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Abstract.
A full theory of quantum gravity is not yet available, and an approximation in which

spacetime remains classical while matter is described by quantum fields is often physically
and computationally appropriate. It is therefore of interest to investigate hybrid systems which
describe the interaction of classical gravity with quantum matter. Such systems may provide
valuable clues relevant to the search of a quantum theory of gravity. Furthermore, one should
also consider the possibility that the gravitational field may not be quantum in nature; in that
case, it would become necessary to search for a consistent hybrid description.

It is known that the Wheeler-De Witt equation with coupling to quantum fields results in
quantum gravitational corrections to the functional Schrödinger equation. A similar result can
be obtained for some hybrid models where a classical gravitational field interacts with quantum
matter fields. I use the approach of ensembles on configuration space to look at a hybrid model
where matter is in the form of a quantized scalar field and determine the corresponding classical
gravitational corrections to the functional Schrödinger equation.

1. Introduction
Hybrid systems are models in which two subsystems, one of them classical and the other
one quantum mechanical, interact. They can be useful for practical applications: For many
calculations, it is convenient or even necessary to describe parts of a complex system classically,
while the rest of the system is described quantum mechanically. In addition, there are theoretical
reasons for studying hybrid systems: A full theory of quantum gravity is not yet available and a
detailed description of classical gravity (within the framework of general relativity) interacting
with quantum matter (described by quantum field theory) may provide valuable clues relevant to
the search of a quantum theory of gravity. Furthermore, one should also consider the possibility
that the gravitational field may not be quantum in nature; if that is the case, it would become
necessary to come up with a consistent hybrid description. Hybrid systems are also of interest for
foundations of quantum mechanics: In the Copenhagen interpretation, a measuring apparatus
is described in classical terms. This implies a coupling (typically left undefined) between the
quantum system and the classical apparatus.

A consistent description of a hybrid systems is nontrivial. Since classical mechanics and
quantum mechanics are formulated using very different mathematical structures, it is first
necessary to find a common framework that can accommodate both. Furthermore, there are
conceptual issues; e.g., one needs to consider which features of classical and quantum mechanics
ought to be preserved when describing a mixed system, which brings into the play the issue
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of defining “classicality” – that is, what makes a system classical? There are many different
ways of addressing these questions. As results, there are many “variations on a theme,” many
proposals which differ by the way in which these issues are handled.

It will be useful to give a brief overview, necessarily incomplete, of some of the approaches
to modeling hybrid systems that appear to be most relevant to foundations of physics. In the
mean-field approach, the phase space coordinates of the classical system appear in the quantum
Hamiltonian operator as parameters. The operator determines the evolution of the quantum
system while its average over the quantum degrees of freedom specifies a classical Hamiltonian
for the classical parameters [1, 2]. As the classical system evolves deterministically, it is not
possible to couple any quantum uncertainties into the classical parameters. Nevertheless, Elze,
using his formulation, has shown that the mean-field approach satisfies several fundamental
consistency criteria of importance [3]. In the phase space approach, the classical system is
described by a set of mutually commuting phase space observables on a Hilbert space [4],
which allows a unitary interaction with the quantum system. In these models [5, 6, 7, 8],
the classical generators of transformations do not coincide in general with the observables; as
a consequence, the Hamiltonian will depend on non-observable classical operators. Difficulties
arise in that classical observables remain ‘classical’ for a limited class of interactions, which does
not include for example the case of a Stern-Gerlach measurement [7]. Peres and Terno have
further shown that this approach does not reproduce the correct classical limit for quantum-
classical oscillators [9, 10]. Nevertheless, in the past few years models of this type have been
further developed and some of the issues that affected the original formulations have been
resolved [11, 12, 13]. In the approach of Markovian master equations [14, 15, 16], the dynamics
of the hybrid system is formulated in analogy to the dynamics of a purely quantum composite
system but the classical observables are restricted to a commuting set of diagonal operators in
a fixed basis. The hybrid formalism that results is equivalent to the standard Markovian theory
of time-continuous quantum measurement [14, 15]. Finally, in the approach of ensembles on
configuration space, physical systems are described using a Hamiltonian formalism that provides
a common mathematical framework for classical, quantum, and hybrid systems [17, 18, 19]. The
dynamics is derived from an ensemble Hamiltonian H[P, S] that is a functional of P and S,
where P is the probability density over configuration space of the system and S a canonically
conjugate variable. Observables are functionals of P and S. The approach satisfies a number
of consistency requirements [18, 19]. However, it has been shown that when the interaction can
be ‘switched off,’ noninteracting ensembles of quantum and classical particles can be associated
with nonlocal signaling [19, 20]. These are effects that are suppressed when a requirement of
‘classicality’ is imposed: we must restrict to macroscopic systems that can not be decoupled from
the environment and have a large number of degrees of freedom in order to describe a system
as ‘classical.’ Violations of locality are then suppressed by essentially the same mechanism that
ensures measurement irreversibility [19].

