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The great emptiness is a possible beginning of the Universe in the infinite past of physical time. For 
the epoch of great emptiness particles are extremely rare and effectively massless. Only expectation 
values of fields and average fluctuations characterize the lightlike vacuum of this empty Universe. The 
physical content of the early stages of standard inflationary cosmological models is the lightlike vacuum. 
Towards the beginning, the Universe is almost scale invariant. This is best seen by an appropriate choice 
of the metric field – the primordial flat frame – for which the beginning of a homogeneous metric is flat 
Minkowski space. We suggest that our observed inhomogeneous Universe can evolve from the lightlike 
vacuum in the infinite past, and therefore can have lasted eternally. Then no physical big bang singularity 
is present.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In most present cosmological models particles, radiation and 
entropy have been created in a heating period after a first “be-
ginning stage”. This beginning stage is often described by models 
of cosmological inflation [1–7]. Other models as a bounce show 
similar features in the context of our discussion. In the presently 
dominant view the physical content of inflation is an extremely 
short dramatic expansion period. In contrast, we argue here that 
for our observed Universe the beginning epoch corresponding to 
inflation extends for a very long period in physical time and may 
have lasted eternally [8]. The beginning is vacuum, characterized 
only by average values of fields and their fluctuations. This is a 
very quiet epoch with only a very slow increase of particle masses. 
In the infinite past all particles become massless. Our present Uni-
verse with all its structures has emerged from this “lightlike vacu-
um”.

Alternative proposals for an eternal Universe are eternal infla-
tion [9–11] or the multiverse. They are based on the possibility 
that our observed Universe may only correspond to a small local 
region of a Universe with very different properties far outside our 
present horizon [6,7]. For eternal inflation the Universe at large 
is inhomogeneous, with new local inflationary Universes created 
continuously in many regions of the multiverse. In contrast, we 
discuss here the possibility that our observed Universe is part of a 
rather large region that can have existed with uniform properties 
since the infinite past. This region could be the whole Universe. We 
do not speculate if the Universe also could contain other regions. 
Those would have no impact on our observed Universe.
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https://doi.org/10.1016/j.physletb.2021.136355
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access artic
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We base our arguments on “field relativity” [12,13], the obser-
vation that the same physical content can be described by different 
choices of fields. Different choices of the metric field or different 
“frames” lead to different geometrical pictures. Observable quan-
tities cannot depend on the choice of “coordinates in field space”. 
They are typically dimensionless, as the product of the distance be-
tween galaxies and the electron mass, whose change is measured 
by the redshift, or the ratio between the nucleon mass and the 
Planck mass which determines the strength of the gravitational in-
teraction. The observables include the properties of the primordial 
fluctuation spectrum, element abundances in nuclear synthesis, or 
the ratio between temperature and the electron mass at the emis-
sion of the cosmic microwave background. In contrast, geometric 
quantities as the curvature scalar or the properties of geodesics, 
including the issue of their completeness, are not accessible to ob-
servation. They depend on the choice of the metric frame.

We construct for standard inflationary models a “primordial 
flat frame” [13,14] for which homogeneous isotropic spacetime 
becomes flat Minkowski space in the infinite past. This is some-
what analogous to models of “genesis” in higher derivative theories 
[15–18]. We remain here, however, within the standard setting of 
inflation models with a scalar field coupled to the metric. Only 
a singular transformation of the metric to the “Einstein frame” 
induces the incomplete geodesics and possible curvature singular-
ities in the familiar picture of the big bang. Higher derivatives are 
not important for the cosmological solutions discussed here.

A central outcome of our investigation is the absence of a phys-
ical big bang singularity for the homogeneous isotropic cosmolog-
ical solution. It has been argued that a singularity is unavoidable 
under rather general conditions [19,20], and that the lifetime of 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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an inflationary Universe is finite [21,22]. For standard inflation-
ary models we find that the big bang singularity of homogeneous 
solutions is an artifact of a singular choice of fields. This is simi-
lar (but not identical) to coordinate singularities as the south-pole 
singularity in Mercator coordinates. For a choice of regular field co-
ordinates the absence of a physical singularity becomes apparent, 
similar to an appropriate map for Antarctica.

