrinos are considered as massless particles due to the fact that me�

s and Ne� are
positively correlated. Indeed, there exists a physical lower prior for Ne� of 3.046
which is not needed in the case of three active neutrinos plus extra massless species.
We quoted exclusively the 95% c.l. upper limit for the cases in which the 95% c.l.
lower limit is set by the physical prior of 3.046. Concerning the bounds on the sum
of the three active neutrinos, they are more stringent than in the massless sterile
neutrino-like scenario because

q
m‹ and me�

s are also positively correlated. As in
the massless sterile neutrino-like analyses, larger values of Ne� will be favoured by
data when HST measurements are included. The addition of BBN bounds reduce
the errors on Ne� significantly, alleviating the degeneracies between Ne� and the
active/sterile neutrino masses. Table 6.5 contains the BBN constraints obtained
using the fitting functions for the theoretical deuterium and helium primordial
abundances from Ref. [178], which, as in the massless extra dark radiation case,
are found to provide the most conservative bounds. We found

q
m‹ < 0.27 eV,

me�
s < 0.14 eV and Ne� = 3.28+0.22

≠0.21 at 95% c.l. from the analysis of CMB data, BOSS
DR11 BAO, additional BAO measurements, WiggleZ full-shape large scale structure
information, the HST H0 prior and BBN light elements abundances information
with the most recent measurements of the primordial deuterium abundances from
Ref. [11], indicating no significant preference for Ne� > 3. However, when considering
primordial deuterium measurements from Ref. [178], there exists a preference for
Ne� > 3 at the 3-‡ level (mildly stronger when HST data is also considered in
the analyses). This preference is similar to that found in the extra massless case,
although notice that in this case there exists a lower prior on Ne� = 3.046 and
therefore the mean value of Ne� will always be larger than its standard prediction.
If we instead use the theoretical functions for the helium and deuterium abundances
from Refs. [182, 11], we got similar conclusions to those found in the massless dark
radiation case: a 3 ≠ 4‡ preference for Ne� > 3 is always present. The bounds on
the neutrino masses are, as in the massless case, mildly loosened. The constraints
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quoted above translate into
q

m‹ < 0.28 eV, me�
s < 0.22 eV and Ne� = 3.50+0.27

≠0.28
(
q

m‹ < 0.30 eV, me�
s < 0.24 eV and Ne� = 3.64+0.33

≠0.33) at 95% c.l. from the analysis
of CMB data, BOSS DR11 BAO, additional BAO measurements, WiggleZ full-
shape large scale structure information, the HST H0 prior and BBN light elements
abundances information with the most recent measurements of the primordial
deuterium abundances from Ref. [11] (Ref. [178]).

We have also found that the posterior distribution obtained from the CMB+DR11+BAO
dataset (without the addition of any BBN or ‡8 information) is multimodal. In fact,
we found that the probability density is significantly di�erent from zero, other than
for me� . 0.3 eV (as for the other datasates), also for me� & 1 eV. A further inspec-
tion of the chains has shown that these two regions roughly corresponds to the two
cases of a hot/warm (at recombination) sterile neutrino, with a mass-to-temperature
ratio at that time ms/Ts,rec . 10, and of a cold sterile with ms/Ts,rec & 100. The
limits quoted in Tab. 6.5 for the CMB+DR11+BAO dataset, in the basic case
where no other information is considered, have been obtained by postprocessing the
chains in order to keep only those models with ms/Ts,rec . 10. This is consistent
with the purpose of the paper [21] of costraining the presence of a hot component
in addition to active neutrinos. We also verified that these limits are reasonably
stable with respect to the choice of the value of the mass-to-temperature ratio at
which to cut the distribution, as long as this value lies inside the low-probability
region 10 . ms/Ts,rec . 100. It still has to be clarified which, if any in particular, of
the BAO datasets is responsible for the appearance of the cold sterile region in the
posterior probability, and to which feature in the data this is possibly related. A
very preliminar analysis, performed using only one at a time among the DR7, 6dF
and WiggleZ BAO datasets, seems to show that this e�ect is mainly driven by the
first two datasets, while using only the WiggleZ BAO measurements yields naturally
an upper limit for me� of about 0.3 eV, without any need to exclude a priori the
cold region.

Contrarily to the massless dark radiation case (and similarly to the thermal axion
scenario), the addition of the constraints on the ‡8 and �m cosmological parameters
from the Planck-SZ cluster catalog on galaxy number counts does not lead to a non
zero value for the neutrino masses. However, the bounds on the neutrino masses
are less stringent when adding the Planck-SZ or the CFHTLens constraints on the
‡8 and �m cosmological parameters, due to the lower ‡8 preferred by the former
datasets, which favours higher values for the thermal relic masses. After considering
the inclusion of Planck SZ clusters and CFHTLens information to CMB data, BOSS
DR11 BAO and additional BAO measurements and the HST H0 prior, the 95% c.l.
bounds on the active and the sterile neutrino parameters are

q
m‹ < 0.39 eV,

me�
s < 0.59 eV andNe� < 4.01.

The bounds quoted in Tab. 6.5 have been obtained using the BBN theoretical
prediction for helium in the CMB data analysis, as in the case of extra massless
species. We also performed in this massive case the exercise of fixing the helium
fraction Yp in the Monte Carlo Markov Chain analyses of CMB data and assumed
that Yp is an independent parameter constrained by BBN observations only. Again,
as in the massless case, we found larger values for the mean value of Ne� (and,
consequently, slightly larger bounds on both the active and sterile neutrino masses)
when neglecting the BBN consistency relation in the MCMC analyses.
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Figure 6.7. The red contours show the 68% and 95% c.l. allowed regions from the
combination of CMB data, BOSS DR11 BAO measurements and WiggleZ full shape
power spectrum measurements in the (

q
m

‹

(eV), Ne�) plane. The blue contours depict
the constraints after a prior on the Hubble constant from HST and the remaining BAO
data are added in the analysis, [21].

Figure 6.8. The red contours show the 68% and 95% c.l. allowed regions from the
combination of CMB data, BOSS DR11 BAO measurements and WiggleZ full shape
power spectrum measurements in the (

q
m

‹

(eV), me�
s

(eV)) plane. The blue contours
depict the constraints after a prior on the Hubble constant from HST and the remaining
BAO data are added in the analysis, [21].
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Figure 6.7 shows the degeneracy between the
q

m‹ and the total number of
neutrino species Ne� (which accounts for the contribution of the three active neutrino
species plus �Ne� massive sterile neutrinos). The red contours depict the 68% and
95% c.l. allowed regions resulting from the combination of CMB, BOSS DR11 BAO
measurements, and full shape power spectrum measurements from the WiggleZ
survey. Notice that the allowed values of Ne� are slightly larger than in the massless
dark radiation scenario, since sub-eV massive sterile neutrinos are contributing to
the matter energy density at the recombination period and therefore a larger value
of Ne� will be required to leave unchanged both the angular location and the height
of the first acoustic peak. The blue region depicts the results considering both the
HST H0 prior and the remaining BAO data as well in the analysis. The Figure 6.8,
illustrates the degeneracy between the active and the sterile neutrino masses, since
both active and sterile sub-eV massive neutrinos contribute to the matter energy
density at decoupling, and both are free streaming relics which suppress structure
formation at small scales, after they become non relativistic.

6.3 CMB constraints including the results from the BI-
CEP2 experiment

Figure 6.9. Constraints in the Ne� vs r plane from Planck+WP and Planck+WP+BICEP2
data. Notice how the inclusion of the BICEP2 constraint shifts the contours towards
Ne� > 3, [21].

The BICEP2 experiment, Ref. [10], claimed a detection at about 5.9 ≠ ‡ for B-
mode polarization on large angular scales4, compatible with the presence of a tensor

4This claim has been recently questioned by the Planck collaboration, see Ref. [?], since this
signal could be completely explained by a polarization signal from galactic dust. This point is
discussed in the chapter 10.
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Figure 6.10. Constraints in the �m
‹

vs r plane from Planck+WP and
Planck+WP+BICEP2 data. In this case there is no indication for neutrino masses from
the combination of CMB data, [21].

component with amplitude r0.002 = 0.2+0.06
≠0.05 at 68% c.l.. It is therefore interesting

to evaluate the impact of this measurement for the e�ective number of relativistic
species and neutrino masses. We therefore performed an analysis including a tensor
component (with zero running). The results are presented in Figures 6.9 and 10.2. As
we can see, when the BICEP2 data are included, an extra background of relativistic
particle is preferred with Ne� = 4.00 ± 0.41 at 68% c.l., where Ne� is the number of
massless, dark radiation species. CMB data alone is therefore suggesting a value for
Ne� > 3 at good significance. This result comes from the apparent tension between
the Planck+WP limit of r < 0.11 at 95% c.l. and the recent BICEP2 result. This
tension appears as less evident when extra relativistic particles are included. We
imagine a further preference for Ne� > 3 if the HST data is included. The BICEP2
result does not a�ect the current constraints on neutrino masses as we can see from
the Figure 10.2.

In conclusion, in this chapter (but see also Ref. [21]) we have reported the
constraints on the masses of the di�erent thermal relics in di�erent scenarios using
the available cosmological data in the beginning of year 2014. The tightest limit we
found in the minimal three active massive neutrino scenario is

q
m‹ < 0.22 eV at

95% CL from the combination of CMB data, BAO data and HST measurements of
the Hubble constant. However, the constraint on ‡8 and �m from the Planck-SZ
cluster catalog on galaxy number counts favours a non zero value for the sum of the
three active neutrino masses of ≥ 0.3 eV at 4 ≠ ‡, see also Refs. [166, 167].
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Chapter 7

Constraining Neutrino
Isocurvature Perturbations with
CMB anisotropies

As briefly described in the previous chapter, the standard model of inflation postulates
the existence of a single scalar field responsible for driving an accelerated expansion
of the Universe and for generating a nearly scale invariant background of primordial
perturbations. This class of inflationary models has only one degree of freedom,
predicting that the ratio between the number densities of the di�erent particle
species is spatially homogeneous, which means adiabatic perturbations and excludes
the presence of significant non-Gaussianities in the fluctuations.

Though the recent measurements of the Cosmic Microwave Background anisotropies
provided by the Planck experiment (see e.g. Ref. [5] ) are perfectly consistent with
purely adiabatic and Gaussian primordial perturbations, the presence of a significant,
sub-dominant, non-adiabatic perturbation component in the cosmological fluids (cold
dark matter, baryons and neutrinos) cannot be completely excluded, see e.g. Refs.
[183, 184, 185, 186, 187, 92]. This isocurvature component could be produced from
some extra field other than the Inflaton „, as in multifield inflationary models. It is
indeed possible (see, for example, Refs. [188, 189]) that, while the Inflaton drives
the exponential expansion, the primordial fluctuations could be generated by a dif-
ferent field named Curvaton. After the Inflaton decay, the isocurvature perturbation
produced initially by the Curvaton is converted in an adiabatic component. After
the Curvaton decay, some residual isocurvature perturbation is therefore expected
in the energy density of the di�erent cosmological components. In particular, in this
chapter, we study the presence of isocurvature perturbations in the neutrino compo-
nent. Indeed, if there are neutrino isocurvature perturbations, then we may have a
non vanishing chemical potential for their background distribution in phase space.
Probing neutrino isocurvature density perturbation (NID), in the Curvaton scenario
is therefore complementary to constraining the lepton number in the neutrino sector.

The results presented in this chapter are mainly taken from two refereed papers.
First of all, in Ref. [22] we have forecasted, using Fisher matrix techniques, the
capability of present and future CMB experiments like Planck, see Refs. [190, 191],
SPIDER, see Ref. [192], and CMBPol, see Ref. [193], to constrain simultaneously



1427. Constraining Neutrino Isocurvature Perturbations with CMB anisotropies

the amplitude of isocurvature perturbations in the neutrino density component
and the extra energy density associated to the neutrino chemical potential. These
bounds can then be translated into constraints on the neutrino chemical potential
to temperature ratio ›i (i = e, µ, ·) and the corresponding perturbation amplitudes,
and can be compared to those on the ›i’s which can be derived using Big Bang
Nucleosynthesis (BBN).

On the other hand, we have presented in Ref. [23], for the first time, a combined
analysis for Ne� and NID from the recent Planck data.

7.1 Neutrino isocurvature perturbations
We can describe the density perturbations in terms of the gauge-invariant quantity
’, see Refs. [194, 195, 196] in this way:

’ = ≠Â ≠ H
”fl

fl̇
, (7.1)

where again Â is the (gauge-dependent) curvature perturbation, H the Hubble
parameter, fl the total energy density, and the dot denotes derivatives with respect
to the cosmological time t. The quantity ’ describes the curvature perturbation on
slices of uniform total density.

In the case of multicomponent fluids it is possible to define the quantities ’i for
each of the i-th energy component

’i = ≠Â ≠ H
”fli

fl̇i
. (7.2)

We have an adiabatic fluctuation if the ratios ”fli/fl̇i are all the same, so that
’i = ’ for all components. Otherwise, we can define an isocurvature fluctuation Si in
the i-th fluid component as the relative entropy fluctuation with respect to photons:

Si © 3(’i ≠ ’“) . (7.3)

We remind that the equilibrium distribution function of neutrinos is:

fi(E) = [exp(E/T‹ û ›i)]≠1 , (7.4)

where T‹ is their temperature, and ›i = µi/T‹ , µi being the chemical potential.
Moreover, we considered the three standard model neutrino families, i = e, µ, · ,
and the minus (plus) signs for neutrinos (antineutrinos). If there are neutrino
isocurvature perturbations, necessarily we have a non zero lepton asymmetry in
the neutrino sector, nL © n‹ ≠ n‹̄ , unless the asymmetries in the three flavours
exactly cancel. At this stage, the three neutrino families can have di�erent chemical
potentials. As we said in the first chapter, the neutrino temperature is T‹ = T“

until the time of electron-positron annihilation, T“ ƒ 1MeV (shortly after neutrino
decoupling), while at later times T‹ = (4/11)1/3T“ , unless tiny corrections, see Ref.
[19].

We can write the energy density fli © fl‹i + fl‹̄i in the high-temperature limit
T‹ ∫ m‹ , given the distribution function eq. 7.4, in this way, see Ref. [197]:
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fli = 7fi2

120Ai T 4
‹ = 7

8Ai

A
T‹

T“

B4

fl“ , (7.5)

where

Ai ©
C

1 + 30
7

3
›i

fi

42
+ 15

7

3
›i

fi

44D

, (7.6)

As we saw, we can define the e�ective number of neutrino families Ne� as the
ratio between the total neutrino density and the density of a single non-degenerate
(› = 0) neutrino species in thermal equilibrium at T‹ = (4/11)1/3T“ . In the standard
cosmological scenario we expect Ne� = 3.046, see Ref. [19], and any deviation
�Ne� from this value means the presence of an extra energy density of relativistic
particles in the early Universe (dark radiation). From our definition we have that
Ne� =

q
i Ai + 0.046. In this way, We can relate the isocurvature perturbation in

the total neutrino density to the fluctuations ”N (i)
e� :

S‹ = 3(’‹ ≠ ’“) ƒ
q

i ”N (i)
e�

4Ne�
. (7.7)

7.2 CMB forecasts
We assume for semplicity that both the average values and the fluctuations in
the chemical potentials are flavor blind, i.e. ›̄e = ›̄µ = ›̄· = ›̄, and similarly
”›e = ”›µ = ”›· = ”›. Moreover, we assume that fluctuations in the neutrino
degeneracy parameter are Gaussian distributed with variance ‡2

› around the mean ›̄,
and in general, both can have a scale and epoch dependence.

Conventionally, in the CMB studies the “non-adiabaticity” of perturbations is
parameterized from two quantities, – and —. In particular, we define, see Refs.
[186, 92], the quantity – in the following:

–(k0)
1 ≠ –(k0) © PS(k0)

P’(k0) , (7.8)

where PS(k) is the power spectrum of isocurvature perturbations and P’(k) the
curvature perturbations spectrum, both evaluated at a fixed pivot wave number
k0 = 0.002 Mpc≠1. Then the cross-correlation coe�cient — is defined as:

— = P’S(k0)
Ò

PS(k0)P’(k0)
. (7.9)

where P’S(k) is the cross-correlation power spectrum. This parameter takes into
account the correlation between the adiabatic and isocurvature modes, see Refs.
[198, 199, 200]. We choosed the sign convention for the curvature perturbation such
that the temperature fluctuation at large scales is given by �T/T = ’/5 ≠ 2S/5.
Given the above convention, the physically observable e�ect is that correlated
perturbations, i.e. — > 0, reduce the temperature power spectrum at low multipoles,
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and the adiabatic and isocurvature fluctuations in the Curvaton scenario are totally
anticorrelated, see Refs. [201, 202, 203], i.e. — = ≠1.

Moreover, we assume that the two power spectra have the the same spectral tilt
ns:

�2
R,S(k) © k3PR,S

2fi2 Ã kns≠1 . (7.10)

The CMB is sensitive to both – and the total �Ne� induced by the average
value ›̄ for this scenario, and in principle also by the variance ‡2

› , if su�ciently large.
For our analyses or forecasts, we considered the constraints in the �Ne� ≠ – plane.

The total CMB power spectrum is conventionally parameterized as the sum
of the adiabatic, the neutrino isocurvature density and the totally anticorrelated
spectra in this way:

Cl = (1 ≠ –)Cad
l + –CNID

l ≠ 2
Ò

–(1 ≠ –)Ccorr
l , (7.11)

with – defined in eq. 7.8, we considered — = ≠1.
In Ref. [22] we derived forecasts for the Planck, Ref. [190], SPIDER, Ref. [192],

and the CMBPol, Ref. [193], experiments. The Planck satellite, Refs. [190, 191],
launched in May 2009, measured the CMB temperature and polarization fluctuations
with unprecedented precision (�T/T ≥ 2 ◊ 10≠6) over the whole sky and down
to very small angular scales (≥5’). Planck temperature measurements have been
released to the scientific community in March 2013, and significantly improved
the determination of cosmological parameters allowing to furher test the �CDM
paradigm. However, we first present a forecast for this experiment, also to provide a
test of method when comparing with the real data in the next section. SPIDER, Ref.
[192], scheduled to flight in 2015, is a ballon-borne polarimeter design to accurately
measure the B-mode of CMB polarization down to l ≥ 100. Finally, CMBPol, Ref.
[193], is a next-generation satellite currently in the concept study phase.

In order to derive forecasts for these experiments (see Ref. [22]), we used a
Fisher matrix formalism, assuming three frequency channels for each experiment
(the adopted experimental specifications are listed in Table 7.1).

Experiment Channel[GHz] FWHM ‡T [µK] ‡P [µK]
Planck 217 5.0’ 13.1 18.5

fsky = 0.65 143 7.0’ 5.99 8.48
100 9.5’ 6.75 9.55

SPIDER 280 17’ 0.20 0.29
fsky = 0.1 150 30’ 0.08 0.11

90 49’ 0.08 0.11
CMBPol 220 3.8’ 0.66 0.93

fsky = 0.65 150 5.6’ 0.25 0.35
100 8.4’ 0.22 0.31

Table 7.1. Experimental specifications for Planck, Ref. [190], SPIDER, Ref. [192], and
CMBPol, Ref. [193], used in our analysis. For each experiment, we listed the observed
fraction f

sky

of the sky, the channel frequency in GHz, the FWHM in arcminutes, the
sensitivity per pixel for the Stokes I (‡

T

), Q and U (‡
P

) parameters in µK.
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In general the Fisher matrix is defined as follows

Fij ©
e
≠ˆ2 ln L

ˆpiˆpj

f

p
0

, (7.12)

where L(data|p) is the likelihood function of a set of parameters p given some data;
the partial derivatives and the averaging are evaluated using the fiducial values of
the parameters p0. Since the Cramér-Rao inequality implies that (F ≠1)ii is the
smallest variance in the parameter pi, we can think of F ≠1 as the best possible
covariance matrix for estimates of the vector p. The 1-‡ error for each parameter is
given by:

‡pi =
Ò

(F ≠1)ii. (7.13)

The Fisher matrix for a CMB experiment is then written as follows (see Ref.
[204]):

F CMB
ij =

l
maxÿ

l=2

ˆCl

ˆpi
(Covl)≠1 ˆCl

ˆpi
, (7.14)

where Covl is the spectra covariance matrix. We used information in the power
spectra up to lmax = 2500.