Hybrid models which describe a classical general relativistic gravitational field interacting
with a quantized matter field are few in number. The first model that was proposed is semi-
classical gravity [21, 22, 23, 24], were the energy momentum tensor that serves as the source in
the Einstein equations is set equal to the expectation value of the energy momentum operator
of a given quantum state. However, it is well known that this approach presents a number
of difficulties, which is the main motivation for searching for alternatives. The approach of
ensembles on configuration space can be extended to field theories and it has been applied to the
description of a classical gravitational field interacting with quantized matter [17, 19, 25, 26, 27].
Since details will be presented in the next sections, I will not discuss this further here except to
point out that the nonlocal signaling effect discussed previously becomes irrelevant in this case,
as there is no sense in which the interaction between systems can be ‘switched off’ because there
is a direct multiplicative coupling of the metric tensor to the fields in the corresponding ensemble
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Hamiltonian, as will be shown in the next section. The Markovian master equations approach
has also been extended to encompass gravity and this has resulted in the postquantum theory
of classical gravity developed by Oppenheim and coworkers [28, 29, 30]. It has been recently
pointed out, however, that such an extension of the formalism to special and general relativity
presents technical difficulties that are at present unresolved, and it is not clear at this time how
they should be addressed [31, 32].

The approach of ensembles on configuration space [17, 18, 19] provides one way of describing
a hybrid model where a classical relativistic gravitational field interacts with quantum matter
fields [17, 19, 25, 26, 27], as was mentioned above. It is used here to examine a hybrid model
with matter in the form of a quantized scalar field, with the aim of determining the classical
gravitational corrections to the functional Schrödinger equation. In addition, it is found that
the backreaction of the quantum field affects the evolution of the classical gravitational field.
The approach followed is similar to the one that has been developed to study the quantum
gravitational corrections to the functional Schrödinger equation that result from a semi-classical
expansion of the Wheeler-DeWitt equation [33, 34, 35, 36].

2. Ensembles on configuration space for a quantum scalar field coupled to classical
gravity
The approach of ensembles on configuration space allows the introduction of a hybrid model
where a classical gravitational field interacts with a scalar quantum field [17, 19] . It is
convenient to develop this approach by first considering ensembles of classical gravitational fields,
which are given in terms of the Einstein-Hamilton-Jacobi equation together with a continuity
equation for the probability associated with the ensemble. This formulation is analogous to
the description of hybrid ensembles of non-relativistic particles on configuration space [19]. For
the purpose of this paper, it will be sufficient to consider the case of vacuum gravity. One
then introduces the quantum matter fields that interact with the classical gravitational field via
the functional Schrödinger equation formulation of quantum field theory, written in terms of
Madelung variables.

2.1. Ensembles on configuration space for vacuum gravity
In the 3+1 decomposition of spacetime, the line element is written as

gµνdx
µdxν = −N2dt2 + hij

(
dxi +N idt

) (
dxj +N jdt

)
, (1)

where N is the lapse function, N i (with i, j = 1, 2, 3) is the shift function, and hij is the metric
on the spatial hypersurface.