It is sometimes argued that a homogeneous isotropic Universe 
may be regular, but neighboring inhomogeneous solutions become 
singular. It is concluded that our observed inhomogeneous Uni-
verse has a singularity when extrapolated backwards. The present 
note establishes that no physical singularity needs to occur for the 
observed inhomogeneous Universe. If the propagators for fluctua-
tions around Minkowski space in the primordial flat frame remain 
finite, our observed inhomogeneous Universe could be extrapolated 
backwards to the infinite past. We briefly discuss conditions under 
which the propagators of fluctuations are indeed well behaved, as 
well as an alternative beginning dominated by fluctuations.

1. Variable gravity

Our point can be made in models of “variable gravity” [14] with 
quantum effective action

� =
∫
x

√
g

{
−χ2

2
R + 1

2
(B − 6)∂μχ∂μχ + λχ4

}
. (1)

We will show by conformal field transformations or Weyl scal-
ings [23,24] to the Einstein frame that such models are equivalent 
to standard models of inflation. For the coefficient of the curva-
ture scalar R the fixed Planck mass M is replaced by a variable 
Planck mass given by a scalar field χ . All particle masses are pro-
portional to χ as well. For constant λ and B , including vanishing 
values, the action contains no dimensionful parameter. Quantum 
scale symmetry [25] is realized in this case. Our models will be 
characterized by a small violation of scale symmetry induced by a 
logarithmic dependence of λ and B on χ/μ via

x = 1

ln
(

μ2

χ2 + ct

) . (2)

The scale μ reflects running couplings. It is the only scale in these 
models – the Planck mass M does not appear as an intrinsic scale. 
For x → 0 the functions B and λ approach constants, B(x → 0) = 0, 
λ(x → 0) = λ0 > 0. Thus quantum scale symmetry is realized for 
χ → 0. The infinite past will be described by a vanishing scalar 
field χ → 0. It is a scale-invariant Universe with massless particles.

For χ → 0, B → 0 the coefficient of the scalar kinetic term K =
B − 6 is negative. This feature is central for the existence of flat 
space cosmological solutions of the field equations derived from 
the effective action (1). For a variable Planck mass χ the condition 
of stability is B > 0. This is indeed realized and the models have 
no ghost – or tachyon – instabilities.

The quantum effective action � includes all effects of quan-
tum fluctuations. The field equations derived by variation of the 
quantum effective action are exact, without further quantum cor-
rections. They determine the time evolution of expectation values 
in the presence of both small and large fluctuations, as bubbles or 
instantons. The conformal transformations underlying field relativ-
ity are simply variable transformations in a system of differential 
equations. This extends to propagators and the associated spec-
trum of primordial fluctuations [26]. As a price to pay, an exact 
computation of the quantum effective action is not possible. A 
given simple form as in eq. (1) is at best a valid approximation.

The homogeneous isotropic solutions of the field equations in-
volve two functions of cosmic time t , namely the scalar field χ(t)
2

and the scale factor a(t) of a Robertson-Walker metric. Towards the 
infinite past t → −∞ the scalar field vanishes as

χ(t) =
√

3

λ0
(t0 − t)−1. (3)

The scale factor approaches a constant value ā

a(t) = ā

(
1 + α(t)

ln

(√
λ0
3 μ(t0 − t)

)
)

, (4)

such that geometry becomes Minkowski space in the infinite past. 
The function α(t) varies very slowly. Its precise form depends on 
the specific model for inflation and will be given below for par-
ticular models. A detailed discussion of a large family of models, 
field equations and their solutions can be found in an accompa-
nying paper [27]. A primordial flat frame with these propagators 
exists for a large class of inflationary models in the Einstein frame, 
both with curvature scalar divergent or finite at the bing bang sin-
gularity.

2. Field relativity

Let us construct the invertible map between the action (1) in 
the “scaling frame” and the standard inflationary models in the 
Einstein frame. In the Einstein frame the effective action describing 
the inflationary epoch involves the metric and a scalar “inflaton” 
field σ ,

� =
∫
x

√
gE

{
− M2

2
R E + 1

2
∂μσ∂μσ + V E(σ )

}
, (5)

with V E the effective scalar potential in the Einstein frame. A Weyl 
transformation,

gE,μν = w2 gμν, w2 = χ2

M2
, (6)

relates the metric gE,μν in the Einstein frame and the metric gμν

in the scaling frame. The scalar field χ will be related to σ .
Expressed in terms of gμν one obtains the action (1) of “vari-

able gravity” [14] with

λ(χ) = V E(σ̃ )

