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Chromodynamique quantique à haute énergie, théorie et
phénoménologie appliquée aux collisions de hadrons

Résumé :

En observant des petites distances à l’intérieur d’un hadron, il est possible d’étudier ses
constituants : des quarks et des gluons, ou partons, qui obéissent aux lois du régime pertur-
batif de la Chromodynamique Quantique (QCD). Cette sous-structure est mise à jour lors
de collisions entre hadrons caractérisées par un grand transfert d’impulsion : dans de telles
collisions, un hadron agit comme une collection de partons dont les interactions peuvent être
décrites en QCD.

Dans une collision d’énergie modérée, un hadron apparait dilué et les partons interagissent
de manière incohérente. Quand l’énergie de la collision augmente, la densité de partons dans
le hadron augmente. Lorsqu’une énergie beaucoup plus grande que le transfert d’impulsion
est atteinte, on entre dans le régime de saturation de QCD : la densité de gluon est devenue
tellement large que des effets collectifs sont importants.

Nous introduisons un formalisme adéquat pour étudier les collisions hadroniques dans
la limite de haute énergie en QCD, et la transition vers le régime de saturation. Dans ce
formalisme, nous redérivons les résultats connus nécessaires pour présenter nos recherches
personnelles, et nous calculons différentes sections efficaces dans le contexte de la diffraction
dure et de la production de particules.

Nous étudions la transition vers le régime de saturation dans le cadre de l’équation BK. En
particulier, nous dérivons certaines propriétés de ses solutions. Nous appliquons nos résultats
à la diffusion profondément inélastique et nous montrons que, dans le domaine d’énergie
du collisionneur HERA, les prédictions de la QCD à haute énergie sont compatibles avec
les données. Nous considérons aussi la production de jets dans les collisions hadroniques et
discutons des possibilités de tester la saturation au LHC.

Mots clés : physique des particules, chromodynamique quantique, régime perturbatif, densité
de gluons, saturation, effets collectifs.



Quantum chromodynamics at high energy, theory and
phenomenology at hadron colliders

Abstract :

When probing small distances inside a hadron, one can resolve its partonic constituents :
quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This
substructure reveals itself in hadronic collisions caracterized by a large momentum transfer :
in such collisions, a hadron acts like a collection of partons whose interactions can be described
in QCD.

In a collision at moderate energy, a hadron looks dilute and the partons interact incohe-
rently. As the collision energy increases, the parton density inside the hadron grows. Even-
tually, at some energy much bigger than the momentum transfer, one enters the saturation
regime of QCD : the gluon density has become so large that collective effects are important.

We introduce a formalism suitable to study hadronic collisions in the high-energy limit
in QCD, and the transition to the saturation regime. In this framework, we rederive known
results that are needed to present our personal contributions and we compute different cross-
sections in the context of hard diffraction and particle production.

We study the transition to the saturation regime as given by the BK equation. In particular
we derive properties of its solutions. We apply our results to deep inelastic scattering and show
that, in the energy range of the HERA collider, the predictions of high-energy QCD are in
good agreement with the data. We also consider jet production in hadronic collisions and
discuss the possibility to test saturation at the LHC.

Key words : particle physics, quantum chromodynamics, perturbative regime, gluon density,
saturation, collective effects.
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Introduction

Les premières expériences de diffusion profondément inélastique réalisées dans les années
60 ont initié d’importants progrès dans la compréhension des interactions fortes entre hadrons.
Marquées par la découverte de la loi d’échelle de Bjorken, ces expériences ont permis de
mettre en évidence la nature composite des hadrons : elles indiquent qu’ils sont composés de
particules de spin 1/2, appelées partons, à la fois confinés et libres à l’intérieur des hadrons.
La possibilité que ces partons soient caractérisés par un nombre quantique supplémentaire
était aussi discutée, cela permettait de résoudre un problème lié à la statistique des fermions
de spin 1/2. La chromodynamique quantique (QCD) a alors été proposée comme théorie des
interactions fortes ; cette théorie des champs pouvait potentiellement rendre compte à la fois
du confinement, de la description en termes de partons libres, et possédait un degré de liberté
supplémentaire : la charge de couleur.

La QCD est une théorie de jauge non abélienne, qui décrit les interactions fortes en termes
de particules de spin 1/2 appelées quarks et de particules de spin 1 appelées gluons. Le groupe
de jauge de QCD est le groupe SU(Nc) avec Nc = 3; les quarks et gluons portent une charge
de couleur qui peut prendre Nc valeurs différentes pour les quarks et N2

c − 1 pour les gluons.
Des observations de violations de la loi d’échelle de Bjorken ont plus tard confirmé la présence
des gluons et la QCD s’est imposée comme la théorie des interactions fortes. C’est une théorie
quantique qui possède la propriété de liberté asympotique : plus les phénomènes considérés
mettent en jeu des petites distances (ou des grands transferts d’impulsion), plus la constante
de couplage αs est petite. Aux grandes distances, les observations nous montrent que les
états liés de la théorie sont les hadrons. Aux petites distances par contre, les interactions
sont décrites en utilisant les états propres de la théorie libre : les partons. Ce terme désigne
maintenant indifféremment les quarks et les gluons.

Les bases de la QCD sont posées dans les années 70. Dans le régime de couplage fort,
caractérisé par l’échelle d’énergie ΛQCD ' 200 MeV, notre capacité à faire des calculs est
limitée ; la physique est dite non perturbative. Au contraire lorsque la théorie est faiblement
couplée (αs ¿ 1), il est possible d’effectuer des calculs perturbatifs. La plupart des collisions
entre hadrons sont caractérisées par des transferts d’impulsion faibles et correspondent à
un régime de couplage fort. Cependant, il arrive que certaines collisions mettent en jeu un
transfert d’impulsion très grand par rapport à ΛQCD. Ces collisions particulières peuvent être
décrites par des collisions microscopiques entre partons, les sections efficaces partoniques étant
calculables à partir du Lagrangien de QCD, exprimé en termes de quarks et de gluons, en
utilisant la théorie des perturbations par rapport à αs.

Dans une telle description, les différents partons interagissent de manière incohérente et les
différentes contributions sont ajoutées de manière probabiliste : une section efficace hadronique
est exprimée comme une convolution entre une section efficace partonique et des distributions
de partons, qui mesurent simplement la quantité de partons à l’intérieur des hadrons. Grâce à
des outils comme le développement en produit d’opérateurs et le groupe de renormalisation, la
description de ces distributions de partons est devenue très fine. L’évolution des distributions
de partons avec l’impulsion transférée est décrite par des équations [1] dues à Dokshitzer,
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Gribov, Lipatov, Altarelli et Parisi (DGLAP). Si en plus l’énergie de la collision est très
grande devant l’impulsion transférée, l’évolution des distributions de partons avec l’énergie
de la collision est décrite par une équation [2] due à Balitsky, Fadin, Kuraev et Lipatov. Ces
équations décrivent comment le nombre de partons à l’intérieur d’un hadron augmente lorsque
l’impulsion transférée augmente (dans le cas des équations DGLAP), ou lorsque l’énergie de
la collision augmente (dans le cas de l’équation BFKL).

A partir des années 80, les expériences se focalisent sur l’étude des distributions de partons
à des énergies de collision relativement faibles. L’approche par les équations DGLAP fait le
succès de la QCD, alors que l’équation BFKL reste ignorée. Les prédictions de violations de la
loi d’échelle de Bjorken par les équations DGLAP sont confirmées et l’ensemble des résultats
expérimentaux est bien décrit. Les données du problème changent dans les années 90 avec
le démarrage du collisionneur HERA, qui réalise des expériences de diffusion profondément
inélastique à des énergies jamais atteintes auparavant. L’intérêt pour équation BFKL est
ravivé et avec lui, la nécessité d’établir les prédictions de la QCD dans un nouveau régime du
domaine perturbatif : le régime de saturation qui apparaît dans la limite de haute énergie. En
effet, il est réalisé [3, 4, 5, 6, 7] que lorsque l’énergie de la collision est supposée beaucoup plus
grande que l’impulsion transférée, cet ordonnancement est responsable de grandes densités de
gluons dans les hadrons, impliquant d’importants effets collectifs.

Les équations DGLAP indiquent que lorsque l’impulsion transférée dans la collision aug-
mente, la densité de partons dans le hadron diminue et ce dernier est de plus en plus dilué.
En effet même si le nombre de partons augmente, l’espace des phases disponibles pour ces
partons augmente plus vite. L’évolution BFKL au contraire n’ouvre pas d’espace de phase
supplémentaire lorsque l’énergie de la collision augmente et le hadron devient de plus en plus
dense dans la limite de haute énergie. A partir d’une certaine énergie, la densité de gluon de-
vient assez grande pour invalider la description en termes de partons interagissants de manière
incohérente. Lorsque c’est le cas, on dit que l’on a atteint le régime de saturation de QCD.
Ce régime est caractérisé par des effets collectifs dûs à une grande densité de gluons dans
les hadrons. L’universalité de la collection de gluons formée par l’évolution vers les hautes
énergies est discutée. Il a été proposé d’appeler un tel ensemble de gluons un condensat de
verre de couleur (CGC).

Le but de cette thèse est d’étudier la limite de haute énergie de QCD et le régime de
saturation, à la fois du point de vue théorique et du point de vue phénoménologique. Une
partie des communautés de physique des particules et de physique nucléaire s’y intéresse
depuis environ 10 ans (voir [8] pour des revues concises et complètes) ; à l’heure actuelle,
c’est d’autant plus important en vue du démarrage du collisionneur LHC, prévu en 2007.
Le LHC réalisera des collisions proton-proton à des énergies jamais atteintes auparavant et
la compréhension du régime de saturation de QCD pourrait s’avérer essentielle pour guider
les futures expériences. Des manifestations du régime de saturation ont d’ailleurs peut-être
déjà été observées aux accélérateurs HERA [9] et RHIC [10] (qui réalise des collisions d’ions
lourds).
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Organisation du mémoire

Dans la suite, les résultats déjà connus et les calculs originaux sont présentés de manière
unifiée. Pour mettre en valeur les travaux personnels, les publications correspondantes sont
évoquées avec une numérotation en chiffres romains, tandis que les autres sources bibliogra-
phiques sont indiquées par des chiffres arabes. Les publications personnelles sont référencées
page 137 et la bibliographie générale est présentée page 139.

Dans le Chapitre 1 nous considérons une collision entre deux hadrons dans la limite de
haute énergie. Nous expliquons de manière qualitative puis quantitative comment décrire une
telle collision avec le régime perturbatif de la QCD. Le formalisme et les objets mathématiques
nécessaires à nos recherches personnelles y sont présentés. Les notations introduites dans ce
chapitre seront reprises dans la suite.

Dans le Chapitre 2, nous introduisons un projectile hadronique particulier, un Onium.
Son utilisation permet de simplifier les calculs sans altérer leur pertinence. Ce chapitre a
plusieurs objectifs : il permet à la fois d’illustrer le formalisme présenté au Chapitre 1, de
dériver la hiérarchie d’équations de Balitsky, et aussi de présenter des calculs de sections
efficaces adaptées pour l’étude la limite de haute énergie de QCD. De telles observables sont
des sections efficaces totale, diffractive, et de production inclusive et diffractive de gluons.
Dans ce chapitre, nous avons choisi de dériver les résultats déjà connus et les calculs originaux
de l’article [IV] de manière pédagogique, plutôt que chronologique.

Le Chapitre 3 est consacré à l’étude de l’équation de Balitsky-Kovchegov (BK), une équa-
tion qui résulte d’une approximation de la hiérarchie de Balitsky mais qui a essentiellement le
même contenu physique. Nous montrons comment l’équation BK décrit la transition entre le
régime d’énergie gouverné par l’équation BFKL et le régime de saturation atteint à haute éner-
gie. Nous insistons sur l’étude des solutions asymptotiques de l’équation BK en reproduisant
les résultats des articles [VII, VIII, XIV].

Le Chapitre 4 discute de phénoménologie dans le cadre des expériences de diffusion pro-
fondément inélastique. Nous utilisons les résultats des Chapitres 2 et 3 pour établir des pré-
dictions pour les sections efficaces totale et diffractive que nous comparons avec les données
expérimentales. Nous montrons que, dans le domaine d’énergie du collisionneur HERA, les
prédictions de la QCD à haute énergie sont en bon accord avec les données. Nous reprenons
les résultats de la publication [XXI] qui discute de lois d’échelle observées dans les données, et
potentiellement reliées à la physique de la saturation. Nous exposons aussi la proposition de
l’article [X] qui consiste à mesurer une observable possédant un grand potentiel pour tester
le régime de saturation.

Le Chapitre 5 traite de phénoménologie dans le cadre de la production inclusive de gluons ;
les résultats des articles [I, III, XVII] y sont exposés. Plus précisément, les productions de
jets vers l’avant en diffusion profondément inélastique et de jets de Mueller-Navelet dans les
collisions hadron-hadron sont considérées. Ce sont des processus idéaux pour tester l’évolu-
tion BFKL, puis pour de plus hautes énergies, le régime de saturation. Nous discutons des
possibilités de tester ces régimes de QCD au LHC.

Enfin, le Chapitre 6 présente de nouveaux développements théoriques obtenus au cours des
deux dernières années. Ceux-ci mettent en évidence une limitation de la hiérarchie d’équations
de Balitsky, et prososent certaines modifications. Nous présentons les études des articles [XI,
XVIII, XXII] qui discutent de ces nouveaux concepts et d’un nouveau lien avec la physique
statistique. Nous présentons les potentielles implications phénoménologiques pour la diffusion
profondément inélastique à très haute énergie [XIX], et pour la production de jets vers l’avant
dans les collisions hadron-hadron au LHC [XX].
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Chapitre1
Collisions à haute énergie en QCD
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Ce premier Chapitre présente le cadre d’étude de cette thèse : une collision entre deux
hadrons dans la limite de haute énergie. La première partie introduit la cinématique du
problème et explique de manière qualitative comment décrire une telle collision en QCD
perturbative. Les sections suivantes reprennent les différentes étapes de manière plus détaillée :
les objets mathématiques nécessaires à l’étude sont présentés et un formalisme adapté à la
limite de haute énergie est développé. Le but de ce chapitre est d’introduire les outils qui
permettront d’exhiber les prédictions de la QCD perturbative, pour pouvoir étudier jusqu’à
quel point elle peut décrire les collisions entre deux hadrons dans la limite de haute énergie.

1.1 Collision entre deux particules hadroniques

1.1.1 Cinématique de la collision

Plaçons nous dans le référentiel du laboratoire et choisissons le repère de telle sorte que
l’axe de la collision soit l’axe x3 ≡ z et que la collision ait lieu à z = 0. Nous appellerons
projectile la particule qui se déplace dans le sens des z positifs et noterons P 3 = Pz son
impulsion longitudinale et MP sa masse. De même, nous appellerons cible la particule qui se
déplace dans le sens des z négatifs et noterons Q3 = −Qz son impulsion longitudinale et MC
sa masse. Nous allons utiliser des coordonnées appelées coordonnées du cône de lumière et
définies par :

kµ = (k+,k, k−) , k± =
k0 ± k3

√
2

, k = (k1, k2) . (1.1)
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√
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Fig. 1.1 – Cinématique de la collision P−C. L’axe de la collision est l’axe x3 ≡ z, par rapport
auquel sont définies les coordonnées du cône de lumière (1.1) et la rapidité (1.5) des particules
émises par la collision.

Dans ces coordonnées, le produit de deux quadri-vecteurs s’écrit

kµk′µ = k+k′− + k−k′+ − k · k′ . (1.2)

Les quadri-impulsions du projectile Pµ et de la cible Qµ sont données par

Pµ =
(

P+,0,
M2
P

2P+

)
, Qµ =

(
M2
C

2Q− ,0, Q−
)

. (1.3)

Pour des particules se déplaçant à des vitesses proches de celles de la lumière telles que
Pz À MP et Qz À MC , on a P+ ' √

2 Pz, P− ' 0, Q− =
√

2 qz, Q+ ' 0, et l’énergie de la
collision est s ≡ (Pµ + Qµ)(Pµ + Qµ) ' 2P+Q−.

Une telle collision entre deux hadrons de très haute énergie libère de nombreuses particules
dans l’état final. Pour une particule de masse mf , la quadri-impulsion s’écrit

kµ
f = (k+

f ,kf , k−f ) avec 2k+
f k−f = k2

f + m2
f . (1.4)

Introduisons une variable très commode pour caractériser ces particules libérées par la colli-
sion : la rapidité y définie par

ey =

(
k+

f

k−f

) 1
2

=

√
2 k+

f√
k2

f + m2
f

=

√
k2

f + m2
f√

2 k−f
. (1.5)

Une particule émise perpendiculairement à l’axe de la collision (k3
f = 0 et k+

f = k−f ) a une
rapidité nulle, une particule émise dans l’hémisphère des z positifs (k3

f > 0 et k+
f > k−f ) a une

rapidité positive, et une particule émise dans l’hémisphère des z négatifs (k3
f < 0 et k+

f < k−f )
a une rapidité négative. Notons que pour une particule de masse nulle, la rapidité est égale à
la pseudo rapidité η définie par

e−η = tan
(

θ

2

)
(1.6)

où θ est l’angle d’émission de la particule par rapport à la direction des z positifs. La pseudo
rapidité d’une particule est facilement mesurable expérimentalement. La figure 1.1 résume la
cinématique de la collision que nous venons d’introduire.
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C

−

P

+

Fig. 1.2 – Collision entre le projectile P et la cible C, tous deux habillés. Les partons de
valence sont accompagnés d’ensembles cohérents de partons virtuels.

1.1.2 Description de la collision en QCD perturbative à haute énergie

Nous allons maintenant expliquer de manière qualitative comment la collision est décrite
en QCD perturbative, dans la limite de haute énergie. Signalons d’abord que nous considé-
rons seulement des collisions au cours desquelles il se produit un transfert d’impulsion assez
important : le traitement perturbatif n’est justifié que dans ce cas. En notant k0 l’impul-
sion transverse typique des particules de l’état final (plus précisément k2

f + m2
f ' k2

0), nous
travaillons dans le régime

k0 À ΛQCD ⇒ αs(k0) ¿ 1 . (1.7)

ΛQCD est une échelle caractéristique du régime non perturbatif de QCD et vaut environ
200 MeV. αs est la constante de couplage de la QCD.

Asymptotiquement avant la collision, les particules sont nues, c’est-à-dire qu’elles sont
composées uniquement de partons de valence. Ces particules nues évoluent jusqu’à l’instant
de la collision ce qui les transforme en particules habillées, c’est-à-dire que leurs partons de
valence sont accompagnés d’un ensemble cohérent de partons virtuels. Formellement, cela
correspond à décomposer les états initiaux en superpositions d’états de Fock de quarks et
gluons ; par exemple pour un proton, on écrit :

|proton〉 ' |qvqvqv〉+ |qvqvqvg〉+ · · ·+ |qvqvqvg · · · ggqq̄g〉+ · · · . (1.8)

La collision a lieu entre les particules habillées, comme représenté Figure 1.2, et a pour effet
de détruire la cohérence des partons qui habillent le projectile et de ceux qui habillent la cible.
Ces partons sont donc libérés par la collision, ils vont former les particules de l’état final.

Les coefficients des différents états de Fock dans (1.8) sont calculés en théorie des per-
turbations. En faisant cela, il apparaît a priori des divergences infrarouges : la probabilité
que le projectile (ou la cible) soit habillé d’un gluon est proportionnelle à αs/k+ où k+ re-
présente l’impulsion londitudinale du gluon. En intégrant cette probabilité sur k+, les petites
impulsions sont responsables d’une divergence logarithmique. En fait, cette divergence n’est
qu’apparente car les gluons virtuels qui en sont responsables ne jouent aucun rôle dans la
collision : ils ont une impulsion longitudinale trop petite pour pouvoir être transformés en
particules réelles. On peut donc ne pas les prendre en compte et considérer que l’impulsion
longitudinale des gluons qui habillent le projectile (ou la cible) est bornée inférieurement. Nous
verrons plus loin que cette borne est déterminée par la cinématique de la collision, et que dans
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la limite de haute énergie, elle devient très petite. Concentrons nous sur la décomposition en
états de Fock du projectile et appelons zPP+ cette borne inférieure (zP < 1). La probabilité
que le projectile soit habillé d’un gluon est proportionnelle à

αs

∫ P+

zPP+

dk+

k+
= αs ln

(
1
zP

)
. (1.9)

De manière similaire, la probabilité que le projectile soit habillé de n gluons est proportionnelle
à

αn
s

∫ 1

zP

dz1

z1

∫ z1

zP

dz2

z2
· · ·

∫ zn−1

zP

dzn

zn
=

1
n!

αn
s lnn

(
1
zP

)
. (1.10)

Nous remarquons que quand zP est assez petit pour compenser le facteur αs et est tel que
αs ln(1/zP) ∼ 1, alors tous les ordres n contribuent de la même manière. Ces gluons à petites
impulsions longitudinales (∼ zPP+) qui sont responsables de contributions à tous les ordres
sont appelés des gluons mous, et l’approximation qui consiste à ne garder que les contributions
dominantes en αs ln(1/zP) s’appelle l’approximation des logarithmes dominants.