We considered a detector noise of (◊‡)2 for each frequency channel, with ◊ the
FWHM of the beam assuming a Gaussian profile and ‡ the sensitivity. We added to
each fiducial spectrum Cl, calculated with CAMB, Ref. [27], the noise spectrum:

Nl = (◊‡)2 el(l+1)/l2b , (7.15)

where lb © Ô
8 ln 2/◊. In our analysis, we assumed that the statistical errors are

greater than beam and foreground uncertainties.
In order to use the Fisher matrix formalism, we need to compute the partial

derivative of the total power spectrum, eq. (7.11), ˆCl
ˆ– , that diverges for – = 0. This

problem prevents the use of the Fisher matrix formalism for the fiducial value – = 0.
In order to solve them, we find convenient to introduce the auxiliary parameter
“ =

Ô
–, rewriting the total power spectrum, eq. (7.11), as:

Cl = (1 ≠ “2)Cad
l + “2CNID

l ≠ 2“
Ò

(1 ≠ “2)Ccorr
l . (7.16)

With our notation, the partial derivative ˆCl
ˆ“ is analytical in “ = 0, as we can see in

the following:

ˆCl

ˆ“
© (≠2“)Cad

l + 2“CNID
l ≠ 2(1 ≠ 2“2)


(1 ≠ “2)

Ccorr
l . (7.17)

Then the parameterization in terms of “, instead of – = “2 as often seen in the
literature, cancels the divergence of the partial derivative ˆCl

ˆ– in – = 0, allowing us
to use the Fisher matrix formalism for the fiducial value “ = 0.

In the analysis we fix as fiducial model a flat �CDM model with parameter
values given by the WMAP7 measurements, Ref. [205], i.e. �bh2 = 0.02258 and
�dmh2 = 0.1109, the optical depth to reionization · = 0.088, H0 = 71 km/s/Mpc,
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the spectral index ns = 0.963, and the amplitude of the curvature perturbation
�2

R(k0) = 2.43◊10≠9. We consider three families of massless neutrinos, but checking
that to take massive neutrinos with total mass M‹ = 0.6eV neutrinos did not a�ect
the results. Moreover, we used the fiducial values �Ne� = 0, “ = 0.

The results of our analysis are shown in Figure 11.20, where we draw the 2-
dimensional likelihood in the �Ne�-“ plane for Planck, SPIDER and CMBPol. We
report the corresponding 1-‡ constraints for “ and �Ne� in Tab. 7.2.

Figure 7.1. The 68% and 95% c.l. likelihood contours for Planck (solid line), SPIDER
(dot-dashed line) CMBPol (dashed line), see also Ref. [22].

fiducial value ‡(Planck) ‡(SPIDER) ‡(CMBPol)

“ 0.0 5.3 · 10≠3 1.2 · 10≠2 1.5 · 10≠3

�Ne� 0.0 0.16 0.40 0.043
Table 7.2. The 1-‡ constraints for “ and �Ne� , for the Planck, SPIDER and CMBPol

experiments,[22].

7.3 Comparison of forecasts with BBN constraints
Big Bang Nucleosynthesis, and in particular the primordial helium abundance Yp, is
recognized to be the most sensitive cosmic “leptometer” presently available, see for
example Refs. [206, 207] or the review [178]. However, to compare BBN constraints to
the CMB bounds is non-trivial, because the BBN is sensitive to di�erent parameters
than the CMB.
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In this case, which assumes flavour-independent parameters and Gaussian distri-
butions, the only two independent parameters are ›̄ and ‡›, with �Ne� fully specified
in terms of them, but essentially negligible for the values ›̄ π 1 of interest here.
Even assuming that the average value ›̄ is scale-independent, in any way we expect
a slight dependence on the scale for the width of the distribution of fluctuations.

We fixed (arbitrarily) ‡› at a scale ⁄BBN, that roughly corresponds to the horizon
size at the time of BBN, of the order of ≥ O(100) comoving parsecs. This means to fix
‡2

› ≥ �2
›(kBBN) where kBBN = 2fi/⁄BBN © 6◊104 Mpc≠1. The CMB constraints can

be expressed into ‡2
› by just evaluating �2

’(kBBN) (given that �2
S has the same scale-

dependence). We used WMAP7 best fit values �2
’(k = 0.002 Mpc≠1) = 2.42 ◊ 10≠9

and ns = 0.966 gives �2
’(kBBN) = 1.35 ◊ 10≠9. A first important consequence of the

CMB constraints on – is that their holds for BBN-relevant fluctuations, that means
that ‡› is very small.

This allows us to use the predictions of the homogeneous, degenerate BBN to
infer the results of an inhomogeneous degenerate BBN scenario (see Ref. [208] for
an early study of this subject). Indeed, for a Gaussian probability distribution for ›:

P (›) = (2fi‡2
› )≠1/2 exp

Ë
≠(› ≠ ›̄)2/(2 ‡2

› )
È

, (7.18)

we can estimate, for a generic nuclide abundance X:

ÈXÍ =
⁄

P (›)[X(›̄) + X Õ(›̄)(› ≠ ›̄) + O((› ≠ ›̄)2)]d› = X(›̄) + O(‡2
› ). (7.19)

Since P (›) is an even function of › ≠ ›̄, the integrand linear in › vanishes. We
estimated that even for a value as large as ‡› ƒ 0.1, the error of the approximation
with respect to a proper averaging is of order of about ≥ 0.6% for deuterium, or
of the order of 0.3% for helium-4, either well below the errors on the observations.
Since ‡› scales as ‡2

› , smaller values become soon negligible. The result is that we
can use the bounds computed in the homogeneous, degenerate BBN to an excellent
approximation for the case at hand. Moreover, this also implies that, while BBN
may give excellent constraints on ›̄, it is insensitive to physically relevant values of
the fluctuation ‡›.

By using the same conservative input as in Ref. [209] (fourth line in their Table
I), we obtain the following bounds:

›̄min = ≠0.055, (7.20)

›̄max = 0.12 , (7.21)

corresponding respectively to the value below and above which only 5% of the area of
the marginalized distribution of probability of › lies. The BBN values are obtained
with the PArthENoPE code, Ref. [180].

In order to compare BBN and CMB, we expressed the CMB forecasts in the
›̄ ≠ ‡› plane. We can write the relationship between variables in the assumptions of
”› π 1 and ”› π ›̄. The relation between the power spectrum of the isocurvature
perturbation S‹ to that of › is
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S‹ = 3
fi

›̄
fi + ›̄3

fi3

7
15 + 2›̄2

fi2

+ ›̄4

fi4

”› © F (›̄)”› . (7.22)

This relation implies that �2
S = F (›̄)2�2

› , so that

�2
S(kBBN) = F (›̄)2‡2

› ∆ – ƒ 7.4 ◊ 108F (›̄)2‡2
› , (7.23)

where we have taken into account that the data constrain on – is O(0.01) or less.
Since “ =

Ô
–, we found:

“ ƒ 2.7 ◊ 104F (›̄)‡› . (7.24)

  

Figure 7.2. The 68% and 95% c.l. likelihood contours in the (log |›̄|, log ‡
›

) plane for
Planck (solid line) and CMBPol (dashed line). The BBN allowed region, corresponding
to the case considered in eq. (7.21), is that to left of vertical lines,[22].

On the other hand, because Ne� =
q

Ai, with Ai given by eq. (7.6), we
translated the bounds from the (“, �Ne�) plane to the (›̄, ‡›) plane. In this case,
we only considered Planck and CMBPol since they give the better constraints on
the parameters. The two-dimensional 68% and 95% confidence regions for Planck
and CMBPol are reported in Fig. 7.2, along with the present BBN constraints on ›̄
reported in eq. (7.21).

In conclusion, we found that, assuming a fiducial model with purely adiabatic
primordial fluctuations, these experiments can sensibly improve the CMB constraints
on the non-adiabaticity parameter “ and on the e�ective number of neutrino families
�Ne� , but are still unable to compete with BBN in this respect, which is the only
one sensitive to the sign of ›̄.
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7.4 Planck data analysis
The recent Planck measurements of the Cosmic Microwave Background anisotropies
have drastically improved our knowledge about the inflationary scenario (see e.g.
Ref. [5] ). In any case, their also show some interesting anomaly or tension that,
albeit at small confidence level, is clearly worthwile of further investigation. One of
these is the compatibility of the Planck data with a larger value for the number of
relativistic degrees of freedom at recombination than what is commonly expected in
the standard scenario (Ref. [5] ). For example, as described in the next chapter,in
our analysys Ref. [95], we found a value of Ne� = 3.71 ± 0.40 at 68% c.l. from the
Planck CMB data alone, that becomes, when the Planck data are combined with
the measurements of the Hubble constant from Ref. [6], Ne� = 3.63 ± 0.27 at 68%
c.l., i.e. an indication for a non standard value at more than 95% c.l..

A deviation of Ne� from the standard value 3.046, could indicate not only the
presence of additional relativistic species but also other di�erent and unexpected
neutrino properties, as a non-zero chemical potential, as we saw in the previous
section. Here (and in our paper Ref. [23]) we investigate if this anomaly could be
connected with a non-standard inflationary process as the Curvaton scenario, since
in this model a non zero neutrino chemical potential, and, therefore, a larger value
for Ne� could arise as we again saw in the previous section.

Since probing neutrino isocurvature density perturbation (NID), in the Curvaton
scenario is complementary to constrain the lepton number in the neutrino sector, it is
important to investigate the current CMB bounds on NID perturbation component,
allowing at the same time a variation in the neutrino e�ective number Ne� . Bounds
on neutrino isocurvature perturbations have been presented in Ref. [210] and Ref.
[211], and also the Planck collaboration has provided new and stringent bounds on
NID, see Ref. [223], but fixing Ne� to the standard value of 3.046. Here (see also Ref.
[23]) we present a combined analysis for Ne� and NID from the Planck data, and
considering also the combination with the recent Hubble constant measurements.

Our analysis method is based on the Boltzmann CAMB code, Ref. [27], and
a Monte Carlo Markov Chain (MCMC) analysis based on the MCMC package
cosmomc, Ref. [97].

We sample the set of parameters that follow:

{Êb, Êc, �s, ·, ns, log[1010As], Ne� , –NID} , (7.25)
where Êb © �bh2 and Êc © �ch2 are respectively the physical baryon and cold
dark matter energy densities, �s the ratio between the sound horizon and the
angular diameter distance at decoupling, · is the reionization optical depth, ns

the scalar spectral index, As the amplitude of the primordial spectrum, Ne� the
e�ective neutrino number and –NID is the NID amplitude. For this analysis we
parameterized the total CMB power spectrum as:

Cl = (1 ≠ –NID)Cad
l + –NIDCNID

l + 2sign(–NID)
Ò

–NID(1 ≠ –NID)Ccorr
l , (7.26)

where again Cad
l is the adiabatic component, CNID

l is the neutrino isocurvature
density component and Ccorr

l is the correlated spectrum. In this case, the quantity
–NID, that is defined in eq. (7.8) in this way:
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Parameter Planck+WP Planck+WP+HST
�bh2 0.02215 ± 0.00050 0.02260 ± 0.00033
�ch2 0.1222 ± 0.0068 0.1273 ± 0.0056

◊ 1.0405 ± 0.0010 1.0408 ± 0.0011
· 0.094 ± 0.015 0.099 ± 0.015
ns 0.966 ± 0.021 0.987 ± 0.012

log[1010As] 3.115 ± 0.035 3.122 ± 0.037
H0[km/s/Mpc] 68.7 ± 3.9 72.5 ± 2.2

Ne� 3.26 ± 0.48 3.70 ± 0.30
–NID ≠0.0031 ± 0.0053 0.0002 ± 0.0031

Table 7.3. Constraints at 68% c. l. on Ne� , –NID and the main 6 cosmological parameters
from the Planck+WP and Planck+WP+HST cases.

–NID(k0)
1 ≠ –NID(k0) © P NID

S (k0)
P’(k0) (7.27)

has the power spectra of isocurvature perturbations P NID
S (k) and of curvature

perturbations P’(k) evaluated at a fixed pivot wave number k0 = 0.05 Mpc≠1

and having the same spectral tilt nS . Moreover, since we considered only totally
correlated or anti-correlated spectra, in order to simplify the notation, we varied
only one parameter –NID, that is ever defined positive, replacing — = ±1 with
the sign(–NID). In fact, considering, as usual, the parameter —, as defined in
eq. (7.9), the adiabatic and isocurvature perturbations are totally anti-correlated
taking — = ≠1 and totally correlated taking — = 1 in the curvaton scenario. Giving
this convention, we have no longer the parameter —, but the spectra are totally
anti-correlated, or totally correlated, when –NID < 0, or –NID > 0.

We compared these theoretical power spectra with the recent CMB measurements
made by the Planck experiment. For the Planck data, we added both the high-l
and low-l TT likelihoods and we also used the low-l TE, EE, BB WMAP likelihood,
as in Ref. [5] : this combination corresponds to the Planck+WP case. Moreover,
always as in Ref. [5] , we marginalized over all foregrounds parameters. Then we
also considered the HST constraint on the Hubble constant from Ref. [6].

The results of our analysis, Ref. [23], are reported in Table 7.3 and Figure 7.3,
for Planck+WP and Planck+WP+HST datasets.

As we can see, the Planck+WP data do not show any indication for NID or for
a larger value for Ne� , though a cosmological degeneracy exists along the –NID-Ne�
direction. Are the models with smaller values for Ne� to be more consistent with
the CMB observations when –NID < 0. The current Planck+WP data alone do not
show any supporting evidence for NID by considering variations in Ne� , and are
more consistent with the standard value of Ne� = 3.046, due to its larger error when
NID are considered.

On the contrary, the inclusion of HST measurements reduces the error bars on
the NID component while providing an indication for a non-standard value for Ne�
at more than two standard deviations, consistently with the anti-correlation between
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Figure 7.3. 68% and 95% c.l. likelihood contours for Planck+WP and Planck+WP+HST
in the Ne� vs. –NID plane. Note the small correlation between the two parameters,
[23].
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Parameter Planck+WP Planck+WP+HST
–NID > 0 –NID > 0

�bh2 0.02260 ± 0.00043 0.02271 ± 0.00031
�ch2 0.1287 ± 0.0059 0.1295 ± 0.0050

◊ 1.04149 ± 0.00082 1.04149 ± 0.00082
· 0.095 ± 0.014 0.096 ± 0.014
ns 0.987 ± 0.017 0.992 ± 0.011

log[1010As] 3.100 ± 0.033 3.104 ± 0.031
H0[km/s/Mpc] 72.4 ± 3.4 73.3 ± 2.0

Ne� 3.71 ± 0.42 3.81 ± 0.27
–NID < 0.0023 < 0.0025

Table 7.4. Constraints at 68% c. l. on Ne� , –NID > 0 and the main 6 cosmological
parameters from the Planck+WP and Planck+WP+HST cases, [23].

Parameter Planck+WP Planck+WP+HST
–NID < 0 –NID < 0

�bh2 0.02198 ± 0.00043 0.02249 ± 0.00031
�ch2 0.1196 ± 0.0056 0.1248 ± 0.0049

◊ 1.04012 ± 0.00085 1.04003 ± 0.00080
· 0.093 ± 0.014 0.102 ± 0.015
ns 0.958 ± 0.018 0.982 ± 0.011

log[1010As] 3.119 ± 0.034 3.145 ± 0.033
H0[km/s/Mpc] 67.3 ± 3.3 71.8 ± 2.0

Ne� 3.08 ± 0.40 3.59 ± 0.27
–NID > ≠0.0056 > ≠0.0023

Table 7.5. Constraints at 68% c. l. on Ne� , –NID < 0 and the main 6 cosmological
parameters from the Planck+WP and Planck+WP+HST cases, [23].

Ne� and –NID evident in the Figure 7.3.
Since, for example, in the curvaton scenario the residual isocurvature components

are either fully correlated or fully anti-correlated (see Ref. [189]), we repeated the
analysis by imposing each time the –NID > 0 prior, as reported in Table 7.4, or
–NID < 0 prior, as reported in Table 7.5, for the two datasets: Planck+WP and
Planck+WP+HST. In this way, we can also better evaluate the impact of a weak
prior on –NID respect to specific correlated or anti-correlated models.

When we consider –NID > 0, the constraint on the NID component is practically
left una�ected by the inclusion of a HST prior. This is evident from Figure 7.4,
where we report the 2-D constraints on the H0 vs –NID > 0 for the Planck+WP
and Planck+WP+HST datasets.

The interesting aspect is that when we impose a –NID < 0 prior, the Planck+WP
case provide a value for the Hubble constant that is in tension with current HST
determinations, even if the Ne� parameter is allowed to vary. For this reason a
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Figure 7.4. The 68% and 95% c.l. likelihood contours for Planck+WP and
Planck+WP+HST combination of data, considering totally correlated spectra –NID > 0,
[23].
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Figure 7.5. The 68% and 95% c.l. likelihood contours for Planck+WP and
Planck+WP+HST combination of data, considering totally anti-correlated spectra
–NID < 0, [23].
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NID component with –NID < 0 cannot resolve the current tension on the values
of H0 between the Planck data and the HST constraint. Moreover, the HST prior
is included, an anticorrelated, –NID < 0, neutrino isocurvature density component
is severly constrained, as we can see in the Figure 7.5, where we reported the 2-D
constraints on the H0 vs –NID < 0 for the Planck+WP and Planck+WP+HST
datasets. In this case, the combined analysis suggests a value for Ne� larger than
the standard expectations at more than two standard deviations, as we can see in
Table 7.5.
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Chapter 8

Constraints on Axion Cold
Dark Matter

One of the great puzzles related to the �CDM model is the nature of the dark matter
(DM) component that, according to the Planck observations, Refs. [5, 2, 101], makes
up roughly 27% of the total matter-energy content of the Universe. A well-motivated
DM candidate is the axion, that was first proposed by Peccei and Quinn in Ref.
[165] to explain the strong CP problem, i.e., the absence of CP violation in strong
interactions.

In this chapter (but see also Ref. [212]) we consider the hypothesis that the
axion accounts for all the DM present in the Universe. We have put this "axion dark
matter" (ADM) scenario under scrutiny using the cosmological data, such as the
observations of CMB temperature, Refs. [5, 2, 101], and polarization anisotropies
(including BICEP2 claimed detection1 of B-mode polarization, see Refs. [10, 213])
and of Baryon Acoustic Oscillations (BAO), Refs. [8, 153, 99, 154, 115]. The ADM
model has also been revisited by other authors, Refs. [214, 215], in light of BICEP2
data, and our analyses in the minimal �CDM scenario agree with these previous
works. However, in order to assess the robustness of the cosmological constraints
presented in the literature, as well as the tension between BICEP2 and Planck
measurements of the tensor-to scalar ratio, we also considered extensions of the
simplest ADM model. The e�ects of additional relativistic degrees of freedom, of
neutrino masses, of a dark energy equation-of-state parameter and of a free-tensor
spectral index are carefully explored.