M4
, B(χ) = χ2

(
∂σ̃

∂χ

)2

, σ̃ = σ/M. (7)

We assume a monotonic behavior B > 0. During inflation the χ -
dependence of λ is directly related to the slow roll parameter ε ,(

∂ lnλ

∂ lnχ

)2

= 2Bε, ε = 1

2

(
∂ ln V E

∂σ̃

)2

. (8)

Starting with the action (1) for variable gravity the Planck mass M
appears only through the definition of the fields gE,μν and σ . It is 
not an intrinsic scale of the theory. Field relativity states that all 
expectation values of observables computed from the actions (1)
and (5) are the same.

3. Primordial flat frame

At this stage we still have a whole family of frames according to 
different possible choices for the relation between σ and χ . Many 
models admit a “primordial flat frame” by a choice of σ̃ (χ) for 
which the “kinetial” K = B − 6 obeys

K < 0, K + 6 = ∂ ln K

∂ lnχ
− ∂ lnλ

∂ lnχ
. (9)
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With the choice (9) there are cosmological solutions for which 
spacetime is flat, while the dynamics of inflation is associated to 
the evolution of χ .

The metric field equations derived from the action (1) read for 
a Robertson-Walter metric (R = 12H2 + 6∂t H , H = ∂t ln(a))

3χ2 H2 = λχ4 + K

2
χ̇2 − 6Hχχ̇, (10)

and

χ2 R = 4λχ4 − (K + 6)χ̇2 − 6χ(χ̈ + 3Hχ̇ ). (11)

Here dots denote time-derivatives. The scalar field equation is 
given by

K (χ̈ + 3Hχ̇ ) = −4λχ3 − χ4 ∂λ

∂χ
+ χ R − 1

2

∂ K

∂χ
χ̇2. (12)

For frames obeying the condition (9) all three equations 
(10)–(12) can be solved for a flat Minkowski geometry. For this 
solution one has

χ̇ = c(χ)χ2, c =
√

−2λ

K
, H = 0, R = 0. (13)

If c reaches a constant for χ → 0, one finds for the asymptotic 
behavior in the past infinity t → −∞ that χ vanishes according to

χ(t) → 1

c(t0 − t) + χ−1
0

. (14)

We typically encounter slowly varying functions c(χ) for which 
eq. (14) remains a good approximation.

The solution in the primordial flat frame has a regular geome-
try. This demonstrates the absence of a physical singularity for this 
cosmological solution. The singularity in the Einstein frame is a 
field singularity induced by the singularity in the field transforma-
tion (6) for χ → 0. While the metric gμν amounts to “regular field 
coordinates” for the infinite past, the Einstein metric gE,μν corre-
sponds to “singular field coordinates”. The regular field coordinates 
provide for a more natural description of the physical properties of 
the lightlike vacuum. Conformal time is the same for both frames. 
As χ(t → −∞) → 0 all particles become massless in the infinite 
past.

We next establish the existence of a frame for which the con-
dition (9) holds. This “flat frame condition” (9) constitutes a differ-
ential equation for the function B(σ̃ )

B = 2ε

(
1 ± 1√

2ε(6 − B)

∂ B

∂σ̃

)2

. (15)

In eq. (15) the plus sign applies if V E increases with σ , while the 
minus sign accounts for V E decreasing with σ . A given solution 
B(σ̃ ) of eq. (15) determines the relation between σ̃ and χ by 
eq. (7), resulting in B(χ) and λ(χ). A primordial flat frame ex-
ists whenever for a given V E (σ̃ ) and associated ε(σ̃ ) a solution of 
eq. (15) with 0 < B(σ̃ ) < 6 exists. In particular, for constant ε one 
has constant B = 2ε � 1, such that K = B − 6 is indeed negative. 
For small ε one can solve eq. (15) iteratively

B = 2ε

(
1 ± 1

3 − ε

√
ε

2

∂ lnε

∂σ̃

)2

. (16)

We will only require that χ(σ̃ ) is defined such that the condition 
(9) holds with sufficient accuracy for χ → 0. In this case one finds 
solutions that approach flat space in the infinite past and are again 
free of singularities.
3