Nous devons faire une approximation pour tronquer une décomposition telle que (1.8)
car il n’est pas possible de calculer toutes les composantes. La discussion ci-dessus montre
que la manière d’effectuer cette troncation dépend de la valeur de zP . Si zP . 1, alors on
peut effectuer normalement un développement par rapport à la constante de couplage αs,
puis tronquer à l’ordre désiré. Par contre si zP ¿ 1, cette procédure devient inconsistante et
l’approximation appropriée est l’approximation des logarithmes dominants. Cette discussion
est aussi valable pour la décomposition en états de Fock de la cible, pour laquelle nous noterons
zCQ− la borne inférieure sur les impulsions longitudinales des gluons virtuels qui l’habillent.
Lors de la collision projectile-cible, les particules libérées viennent des collisions élémentaires
entre les partons virtuels. En fait les seules collisions possibles sont celles qui impliquent des
particules avec suffisamment d’impulsion longitudinale pour pouvoir donner lieu à une masse
invariante positive. Cela se traduit par la condition

zPzCs = k2
0 (1.11)

où nous rappelons que k0 est l’impulsion transverse typique des particules de l’état final. Cela
a pour conséquence que, dans la limite de haute énergie, soit zP , soit zC , soit les deux sont
très petits.

1.1.3 Choix du repère

Les particules virtuelles qui habillent le projectile et la cible sont libérées lors de la collision
avec les propriétés suivantes.

– Leur rapidité maximale est ymax = ln(
√

2P+/k0) > 0 et correspond à une particule
qui habillait le projectile avec une impulsion longitudinale maximale P+. La plus pe-
tite rapidité possible pour une particule qui provient du projectile est ln(

√
2zPP+/k0),

l’intervalle de rapidité sur lequel les particules du projectile sont émises est donc YP =
ln(1/zP). Par abus de language, on appele YP la rapidité du projectile habillé.

– Leur rapidité minimale est ymin = − ln(
√

2Q−/k0) < 0 et correspond à une particule qui
habillait la cible avec une impulsion longitudinale maximale Q−. La plus grande rapidité
possible pour une particule qui provient de la cible est − ln(

√
2zCQ−/k0), l’intervalle

de rapidité sur lequel les particules de la cible sont émises est donc YC = ln(1/zC). Par
abus de language, on appele YC la rapidité de la cible habillée.

Les particules émises occupent donc un intervalle de rapidité total

ymax − ymin = ln(s/k2
0) ≡ Y . (1.12)
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y
y > 0y = 0y < 0

ymin ymax

YC

y∗

YP

Fig. 1.3 – En fonction du choix de repère, qui est caractérisé par les intervalles de rapidité
YP et YC , l’origine des particules émises lors de la collision est différente. Les particules de
rapidité y > y∗ sont décrites comme provenant de partons qui habillaient le projectile et les
particules de rapidité y < y∗ sont décrites comme provenant de partons qui habillaient la
cible.

La condition (1.11) implique alors Y = YP + YC et la rapidité définie par y∗ = ymax − YP =
ymin +YC joue un rôle particulier : les particules finales avec y > y∗ proviennent du projectile
et celles avec y < y∗ proviennent de la cible. Ceci est résumé Figure 1.3, nos notations sont
telles que les rapidités mesurées sur l’axe y (qui peuvent être positives ou négatives) sont
notées avec des minuscules, alors que les intervalles de rapidité sont notés avec des majuscules
(et sont toujours positifs). Signalons que les rapidités ymin, y∗ et ymax sont définies à des
incertitudes près dues aux impulsions transverses dont les valeurs peuvent a priori différer de
k0. Cependant dans la limite de haute énergie, ces incertitudes sont des nombres de l’ordre
de l’unité comparés à ln(P+/k0) ou ln(Q−/k0) et sont négligeables.

La valeur de zP peut être choisie arbitrairement entre k2
0/s et 1 ce qui impose la valeur de

zC , ou inversement. En terme de rapidité, ceci consiste à choisir une façon de diviser Y en deux,
en choisissant YP (et par conséquent YC). Cette liberté peut être considérée comme un choix
de repère pour décrire la collision. En fonction de ce choix qui détermine aussi y∗, les particules
finales sont décrites comme provenant soit du projectile, soit de la cible. Dans la suite nous
choisirons des repères tels que YP ' 0 (zP . 1) et donc YC ' Y (zC ' k2

0/s ¿ 1). Nous
calculerons donc la décomposition en états de Fock du projectile en théorie des perturbations
par rapport à αs, et à l’ordre dominant le projectile sera seulement composé de partons de
valence. Au contraire nous allons décrire la cible comme un ensemble cohérent de gluons, où
toutes les contributions en αn

s lnn(1/zC) à la décomposition en états de Fock sont prises en
compte. En ce qui concerne les particules finales, un tel choix implique y∗ . ymax donc la
plupart d’entre elles seront décrites comme provenant de la cible. Seules les particules de très
grandes rapidités (y∗ < y < ymax) seront décrites comme provenant du projectile.

Ce choix d’une configuration asymétrique à un avantage particulier : les incertitudes liées
au projectile seront minimales, le développement perturbatif par rapport à αs étant bien maî-
trisé. Cela nous permettra une étude précise de la description de la cible et de sa composition
dans la limite de haute énergie. Une telle étude est indispensable pour pouvoir ensuite décrire
correctement des situations plus symétriques, pour lesquelles les effets de la limite de haute
énergie sont importants à la fois pour le projectile et pour la cible.

1.2 Description du projectile

Nous choisirons de paramétrer les quadri-impulsions kµ des particules qui habillent le
projectile par leurs composantes longitudinales k+ et transverses k, la condition de couche de
masse fixant la valeur de k−. C’est la quantification des champs libres de QCD, les quarks
et gluons, qui fournit l’espace de Fock nécessaire pour décrire le projectile. Cet espace est
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composé d’états avec un nombre donné de quarks et de gluons, d’impulsions fixées. Ces états
fournissent une base sur laquelle on peut décomposer le projectile nu, en incluant seulement
les partons de valence, ou le projectile habillé, en incluant dans la décomposition des états
avec plus de partons, jusqu’à l’ordre souhaité en théorie des perturbations par rapport à αs.
Notons que ces partons sont toujours sur couche de masse. Leur virtualité vient du fait que la
quadri-impulsion n’est pas conservée à chaque vertex, seule la tri-impulsion, que nous noterons
k = (k+,k), est conservée.

Formalisons maintenant cette procédure et commençons par traiter le cas des gluons.
Nous effectuerons la quantification du champ de gluons Aµ dans la jauge A+ = 0, souvent
appelée jauge du cône de lumière. Ce choix de jauge apporte de grandes simplifications, par
exemple nous n’aurons pas besoin de fantômes de Faddeev-Popov pour la quantification et
nous aurons seulement besoin des deux quadri-vecteurs εµ

(1) et εµ
(2) pour décrire les deux

polarisations physiques des gluons.

1.2.1 Quantification des champs libres et espace de Fock

On quantifie les champs libres de manière habituelle, en les décomposant en modes de
Fourier. Pour le champ de gluon Aµ

c , où c est l’indice de couleur, on obtient

Aµ
c (xν) =

∑

λ=1,2

∫
d3k√

(2π)32k+

[
εµ
(λ)(k)ac,λ(k)e−ikνxν

+ h.c.
]

(1.13)

où + h.c. signifie qu’il faut ajouter le conjugué hermitien du terme précédent.
Comme manifeste dans cette formule, les gluons ont seulement deux polarisations pos-

sibles, elles sont transverses et imposent kµε(λ)µ(k) = 0. De plus la jauge A+ = 0 impose
ε+
(1) = ε+

(2) = 0. Les quadri-vecteurs de polarisation sont donc paramètrables par deux vec-
teurs à deux composantes, que l’on choisira transverses et notera ε1 et ε2. On a

εµ
(λ)(k) =

(
0, ελ,

k · ελ

k+

)
λ = 1, 2 . (1.14)

Une base pratique pour les vecteurs ε1 et ε2 est

ε1 =
1√
2
(1, i) ε2 =

1√
2
(1,−i) . (1.15)

Les opérateurs a†c,λ(k) et ac,λ(k) de la décomposition (1.18) s’interprètent comme des
opérateurs de création et d’annihilation de gluons d’impulsion k, de couleur c et de polarisation
λ. Ils agissent sur le vide de la manière suivante

a†c,λ(k)|0〉 = |k, c, λ〉 ac,λ(k)|0〉 = 0 (1.16)

et obéissent aux relations de commutations
[
ac,λ(k), a†d,λ′(k

′)
]

= δcdδλλ′δ
(3)(k − k′) . (1.17)

Notons que ces relations impliquent des relations de commutations à x+ égaux entre champs
et leurs conjugués. Pour cette raison, cette procédure est souvent appelée quantification sur
le cône de lumière. Par application successive d’opérateurs de création, on forme les états à
N gluons |(k1, c1, λ1), · · · , (kN , cN , λN )〉.
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Munis de notre base d’états de Fock, nous pouvons écrire la décomposition du projectile
|P〉 :

|P〉 =
∑

N≥1

∫ (
N∏

i=1

d3ki

)
δ(3)

(
N∑

i=1

ki − P

) ∑

λ1,··· ,λN
c1,··· ,cN

ψλ1,··· ,λN
c1,··· ,cN

(
k1, · · · , kN ; P+

)

|(k1, c1, λ1), · · · , (kN , cN , λN )〉 (1.18)

où, en accord avec nos notations, P = (P+,0) est la tri-impulsion du projectile. La fonction
δ(3) dans la décomposition (1.18) assure la conservation de la tri-impulsion. Les fonctions
d’ondes ψλ1,··· ,λN

c1,··· ,cN se calculent en théorie des perturbations ; un exemple simple d’un tel calcul
est donné par la suite, dans le but d’illustrer ce formalisme. En tronquant la décomposition
(1.18) à l’ordre souhaité en théorie des perturbations par rapport à αs, on décrit un pro-
jectile habillé avec plus ou moins de gluons. Précisons que la coupure inférieure zPP+ sur
les impulsions longitudinales k+

i des gluons virtuels n’est pas écrite explicitement mais est
sous-entendue. Cette coupure précise le repère dans lequel la décomposition |P〉 est calculée.

Signalons finalement le problème de la normalisation de l’état |P〉 :

〈P|P〉 = δ(3)(0)
∑

N≥1

∫ (
N∏

i=1

d3ki

)
δ(3)

(
N∑

i=1

ki − P

) ∑

λ1,··· ,λN
c1,··· ,cN

∣∣∣ψλ1,··· ,λN
c1,··· ,cN

(
k1, · · · , kN ; P+

)∣∣∣
2

.

(1.19)
Le facteur δ(3)(0) est relié au problème bien connu de la normalisation des ondes planes en
volume infini. Un calcul en volume fini [11, 12], ou un traitement qui utiliserait des paquets
d’ondes normalisables au lieu des ondes planes [13], permettrait d’éviter ce facteur probléma-
tique. Une manière moins satisfaisante de s’en débarrasser, mais que nous utiliserons néan-
moins par la suite, est d’appliquer la prescription suivante : lors du calcul de normes, nous
diviserons systématiquement le résultat par δ(3)(0). La normalisation de l’état |P〉 à 1 impose
alors la condition suivante sur les fonctions d’ondes qui interviennent dans la décomposition :

∑

N≥1

∫ (
N∏

i=1

d3ki

)
δ(3)

(
N∑

i=1

ki − P

) ∑

λ1,··· ,λN
c1,··· ,cN

∣∣∣ψλ1,··· ,λN
c1,··· ,cN

(
k1, · · · , kN ; P+

)∣∣∣
2

= 1 . (1.20)

Physiquement, cela signifie qu’en introduisant un gluon de plus dans le projectile habillé, on
renormalise les contributions des gluons déjà présents, ce qui correspond à prendre en compte
à la fois les termes réels et virtuels. Ce phénomène sera aussi illustré par la suite.

Dans notre description du projectile, nous inclurons évidemment aussi des états contenant
des quarks et antiquarks. Cela se fait de la même manière que pour les gluons et nous déno-
terons un état à un quark |k, α, s〉 où k est l’impulsion, α l’indice de couleur et s l’indice de
spin :

b†α,s(k)|0〉 = |k, α, s〉 bα,s(k)|0〉 = 0 . (1.21)

Pour les antiquarks, nous utiliserons la notation |k, ᾱ, s̄〉 :

d†ᾱ,s(k)|0〉 = |k, ᾱ, s〉 dᾱ,s(k)|0〉 = 0 . (1.22)

Dans les équations ci-dessus, les opérateurs b† et b (d† et d) sont les opérateurs de création
et d’annihilation de quark (antiquark) qui apparaissent dans la décomposition en modes de
Fourier du champ fermionique. Ils obéissent aux relations d’anticommutations

{
bα,s(k), b†β,s′(k

′)
}

= δαβδss′δ
(3)(k − k′) , (1.23)
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p p − k
α, s β, s′

c, λ

k

Fig. 1.4 – La transition q → qg : le quark nu d’impulsion p, de couleur α, et de spin s, s’habille
d’un gluon d’impulsion k, de couleur c et de polarisation λ. Le quark habillé a pour impulsion
p − k, son indice de couleur est β et son indice de spin s′. La fonction d’onde associée est
donnée par l’équation (1.26).

{
dᾱ,s(k), d†

β̄,s′(k
′)
}

= δᾱβ̄δss′δ
(3)(k − k′) . (1.24)

Par application successive des opérateurs de création sur le vide, on forme les états à plusieurs
quarks ou antiquarks.

1.2.2 Exemple de calcul : le vertex q → qg :

Nous allons à présent illustrer ce formalisme en présentant un calcul de fonction d’onde.
Un tel calcul est réalisé en utilisant des règles de Feynman, particulières à la quantification
sur le cône de lumière, néanmoins similaires aux règles de la quantification covariante. Les
règles de Feynman que nous utiliserons sont dérivées par exemple dans [14]. Nous considérons
un exemple simple : le cas où le projectile est un quark habillé d’un gluon. Ceci est représenté
figure 1.4.

– Nous notons l’impulsion du quark entrant p, son indice de couleur α, et son indice de
spin s; il lui est donc associé le spineur us(p)/

√
(2π)32p+.

– Nous notons l’impulsion du gluon émis k, son indice de couleur c, et son indice de
polarisation λ; il lui est ainsi associé le vecteur de polarisation εµ

(λ)(k)/
√

(2π)32k+.
– La tri-impulsion étant conservée, l’impulsion du quark sortant est p − k. Nous notons

son indice de couleur β et son indice de spin s′, et nous lui associons donc le spineur
ūs′(p− k)/

√
(2π)32(p−k)+.

– Au vertex est associé un facteur (2π)3gsT
c
αβγµ, le (2π)3 venant avec le δ(3) de (1.18).

T c est le générateur de SU(Nc) dans la représentation fondamentale.
– Le dernier facteur à rajouter est ((p−k)−+k−−p−)−1. C’est un dénominateur d’énergie

du type (Efinal − Einitial)
−1 qui reflète la non-conservation de l’impulsion dans la

direction x− en théorie des perturbations sur le cône de lumière. Ces facteurs remplacent
les propagateurs de la quantification covariante.

La fonction d’onde correspondante est donc

ψs′λ,s
βc,α (k; p) =

ūs′(p− k)√
(2π)32(p−k)+

γµε(λ)µ(k)√
(2π)32k+

us(p)√
(2π)32p+

(2π)3gsT
c
αβ

(p−k)− + k− − p−
(1.25)

avec les indices relatifs à la particule entrante aussi indiqués sur la fonction d’onde. Pour mener
le calcul plus loin, il faut choisir une représentation pour les matrices de Dirac (la représen-
tation chirale est bien adaptée ici) et résoudre l’équation de Dirac dans cette représentation



1.2 Description du projectile 23

pour obtenir les spineurs. Tous calculs faits, on obtient

ψs′λ,s
βc,α (k; p) =

gsT
c
αβ√

2(2π)3k+

(
(p+k−k+p)2+k+2m2

)−1 ×




2
(
p+k−k+p

) · ε1

(
p+δs−δs′−+(p+−k+)δs+δs′+

)
+
√

2mk+2δs+δs′− si λ = 1

2
(
p+k−k+p

) · ε2

(
p+δs+δs′++(p+−k+)δs−δs′−

)−
√

2mk+2δs−δs′+ si λ = 2
.(1.26)

Signalons que cette fonction d’onde se simplifie beaucoup dans la limite où le gluon est
mou k+/p+ → 0. La simplification principale est que le spin du quark est conservé :

ψs′λ,s
βc,α (k; p) = δss′

gsT
c
αβ√

4π3k+

ελ · k
k2 . (1.27)

Nous retrouvons bien le résultat utilisé précédemment : la probabilité que le quark soit habillé
d’un gluon mou est proportionnelle à αs/k+.

1.2.3 Fonctions d’ondes en espace mixte

Pour des raisons qui apparaîtront claires par la suite, il est commode de travailler dans
un espace mixte, dans lequel les impulsions transverses sont transformées de Fourier. Nous
définissons donc les opérateurs de création et d’annihilation de particules en espace mixte
(nous donnons l’exemple des gluons, les opérateurs et états de Fock en espace mixte relatifs
aux quarks et antiquarks se définissent de manière similaire) :

a†c,λ(k+,x) =
∫

d2k e−ik.xa†c,λ(k) ac,λ(k+,x) =
∫

d2k eik.xac,λ(k). (1.28)

Ils obéissent aux relations de commutation suivantes
[
ac,λ(k+,x), a†d,λ′(k

′+,x’)
]

= (2π)2δcdδλλ′δ(k+ − k′+)δ(2)(x− x’) (1.29)

et nous noterons les états de Fock correspondants :

a†c,λ(k+,x)|0〉 = |k+,x, c, λ〉 . (1.30)

La décomposition du projectile |P〉 sur ces états s’écrit (pour l’instant, nous incluons
seulement les gluons)

|P〉 =
∑

N≥1

∫ (
N∏

i=1

dk+
i

d2xi

(2π)2

)
δ

(
N∑

i=1

k+
i − P+

) ∑

λ1,··· ,λN
c1,··· ,cN

ψ̃λ1,··· ,λN
c1,··· ,cN

({k+
i ,xi}; P+

)

|(k+
1 ,x1, c1, λ1), · · · , (k+

N ,xN , cN , λN )〉 (1.31)

où les fonctions d’onde en espace mixte ψ̃λ1,··· ,λN
c1,··· ,cN sont obtenues à partir des fonctions ψλ1,··· ,λN

c1,··· ,cN

en espace des impulsions par transformée de Fourier :

ψ̃λ1,··· ,λN
c1,··· ,cN

({k+
i ,xi};P+

)
=

∫ (
N∏

i=1

d2ki eiki.xi

)
δ(2)

(
N∑

i=1

ki

)
ψλ1,··· ,λN

c1,··· ,cN

(
k1, · · · , kN ;P+

)
.

(1.32)
A cause de la fonction delta, les fonctions ψ̃λ1,··· ,λN

c1,··· ,cN sont des fonctions de N − 1 positions
transverses. Pour cette raison, lorsqu’on calcule la normalisation 〈P|P〉 à partir de (1.31), le
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facteur δ(3)(0) apparaît sous la forme δ(0)
∫

d2x
(2π)2

où x représente la coordonnée dont ψ̃λ1,··· ,λN
c1,··· ,cN

ne dépend pas. On supprime ce facteur en suivant notre prescription et la normalisation de
l’état |P〉 impose la condition suivante :

∑

N≥1

∫ (
N∏

i=1

dk+
i

d2xi

(2π)2

)
δ

(
N∑

i=1

k+
i − P+

)
(2π)2δ(2)(xN )

∑

λ1,··· ,λN
c1,··· ,cN

∣∣∣ψ̃λ1,··· ,λN
c1,··· ,cN

({k+
i ,xi}; P+

)∣∣∣
2

= 1

(1.33)
avec le facteur (2π)2δ(2)(xN ) introduit pour garder la mesure d’intégration sur les N positions
transverses.

1.3 Description de la cible

Comme expliqué dans la section introductive, nous choisissons de décrire la collision dans
un repère défini par YC ' Y, dans lequel les gluons qui habillent la cible sont très nombreux.
Nous avons déjà insisté sur le fait qu’il est important de prendre en compte dans la décompo-
sition en états de Fock de la cible, toutes les composantes contenant un nombre arbitrairement
grand de gluons avec des petites impulsions longitudinales de l’ordre de e−YCQ− ¿ Q−. En
fait, dans la limite de haute énergie, la cible est habillée par un ensemble de gluons tellement
dense, que des effets collectifs deviennent importants. La description de la cible à l’aide des
états à n gluons, qui peut être qualifiée de description microscopique, n’est pas adaptée pour
rendre compte de tels phénomènes. Il est plus adéquat de travailler avec des degrés de liberté
collectifs.