8.1 Axion cosmology
In order to solve the strong CP problem dynamically, Peccei and Quinn postulated
the existence of a new global U(1) (quasi-) symmetry, often denoted U(1)PQ, that is
spontaneously broken at the Peccei-Quinn (PQ) scale fa. The spontaneous breaking
of the PQ symmetry generates a pseudo Nambu-Goldstone boson, the axion, which
can be copiously produced in the Universe’s early stages, both via thermal and

1This claim has been recently questioned by the Planck collaboration, see Ref. [?], since this
signal could be completely explained by a polarization signal from galactic dust. This point is
discussed in the chapter 10.
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non-thermal processes. Thermal axions with sub-eV masses contribute to the hot
dark matter component of the Universe, as neutrinos, and the cosmological limits
on their properties have been updated and presented in Refs. [162, 21].

Here we focus on axion-like particles produced non-thermally, as they were
postulated as natural candidates for the cold dark matter component, see Refs. [216,
217, 218, 219, 220]. The history of axions starts at the PQ scale fa. For temperatures
between this scale and the QCD phase transition �QCD, the axion is, for practical
purposes, a massless particle. When the Universe’s temperature approaches �QCD,
the axion acquires a mass via instanton e�ects. The e�ective potential V for the
axion field a(x) is generated through non-pertubative QCD e�ects, see Ref. [221],
and, setting the color anomaly N = 1, it may be written as

V (a) = f2
a m2

a(T )
5
1 ≠ cos

3
a

fa

46
, (8.1)

where the axion mass is a function of temperature. Introducing the misalignment
angle ◊ © a/fa, the field evolves according to the Klein-Gordon equation on a flat
Friedmann-Lemaître-Robertson-Walker background:

◊̈ + 3H ◊̇ + m2
a(T )◊ = 0 , (8.2)

where the axion temperature-dependent mass is, see Ref. [221]:

ma(T ) =
I

Cma(T = 0)(�QCD/T )4 T & �QCD

ma(T = 0) T . �QCD
(8.3)

where C ƒ 0.018 is a model dependent factor, see Refs. [221, 222], �QCD ƒ 200 MeV
and the zero-temperature mass ma(T = 0) is related to the PQ scale:

ma ƒ 6.2 µeV
3

fa
1012 GeV

4≠1
. (8.4)

The axion is e�ectively massless at T ∫ �QCD, as it can be seen from eq. (8.3).
The PQ symmetry breaking can occur before or after inflation. If there was an

inflationary period in the Universe after or during the PQ phase transition, there will
exist, together with the standard adiabatic perturbations generated by the Inflaton
field, axion isocurvature perturbations, associated to quantum fluctuations in the
axion field. In this scenario, i.e. when the condition

fa >
3

HI

2fi

4
, (8.5)

is satisfied, the initial misalignment angle ◊i should be identical in the whole
observable Universe, with a variance given by

È‡2
◊Í =

3
HI

2fifa

42
, (8.6)

and corresponding to quantum fluctuations in the massless axion field

È”2
aÍ =

3
HI

2fi

42
, (8.7)
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where HI is the value of the Hubble parameter during inflation. These quantum
fluctuations generate an axion isocurvature power spectrum

�a(k) = k3|”2
a|/2fi2 = H2

I

fi2 ◊2
i f2

a . (8.8)

The Planck data, combined with the 9-year polarization data from WMAP, Ref.
[102], constrained the primordial isocurvature fraction (defined as the ratio of the
isocurvature perturbation spectrum to the sum of the adiabatic and isocurvature
spectra) to be, see Ref. [223]:

—iso < 0.039 , (8.9)

at 95% c.l. and at a scale k = 0.05 Mpc≠1. This limit can be used to exclude regions
in the parameter space of the PQ scale and the scale of inflation HI , since they are
related via

HI = 0.96 ◊ 107 GeV
3

—iso
0.04

41/2 3 �a
0.120

41/2 3
fa

1011 GeV

40.408
, (8.10)

where �a is the axion mass-energy density. In this scenario, in which the PQ
symmetry is not restored after inflation, and therefore the condition fa >

1
HI
2fi

2

holds, and assuming that the dark matter is made of axions produced by the
misalignment mechanism 2, Planck data has set a 95% c.l. upper bound on the
energy scale of inflation, see Ref. [223]:

HI Æ 0.87 ◊ 107 GeV
3

fa
1011 GeV

40.408
. (8.11)

The BICEP2 collaboration has reported 6-‡ evidence for the detection of pri-
mordial gravitational waves3, with a tensor to scalar ratio r = 0.2+0.07

≠0.05, pointing
to inflationary energy scales of HI ≥ 1014 GeV, see Refs. [10, 213]. These scale
would require a value for fa which lies several orders of magnitude above the Planck
scale and consequently nullifies the axion scenario in which the PQ is broken during
inflation. We conclude that, if future CMB polarization experiments will confirm,
even partially in light of the recent Planck collaboration work (see Ref. [?]), the
BICEP2 findings, the axion scenario in which the PQ symmetry is broken during
inflation will be ruled out, at least in its simplest form. This conclusion could be
circumvented in a more complicated scenario (see e.g. Ref. [224] for a proposal in
this direction) but we not consider here this possibility.

There exists however another possible scenario in which the PQ symmetry is
broken after inflation, i.e.

2An additional relevant mechanism of axion production that we will shortly see is via the decay
of axionic strings. However, in this particular scenario such contribution will be negligible, since
strings and other defects are diluted after the inflationary stage.

3This claim has been recently questioned by the Planck collaboration, see Ref. [?], since this
signal could be completely explained by a polarization signal from galactic dust. This point is
discussed in the chapter 10.
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fa <
3

HI

2fi

4
, (8.12)

In this second axion cold dark matter scheme, there are no axion isocurvature
perturbations since there are not axion quantum fluctuations. On the other hand,
there will exist a contribution to the total axion energy density from axionic string
decays. We briefly summarize these two contributions (misalignment and axionic
string decays) to �ah2. The misalignment mechanism will produce an initial axion
number density which reads

na(T1) ƒ 1
2ma(T1)f2

a Èf(◊i)◊2
i Í (8.13)

where T1 is defined as the temperature for which the condition ma(T1) = 3H(T1) is
satisfied, and f(◊i) is a function related to anharmonic e�ects, linked to the fact that
eq. (8.2) has been obtained assuming that the potential, eq. (8.1), is harmonic. The
value of f(◊i)◊2

i is an average of a uniform distribution of all possible initial values:

È◊2
i f(◊i)Í = 1

2fi

⁄ fi

≠fi
◊2

i f(◊i)d◊i = 8.77 , (8.14)

considering the analytic expression for f(◊i) provided by Ref. [225]. If anharmonic
e�ects are neglected (i.e. f(◊i) = 1), the factor quoted above should be replaced by
the standard fi2/3, changing the cold dark matter axion population and consequently
the cosmological constraints presented here.

The mass-energy density of axions today related to misalignment production is
obtained via the product of the ratio of the initial axion number density to entropy
density times the present entropy density, times the axion mass ma, and reads, see
Ref. [225]:

�a,mish
2 =

Y
_]

_[

0.236È◊2
i f(◊i)Í

1
f

a

1012 GeV

27/6
f . f̂a

0.0051È◊2
i f(◊i)Í

1
f

a

1012 GeV

23/2
f & f̂a

(8.15)

where f̂a = 9.91 ◊ 1016 GeV.
By considering the BICEP2 results, the value of fa, which, in this second scenario,

should be always smaller than the inflationary energy scale, will always be smaller
than f̂a and therefore, the misalignment axion cold dark matter energy density is

�a,mish
2 = 2.07

3
fa

1012 GeV

47/6
. (8.16)

As previously stated, there will also be a contribution from axionic string decays
and other axion topological-defect decays, as domain walls, �a,dech2. The total
(axion) cold dark matter density �ah2 is the sum of the misalignment and topological-
defect decay contributions 4, see Ref. [214]:

4For the values of fa considered here, and relevant for the axion cold dark matter scenario,
fa ≥ 1011 GeV, axions will decouple when the number of relativistic degrees of freedom includes
all the standard model particles, being their current number density highly suppressed and their
contribution to �N

e�

≥ 0.03, see Refs. [21, 227], deviation which is currently unobservable and may
be at reach in future surveys as Euclid, see Ref. [228].
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�ah2 = 2.07 (1 + –dec)
3

fa
1012 GeV

47/6
, (8.17)

where –dec is the ratio –dec = �a,dec/�a,mis between the two contributions. Following
Ref. [225], we considered –dec = 0.164, see Ref. [226], so that5

�ah2 = 2.41
3

fa
1012GeV

47/6
. (8.18)

Here we quote our results on ma for the case –dec = 0.164. However, the CMB
is actually only sensitive to �ah2 Ã (1 + –dec)m≠7/6

a , therefore limits on ma for an
arbitrary value of –dec can be obtained from the ones reported in our analysis by
means of the rescaling:

ma ≠æ mÕ
a = ma

5 (1 + –dec)
(1 + 0.164)

66/7
. (8.19)

In a similar approach, the limits obtained on ma when neglecting anharmonic
e�ects can also be obtained from the values presented in the next section as

mÕÕ
a = ma ◊

A
fi2/3
8.77

B6/7

= ma ◊ 0.43 . (8.20)

8.2 Data analysis
The basic ADM scenario we analyze is described by the following set of parameters:

{Êb, ◊s, ·, ns, log[1010As], r, ma} , (8.21)

where Êb © �bh2 is the physical baryon density, ◊s the ratio of the sound horizon
to the angular diameter distance at decoupling, · is the reionization optical depth,
As and ns are, respectively, the amplitude and spectral index of the primordial
spectrum of scalar perturbations, r is the ratio between the amplitude of the spectra
of tensor and scalar perturbations, and finally ma is the axion mass. The latter sets
the density of cold dark matter �ch2 © �ah2 through eq. (8.17). All the quantities
characterising the primordial scalar and tensor spectra (amplitudes, spectral indices,
possibly running) are evaluated at the pivot wave number k0 = 0.05 Mpc≠1. In the
baseline model we assume flatness, purely adiabatic initial conditions, a total neutrino
mass

q
m‹ = 0.06 eV and a cosmological constant-like dark energy (w = ≠1).

We also assume, unless otherwise noted, that the inflation consistency condition
nT = ≠r/8 between the tensor amplitude and spectral index holds.

Extensions to the baseline model described above are also explored. We start
by considering the e�ective number of relativistic degrees of freedom and the sum
of neutrino masses, first separately and then jointly, as additional parameters. A
model with �Ne� sterile massive neutrino species, characterised by a sterile neutrino

5A value for the axionic string decays fractional contribution larger than the one used here has
been reported in Ref. [229]. This value is obtained by combining the observed value of �

c

h2 with
estimates of the axion mass based on the Josephson e�ect.
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mass me�
s , has also been analysed. Then we proceeded to add the equation-of-state

parameter w of dark energy to the baseline model. Finally, we also studied the
e�ect of having more freedom in the inflationary sector, by letting the running of the
scalar spectral index vary or by relaxing the assumption of the inflation consistency.

We use the CAMB Boltzmann code, Ref. [27], to evolve the background and
perturbation equations, and derived posterior distributions for the model parameters
from current data using a Monte Carlo Markov Chain (MCMC) analysis based
on the publicly available MCMC package cosmomc, Ref. [97], that implements the
Metropolis-Hastings algorithm.

We consider the data on CMB temperature anisotropies measured by the Planck
satellite, see Refs. [2, 101], supplemented by the 9-year polarization data from
WMAP, Ref. [102].

The likelihood functions associated to these datasets are estimated and combined
using the likelihood code distributed by the Planck collaboration, described in Ref.
[101], and publicly available at Planck Legacy Archive6. We used Planck TT data
up to a maximum multipole number of lmax = 2500, and WMAP 9-year polarization
data (WP) up to l = 23, see Ref. [102].

The BICEP2 collaboration has reported evidence for the detection of B-modes
in the multipole range 30 < l < 150 after three seasons of data taking in the South
Pole, Refs. [10, 213], with 6 ≠ ‡ significance. This B-mode excess is much higher
than known systematics and expected foregrounds, being the spectrum well fitted
with a tensor-to-scalar ratio r = 0.2+0.07

≠0.05. Notice however that when foregrounds are
taken into account, subtraction of di�erent foreground models makes the best-fit
value for r move in the range 0.12 ≠ 0.21. Here we nevertheless assume that the
BICEP2 signal was entirely of cosmological origin, but, recently this signal has
been questioned by the Planck collaboration, see Ref. [?], since could be completely
explained by a polarization signal from galactic dust. The likelihood data from the
BICEP2 collaboration has been included in our MCMC analyses accordingly to the
cosmomc package.

We also use BAO measurements, namely the SDSS Data Release 7 from Refs. [153,
99], WiggleZ survey from Ref. [154] and 6dF from Ref. [115] datasets, as well as the
most recent and most accurate BAO measurements to date, arising from the BOSS
Data Release 11 (DR11) results from Ref. [8].

We now present the results for the allowed axion mass ranges in the scenario
which would survive once the BICEP2 findings concerning the tensor to scalar ratio
and, consequently, the energy scale associated to inflation, are confirmed by ongoing
and near future searches of primordial B modes. In this case, the PQ symmetry
should be broken after inflation. We restricted ourselves to such scenario.

Tables 8.1 and 8.2 depict the results for the di�erent cosmologies explored, for
two possible data combinations: (a) Planck temperature data + WMAP polarization
(WP) and (b) Planck temperature data, WP and BICEP2 measurements. The
constraints on the tensor to scalar ratio are quoted for a reference scale of k0 =
0.05 Mpc≠1. For the sake of simplicity, we do not show all the results with the
BAO measurements included in the numerical analyses. We quote the values of the
cosmological parameters resulting from the analyses with BAO data included only

6

http://pla.esac.esa.int/pla/aio/planckProducts.html

http://pla.esac.esa.int/pla/aio/planckProducts.html
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in the cases in which these values notably di�er from the results obtained without
considering BAO measurements.

Assuming a standard ADM model we obtain ma = 81.5 ± 1.6 µeV (ma =
82.0 ± 1.5 µeV) from Planck, WP (+BICEP2) data, corresponding to a cold dark
matter energy density of �ah2 = 0.1194 ± 0.0027 (�ah2 = 0.1186 ± 0.026). Notice
that the mean values obtained can be estimated by equating eq. (8.18) to the total
dark matter energy density inferred from cosmological observations. Therefore, in
mixed axion-cold dark matter schemes (see e.g Ref. [230] for an implementation of
this possible scenario), the required axion cold dark matter will be smaller, implying
higher mean values for ma.

Neglecting anharmonic e�ects in the axion potential would shift the mean
values roughly by a half. If we consider as well BAO measurements, the former
value translates into ma = 82.2 ± 1.0 µeV. Therefore, the inclusion of BAO data
reduces mildly the error on ma. Notice that the value of ma that we obtain in the
standard ADM model after considering BICEP2 data, ma = 81.5 ± 1.6 µeV, is in
perfect agreement with the value obtained by Ref. [214], where it is found that
ma = 71 ± 2 µeV (1 + –dec), after applying eq. (8.19), which provides the correct
rescaling of our bounds for an arbitrary –dec.

Figure 8.1. The red contours show the 68% and 95% c.l. allowed regions from the
combination of Planck data, WP and BICEP2 measurements in the (n

s

, Ne�) plane.
The blue contours depict the constraints after the BAO datasets are added in the analysis,
[212].

When allowing Ne� to be a free parameter to extend the minimal ADM scenario
to scenarios in which additional relativistic species are present, we get ma = 76.8 ±
2.8µeV and Ne� = 3.79 ± 0.41 for Planck+WP, and ma = 75.3 ± 2.8µeV and
Ne� = 4.13±0.43 after combining Planck data with WP and BICEP2 measurements.
When BAO datasets are included in the analysis, the former values are translated
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Figure 8.2. the red contours show the 68% and 95% c.l. allowed regions from the
combination of Planck data, WP and BICEP2 measurements in the (n

s

, r) plane. The
blue contours depict the constraints after the BAO datasets are added in the analysis,
[212].

into ma = 76.6 ± 2.6µeV and Ne� = 3.69 ± 0.30. Therefore, there exists from
Planck+BICEP2 data a 2 ≠ 3‡evidence for extra radiation species. The higher value
of Ne� found when considering tensor modes and BICEP2 simultaneously was first
found in Ref. [21] (see also previous chapter), where it was also pointed out that
the tension between the tensor-to scalar ratio r extracted by Planck and WP data
and the value of r found by BICEP2 data is less evident when Ne� > 3. The reason
for this is because, if the value of Ne� > 3, the power in the CMB damping tail is
suppressed. This can be compensated by a higher scalar spectral index ns which in
turn, will reduce the power at large scales. This power reduction at small multipoles
can be compensated by increasing the tensor to scalar ratio r, and the overall result
is a positive correlation between Ne� and r. This e�ect is illustrated in Fig. 8.1,
where is depicted the strong positive correlation between Ne� and ns and Fig. 8.2
shows the relation between ns and r. Concerning exclusively CMB data, a larger
value of Ne� can be compensated with a larger value of r (and viceversa), being the
degeneracy among these two parameters mildly broken when considering as well
BAO data in the MCMC analysis. Thus the preference for Ne� > 3, already present
in the Planck data, is further increased by the inclusion of the BICEP2 likelihood
that assigns a large probability to the r ƒ 0.2 region.

The larger value of Ne� results in a smaller axion mass (and in a larger associated
error) due to the well-known existing correlation between Ne� and �ah2 (that is,
the cold dark matter energy density) when considering only CMB data, since it
is possible to increase both to leave the redshift of matter-to-radiation equality
unchanged. This e�ect can be clearly noticed from the results depicted in Tabs. 8.1
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and 8.2, where the value of �ah2 is about ≥ 2 ≠ ‡ larger than the value found in
the minimal scenario with no extra dark radiation species. The error on the �ah2

cosmological parameter is also larger. Given that �ah2 is inversely proportional to
ma, this results in an anticorrelation between Ne� and ma. The large degeneracy
between Ne� and �ch2 © �ah2 also drives the large value of H0 found in this case.
The degeneracy is partly broken by the inclusion of BAO information: when the
BAO datasets are considered, both H0 and Ne� are closer to their ADM+r values,
being H0 = 71.7 ± 1.9 and Ne� = 3.69 ± 0.30 respectively.

We also consider a model in which the active neutrino mass is a free parameter.
In this case ma = 81.6 ± 1.6µeV after combining Planck data with WP and BICEP2
measurements, while ma = 82.4 ± 1.1µeV when BAO datasets are also considered.
However, in this �CDM plus massive neutrino scenario, the neutrino mass bounds
are una�ected when considering tensors and BICEP2 data. Indeed, the 95% c.l.
bound on the total neutrino mass we got after considering all the data explored
here,

q
m‹ < 0.25 eV, agrees perfectly with the one found when neither tensors

nor BICEP2 data are included in the analyses, see Ref. [21]. We also explored in
Ref. [212] the case in which the three massive active neutrinos coexist with �Ne�
massless species. The numerical results without BAO data are presented in the
fifth column of Tabs. 8.1 and 8.2. The values obtained for the axion mass and for
the number of relativistic degrees of freedom in this scenario are very close to the
ones reported above for the Ne� cosmology, finding, from CMB data, evidence for
extra dark radiation species at more than 2 ≠ ‡. When considering the full dataset
exploited in that paper, including BAO measurements, the bound on the neutrino
mass becomes less stringent than in the three massive neutrino scenario due to the
strong

q
m‹-Ne� degeneracy: we found a 95% c.l. bound of

q
m‹ < 0.47 eV from

the combination of Planck data with WP, BICEP2 and BAO measurements. Notice
that, as in the case of the ADM plus Ne� relativistic degrees of freedom model, the
mass of the axion is smaller and the value of the Hubble constant is larger than in the
standard ADM scenario. The reason for that is due to the large existing degeneracy
between �ah2 and Ne� when considering CMB data only: notice the higher value
of �ah2 in Tabs. 8.1 and 8.2, when compared to its value in the standard ADM+r
scenario.