If the condition (9) holds the field equations admit a particu-
lar homogeneous isotropic solution that “begins” with Minkowski 
space. Geodesics are complete and both conformal and cosmic 
time (proper time of comoving observer) can extend to minus in-
finity, somewhat similar to particular cosmologies with non-zero 
spatial curvature [28]. Our homogeneous solutions with a flat-
space beginning are cosmic attractor solutions. One may envisage 
a beginning in the far distant past with different initial condi-
tions, as inhomogeneous space-times or homogeneous space-time 
with non-zero spatial curvature. The corresponding solutions ap-
proach the attractor solution as time increases. The only instability 
is the slowly increasing scalar field. For many different possible 
beginnings the physical properties of the major part of very early 
cosmology are well described by “great emptiness”. This includes 
the epoch relevant for the characteristics of the primordial fluctu-
ation spectrum.

4. Starobinski inflation

As an example we discuss Starobinski inflation [1]. At present 
this model is compatible with all observations. By use of suitable 
variables [29,30] Starobinski inflation is characterized in the Ein-
stein frame (5) by a potential

V E = M4

8C

[
1 − exp

(
−

√
2

3
σ̃

)]2

. (17)

For the relation between σ̃ = σ/M and χ we employ

W = exp

(
−

√
2

3
σ̃

)
= 3x

2

(
1 − 5

6
x ln

(
2

3x

))
, (18)

with x given by eq. (2). For the effective action (1) this implies

λ = λ0(1 − W )2, λ0 = 1

8C
, (19)

and

B = 6x2
[

1 − 5x

3

(
ln

(
2

3x

)
− 1

)]
. (20)

One may verify that the primordial flat frame condition (15) is 
obeyed up to terms of the order W 4.

The functions B(x) and λ(x) specify the action (1) for variable 
gravity. Solving the field equations (10)-(12) for this model with 
K = B − 6, one finds indeed eqs. (3), (4), with α approximated by

α(t) = 41

48
ln

[
2

3
ln

(
μ2λ0(t0 − t)2

3

)]
. (21)

Details can be found in an accompanying paper [27], where we 
also show that the same χ(η) solves the field equations in the Ein-
stein frame and in the primordial flat frame. In this paper we fur-
ther discuss the primordial flat frame for other inflationary models.

5. Lightlike vacuum

Physical properties do not depend on the choice of frames. For a 
discussion of observables we therefore concentrate on dimension-
less quantities that are invariant under Weyl scalings. As a first 
physical property one finds that all particles become massless as 
one approaches the infinite past. Massless particles indicate un-
broken scale symmetry. The relevant dimensionless quantity is the 
ratio of particle mass m over momentum p. For m/p → 0 particles 
are relativistic and propagate like light.

In the primordial flat frame the lightlike behavior of all parti-
cles is seen directly. The physical momentum p is given in terms of 
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the comoving momentum k as p = k/a. With a approaching a con-
stant ā, both quantities are proportional to each other. For t → −∞
and finite k, p also remains finite. On the other hand, quantum 
scale symmetry implies that all particle masses are precisely pro-
portional to χ . They vanish for t → −∞ since χ → 0.

Particle masses ∼ χ in the scaling frame correspond to fixed 
particle masses m in the Einstein frame. In the Einstein frame the 
momentum diverges for any k �= 0 as the singularity is approached 
for aE → 0. Again m/p goes to zero and all particles become effec-
tively massless. On a technical level this property is directly seen 
in the standard analysis of the evolution of massive particle fluc-
tuations in conformal time, see below. The time of the big bang 
singularity in the Einstein frame corresponds to the infinite past in 
the scaling frame.

6. Physical time

We have to define a notion of “physical time” that is the same 
in both frames. Cosmic time t in the Robertson-Walker metric de-
pends on the choice of frame. The same holds for proper time [8]. 
Geometry is geodesically incomplete in the Einstein frame, while it 
is geodesically complete in the primordial flat frame. Once a phys-
ical time is established, one can map physical time to cosmic time 
or proper time in each frame separately. Proper time cannot be 
employed for massless particles. Since particles become massless 
in the infinite past or at the big bang singularity, proper time does 
not seem suitable for a physical time for this period – for details 
see ref. [8].