The Einstein-Hamilton-Jacobi equation for vacuum gravity is a functional equation for S[hij ]
given by [35, 37, 38, 39, 40]

HC
h =

1

2M
Gijkl

δS

δhij

δS

δhkl
− 2Mc2

√
h (R− 2Λ) = 0, (2)

where M = c2

32πG , h is the determinant of hij , G is the gravitational constant, c the speed of
light, Λ the cosmological constant, and R the curvature scalar. The DeWitt supermetric is
given by Gijkl =

1
2
√
h
(hikhjl + hilhjk − hijhkl). The parameter M can also be written in terms

of the Planck mass mp and the Planck length lp as M = 1
32π

mp

lp
, where mp =

√
h̄c/G and

lp =
√

h̄G/c3. The functional S[hij ] is assumed to be invariant under the gauge group of spatial
coordinate transformations, which is equivalent to satisfying the momentum constraints of the
canonical formulation of general relativity. Furthermore, it satisfies ∂S

∂t = 0.
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Equation (2) provides a Hamilton-Jacobi formulation of the Einstein equations [38]. To define
ensembles of gravitational fields, one introduces a probability P [hij ] over the space of the hij and
an appropriate measure Dh over the space of metrics (technical issues are discussed in [19]). The
functional P , like S, is also required to be invariant under the gauge group of spatial coordinate
transformations and satisfy ∂P

∂t = 0 [19]. The probability obeys a continuity equation of the
form

Ch =
1

M

δ

δhij

(
P Gijkl

δS

δhkl

)
= 0. (3)

The interpretation of Eq. (3) as a continuity equation leads to an equation for the time derivative
of hij , which can be put in the standard form

ḣij = NGijkl
δS

δhkl
+DiNj +DjNi, (4)

as discussed in Appendix A.
Eq. (4) plays an important role in the Einstein-Hamilton-Jacobi formulation because it allows

a reconstruction of the four-dimensional spacetime given a solution of the Einstein-Hamilton-
Jacobi equation on the three-dimensional space-like hypersurface. It is necessary for deriving
all ten Einstein field equations and, as shown by Gerlach, it can be derived directly from the
Einstein-Hamilton-Jacobi formalism [38]. Eq. (4) coincides with the equation derived from the
ADM canonical formalism [41]. It also follows from the formalism of ensembles on configuration
space in a natural way [19].

2.2. Ensembles on configuration space for a quantum scalar field and classical gravity
A mixed classical-quantum system where a quantum scalar field ϕ couples to the classical metric
hkl requires a generalization of Eqs. (2-3) which corresponds to adding a quantized scalar field
as a source term to the gravitational field. The equations take the form [19]

Hhϕ = HC
h +

1

2
√
h

(
δS

δϕ

)2

+
√
h

[
1

2
hij

∂ϕ

∂xi
∂ϕ

∂xj
+ V (ϕ)

]
+

h̄2

2
√
h

(
1√
P

δ2
√
P

δϕ2

)
= 0 (5)

and

Chϕ = Ch +
1√
h

δ

δϕ

(
P
δS

δϕ

)
= 0. (6)

As shown in section 4, the last term in Eq. (5) gives rise to a “Bohm quantum potential”
for the functional Schrödinger equation of the quantized scalar field, which appears in Eqs.
(5-6) written in terms of Madelung variables. If this term is omitted, Eq. (5) becomes the
Einstein-Hamilton-Jacobi equation with a classical scalar field as source.

3. Solving the equations of the mixed classical-quantum system
It is convenient to express S and P in the form

S[hij , ϕ] = S0[hij ] + S1[hij , ϕ], P [hij , ϕ] = P0[hij ]P1[hij , ϕ]. (7)

This ansatz does not restrict the possible solutions. One can interpret P0 as a prior probability
for hij and P1 as a conditional probability of ϕ given hij .

This form for S and P are particularly useful to show that quantum field theory in curved
spacetime appears as an approximation to the mixed classical-quantum theory. This is shown
in the next section. It also seem appropriate for the case in which the solutions are, in some
sense, close to the approximate solutions of quantum field theory in curved space time. This is
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the case that we discuss in the example of this paper. It is also the case that applies to a semi-
classical expansion of the Wheeler-DeWitt equation where quantum gravitational corrections to
the functional Schrödinger equation have been derived [33, 34, 35, 36].