The last neutrino scenario we consider is the case in which there are �Ne� sterile
massive neutrino species, characterised by a mass me�

s , which, for instance, in the
case of a thermally-distributed sterile neutrino state, reads, eq. (6.3)

me�
s = (Ts/T‹)3ms = (�Ne�)3/4ms , (8.22)

where Ts, T‹ are the current temperature of the sterile and active neutrino species,
respectively, and ms is the true sterile neutrino mass. We recall however that the
parameterization in terms of �Ne� and me�

s is more general, and also includes,
among others, the case of a Dodelson-Widrow sterile neutrino (in which case me�

s =
�Ne� ms). For this particular case we fixed the mass of the three light neutrino
species

q
m‹ = 0.06 eV, i.e. the minimum value indicated by neutrino oscillation

data. In this case, we obtain an axion mass, a number of neutrino species and
a e�ective sterile neutrino mass of ma = 75.3 ± 2.9µeV, Ne� = 4.08 ± 0.42 and
me�

s < 0.63 eV at 95% c.l. (ma = 76.5±2.6µeV, Ne� = 3.82±0.32 and me�
s < 0.51 eV
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at 95% c.l.) before (after) the combination of Planck, WP and BICEP2 measurements
with BAO results. As previously explained and as expected, the mean values for Ne�
are considerably larger than those found in the absence of BICEP2 data. Concerning
the bounds on the e�ective sterile neutrino mass, the values are mildly shifted when
the BICEP2 measurements are addressed due to the anticorrelation between Ne�
and me�

s , being the 95% c.l. constraints on the neutrino mass constraints tighter
when considering BICEP2 data. Our findings agree with the results presented in
Refs. [231, 232, 233], which also included BICEP2 data. Note that the mean value
of the cold dark matter density, made by axions, is, again, larger than what is found
in the standard ADM+r scenario.

The next scenario we explore here is a wCDM model with a free, constant, dark
energy equation-of-state parameter w. Both the values of the axion masses and the
value of the tensor to scalar ratio r are very close to their values in the ADM model.
However, when the BAO data are not considered, the equation-of-state parameter is
di�erent from ≠1 at ≥ 95% c.l. (w = ≠1.57 ± 0.26), and we also found a very large
value for H0 = 87.1 ± 9.1 km/s/Mpc. The addition of BAO constraints make both
the value of the Hubble constant H0 and of the dark energy equation of state w
much closer to their expected values within a minimal �CDM scenario, being the
values of these two parameters w = ≠1.12 ± 0.12 and H0 = 70.5 ± 2.8 km/s/Mpc,
respectively. This illustrates the highly successful constraining power of BAO data
concerning dark energy measurements.

In Ref. [234] we have extracted the tensor spectral index from the BICEP2
measurements. The standard inflationary paradigm predicts a small, negative,
tensor spectral index. More concretely, the inflation consistency relation implies
that nT ƒ ≠r/8. We now relax this constrain leaving nT as a free parameter. We
rule out a scale invariant tensor spectrum with 3 ≠ ‡ significance when considering
CMB data only. The addition of BAO measurements does not change significantly
these results, see Fig. 8.3. As expected, the axion mass constraints are una�ected
by the presence of a free nT . The value of the tensor-to-scalar ratio we found is
r = 0.172 ± 0.047 using the Planck+WP+BICEP2 dataset. The fact that the data
support a non-zero spectral index for tensors also implies that r strongly depends
on the scale k0. The corresponding 95% c.l. limit on r0.002 © r(k = 0.002 Mpc≠1) is
r0.002 < 0.055 for the Planck+WP+BICEP2 datasets, see Fig. 8.4.

The latest extended scenario we consider is the one with a running of the scalar
spectral index nrun = dns/d ln k. This minimal extension was firstly addressed
in the context of a �CDM scenario by the BICEP2 collaboration, in order to
relax the discrepancy between their measurements of the tensor to scalar ratio r
and the limits on the same quantity arising from Planck data, see Refs. [10, 213].
The reason for that is due to the degeneracy between the running and the scalar
spectral index: a negative running of the spectral index can be compensated with
a larger scalar spectral index, which will decrease the CMB temperature power
spectra at large scales. This lowering e�ect at low multipoles can be compensated
with a higher tensor contribution to the temperature fluctuations (by increasing
r). The former degeneracies are depicted in Figures 8.5 and 8.6, respectively.
The BICEP2 collaboration reports dns/d ln k = ≠0.022 ± 0.010 at 68% c.l., whose
absolute value is smaller than what we found in the context of the ADM scenario,
dns/d ln k = ≠0.028 ± 0.010 at 68% c.l..
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Figure 8.3. The red contours show the 68% and 95% c.l. allowed regions from the
combination of Planck data, WP and BICEP2 measurements in the (n

t

, r0.05) plane,
referring these limits to a scale of k0 = 0.05 Mpc≠1. The blue contours depict the
constraints after the BAO datasets are added in the analysis, [212].

Figure 8.4. The red contours show the 68% and 95% c.l. allowed regions from the
combination of Planck data, WP and BICEP2 measurements in the (n

t

, r0.05) plane,
referring these limits to a scale of k0 = 0.002 Mpc≠1. The blue contours depict the
constraints after the BAO datasets are added in the analysis, [212].
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Figure 8.5. The red contours show the 68% and 95% c.l. allowed regions from the
combination of Planck data, WP and BICEP2 measurements in the (n

s

, dn
s

/d ln k)
plane. The blue contours depict the constraints after the BAO datasets are added in the
analysis, [212].

Figure 8.6. The red contours show the 68% and 95% c.l. allowed regions from the
combination of Planck data, WP and BICEP2 measurements in the (n

s

, r) plane. The
blue contours depict the constraints after the BAO datasets are added in the analysis,
[212].
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Finally, we briefly comment on how the results reported are a�ected by theoretical
uncertainties. These can be broadly divided into two classes: those due to the
imprecise knowledge of the fraction of dark matter provided by misalignment-
produced axions, and uncertainties in the ma ≠ �a,mis relation. Concerning the
former, we have assumed so far that �dm = (1 + –dec) ◊ �a,mis = 1.164 ◊ �a,mis;
however, we could consider the possibility that axions do not make up for the
totality of dark matter, or that the contribution of axions produced by string decays
(parameterised by –dec) is larger than expected. In fact, there is still some controversy
about the magnitude of the string radiation contribution to the total axion density,
as some numerical studies find it to be the dominant mechanism (see e.g. Ref. [235])
while in other cases it is found to be comparable or subdominant with respect to
the misalignment mechanism (like in Ref. [226], from which we took our reference
value –dec = 0.164). We have already commented on the e�ect of changing the ratio
between misalignment- and string decay-produced axions. However, we could take a
step further and take the very conservative view that we know nothing about the
fraction of dark matter provided by misalignment-produced axions. In this case we
can still note that

�a,mis Æ �a Æ �dm, (8.23)

from which it readily follows that the values reported in the tables (divided by a
factor 1.1646/7 ƒ 1.14 to consider only the misaligment contribution to the total �)
can be considered as lower bounds on the axion mass. In other words, we can put
conservative lower limits to the axion mass by requiring only that the density of
misalignment-produced axions does not exceed the total dark matter density. For
example, in the case of the minimal ADM+r scenario, using the value reported in
Tab. 8.1 we get ma Ø 81.5 µeV ◊ 1.164≠6/7 = 71.5 µeV .

The second source of uncertainty is the ma≠�a,mis relation. The axion abundance
depends, among others, on the details of the QCD phase transition through the
temperature-dependent axion mass. Detailed calculations of the axion abundance,
together with the relevant fitting formulas, have been presented e.g. in Refs. [236,
145]; in particular, the expressions derived there explicitly account for the dependence
of �a,mis on the QCD scale �QCD. We have run additional chains for the basic
ADM+r scenario, substituting eq. (8.16) (that assumes �QCD = 200 MeV) with
the ma ≠ �a,mis relation derived by Bae, Huh & Kim in Ref. [236] considering three
di�erent values for �QCD, namely �QCD = 320, 380, 440 MeV [see. Eq (30) of Ref.
[236]]. The results for the Planck+WP dataset are shown in Tab. 8.3. We see that
the value of the axion mass require to explain the observed dark matter density
decreases down to 63.7 ± 1.2 µeV when the QCD scale is increased up to 440 MeV.
We got very similar shift for the Planck+WP+BICEP dataset. Another uncertain
parameter that enters the ma ≠ �a,mis relation is the anharmonicity factor f(◊). As
observed,the value of the axion mass scales as È◊2

i f(◊i)Í6/7.
In conclusion, the exact nature of dark matter is still an open issue, involving

both particle physics and cosmology. As we discussed, a well-motivated candidate
for the role of DM is the axion, the pseudo Nambu-Goldstone boson associated to
the breaking of the PQ symmetry, proposed to explain the absence of CP violation
in strong interactions. The axion can be created non-thermally in the early Universe
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�QCD [MeV ] ma [µeV ]

200 81.5 ± 1.6
320 75.6 ± 1.4
380 69.0 ± 1.3
440 63.7 ± 1.2

Table 8.3. 68% confidence level constraints on the axion mass considering di�ering values
of the �QCD scale, for the ADM+r scenario and the Planck+WP dataset. The first row
correspond to our eq. (8.15) [eq. (34) of Ref. [225]] while the remaining rows correspond
to eq. (30) of Ref. [236].

through the misalignment mechanism and the decay of axionic strings, and its mass
is inversely proportional to the scale fa at which the PQ symmetry is broken.

In this chapter, we presented the constraints on the ”axion dark matter” scenario
in which the PQ symmetry is broken after inflation, using the most precise CMB
data available to date (including the BICEP2 on the spectrum of B-modes), as well
as the recent and most precise distance BAO constraints to date from the BOSS
Data Release 11 (DR11). We found that, in the minimal ADM scenario and for
�QCD = 200MeV , the largest dataset implies ma = 82.2 ± 1.1 µeV , corresponding
to fa = (7.54 ± 0.10) ◊ 1010 GeV . We also studied the e�ect on our estimates of
theoretical uncertainties, in particular the imprecise knowledge of the QCD scale
�QCD, in the calculation of the temperature-dependent axion mass. We found that
in the simplest ADM scenario the Planck+WP dataset implies that the axion mass
ma = 63.7 ± 1.2 µeV for �QCD = 440 MeV . We also commented on the possibility
that axions do not make up for all the dark matter, or that the contribution of
string-produced axions has been grossly underestimated; in that case, the values
that we found for the mass can conservatively be considered as lower limits.

The search for axion dark matter is also the target of laboratory experiments
like the Axion Dark Matter eXperiment (ADMX), Ref. [237], that uses a tunable
microwave cavity positioned in a high magnetic field to detect the conversion of
axions into photons. This is enhanced at a resonant frequency ‹ = ma/2fi; for the
typical masses found in our study, this corresponds to a frequency ‹ ƒ 15 ≠ 20 GHz.
ADMX has been operating in the range 0.3 ≠ 1 GHz, thus being able to exclude DM
axions in the mass range between 1.9 and 3.53 µeV, see Refs. [238, 239]. ADMX
is currently undergoing an upgrade that will extend its frequency range up to a
few GHzs (i.e., masses in the 10 µeV range), see Ref. [240], which is unfortunately
still not enough to detect DM axions in the mass range implied by cosmological
observations7, if the PQ symmetry is broken after inflation (as implied by the recent
BICEP2 data). However, a second, smaller experiment called ADMX-HF is currently
being built, that will allow to probe the 4 ≠ 40 Ghz range, see Ref. [240], thus

7This is still true even if one assumes –
dec

ƒ 0, that corresponds, for a given value of �
a

h2,
to the smallest value of the axion mass. We also note that it does not help either if axions only
make up for part of the total DM content of the Universe. In fact, since �ah2 Ã m

≠6/7

a , having
�ah2 < �ch2 would just shift the resonant frequency to even higher values.
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being in principle sensitive to axion masses approximately in the 16 ≠ 160 µeV range,
allowing to directly test the ADM scenario, at least in its simplest implementation.

Finally, we remark that the values of the axion mass found in our analysis
correspond to an axion-photon coupling constant Ga““ in the 10≠14 GeV ≠1 range
(or larger if we interpret our results on the mass as lower limits), the exact value
depending on the electromagnetic and color anomalies associated of the axial current
associated with the axion. Moreover, the BICEP collaboration claim of a detection
of gravitational waves, see Ref. [10], has been recently questioned by the Planck
collaboration, see Ref. [?], since the signal could be completely explained by a
polarization signal from galactic dust. For this reason, we planned to analyze both
the axion scenarios I and II, that was excluded from BICEP2, in order to constrain
the axion mass, in light of the next polarization Planck data release.
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Chapter 9

CMB Constraints on BBN
Nuclear Rates

Big Bang Nucleosynthesis (BBN)) o�ers one of the most powerful methods to test
the validity of the cosmological model around the MeV energy scale. Two key
cosmological parameters enter BBN computations, the energy density in baryons,
�bh2, and the e�ective neutrino number, Ne� .

The measurements of CMB anisotropies obtained by the Planck satellite, see
Ref. [5], are in very good agreement with the theoretical predictions of the minimal
�CDM cosmological model. Assuming a given cosmological scenario and standard
BBN dynamics, we can infer indirectly from Planck data the abundance of primor-
dial nuclides with exquisite precision. For example, assuming �CDM, the Planck
constraint on the baryon density, �bh2 = 0.02207 ± 0.00027, can be translated into
a prediction for the primordial deuterium fraction, competitive with the most recent
and precise direct observations, using the public BBN code PArthENoPE, Ref. [180]:

2H/H = (2.65 ± 0.07) · 10≠5 (68% C.L.) , (9.1)
The authors of Ref. [11] (see also Ref. [241]) presented an analysis of all

known deuterium absorption-line systems, including some new data from very metal-
poor Lyman-alpha systems at redshift z = 3.06726 (visible in the spectrum of the
quasar QSO SDSS J1358+6522) and at redshift z = 3.04984 (seen in QSO SDSS
J1419+0829). They obtained:

2H/ H = (2.53 ± 0.04) · 10≠5 (68% C.L.) , (9.2)
that is two standard deviations smaller than the (indirect, model-dependent) cosmo-
logical determination from CMB data, but with a comparable uncertainty.

This small tension could be the result of small experimental systematics, either in
Planck or in astrophysical deuterium measurements. However, here we consider that
current BBN calculations could also be plagued by systematics in the experimental
determination of nuclear rates. In fact, the main uncertainty for standard BBN
calculations of 2H comes from the rate of the radiative capture reaction d(p, “)3He
(a recent review of the experimental status can be found in Ref. [242]). Its energy-
dependent cross section ‡(E) is related to the energy-dependent astrophysical factor
S(E) through:
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‡(E) = S(E)e≠2fi÷/E, (9.3)
where ÷ is the Sommerfeld factor. The low energy limit of ‡(E) is well-known thanks
to the results of the underground experiment LUNA, Ref. [243], but, during BBN,
the relevant energy range in the center of mass is rather around E ƒ 30 ≠ 300 keV.
For such energies, the uncertainty on the cross section is at the level of 6-10% when
fitting S(E) with a polynomial expression, and becomes a theoretical error on the
primordial 2H/H ratio of the order of 2% (for a fixed value of the baryon density and
Ne�), comparable to the experimental error in the above cosmological determination
(9.1) or astrophysical determination (9.2).

Recently, a reliable ab initio nuclear theory calculation of this cross section has
been performed in Refs. [244, 245, 246], and the uncertainty on this prediction can
be conservatively estimated to be also of the order of 7%, see Ref. [247]. However, in
the BBN energy range, the theoretical result is systematically larger than the best-fit
value derived from the experimental data. By plugging the theoretical estimate of
the cross section in a BBN code we find that more deuterium is destroyed for the
same value of the cosmological baryon density, and thus the predicted primordial 2H
abundance results to be smaller, see Ref. [247]. The theory-indicated cross-section
could be a a way to reconcile the slightly di�erent values of 2H/H measured in
astrophysical data and predicted by Planck. Indeed, the result quoted in eq. (9.1)
using the public BBN code PArthENoPE, Ref. [180], relies on a value of the cross
section d(p, “)3He inferred from nuclear experimental data.

Further data on this crucial cross section in the relevant energy range are expected
from experiments such as LUNA, but while waiting for such measurements, we found
out to which extent the deuterium measurement of Ref. [11] can be made even
more compatible with Planck predictions when the rate of the reaction d(p, “)3He
was treated as a free input parameter. We addressed this issue assuming di�erent
cosmological models: the minimal �CDM model, �CDM plus extra radiation, a non
spatially-flat Universe, etc. Moreover, here we use a version of PArthENoPE where
the d(p, “)3He reaction rate is updated to the best fit experimental determination
(see section 9.1). The deuterium fraction given by the public version of PArthENoPE

is slightly di�erent, but the change in the central value is at the level of 4 per mille,
only.

In this chapter (see also Ref. [248] we point out that, remarkably, Planck CMB
data are powerful enough to provide information on nuclear rates. Moreover, our
results give independent support to the theoretical calculation of Ref. [246].

9.1 Dependence on cosmological parameters and nu-
clear rates

As well known, the theoretical value of the primordial 2H/H abundance is a rapidly
decreasing function of the baryon density parameter �bh2, and, considering a slightly
more general cosmological model with extra radiation, an increasing function of
Ne� . Finally, this value depends on the cross section of a few leading nuclear
processes, that initially produce deuterium and subsequently process it into A = 3
nuclei. In particular, the calculation depends on the thermal rate of such processes,
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Reaction Rate Symbol ‡2H/H · 105

p(n, “)2H R1 ±0.002
d(p, “)3He R2 ±0.062
d(d, n)3He R3 ±0.020
d(d, p)3H R4 ±0.013

Table 9.1. List of the four leading reactions and corresponding rate symbols controlling
the deuterium abundance after BBN. The last column shows the error on the ratio
2H/H coming from experimental (or theoretical) uncertainties in the cross section of
each reaction, for a fixed baryon density �

b

h2 = 0.02207, [248].

obtained by convolving their energy-dependent cross section ‡(E) with the thermal
energy distribution of incoming nuclei during BBN. The four leading reactions are
listed in Table 9.1, and the uncertainties, like all other results quoted in this paper,
are calculated with a version of PArthENoPE where the d(p, “)3He reaction rate is
updated to the best fit determination of Ref. [242].

In the past, BBN calculations were based on the experimental determination
of the cross section of nuclear processes, measured in laboratory experiments, but
the situation has changed recently, since detailed theoretical calculations are now
available. For example, for the cross section of the neutron-proton fusion reaction
p(n, “)2H, a very accurate result could be derived using pion-less e�ective field theory,
with a theoretical error below the percent level, Refs. [249, 250] (see e.g. Ref. [251]
for further details). Using PArthENoPE, one can propagate this error to the primordial
deuterium abundance, obtaining an uncertainty very small, ‡2H/H = 0.002 · 10≠5, i.e.
of the order of 0.1% (for �bh2 fixed at the Planck best-fit value).

Instead, cross sections of d ≠ d fusion reactions, i.e. d(d, n)3He and d(d, p)3H,
are still determined using experimental data, and they have been measured in the
100 keV range with a 1-2% uncertainty, Ref. [252]. This produces uncertainty on
the deuterium primordial abundance at most of the order of 1%, see Table 9.1, and
the main source of uncertainty is due to the radiative capture process d(p, “)3He
converting deuterium into helium.