Physical time should be based on oscillatory phenomena and a 
counting of oscillations. It is no accident that some type of “oscil-
lation time” has been employed since the earliest descriptions of 
nature by humans. Today we use it by counting the oscillations 
of photons with a wavelength given by some particular atomic 
transition. The number of oscillations of the photon wave function 
with a given comoving momentum k remains a valid physical time 
for all epochs of the Universe, including the beginning. Since the 
counting is discrete, it does not depend on the choice of coordi-
nates. Neither does it depend on the choice of fields or the metric 
frame.

Expressed in terms of conformal time η, the wave equation for 
a massless particle in a homogeneous isotropic Universe reads(

∂2
η + k2 − a2 R

6

)
aϕk = 0, (22)

with ϕk an appropriate component of the wave function in an 
eigenstate of comoving momentum k, H = ∂t ln a, adη = dt , and R
the curvature scalar. For |a2 R| � k2, which holds at the beginning 
of inflation, the number of oscillations nk is proportional to con-
formal time, nk = kη

2π . We can therefore consider conformal time 
η as a good proxy for oscillation time. For homogeneous isotropic 
cosmologies we can take it as physical time. Conformal time is 
invariant under conformal transformations of the metric and there-
fore the same in all frames related by Weyl scaling. For a massive 
particle in the Einstein frame one adds in the bracket in eq. (22) a 
term a2m2. It vanishes for a → 0.

In the scaling frame with a → ā cosmic time t , conformal time 
η and oscillation time nk are all proportional to each other. Phys-
ical time can be extended to the infinite past if the proposed 
cosmological solution describes the Universe for t → −∞. In the 
Einstein frame, physical and conformal time are the same as in the 
scaling frame. For typical inflationary cosmologies without a “be-
ginning event” both conformal time η and oscillation time nk go 
to minus infinity as aE → 0. The Universe exists therefore since 
the infinite past if physical time is used – it is eternal. Only the 
mapping to proper time becomes singular for aE → 0, as may be 
4

expected for particles becoming massless. (See ref. [8] for a discus-
sion of physical time fore massive particles.) Measured in proper 
time the duration of oscillations approaches zero very rapidly for 
aE → 0, whereas the number of oscillations goes to infinity. While 
the proper time interval between two ticks of the “photon clock” 
is frame dependent, the number of ticks is not.

7. Inhomogeneous Universe

Our Universe is not homogeneous and isotropic. The question 
arises if our observed inhomogeneous Universe can have lasted 
since ever in physical time, or if the extrapolation backwards nec-
essarily encounters a physical singularity. It is often believed that 
the latter is the case and therefore a physical big bang singularity 
is unavoidable in presence of the observed inhomogeneities. We 
will argue here that the observed inhomogeneities may be com-
patible with a Universe existing since infinite physical time, with 
a big bang singularity being a field singularity similar to the ho-
mogeneous and isotropic solution. For this purpose we connect the 
possible divergencies of neighboring inhomogeneous cosmological 
solutions to the form of the propagator for the corresponding par-
ticles. For a well behaved propagator for the graviton and scalar 
fluctuations our inhomogeneous Universe can indeed evolve from 
an inhomogeneous fluctuating lightlike vacuum in the infinite past, 
with average inhomogeneities given by the fluctuations of the cor-
responding fields. A well behaved graviton propagator for χ → 0
may require, however, terms in the effective action beyond the 
ansatz (1), typically involving higher derivatives of the metric.

We expand the metric around a homogeneous isotropic aver-
aged metric,

gμν(η, x) = a2(η)(ημν + γμν(η, x)), (23)

with x ∈ R3 denoting comoving spacelike coordinates, and similar 
for the scalar field χ(η, x) = χ̄ (η)(1 + δ(η, x)). The Weyl scaling 
(6) relates the scaling frame to the Einstein frame

a2(ημν + γμν) = M2a2
E

χ̄2(1 + δ)2
(ημν + γEμν). (24)

With a(η) = (M/χ̄(η))aE (η) one has in linear order γμν = γE,μν −
2δημν . We concentrate here on the graviton or traceless trans-
verse tensor fluctuations γmn , m, n = 1...3. They obey γmnδmn =
0, kmγmn = 0, where we have switched to a Fourier representa-
tion γmn(η, k), with km the spacelike comoving momentum, km =
δmnkn , k2 = kmkm . The relative graviton fluctuations γmn are invari-
ant under conformal frame transformations, γmn = γmn,E .