Les gluons mous étant très nombreux, ils créent des champs de couleur A très importants,
de l’ordre de 1/gs, qui sont à l’origine des effets collectifs. La cible habillée de gluons mous peut
donc être décrite de manière effective par des champs classiques [15, 16]. Nous remplaçons
ainsi la décomposition en états de Fock de la cible par un champ classique :

|C〉 = |qqq〉+ |qqqg〉+ · · ·+ |qqqg · · · ggg〉 (1.34)

⇓

|C〉 =
∫

DA ΦYC [A]|A〉 (1.35)

La fonctionnelle ΦYC [A] qui pondère les différentes valeurs possibles du champ A est inconnue,
mais est normalisée par ∫

DA |ΦYC [A]|2 = 1 . (1.36)

Nous verrons plus tard que l’évolution de |ΦYC [A]|2 par rapport YC est calculable, et qu’elle
permet de prédire le comportement d’observables (par exemple la section efficace totale de
la collision) dans la limite de haute énergie. Pour l’instant, la décomposition (1.35) apparaît
simplement formelle, et la validité d’une telle description n’est pas a priori évidente. Elle le
devriendra a posteriori, en constatant sa capacité à reproduire les résultats expérimentaux et
son pouvoir prédictif. Signalons aussi qu’avec une telle description de la cible, nous perdons
la capacité de décrire individuellement les particules émises dans l’état final avec y < y∗, qui
nous le rappelons sont vues comme des particules qui habillaient la cible avant la collision.
Par exemple pour calculer le spectre d’une particule émise avec un certain y, nous sommes
contraints de la décrire comme provenant du projectile et donc de choisir notre repère tel que
y∗ < y. Avec nos choix de repères asymétriques (YP ¿ YC), nous sommes limités au calcul de
spectres de particules émises avec une rapidité proche de ymax. On dit que ces particules sont
produites vers l’avant. Ceci sera repris dans le chapitre suivant.
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Donnons à présent plus de détails sur le champ A qui décrit la cible. Celle ci se déplace
dans la direction des z négatifs, à une vitesse proche de celle de la lumière, elle se déplace
donc sur le cône de lumière suivant la direction des x−. Son courant de couleur Jµ a ainsi une
seule composante non nulle : J−. Rappelons que notre choix de jauge, qui s’applique aussi
bien pour le champ quantique Aµ des gluons qui habillent le projectile que pour le champ
classique Aµ qui décrit la cible, est A+ = 0. Dans ces conditions, la conservation du courant
s’écrit [Dµ, Jµ] = ∂+J− = 0, et J− ne dépend pas de x−. On a donc

Jµ(xν) = δµ−J−(x+,x) . (1.37)

En résolvant les équations de Yang-Mills [Dµ, Fµν ] = Jν , nous obtenons (voir par exemple
[17])

Aµ(xν) = δµ−A−(x+,x) −∇2A−(x+,x) = J−(x+,x) . (1.38)

Nous sommes maintenant en mesure de préciser que l’intégration fonctionnelle dans (1.35)
concerne la composante du champ A−. Nous aurons aussi besoin de la transformée de Fourier
du champ A− qui s’écrit

Ã−(kµ) =
∫

d4x eikµxµA−(xµ) = 2πδ(k+)
∫

dx+d2x eik−x+−ik.xA−(x+,x) . (1.39)

1.4 Les éléments de la matrice de diffusion

Nous savons à présent décrire l’état du système avant la collision |P〉 ⊗ |C〉 : l’état |P〉
du projectile est une superposition cohérente d’états de quarks |k+,x, α, s〉, d’antiquarks
|k+,x, ᾱ, s〉 et de gluons |k+,y, c, λ〉 et l’état |C〉 de la cible est décrit en termes d’état d’un
champ classique |A〉.

Nous souhaitons maintenant obtenir l’état du système après la collision, c’est-à-dire nous
souhaitons calculer Ŝ|P〉⊗ |C〉 où Ŝ est la matrice de diffusion. Cela revient à calculer l’action
de Ŝ sur des états du type |(k+,x, α, s), (k′+,y, c, λ), · · ·〉⊗|A〉. En d’autres termes, il nous faut
calculer comment les partons qui habillent le projectile diffusent sur le champ classique créé
par la cible. Comme nous travaillons dans la limite de haute énergie, il est justifié d’utiliser
ce qu’on appelle l’approximation eikonale : les partons qui habillent le projectile interagissent
avec la cible de manière indépendante et le champ de couleur de la cible n’est pas affecté
par l’interaction. Ceci est justifié car le projectile et la cible se déplacent à presque la vitesse
de la lumière, et le temps d’interaction est beaucoup plus court que les échelles de temps
sur lesquelles le projectile et la cible évoluent. Pendant l’interaction, les partons du projectile
peuvent être considérés comme libres, et la cible peut-etre considérée comme une source de
couleur statique.

Nous allons donc nous concentrer sur le cas d’un quark en calculant de manière detaillée
l’élément de matrice 〈A′| ⊗ 〈k′+,y, β, s′|Ŝ|k+,x, α, s〉 ⊗ |A〉 . La généralisation pour des états
à plusieurs partons sera ensuite évidente. Pour effectuer ce calcul, retournons en espace des
impulsions :

〈A′| ⊗ 〈k′+,y, β, s′|Ŝ|k+,x, α, s〉 ⊗ |A〉 =
∫

d2kd2k′eik′.y−ik.x

〈A′| ⊗ 〈k′, β, s′|Ŝ|k, α, s〉 ⊗ |A〉 (1.40)

Nous allons calculer l’élément de matrice 〈A′| ⊗ 〈k′, β, s′|Ŝ|k, α, s〉 ⊗ |A〉 ordre par ordre en
perturbations par rapport à gsA−, comme représenté Figure 1.5. Pour obtenir le résultat
final, il faudra ressommer les contributions de tous les ordres car, A− étant un grand champ
classique, gsA− est d’ordre 1.
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Fig. 1.5 – Représentation de la collision d’un des partons qui habille le projectile avec la cible.
Le champ classique A− créé par la cible habillée de nombreux gluons mous étant d’ordre 1/gs,
il faut prendre en compte des collisions avec un nombre arbitraire d’interactions.

L’ordre zéro est trivial : il n’y a pas d’interaction et Ŝ(0) = 1. La contribution du premier
ordre est :

〈A′| ⊗ 〈k′, β, s′|Ŝ(1)|k, α, s〉 ⊗ |A〉 = δ(A−A′)Ã−c (k′µ−kµ)
ūs′(k′)√
(2π)32k′+

igsT
c
αβγ+ us(k)√

(2π)32k+
. (1.41)

Le champ Ã−c contient un δ(k+−k′+), l’impulsion longitudinale du quark est donc conservée.
Dans la limite de haute énergie, nous avons k+ À |k|, |k′| et ūs′(k′)γ+us(k) = 2k+δss′ , le spin
du quark est donc conservé aussi. Nous verrons que ces résultats sont vrais à tout ordre en
gs. On a finalement

〈A′| ⊗ 〈k′, β, s′|Ŝ(1)|k, α, s〉 ⊗ |A〉 =
igsT

c
αβ

(2π)2
δss′δ(k+−k′+)δ(A−A′)

∫
d2z ei(k−k′).z

∫ ∞

−∞
dz+A−c (z+, z) . (1.42)

La contribution du deuxième ordre est :

〈A′| ⊗ 〈k′, β, s′|Ŝ(2)|k, α, s〉 ⊗ |A〉 = δ(A−A′)
∫

d4l

(2π)4
Ã−c (lµ−kµ)Ã−d (k′µ−lµ)

ūs′(k′)√
(2π)32k′+

igsT
c
αγγ+ i

γµlµ
igsT

d
γβγ+ us(k)√

(2π)32k+
. (1.43)

En utilisant γ+(1/γµlµ)γ+ = γ+/(l− − l2/(2l+)), on obtient

〈A′| ⊗ 〈k′, β, s′|Ŝ(2)|k, α, s〉 ⊗ |A〉 =
i(igs)2

(2π)3
(T cT d)αβδss′δ(A−A′)
∫

d4l

(2π)4
Ã−c (lµ−kµ)Ã−d (k′µ−lµ)

l− − l2
2l+

+ iε
. (1.44)

Le spin du quark est bien conservé, et son impulsion longitudinale aussi, car le produit Ã−c Ã−c
contient bien un δ(k+−k′+). L’intégration sur lµ se fait facilement, celle sur l− donne une
fonction Θ qui ordonne les valeurs de x+ des champs A−c :

〈A′| ⊗ 〈k′, β, s′|Ŝ(2)|k, α, s〉 ⊗ |A〉 =
(igs)2

(2π)2
(T cT d)αβδss′δ(k+−k′+)δ(A−A′)

∫
d2z ei(k−k′).z

∫ ∞

−∞
dz+

2

∫ z+
2

−∞
dz+

1 A−c (z+
1 , z)A−d (z+

2 , z) . (1.45)
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Il est facile d’obtenir le résultat pour un ordre n quelconque, il aura la même forme avec
un facteur (igs)nT c1 · · ·T cnA−c1 · · · A−cn

où les champs A−c sont ordonnés en x+. Il est simple de
retourner en espace mixte en utilisant (1.40). Pour simplifier nous n’indiquons plus le spin s et
l’impulsion longitudinale k+ du quark qui en fait ne jouent aucun rôle : ils restent inchangés
lors de l’interaction et l’élément de matrice Ŝ n’en dépend pas. Nous obtenons

〈A′| ⊗ 〈y, β|Ŝ|x, α〉 ⊗ |A〉 = (2π)2δ(2)(x−y)δ(A−A′)
[
1 + igsT

c

∫ ∞

−∞
dx+A−c (x+,x)

+
1
2
P

(
igs

∫ ∞

−∞
dx+T cA−c (x+,x)

)2

+ · · ·
]

αβ

(1.46)

où P indique qu’il faut ordonner les champs A−c selon leurs valeurs de x+, la plus petite étant
placée à gauche. La commodité de l’espace mixte dans la limite de haute énergie apparaît
maintenant évidente : il diagonalise la matrice Ŝ. Les termes d’ordre supérieur non indiqués
sont tels que leur resommation est une exponentiation.

On peut donc écrire l’action de la matrice Ŝ sur l’état |x〉⊗|A〉, sa seule action non triviale
étant d’agir comme une matrice de couleur :

Ŝ|x, α〉 ⊗ |A〉 =
∑

β

[WF [A](x)]αβ |x, β〉 ⊗ |A〉 . (1.47)

La matrice WF [A](x) est appelée ligne de Wilson dans la représentation fondamentale et a
pour expression

WF [A](x) = P exp
{

igs

∫
dx+T cA−c (x+,x)

}
. (1.48)

Dans le cas de l’interaction d’un antiquark |x, ᾱ〉, l’action de la matrice Ŝ est

Ŝ|x, ᾱ〉 ⊗ |A〉 =
∑

β̄

[
W †

F [A](x)
]
β̄ᾱ
|x, β̄〉 ⊗ |A〉 (1.49)

car le générateur de SU(Nc) dans la représentation fondamentale complexe conjuguée est
−t(T c). Dans le cas de l’interaction d’un gluon |x, c〉 avec la cible, la matrice Ŝ est aussi
diagonale sauf dans l’espace de couleur :

Ŝ|x, c〉 ⊗ |A〉 =
∑

d

W cd
A [A](x)|x, d〉 ⊗ |A〉 . (1.50)

La matrice WA[A](x) est une ligne de Wilson dans la représentation adjointe et a pour ex-
pression

WA[A](x) = P exp
{

igs

∫
dx+T̃ cA−c (x+,x)

}
(1.51)

où (T̃ c)de = −if cde est le générateur de SU(Nc) dans la représentation adjointe. Notons que le
résultat (1.50) est valable à cause du choix de jauge A+ = 0. En jauge covariante par exemple,
la polarisation du gluon est modifiée lors de l’interaction.

Les lignes de Wilson WF [A] et WA[A] jouent des rôles très importants : elles font le lien
entre les amplitudes de diffusion (et donc les observables physiques) et le champ A qui rend
compte des phénomènes collectifs (qui se manifestent dans la limite de haute énergie) dûs aux
grandes densités de partons dans la cible. Ce sont des objets centraux pour l’étude de la QCD
dans la limite de haute énergie [18, 19] (pour une revue, voir [20]), nous le montrerons dans
le chapitre suivant par des calculs explicites de sections efficaces.
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1.A Lignes de Wilsons et identités de Fierz

Dans cet appendice, nous donnons quelques formules qui permettent de simplifier des
traces de produits ou produits de traces de lignes de Wilson. Ces formules découlent des
identités de Fierz, des identités très utiles qui relient les lignes de Wilson fondamentale WF [A]
et adjointe WA[A]. Dans la suite de cet appendice nous garderons la dépendance des lignes
de Wilson par rapport à A implicite. Les identités de Fierz s’écrivent

[WF (x)]ij [W †
F (x)]kl =

1
Nc

δilδjk + 2W cd
A (x)T c

ilT
d
kj , (1.52)

T c
ijT

c
kl =

1
2
δilδjk − 1

2Nc
δijδkl . (1.53)

Dans le chapitre suivant nous manipulerons des expressions qui contiennent à la fois WF

et WA. Il sera commode de les transformer de façon à ce qu’elles contiennent seulement soit
WF , soit WA. Pour cela nous utiliserons les formules suivantes, qui s’obtiennent à partir des
identités de Fierz. En combinant (1.52) et (1.53) nous obtenons

W cd
A (x) = 2Tr

(
W †

F (x)T cWF (x)T d
)

, (1.54)

puis en combinant (1.53) et (1.54) nous obtenons ensuite

2Tr
(
W †

F (y)T cWF (x)T d
)
W cd

A (z) = Tr
(
W †

F (y)WF (z)
)
Tr

(
W †

F (z)WF (x)
)

− 1
Nc

Tr
(
W †

F (y)WF (x)
)

. (1.55)

En utilisant (1.55) avec y = x, nous écrivons

2Tr
(
W †

F (x)T cWF (x)T d
)
W cd

A (z) =
∣∣∣Tr

(
W †

F (x)WF (z)
)∣∣∣

2
− 1 = Tr

(
W †

A(x)WA(z)
)

(1.56)

avec la deuxième égalité obtenue à partir de (1.54). Pour finir, la formule

2Tr
(
WF (y)T cW †

F (y)WF (x)T cW †
F (x)

)
= Tr

(
W †

A(y)WA(x)
)

(1.57)

découle en utilisant deux fois (1.52) avec (1.53).
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Dans ce Chapitre, nous considérons un projectile hadronique particulier dont la décompo-
sition en états de Fock est simple : un onium. Cela nous permet d’approfondir l’étude de la
cible dont la fonction d’onde est sensible à la physique de QCD à haute énergie. Nous utili-
sons le formalisme que nous venons d’introduire pour calculer plusieurs sections efficaces. Les
observables que nous considérons sont choisies parce qu’elles correspondent à des situations
réalisables en pratique, dans le but de pouvoir confronter nos prédictions à l’expérience.

La première partie introduit ce qu’est un onium, le projectile que nous utiliserons dans tout
ce chapitre. La deuxième partie présente notre premier calcul de section efficace, celui de la
section efficace totale. Ce calcul est relativement simple car il n’impose aucune restriction sur
l’état final. La troisième partie est consacrée au calcul de la section efficace diffractive, pour
laquelle la cible interagit de manière élastique. La quatrième et dernière partie reprend les
résultats publiés dans l’article [IV] et l’article de conférence [V] : nous y calculons les sections
efficaces inclusives et diffractives de production de gluons à grande rapidité. Les observables
considérées correspondent toutes à des processus mesurables dans les collisionneurs.

Au delà de son intérêt d’illustration du formalisme, ce chapitre a pour but de montrer
pourquoi les observables mentionnées ci-dessus sont des laboratoires idéaux pour l’étude de
la limite de haute énergie de QCD.
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Fig. 2.1 – La composante quark-antiquark d’un onium, sa seule composante quand il est nu.
Deux représentations sont données, en espace d’impulsion et en espace mixte. L’impulsion du
quark est k et son indice de couleur est α, l’impulsion de l’antiquark est P −k et son indice de
couleur est ᾱ. En représentation mixte, le quark a pour position transverse x et l’antiquark
y.

2.1 L’onium : un projectile idéal

Dans tout ce chapitre nous travaillerons avec un projectile particulier, un onium que nous
noterons |P〉 = |O〉. Un onium peut être considéré comme un projectile hadronique idéal : dans
le repère où il est nu, sa décomposition en états de Fock |O〉 a une seule composante, une paire
quark-antiquark dans un état singlet de couleur. Plus précisément le quark et l’antiquark sont
les partons de valence de l‘onium : dans le repère où ce dernier est nu (YO ' 0), ils donnent
la contribution dominante en théorie des perturbations par rapport à αs. Nous utiliserons
aussi un repère dans lequel l’onium est habillé d’un gluon mou, caractérisé par un YO non
nul. Rappelons que la contribution due au gluon n’est pas supprimée si le gluon est mou : un
facteur YO = ln(1/zO) compense le facteur αs.

2.1.1 Le repère où l’onium est nu

Nous considérons d’abord le repère YO ' 0 (et donc YC ' Y ). En utilisant les notations
du chapitre précédent, la décomposition de l’onium en une paire quark-antiquark s’écrit en
espace mixte :

|O〉 =
∫

dk+ d2x
(2π)2

d2y
(2π)2

∑
αᾱ

ψ̃αᾱ(k+,x−y)|(k+,x, α), (P+−k+,y, ᾱ)〉 (2.1)

où x et y sont les positions transverses du quark et de l’antiquark respectivement. Pour alléger
les notations, nous n’indiquons pas les indices de spins des états fermioniques. Les indices de
spins et la dépendance en P+ (l’impulsion longitudinale de l’onium) de la fonction d’onde
ψ̃αᾱ sont aussi gardés implicites. Cette fonction d’onde est la transformée de Fourier de la
fonction ψαᾱ :

ψ̃αᾱ(k+, r) =
∫

d2k eik.rψαᾱ(k) (2.2)

et cette correspondance est représentée Figure 2.1.
Comme la paire quark-antiquark qui compose l’onium est singlet de couleur, on peut

extraire un facteur δαᾱ de la fonction d’onde :

ψ̃αᾱ(k+, r) =
δαᾱ√
Nc

φ(k+, r) . (2.3)
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La fonction φ est normalisée ainsi :
∫

dk+ d2r
(2π)2

∣∣φ(k+, r)
∣∣2 = 1 . (2.4)

L’onium possède une caractéristique importante : la fonction φ est telle que seuls les dipôles
de taille transverse |x − y| ¿ 1/ΛQCD contribuent dans la décomposition (2.1). Ceci définit
l’onium comme un objet perturbatif. Bien que l’onium soit un objet théorique utilisé pour faire
des calculs, nous verrons plus tard que c’est une bonne approximation de certaines particules
hadroniques utilisées expérimentalement. Un exemple sera donné au Chapitre 4 : le photon
virtuel de la diffusion profondément inélastique peut être identifié à un onium (et les fonctions
ψαᾱ et ψ̃αᾱ seront calculées explicitement dans ce cas).

2.1.2 Le repère où l’onium est habillé d’un gluon mou

Nous considérons maintenant le repère dans lequel l’onium est habillé d’un gluon mou. Ce
repère est caractérisé par un YO non nul et un YC < Y. En utilisant les notations du chapitre
précédent, écrivons la décomposition de l’onium en espace mixte, en incluant cette fois les
composantes quark-antiquark et quark-antiquark-gluon :

|O〉YO =
∫

dk+ d2x
(2π)2

d2y
(2π)2

∑
αᾱ

[
ψ̃yO

αᾱ(k+,x−y)|(k+,x, α), (P+−k+,y, ᾱ)〉+
∫ P+

zOP+

dk′+

d2z
(2π)2

∑

λc

ψ̃λ
αᾱc(k

+, k′+,x−y, z−y)|(k+x, α), (P+−k+−k′+,y, ᾱ), (k′+, z, c, λ)〉
]

.(2.5)

En plus des positions transverses du quark et de l’antiquark toujours désignées par x et y,
la position transverse du gluon est notée z. Notons que, dans ce nouveau repère, la fonction
d’onde ψ̃YO

αᾱ de la composante quark-antiquark est différente de la fonction d’onde ψ̃αᾱ du
repère YO = 0. Comme expliqué précédemment, ceci vient du fait qu’en ajoutant un gluon
dans la description de l’onium, nous renormalisons la contribution de la composante quark-
antiquark ce qui correspond à prendre en compte à la fois les termes réels et virtuels. La
condition de normalisation (1.20) permet d’obtenir facilement la fonction ψ̃YO

αᾱ à partir de la
fonction φ introduite précédemment par (2.3) et de la fonction ψ̃λ

αᾱc que nous allons calculer
par la suite :

ψ̃YO
αᾱ (k+, r) =

δαᾱ√
Nc

(
∣∣φ(k+, r)

∣∣2 −
∫ P+

zOP+

dk′+
d2r’
(2π)2

∑

λc

∣∣∣ψ̃λ
αᾱc(k

+, k′+, r, r′)
∣∣∣
2
) 1

2

. (2.6)

Pour calculer ψ̃λ
αᾱc, retournons en espace d’impulsion :

ψ̃λ
αᾱc(k

+, k′+, r, r′) =
∫

d2k d2k′ eik.r+ik′.r′ψλ
αᾱc(k, k′) (2.7)

avec k l’impulsion du quark, k′ l’impulsion du gluon, et P−k−k′ l’impulsion de l’antiquark,
sous-entendue. Le calcul de la fonction ψλ

αᾱc est représenté Figure 2.2. Dans la limite où le
gluon est mou (P+ À k+), les spins du quark et de l’antiquark (rappelons que les indices
correspondants ne sont pas explicitement indiqués sur les fonctions d’ondes) sont inchangés par
l’émission du gluon, comme montré par le résultat (1.27) du chapitre précédent. La fonction
d’onde est alors donnée par

ψλ
αᾱc(k, k′) =

gs√
4π3k′+

ελ · k′
k′2

(
T c

γαψγᾱ(k + k′)− T c
ᾱγ̄ψαγ̄(k)

)
(2.8)
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Fig. 2.2 – L’onium habillé d’un gluon d’impulsion k′, de couleur c et de polarisation λ. Les
deux contributions à la fonction d’onde sont représentées, le gluon étant émis par le quark
ou par l’antiquark. Dans la limite où le gluon est mou (P+ À k+), le spin du quark (ou
de l’antiquark) est inchangé par l’émission du gluon et la fonction d’onde est donnée par
l’équation (2.8).

en terme de la fonction d’onde de l’onium nu ψαᾱ. En effectuant la transformée de Fourier
(2.7), nous obtenons pour la fonction d’onde en espace mixte :

ψ̃λ
αᾱc(k

+, k′+, r, r′) =
gsT

c
ᾱα√

4π3Nck′+
φ(k+, r)

∫
d2k′

(
eik′.(r′−r) − eik′.r′

)ελ · k′
k′2

. (2.9)

L’intégrale restante est facilement réalisée en utilisant la formule suivante :
∫

d2k
2π

eik.rk · x
k2 =

ir · x
r2

. (2.10)

On obtient alors la fonction d’onde ψ̃λ
αᾱc de la composante quark-antiquark-gluon :

ψ̃λ
αᾱc(k

+, k′+, r, r′) =
−igsT

c
ᾱα√

πNck′+
φ(k+, r)

(
ελ · r′
r′2

− ελ · (r′ − r)
(r′ − r)2

)
. (2.11)

Grâce à la relation (2.6), nous déduisons de ce résultat la fonction d’onde ψ̃yO
αᾱ de la

composante quark-antiquark :

ψ̃YO
αᾱ (k+, r) =

δαᾱ√
Nc

φ(k+, r)
(

1− αsCF

π2
YO

∫
d2r’

r2

r′2(r− r′)2

) 1
2

(2.12)

où le facteur YO vient de l’intégrale sur l’impulsion longitudinale du gluon :
∫ P+

zOP+

dk′+

k′+
= YO . (2.13)

Nous avons aussi utilisé la propriété suivante, valable pour tous vecteurs transverses x et x′ :
∑

λ=1,2

ε∗λ · x ελ · x′ = x · x′ . (2.14)

Cette égalité est la projection dans l’espace transverse de la relation

∑

λ=1,2

εµ∗
(λ)(k)εν

(λ)(k) = −gµν +
kµ

k+
δν− +

kν

k+
δµ− (2.15)
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pour le tenseur de polarisation dans notre jauge.
Considérons un instant les intégrales suivantes :

∫
d2r′

2π

r2

r′2(r− r′)2
=

∫
d2r′

2π

2r′ · (r− r′)
r′2(r− r′)2

= ln
(
r2

ρ2

)
(2.16)

où ρ est une coupure ultraviolette (|r′|, |r−r′| > ρ). Cela nous dit que l’intégrale sur r′ dans
(2.12) est logarithmiquement divergente dans l’ultraviolet. Ceci n’est pas un problème, nous
verrons que la divergence de cette contribution virtuelle s’annule avec une divergence similaire
dans la contribution réelle lors du calcul de sections efficaces. Pour rendre cette annulation
explicite, nous gardons le logarithme (2.16) sous sa forme intégrale.