As we already mentioned, when fitting a polynomial expression for S(E) to
the raw data, now dominated by the LUNA results, Ref. [243], we find that the
uncertainty at 68% C.L. grows from 6% in the low energy limit to 19% around
1 MeV. This means that the uncertainty is in the range 6-10% in the energy range
relevant for BBN, which gives an error on the primordial deuterium abundance of
order ‡2H/H = 0.062 · 10≠5, as reported in Table 9.1, comparable to the experimental
error estimated by Ref. [11] and dominant the error budget. In addition we have
that the best fit value of S(E) inferred from the data in the range 30 keVÆ E Æ 300
keV is lower than the theoretical result of Ref. [244, 246] by about 1-‡. So could
be this di�erence to have an impact on the concordance of Planck results for the
baryon density with the deuterium abundance measured by Ref. [11].

Using PArthENoPE with the best fit experimental cross section for the d(p, “)3He
reaction, we can check that the best fit value of the astrophysical determination
of the deuterium abundance, 2H/H = 2.53 · 10≠5 from Ref. [11], corresponds to
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�bh2 = 0.02269. However, in the case of the minimal cosmological model (i.e.
the spatially flat �CDM model), we have seen that Planck data yield �bh2 =
0.02207 ± 0.00027 (68% C.L.). We can relax this moderate 2-‡ tension, either by
assuming a more complicated cosmological model compatible with higher values
of the baryon density, or by adopting the theoretical value of the d(p, “)3He cross
section, see Ref. [246]. In the latter case, for the �CDM model, the same range for
the baryon density leads to

2H/H = (2.58 ± 0.07) · 10≠5 , (9.4)

in nice agreement with the astrophysical determination at the 1-‡ level. In other
words, increasing the d(p, “)3He thermal rate has the same e�ect of increasing the
cosmological baryon fraction.

*
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Figure 9.1. The likelihood L(�
b

h2), assuming the astrophysical determination of the
primordial deuterium abundance 2H/H by Cooke et al. in Ref. [11], adopting either the
experimental best fit Rex

2 (T ) (solid) or ab initio calculation Rth

2 (T ), (dashed), Ref. [246].
The star shows the Planck best fit value of �

b

h2 in the minimal �CDM model, [248].

This is illustrated in Fig. 9.1 where the likelihood function L(�bh2, R2)

L(�bh
2, R2) = exp

A

≠(2H/Hth(�bh2, R2) ≠ 2H/Hex)2

‡2
ex

B

, (9.5)

is plotted versus baryon density in two di�erent scenarios, using the theoretical
value of 2H/H (index th) or the experimental result of Ref. [11] (index ex). The solid
line corresponds to Rex

2 (T ) obtained by using the best fit of experimental values for
the d(p, “)3He cross section, while the dashed line to the theoretical prediction of the
same cross section, Ref. [246], whose corresponding rate is denoted by Rth

2 (T ). The
theoretical rate brings the agreement with the Planck �CDM value of �bh2 from
the 2-‡ to the 1-‡ level. Note that, in calculating those likelihoods, we only included
the experimental error on astrophysical measurements of the deuterium fraction,
‡ex = 0.05, because our purpose is to show what the baryon probablility could like
after a future measurement campaign of the d(p, “)3He astrophysical factor. We
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found that, if the theoretical calculation of Ref. [246] was experimentally confirmed,
the likelihood profile would shift to the dashed curve.

The aim of this chapter is to see whether, by combining CMB and BBN data, we
could grasp some robust information on the value of the thermal rate R2 preferred by
cosmology. To this end, we parameterized the generic R2(T ) in terms of an overall
rescaling factor A2:

R2(T ) = A2 Rex
2 (T ), (9.6)

and used it in PArthENoPE. This approximation can seem too simplistic, since the
thermal rate is a function of the temperature. We notice that, for example, the ratio
of the baseline fit of R2 used in PArthENoPE and the one which is found starting
from the calculation of Ref. [246] is not simply a constant as temperature varies in
the BBN range and monotonically decreases. This variation is at level of 1%. The
main point however, is the net e�ect on deuterium. Indeed, we have checked that the
theoretical estimate Rth

2 gives a primordial deuterium which is the same obtained
by a constant rescaling of the experimental rate by a constant factor R = 1.05 in
the whole range for �bh2 of interest, from 0.021 up to 0.023, the di�erence between
the two results for 2H/H being at worst of order 0.1%. Hence, a constant rescaling
factor A2 was enough for our purpose, and o�ered the advantage of limiting the
number of extra free parameters to one.

Assuming this ansatz, we introduce the baryon likelihood function, L(�bh2, A2),
through

L(�bh
2, A2) = exp

A

≠(2H/ Hth(�bh2, A2) ≠ 2H/Hex)2

‡2
ex + ‡2

th

B

, (9.7)

where the theoretical value is a function of the baryon density and the d(p, “)3He
thermal rate rescaling factor A2. Again we used the experimental value of the
primordial deuterium abundance and its squared uncertainty, see eq. (9.2). Finally,
‡2

th is the squared propagated error on deuterium due to the present experimental
uncertainty on R2.

9.2 Data analysis
Our main dataset consist in the Planck public data release of March 2013, see Ref.
[101], based on Planck temperature completed by WMAP9 polarization at low-l.
We also considered the B modes polarization data from the BICEP2 experiment,
Ref. [10]. In this respect, we include the 5 bandpowers of the BB spectrum and the
window functions provided by the BICEP2 collaboration (http://bicepkeck.org/). We
perform a likelihood analysis of this dataset following the method of Hamimeche and
Lewis, see Ref. [253]. We combine these two CMB datasets (referred as Planck+WP
and Planck+WP+BICEP2 respectively) with the deuterium abundance likelihood
function L(�bh2, A2) (referred as BBN).

Occasionally, we also include the direct measurement of the Hubble constant by
Ref. [6] (HST), and information on Baryon Acoustic Oscillations by SDSS-DR7 at
redshift z = 0.35 from Ref. [99], by SDSS-DR9 at z = 0.57 from Ref. [7], and by
WiggleZ at z = 0.44, 0.60, 0.73 from Ref. [103] (referred alltogether as BAO).
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For the data analysis method, we use indi�erently the publicly available Monte
Carlo Markov Chain packages CosmoMC, Ref. [97], and Monte Python, Ref.
[254] (http://montepyhton.net), which rely on the Metropolis-Hastings algorithm
for exploring the parameter space, and on a convergence diagnostic based on the
Gelman and Rubin statistics. We use the April 2014 version of the two codes, which
included the support for the Planck Likelihood Code v1.0 and implemented an
e�cient sampling of the parameter space using a fast/slow parameter decorrelation,
see Ref. [104]. Obviously, we checked that the results from the two codes were
identical. To evaluate the deuterium abundance produced during the Big Bang
Nucleosynthesis, we used the PArthENoPE code, minimally modified in order to
account for the global rescaling factor A2.

We first consider the Planck+WP dataset assuming the minimal �CDM model
with six free parameters: the density of baryons and cold dark matter �bh2 and �ch2,
the ratio ◊ of the sound horizon to the angular diameter distance at decoupling, the
optical depth to reionization · , the amplitude AS of the primordial scalar fluctuation
spectrum at k = 0.05Mpc≠1, and the spectral index nS of this spectrum. Finally,
we include the rescaling factor A2, a�ecting only the determination of the primordial
deuterium abundance. For this model, we consider purely adiabatic initial conditions,
we imposed spatial flatness, we fix the e�ective number of neutrinos to its standard
value Ne� = 3.046, see Ref. [19], and we considered the sum of neutrino masses to
be 0.06eV as in the Ref. [5].

Subsequently, we study several extensions of the minimal �CDM model, with
extra free parameters: the neutrino e�ective number Ne� , the spatial curvature of
the Universe parametrised by �k = 1 ≠ �c ≠ �b ≠ ��, and the amplitude of the
lensing power spectrum AL, as defined in Ref. [88].

Finally, we consider a �CDM+r framework where we allow the possibility for
a gravitational wave background with tensor to scalar amplitude ratio r. In this
case we include the BICEP2 dataset, assuming the B mode signal claimed by this
experiment to be the genuine signature of primordial inflationary tensor modes1.
Since the amplitude of tensor modes measured by BICEP2 is in tension with the
upper limit on r coming from the Planck experiment, we also consider two further
extensions that could in principle solve the tension: an extra number of relativistic
particles parametrized by Ne� (see e.g. Refs. [21, 231, 232]) and a running of the
spectral index dnS/dlnk, see Ref. [10].

In Table 9.2, we report our results for the parameters of the minimal �CDM
model, plus the nuclear rate parameter A2 and the derived cosmological parameter H0,
using the data combinations Planck+WP+BBN and PLANCK+WP+BBN+BAO.

As expected, we obtain that the data provides an indication for A2 being greater
than one, roughly at the level of two standard deviations, even when adding the
BAO dataset. We can also check explicitly in Figure 9.2 that there is a clear
anti-correlation between A2 and �bh2: in order to improve the agreement between
Planck data and deuterium abundance measurements, we need either a value of the
nuclear rate rescaling factor A2 higher than one, or a value of the baryon density

1This detection of primordial inflationary tensor modes has been recently questioned by the
Planck collaboration, see Ref. [?], since this signal could be completely explained by a polarization
signal from galactic dust. This point is discussed in the chapter 8.

http://montepyhton.net
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Parameter Planck+WP Planck+WP
+BBN +BBN+BAO

�bh2 0.02202 ± 0.00028 0.02209 ± 0.00025
�ch2 0.1200 ± 0.0026 0.1188 ± 0.0017

◊ 1.04129 ± 0.00063 1.04144 ± 0.00058
· 0.089 ± 0.013 0.091 ± 0.013
ns 0.9599 ± 0.0073 0.9625 ± 0.0058

log[1010As] 3.089 ± 0.025 3.089 ± 0.025
H0[km/s/Mpc] 67.2 ± 1.2 67.74 ± 0.78

A2 1.155 ± 0.082 1.138 ± 0.076
Table 9.2. Constraints on cosmological parameters (at the 68% confidence level) in the

case of the minimal �CDM model, [248].

Figure 9.2. 2-D contour plots in the �
b

h2 vs. A2 plane, showing preferred parameter
regions at the 68% and 95% confidence levels in the case of the minimal �CDM model,
[248].
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Figure 9.3. 2-D contour plots in the H0 vs. A2 plane, showing preferred parameter regions
at the 68% and 95% confidence levels in the case of the minimal �CDM model, [248].

larger than the Planck mean value. In fact, deuterium is a decreasing function of
both the R2 rate and the baryon density �b. The Figure 9.3 shows an interesting
correlation between A2 and the Hubble constant H0. When A2 is varied, yields a
lower value for the Hubble constant in a combined Planck+WP+BBN analysis.

Given the fact that our results depend on the underlying cosmological model,
it is interesting to investigate if some extensions of the standard �CDM model
could bring the value of A2 back in better agreement with the current experimental
determination of R2(T ) (corresponding by definition to A2 = 1).

In Table 9.3, we report the constraints when a variation in the neutrino ef-
fective number Ne� is allowed. Even in this case, we can see that the combined
Planck+WP+BBN and Planck+WP+BBN+BAO analyses show a preference for
A2 > 1 at roughly the 2-‡ level, even if the central value and error bar for A2 are
almost doubled. When we include the direct measurement of the Hubble parameter
(case Planck+WP+BBN+HST), the indication for A2 > 1 is still stronger, at the
2.5-‡ level. We can conclude that the preference for a large d(p, “)3He reaction rate
is robust against the extension of the standard cosmological model to a free Ne� .

However, it is interesting to note (see Table 9.3) that the preferred value for
the neutrino e�ective number Ne� is always larger than the standard value 3.046.
As reported in section 6.4.4. of Ref. [5], the standard Planck+WP+BBN analysis
(i.e. assuming A2 = 1) gave Ne� = 3.02 ± 0.27 (68% C.L.), while the CMB only
result, including high-l data from ACT and SPT, was Ne� = 3.36 ± 0.34. With
our analysis, we obtained that this shift of Ne� towards its standard value was
mostly driven by the low experimental value of R2. In fact, when A2 is let free,
the preference for Ne� > 3.046 persists even when deuterium measurements are
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Parameter Planck+WP Planck+WP Planck+WP
+BBN +BBN+HST +BBN+BAO

�bh2 0.02241 ± 0.00042 0.02261 ± 0.00031 0.02233 ± 0.00029
�ch2 0.1263 ± 0.0055 0.1281 ± 0.0049 0.1251 ± 0.0051

· 0.096 ± 0.015 0.099 ± 0.014 0.094 ± 0.013
ns 0.979 ± 0.017 0.988 ± 0.011 0.974 ± 0.010

log[1010As] 3.117 ± 0.034 3.128 ± 0.030 3.109 ± 0.029
H0[km/s/Mpc] 71.0 ± 3.2 72.8 ± 2.0 70.1 ± 1.9

Ne� 3.56 ± 0.40 3.76 ± 0.27 3.43 ± 0.30
A2 1.29 ± 0.15 1.33 ± 0.14 1.26 ± 0.14

Table 9.3. Constraints on cosmological parameters (at the 68% confidence level) in the
case of the extended �CDM model with extra relativistic degrees of freedom, [248].

Figure 9.4. 2-D contour plots in the Ne� vs A2 plane, showing preferred parameter regions
at the 68% and 95% confidence levels in the case of the extended �CDM model with
extra relativistic degrees of freedom, [248].
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included, as we can see in Fig. 9.4, where we report the two dimensional likelihood
contours in the Ne� vs. A2 plane for the three di�erent datasets: Planck+WP+BBN,
Planck+WP+BBN+HST, and Planck+WP+BBN+BAO.

We can see a correlation between A2 and Ne� : large values of A2 remain com-
patible with Planck+WP+BBN data, provided that at the same time Ne� is larger
than three. Such considerations reinforce the motivations for future experimental
campaign to collect further data in the few hundred keV range on the d(p, “)3He
cross section. Notice that considering A2 = 1.05, i.e. to the theoretical result of
Ref. [246], a standard value of Ne� is allowed at 68% C.L., if the HST measurement
of H0 is not included in the analysis. If experiments would confirm the theoretical
expectation for Rth

2 (T ) in the BBN energy range, the overall agreement of CMB and
BBN data for a standard number of relativistic degrees of freedom would improve
with respect to the A2 = 1 case.

Figure 9.5. 2-D contour plots in the AL vs A2 plane showing probabilities at 68% and
95%, [248].

In Table 9.4 we find the constraints on A2 for further extensions of the minimal
�CDM model, using the Planck+WP+BBN. We vary the curvature parameter �k,
despite the fact that �k ”= 0 is di�cult to explain from a theoretical point of view,
and almost excluded when BAO data is also included: with free spatial curvature
and without BAO data, the evidence for A2 > 1 is slightly weaker. Finally, we
consider the case of a free CMB lensing amplitude parameter AL, that is not a
physical extension of the �CDM model. In fact, although Planck data prefer AL > 1,
this result has no physical interpretation, but could be caused by a small and not
yet identified systematic error a�ecting the Planck data (see the discussion in Ref.
[5]), or alternatively, it may account in some approximate way for a non-standard
growth rate of large scale structures after recombination. We can see in Table 9.4
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Figure 9.6. 2-D contour plots in the �
k

vs A2 plane showing probabilities at 68% and
95%, [248].

that when AL is left free, the A2 parameter becomes compatible with one. We show
our results for the joint confidence limits on A2 vs. �k and A2 vs. AL in Figures 9.5
and 9.6.

In summary, Planck+WP+BBN data consistently indicate that A2 > 1 (suggest-
ing a d(p, “)3He reaction rate closer to theoretical predictions than to experimental
results) in the minimal �CDM model, as well as in a model with free Ne� . However,
the evidence for A2 > 1 goes away when either �k or AL are promoted as free
parameters (with Ne� = 3.046), but these scenarios are less theoretically motivated.
Incidentally, we can see in Table 9.4 also that with a free �k or AL, and at the same
time a free Ne� , the evidence for A2 > 1 persists.

Finally, we consider the Planck+WP+BICEP2+BBN dataset, and in Table 9.5
we report the constraints allowing for a gravitational wave background with tensor
to scalar ratio r0.05 at scales of k = 0.05 Mpc≠1. As we can see the indication for
A2 > 1 is still present. Moreover, allowing for a variation in Ne� provides even
further evidence for A2 > 1 at more than two standard deviations. It is however
interesting that when we consider a running of the primordial spectral index A2
becomes compatible with one in between one standard deviation. In Figure 9.7 we
show the 2-D contour plots from the Planck+WP+BICEP2+BBN dataset in the
r0.05 vs A2, in Figure 9.8 Ne� vs A2 and in Figure 9.9 dns/dlnk vs A2 planes showing
probabilities at 68% and 95%. As we can see, there is essentially no degeneracy
between A2 and r0.05, but a degeneracy is clearly present between A2 and Ne� and
dns/dlnk.

The BICEP2 dataset, when combined with the Planck data, provides an evidence
either for a larger Ne� either for a negative running of the spectral index dns/dlnk.
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Parameter Planck+WP+ Planck+WP+ Planck+WP+
BICEP2+BBN BICEP2+BBN BICEP2+BBN

�bh2 0.02209 ± 0.00028 0.02286 ± 0.00044 0.02236 ± 0.00031
�ch2 0.1184 ± 0.0027 0.1300 ± 0.0058 0.1195 ± 0.0027

◊ 1.04146 ± 0.00063 1.04050 ± 0.00073 1.04144 ± 0.00063
· 0.088 ± 0.012 0.100 ± 0.015 0.101 ± 0.015
ns 0.9663 ± 0.0072 1.004 ± 0.018 0.9593 ± 0.0080

log[1010As] 3.082 ± 0.024 3.131 ± 0.034 3.115 ± 0.031
H0[km/s/Mpc] 67.9 ± 1.2 75.5 ± 3.7 67.7 ± 1.2

r0.05 0.134 ± 0.045 0.153 ± 0.040 0.163 ± 0.040
Ne� [3.046] 4.04 ± 0.44 [3.046]

dns/dlnk [0] [0] ≠0.0256 ± 0.0097
A2 1.145 ± 0.081 1.40 ± 0.17 1.080 ± 0.079

Table 9.5. Constraints on cosmological parameters (at the 68% confidence level) for the
Planck+WP+BICEP2 dataset, with free parameters (r0.05,Ne� , dn

s

/dlnk). We vary at
most two of these extra parameters at the same time, and fix the other ones to their
standard model value, indicated above between squared brackets, [248].

Figure 9.7. 2-D contour plots from the Planck+WP+BICEP2+BBN dataset in the r vs
A2 plane showing probabilities at 68% and 95%, [248].
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Figure 9.8. 2-D contour plots from the Planck+WP+BICEP2+BBN dataset in the Ne�
vs A2 plane showing probabilities at 68% and 95%, [248].

Figure 9.9. 2-D contour plots from the Planck+WP+BICEP2+BBN dataset in the
dn

s

/dlnk vs A2 plane showing probabilities at 68% and 95%, [248].
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In the first case is needed a value of A2 strictly larger than one in order to be in
agreement with BBN, while in the second case, when running is considered, A2 is
well compatible with one. A precise measurement of A2 from laboratory experiments
could in principle help in discriminating between these two scenarios.