For the effective action (1) the linearized field equations for 
γmn(k) can be written in a frame invariant form [26]

(∂2
η + 2Ĥ ∂η + k2)γmn(η,k) = 0, (25)

with Ĥ = H + 1
2 ∂η ln F , H = ∂η ln a. Here F (χ) is the coefficient 

multiplying the curvature scalar in the effective action. In the scal-
ing frame one has F = χ̄2, while in the Einstein frame F = M2. 
The frame invariant formulation (25) allows us to take over the 
solution for γmn(η, k) from the scaling frame to the Einstein frame 
and vice versa. In particular, if γmn(η → −∞) and its derivatives 
remain finite, there is no physical singularity for this type of inho-
mogeneous cosmologies.

The general solution of eq. (25) reads

γmn(k) = c−
mn(k)w−

k (η) + c+
mn(k)w+

k (η). (26)

The mode functions inferred from the effective action (1) are given 
by
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w−
k (η) = (w+

k (η))∗ = 1

A
√

2k

(
1 − i

u

)
e−iu . (27)

They involve the frame invariant quantities

A = a
√

F , u = k(η − η0), (28)

such that the solution (26), (27) is valid in arbitrary frames [26]. 
In the primordial flat frame one has A−1 ≈ c̃(η0 − η) = −c̃u/k, 
while for the Einstein frame A−1 ≈ H E (η0 − η)/M . The function 
c̃ = χ̇/χ2 generalizes c in eq. (13) – it equals c for η → −∞. 
The particular mode functions (27) obtain for ∂ηĤ /Ĥ 2 = 1 + ν
and ν = 0. Their generalization for constant ν �= 0 can be found in 
ref. [26]. Within the validity of the linear approximation the inho-
mogeneous graviton-like cosmological solutions (26) are damped 
oscillations. Their amplitude is frozen for |u| � 1. Early relative in-
homogeneities in the graviton sector tend to become smaller as 
time increases. The homogeneous solution is an attractor in this 
sense.

Towards the beginning the combination A approaches zero 
both in the primordial flat frame (F → 0) and the Einstein frame 
(aE → 0). Eqs (26), (27) imply that the relative fluctuations diverge 
for η → −∞. This implies a breakdown of the linear approxi-
mation. The Universe starts in a state for which inhomogeneous 
configurations dominate. A frame-invariant metric can be defined 
as g̃μν = F gμν . In the linear approximation the frame invariant 
metric for the graviton vanishes ∼ A, in contrast to A2 for the ho-
mogeneous metric. This may suggest an inhomogeneous beginning 
for which the expectation value of the frame-invariant metric van-
ishes. There may exist better adapted definitions of a metric in this 
case.

8. Graviton propagator

The mode functions are directly connected to the propagator 
G grav for the relative graviton fluctuations, and in turn to the ob-
servable primordial tensor spectrum �2

T ,

G grav(k, η) = 4|w−
k (η)|2, �2

T (k) = k3G grav(k, η)

π2
. (29)

As long as the graviton propagator remains finite, the mode func-
tions remain finite and the inhomogeneous solutions can be ex-
trapolated towards the infinite past without encountering any sin-
gularity. The same holds for the gauge invariant scalar fluctuations. 
As long as the scalar propagator and the associated scalar primor-
dial fluctuation spectrum remain finite no singularity can occur in 
this sector.

The graviton propagator is the inverse of the second functional 
derivative of the effective action with respect to the graviton fluc-
tuations. The graviton propagator is finite for k �= 0 for a very 
extended epoch when χ > 0, independently of the details of the 
beginning. For this epoch the description of graviton fluctuations 
in almost flat space becomes very simple in the primordial flat 
frame.

For the effective action (1) in the primordial flat frame the 
inverse graviton propagator is proportional to χ2. As a conse-
quence, the graviton propagator diverges for χ → 0, as visible in 
eqs. (27), (29). Correspondingly, also the neighboring inhomoge-
neous cosmologies could become singular for the field equations 
derived from the action (1). This could be related to the singular 
inhomogeneous cosmologies found in earlier studies on the Ein-
stein frame [31,32]. We recall, however, that the divergence of the 
propagator concerns the relative metric fluctuations, while the fate 
of the fluctuations in the frame-invariant metric could be different.