With this ansatz, the modified Einstein-Hamilton-Jacobi equation and the continuity equation
can be written in the forms[

1

2M
Gijkl

δS0

δhij

δS0

δhkl
− 2c2M

√
h (R− 2Λ)

]
+

{
1

2M
Gijkl

(
δS0

δhij

δS1

δhkl
+

δS1

δhij

δS0

δhkl

)
+

1

2
√
h

(
δS1

δϕ

)2

+
√
h

(
1

2
hij

∂ϕ

∂xi
∂ϕ

∂xj
+ V (ϕ)

)
+

h̄2

2
√
h

(
1√
P1

δ2
√
P1

δϕ2

)}

+
1

2M
Gijkl

δS1

δhij

δS1

δhkl
= 0, (8)

and

P1

[
1

M

δ

δhij

(
P0Gijkl

(
δS0

δhkl
+

δS1

δhkl

))]
+P0

{
1

M

δP1

δhij

(
Gijkl

(
δS0

δhkl
+

δS1

δhkl

))
+

1√
h

δ

δϕ

(
P1

δS1

δϕ

)}
= 0. (9)

4. Quantum field theory in curved spacetime as an approximation to the mixed
classical-quantum theory
Quantum field theory in curved spacetime is an approximation to Eqs. (8-9) in which (i) the
corrections to the functional Schrödinger equation and (ii) the back reaction of the quantum
field on the classical gravitational field are neglected. This amounts to neglecting the last term
in Eq. (8) as well as the terms in Eq. (9) that are proportional to δS1

δhkl
. One can then consider

solutions where the terms in square brackets and in curly brackets in Eqs.(8-9) are each set
equal to zero. This leads to two equations, one for the classical sector and one for the quantum
sector.

From now on, to simplify the equations, we restrict to spacetimes in Eq. (1) that satisfy the
gauge N = 1, Nj = 0.

4.1. Classical gravitational sector
Setting the terms in square brackets equal to zero leads to

1

2M
Gijkl

δS0

δhij

δS0

δhkl
− 2Mc2

√
h (R− 2Λ) = 0, (10)

1

M

δ

δhij

(
P0Gijkl

δS0

δhkl

)
= 0. (11)

which are the equations that define an ensemble of classical spacetimes on configuration space
for the case of vacuum gravity. The four-dimensional spacetime is reconstructed via Eq. (4) and
the conditions N = 1, Ni = 0, leading to

ḣij = Gijkl
δS0

δhkl
. (12)
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4.2. Quantum scalar field sector
When the terms in curly brackets are set equal to zero, the following two equations result,

1

2M
Gijkl

(
δS0

δhij

δS1

δhkl
+

δS1

δhij

δS0

δhkl

)
+

1

2
√
h

(
δS1

δϕ

)2

+
√
h

(
1

2
hij

∂ϕ

∂xi
∂ϕ

∂xj
+ V (ϕ)

)
+

h̄2

2
√
h

(
1√
P1

δ2
√
P1

δϕ2

)
= 0, (13)

1

M
Gijkl

δS0

δhkl

δP1

δhij
+

1√
h

δ

δϕ

(
P1

δS1

δϕ

)
= 0. (14)

Using Eq. (12), we have

1

2
Gijkl

(
δS0

δhij

δS1

δhkl
+

δS1

δhij

δS0

δhkl

)
=

δS1

δhkl
ḣkl, (15)

Gijkl
δS0

δhkl

δP1

δhij
=

δP1

δhij
ḣij , (16)

where the time t is the gravitational time associated with the corresponding spacetime. The
integration of Eqs. (13-14) with respect to the spatial coordinates leads to

Ṡ1 +

∫
d3x

1

2
√
h

(
δS1

δϕ

)2

+
√
h

[
1

2
hij

∂ϕ

∂xi
∂ϕ

∂xj
+ V (ϕ)

]
− h̄2

2
√
h

(
1√
P1

δ2
√
P1

δϕ2

)
= 0, (17)

Ṗ1 +

∫
d3x

1√
h

δ

δϕ

(
P1

δS1

δϕ

)
= 0, (18)

using Eqs. (15-16) and the relation Ḟ [hij ] =
∫
d3x δF

δhij
ḣij .