In conclusion, we have shown that a combined analysis of Planck CMB data
and of recent deuterium abundance measurements in metal-poor damped Lyman-
alpha systems provides some piece of information on the radiative capture reaction
d(p, “)3He, converting deuterium into helium. The rate for this process represents
the main source of uncertainty to date in the BBN computation of the primordial
deuterium abundance within a given cosmological scenario, parameterized by the
baryon density �bh2 and e�ective neutrino number Ne� . The corresponding cross
section has not been still measured with a su�ciently low uncertainty and normaliza-
tion errors in the BBN center of mass energy range, 30 - 300 keV. Moreover, the best
fit of available data appears to be systematically lower than the detailed theoretical
calculation presented in Ref. [246].

An experiment such as LUNA at the underground Gran Sasso Laboratories
may give an answer to this problem in a reasonably short time: with the present
underground 400 kV LUNA accelerator, Ref. [255], is possible to measure the
d(p, “)3He cross section in the 20 < Ecm(keV ) < 260 energy range with an accuracy
better than 3%, i.e. considerably better than the 9% systematic uncertainty estimated
in Ref. [256]. This goal can be achieved by using the large BGO detector already
used in Ref. [243], that ensures a detection e�ciency of about 70% and a large
angular coverage for the photons emitted by the d(p, “)3He reaction.

Our study showed that, interestingly, the combined analysis of Planck and
deuterium abundance data returns a larger rate A2 for this reaction than the best
fit computed in Ref. [242], where the authors exploit the available experimental
information on d(p, “)3He cross section. On the other hand we found that Planck
data result in better agreement with ab initio theoretical calculations, in the minimal
�CDM cosmological model, as well as when allowing for a free e�ective neutrino
number.
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Chapter 10

The BICEP2 result and the
spectral index of tensor modes

The detection of B-mode polarization made by the BICEP2 experiment, Ref. [10],
could clearly represents one of the major discovery in cosmology in the past twenty
years. While the BICEP2 result needs to be confirmed by future experiments, it is
important to fully analyze the BICEP2 data and to identify all possible inconsistencies
at the theoretical level. However, this detection has been recently questioned by the
Planck collaboration, see Ref. [?], since this signal could be completely explained by
a polarization signal from galactic dust.

In this chapter (but see also Ref. [234]) we focus our attention on the spectral
index of tensor fluctuations nT . Indeed, a crucial prediction of inflation is the
production of a stochastic background of gravity waves (Ref. [257]) with a slightly
tilted spectrum,

nT = ≠2‘ , (10.1)

where ‘ = ≠Ḣ/H2 denotes a slow roll parameter from inflation (H is the Hubble
rate during the inflationary stage).

In standard inflation ‘ is strictly positive, see Ref. [258], and in the usual
parameter estimation routines, the tensor spectral index is assumed to be red, or
negligible.

However, in recent years, a set of inflationary models has been elaborated where
the spectral index of tensor modes could be positive, nT > 0, i.e. blue (Refs.
[259, 260]).

A first attempt to compare these models with observational data has been made
in Refs. [261, 262].

The main theoretical problem for the production of a blue spectrum of gravita-
tional waves (BGW) is that the stress-energy tensor must violate the so-called Null
Energy Condition (NEC). In a spatially flat FRW metric, a violation of NEC indeed
corresponds to the inequality Ḣ < 0 and is ultimately the reason for the red tensor
spectrum in standard inflation.

Models that violates NEC have been already presented. For example, in the so-
called super-inflation models, see Ref. [263], where inflation is driven by a component
violating the NEC a BGW spectrum is expected. Blue tensor spectra are also a
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robust prediction of the pre-big bang scenario, Ref. [264]. Models based on string
gas cosmology as in Ref. [265], where scalar metric perturbations are thought to
originate from initial string thermodynamic fluctuations, see Ref. [266], also can
explain a BGW background. A BGW spectrum is also a generic prediction of a class
of four-dimensional models with a bouncing phase of the Universe, see Ref. [267]. To
induce the bounce, the stress-energy tensor must violate the null energy condition
(NEC). G-inflation, see Ref. [268], has a Galileon-like nonlinear derivative interaction
in the Lagrangian with the resultant equations of motion being of second order. In
this model, violation of the null energy condition can occur and the spectral index
of tensor modes can be blue. BGW may also be present in scalar-tensor theories
and f(R) gravity theories.

It is therefore timely to investigate the constraints on the tensor spectral index
nT from the BICEP2 data. Strangely enough, no constraint on this parameter has
been presented by the BICEP2 collaboration while, we find that the BICEP2 data
could provide interesting results on this parameter.

10.1 Analysis method
Our analysis method is based on the Boltzmann CAMB code, Ref. [27], and a Monte
Carlo Markov Chain (MCMC) analysis based on the MCMC package cosmomc,
Ref. [97] (version December 2013). We have implemented in the MCMC package the
likelihood code provided by the BICEP2 team (we just used BB data), and considered
as free parameters the ratio of the tensor to scalar amplitude r at 0.01hMpc≠1,
defined as r0.01, and the tensor spectral index nT . We preferred to use the pivot scale
at k = 0.01hMpc≠1 since the BICEP2 data is most sensitive to multipole l ≥ 150
and using the approximate formula l ≥ 1.35 ◊ 104k.

All the remaining parameters have been kept fixed at the Planck+WP best fit
values for the LCDM+r scenario (see Ref. [5]) with the running of the scalar spectral
index fixed to zero.

Moreover, since the tensor amplitude should also be consistent with the upper
limits on r coming from measurements of the temperature power spectrum, we have
assumed a prior of r0.002 < 0.11 at 95% c.l. (see Ref. [223]). We referred to this
prior as the "TT" prior.

Note that the TT prior is taken at much larger scales, k = 0.002hMpc≠1 than
those sampled by the BICEP2 experiments. As we showed this prior is extremely
important for the constraints on nT .

The results of our analysis are reported in Table 10.1 and Figures fig:bicep21,
fig:bicep22, fig:bicep23 and fig:bicep24. We consider four cases: nT free, nT free
but with the TT prior, nT assumed to be negative (nT < 0) and nT assumed to be
negative plus the TT prior, respectively.

We can derive the following conclusions:

• The BICEP2 data alone slightly prefers a positive spectral index. The case
nT = 0 is consistent with the data in between two standard deviations.

• When a TT prior of r0.002 < 0.11 at 95% c.l.. has been assumed, the BICEP2
data strongly prefers a blue spectral index with nT Æ 0 excluded at more than
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Figure 10.1. Constraints on the n
T

vs r0.01 plane with no prior on n
T

, [234].

Figure 10.2. Constraints on the n
T

vs r0.01 plane with no prior on n
T

but TT prior on
r0.002, [234].
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Figure 10.3. Constraints on the n
T

vs r0.01 plane with n
T

< 0, [234].

Figure 10.4. Constraints on the n
T

vs r0.01 plane with n
T

< 0 and TT prior on r0.002,
[234].
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Case r0.01 nT

nT free 0.19 ± 0.06 1.36 ± 0.83
TT prior+nT free 0.18 ± 0.05 1.67 ± 0.53

nT < 0 0.22 ± 0.06 nT > ≠0.76
TT prior+nT < 0 0.15 ± 0.03 nT > ≠0.09

Table 10.1. Constraints at 68% c.l. on r0.01 and n
T

parameters for the cases described
in the text. A blue spectral index (n

T

> 0) is strongly suggested when a TT prior of
r0.002 < 0.11 at 95% c.l. is included in the analysis.

three standard deviations.

• When we restricted the analysis to negative nT we obtained a lower limit of
nT > ≠0.76 at 68% c.l. (nT > ≠0.09 in case of the TT prior).

A crucial point in discussing the reliability of the BICEP2 result is the possible
contamination from galactic dust. In Ref. [10] a galactic dust template was pre-
sented (named "DDM1") using the best available information on this component.
However, since there is virtually no experimental constraint on the amplitude of the
dust component, it is interesting to investigate the possible impact of dust on the
conclusions presented here on the tensor index nT .

In this respect, we repeated our analysis allowing the possibility of a dust
component. We considered two possible cases: a dust component compatible with
the DDM1 template and a component with an amplitude four times larger than the
DDM1 template. This work is before the results from the Planck collaboration, see
Ref. [?], for which the BICEP2 detection could be completely due to a polarization
signal from galactic dust.

The results of this analysis, are reported in Figure 10.5. As we can see, allowing
for a DDM1 component does not change significantly our results for the BICEP2
plus TT prior case, with r0.01 = 0.13 ± 0.05 and nT = 1.79 ± 0.77 at 68% c.l.. I.e. if
the real dust component is in agreement with the aestimates made by the BICEP2
team, the evidence for a blue tensor spectrum is still present. Viceversa, if the real
dust component is larger by a factor four respect to the BICEP2 aestimates then we
found r0.01 < 0.044 and nT as unconstrained i.e. not only there is no evidence for a
blue GW spectrum but also the BICEP2 indication for a GW background vanishes.

In this chapter we have presented the constraints on the spectral index nT

of tensor fluctuations from the recent data obtained by the BICEP2 experiment.
We found that the BICEP2 data alone slightly prefers a positive, "blue", spectral
index with nT = 1.36 ± 0.83 at 68% c.l.. However, when a TT prior on the tensor
amplitude coming from temperature anisotropy measurements is assumed we got
nT = 1.67 ± 0.53 at 68% c.l., ruling out a scale invariant nT = 0 spectrum at more
than three standard deviations. Considering only the possibility of a "red", nT < 0
spectral index we obtained the lower limit nT > ≠0.76 at 68% c.l. (nT > ≠0.09
when a TT prior is included).

These results are at odds with current upper limits on the tensor spectral index
coming from observations of pulsar timing, Big Bang Nucleosynthesis, and from
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Figure 10.5. Constraints on the r0.01 vs n
T

plane for BICEP2 + TT prior case for three
di�erent dust components: no dust component, DDM1 template, and a component four
times larger than the DDM1 aestimate, [234].

direct upper limits from the LIGO experiment (see e.g. Ref. [269]).
Considering r0.01 = 0.2 and using the method adopted in Ref. [269] we found

the current upper limits on nT : nT Æ 0.52, nT Æ 0.28 and nT Æ 0.12 at 68% c.l.
from pulsar timing, LIGO, Ref. [270] and BBN respectively. The LIGO and BBN
limits are in strong tension with the BICEP2+CMB value. Therefore a positive
spectral index does not provide an acceptable solution to the tension between
the BICEP2 data and current upper limits on r from temperature anisotropies.
While all these limits are on scales of significantly di�erent order of magnitude,
this may indicate either the need of further extensions to the LCDM model (as
a running of the scalar spectral index, Ref. [10], or extra neutrino species, Ref.
[21]) to relax the CMB temperature bound on r0.002, or the presence of unresolved
systematics. In this respect, we investigated the impact of a possible unaccounted,
dust component. We have found that while a dust component compatible with the
DDM1 template presented in Ref. [10] does not alter the conclusions presented in
this paper, considering a component four times larger will drastically change our
results. Since at the moment there is no experimental data available that can clarify
the real amplitude of this component in the region sampled by BICEP2, the results
presented here on the tensor spectral index need to be considered with great caution.
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Chapter 11

The Lensing-ISW signal as a
Cosmological Probe

While the CMB anisotropy distribution is generally expected to be Gaussian to high
accuracy, small non-Gaussianities could be produced in the early Universe, during
inflation (commonly referred to as primordial non-Gaussianities, see e.g. Ref. [271])
as well as be sourced, at a much later epoch, by the interaction of CMB photons
with the local Universe. For instance, the lensing of CMB photons by dark matter
structure produces a clear non-Gaussian signal in the CMB trispectrum (the Fourier
transform of the four-point correlation function), which can be used to constrain the
amplitude of the lensing potential. Such signal, already discovered by ACT, Ref. [3],
and SPT, Ref. [4], experiments helps in further constraining cosmological models.

In this chapter (see also Ref. [272]) we study the implications of another non-
Gaussian signal expected in the CMB, i.e. the one arising from cross-correlations
between lensing and the Integrated Sachs-Wolfe e�ect (ISW), which a�ects the CMB
bispectrum, i.e. the three-point correlation function. The signature of the lensing-
ISW (L-ISW) correlations in the CMB bispectrum has been discussed by several
authors (see e.g. Refs. [59, 273, 61, 274, 275, 276, 277, 278, 279, 280, 281]). Contrary
to the primordial inflationary signal L-ISW bispectrum is a standard expectation of
the standard model and is independent from the inflationary modelling.

In Refs. [61, 275, 276] the possibility of constraining cosmological parameters
through the detection of the L-ISW bispectrum has been considered; in particular it
has been shown that an accurate measurement of the L-ISW will help in constraining
the equation of state and the fractional density of dark energy. In this chapter we
analyze the potential of the L-ISW signal to constrain modified theories of gravity. In
the latter, the evolution of the metric potentials can generally di�er significantly from
the �CDM prediction, therefore it is natural to expect that the L-ISW bispectrum
would provide valuable constraints on these theories.

Here we focus on certain classes of modified gravity and adopted a parameterized
approach to forecast the constraints achievable from measurements of the cosmic
microwave background (CMB) bispectrum from future, at that time, experiments.

Cosmic acceleration is one of the major challenges faced by modern cosmology
and understanding the very nature of what is sourcing it is the main focus of
future cosmological experiments. Several approaches to the phenomenon of cosmic
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acceleration have been proposed in the literature, including modifications of the
laws of gravity on large scales in order to allow for self-accelerating solutions in
matter-only Universes. Well-known examples of modified theories of gravity are
f(R) models, see Refs. [282, 283, 284, 285, 286], or the more general scalar-tensor
theories, see Refs. [287, 288, 289, 290], the Dvali-Gabadadze-Porrati (DGP) model,
see Refs. [291, 292], and its further extensions such as Degravitation, see Ref. [293].
In the past years several authors have analyzed constraints on modified gravity, or
more generally departures from the cosmological standard model, both using current
datasets as well as doing forecasts for future surveys, see Refs. [294, 295, 296, 297,
298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309].

Moreover, (see Ref. [310]) we will investigate the implications of di�erent values
for the number of relativistic degrees of freedom Ne� , the total neutrino mass �m‹ ,
and the neutrino perturbation viscosity cvis on the L-ISW bispectrum. There are
two reasons to do this: first, it is important to discuss what kind of information
a measurement of L-ISW bispectrum could bring in the determination of these
parameters. Secondly, since the L-ISW signal is an important contaminant in the
determination of the primordial inflationary bispectrum, it is useful to understand
the possible bias that di�erent values for neutrino background parameters could
introduce.

11.1 The lensing-ISW bispectrum
As we already saw in Chapter 2, see eq. (2.84), if the expansion of the Universe is not
matter dominated ( i.e. �m ”= 1), the time variation of the gravitational potential
provides an additional source of CMB anisotropies; restricting to the linear regime,
this e�ect is known as the Integrated Sachs Wolfe (ISW) e�ect, from Ref. [41], given
by:

�T

T
(n̂)|ISW =

⁄
d‰(� ≠ �),· (n̂, ‰) , (11.1)

where n̂ is the direction of the line of sight, Â is the newtonian potential, „ is the
perturbation induced in spatial curvature, · is the conformal time and ‰ is the
comoving distance (see e.g. Ref. [311]). Temperature fluctuations of the CMB due
to the ISW e�ect can be expanded in spherical harmonics

�T

T
(n̂)|ISW =

Œÿ

l=0

lÿ

m=≠l

aISW
lm Ylm(n̂) , (11.2)

On the other hand, the paths of CMB photons are deflected by the gravitational
lensing induced by the fluctuations of matter density while traveling from the
recombination to the observer

”T̃ (n̂) = �T (n̂ + ˆ„) ƒ �T (n̂) +
Ë
(ˆ„) · (ˆ�T )

È
(n̂) , (11.3)

where the lensing potential is defined as

„(n̂) = ≠
⁄ ‰ú

0
d‰

‰ú ≠ ‰

‰ú‰

1
� ≠ �

2
(n̂, ‰) . (11.4)
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From eq. (11.1) and (11.3), we can see that Weyl potential (� ≠ �) sources both
ISW and weak lensing (WL), so the long-wavelength mode from ISW couples with
the short-wavelength mode from WL.

As usual, it is convenient to consider an expansion in spherical harmonics of the
temperature field:

�T

T
(n) =

Œÿ

l=2

lÿ

m=≠l

almYlm(n) (11.5)

as well as of the lensing potential, „(n) =
q

l,m „lmYlm(n). Taylor expanding eq.
(11.3) in the lensing potential, and applying the above harmonic expansions, we
obtain the following relation between the lensed and unlensed multipole coe�cients,
(to first order in the lensing multipoles):
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Then in harmonic space, the theoretical angular averaged CMB bispectrum
generated by the lensing-ISW correlation is given by
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where È...Í is the ensemble average, CT T

l is the temperature (primordial plus ISW)
power spectrum and CT „

l is the cross temperature-lensing angular power spectrum,
CT „

l = È„ú
lmalmÍ, which depends on the Weyl potential and its first time-derivative

(see e.g. Ref. [61]). In deriving (11.9) we have implicitly assumed the statistical
isotropy of the Universe and have averaged the three-point correlation function (in
harmonic space) over the orientation of triangles by mean of rotational invariance.
Numerical codes evolving perturbations typically work with the reduced bispectrum,
defined via
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As we can see clearly, if CT „
¸ = 0 the bispectrum signal is zero, i.e. thanks to

the correlations between lensing and ISW the bispectrum that give CT „
¸ ”= 0 of the

CMB anisotropies is di�erent from zero even if the original anisotropies are expected
to perfectly Gaussian.
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11.2 Forecast method
In order to estimate parameters form the L-ISW bispectrum measurements from
CMB Planck-like experiments, we assumed a fiducial model and we compared the
simulate observations with several theoretical models, built varying the parameters
of interest.

Assuming that the bispectrum is well approximated by Gaussian variables, we
can forecast the constraints on cosmological parameters building a simple ‰2 function
(see, for example, the same procedure adopted in Refs. [61, 275, 274, 54, 312, 276,
272, 311]):
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where Bfid
l
1

l
2

l
3

is the fiducial temperature bispectrum, Bth
l
1

l
2

l
3

is the bispectrum with
non-standard parameters to constrain. The sum is over all possible combinations
of l1, l2, l3 with (l1 < l2 < l3), l1 + l2 + l3 even and we have set lmax = 1000,
which roughly corresponds to the maximum multipole sensibility for Planck-like
experiments, (since at higher multipoles the contamination from foreground point
sources starts to be dominant).

The uncertainty ‡l
1

l
2

l
3

is given by Ref. [313]:
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, (11.12)
where the C̄T T

l are defined by

C̄T T
l = CT T

l + Nl. (11.13)
and Nl is the experimental noise given by

Nl = w≠1B≠2
l (11.14)

with

w © (‡pix◊pix)≠2, B2
l ¥ e≠l(l+1)/l2s , (11.15)

where we assumed that the experimental beam profile B is Gaussian with width
ls © Ô

8ln2◊≠1
fwhm. We have adopted fsky = 0.65, a resolution ◊fwhm = 8Õ, a

sensitivity ‡pix = 2.0◊10≠6µK and a noise power parameter w≠1 = 0.022◊10≠15µK2

as roughly we expected for the 150 GHz frequency channel of the Planck experiment
(see Ref. [314]).

Once the ‰2 function was computed, we have built a likelihood from the bispec-
trum data given by:

Lb = exp
A

≠‰2
b

2

B

(11.16)

Since we modelled the (primordial plus ISW) spectrum as a Gaussian variable, we
e�ectively neglected any inflationary non-Gaussian signal; furthermore, we ignored
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contributions to the bispectrum from the lensing-Sunyaev-Zel’dovich correlation.
Both signals could anyway be removed exploiting their di�erent angular dependence
(see e.g. Ref. [315]).