The graviton propagator is a direct measure for the fate of 
small deviations from a homogeneous Universe in the correspond-
ing sector. For the effective action (1) the damping of the relative 
5

fluctuations according to the mode functions (27) is so strong that 
infinitely strong relative fluctuations are needed at initial time 
η → −∞ in order to produce the predicted primordial graviton 
fluctuations during later stages of inflation. Finite relative inho-
mogeneities would be completely wiped out before the end of 
inflation. No such issue occurs if initial conditions are set at some 
finite initial time.

Even if the relative fluctuations diverge, this is not per se a 
problem. Finite inhomogeneities in the frame-invariant metric g̃μν , 
paired with a vanishing expectation value for the homogeneous so-
lution, necessarily lead to diverging relative inhomogeneities.

The divergence of the (relative) graviton propagator could be an 
artifact of an insufficient approximation to the quantum effective 
action. One expects the presence of higher derivative terms [25]

�hd = 1

2

∫
x

√
g
{

Cμνρσ DCμνρσ − RC R
}
, (30)

with Weyl tensor Cμνρσ . Here D and C are dimensionless func-
tions of the covariant Laplacian divided by some squared renor-
malization scale k2, as well as of χ2/k2. (There are other possible 
terms as well.) For χ = 0 these terms typically dominate the in-
verse propagator. They can render the graviton propagator finite 
for k �= 0. (See ref. [33] for an example.) For a graviton propa-
gator G grav (k, η) that remains finite for all η the mode function 
w−

k (η) in eq. (29) no longer diverges for χ → 0. Correspond-
ingly, the relative graviton perturbation γmn in eq. (26) remains 
finite if we insert the coefficient c−

mn(k) that corresponds to the 
primordial tensor fluctuations in our Universe. If the inhomoge-
neous solutions dominating the primordial fluctuation spectrum 
remain small deviations from the homogeneous “background” so-
lution, these neighboring inhomogeneous cosmologies will remain 
finite for all η, even in the infinite past.

For the alternative of diverging relative fluctuations, the begin-
ning of the Universe could be a strongly fluctuating state with 
χ̄ = 0. The propagator for the relative graviton fluctuations in a 
homogeneous background is no longer the relevant physical quan-
tity in this case. Approximate homogeneity would be reached only 
once χ̄ has grown sufficiently large.

9. Higher derivative invariants

Higher derivative terms of the type (30) are relevant for un-
derstanding the graviton propagator for χ = 0. In the primordial 
flat frame they play only a minor role for the homogeneous cos-
mological solutions. The Weyl tensor vanishes for the homoge-
neous solutions and the first term in eq. (30) does not contribute 
to the homogeneous field equations. The ratio R/χ2 vanishes for 
η → −∞, such that the relative importance of the term ∼ R2 goes 
to zero in this limit.

General inhomogeneous solutions typically lead to a non-zero 
Weyl tensor. In the Einstein frame it is often observed that the 
squared Weyl tensor diverges for aE → 0, and this is incorrectly 
associated with a physical singularity. In the primordial flat frame 
a non-zero finite Weyl tensor for η → −∞ implies that the com-
bination W = √

gCμνρσ Cμνρσ differs from zero. The quantity W , 
which includes the factor 

√
g , is invariant under Weyl scalings. It 

is therefore the same in the Einstein frame. This implies that in the 
Einstein frame the squared Weyl tensor indeed diverges ∼ 1/

√
gE

as 
√

gE reaches zero at the “big bang singularity”. (For the ho-
mogeneous solution and conformal time one has 

√
g = a4 → ā4, √

gE = a4
E → 0.) The regular behavior in the primordial flat frame 

demonstrates that the apparent singularity is a field singularity, 
arising from a singular choice for the metric field. No physical sin-
gularity can be inferred from the diverging squared Weyl tensor 
alone, in contrast to the combination W .
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10. Prediction for decreasing modes

Frame-invariant fields can be divided into observable and de-
creasing modes. Decreasing modes � are eigenvectors of the sta-
bility matrix for a linearized evolution equation

∂η� = ζ�, ζ < 0. (31)

Here � is typically a small deviation from some family of attractor 
solutions. The solution for constant ζ ,

�(η) = �(ηin)exp{ζ(η − ηin)}, (32)

decreases for increasing η − ηin (�(ηin) > 0). For a bounded ini-
tial value �(ηin) and initial time ηin → −∞ one finds �(η) → 0. A 
Universe lasting since ever makes the prediction that all decreasing 
modes are zero. The general analysis of small cosmic fluctuations 
indicates that indeed some of the modes are decreasing modes 
in this sense. On the other hand, the modes dominating the pri-
mordial fluctuation spectrum cannot be decreasing modes in this 
sense. The frame-invariant graviton field increases ∼ A and there-
fore corresponds to an observable mode.