Nous pouvons maintenant écrire la décomposition |O〉 de l’onium, dans le repère où il
est habillé d’un gluon mou (dorénavant nous n’indiquons plus les impulsions longitudinales
explicitement) :

|O〉YO =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y)
∑
αᾱ

1√
Nc

×
{(

1− αsCF

π2
YO

∫
d2z

(x− y)2

(x− z)2(z− y)2

) 1
2

δαᾱ|(x, α), (y, ᾱ)〉+
∫ P+

zOP+

dk′+
d2z

(2π)2

∑

λc

igs√
πk′+

[
ελ · (x− z)
(x− z)2

− ελ · (y− z)
(y− z)2

]
T c

ᾱα|(x, α), (y, ᾱ), (z, c, λ)〉
}

.(2.17)

2.2 Section efficace totale

Calculons la section efficace totale dans la collision de l’onium |O〉 sur une cible hadro-
nique |C〉 quelconque. Pour des raisons qui apparaîtront claires après, nous allons calculer
cette quantité en utilisant les deux repères introduits dans la section précédente : celui où
l’onium est nu et celui où il est habillé d’un gluon mou. En tant qu’observable physique, la
section efficace totale est indépendante du repère ; ceci nous permettra d’obtenir un résultat
important. Signalons que c’est la taille de l’onium qui joue le rôle de l’échelle perturbative
(1/|x− y| À ΛQCD) dans les calculs qui suivent. En effet, la section efficace totale étant une
mesure purement inclusive, il n’y a pas d’échelle d’impulsion dans l’état final.

2.2.1 Dans le repère où l’onium est nu

Dans le repère (YO ' 0, YC . Y ), l’état du système avant la collision |Ψin〉 = |O〉 ⊗ |C〉
s’écrit :

|Ψin〉 =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y)
∫

DAΦY [A]
∑
αᾱ

δαᾱ√
Nc
|(k+,x, α), (P+−k+,y, ᾱ)〉⊗|A〉 .

(2.18)
L’action de la matrice Ŝ sur |Ψin〉 s’obtient en appliquant les résultats du chapitre précédent.
L’état du système après la collision |Ψout〉 = Ŝ|Ψin〉 est ainsi :

|Ψout〉 =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y)
∫

DAΦY [A]
∑
αᾱ

1√
Nc

[
W †

F [A](y)WF [A](x)
]
ᾱα

|(k+,x, α), (P+−k+,y, ᾱ)〉 ⊗ |A〉 .(2.19)

Pour obtenir la section efficace totale, nous allons maintenant calculer l’amplitude de
collision élastique Ael(Y ) = i〈Ψin|1−Ŝ|Ψin〉 = i〈Ψin|(|Ψin〉 − |Ψout〉). En effectuant ce produit
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scalaire, un facteur δ(0) apparaît. Il a la même origine que le facteur δ(3)(0) qui apparaît lors
du calcul d’une norme (ceci a été discuté au chapitre précédent). Le calcul d’une observable
physique aurait dû faire disparaître ce problème, et c’est d’ailleurs ce qui se passe avec les
deux dimensions transverses : le facteur δ(3)(0) qui apparaît lors du calcul de 〈O|O〉 est
réduit au simple facteur δ(0) dans Ael(Y ). Le facteur δ(0) restant provient de l’intégration sur
l’impulsion longitudinale et il n’a pas disparu car, dans la limite de haute énergie considérée ici,
les impulsions longitudinales sont conservées par l’interaction, contrairement aux impulsions
transverses. Mais insistons une nouvelle fois sur le fait que nous ne rencontrerions pas ce
problème si nous utilisions des paquets d’ondes normalisables au lieu des ondes planes. La
prescription à utiliser pour se débarrasser du δ(0) problématique est de le remplacer par un
facteur (2π)2. On obtient alors

−iAel(Y ) =
∫

dk+ d2x
2π

d2y
2π

∣∣φ(k+,x−y)
∣∣2

∫
DA |ΦY [A]|2 Txy[A] (2.20)

où nous avons introduit

Txy[A] = 1− 1
Nc

Tr
(
W †

F [A](y)WF [A](x)
)

(2.21)

qui représente l’interaction de la paire quark-antiquark avec le champ A.
Introduisons aussi une nouvelle notation utile pour la moyenne sur la fonction d’onde de

la cible : l’intégration sur les différentes configurations du champ A pondérée par la fonction
|ΦY [A]|2 sera notée ∫

DA |ΦY [A]|2 f [A] = 〈f〉Y . (2.22)

Lors du calcul de quantités physiques, c’est toujours sous cette forme que se manifestera
la fonction d’onde de la cible. En utilisant le théorème optique σtot(Y ) = 2ImAel(Y ), nous
pouvons écrire la section efficace totale sous une forme relativement simple :

σtot = 2
∫

dk+ d2x
2π

d2y
2π

∣∣φ(k+,x−y)
∣∣2 〈Txy〉Y . (2.23)

La quantité 〈Txy〉Y est appelée amplitude de diffusion du dipôle, le dipôle (sous entendu de
couleur) faisant référence à la paire quark-antiquark singlet de couleur. Cette quantité, qui est
la moyenne d’une trace d’un produit de lignes de Wilson, contient la dépendance en rapidité
Y et donc en énergie (rappelons que Y ' ln(s)). Nous comprenons maintenant pourquoi
l’évolution de |ΦY [A]|2 par rapport à Y permet de prédire le comportement d’observables
physiques. En effet, d’une équation d’évolution fonctionnelle pour |ΦY [A]|2 du type

d

dY
|ΦY [A]|2 = H|ΦY [A]|2 , (2.24)

il est possible de déduire une équation pour 〈Txy〉Y , et pour n’importe quelle moyenne 〈f〉Y
d’ailleurs. Il est possible de dériver une telle équation fonctionnelle, cela sera discuté plus loin.

La factorisation de la section efficace totale exprimée par la formule (2.23) est représentée
Figure 2.3. Introduisons la fonction Tqq̄ définie par

Tqq̄(r,b; Y ) =
〈
T(b+r/2)(b−r/2)

〉
Y

. (2.25)

C’est simplement une réécriture de l’amplitude de dipôle avec des variables adaptées. En effet,
en changeant dans (2.23) les positions transverses x et y en variables de taille r = x − y et
de paramètre d’impact b = (x+y)/2, la section efficace totale se réécrit :

σtot = 2
∫

dk+ d2r
(2π)2

∣∣φ(k+, r)
∣∣2

∫
d2b Tqq̄(r,b;Y ) . (2.26)

La factorisation exprimée par cette formule est appelée factorisation des dipôles.
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Fig. 2.3 – L’amplitude de diffusion élastique dans la collision de l’onium O sur la cible C. Ce
schéma décrit la factorisation exprimée par la formule (2.23), obtenue dans le repère où l’onium
est nu. On obtient la section efficace en prenant la partie imaginaire de l’amplitude élastique.
Ceci peut être représenté par une coupure verticale au milieu du diagramme montrant l’état
final. Dans le cas de la section efficace totale, l’état final est complètement inclusif.

2.2.2 Dans le repère où l’onium est habillé d’un gluon mou

Lorsque l’onium est habillé d’un gluon mou (YO > 0, YC < Y ), l’état du système avant
la collision |Ψin〉 = |O〉 ⊗ |C〉 s’obtient en utilisant (2.17). Comme précédemment, l’action de
la matrice Ŝ sur |Ψin〉 s’obtient en appliquant les résultats du chapitre précédent. L’état du
système après la collision |Ψout〉 = Ŝ|Ψin〉 s’écrit alors

|Ψout〉 = |Ψout〉1 + |Ψout〉2 (2.27)

où nous séparons |Ψout〉 en deux morceaux : la composante quark-antiquark |Ψout〉1 et la
composante quark-antiquark-gluon |Ψout〉2. Elles sont données par

|Ψout〉1 =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y)
∫

DAΦYC [A]
∑
αᾱ

[
W †

F [A](y)WF [A](x)
]
ᾱα

1√
Nc

(
1− αsCF

π2
YO

∫
d2z

(x−y)2

(x−z)2(z−y)2

) 1
2

|(x, α), (y, ᾱ)〉 ⊗ |A〉 , (2.28)

|Ψout〉2 =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y)
∫ P+

zOP+

dk′+
d2z

(2π)2

∫
DAΦYC [A]

∑

αᾱλc

igs√
πNck′+[

ελ · (x− z)
(x− z)2

− ελ · (y− z)
(y− z)2

] [
W †

F [A](y)T dWF [A](x)
]
ᾱα

W dc
A [A](z)

|(x, α), (y, ᾱ), (z, c, λ)〉 ⊗ |A〉 .(2.29)



36 Collision d’un Onium sur une cible hadronique

x

y

C

OO

C

x

C

OO

C

y

〈Txy〉YC

z

〈Txz〉YC

+〈Tzy〉YC

−〈TxzTzy〉YC

Fig. 2.4 – L’amplitude de diffusion élastique dans la collision de l’onium O sur la cible C.
Ce schéma décrit la formule (2.31) obtenue dans le repère où l’onium est habillé d’un gluon
mou. L’amplitude de gauche montre l’interaction de la composante qq̄ renormalisée par une
contribution virtuelle. L’amplitude de droite montre l’interaction de la composante qq̄g. On
calcule la section efficace totale en coupant ces diagrammes. Le résultat doit être indépendant
du repère choisi : que le gluon dessiné sur la figure soit décrit comme provenant de l’onium
ou de la cible (comme sur la figure 2.3), le résultat doit être le même.

L’amplitude de collision élastique Ael(Y ) = i〈Ψin|1− Ŝ|Ψin〉 s’obtient facilement

−iAel =
∫

dk+ d2x
2π

d2y
2π

∣∣φ(k+,x−y)
∣∣2

[
〈Txy〉YC +

αs

π2
YO

∫
d2z

(x− y)2

(x− z)2(z− y)2

1
Nc

(
CF

〈
Tr

(
W †

F (y)WF (x)
)〉

YC
−

〈
Tr

(
W †

F (y)T cWF (x)T d
)
W cd

A (z)
〉

YC

)]
. (2.30)

Comparons ce résultat avec celui obtenu dans le repère YO ' 0 : le terme qui n’a pas de facteur
αs est similaire au résultat précédent, à la différence près que la moyenne sur la fonction
d’onde de la cible s’effectue avec une rapidité YC < Y. Le terme proportionnel à αs vient
de l’émission du gluon, comme ce dernier est mou, il y a aussi un facteur YO = ln (1/zO).
Dans ce terme, on reconnaît une partie réelle où le gluon interagit, qui contient WA(z),
et une partie virtuelle qui provient de la renormalisation de la partie quark-antiquark. La
divergence ultraviolette remarquée précédemment s’annule entre ces deux termes. Pour le voir
explicitement nous pouvons utiliser l’identité (1.55), donnée dans l’appendice du Chapitre 1,
pour réécrire l’amplitude Ael en termes de dipôles seulement. Donnons le résultat final pour
la section efficace totale :

σtot = 2
∫

dk+ d2x
2π

d2y
2π

∣∣φ(k+,x−y)
∣∣2

[
〈Txy〉YC + ᾱYO

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2(
〈Txz〉YC + 〈Tzy〉YC − 〈Txy〉YC − 〈TxzTzy〉YC

)]
(2.31)

avec ᾱ = αsNc
π . Les différentes parties de cette formule sont représentées Figure 2.4.

Le calcul des deux expressions (2.23) et (2.31) va maintenant nous permettre de dériver
une équation pour décrire l’évolution de 〈Txy〉Y avec Y. Nous l’obtiendrons en utilisant le fait
que la section efficace totale σtot est indépendante du repère choisi pour la calculer. Cette
dérivation a l’avantage de ne pas nécessiter l’utilisation d’une équation du type (2.24).
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2.2.3 La hiérarchie d’équations de Balitsky

Nous avons calculé la section efficace totale de la collision d’un onium sur une cible quel-
conque dans deux repères différents. Les formules finales sont données par (2.23) et (2.31). Ces
deux expressions n’ont par l’air identiques, et pourtant elles doivent l’être car une observable
physique ne peut pas dépendre du repère utilisé pour la calculer. En écrivant que le résultat
(2.23) est identique au résultat (2.31) dans la limite YO → 0 (et donc YC → Y ), on obtient
l’équation suivante pour l’amplitude de diffusion du dipôle 〈Txy〉Y :

d 〈Txy〉Y
dY

= ᾱ

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
(〈Txz〉Y + 〈Tzy〉Y − 〈Txy〉Y − 〈TxzTzy〉Y

)
. (2.32)

Ce résultat a été obtenu en utilisant seulement la partie de ψ̃λ
αᾱc contenant le logarithme

dominant YO = ln(1/zO), l’équation (2.32) est donc valable dans l’approximation des loga-
rithmes dominants. Comme expliqué ci-dessus, une telle équation peut aussi être dérivée en
utilisant une équation du type (2.24) pour la fonction d’onde de la cible. Dans l’approximation
des logarithmes dominants, l’équation (2.24) est connue et est appelée l’équation JIMWLK
[21, 22] (ces lettres représentent les initiales des noms des auteurs : Jalilian-Marian, Iancu,
McLerran, Weigert, Leonidov et Kovner). Elle permet en effet de dériver le résultat (2.32)
(pour une revue, voir [23, 24, 25]).

L’équation (2.32) n’est pas une équation fermée, car le terme 〈TxzTzy〉Y dans le membre
de droite agit comme un terme source. En fait, c’est la première équation d’une hiérarchie
infinie d’équations dérivée par Balitsky [26]. En plus de (2.32), la hiérarchie donne l’évolution
de 〈TxzTzy〉Y et de tous les corrélateurs d’un nombre arbitraire d’amplitudes de dipôles, un
corrélateur à n amplitudes agissant comme source dans l’équation pour le corrélateur à n− 1
amplitudes. Pour exemple, l’équation pour 〈TxzTzy〉Y est :

d

dY
〈TxzTzy〉Y = ᾱ

∫
d2z′

2π

[
(x− z)2

(x− z′)2(z′ − z)2
(
〈Txz’Tzy〉Y + 〈Tz’zTzy〉Y − 〈TxzTzy〉Y

−〈Txz’Tz’zTzy〉Y
)

+
(z− y)2

(z− z′)2(z′ − y)2
(
〈TxzTzz’〉Y + 〈TxzTz’y〉Y − 〈TxzTzy〉Y

−〈TxzTzz’Tz’y〉Y
)

+
1

N2
c

(
(x− z)2

(x− z′)2(z′ − z)2
+

(z− y)2

(z− z′)2(z′ − y)2

− (x− y)2

(x− z′)2(z′ − y)2

) (
2 〈Txy〉Y − 〈Mxzz’yzz’〉Y − 〈Mxz’zyz’z〉Y

)]
(2.33)

où nous avons introduit le multipôle

Muvwyxz[A] = 1− 1
Nc

Tr
(
W †

F [A](u)WF [A](v)W †
F [A](w)WF [A](x)W †

F [A](y)WF [A](z)
)

.

(2.34)
On remarque qu’en plus des amplitudes de dipôles apparaît un nouvel objet qui est une trace
de six lignes de Wilson ; ce genre d’objet est appelé un multipôle. Ces multipôles apparaissent
toujours sous-dominants dans un comptage de puissance en 1/Nc. La limite de large Nc per-
met donc de restreindre la hiérarchie à des corrélateurs de dipôles. Encore une fois, cette
équation (comme toutes les équations de la hiérarchie de Balitsky) peut être dérivée en uti-
lisant l’équation JIMWLK, et est valable dans l’approximation des logarithmes dominants.
Nous appellerons dorénavant ces équations les équations B-JIMWLK.

La stratégie pour calculer la section efficace totale dans la limite de haute énergie, est d’ob-
tenir 〈Txy〉Y à partir des équations B-JIMWLK, et ensuite d’utiliser la factorisation (2.23).
Bien sûr, il est aussi possible d’utiliser la formule (2.31), qui est équivalente, mais cela in-
troduirait d’inutiles complications. Comme nous allons le voir dans les sections suivantes, le
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P

Cible C au repos

Fig. 2.5 – Représentation de la diffraction dans le référentiel où la cible est au repos. Analogie
avec l’optique : la cohérence entre les partons qui forment le projectile est détruite par la
traversée de la cible.

formalisme introduit ne nous restreint pas au calcul de la section efficace totale. De nom-
breuses observables peuvent être calculées et exprimées en fonction de l’amplitude de dipôle
〈Txy〉Y ou de corrélateurs tels que 〈TxzTzy〉Y . Les solutions des équations B-JIMWLK per-
mettent donc d’établir les prédictions de la QCD à haute énergie pour un grand nombre de
sections efficaces. Dans la suite, toujours dans le contexte de la collision d’un onium sur une
cible hadronique, nous allons calculer la section efficace diffractive et la section efficace de pro-
duction de gluons. Nous choisissons ces exemples car ce sont des observables pour lesquelles
il existe des données expérimentales, ce qui nous permettra ensuite de tester les prédictions
de la QCD à haute énergie.

2.3 Section efficace diffractive

La section efficace diffractive est une partie de la section efficace totale qui mesure seule-
ment des collisions particulières : celles pour lesquelles la cible interagit de manière élastique.
Lors d’une collision à haute énergie, l’onium et la cible se dissocient généralement en libérant
des particules hadroniques dans l’état final. En fait dans certaines collisions appelées diffrac-
tives, la cible ne se dissocie pas et est présente dans l’état final, en compagnie des particules
qui proviennent de la dissociation de l’onium. Si le projectile (l’onium) ne se dissocie pas
non plus, alors la collision est simplement élastique. Comme dans le cas de la section efficace
totale, il n’y a pas d’échelle d’impulsion pour caractériser l’état final. C’est donc toujours la
taille de l’onium qui joue le rôle de l’échelle perturbative (1/|x−y| À ΛQCD) dans les calculs
qui suivent.

L’emploi du terme diffractif est dû à une analogie avec la diffraction en optique. L’analogie
devient claire en se plaçant dans le référentiel où la cible est au repos : le projectile est
initialement un ensemble cohérent de partons, cette cohérence est détruite par la collision qui
interagit différemment avec les différents partons, l’état final est alors formé d’un ensemble
incohérent de partons. Ceci est schématisé Figure 2.5. Du point de vue de la cible par contre,
l’interaction étant élastique, elle conserve la cohérence des particules qui l’habillent.