11.3 Constraining modified gravity theories with the
L-ISW Bispectrum

Several models of modified gravity have been proposed as alternatives to �CDM, and
analysing them one by one is impractical. The idea behind parametrised versions
of modified gravity is exactly that of encompassing several models into a single
framework. The parametrisations that we considered for our analysis cover a fairly
large sample of theories and allowed us to draw quite general conclusions about the
constraining power of the data considered.

In our analysis we fixed the background to that of the �CDM model of cosmology.
The latter is currently in very good agreement with all observables constraining
the expansion history, and many models of modified gravity can mimic it while
introducing significant modifications at the level of perturbations. Therefore, fixing
the background to �CDM, allows us to isolate the e�ects of departures at the level
of growth of structure, where we expect the most significant deviations.

11.3.1 Overview: some modified gravity models

Linder model

In Ref. [316] Linder introduced a simple parametrisation of the growth of density
perturbations in the linear regime, via a single parameter, the growth index “ (which
we will denote with “L), defined through

g(a) = e
s a

0

dlna[�m(a)“
L ≠1] (11.17)

The idea is that of capturing independently the information from the expansion and
the growth history, respectively in �m and “L. Since in our analysis we fixed the
background to �CDM, �m(a) has been determined by that and the only parameter
of interest was “L.

In the cosmological concordance model, �CDM, as well as in vanilla-type dark
energy models, “L is to good approximation constant and equal to “L ¥ 6/11. While
it can generally be a function of time and scale, in several models of modified gravity
it can still be approximated by a number, which often di�ers significantly from the
�CDM value. For instance in the braneworld gravity of the DGP model, “L ¥ 0.68
to good approximation over the whole history, see Ref. [316]. Things are more
complicated for scalar-tensor models where often the time- and scale-dependence of
“L cannot be neglected. However, “L remains a powerful trigger parameter, since
any deviation of it from ¥ 6/11 would indicate a breakdown of the cosmological
concordance model.

As a starting point for our analysis, we assume “L ¥ const. and forecast con-
straints on this simple one parameter model.
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Chameleon-type models

Chameleon-type theories correspond to gravity plus a scalar degree of freedom which
is conformally coupled to matter fields, and has therefore a profile and a mass which
depends on the local density of matter. The common action for such theories is

S =
⁄

d4x
Ô≠g

C
M2

P

2 R ≠ 1
2gµ‹ (Òµ„) (Ò‹„) ≠ V („)

D

+ Si

1
‰i, e≠–i(„)/MP gµ‹

2

(11.18)
where „ is the scalar d.o.f., ‰i is the ith matter field and –i(„) is the coupling of ‰i

to „. We limited ourselves to cases in which the coupling was a linear function of the
scalar field, i.e.–i(„) Ã —i„. A well known example of the latter are f(R) theories.

The free parameters of these theories are the mass scale of the scalar field and
the couplings —i. Since we considered constraints from late time cosmology, we have
been interested only in the coupling to dark matter, and therefore drop the index i.

While the modifications enter through the coupling of the scalar field to matter,
and therefore change the energy-momentum conservation equations, it is possible to
keep the latter unchanged and e�ectively absorb the modifications of the evolution
of perturbations in the Poisson and anisotropy equation. The latter are commonly
parametrised with two functions µ and “, as follows

k2� = ≠ a2

2M2
P

µ(a, k)fl�, (11.19)

�
� = “(a, k) , (11.20)

where fl� © fl” + 3aH
k (fl + P )v is the comoving density perturbation. Furthermore,

for Chameleon-type theories µ and “ are well represented by the parametrisation
introduced in Ref. [317]

µ(a, k) = 1 + —1⁄2
1 k2as

1 + ⁄2
1 k2as

, (11.21)

“(a, k) = 1 + —2⁄2
2 k2as

1 + ⁄2
2 k2as

, (11.22)

where the parameters —i can be thought of as dimensionless couplings, ⁄i as dimen-
sional length-scales and s is determined by the time evolution of the characteristic
lengthscale of the theory, i.e. the mass of the scalar d.o.f.. As shown in Ref. [298],
in the case of Chameleon-type theories the parameters {—i, ⁄2

i } are related in the
following way

—1 = ⁄2
2

⁄2
1

= 2 ≠ —2
⁄2

2
⁄2

1
(11.23)

and 1 . s . 4, so that e�ectively the degrees of freedom are one coupling and a
time-evolving lengthscale.
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f(R) theories

As it becomes clear in the Einstein frame, f(R) theories are a subclass of the models
described by action (11.18), corresponding to a universal fixed coupling –i =


2/3 „.

Therefore they can also be described by the parametrisation in (11.21). It can
be easily seen that the fixed coupling –i =


2/3 „ gives —1 = 4/3 and —2 = 1/2.

Viable f(R) models that closely mimic �CDM have s ≥ 4, see Ref. [298], therefore
the number of free parameters in Eqs. (11.21) can be e�ectively reduced to one
lengthscale (using (11.23) e.g. the lengthscale ⁄1.

The latter is directly related to the mass scale of the scalar degree of freedom
introduced by these theories and represented by fR © df/dR, known as the scalaron.
Specifically, ⁄1 sets the inverse mass scale of the scalaron today, i.e. ⁄1 = 1/m0

fR
.

The results in the literature are usually presented in terms of a parameter B0 which
is related to ⁄1 as follows, see Ref. [294]:

B0 = 2H2
0 ⁄2

1
c2 (11.24)

Studying this particular subclass is interesting because some models belonging
to this category have been shown to be cosmologically viable and pass local tests of
gravity, see Ref. [318].

11.3.2 Analysis method

In Figures 11.1 and 11.2 we plotted di�erent theoretical predictions for CT „
l and the

reduced bispectrum bl
1

l
2

l
3

computed with the publicly available code MGCAMB
(http://www.sfu.ca/~aha25/MGCAMB.html). As it can be noticed, the L-ISW bis-
pectrum is clearly sensitive to modifications of gravity and in principle can be used
to put constraints on models of modified gravity.

We now estimate the potential of upcoming L-ISW bispectrum measurements
from CMB Planck-like experiments to constrain the seen modified gravity theories.
We perform a likelihood analysis from the spectrum, L-ISW bispectrum (see Sec. 11.2)
and their combination in order to compare the parametrised models of Sec. 11.3.1 to
a fiducial model, chosen to reproduce a �CDM cosmology. We fixed the cosmological
parameters according to the WMAP 7-year data best fit, Ref. [92], and vary only
the parameters entering the parametrisations described in the previous modified
gravity theories. Spanning over the parameter space, we calculated the spectrum
and L-ISW bispectrum using MGCAMB and build the likelihoods as described in
the following.

Each theoretical model is then compared to the fiducial model with a simple ‰2

function which assumes that the spectrum and bispectrum can be safely described as
Gaussian variables, see Refs. [61, 276]. For the standard CT T

l temperature anisotropy
spectrum we have

‰2
s =

1000ÿ

l

C
CT T,th

l ≠ CT T,fid
l

‡s
l

D2

(11.25)

where the uncertainty ‡s is given by

http://www.sfu.ca/~aha25/MGCAMB.html
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Figure 11.1. Dependence of the cross temperature-lensing CT „

l

angular spectra on modified
gravity parameters for the di�erent models considered in the analysis. The solid curves
correspond to �CDM, the dotted and dashed curves to the Linder parametrisation with
“

L

= 0.645, the long-dashed curves to an f(R) model with B0 = 0.42, the short-dashed
curves to a Chameleon model (Cham—1) with —1 = 1.3, B0 = 0.50 s = 2.0, while the
dotted line to a Chameleon model (Cham s) with —1 = 1.3, B0 = 0.50, s = 3.3, [272].
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= 0.645, the long-dashed
curves to an f(R) model with B0 = 0.42, the short-dashed curves to a Chameleon model
(Cham—1) with —1 = 1.3, B0 = 0.50 s = 2.0, while the dotted line to a Chameleon model
(Cham s) with —1 = 1.3, B0 = 0.50, s = 3.3, [272].
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‡s
l =

Û
2

(2l + 1)CT T
l , (11.26)

We did not include any covariance noise matrix in eq. (11.26), e�ectively assuming
‡s to be cosmic-variance limited up to l = 1000, which is a good approximation for
Planck-like experiments.

For the bispectrum we have eq. (11.11)

‰2
b =

l
maxÿ

l
1

,l
2

,l
3

=2

S

UBth
l
1

l
2

l
3

≠ Bfid
l
1

l
2

l
3

‡b
l
1

l
2

l
3

T

V
2

(11.27)

where the sum is over all possible combinations of l1, l2, l3 with (l1 Æ l2 Æ l3),
l1 + l2 + l3 even and we have set lmax = 1000, which roughly corresponds to
the maximum multipole sensibility for Planck-like experiments, (since at higher
multipoles the contamination from foreground point sources starts to be dominant).

The uncertainty ‡b
l
1

l
2

l
3

is given by

1
‡b

l
1

l
2

l
3

22
= nl

1

l
2

l
3

CT T
l
1

CT T
l
2

CT T
l
3

, (11.28)

where nl
1

l
2

l
3

is 6 for equilateral configurations (l1 = l2 = l3), 2 for isoscele ones
(with two multipoles equal) and 1 for the scalene ones (when all the multipoles are
di�erent). There is no noise covariance matrix in the CT T

l .
Once the ‰2 functions are computed, we can build the separate likelihoods for

the spectrum and bispectrum data respectively:

Ls,b = exp
A

≠‰2
s,b

2

B

(11.29)

Neglecting the correlation between spectrum and bispectrum, we can further
combine them in a total likelihood as follows:

Lc = LsLb = exp
A

≠‰2
b + ‰2

s

2

B

(11.30)

In the calculation of the likelihood from the CMB angular power spectrum we
did not include the lensing term that is clearly correlated with L-ISW bispectrum.
Furthermore, when combining the two likelihoods like in (11.30), we are neglecting
correlations between spectrum and bispectrum data that could arise from the large
scale ISW term. This is a good approximation since the bispectrum will constrain
modified gravity parameters with a much stronger significance than spectrum data
alone. When computing the bispectrum we did not include the non-linear Rees-
Sciama term, since that would require a modeling of non-linearities in modified
gravity. The exclusion of the RS term is expected to a�ect our results at most by
≥ 17%, and therefore should not change our conclusions to a significant level.

Finally, since we have modeled the (primordial plus ISW) spectrum as a Gaus-
sian variable, we have e�ectively neglected any inflationary non-Gaussian signal;
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furthermore, we ignored contributions to the bispectrum from the lensing-Sunyaev-
Zel’dovich correlation. Both signals could anyway be removed exploiting their
di�erent angular dependence (see e.g. Ref. [315]).

For each theoretical model considered, while keeping the cosmological parameters
fixed to their WMAP 7-year values, we varied the modified gravity parameter(s)
(one at a time for the models that have more than one parameter), and computed
the spectrum and the L-ISW reduced bispectrum with MGCAMB ; we then used eq.
(11.10) to compute the L-ISW bispectrum from the reduced one. We also chose a
fiducial model and computed the corresponding spectrum and bispectrum. Once a
su�cient number of spectra has been calculated, we computed the likelihood profiles
and extract the confidence levels on the parameter of interest.

For each parametrisation, we chose a fiducial model based on a set of parameters
that were, for most of the cases, the parameters that would have reduced the
cosmology to the �CDM one. In the case of the Linder model this is achieved by
setting “L = 0.555, see Ref. [316]. For f(R) theories, B0 = 0 is the value giving
µ = 1 = “ which are the values of these functions in �CDM. For chameleon theories
the choice of the fiducial model is more complicated. We started employing the
dimensionless parameter B0 (11.24) in place of the lengthscale ⁄1, so that the
parameters for these models become (B0, s ,—1). As a matter of fact, we had three
free parameters, no strong theoretical reasons to fix two of them and a complete
degeneracy among the parameters when trying to reproduce �CDM, i.e. if we fixed
either B0 = 0 or —1 = 1. We therefore proceeded by making a somewhat arbitrary
choice on the fiducial model, fixing —1 = 1, B0 = 0.5, and s = 2 when studying the
constraints on —1 and —1 = 1.3, B0 = 0.5, s = 2 when studying the constraints at
varying s.

In the case of Linder’s model we evaluated the likelihoods in the range 0.475 Æ
“L Æ 0.635, at steps of 0.002 for values near the fiducial one and at steps of 0.01 for
values near the boundaries. In the case of f(R) we explored the likelihood function
in the range 0 Æ B0 Æ 0.7, varying B0 at steps of 0.1. In the chameleon case we
used a step of 0.01 for —1 and of 0.2 for s.

11.3.3 Results and Constraints

Linder model

In Table 11.1 and Figure 11.3 we report the constraints on “L from the spectrum,
the L-ISW bispectrum and the combined analyses. As we can see the spectrum
and bispectrum data are somewhat complementary: the CMB bispectrum is more
powerful in constraining the “L parameter in the region of values lower than those
of the fiducial one; on the contrary the temperature anisotropy spectrum is more
e�cient for larger values. The non-Gaussian shape of the likelihood from the
temperature spectrum can be easily understood by the fact that even in the case of
small ISW signal (when “L æ 0) the angular spectrum is di�erent from zero and
still provides a reasonable fit to the data. The bispectrum is, on the contrary, not
null only if the ISW is di�erent from zero and it therefore provides a much more
reliable way to detect it.

As we can see, spectrum data provides solely an upper limit for “L, leaving it
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fiducial S B C
95% c.l. 95% c.l. 95% c.l.

“L 0.555 +0.044
≠

+0.060
≠0.056

+0.034
≠0.042

Table 11.1. Constraints on “
L

of Linder model from the spectrum (S) and bispectrum (B)
and combined (C) analyses, [272].

practically unconstrained on the lower tail. On the contrary, bispectrum data give a
≥ 5% error on “L. When spectrum and bispectrum data are combined there is a
substantial improvement in the measurement.

Chameleon models

fiducial S B C
68% c.l. 68% c.l. 68% c.l.

—1 1.00 +0.25
≠0.17

+0.10
≠0.13

+0.09
≠0.10

s 2.00 +0.55
≠0.17

+0.42
≠0.28

+0.30
≠0.15

Table 11.2. Constraints at 1 standard deviation on the Chameleon models parameters
—1 and s coming from the analysis of spectrum (S), bispectrum (B) and combined (C)
datasets, [272].

The constraints on Chameleon models from the spectrum, L-ISW bispectrum
and combined analyses are reported in Table 11.2 and Figures 11.4 and 11.5.

As for the Linder model, the two datasets are complementary in constraining the
Chameleon parameters. The simple temperature power spectrum is more powerful
in constraining values of —1 Æ 0.75, i.e. the lower tail, while the bispectrum data
provide stronger constraints on the higher tail, where the spectrum data leave the
parameter practically unconstrained. The same behaviour is seen for the likelihood
distribution of the s parameter. Small values of s (s < 2) can be better constrained
by temperature spectrum data. However large values of s are left unconstrained
from the temperature spectrum and, on the contrary, are significantly constrained
when using the bispectrum. This is related to the entity of the ISW signal in the
two tails; namely, the spectrum looses constraining power in the parameter range
where the ISW is suppressed and tends to zero.
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f(R) theories

In Table 11.3 and Figure 11.6 we report the constraints on f(R) models from the
spectrum, L-ISW bispectrum and combined analyses. In this case the constraints
coming from the bispectrum are definitely tighter than the ones from the temperature
spectrum. Once again, this is related to the ISW signal which is suppressed w.r.t.
�CDM one for all the values of B0 in the range 0 < B0 < 3/2 (becoming null at
B0 = 3/2), see Ref. [319]. Current constraints from ISW data from CMB-galaxy
correlations are of the order of B0 < 0.4, see Ref. [307]. As we show, the L-ISW
bispectrum can clearly improve CMB constraints on these theories, tightening the
bounds by a factor of six.

fiducial S B C
68% c.l. 68% c.l. 68% c.l.

B0 0 < 0.61 < 0.14 < 0.10

Table 11.3. Constraints at 1 standard deviation on f(R) theory parameter B0 coming
from the analysis of spectrum (S), bispectrum (B) and combined (C) datasets, [272].

In conclusion, while some of the signal could be primordial, a clear non-Gaussian
signal is expected from the correlation of lensing and the Integrated Sachs-Wolfe
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e�ect. This signal provides a new test of the cosmological scenario per se, and
could further be used to test alternatives to the cosmological constant in the context
of cosmic acceleration. In this chapter we have shown that in the case when all
the cosmological parameters are fixed, the bispectrum signal is extremely useful
providing a significant improvement in the constraints on modified theories of gravity.
While the forecasted constraints have been obtained with the assumption of the
cosmological concordance model as the fiducial one, we believe that our results have
little dependence on this choice, since current data accepts only relatively small
deviations from the standard picture.

11.4 Constraining Dark Radiation with the Lensing-ISW
Bispectrum

In this section we are interested in checking the sensitivity of the CMB bispectrum
from neutrino physics. We therefore consider three neutrino parameters: the number
of relativistic degrees of freedom Ne� , the total neutrino mass �m‹ , and the neutrino
perturbation viscosity cvis. In the case of three, massless, neutrinos these parameters
are Ne� = 3.046, �m‹ = 0, c2

vis = 1/3.
In Figures 11.7, 11.8 and 11.9 we plot di�erent theoretical predictions for CT „

l ,
and in Figures 11.10, 11.11, and 11.10 the reduced bispectrum bl

1

l
2

l
3

in function of
these previous parameters. As it can be noticed, the L-ISW reduced bispectrum is
mildly sensitive to changes in �m‹ and cvis while there are larger di�erences in the
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variation of Ne� .

Figure 11.7. Theoretical predictions for CT „

l

for the relativistic degrees of freedom Ne� ,
[310].

This di�erent dependence can be explained as follows. As we can see from eq.
(11.9) the bispectrum signal is given by the contribution of three terms: a geometrical
factor arising from the Wigner 3J symbol selection rules, the power spectrum CT T

l

evaluated at the last scattering surface and the cross-correlation spectrum CT „
l .

The first term is responsible for the high frequency oscillations in the total (not
reduced) bispectrum slice shape. The third term produces a smooth re-projection of
the acoustic peaks over the angular scales, determining a low frequency modulation
of the bispectrum signal. As a result, modifications a�ecting the primordial power
spectrum via di�erent choices of fiducial models must also a�ect the bispectrum
shape. In particular, an increase in radiation density (i.e. an increase in Ne�)
changes the Hubble rate at decoupling, it reduces the size of the acoustic horizon
and shifts the acoustic peaks towards small angular scales. This e�ect is clearly
seen also in the bispectrum. In Figure 11.13 we have plot the percentage di�erence
between a model with Ne� = 3.046 and a model with Ne� = 5.046 for the CT T

l and
the CT „

l . As we can see the percentage variation in the spectra is of the same order,
around ≥ 10%. This indicates that the bispectrum signal is a�ected by a change in
Ne� not only from of a change in the temperature spectrum but also from a change
in the CT „

l term, due mainly to a variation in the matter clustering that a�ects
CMB lensing.

The neutrino mass, on the contrary, mainly a�ects the lensing spectrum while
leaves the primary anisotropy spectrum (for �m‹ < 2eV ) as practically una�ected.
The variation in the bispectrum are therefore less pronounced. The viscosity param-
eter cvis produces just mild variations both in the primary anisotropy spectrum and
in the lensing spectrum. We can therefore expect that the L-ISW bispectrum will
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Figure 11.8. Theoretical predictions for CT „

l

for the total neutrino mass �m
‹

, [310].

Figure 11.9. Theoretical predictions for CT „

l

for the viscosity sound speed c2
vis

, [310].
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Figure 11.10. Theoretical predictions for the reduced bispectrum for the relativistic degrees
of freedom Ne� , [310].