Using equations (17-18), the complex wave functional defined by Ψ =
√
P1 e

iS1/h̄ satisfies

ih̄Ψ̇ =

∫
d3x

[
− h̄2

2
√
h

δ2

δϕ2
+
√
h

(
1

2
hij

∂ϕ

∂xi
∂ϕ

∂xj
+ V (ϕ)

)]
Ψ, (19)

which is the Schrödinger functional equation on a curved space time for N = 1, Ni = 0 [42].

4.3. Example: quantized scalar field on a de Sitter background
Detailed applications of the formalism to particular cases is beyond the scope of this paper.
Thus, instead of providing a fully worked out example, I will restrict myself to describing how
the approach can be applied to derive solutions. It will be sufficient to discuss in a general
way a simple example, that of a quantized massive scalar field (V (ϕ) = 1

2mϕ2) on a de Sitter
background, which in this section will be treated in the approximation of quantum field theory on
curved space time [23, 24]. The approach presented can be seen as a hybrid version of a similar
but fully quantum analysis that takes as its starting point the semiclassical Wheeler-DeWitt
equation [34].

Consider first the classical gravitational field. While equation (5) corresponds to an infinity
of constraints, one at each point, an alternative point of view is possible in which the equation
is regarded as an equation to be integrated with respect to a test function, in which case
it represents one equation for each particular choice of lapse function N (foliation) [34]. The
advantage of this point of view is that one can find in some cases solutions of Eq.(2) for particular
foliations, even when the general solution (which requires solving the Einstein-Hamilton-Jacobi
equation for all choices of lapse functions) is not known.
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In the case of a quantized scalar field on a de Sitter background, one can derive a solution
for the case of a flat foliation (R=0) with N = 1, Ni = 0. It is given by [34]

S0 = −8Mc

√
Λ

3

∫
d3x

√
h, (20)

with the corresponding line element

gµνdx
µdxν = −dt2 + a2(t)δijdx

idxj . (21)

Application of Eq. (12) leads to

ȧ = Mc

√
Λ

3
a (22)

or a = exp{Mc
√
Λ/3 t}, which is the expansion law for the scale factor in de Sitter space.

One can now consider the quantized scalar field. The metric of Eq. (21) depends on the time
only and, furthermore, the foliation chosen is flat. Therefore, Eq. (19) simplifies, and it can
be solved using standard methods for the functional Schrödinger equation on curved spacetime
[34, 42, 43]. In particular, the vacuum state is a Gaussian functional which, while not unique,
can be set equal to the Bunch-Davies background which is the preferred vacuum for de Sitte
space [24].

5. Classical gravitational corrections to the functional Schrödinger equation and
back reaction on the classical gravitational field
In the approximation discussed in the previous section, it was shown that Eqs. (5-6) lead to
quantum field theory in curved spacetime provided certain terms are neglected. When these
terms are not neglected, one can still talk about a “classical sector” and a “quantum sector”
but now there are corrections to the Einstein-Hamilton-Jacobi equation, Eq. (10), and to
the functional schrödinger equation, Eq. (19), due to additional effects that derive from the
interaction of the classical gravitational field with the quantized scalar field.

5.1. Classical gravitational sector incorporating the back reaction from the quantum matter field
The full equations for the classical sector take the form

1

2M
Gijkl

δS0

δhij

δS0

δhkl
− 2Mc2

√
h (R− 2Λ) = 0, (23)

1

M

δ

δhij

(
P0Gijkl

(
δS0

δhkl
+

δS1

δhkl

))
= 0, (24)

which differ from Eqs. (10) by the additional term δS1
δhkl

in Eq. (24). Thus the reconstruction of
the four-dimensional spacetime will proceed now via the equation

ḣij = Gijkl

(
δS0

δhkl
+

δS1

δhkl

)
. (25)

As δS1
δhkl

depends on the quantum scalar field ϕ, the evolution of the classical gravitational field
will also depend on ϕ and this amounts to taking into consideration the backreaction of the
quantum field on the classical gravitational field.
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5.2. Quantum scalar field sector including classical gravitational corrections to the functional
Schrödinger equation
The full equations for the quantum sector take the form of a non-linear functional Schrödinger
equation. It now includes the the last term in Eq. (8) that was neglected when considering the
approximation of quantum field theory in curved space time, leading to

iΨ̇ =

∫
d3x

[
− h̄2

2
√
h

δ2

δϕ2
a

+
√
h

(
1

2
hij

∂ϕa

∂xi
∂ϕa

∂xj
+ V (ϕa)