Précisons une propriété de l’état final diffractif. Les particules qui proviennent de la dis-
sociation de l’onium ont des rapidités supérieures à y∗. La rapidité de la cible est ymin (à
l’incertitude sur k0 près) et il n’y a pas d’autre particule libérée avec une rapidité inférieure
à y∗. En effet, la cohérence de la cible habillée étant conservée lors de la collision diffractive,
aucune des particules qui l’habillaient ne peut avoir été libérée. L’état final diffractif est donc
caractérisé par ce qu’on appelle un gap de rapidité : un intervalle de rapidité vide de particule,
que l’on notera ∆η. La taille de ce gap est y∗ − ymin = YC . Cela signifie qu’avec un choix
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de repère particulier, on ne peut calculer la section efficace diffractive que pour une valeur
particulière du gap : ∆η = YC . Avec nos choix de repères asymétriques (YO ¿ YC), nous
sommes donc limités à des cas où le gap est très large et où il y a très peu de particules dans
l’état final : la cible de rapidité ymin et les quelques particules provenant de la dissociation de
l’onium, de rapidités proches de ymax.

Dans le repère YO ' 0, les particules provenant de la dissociation de l’onium sont un
quark et un antiquark ; dans le repère où l’onium est habillé d’un gluon mou (YO non nul),
l’état final pourrait aussi contenir en plus ce gluon. En fait, en augmentant YO, c’est-à-dire
en utilisant des repères dans lequel l’onium est habillé de plus en plus de gluons mous, nous
pouvons calculer une section efficace diffractive avec un nombre de particules dans l’état final
de plus en plus important. Nous verrons plus tard que la masse invariante de ce système de
particule augmente comme eYO/2. Il se trouve que les masses accessibles expérimentalement
correspondent à des valeurs de YO relativement petites et à des états finals comprenant (en
plus de la cible) un quark et un antiquark et éventuellement un gluon.

Pour calculer la section efficace diffractive, il nous faut tout d’abord isoler les états finals
qui y contribuent, c’est-à-dire ceux qui contiennent la cible. Notons |Ψdiff 〉 l’état correspon-
dant. Pour obtenir |Ψdiff 〉, nous projetons l’état de système après la collision |Ψout〉 sur le
sous espace des états contenant la cible C :

|Ψdiff 〉 = |C〉〈C|(|Ψout〉 − |Ψin〉) . (2.35)

Nous avons aussi soustrait |Ψin〉 de |Ψout〉, pour ne pas compter le cas où l’état final est
identique à l’état initial, ce qui ne contribue pas à la section efficace car il n’y a pas eu
d’interaction.

Plaçons nous dans le repère où l’onium est nu. L’état |Ψout〉 est alors donné par la formule
(2.19) et pour l’état final contribuant à la section efficace diffractive nous obtenons :

|Ψdiff 〉 =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y) 〈−Txy〉Y
∑
αᾱ

δαᾱ√
Nc
|(k+,x, α), (P+−k+,y, ᾱ)〉 ⊗ |C〉 .

(2.36)
Pour obtenir ce résultat, nous avons utilisé

〈[
W †

F (y)WF (x)
]
ᾱα
− δαᾱ

〉
Y

=
〈
Tr

(
W †

F (y)WF (x)
)
−Nc

〉
Y

δαᾱ

Nc
= 〈−Txy〉Y δαᾱ . (2.37)

Ceci découle d’une propriété de la fonction d’onde de la cible |ΦY [A]|2, qui nous le rappelons
intervient par l’intermédiaire de la moyenne 〈 . 〉Y : effectuer la moyenne d’une quantité non
invariante de jauge donne un résultat nul. Cette propriété est à l’origine de la première égalité
dans l’équation (2.37) car seules les traces (sur les indices de couleur) de lignes de Wilson
sont invariantes de jauge. Nous ne démontrons pas ici que |ΦY [A]|2 possède cette propriété
mais considérons plutôt qu’elle est imposée par des considérations physiques. Notamment,
cela assure que les quantités physiques que nous calculons sont invariantes de jauge. Nous
signalons que l’état (2.36) peut aussi s’obtenir d’une autre manière, sans utiliser l’égalité
(2.37). Cela se fait en projetant explicitement la paire quark-antiquark de l’état final |Ψout〉
sur un sous-espace singlet de couleur. Ceci doit être le cas car l’état final doit être globalement
singlet de couleur, et la cible l’est évidemment.

Comme manifeste dans la formule (2.36), l’état final diffractif que nous avons calculé ne
contient que trois particules : le quark et l’antiquark provenant de la dissociation de l’onium,
et la cible. Si nous avions travaillé dans le repère où l’onium est habillé d’un gluon mou,
avec l’état (2.27) au lieu de (2.19), l’état final aurait aussi pu contenir en plus ce gluon. Mais
concentrons nous pour l’instant sur le cas où l’état final contient seulement un quark et un



40 Collision d’un Onium sur une cible hadronique

q+

P+ − q+

P+

O

C C

x

y

x
′

y
′

〈Txy〉∆η 〈Tx′y′〉∆η

q
′

q

C

O

C

Fig. 2.6 – La section efficace diffractive dans la collision de l’onium O sur la cible C. Ce
schéma montre la factorisation exprimée par la formule (2.43).

antiquark en plus de la cible. La section efficace est obtenue à partir de |Ψdiff 〉 de la manière
suivante :

dσdiff

d3qd3q′
= 〈Ψdiff |Nq(q)Nq̄(q′)|Ψdiff 〉 . (2.38)

La section efficace est différentielle par rapport aux tri-impulsions des particules finales, q
dénotant l’impulsion du quark et q′ celle de l’antiquark. L’impulsion finale de la cible est fixée
par la conservation de l’impulsion totale et n’apparaît donc pas dans (2.38). Les opérateurs
Nq et Nq̄ comptent le nombre de quarks et d’antiquarks dans l’état |Ψdiff 〉. Ils s’écrivent en
termes des opérateurs de création et d’annihilation :

Nq(q) =
∑
α

b†α(q)bα(q) , (2.39)

Nq̄(q) =
∑
ᾱ

d†ᾱ(q)dᾱ(q) . (2.40)

Une définition complète contiendrait aussi les degrés de liberté de spin, mais comme ils ne
sont pas indiqués explicitement dans |Ψdiff 〉, nous les omettons aussi sur les opérateurs bα et
dᾱ.

Utilisons maintenant l’espace mixte, dans lequel est exprimé |Ψdiff 〉 :

dσdiff

d3qd3q′
=

∫
d2x

(2π)2
d2x′

(2π)2
d2y

(2π)2
d2y′

(2π)2
eiq.(x′−x)eiq′.(y′−y)

∑
αᾱ

〈Ψdiff |b†α(q+,x′)d†ᾱ(q′+,y′)bα(q+,x)dᾱ(q′+,y)|Ψdiff 〉 . (2.41)

L’action de bα et dᾱ sur |Ψdiff 〉 s’écrit

bα(q+,x)dᾱ(q′+,y)|Ψdiff 〉 = − δαᾱ√
Nc

eip.yφ(q+,x−y) 〈Txy〉Y δ(P+−q+−q′+)|C〉 (2.42)

et il est ensuite facile d’obtenir la section efficace, le facteur δ(0) discuté précédemment étant
toujours à remplacer par un facteur (2π)2. La fonction δ(P+−q+−q′+) permet d’effectuer
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l’intégration sur q′+ et le résultat final est

dσdiff

d2qd2q′dq+
=

1
(2π)2

∫
d2x
2π

d2x′

2π

d2y
2π

d2y′

2π
eiq.(x′−x)eiq′.(y′−y)

φ∗(q+,x′−y′)φ(q+,x−y)
〈
Tx′y′

〉
∆η
〈Txy〉∆η . (2.43)

Signalons que nous avons remplacé Y (qui dans |Ψdiff 〉 représentait en fait YC et donc le
choix de repère) par ∆η le gap de rapidité dans l’état final. Pour la section efficace diffractive
que nous avons calculée, on a ∆η . Y, la différence étant négligeable dans la limite de haute
énergie. Cette différence représente en fait l’intervalle de rapidité sur lequel le quark et l’an-
tiquark sont émis. La formule (2.43) est représentée Figure 2.6. Elle montre une factorisation
où des dipôles de tailles différentes interagissent dans l’amplitude et l’amplitude complexe
conjuguée. Néanmoins, on voit que c’est la même amplitude de dipôle 〈Txy〉∆η qui intervient
dans les sections efficaces totales et diffractives, comme remarqué dans [27, 28, 29, 30].

2.4 Section efficace de production de gluons

Concentrons nous maintenant sur la section efficace de production de gluons. Comme
expliqué au Chapitre 1, notre description de la cible en terme d’un champ classique ne nous
permet pas de contrôler la cinématique individuelle des particules finales qui l’habillaient
avant d’être libérées. On ne peut donc calculer la section efficace de production de gluons que
si le gluon est émis avec une rapidité supérieure y∗ et décrit comme provenant d’un parton qui
habille le projectile. Dans le repère YO ' 0, l’onium est nu à l’ordre dominant en αs et ne peut
contenir un gluon qu’à l’ordre sous-dominant. Il est plus intéressant de nous pla cer dans le
repère où l’onium est habillé d’un gluon mou, pour lequel le facteur αs apparaît accompagné
d’un facteur YO. Ce gluon dans l’état final aura une rapidité supérieure à y∗ mais inférieure à
celle du quark ou de l’antiquark. Signalons aussi que son impulsion transverse fournie l’échelle
perturbative du problème (∼ k0).

La section efficace est obtenue à partir de |Ψout〉 de la manière suivante (nous n’avons pas
besoin de retirer |Ψin〉 car la production de gluon est forcément inélastique) :

dσ

d3q
= 〈Ψout|Ng(q)|Ψout〉 (2.44)

où l’opérateur Ng compte le nombre de gluons dans l’état |Ψout〉. Il s’écrit en termes des
opérateurs de création et d’annihilation :

Ng(q) =
∑

cλ

a†c,λ(q)ac,λ(q) . (2.45)

En utilisant la décomposition (2.27) de |Ψout〉, il semble que seule la partie |Ψout〉2 contribue
au résultat car c’est la seule qui contient a priori un gluon dans l’état final. En fait ce n’est
pas tout à fait correct : en procédant ainsi, nous compterions trop de gluons [IV]. En effet une
partie des gluons de l’état final ne sont pas mesurables, car ce sont des gluons qui habillent
le quark (ou l’antiquark), lui aussi libéré lors de la collision.

Pour isoler les gluons mesurables, décomposons |Ψout〉 d’une manière différente de (2.27) :

|Ψout〉 = |Ψout〉qq̄ + |Ψout〉qq̄g . (2.46)

Cette nouvelle décomposition s’obtient de la manière suivante : |Ψout〉qq̄g contient |Ψout〉2
moins les gluons non mesurables et |Ψout〉qq̄ contient |Ψout〉1 plus les gluons non mesurables.
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Fig. 2.7 – Représentation de l’état |Ψout〉qq̄g. Deux des 4 contributions sont représentées : le
gluon émis par le quark avant l’interaction et le gluon émis par l’antiquark aprés l’interaction.
Cette dernière vient avec un signe moins. Les particules de l’état final non indiquées par une
position transverse proviennent du nuage de particules de la cible.

Ces deux contributions sont données par

|Ψout〉qq̄ =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y)
∫

DAΦYC [A]
∑
αᾱ

[
W †

F [A](y)WF [A](x)
]
ᾱα

{
1√
Nc

(
1− αsCF

π2
YO

∫
d2z

(x−y)2

(x−z)2(z−y)2

) 1
2

|(x, α), (y, ᾱ)〉 ⊗ |A〉

+
∫ P+

zOP+

dk′+
d2z

(2π)2
∑

λc

igs√
πNck′+


∑

β

ελ · (x− z)
(x− z)2

T c
αβ |(x, β), (y, ᾱ), (z, c, λ)〉−

∑

β̄

ελ · (y− z)
(y− z)2

T c
β̄ᾱ|(x, α), (y, β̄), (z, c, λ)〉


⊗ |A〉



 (2.47)

et

|Ψout〉qq̄g =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y)
∫ P+

zOP+

dk′+
d2z

(2π)2

∫
DAΦYC [A]

∑

αᾱλc

igs√
πNck′+[

ελ · (x−z)
(x− z)2

([
W †

F [A](y)T dWF [A](x)
]
ᾱα

W dc
A [A](z)−

[
W †

F [A](y)WF [A](x)T c
]
ᾱα

)

−ελ · (y−z)
(y− z)2

([
W †

F [A](y)T dWF [A](x)
]
ᾱα

W dc
A [A](z)−

[
T cW †

F [A](y)WF [A](x)
]
ᾱα

)]

|(x, α), (y, ᾱ), (z, c, λ)〉 ⊗ |A〉 .(2.48)

Les deux premières lignes de |Ψout〉qq̄ forment |Ψout〉1 et les deux autres lignes représentent
les gluons non mesurables, qui habillent le quark ou l’antiquark. En effet, les contributions à
|Ψout〉qq̄ qui sont entre accolades peuvent se réécrire simplement |(x, α), (y, ᾱ)〉YO ⊗ |A〉 qui
représente un quark et un antiquark dans le repère caractérisé par YO dans lequel ils sont
habillés d’un gluon mou.
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L’état |Ψout〉qq̄g est l’état à considérer pour le calcul de la section efficace de production
de gluons. On y distingue quatre contributions différentes qui ont une signification claire :
le terme ελ · (x − z) représente l’émission du gluon par le quark et le terme ελ · (y − z)
représente l’émission du gluon par l’antiquark. Pour chacun d’entre eux, la contribution avec
trois lignes de Wilson correspond à l’émission du gluon avant l’interaction. Les contributions
avec seulement deux lignes de Wilson, qui viennent avec un signe moins, sont les contribu-
tions soustraites et réabsorbées dans |Ψout〉qq̄. Elles s’interprètent naturellement comme des
contributions où le gluon a été émis après l’interaction. Ceci est représenté Figure 2.7.

2.4.1 Production inclusive de gluons

Commençons par calculer la section efficace de production inclusive de gluons donnée par
(2.44) où seule la partie |Ψout〉qq̄g de |Ψout〉 contribue. En utilisant l’espace mixte, la section
efficace s’obtient par

dσ

d3q
=

∫
d2z

(2π)2
d2z′

(2π)2
eiq.(z′−z) ∑

cλ

qq̄g〈Ψout|a†c,λ(q+, z′)ac,λ(q+, z)|Ψout〉qq̄g . (2.49)

Dans ce calcul, YC est à remplacer par l’intervalle de rapidité sur lequel les particules provenant
de la cible sont émises :

yq ≡ ln(
√

2q+/k0)− ymin = Y − ln(P+/q+) . (2.50)

La section efficace peut s’écrire sous la forme suivante (après la substitution habituelle de δ(0)
par (2π)2)

q+ dσ

d2qdq+
=

4αs

π2Nc

∫
dk+ d2x

2π

d2y
2π

∣∣φ(k+,x−y)
∣∣2

∫
d2z
2π

d2z′

2π
eiq.(z′−z) 〈

F (x,y, z, z′)
〉
yq

(2.51)
avec la fonction F [A] donnée par

F [A](x,y, z, z′) = Tr
[{

x−z′
|x−z′|2

([
W †

F (x)T eWF (y)
]
W ∗ec

A (z′)−
[
T cW †

F (x)WF (y)
])

− y−z′
|y−z′|2

([
W †

F (x)T eWF (y)
]
W ∗ec

A (z′)−
[
W †

F (x)WF (y)T c
])}

·
{

x−z
|x−z|2

([
W †

F (y)T dWF (x)
]
W dc

A (z)−
[
W †

F (y)WF (x)T c
])

− y−z
|y−z|2

([
W †

F (y)T dWF (x)
]
W dc

A (z)−
[
T cW †

F (y)WF (x)
])}]

. (2.52)

Dans cette expression, les quatre contributions de l’amplitude (fonctions de x, y et z)
associées aux quatre contributions de l’amplitude complexe conjuguée (fonctions de x, y et
z′) forment seize termes. Ils contiennent quatre, cinq ou six lignes de Wilsons (pour lesquelles
la dépendance en A est implicite dans (2.52)) et peuvent tous être simplifiés. Les termes
contenant a priori six lignes de Wilson sont en fait des traces de deux lignes de Wilson adjointes
car les lignes de Wilson fondamentales disparaissent grâce à l’identité : W †

F [A](x)WF [A](x) =
1. Pour la même raison, les termes formés de cinq lignes de Wilson n’en contiennent réellement
que trois et peuvent être simplifiés en utilisant la formule (1.56) donnée dans l’appendice 1.A.
Enfin, les termes contenant quatre lignes de Wilson sont soit égaux à CF Nc, soit réductibles
en utilisant la formule (1.57). Finalement, les seize termes de (2.52) ne contiennent tous que
deux lignes de Wilson adjointes WA[A] et 〈F 〉yq

peut être exprimée en fonction d’une seule
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amplitude : l’amplitude de diffusion d’un dipôle de gluon (gg). Cette amplitude sera notée
〈T̃xy〉yq avec

T̃xy[A] = 1− 1
N2

c − 1
Tr

(
W †

A[A](y)WA[A](x)
)

. (2.53)

En utilisant la formule (1.56), on peut facilement relier l’amplitude du dipôle quark-antiquark
〈Txy〉Y à l’amplitude du dipôle de gluons 〈T̃xy〉Y :

〈
T̃xy

〉
Y

=
N2

c

N2
c − 1

(
2 〈Txy〉Y −

〈
T 2
xy

〉
Y

)
. (2.54)

La fonction 〈F 〉yq
s’écrit en terme de

〈
T̃xy

〉
yq

de la manière suivante [IV] :

〈
F (x0,x1, z, z′)

〉
yq

= CF Nc

1∑

i,j=0

(−1)i+j (xi−z).(xj−z′)
|xi−z|2|xj−z′|2

×
(〈

T̃zxj

〉
yq

+
〈
T̃xiz′

〉
yq

−
〈
T̃xixj

〉
yq

−
〈
T̃zz′

〉
yq

)
(2.55)

où nous avons utilisé la notation (x → x0,y → x1) pour pouvoir écrire les seize termes
de manière plus compacte. Signalons que cette formule a aussi été obtenue d’une manière
différente [31, 32] dans le cas de la collision onium-noyau. Avant de simplifier encore le résultat,
on remarque une fois encore que tous ces termes ont une signification simple. Les termes
proportionnels à (xi−z).(xj−z′) (i, j = 0, 1) correspondent à un gluon émis par le quark
ou antiquark de position transverse xi dans l’amplitude et xj dans l’amplitude complexe
conjuguée. Pour chacune de ces quatre situations :

– le terme 〈T̃xixj 〉yq représente une émission après l’interaction à la fois dans l’amplitude
et dans l’amplitude complexe conjuguée,

– le terme 〈T̃zxj 〉yq représente une émission avant l’interaction dans l’amplitude et après
l’interaction dans l’amplitude complexe conjuguée

– le terme 〈T̃xiz′〉yq représente une émission après l’interaction dans l’amplitude et après
l’interaction dans l’amplitude complexe conjuguée,

– le terme 〈T̃zz′〉yq représente une émission avant l’interaction à la fois dans l’amplitude
et dans l’amplitude complexe conjuguée.

Un de ces termes est représenté Figure 2.8.
On peut encore simplifier l’expression de la section efficace, en l’écrivant

q+ dσ

d2qdq+
=

4αs

π2Nc

∫
dk+ d2r

(2π)2
∣∣φ(k+, r)

∣∣2Fyq(r,q) (2.56)

où nous avons introduit la fonction

Fyq(r,q) =
∫

d2b
d2z
2π

d2z′

2π
eiq.(z′−z)

〈
F

(
b+

r
2
,b− r

2
, z, z′

)〉
yq

. (2.57)

En effet on remarque que pour chacun des termes de (2.55), une des trois intégrations dans
(2.57) peut toujours être faite indépendamment de l’amplitude de dipôle. Ce calcul est expliqué
dans l’appendice 2.A, on obtient :

Fyq(r,q) = CF Nc

∫
d2r′

2π
e−iq.r′

[
4π

q2
δ(2)(r′−r) + ln

(
r′2

|r−r′| |r+r′|
)

+
2iq
q2

·
(

2r′

r′2
− r′−r

(r′−r)2 −
r′+r

(r′+r)2

)]∫
d2b Tgg(r′,b; yq) (2.58)
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Fig. 2.8 – Section efficace de production inclusive de gluons. Un des seize termes obtenus en
mettant l’amplitude dessinée Figure 2.7 au carré est représenté. Le gluon est émis par le quark
avant l’interaction dans l’amplitude et par l’antiquark avant l’interaction dans l’amplitude
complexe conjuguée. Dans tous les cas l’interaction se réduit à l’interaction effective d’un
dipôle de gluons, comme exprimé par les formules (2.51) et (2.55). Seul le gluon dessiné est
mesuré mais des particules sont émises sur toute la coupure. Le quark et l’antiquark provenant
de l’onium sont émis à des rapidités plus grandes que celle du gluon, les autres particules
proviennent de la cible et sont émises à des rapidités plus petites.

où de manière similaire à la formule (2.25), nous avons introduit

Tgg(r,b;Y ) =
〈
T̃(b+r/2)(b−r/2)

〉
Y

. (2.59)

Les formules (2.56) et (2.58) montrent que la dépendance en q de Fyq (et donc de la
section efficace) s’obtient comme la transformée de Fourier de Tgg(r′,b; yq) multipliée par une
fonction connue de r et de r′. Ce lien entre la production inclusive de gluon et le dipôle (gg)
est apparu dans différents contextes [33, 34, 35, 19]. Après quelques lignes de calcul, on peut
factoriser la section efficace de production inclusive de gluons (2.58) de la manière suivante
[IV] :

q+ dσ

d2qdq+
=

4αsCF

π2q2

∫
dk+ d2r

(2π)2
∣∣φ(k+, r)

∣∣2
∫

d2r′

2π
e−iq.r′Θ(|r|−|r′|) ln

(
r2

r′2

)

∇2
r′

∫
d2b Tgg(r′,b; yq) . (2.60)

Le calcul menant à ce résultat est expliqué dans l’appendice 2.A. Il montre qu’en fait la dépen-
dance en q de la section efficace s’obtient comme la transformée de Fourier de ∇2

r′Tgg(r′,b; yq).
Le logarithme ln(r2/r′2) de la formule (2.60) joue aussi un rôle important, cela sera repris au
Chapitre 5. Rappelons que cette expression n’est valable que pour des gluons émis à grande
rapidité (Y − ln(P+/k+) grand) mais aussi tels que q+ ¿ P+.
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Fig. 2.9 – Représentation de l’état |Ψdiff 〉qq̄g, projection de l’état |Ψout〉qq̄g schématisé Figure
2.7. Deux des quatre contributions de |Ψdiff 〉qq̄g sont représentées : le gluon émis par le quark
avant l’interaction et le gluon émis par l’antiquark aprés l’interaction. Cette dernière vient
avec un signe moins.