Figure 11.11. Theoretical predictions for the reduced bispectrum for the total neutrino
mass �m

‹

, [310].
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Figure 11.12. Theoretical predictions for the reduced bispectrum for the viscosity sound
speed c2

vis

, [310].

Figure 11.13. Percentage di�erence between a model with Ne� = 3.046 and a model with
Ne� = 5.046 for the CT T

l

and the CT „

l

. As we can see the percentage variation in the
spectra is of the same order, around ≥ 10%, [310].
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be more powerful in constraining Ne� than the absolute neutrino mass scale or the
viscosity parameter cvis.

11.4.1 Analysis method

We now estimate the potential of upcoming L-ISW bispectrum measurements from
CMB Planck-like experiments to constrain the neutrino parameters. We performed
an analysis following the forecast method presented in Sec. 11.2 and also adopted
in Ref. [311]. Namely, we assumed a fiducial model with parameters given by the
WMAP 7-year data best fit, Ref. [92], in the case of three, active, neutrinos and
quantify how well the L-ISW data could discriminate any deviation in the neutrino
parameters.

We forecasted the parameters building a simple ‰2 function eq. (11.11):

‰2
b =

l
maxÿ

l
1

,l
2

,l
3

=2
fsky

S

UBth
l
1

l
2

l
3

≠ Bfid
l
1

l
2

l
3

‡l
1

l
2

l
3

T

V
2

(11.31)

where Bfid
l
1

l
2

l
3

is the fiducial temperature bispectrum, Bth
l
1

l
2

l
3

is the bispectrum with
non-standard neutrino parameters. The uncertainty ‡l

1

l
2

l
3

is given by eq. (11.12).

11.5 Results and constraints

Figure 11.14. Likelihood functions from the bispectrum data for the e�ective neutrino
number Ne� , [310].

In Figures 11.14, 11.15 and 11.16 we present the likelihood distribution functions
when a single neutrino parameter is let to vary. In case of massless neutrinos,
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Figure 11.15. Likelihood functions from the bispectrum data for the total neutrino mass
�m

‹

, [310].

Figure 11.16. Likelihood functions from the bispectrum data for the viscosity sound speed
c2

vis

, [310].
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the fiducial model is taken as the WMAP7 best fit model with baryon density
Êb = 0.02258, cold dark matter density Êcdm = 0.1109, Hubble parameter h = 0.71,
and the standard neutrino parameters (Ne� = 3.046, c2

vis = 1/3). In case of massive
neutrinos the fiducial model is taken with baryon density Êb = 0.02219, cold dark
matter density Êcdm = 0.1122, Hubble parameter h = 0.65, a neutrino density
of Ê‹ = 0.014 (corresponding to a neutrino mass of m‹ = 1.3 eV), and standard
neutrino parameters (Ne� = 3.046, c2

vis = 1/3).
As we can see from the likelihoods functions, even if the very optimistic case

of complete knowledge of all cosmological parameters, the bispectrum can provide
an interesting constraint only on the neutrino e�ective number Ne� , with 2.0 <
Ne� < 4.6 at 68% c.l.. This constraint is significant weaker respect to those that
could be achieved from the temperature spectrum (around �Ne� ≥ 0.4) but clearly
provide an useful cross-check of the theory. The viscosity sound speed is practically
left as unconstrained. The neutrino mass is also very weakly constrained as well.
These constraints have been obtained under the optimistic assumption of neglecting
correlations with other parameters. However we expect strong correlations, for
example, between Ne� and the Hubble constant H0 since they both change the
expansion rate at decoupling and a�ect in a similar way the size of the acoustic
horizon and the angular displacement of the acoustic peaks.

We have therefore performed an analysis letting the Hubble constant to vary
with a Gaussian prior of H0 = 71 ± 5 that is conservative considering the current
bounds on this parameter. We have found that also in this case the bispectrum can
provide useful constraints with 1.8 < Ne� < 4.7 at 68% c.l..

11.5.1 Bias on fNL

We consider the important aspect of evaluating the bias produced by a wrong
assumption in the neutrino parameters in constraining the primordial fNL arising
during inflation.

We remind that the optimal estimator for fNL in case of small levels of non-
Gaussianity is given by Ref. [281]

Èf̂NLÍlens = F0(Blens, Bprim)
F0(Bprim, Bprim) (11.32)

where F0 is the Fisher Matrix for bispectra with expected null fNL signal, Blens is
the lensing bispectrum and Bprim is the primordial bispectrum. F0 = F0(Ba, Bb)
(where a and b refer to lens and prim) is given by:

F0(Ba, Bb) = 1
6

ÿ
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. (11.33)

where ˜̄CT T
l is the lensed power spectrum C̄T T

l = CT T
l + Nl that includes noise.

In Table 11.4 we report, for several choices of neutrino parameters, the Fisher
errors ‡fnl and ‡lens on the amplitudes of the corresponding bispectrum templates,
the correlation between the two bispectrum shapes and the systematic error, i.e.
the bias, on fNL if the CMB lensing contribution is neglected. ‡marge

fnl is the Fisher
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Model ‡fnl ‡lens correlation bias on fNL ‡marge
fnl

N rel
e� = 3.046q

m‹ = 0 4.33 0.18 0.24 9.7 4.47
N rel

e� = 0.046q
m‹ = 0 4.40 0.16 0.24 12.5 4.54

N rel
e� = 5.046q

m‹ = 0 4.30 0.19 0.25 9.3 4.44
N rel

e� = 0.046
Nmass

e� = 3q
m‹ = 1eV 4.17 0.22 0.23 7.5 4.29

N rel
e� = 0.046

Nmass
e� = 4q
m‹ = 2eV 4.13 0.24 0.24 7.1 4.26

N rel
e� = 3.046q

m‹ = 0
AL = 1.7 4.35 0.19 0.26 9.63 4.51

Table 11.4. Fisher errors ‡
fnl

and ‡
lens

on the amplitudes of the corresponding bispectrum
templates, the correlation between the two bispectrum shapes and the systematic error,
i.e. the bias, on f

NL

if the CMB lensing contribution is neglected. ‡marge
fnl

is the Fisher
error on f

NL

if the amplitude of the lensing contribution is marginalized over, [310].

error on fNL if the amplitude of the lensing contribution is marginalized over. We
assumed that the signal is cosmic variance limited up to l ≥ 2000.

As we can see, there is a non-negligible variation in the reported values. It is
therefore important to consider the possibility of non standard neutrino background
when removing the ISW-lensing contribution. Otherwise the determination of the
primordial fNL value could be substantially biased.
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Chapter 12

Conclusions

The goal of this thesis was to constrain fundamental physics with current cosmological
data, in order to identify possible hints for new physics studiyng the tensions between
the several experiments.

In particular, the first research subject of this thesis was to analyze the tension
between the values of the neutrino e�ective number Ne� arising from the two ground
based experiments ACT and SPT combined with WMAP7, and to compare these
results with the Planck satellite bounds. Obviously this discrepancy could be due to
the presence of systematics in at least one of the experiments, but could be due also to
the degeneracy with other parameters that a�ect the damping tail of the CMB power
spectrum, as the lensing amplitude AL. In fact, the ACT results, while compatible
with the standard expectation of three neutrino families Ne� = 3.046, indicate a level
of CMB lensing, parametrized by the lensing amplitude parameter AL, that is about
70% higher than expected. If not a systematic, an anomalous lensing amplitude
could be produced by modifications of general relativity or coupled dark energy.
Vice-versa, the SPT experiment, while compatible with a standard level of CMB
lensing AL = 1, prefers an excess of dark radiation, parametrized by the e�ective
number of relativistic degrees of freedom Ne� . An excess of dark radiation could be
due to the presence of relic relativistic unknown particles, beyond the standard model
of particle physics (as axions, sterile neutrinos, etc.), at recombination epoch, or a
non-vanishing neutrino chemical potential. In order to test the possible correlation,
we analyzed these experiments combining them with WMAP9, varying at the same
time both Ne� and AL, and including information from BAO and HST experiments.
We found that ACT gives Ne� = 3.54 ± 0.41 and AL = 1.64 ± 0.32 at 68% c.l., while
SPT gives Ne� = 3.78 ± 0.33 and AL = 0.79 ± 0.11 at 68% c.l.. Both the tensions
persist and, in particular, the AL estimates from the two experiments, even when a
variation in Ne� is allowed, are in tension at more than 95% c.l.. Moreover, we have
shown that the inclusion of a neutrino mass exacerbates the lensing problem for the
ACT data with the AL even more discrepant with the AL = 1 case. In order to solve
this puzzle, we analyzed the Planck data in the same way. We have shown that the
Planck+WP dataset is hinting new physics for both a presence of dark radiation and
for an anomalous amplitude for the lensing parameter, finding Ne� = 3.71 ± 0.40 and
AL = 1.25 ± 0.13 at 68% c.l.. The anomalous lensing amplitude from Planck+WP is
more consistent with the results obtained from the WMAP9+ACT dataset, while the
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constraints on Ne� and other parameters, such as the Hubble constant and the matter
density, are in very good agreement with those obtained from the WMAP9+SPT
dataset. However, since the same signal of an anomalous lensing amplitude is not
found in the trispectrum analysis, we decided to further investigate it considering
the possibility of a correlation with the non-standard clustering neutrino properties,
as the rest-frame sound speed c2

e� , and the viscosity parameter c2
vis. In fact, the

Planck dataset hints at anomalous values for also these parameters, at a higher value
of the viscosity parameter, with c2

vis = 0.60 ± 0.18 at 68% c.l., and a lower value of
the sound speed, with c2

e� = 0.304 ± 0.013 at 68% c.l.. When we jointly analyzed
the three parameters, we found a better consistency with the standard model with
c2

vis = 0.51 ± 0.22, c2
e� = 0.311 ± 0.019 and AL = 1.08 ± 0.18 at 68% c.l..

The second aim of my thesis has been to investigate in more detail the current
hints for dark radiation, by considering some viable candidates and constraining
their properties. First of all, we have computed the expected abundances for the
sterile neutrino states within the (3 + 1) and (3 + 2) sterile neutrino models using
the best fit oscillation parameters from a global fit to neutrino oscillation data.
Our results showed that in both (3 + 1) and (3 + 2) models the extra sterile states
have thermal abundances. Then we have fitted massive sterile neutrino models,
combining the Planck data with the high-l experiments ACT and SPT, and with
the galaxy clustering informations coming from the full shape of the galaxy power
spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9
measurements. Varying at the same time the neutrino e�ective number Ne� and
the e�ective mass of the sterile neutrino me�

‹,sterile, we found that 3.30 < Ne� < 4.43
and me�

‹,sterile < 0.33 eV both at 95% c.l., with the three active neutrinos having
the minimum mass allowed in the normal hierarchy scheme, i.e.

q
m‹ ≥ 0.06 eV.

Afterwards, we have considered Planck+WP+high-l dataset in combination with the
HST measurements, finding me�

‹,sterile < 0.36 eV and 3.14 < Ne� < 4.15 at 95% c.l..
These values compromise the viability of the (3 + 2) massive sterile neutrino models
for the parameter region indicated by global fits of neutrino oscillation data, while
the existence of one additional fully thermal sterile massive neutrino is perfectly
allowed by these datasets.

Concerning models with a dark sector with light species that eventually decouples
from the standard model, as, for instance, asymmetric dark matter models, having
extra heavy degrees of freedom in the dark sector is highly disfavoured considering
Ne� = 3.62+0.50

≠0.48 (Planck+WP+high-l), and mildly disfavoured considering Ne� =
3.83 ± 0.54 (Planck+WP+high-l+HST).

Moreover, we constrained the extended cosmological scenarios with additional
thermal relics, as thermal axions or sterile neutrino species, varying simultaneously
the sum of active neutrino masses

q
m‹ and considering all the current available

cosmological data in the beginning of year 2014, including the recent and most precise
Baryon Acoustic Oscillation (BAO) measurements from the BOSS Data Release
11. The largest e�ect of neutrino masses on the di�erent cosmological observables
arises from their free streamig nature: the non-relativistic neutrino overdensities
will contribute to clustering only at scales larger than their free streaming scale,
suppressing the growth of matter density fluctuations at small scales. In the minimal
three active neutrino scenario, we found

q
m‹ < 0.22 eV at 95% c.l. from the
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combination of CMB, BAO and Hubble Space Telescope measurements of the
Hubble constant. A non zero value for the sum of the three active neutrino masses
of ≥ 0.3 eV is significantly favoured at more than 3 standard deviations when
adding the constraints on ‡8 and �m from the Planck Cluster catalog on galaxy
number counts. This preference for non zero thermal relic masses disappears almost
completely in both the thermal axion and massive sterile neutrino schemes. The
existence of extra massive species is well motivated by either the so-called neutrino
oscillation anomalies (in the case of sterile neutrino species) or by the strong CP
problem (in the case of thermal axions). Both extra, sterile neutrino species and
axions have an associated free streaming scale, reducing the growth of matter
fluctuations at small scales. When considering simultaneously thermal axions and
active massive neutrino species, and including CMB, BOSS BAO DR11, additional
BAO measurements, WiggleZ power spectrum (full shape) information, the H0 HST
prior and BBN light element abundances, the 95% c.l. bounds are

q
m‹ < 0.25 eV

and ma < 0.57 eV. When considering Planck SZ clusters and CFHTLens information
added to CMB data, BOSS DR11 BAO, additional BAO measurements and the
HST H0 prior, the 95% c.l. bounds on the active and the sterile neutrino parameters
are

q
m‹ < 0.39 eV, me�

‹,sterile eV and Ne� < 4.01. Finally, we have considered the
recent B-mode polarization measurements made by the BICEP2 experiment, finding
that in a LCDM+r scenario the presence of extra relativistic particles is significantly
suggested by current Planck+WP+BICEP2 data with Neff = 4.00 ± 0.41 at 68%
c.l., solving the current tension between the Planck and BICEP2 experiments on
the amplitude of tensor modes.

Another way to explain the excess in the neutrino e�ective number Ne� is to
consider a non-vanishing neutrino chemical potential. We investigated this possibility
in the Curvaton scenario, because after the decay of the Curvaton field are expected
residual isocurvature fluctuations in the neutrino density component, that correspond
to a non-zero chemical potential. We have forecasted the capability of future CMB
experiment, in particular Planck-like, CMBpol (PRISM) and SPIDER, to constrain
at the same time the amplitude of the neutrino isocurvature density –NID and Ne� ,
and traslated this bounds on the average value of the degeneracy neutrino parameter
›̄ and its spatial variance ‡2

› , in order to compare them with the constraints from the
BBN. We found that if �Ne� = Ne� ≠3.046 = 0, Planck, Spider and CMBPol will be
able to bound �Ne� . 0.3, 0.8, 0.08 at the 95% c.l.., respectively, corresponding to
›̄ < 0.5, 0.8, 0.24. Afterwards, with the coming of the temperature data from Planck,
we constrained jointly the amplitude of the neutrino isocurvature density –NID and
Ne� . We found that the Planck+WP dataset does not show any indication for a
NID component, severly constraining its amplitude, and that current indications
for a non-standard Ne� are further relaxed. When the HST prior on the Hubble
constant is included, an anticorrelated neutrino isocurvature density component is
severly constrained, while the combined analysis suggests a value for Ne� larger than
the standard expectations at more than two standard deviations.

After having considered the axion particle, the pseudo Nambu-Goldstone boson
associated to the breaking of the PQ symmetry, as hot dark matter to account
for the excess of dark radiation, we investigated, in light of the recent B-mode
polarization measurements made by the BICEP2 experiment, the possibility that
the axion account fot the total amount of cold dark matter in the Universe. We
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found that, in the minimal ADM scenario and for �QCD = 200 MeV , the full dataset
(Planck + WP + BOSS DR11 + BICEP2) implies that the axion mass ma =
82.2 ± 1.1 µeV (corresponding to the Peccei-Quinn symmetry being broken at a scale
fa = (7.54±0.10)◊1010 GeV ), or ma = 76.6±2.6 µeV (fa = (8.08±0.27)◊1010 GeV )
when we allow for a non-standard e�ective number of relativistic species Ne� . We
also found a 2-‡ preference for Ne� > 3.046. The limit on the sum of neutrino
masses is

q
m‹ < 0.25 eV at 95% c.l. for Ne� = 3.046, or

q
m‹ < 0.47 eV

when Ne� is a free parameter. We also studied the e�ect on our estimates of
theoretical uncertainties, in particular the imprecise knowledge of the QCD scale
�QCD, in the calculation of the temperature-dependent axion mass. We found that
in the simplest ADM scenario the Planck+WP dataset implies that the axion mass
ma = 63.7 ± 1.2 µeV for �QCD = 400 MeV . Dark matter axions with mass in the
60≠80 µeV (corresponding to an axion-photon coupling Ga““ ≥ 10≠14 GeV ≠1) range
can, in principle, be detected by looking for axion-to-photon conversion occurring
inside a tunable microwave cavity permeated by a high-intensity magnetic field,
and operating at a frequency ‹ ƒ 15 ≠ 20 GHz. This is out of the reach of current
laboratory experiments like Axion Dark Matter eXperiment (ADMX, limited to a
maximum frequency of a few GHzs), but is, on the other hand, within the reach of
the upcoming ADMX-HF experiment, that will explore the 4 ≠ 40 GHz frequency
range and then being sensitive to axions masses up to ≥ 160 µeV .

A further research subject has been the tension between the abundance of
primordial deuterium obtained from the Lyman-alpha absorption-line system and
the abundance computed by the Planck data. This discrepancy is the result of
the uncertainty in the BBN computation on the rate A2 of the capture radiative
reaction d(p, “)3He that converts deuterium into helium. Assuming the standard
cosmological model, we performed a combined analysis of Planck data and of recent
deuterium abundance measurements in metal-poor damped Lyman-alpha systems
providing independent information on the cross section of this reaction. Interestingly,
the result that we obtained is higher than the values suggested by a fit of present
experimental data in the BBN energy range (10 ≠ 300 keV), whereas it is in better
agreement with ab initio theoretical calculations, based on models for the nuclear
electromagnetic current derived from realistic interactions. Due to the correlation
between the rate of the above nuclear process and the e�ective number of neutrinos
Ne� , the same analysis points out a Ne� > 3 as well. We think that an experiment
such as LUNA at the underground Gran Sasso Laboratories may give an answer
to this problem in a reasonably short time. In fact, with the present underground
400 kV LUNA accelerator is possible to measure the d(p, “)3He cross section in the
20 < Ecm(keV ) < 260 energy range with an accuracy better than 3%.

Finally, we have used the Bispectrum signal, the three point correlation function
of the CMB temperature anisotropies, due to the cross-correlation between the
Weak Lensing and the Integrated Sachs-Wolfe e�ect to constrain the cosmological
parameter. First of all, we investigated the possibility to constrain with this L-ISW
Bispectrum three di�erent classes of modified gravity models: Linder’s growth index,
Chameleon-type models and f(R) theories. We have found that in the case when all
the cosmological parameters are fixed, the bispectrum signal will be extremely useful
providing a significant improvement in the constraints on modified theories of gravity.
Afterwards, we have found that while a measurement of the CMB bispectrum can
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provide only very weak constraints on the neutrino mass
q

m‹ and on the viscosity
speed c2

vis, it can achieve interesting constraints on the e�ective number of relativistic
degrees of freedom Ne� : weaker respect to those that could be achieved from the
temperature spectrum but clearly an useful cross-check of the theory. We have also
investigated the bias introduced by current uncertainties in neutrino parameters
in the determination of the primordial fNL parameter that could arise in some
inflationary model. We have found that the bias varies in a significant way between
model with di�erent neutrino parameters.
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