)
+∆

]
Ψ, (26)

where the non-linear term ∆ is given by

∆ =
1

2M
Gijkl

δS1

δhij

δS1

δhkl
= − 1

8M
Gijkl

(
1

Ψ

δΨ

δhij
− 1

Ψ̄

δΨ̄

δhij

)(
1

Ψ

δΨ

δhkl
− 1

Ψ̄

δΨ̄

δhkl

)
. (27)

Note that the additional term ∆ results from the variation of S1 with respect to hij . It can
therefore be interpreted as a correction to the functional Schrödinger equation that is due to
additional effects of the classical gravitational field on the quantized scalar field (i.e., effects that
go beyond quantum field theory on curved space time).

5.3. Example: Corrections to a quantized scalar field on a de Sitter background
One can now examine the corrections to quantum field theory on curved spacetime that result
from applying the full hybrid model to the example of Section 4.3. A detailed analysis requires
a detailed solution; nevertheless, even without an explicit solution it is possible to obtain
qualitative results. If we assume that Ψ can be approximated by a Gaussian functional (by
assuming, for example, a time dependent Gaussian approximation [44]), then S2 ∼ O(ϕ2).
Therefore, the correction term ∆ in Eq. (27) will be of the order ∆ ∼ O(ϕ4) and one should
be able to treat it, in a perturbative approach, as a modification of the potential V (ϕ). The
correction term in Eq. (25) will be of the order δS1

δhkl
∼ O(ϕ2) and represents the backreaction

of the quantized scalar field on the classical gravitational field.

6. Discussion
The approach of ensembles on configuration space has been used to look at a hybrid model in
which a classical gravitational field interacts with matter in the form of a quantized scalar field,
with the aim of determining the classical gravitational corrections to the functional Schrödinger
equation. It was shown that the hybrid model leads to a non-linear correction term in the
functional Schrödinger equation. In addition, it was found that the backreaction of the quantum
field affects the evolution of the classical gravitational field.

In the case of the approximation of quantum field theory in curved spacetime, the equations
that determine the gravitational field are given by Eq. (10) and Eq. (12). As these equations
are known to be equivalent to the Einstein equations in vacuum, one is assured that the time
evolution of the metric given by Eq. (12) does not lead to inconsistencies. However, there is
an open question regarding the consistency of Eq. (25) as a way of reconstructing the four-
dimensional spacetime, because in this case the source is not classical but quantum. This
issue will be taken up in a future publication. Nevertheless, the formalism should be at least
approximately valid in the case in which the exact solution is close to the solution that results
from applying quantum field theory in curved spacetime.

As the approach presented here contains quantum field theory in curved spacetime as an
approximation, one can study Hawking radiation in the context of the hybrid model. This has
been already done in this approximation for the case of a CGHS black hole [19]. A possible
application of the full theory is to black hole evaporation in the hybrid model, provided the
model remains consistent in the limit in which the black hole reaches its final stage.
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Appendix A. The equation for the time derivative of the metric hij from the
approach of ensembles on configuration space
Consider Eq. (3), interpreted as a continuity equation. Keeping in mind the requirement that
∂P
∂t = 0 [19], the most general equation for the time derivative of the metric hij given eq. (3) is
of the form

δhij =

(
αGijkl

δS

δhkl
+ δϵhij

)
δt (A.1)

for some arbitrary function α. The term δϵhij = − (Diϵj +Djϵi) has been included because it
represents gauge transformations of hkl (i.e., infinitesimal spatial coordiante transformations),
which are permitted because gauge transformations are assumed to leave

∫
DhP invariant [19].

Therefore the most general infinitesimal change δhij of hij will be a combination of motion along

the “velocity field” Gijkl
δS
δhkl

and a gauge transformation. Then, the time derivative of hkl can
be put in the standard form

ḣij = NGijkl
δS

δhkl
+DiNj +DjNi, (A.2)

writing N and Nj in place of α and −ϵj to agree with the usual notation. Eq. (A.2) is identical
to the equation derived from the ADM canonical formalism when N is identified with the lapse
function and Nk with the shift vector [41].
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