2.4.2 Production diffractive de gluons

Calculons pour finir la section efficace de production diffractive de gluons, c’est-à-dire la
production de gluons dans les collisions où la cible interagit de manière élastique. Pour cela
il nous faut isoler les états finals qui y contribuent. Notons |Ψdiff 〉qq̄g l’état correspondant, il
est obtenu à partir de |Ψout〉qq̄g par la projection

|Ψdiff 〉qq̄g = |C〉〈C||Ψout〉qq̄g . (2.61)

Pour obtenir le résultat, nous allons utiliser la propriété suivante :

〈(WW . . . W )c
αᾱ〉Y =

〈
(WW . . . W )d

ββ̄

〉
Y

T d
ββ̄

T c
ᾱα

CF Nc
. (2.62)

C’est une conséquence du fait qu’effectuer la moyenne 〈 . 〉Y d’une quantité non invariante de
jauge donne un résultat nul. Ceci a été discuté plus en détails dans la section 2.3.

En effectuant la projection (2.61), seuls les singlets de couleur qq̄g contribuent à |Ψdiff 〉qq̄g,
comme indiqué par (2.62). Par exemple la contribution de la deuxième ligne de la formule
(2.48) pour |Ψout〉qq̄g est

〈[
W †

F [A](y)T dWF [A](x)
]
ᾱα

W dc
A [A](z)−

[
W †

F [A](y)WF [A](x)T c
]
ᾱα

〉
Y

=

Nc

2CF

(〈TxzTzy〉Y − 〈Txz〉Y − 〈Tzy〉Y + 〈Txy〉Y
)
T c

ᾱα . (2.63)

En fait, l’autre partie de |Ψout〉qq̄g (la troisième ligne de la formule (2.48)) donne la même
contribution et on obtient

|Ψdiff 〉qq̄g =
∫

dk+ d2x
(2π)2

d2y
(2π)2

φ(k+,x−y)
∫

dk′+
d2z

(2π)2
∑

αᾱλc

igs√
πNck′+

Nc

2CF
[
ελ · (x− z)
(x− z)2

− ελ · (y− z)
(y− z)2

](
〈TxzTzy〉YC − 〈Txz〉YC − 〈Tzy〉YC + 〈Txy〉YC

)

T c
ᾱα|(x, α), (y, ᾱ), (z, c, λ)〉 ⊗ |C〉 . (2.64)
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Fig. 2.10 – Section efficace de production diffractive de gluons. Un des seizes termes de la
formule (2.67) obtenus en mettant l’amplitude dessinée Figure 2.9 au carré est représenté.
Le gluon est émis par le quark avant l’interaction dans l’amplitude et par l’antiquark aprés
l’interaction dans l’amplitude complexe conjuguée.

On peut distinguer quatre contributions dans |Ψdiff 〉qq̄g avec des significations claires. Le
terme ελ · (x−z) représente l’émission du gluon par le quark et le terme ελ · (y−z) représente
l’émission du gluon par l’antiquark. En facteur commun à ces deux situations : la contribution
〈Txz〉YC+〈Tzy〉YC−〈TxzTzy〉YC correspond à une émission avant l’interaction et la contribution
〈Txy〉YC correspond à une émission après l’interaction. Ceci est représenté Figure 2.9. Notons
que contrairement au cas inclusif, les amplitudes de dipôles sont déjà présentes au niveau de
l’amplitude. C’est bien sur dû à la projection (2.61).

La section efficace est obtenue à partir de |Ψdiff 〉qq̄g de la manière suivante :

dσ

d3q
= qq̄g〈Ψdiff |Ng(q)|Ψdiff 〉qq̄g (2.65)

ce qui s’écrit dans l’espace mixte

dσ

d3q
=

∫
d2z

(2π)2
d2z′

(2π)2
eiq.(z′−z) ∑

cλ

qq̄g〈Ψdiff |a†c,λ(q+, z′)ac,λ(q+, z)|Ψdiff 〉qq̄g . (2.66)

Dans ce calcul, YC est à remplacer par le gap de rapidité ∆η = ln(
√

2q+/k0) − ymin =
Y − ln(P+/q+). Le résultat peut s’écrire sous la forme suivante [IV] (avec la substitution
habituelle δ(0) → (2π)2)

q+ dσ

d2qdq+
=

αsN
2
c

4π2CF

∫
dk+ d2x

2π

d2y
2π

∣∣φ(k+,x−y)
∣∣2 A∆η(x,y,q) ·A∗

∆η(x,y,q) (2.67)

avec l’amplitude A∆η (qui est un vecteur transverse) donnée par

A∆η(x,y,q) =
∫

d2z
2π

e−iq.z
[

x− z
(x− z)2

− y− z
(y− z)2

] (
〈Txz〉∆η + 〈Tzy〉∆η − 〈Txy〉∆η

−〈TxzTzy〉∆η

)
. (2.68)
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Rappelons que ce résultat n’est valable que pour des grands gaps de rapidité (Y − ln(P+/k+)
grand) mais aussi pour des gluons tels que q+ ¿ P+. On a déjà signalé que l’amplitude (2.68)
pouvait être décomposée en quatre termes. Un des seize termes de la section efficace (2.67)
est représenté Figure 2.10. Encore une fois la même amplitude de dipôle 〈Txy〉∆η intervient
dans cette section efficace, mais cette fois le corrélateur 〈TxzTzy〉∆η intervient aussi.

2.A Factorisation de la section efficace de production inclusive de gluons

Dans cet appendice, nous expliquons comment simplifier la section efficace de production
de gluon donnée par (2.56), (2.57) et (2.55). Tout d’abord nous dérivons la formule (2.58)
qui donne Fyq(r,q) en fonction de Tgg(r,b; yq) puis nous obtenons la formule de factorisation
finale (2.60) qui relie la dépendance en q de la section efficace à la transformée de Fourier de
∇2

r′Tgg(r′,b; yq).
Commençons par calculer Fyq(r,q) définie par la formule (2.57). Une des trois intégrations

(sur b, z ou z’) de la fonction 〈F 〉YC peut être faite. En effet cette fonction est donnée en
fonction d’amplitudes de dipôles de gluons par la formule (2.55) et on remarque que pour
chacun des termes de (2.55), une des trois intégrations est faisable. Pour le terme contenant
〈T̃zz′〉yq , l’intégration sur b donne (i = (0, 1), j = (0, 1), x0 = b+r/2 et x1 = b−r/2)

∫
d2b
2π

(xi − z) · (xj − z′)
(xi − z)2(xj − z′)2

= ln

(
ρ∣∣xi − yj + z′ − z

∣∣

)
(2.69)

puis on peut effectuer le changement de variable r′ = z−z′ et b = (z+z′)/2. ρ est une coupure
ultraviolette nécessaire car l’intégrale (2.69) est logarithmiquement divergente. Naturellement
ceci est dû à notre manière de séparer les différents termes de (2.55) et ρ disparaîtra quand
nous les regrouperons. Pour le terme contenant 〈T̃zxj 〉yq , l’intégration sur z′ donne

∫
d2z′

2π
eiq·(z′−z) (xi − z) · (xj − z′)

(xi − z)2(xj − z′)2
=

q · (xi − z)
iq2(xi − z)2

eiq·(xj−z) (2.70)

puis on peut effectuer le changement de variable r′ = z−xj . Pour le terme contenant 〈T̃xiz′〉yq ,
l’intégration sur z donne

∫
d2z
2π

eiq·(z′−z) (xi − z) · (xj − z′)
(xi − z)2(xj − z′)2

=
iq · (xj − z′)
q2(xj − z′)2

eiq·(z′−xi) (2.71)

puis on peut effectuer le changement de variable r′ = xi − z′. Enfin pour le terme contenant
〈T̃xixj 〉yq , les intégrations sur z et z′ donnent

∫
d2z
2π

d2z′

2π
eiq·(z′−z) (xi − z) · (xj − z′)

(xi − z)2(xj − z′)2
=

1
q2

eiq·(xj−xi) (2.72)

puis on peut utiliser une fonction δ(2)(r′−xi+xj) pour rétablir l’intégrale sur r′. En regroupant
les différents morceaux et en effectuant ensuite explicitement les sommes sur i et j (la coupure
ρ présente dans les logarithmes disparaît à cette occasion), on obtient le résultat (2.58) :

Fyq(r,q) = CF Nc

∫
d2r′

2π
e−iq.r′

[
4π

q2
δ(2)(r′−r) + ln

(
r′2

|r−r′| |r+r′|
)

+
2iq
q2

·
(

2r′

r′2
− r′−r

(r′−r)2 −
r′+r

(r′+r)2

)]∫
d2b Tgg(r′,b; yq) . (2.73)

Pour aller plus loin et obtenir la formule (2.60), nous utilisons le fait que la fonction
|φ(k+, r)|2 ne dépend pas de l’angle polaire du vecteur transverse r. Nous verrons que c’est
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le cas dans le Chapitre 4 où un calcul explicite d’une telle fonction d’onde est réalisé. En
prenant le vecteur q comme référence pour les angles polaires, il est possible d’intégrer la
fonction Fyq par rapport à θrq, l’angle entre les vecteurs r et q. Pour cela nous utilisons les
intégrales angulaires suivantes :

∫ 2π

0

dθrq
2π

ln
(

r′2

|r−r′| |r+r′|
)

= Θ(|r|−|r′|) ln
(
r′2

r2

)
, (2.74)

∫ 2π

0

dθrq
2π

q ·
(

2r′

r′2
− r′−r

(r′−r)2 −
r′+r

(r′+r)2

)
= 2Θ(|r|−|r′|)q · r

′

r′2
. (2.75)

Elles permettent d’obtenir :
∫ 2π

0
dθrq Fyq(r,q) = 2CF Nc

∫
d2r′d2b e−iq.r′

{
Θ(|r|−|r′|)

[
2iq · r′
q2r′2

− 1
2

ln
(
r2

r′2

)]

+
2
q2

δ(r′2−r2)
}

Tgg(r′,b; yq) . (2.76)

En utilisant l’espace de Mellin, on remarque que :

Θ(|r|−|r′|)
[
2iq · r′
q2r′2

− 1
2

ln
(
r2

r′2

)]
+

2
q2

δ(r′2−r2) =

∫
dλ

2iπ

(
r2

r′2

)λ [
2iq · r′
λq2r′2

− 1
2λ2

+
2

q2r′2

]
(2.77)

où le contour d’intégration pour la variable complexe λ longe l’axe imaginaire en passant à
droite de l’origine. Nous pouvons alors écrire

e−iq.r′
∫

dλ

2iπ

(
r2

r′2

)λ [
2iq · r′
λq2r′2

− 1
2λ2

+
2

q2r′2

]
=

∫
dλ

2iπ

1
2q2λ2

∇2
r′

[
e−iq.r′

(
r2

r′2

)λ
]

=
1

2q2
∇2

r′

[
e−iq.r′Θ(|r|−|r′|) ln

(
r2

r′2

)]
(2.78)

et obtenir le résultat
∫ 2π

0
dθrq Fyq(r,q) =

CF Nc

q2

∫
d2r′d2b ∇2

r′

[
e−iq.r′Θ(|r|−|r′|) ln

(
r2

r′2

)]
Tgg(r,b; yq) (2.79)

qui mène à la formule finale (2.60).
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Chapitre3
Les équations BFKL et BK
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Dans le chapitre précédent, nous avons dérivé la hiérachie des équations dévolution de la
QCD vers la limite de haute énergie. L’équation de Balitsky-Kovchegov (BK) résulte d’une
approximation de la hiérarchie mais a essentiellement le même contenu physique. C’est une
équation fermée qui décrit l’évolution de 〈Txy〉Y avec la rapidité Y. Rappelons que 〈Txy〉Y est
l’amplitude de collision d’un dipôle sur la cible hadronique où les vecteurs bidimensionnels
x et y sont les positions transverses du quark et de l’antiquark composant le dipôle. Bien
qu’apparaissant comme un intermédiaire de calcul, l’amplitude 〈Txy〉Y décrit une situation
physique bien définie : la collision d’un objet de nature perturbative sur la cible hadronique.
Une telle collision permet de sonder des petites distances de l’ordre de r = |x−y|¿1/ΛQCD

à l’intérieur du hadron cible : dans ces conditions le dipôle sonde les quarks et gluons qui
composent le hadron. L’équation BK décrit plus particulièrement la transition vers la limite
de haute énergie dans laquelle le dipôle est sensible aux effets collectifs dûs à la grande densité
de gluons dans le hadron.

L’équation BK est formellement obtenue en supposant 〈TxzTzy〉Y = 〈Txz〉Y 〈Tzy〉Y dans
le membre de droite de la première équation de Balitsky (2.32), cette simplification a été
considérée par Kovchegov [36]. Nous allons écrire l’équation BK pour une amplitude que nous
dénoterons NY (x,y), pour souligner que ces solutions ne sont que des approximations de
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〈Txy〉Y . L’équation BK s’écrit

d

dY
NY (x,y) = ᾱ

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
[
NY (x, z) + NY (z,y)−NY (x,y)

−NY (x, z)NY (z,y)
]

. (3.1)

La première partie discute de l’évolution donnée par la partie linéaire de l’équation BK.
La deuxième partie est consacrée à l’étude de solutions homogènes de l’équation BK, nous in-
sisterons sur le fait qu’asymptotiquement de telles solutions sont des ondes progressives. Dans
la troisième partie, qui reprend les résultats des articles [VII, VIII] et de l’article de conférence
[IX], cette caractéristique est étendue au cas de solutions asymptotiques générales. Enfin, la
dernière partie présente les calculs de l’article [XIV] : nous obtenons une paramétrisation
générique des solutions de type ondes progressives.

3.1 L’équation de Balitsky-Fadin-Kuraev-Lipatov

Commençons par étudier l’équation qui est obtenue en ne considérant que la partie linéaire
de l’équation BK. Nous écrivons cette équation pour l’amplitude dénotée NY (x,y) :

d

dY
NY (x,y) = ᾱ

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
(NY (x, z) +NY (z,y)−NY (x,y)) . (3.2)

Cette équation est équivalente à l’équation dérivée par Balitsky, Fadin, Kuraev et Lipatov [2]
(pour une revue, voir [37]), leurs solutions sont identiques (elles sont données plus loin). Pour
cette raison, nous appellerons l’équation (3.2) l’équation BFKL.

3.1.1 Le contenu physique de l’équation BFKL

L’équation BFKL est une bonne approximation de l’équation BK quand N2
Y ¿ NY , c’est-

à-dire quand NY ¿ 1. Cela correspond à une situation pour laquelle les effets de densité
dans la cible ne sont pas importants. Autrement dit, l’équation BFKL décrit l’évolution de
l’amplitude de diffusion d’un dipôle sur une cible hadronique décrite par un classique tel que
gsA ¿ 1. Développons Txy[A] à l’ordre le plus bas par rapport à gs (voir la formule (2.21)) :

Txy[A] =
παs

Nc

∫
dx+dy+

(
A−c (x+,x)−A−c (x+,y)

)(
A−c (y+,x)−A−c (y+,y)

)
+O(g2

sA2) .

(3.3)
Dans une situation où gsA ¿ 1, la ressommation des ordres supérieurs est inutile et nous
obtenons ainsi que l’amplitude NY qui obéit à l’équation BFKL est donnée par

NY (x,y) =
π

Nc
(fY (x,x) + fY (y,y)− 2fY (x,y)) (3.4)

avec
fY (x,y) = αs

〈∫
dx+dy+A−c (x+,x)A−c (y+,y)

〉

Y

. (3.5)

L’amplitude de diffusion NY est donc donnée en termes d’une fonction fY qui reflète la densité
de gluons dans la cible. Ceci a une interprétation claire : comme gsA ¿ 1, la densité de gluon
dans la cible est faible (fY ¿ 1) et les effets collectifs sont négligeables. Les différents gluons
interagissent de manière incohérente avec le dipôle.

Dans ce régime NY = NY ¿ 1 qu’on appelle le régime dilué, il est inutile de décrire la
cible en terme d’un champ classique. Si nous avions décrit la cible de la même manière que
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nous avons décrit le projectile, en utilisant une description en termes d’états de Fock du type
(1.18), nous aurions pu obtenir l’équation BFKL. Elle a d’ailleurs aussi été dérivée dans ce
contexte [38, 39]. Pour obtenir l’équivalent de la densité de gluon fY avec une description
pour |C〉 du type (1.18) au lieu de (1.35), il faut considérer la quantité

∫
dk+

∑

c,λ

yC〈C|a†c,λ(k+,x)ac,λ(k+,y)|C〉yC . (3.6)

En la calculant dans deux repères différents, il est possible de dériver une équation d’évolution :
l’équation BFKL.

Le fait que la description (1.35) permette de retrouver cette équation représente un des
succès de notre approche : elle est adaptée pour décrire à la fois le régime dilué gsA ¿ 1, et le
régime dense gsA ∼ 1. En particulier, l’équation BK est particulièrement bien adaptée pour
décrire la transition entre les deux régimes.

3.1.2 Les solutions de l’équation BFKL

L’équation (3.2) est linéaire et facilement soluble, car les fonctions propres du noyau de
l’équation sont connues [40, 41]. Elles sont indexées par un entier relatif n, qu’on appelle
le spin conforme, et par une variable réelle ν. En utilisant une représentation complexe des
vecteurs transverses :

x = (x1, x2) → x = (x, x̄) avec x = x1 + ix2 , x̄ = x1 − ix2 , (3.7)

les fonctions propres sont données par

En,ν(x,y) =
(

x− y

x y

)h(
x̄− ȳ

x̄ ȳ

)h̃

(3.8)

où n et ν ont été regroupés dans h et h̃ :

h =
1
2

+ iν +
n

2
, h̃ =

1
2

+ iν − n

2
. (3.9)

Les valeurs propres correspondantes sont notées χ(n, ν) :
∫

d2z
2π

(x− y)2

(x− z)2(z− y)2
[En,ν(x, z) + En,ν(z,y)− En,ν(x,y)] = χ(n, ν)En,ν(x,y) (3.10)

et sont données par (une dérivation est donnée en appendice) :

χ(n, ν) = 2ψ(1)− ψ

(
1 + |n|

2
+ iν

)
− ψ

(
1 + |n|

2
− iν

)
. (3.11)

La fonction ψ(x) est appelée fonction digamma, c’est la dérivée logarithmique de la fonction
Γ(x) : ψ(x) = Γ′(x)/Γ(x). Ainsi, la solution de l’équation BFKL s’écrit de manière générale

NY (x,y) =
∞∑

n=−∞

∫ ∞

−∞
dν eᾱχ(n,ν)Y En,ν(x,y)φ0(n, ν) (3.12)

où les fonctions φ0(n, ν) spécifient la condition initiale.
Dans la limite de haute énergie, l’intégrale sur ν peut être évaluée par la méthode du

col. Pour chaque valeur de n, le comportement de l’intégrale est alors eᾱχ(n,0)Y . Quand Y
augmente, cette exponentielle est croissante seulement pour le spin conforme nul, qui domine



54 Les équations BFKL et BK

donc tous les autres dans la limite de haute énergie. Pour cette raison nous ne conserverons
dans les solutions de l’équation de BFKL que le spin conforme nul n = 0. La solution de
l’équation (3.2) s’ecrit donc

NY (x,y) =
∫ 1

2
+i∞

1
2
−i∞

dγ

2iπ
eᾱχ(γ)Y

( |x− y|
|x| |y|

)2γ

φ0(γ) (3.13)

où nous utilisons à présent γ = 1
2 + iν comme variable d’intégration. La valeur propre χ(0, ν)

pour spin conforme nul est notée

χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ). (3.14)

La fonction φ0(γ) spécifie la condition initiale et contient une échelle a priori non perturbative
Q0 ∼ ΛQCD qui caractérise la cible hadronique à basse énergie :

φ0(γ) ∼ Q−2γ
0 . (3.15)

3.2 Solutions homogènes de l’équation de Balitsky-Kovchegov

Concentrons-nous maintenant sur les solutions de l’équation BK. Nous allons commencer
par considérer des solutions que nous appellerons homogènes : des solutions qui ne dépendent
que de la taille du dipôle r ≡ |x−y| et pas du paramètre d’impact b = (x+y)/2. Dans une
telle situation, le dipôle voit la cible homogène dans le plan transverse.