The presence of decreasing modes implies that arbitrary field 
configurations at some finite η cannot be extrapolated backwards 
to arbitrarily large negative η without encountering a singularity. 
This includes metric configurations in the close vicinity of the ob-
served metric of the Universe. The reason is the prediction for the 
allowed range of field values at finite η if initial conditions are set 
in the infinite past. Field values outside the predicted range are 
inconsistent and lead to a singular behavior if one tries to extrap-
olate them backwards.

If one extrapolates backwards non-zero values �(η) of decreas-
ing modes, they will grow beyond the bound for �(ηin) at some 
finite conformal time ηc . Extrapolating further backwards the solu-
tion has to diverge if �(η) is predicted to be zero - otherwise there 
would be no such prediction. Such a singularity cannot be removed 
by a conformal transformation. It does not indicate a physical sin-
gularity either. It rather tells us that a finite value of �(η) is not 
allowed for a Universe lasting since ever. Not every inhomogeneous 
fluctuation in the neighborhood of the homogeneous solution can 
be extrapolated backwards without encountering a singularity at 
finite η. The backwards extrapolation has to respect the prediction 
for the decreasing modes.

In summary, a beginning of the Universe in the infinite past 
predicts that arbitrary field configurations at finite η generically 
diverge when extrapolated backwards. This is the necessary con-
sequence of the presence of decreasing modes. Backwards extrap-
olation to the infinite past is possible only for fields within the 
predicted allowed range. In contrast, if a non-zero amplitude of a 
decreasing mode would be observed, this would indicate that the 
corresponding cosmology cannot have lasted forever.

11. Discussion

We have shown that the homogeneous isotropic cosmologi-
cal solution for standard models of inflationary cosmology can be 
extrapolated backwards to the infinite past in physical time, as 
measured by the number of oscillations of photons. This extends 
to our observed inhomogeneous Universe for two alternative set-
tings. Either the beginning of the Universe is inhomogeneous, with 
a homogeneous expectation value of the metric tending to zero in 
the infinite past. Only once the homogeneous expectation value in-
creases to values larger than the inhomogeneities, the Universe be-
comes more and more homogeneous and the linear approximation 
for relative inhomogeneities becomes valid. Or the propagators for 
observable relative fluctuations remain finite. No physical big bang 
singularity is present in either case. The often discussed singularity 
6

is then only apparent, being related to a singular, and therefore not 
very appropriate, choice of coordinates in field space. Field relativ-
ity permits us to use better adapted choices for the metric field. 
In particular, in the primordial flat frame the averaged geometry 
becomes flat Minkowski space in the infinite past. The absence of 
singularities for the homogeneous solution becomes very apparent.

The lightlike vacuum in the beginning of the Universe can be 
associated to quantum scale symmetry [25]. Unbroken scale sym-
metry implies massless particles, as encountered in the lightlike 
vacuum. Quantum scale symmetry arises from an ultraviolet fixed 
point in the flow of couplings, functions or functionals in quan-
tum gravity coupled to particle physics. For interesting “crossover 
cosmologies” [13,34] the Universe starts from an ultraviolet fixed 
point in the infinite past, and makes a transition or crossover to 
a different infrared fixed point that is approached in the infinite 
future.

We emphasize that a beginning as a lightlike vacuum is possi-
ble for inflationary cosmologies, but not mandatory. Other possible 
histories of the Universe, as a crossing of the apparent big bang 
singularity in a bouncing Universe [35,36], or emergence of our 
Universe from a finite region of a multiverse [6,7], can be imag-
ined. In this case the lightlike vacuum would not last forever 
towards the infinite past. It would rather be reached at some par-
ticular time characterizing the bounce or the onset of inflation for 
a region. Nevertheless, no necessity for such an extension is visible 
at present. For a long epoch in physical time the physical prop-
erties of the Universe can be characterized by great emptiness, 
independently of the detailed beginning and the issue of singu-
larities.
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