3.2.1 Le contenu physique des solutions

Nous allons dans un premier temps analyser qualitativement le comportement des solu-
tions NY (x,y) = NY (r), nous ferons des calculs plus formels par la suite. Commençons par
introduire une condition initiale à Y = Y0 : NY0(r). Dans la limite des dipôles de petites
tailles r ¿ 1/ΛQCD, l’amplitude s’annule comme NY0 ∼ r2, c’est la transparence de couleur :
quand le dipôle devient ponctuel, il ne voit plus les partons colorés dans le hadron. Par contre,
plus la taille du dipôle est grande, plus il interagit : l’amplitude NY est fonction croissante
de r. La limite d’unitarité impose NY ≤ 1. Pour la condition initiale, l’unitarité est réalisée
de manière non perturbative et la limite NY0 = 1 est atteinte pour une taille r ∼ 1/Q0. Une
paramétrisation possible de la condition initiale est

NY0(r) =
{

r2Q2
0 si rQ0 < 1

1 si rQ0 > 1
(3.16)

Etudions maintenant comment cette amplitude évolue avec l’équation BK (3.1). L’équation
(3.1) possède deux points fixes : NY =0 qui est instable, et NY =1 qui est stable. En effet si
l’amplitude est très petite mais non nulle, NY ¿ 1 et on peut négliger dans l’équation (3.1)
le terme non linéaire (c’est justifié au début de l’évolution tant que NY À N2

Y ). L’équation
restante est alors une équation linéaire du type dNY /dY ∝ NY et l’amplitude augmente
exponentiellement avec la rapidité : NY ∼ eY . Quand NY devient de l’ordre de 1, le terme
non linéaire devient important et joue son rôle, il stoppe la croissance de NY : quand NY → 1,
dNY /dY → 0 et la croissance de l’amplitude s’arrête à NY = 1, point fixe stable de l’équation.

La solution NY (r) est donc une courbe croissante en fonction de la taille r comprise entre
0 (petites tailles) et 1 (grandes tailles), et une fonction croissante de la rapidité. Ceci est sché-
matisé figure 3.1. Pour chaque valeur fixée de la rapidité Y, appelons rs(Y ) la taille à partir de
laquelle le terme non-linéaire devient important ; cette taille définit l’échelle d’unitarisation
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Y0

Y > Y0

NY (r)
1

1
rQ0

Fig. 3.1 – L’amplitude NY (r) en fonction de r. L’évolution BK à partir de la condition initiale
NY0(r) (voir équation (3.16)) est schématisée par des flèches verticales pour différentes valeurs
de r. Le front formé par la solution NY (r) se déplace avec la rapidité. L’échelle d’unitarisation,
qui pour la condition initiale est non perturbative, augmente avec l’évolution vers de plus
grandes rapidités Y.

pour NY . L’échelle d’impulsion correspondante Qs(Y ) = 1/rs(Y ) joue un rôle fondamen-
tal dans la QCD à haute énergie, elle est appelée l’échelle de saturation. Elle caractérise la
transition entre le régime dilué, dans lequel l’évolution est décrite par l’équation BFKL, et
le régime dense (souvent appelé régime de saturation), dans lequel les effets collectifs dûs
au grand nombre de gluons sont importants. La valeur de Qs est fonction croissante de la
rapidité, ce qui nous amène à notre première conclusion trés importante : dans la limite de
haute énergie, l’échelle d’unitarisation Qs rentre dans le domaine perturbatif.

3.2.2 Des solutions asympotiques de l’équation BK

Nous allons maintenant dériver des résultats plus quantitatifs, notamment les comporte-
ments de NY (r) de Qs(Y ) pour des rapidités asymptotiques. Pour cela introduisons

NY (x,y) = NY (r) ≡ r2 U(r, Y ) . (3.17)

L’équation BK pour U(|r|, Y ) s’écrit

d

dY
U(|r|, Y ) =

ᾱ

2π

∫
d2r′

(r−r′)2
[
2U(|r′|, Y )− r2

r′2
U(|r|, Y )

]

− ᾱ

2π

∫
d2r′U(|r′|, Y )U

(∣∣r−r′∣∣ , Y
)

. (3.18)

La partie linéaire de l’équation pour U

Dans un premier temps, il est utile de considérer la partie linéaire de l’équation (3.18).
Elle peut se réécrire sous une forme qui souligne mieux l’annulation des divergences entre le
terme réel et virtuel :

d

dY
U(|r|, Y ) =

ᾱ

π

∫
d2r′

(r−r′)2
[
U(|r′|, Y )− r2

r′2+(r−r′)2 U(|r|, Y )
]

. (3.19)
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Fig. 3.2 – Représentation de la fonction χ(γ) (voir équation (3.14)), et détermination de γc,
solution de l’équation (3.27).

En utilisant les intégrales suivantes :
∫

d2r′

(r−r′)2 = π

∫
dr′2

|r2 − r′2| et
∫

d2r′

r′2 + (r−r′)2 = π

∫
dr′2√

r4 + 4r′4
, (3.20)

il est facile d’effectuer l’intégration angulaire et d’obtenir

d

dY
U(r, Y ) = ᾱ

∫
dr′2

r′2

[
r′2U(r′, Y )− r2U(r, Y )

|r2 − r′2| +
r2U(r, Y )√
4r′4 + r4

]
. (3.21)

Cette équation est simplement l’équation BFKL pour des solutions homogènes. Dans ce
cas, les fonctions propres du membre de droite de (3.21) sont obtenues en espace de Mellin :
r−2γ est fonction propre avec la valeur propre ᾱχ(γ). Cela a inspiré le fait d’écrire l’équation
(3.21) sous la forme compacte

d

dY
U(r, Y ) = ᾱχ(∂L)U(r, Y ) (3.22)

où nous avons introduit L = − ln(r2Q2
0) qui apparaît comme une variable naturelle du pro-

blème. Les solutions de cette équation s’obtiennent de manière immédiate :

U lin(r, Y ) = Q2
0

∫ 1
2
+i∞

1
2
−i∞

dγ

2iπ
eᾱχ(γ)Y

(
r2Q2

0

)−γ
U0(γ) . (3.23)

Ces solutions peuvent se réécrire pour l’amplitude NY (r) de la façon suivante :

N lin
Y (r) =

∫ 1
2
+i∞

1
2
−i∞

dγ

2iπ
e−γ(L−ᾱv(γ)Y )U0(γ) (3.24)

avec
v(γ) =

χ(γ)
γ

. (3.25)

Ceci permet de faire apparaître que la solution du problème linéaire est une superposition
d’ondes progressives. Une onde progressive est une fonction du type f(L−vY ) où v représente
la vitesse de propagation, cela sera discuté par la suite. Dans la superposition d’ondes (3.24),
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t = 0 t1

X(t1)

2t1

X(t2)

3t1

X(t3)

f(x, t) =

f(x − vt)

x

X(t) = X(0) + vt

Fig. 3.3 – La fonction f(x, t) en fonction de x pour différentes valeurs de t. Après un certain
temps t1, l’évolution efface les traces de la condition initiale f(x, 0) et la fonction f devient
une onde progressive f(x − vt). Sa propagation est telle que pour différentes valeurs de t, le
front de l’onde a toujours la même forme, il est simplement translaté proportionnellement à
la différence des temps considérés. Le coefficient de proportionnalité est la vitesse de l’onde.

la vitesse des différentes ondes ᾱv(γ) dépend de γ. Signalons dès maintenant qu’une des ces
vitesses va jouer un rôle important par la suite : la vitesse minimale. Nous la noterons vc, et
elle est obtenue pour une valeur de γ que nous noterons γc :

vc = min(v(γ)) = v(γc) . (3.26)

gc est donc solution de l’équation
χ(γ)

γ
= χ′(γ) (3.27)

représentée Figure 3.2 et vaut gc ' 0.6275. La vitesse minimale correspondante est vc ' 4.883.

Des solutions de type ondes progressives

Revenons maintenant au cas de l’équation complète. Nous allons énoncer des résultats
sans les démontrer, puis nous discuterons leur dérivation. La solution asymptotique (Y →∞)
de l’équation (3.18) est une onde progressive de vitesse particulière. Cette vitesse dépend peu
de la condition initiale : elle dépend seulement de son comportement à grand L, ou de manière
équivalente à petit r (toute autre information sur la condition initiale disparaît complètement
au cours de l’évolution avec Y ). Avec la condition initiale

NY0(r) ∼ e−γiL quand L →∞ , (3.28)

deux situations sont possibles (γi > 0).
– Si γi < γc, alors la vitesse de l’onde progressive, solution asymptotique de (3.18), est

ᾱvi avec vi ≡ χ(γi)/γi. On dit que l’onde est poussée par la condition initiale et nous
appellerons ce type de solution le type front poussé.

– Si γi ≥ γc, alors la vitesse de l’onde propagatrice, solution asymptotique de (3.18), est
ᾱvc avec vc = χ(γc)/γc. On dit que l’onde est tirée par la condition initiale et nous
appellerons ce type de solution le type front tiré.
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Y0 Y1 Y2 Y3

0

e−γcL

e−L

NY (r)
1

L = − ln(r2Q2

0
)

ᾱvc(Y3 − Y2)

Fig. 3.4 – L’amplitude NY (r) solution de l’équation BK (3.18) en fonction de L pour diffé-
rentes valeurs de Y (Y3 > Y2 > Y1 > Y0). La solution est de type front tiré : la condition
initiale NY0(r) (voir l’équation (3.28)) est petit à petit effacée avec l’évolution pour laisser
place à un front en e−γcL. Une fois le régime d’onde progressive atteint, augmenter Y revient
à translater le front, la vitesse de l’onde étant ᾱvc.

En QCD, nous nous trouvons dans ce deuxième cas (voir la condition initiale (3.16) pour
laquelle γi = 1.) et la solution asymptotique de l’équation (3.18) est une onde progressive
de vitesse ᾱvc : NY (r) = N(L − ᾱvcY ). Une onde progressive fait référence à une fonction
d’une variable d’espace x et d’une variable de temps t qui est en fait une fonction d’une seule
variable : f(x, t) = f(x− vt). En raison de sa dimension, le coefficient v est appelé la vitesse
de l’onde. Dans notre problème, la vitesse qui intervient est en fait un nombre sans dimension
(c’est un rapport de deux logarithmes), cependant nous l’appelons tout de même une vitesse,
en raison de l’analogie présentée ci-dessus. La figure 3.3 décrit les caractéristiques de la pro-
pagation d’une onde progressive f(x− vt) comprise entre zéro et un, fonction décroissante de
x et fonction croissante de t. Dans notre problème, l’analogue de x est L et l’analogue de t
est Y.

En fait NY (r) n’est pas partout une onde progressive : dans la limite L−ᾱvcY →∞, on
tend vers le régime dilué (NY (r) → 0) où NY (r) est donnée par (3.24) qui est une superpo-
sition d’ondes progressives. Dans la limite L−ᾱvcY →−∞, on tend vers la limite d’unitarité
(NY (r) → 1) et NY (r) est une onde progressive de manière évidente. Le résultat non trivial
est que partout en dehors de la limite L− ᾱvcY → ∞, NY (r) est une onde progressive. La
transition entre les régimes dilués et denses se fait pour L∼ ᾱvcY, c’est-à-dire autour du milieu
du front de l’onde. L’échelle de saturation est ainsi donnée par

Q2
s(Y ) = Q2

0 eᾱvcY . (3.29)

Dans la partie avant du front de l’onde L À ᾱvcY, la solution s’écrit

NY (r) = N(rQs(Y )) ∼ e−γc(L−vcY ) =
(
r2Q2

s(Y )
)γc

. (3.30)

Ceci est résumé Figure 3.4.
Les résultats que nous venons de donner sont valables asymptotiquement en Y, l’échelle

de saturation (3.29) et le front d’onde (3.30) ne contiennent que les termes dominants dans
la limite Y → ∞. De manière remarquable, il existe aussi des résultats sous-asymptotiques
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universels, c’est-à-dire qui ne dépendent ni de la forme précise de la condition initiale (mais
seulement de son comportement à grand L), ni de la forme du terme non linéaire. Pour l’échelle
de saturation, deux corrections sous-asymptotiques sont connues [42] (pour la première, voir
aussi [43]) :

ln
(

Q2
s(Y )
Q2

0

)
= ᾱvcY − 3

2γc
ln(Y )− 3

γ2
c

√
2π

ᾱχ′′(γc)
1√
Y

+O(1/Y ) ≡ Ω(Y ) . (3.31)

Dans le cas du front d’onde, la forme de NY (r) dans la région r2Q2
s(Y ) ¿ 1 est

NY (r) ' ln
(
r2Q2

s(Y )
) (

r2Q2
s(Y )

)−γc exp
[
− ln2(r2Q2

s(Y ))
2ᾱχ′′(γc)Y

]
. (3.32)

Une de ces corrections sous-asymptotiques nous rappelle que, très en avant du front d’onde
(dans la limite r2Q2

s(Y ) → 0), NY (r) n’est pas une onde progressive. En effet, le terme en
ln2(r2Q2

s(Y ))/Y provient du régime dans lequel NY (r) est donné par (3.24). On dit que
ce terme est dû à la diffusion BFKL. Il nous permet d’ailleurs de quantifier jusqu’à quel
point en avant du front NY (r) peut être considéré comme une onde progressive : tant que
r2Q2

s(Y ) À exp (−2γcᾱχ′′(γc)Y ).
Il est possible de tester ces prédictions avec des simulations numériques de l’équation

(3.18) ; les résultats sont montrés Figure 3.5. La figure de gauche représente l’amplitude de
dipôle NY (r) en fonction de rQ0 pour plusieurs valeurs de Y, montrant de manière claire que
des ondes progressives sont formées au cours de l’évolution en Y. La figure de droite montre
la dépendance de l’échelle de saturation en fonction de Y. Cette dépendance est extraite de
l’amplitude NY (r) en résolvant l’équation NY (1/Qs(Y )) = C, différentes courbes correspon-
dant à différentes valeurs de la constante C : 0.001, 0.01, 0.05 et 0.1. On constate que ce choix
n’influence pas la vitesse asymptotique, ce qui est dû au fait que NY (r) est une onde pro-
gressive. La vitesse asymptotique obtenue correspond bien à vc. Plusieurs groupes ont réalisé
des simulations numériques de l’équation BK [44, 45, 46, 47, 48, 49, 50] et les résultats sont
compatibles.

Lien avec l’équation FKPP

Considérons la fonction Ũ(k, Y ) définie par

Ũ(k, Y ) =
∫

r dr J0(kr)U(r, Y ) =
∫

dr

r
J0(kr) NY (r) (3.33)

pour laquelle l’équation BK s’écrit

d

dY
Ũ(|k|, Y ) =

ᾱ

2π

∫
d2k′

(k−k′)2
[
2Ũ(|k′|, Y )− k2

k′2
Ũ(|k|, Y )

]
− ᾱŨ2(|k|, Y ) . (3.34)

L’avantage d’utiliser la fonction Ũ(k, Y ) est que le terme non linéaire de l’équation BK est
grandement simplifié. Le terme linéaire a exactement la même forme que celui de l’équation
pour U(r, Y ), ceci est dû aux propriétés d’invariance conforme du noyau de l’équation BFKL.
Les résultats importants donnés ci-dessus ont été dérivés par Munier et Peschanski [42]. Ils ont
remarqué que l’équation (3.34) appartenait à la même classe d’équivalence qu’une équation
bien connue depuis les années 1930, l’équation de Fisher-Kolmogorov-Petrovsky-Piscounov (F-
KPP) [51]. Cette équation a été étudiée de manière très approfondie en physique statistique
et les résultats présentés ci-dessus ont été obtenus grâce à son équivalence avec les équations
de QCD. En fait de manière plus générale, les résultats sont valables pour toute équation
d’évolution qui, comme l’équation FKPP, l’équation (3.18) ou l’équation (3.34), satisfait les
conditions suivantes.
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Fig. 3.5 – La figure de gauche est une simulation numérique de l’évolution BK de l’amplitude
de dipôle NY avec la rapidité Y. NY (r) est représentée en fonction de L pour différentes
valeurs de Y entre 0 et 10 par intervalles d’une unité. Des ondes progressives sont formées au
cours de l’évolution en Y. La figure de droite représente l’échelle de saturation Qs en fonction
de Y et montre qu’asymptotiquement les quatre courbes (obtenues en résolvant l’équation
NY (1/Qs(Y )) = C pour C =0.001, 0.01, 0.05 et 0.1) convergent vers une valeur compatible
avec vc = 4.88, indiquée par un trait épais.

– U = 0 est un point fixe instable dû au fait que la partie linéaire de l’équation provoque
la croissance de la solution.

– La solution de la partie linéaire de l’équation est une superposition d’ondes progressives
du type (3.24).

– L’équation possède un terme non linéaire (la forme du terme non linéaire peut être
quelconque) qui arrête la croissance de la solution.

Dans le cas de l’équation (3.34), la solution de la partie linéaire de l’équation est

Ũ lin(k, Y ) =
∫ 1

2
+i∞

1
2
−i∞

dγ

2iπ
eᾱχ(γ)Y

(
k2

Q2
0

)−γ

Ũ0(γ) =
∫ 1

2
+i∞

1
2
−i∞

dγ

2iπ
e−γ(L̃−ᾱv(γ)Y )Ũ0(γ) (3.35)

avec L̃ = ln(k2/Q2
0) et la solution asymptotique de l’équation est donc une onde progressive

Ũ(k, Y ) = Ũ(L̃−ᾱvcY ) . Toutes les caractéristiques données dans le cas de la fonction U(r, Y )
(ou NY (r)) sont aussi valables pour Ũ et pour toute solution d’une équation d’évolution
qui satisfait les conditions énoncées ci-dessus, c’est-à-dire qui appartient à la même classe
d’équivalence que l’équation FKPP.

3.3 Solutions générales de l’équation de Balitsky-Kovchegov

Nous souhaitons maintenant étudier des solutions plus générales. L’équation BK est une
équation pour NY (x,y) et ne contient pas seulement de l’information sur la dépendance de
NY avec r = x−y. L’équation complète (3.1) contient aussi de l’information sur la dépendance
en b = (x + y)/2. Il est possible d’extraire une partie de cette information, en utilisant les
résultats enoncés ci-dessus : NY = 0 est un point fixe instable de l’équation BK et NY = 1
est un point fixe stable. Le seul critère non déterminé est le suivant : les solutions de la
partie linéaire de l’équation (3.1) sont-elles des superpositions d’ondes du type (3.24) ? Or
nous connaissons ces solutions explicitement, ce sont les solutions de l’équation BFKL dérivée
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dans la première section de ce chapitre. En les analysant, nous pouvons déterminer si oui ou
non ce dernier critère est rempli.

En fait il est facile de voir que la solution (3.13) n’est pas une superposition d’ondes
progressives, sauf dans le cas particulier où |b| À |r|. Mais dans ce cas de larges effets non
perturbatifs dûs au confinement sont attendus, et nous n’attendons pas qu’une équation per-
turbative décrive correctement la collision. D’ailleurs les prédictions en ondes progressives que
l’on obtient dans cette limite |b| À |r| sont explicitement en contradiction avec le confinement,
car elles prédisent des solutions asympotiques qui décroissent comme une loi de puissance
avec b. Ceci a été discuté dans [52, 53, 48, 49] et cela a amoindri les espoirs d’extraire de
l’information utile sur la dépendance en paramètre d’impact à partir de l’équation BK. Dans
la publication [VII], nous avons trouvé un moyen d’extraire des solutions asymptotiques en
ondes progressives, malgré le fait que la solution (3.13) n’est pas une superposition du type
(3.24). L’astuce est de passer en espace des impulsions par double transformée de Fourier sur
les variables de NY (x,y).

3.3.1 Résultats analytiques

Définissons la double transformée de Fourier suivante :

ÑY (k,q) =
1

(2π)2

∫
d2xd2y
(x−y)2

eik.x ei(q−k).yNY (x,y) . (3.36)

En utilisant les formules (3.1) et (3.36), il est possible d’obtenir l’équation BK vérifiée par la
fonction ÑY . Elle est donnée par

d

dY
ÑY (k,q) =

ᾱ

π

∫
d2k′

(k−k′)2
{

ÑY (k′,q)− 1
4

[
(q−k)2

(q−k′)2 +
k2

k′2

]
ÑY (k,q)

}

−ᾱ

∫
d2k′

2π
Ñ(k,k′)ÑY (k−k′,q−k′) . (3.37)

Cette nouvelle forme de l’équation BK a été dérivée dans l’article [VIII]. Signalons que les
solutions homogènes discutées dans la section précédente NY (|x− y|) impliquent en espace
d’impulsion ÑY (k,q) = 2πδ(2)(q) Ũ(|k|, Y ) où Ũ(k, Y ) est la fonction introduite précédem-
ment qui obéit à l’équation (3.34). Nous retrouvons bien cette équation en prenant q = 0
dans (3.37). Enfin, avec la définition (3.36), q est la variable conjuguée à b et k′≡k−q/2 est
la variable conjuguée à r.

La partie linéaire de cette équation est l’équation BFKL en espace d’impulsion et peut se
réécrire sous une forme qui souligne mieux l’annulation des divergences entre le terme réel et
virtuel :

d

dY
ÑY (k,q) =

ᾱ

π

∫
d2k′

(k−k′)2
{
ÑY (k′,q)− 1

2

[
(q−k)2

(q−k′)2+(k−k′)2

+
k2

k′2+(k−k′)2
]
ÑY (k,q)

}
. (3.38)

En transformant de Fourier la solution de l’équation BFKL en espace des coordonnées (3.13),
nous obtenons la solution de l’équation (3.38) en espace des impulsions :

ÑY (k,q) =
∫ 1

2
+i∞

1
2
−i∞

dγ

2iπ
eᾱχ(γ)Y fγ(k,q) φ0(γ,q) (3.39)
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Fig. 3.6 – Simulation numérique de l’évolution BK de l’amplitude de dipôle ÑY (k,q) avec
la rapidité Y. ÑY (k,q) est représentée en fonction de |k′|/Q0 pour différentes valeurs de Y
entre 0 et 25 par intervalles de 2.5. Pour la figure de gauche ln(|q|/Q0) = −1 et pour la figure
de gauche ln(|q|/Q0) = 2. Des ondes progressives sont formées au cours de l’évolution en Y,
dans le régime |k′|/|q| À 1.

où la fonction fγ est donnée par (en utilisant la représentation complexe introduite par les
formules (3.7))

fγ(k,q) =
Γ2(γ)

Γ2
(

1
2 + γ

) 2
|k|

∣∣∣ q

4k

∣∣∣
2γ−1

2F1

(
γ, γ; 2γ;

q

k

)
2F1

(
γ, γ; 2γ;

q̄

k̄

)
− (γ → 1− γ). (3.40)

Un facteur antisymétrique sous le changement γ → 1 − γ a été absorbé dans φ0(γ,q). On
peut vérifier explicitement que (3.40) est fonction propre du noyau de l’équation (3.38) et a
pour valeur propre (3.14), ce résultat est dérivé dans l’appendice du papier [VIII].

Nous pouvons maintenant analyser si la solution (3.39) est une superposition d’ondes
progressives. Ceci a été fait en détail dans la publication [VII] et nous avons démontré que
c’était le cas dans la limite |k| À |q|. En effet, dans cette limite la fonction hypergéométrique
de (3.40) tend vers 1 et fγ(k,q) devient une simple puissance de |q|/|k|. La solution de
l’équation linéaire devient alors dans cette limite :

ÑY (k,q) =
∫ 1

2
+i∞

1
2
−i∞

dγ

2iπ
e−γ(Lq−ᾱv(γ)Y )φ0(γ,q) (3.41)

avec Lq = ln(k2/q2) et où les facteurs non importants ont été une fois de plus absorbés dans
φ0(γ,q). Cette expression montre que les conditions pour obtenir des solutions asymptotiques
en ondes progressives sont remplies. Plus précisément, nous prédisons pour k2/(q2eΩ(Y )) À 1 :

ÑY (k,q) '
(

k2

q2eΩ(Y )

)−γc

(3.42)

où l’échelle de saturation est la même que précédemment (voir la formule (3.31)), en dehors
de l’échelle d’impulsion qui était fixée par Q0 et qui maintenant est fixée par |q|. En fait, tout
se passe comme dans le cas précédent avec la substitution Q0 → |q| et on peut montrer que
lorsque |q| devient plus petit que l’échelle caractéristique de la cible Q0, c’est Q0 qui redevient
l’impulsion qui entre dans l’échelle de saturation. Qs est proportionnelle à q seulement quand
q À Q0. Bien sûr, les comportements sous-asymptotiques (3.31) et (3.32) sont aussi valables.
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Fig. 3.7 – Ces figures représentent les dépendances de l’échelle de saturation Qs en fonction
de la rapidité Y (figure de gauche) et en fonction de la variable |q| (figure de droite). La
figure de gauche montre qu’asymptotiquement en Y, les différentes courbes convergent vers
une valeur compatible avec ᾱvc = 0.2× 4.88 = 0.98. La figure de droite montre que l’échelle
de saturation est proportionnelle à Q0 si |q| < Q0, et à q si |q| > Q0. Le changement de pente
pour les grandes valeurs de |q| n’est pas pertinent, comme signalé dans le texte.

3.3.2 Analyse numérique

Il est possible de tester ces prédictions grâce à des simulations numériques de l’équation
(3.37). Les résultats sont montrés Figure 3.6 où l’amplitude ÑY (k,q) est représentée en fonc-
tion de |k′|/Q0 pour deux valeurs de |q|/Q0 et plusieurs valeurs de Y. Il est clair que des ondes
progressives sont formées au cours de l’évolution en Y, dans le régime |k′|/|q| À 1 (équivalent
à |k|/|q| À 1). La manière dont ces résultats numériques ont été obtenus est détaillée dans la
publication [VIII]. Signalons par exemple que nous avons fixé ᾱ = 0.2 dans nos simulations.

A partir des résultats numériques présentés Figure 3.6, il est possible d’extraire l’échelle de
saturation. Les résultats sont présentés Figure 3.7 où les dépendances de l’échelle de saturation
avec Y et q2 sont représentées et sont en accord avec les prédictions. Pour obtenir la figure de
gauche, l’échelle de saturation a été extraite des résultats de la figure 3.6 et de résultats pour
d’autres valeurs de |q|/Q0, comme indiqué sur le graphe. Asymptotiquement, les courbes
convergent vers une unique valeur, compatible avec ᾱvc = 0.2 × 4.88 = 0.98. La figure de
droite montre que si |q|/Q0 ¿ 1, alors Qs ∝ Q0 et que pour |q|/Q0 À 1, alors Qs ∝ |q|. La
structure en fin de courbe est due au fait que pour les grandes valeurs de |q|, les courbes qui
servent à extraire l’échelle de saturation n’ont pas encore atteint le régime asympotique.

Insistons une fois de plus sur le fait que nos conclusions ne peuvent pas être dérivées en
espace de coordonnées et que nos résultats, qui sont valables à q donné, ne sont pas vrais à
paramètre d’impact b donné. Cela peut être compris assez facilement en regardant les deux
versions de l’équation BFKL (3.2) et (3.38). On voit clairement que l’équation (3.38) en espace
des impulsions est locale en q alors que l’équation (3.2) en espace de coordonnées couple
différentes valeurs du paramètre d’impact. Signalons finalement qu’il n’est pas nécessaire
de retourner en espace de coordonnées pour pouvoir utiliser nos résultats, car il existe des
observables qui s’expriment directement en fonction de ÑY (k,q). Dans le cadre de la collision
d’un onium sur une cible hadronique discutée dans le chapitre précédent, c’est par exemple
le cas de la production diffractive de mésons vecteurs. La variable q2 décrit alors le transfert
d’impulsion de la cible pendant sa collision élastique.
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3.4 Une paramétrisation générique pour les ondes progressives de QCD

Les résultats que nous avons dérivés jusqu’ici ont quelques limitations, qui peuvent re-
mettre en cause leur pertinence pour des applications phénoménologiques. D’une part, nos
résultats sont valables asymptotiquement en Y. D’autre part, la forme de la solution (3.32) est
seulement correcte en avant du front pour r2Q2

s ¿ 1, et ne décrit pas correctement l’approche
vers NY (r) = 1; la transition vers la saturation est en effet plus douce que celle qui est re-
présentée Figure 3.4, comme le montre les simulations numériques de la Figure 3.5 (voir aussi
[54]). D’une manière plus générale, l’équation BK est dérivée dans l’approximation des loga-
rithmes dominants, on peut par conséquent douter que nos prédictions quantitatives soient
utilisables aux énergies accessibles expérimentalement.

Dans cette section, nous introduisons une version modifiée de l’équation BK [55, XIV],
qui permet de traiter les limitations mentionnées ci-dessus. Cette nouvelle équation permet
de prendre en compte des effets créés par des logarithmes sous dominants, et elle permet
d’exploiter le terme non linéaire de manière plus approfondie que dans l’approche discutée
précédemment. Celle-ci obtenait les solutions approchées d’une équation exacte ; la méthode
que nous allons exposer maintenant consiste à trouver des solutions exactes d’une équation
approchée. Nous montrons que l’équation proposée admet des solutions en ondes progressives
pour des rapidités non asymptotiques, et nous obtenons une paramétrisation analytique qui
décrit la transition vers le régime de saturation.

3.4.1 Une équation effective pour l’amplitude de dipôle

Notre point de départ est de réécrire l’équation (3.34) de la manière suivante :

d

dY
Ũ(k, Y ) = ᾱχ

(−∂L̃

)
Ũ(k, Y )− ᾱŨ2(k, Y ) . (3.43)

L’équation BK modifiée que nous allons considérer est la suivante, nous l’écrivons pour une
amplitude que nous noterons T (L̃, Y ) :

d

dY
T (L̃, Y ) = ᾱχ̃

(−∂L̃

)
T (L̃, Y )− ᾱT 2(L̃, Y ) . (3.44)

Dans cette équation, la fonction χ̃ est maintenant un polynôme :

χ̃
(−∂L̃

)
=

P∑

p=0

Ap

(−∂L̃

)p
. (3.45)

L’ordre du polynôme P et les coefficients Ap doivent être considérés comme des paramètres
pouvant donner lieu à différentes fonctions χ̃. Nous considérons cette équation pour les raisons
suivantes.

– Il est possible de prendre en compte des effets de logarithmes sous dominants de manière
effective en modifiant le noyau χ. Différents schémas ont été proposés dans la littérature
et le fait d’utiliser un polynôme paramétrable peut permettre de les implémenter.

– Le front d’onde (3.32) est obtenu uniquement à partir d’informations sur la partie li-
néaire de l’équation (3.18) (le terme non-linéaire doit être présent, mais sa forme peut
être quelconque) et c’est la raison pour laquelle il ne peut pas décrire la transition vers
le régime de saturation. Pour pouvoir le faire, il faut utiliser de l’information sur le
terme non linéaire. En utilisant l’équation (3.34) (et pas l’équation (3.18)), nous avons
à manipuler un terme non linéaire dont la forme est plus simple. Signalons d’ailleurs
que le point fixe stable de l’équation (3.44) est T = A0, au lieu NY = 1 dans le cas de
l’équation (3.18).
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– Il est manifeste sur la formule (3.43) que l’équation BK est une équation différentielle
d’ordre infini. En utilisant un polynôme pour la fonction χ̃, l’ordre de l’équation diffé-
rentielle (3.44) est fini. Cela simplifie le problème car il est alors possible de résoudre
analytiquement l’équation [56, 57, 55]. Pour une certaine classe de polynôme χ̃ préci-
sée ci-dessous, nous allons dériver des solutions de type ondes progressives pour des
rapidités non asymptotiques.

Nous souhaitons considérer des polynômes χ̃ proches de la fonction originale χ. Pour être
plus spécifiques, nous nous limitons à des fonctions χ̃ définies positives et telles que A0 > 0,
A1 < 0 et A2 > 0. Imposons aussi que, tout comme pour χ, l’équation χ̃(γ)/γ = χ̃′(γ) > 0
admette une unique solution γ̃c. Cela assure que l’équation (3.44) admet aussi des solutions
asymptotiques qui sont des ondes progressives. Nous noterons la vitesse correspondante ṽc.

Signalons des choix possibles pour la fonction χ̃. Comme c’est un polynôme d’ordre P
(P ≥ 2), elle peut être choisie comme étant la fonction originale χ, développée en série de
Taylor autour d’une valeur γ0 (0<γ0 <1) et tronquée à l’ordre P. On aurait alors

χ̃
(−∂L̃

)
=

P∑

p=0

χ(p)(γ0)
p!

(−∂L̃ − γ0

)p (3.46)

ou bien écrit en termes des coefficients :

Ap =
P−p∑

i=0

(−1)i χ(i+p)(γ0)
i! p!

γi
0 . (3.47)

Un choix naturel pour γ0 est de prendre γ0 = γc (ou γ0 = γi dans le cas de solutions de type
fronts poussés). En effet dans ce cas γ̃c = γc et ṽc = vc, ce qui assure que les solutions de
(3.44) ont la même vitesse critique que celles de (3.43).

3.4.2 Ondes progressives génériques

L’équation (3.44) se réécrit :

A0 T (L̃, Y )− T 2(L̃, Y )−
(

1
ᾱ

∂Y + A1∂L̃

)
T (L̃, Y ) +

P∑

p=2

(−1)pAp ∂p

L̃
T (L̃, Y ) = 0 . (3.48)

Cherchons des solutions en ondes progressives du type

T (L̃, Y ) = A0 u(s) , (3.49)

avec la variable d’échelle s donnée par

s ≡ λ

c
L̃−

(
A0 +

λ

c
A1

)
ᾱY =

λ

c
(L̃−ᾱv(c)Y ) . (3.50)

λ=
√

A0/A2 et c est un paramètre relié à la vitesse de l’onde v(c) :

v(c)=A1+c
√

A0A2 . (3.51)

L’équation pour l’onde propagatrice u (comprise entre 0 et 1) devient alors une équation
différentielle ordinaire :

u(1− u) + u′ +
1
c2

u′′ +
P∑

p=3

(−1)p

cp

λp Ap

A0
u(p) = 0 . (3.52)
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Les valeurs de c > −A1/
√

A0A2 pour lesquelles l’équation (3.52) a une solution définissent
les vitesses possibles v(c) de la solution (3.49). Il est important d’insister sur le fait que
dans notre approche, c est un paramètre libre et donc ajustable. Cela signifie qu’en général,
l’équation (3.44) possède un ensemble continu de solutions avec des vitesses différentes. Si nous
souhaitons par exemple décrire des solutions asymptotiques, nous savons qu’il faut choisir la
valeur de c telle que {

v(c) = ṽc ≡ χ̃′(γ̃c) si γi ≥ γc

v(c) = χ̃(γi)/γi si γi < γc
. (3.53)

En effet une fois la condition initiale fixée, la vitesse asymptotique est ṽc ou χ̃(γi)/γi en
fonction du type de solutions (front tiré ou front poussé), comme confirmé par des simulations
numériques. Cela dit nous pouvons aussi utiliser la liberté de changer la valeur de c pour
étudier des propriétés de solutions non asymptotiques.

L’équation (3.52) est un développement par rapport à 1/c (sans terme d’ordre 1). Le point
crucial de la méthode de résolution de cette équation est que 1/c est petit [56, 57], car les
vitesses que nous voulons décrire sont grandes. Ceci nous permet de chercher une solution
itérative :

h(s) = h0(s) +
1
c2

h2(s) +
∑

p≥3

1
cp

hp(s) ≡ 1
2
− u(s) . (3.54)

En insérant ceci dans (3.52), on obtient la hiérarchie d’équations suivante :

h′0 + h2
0 − 1/4 = 0

h′2 + 2h0h2 + h′′0 = 0
h′3 + 2h0h3 − λ3A3h

′′′
0 /A0 = 0

h′4 + 2h0h4 + h2
2 + h′′2 + λ4A4h

′′′′
0 /A0 = 0 (3.55)

où nous avons écrit les équations jusquà l’ordre O(1/c5). Il est facile de résoudre cette hiérar-
chie car seule l’équation d’ordre zéro est non linéaire et sa solution est connue. A partir de
celle-ci, on peut obtenir les solutions des équations linéaires suivantes par itération. En fixant
les conditions initiales de manière appropriée, h0(±∞) =±1

2 et hi6=0(±∞) = hi(0) = 0, nous
obtenons tout d’abord h0 = 1

2
tanh( s

2). En utilisant ensuite

d

ds
hn(s) + 2h0hn(s) =

1
cosh2(s/2)

d

ds

[
cosh2(s/2) hn(s)

]
, (3.56)

toutes les autres équations linéaires se réduisent à de simples intégrations. Pour donner un
exemple, la solution jusqu’au deuxième ordre est

u(s) =
1

1+es
− 1

c2

es

(1+es)2
ln

[
(1+es)2

4es

]
−λ3

c3

A3

A0

es

(1+es)2

[
3
(1−es)
(1+es)

+s

]
+O

(
1
c4

)
. (3.57)

Signalons que si h(s) est solution alors h(s+s0) est aussi solution ; ceci est une manifestation
de l’arbitraire de l’échelle Q0 (qui intervient dans L̃).

Les deux premiers termes du développement (les ordres 1/c0 et 1/c2) (3.57) sont univer-
sels : ils ne dépendent pas des coefficients Ap. Pour toute fonction χ̃, l’équation (3.44) admet
des solutions en ondes progressives dont les deux premiers termes (dans le développement
par rapport à 1/c) sont ceux de (3.57). Les solutions diffèrent seulement à travers la variable
d’échelle s qui dépend des coefficients A0, A1 et A2 (3.50). En ce sens, nous avons obtenu une
solution paramétrique générique.

Il existe un moyen de tester l’efficacité de notre solution paramétrique, c’est-à-dire de
tester si la troncation du développement (3.57) à l’ordre 1/c2 est une bonne approximation.
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Fig. 3.8 – La fonction u(s) solution de l’équation u(1−u)+u′+u′′/c2 =0 pour c=5/
√

6 avec
u(−∞)=1 et u(0)=1/2. La ligne en trait plein est la solution exacte (3.58). La ligne tiretée
est la solution (3.57) contenant seulement le premier ordre. La ligne pointillée (difficilement
distinguable de la ligne pleine) est la solution (3.57) contenant seulement les deux premiers
ordres.

Pour cela, considérons le cas P = 2 : l’équation u(1− u) + u′ + 1
c2

u′′ = 0 admet une solution
exacte pour la valeur c=5/

√
6'2.04. Cette solution est

u(s) =
[
1 + (

√
2− 1) exp

(
cs
√

6

)]−2

(3.58)

et elle nous permet de montrer que d’utiliser seulement les termes universels est une bonne
approximation. En effet sur la Figure 3.8 nous avons représenté la solution exacte (3.58) et
nous la comparons avec le développement (3.57) tronqué à l’ordre 1/c ou 1/c2. Il est très
difficile de distinguer la solution exacte de la solution paramétrique générique formée des
deux premiers termes de (3.57).

Réécrivons notre solution générique en termes des variables physiques :

T (k, Y ) =
A0

1+
[

k2

Q2
s(Y )

]λ/c
−A0

c2

[
k2

Q2
s(Y )

]λ/c

(
1+

[
k2

Q2
s(Y )

]λ/c
)2 log

(
1+

[
k2

Q2
s(Y )

]λ/c
)2

4
[

k2

Q2
s(Y )

]λ/c
, (3.59)

où Q2
s(Y ) = k2

0 exp [ᾱv(c)Y ] joue le rôle de l’échelle de saturation. Les paramètres sont les
coefficients Ap (rappelons que λ=

√
A0/A2) et la vitesse de l’onde v(c)=A1+c

√
A0A2 fixée

par c. La vitesse étant un paramètre, notre solution peut décrire une solution asymptotique
de type front tiré (avec v(c) = ṽc) ou de type front poussé (avec v(c) = χ̃(γi)/γi) ou bien des
solutions non asymptotiques, avec des vitesses plus faibles. La solution (3.59) est une onde
progressive par construction et nous n’attendons pas qu’elle décrive correctement la limite
k2/Q2

s(Y ) À 1 dans laquelle des violations de la loi T (k, Y ) = T (k/Qs) sont attendues (voir
la formule (3.32)). Par contre, nous attendons qu’elle décrive correctement le domaine de
validité de l’onde progressive, en particulier le régime de transition vers la saturation, pour
lequel k ∼ Qs(Y ).
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3.4.3 Cas d’une constante de couplage mobile

Un des effets importants dûs aux logarithmes sous dominants que nous n’avons pas encore
pris en compte est le fait que la constante de couplage αs devient variable à une boucle, c’est
à dire qu’elle varie avec l’impulsion transférée de la manière suivante :

Nc

π
αs(k2) =

[
b ln

(
k2

Λ2
QCD

)]−1

avec b =
11Nc − 2Nf

12Nc
. (3.60)

Prendre en compte un tel effet n’est pas simple, même de manière effective. Par exemple,
une première approche peut consister à utiliser la même équation BK (3.1) (dérivée dans
l’approximation des logarithmes dominants) en remplacant ᾱ par la formule (3.60). Mais
même cette manière de faire n’est pas sans ambiguités car il y a plusieurs choix possibles pour
l’échelle d’impulsion à utiliser : on peut choisir k = 1/|x−y| à l’extérieur de l’intégrale sur z
ou bien k = 1/|x−z| et k = 1/|z−y| à l’intérieur de l’intégrale.

Dans notre approche qui utilise l’équation effective (3.44), la manière naturelle d’introduire
une constante de couplage variable est de choisir Q0 = ΛQCD et de remplacer ᾱ par 1/(bL̃).
αs varie donc avec l’échelle d’impulsion k, qui est une variable de T (L̃, Y ) (rappelons que
L̃ = ln(k2/Λ2

QCD)). Notre équation effective avec constante de couplage variable s’écrit donc
[XIV]

bL̃ ∂Y T (L̃, Y ) = χ̃
(−∂L̃

)
T (L̃, Y )− T 2(L̃, Y ) . (3.61)

Tout comme dans le cas précédent, cette équation admet des solutions asymptotiques en ondes
progressives [42], mais cette fois de forme f(L̃−

√
(2v/b)Y ) où la vitesse v est toujours vc pour

le type front tiré et χ(γi)/γi pour le type front poussé. En considérant la même fonction χ̃
que dans la section précédente, l’équation (3.61) devient

A0 T (L̃, Y )− T (L̃, Y )2 −
(
bL̃∂Y + A1∂L̃

)
T (L̃, Y ) +

P∑

p=2

(−1)pAp ∂p

L̃
T (L̃, Y ) = 0 . (3.62)

Il est possible de trouver des solutions du type

T (L̃, Y ) = A0 u(s̃) (3.63)

en réduisant le problème à celui que nous venons de résoudre. Pour cela il faut choisir la
variable s̃ de manière appropriée : en imposant que les termes universels de l’équation pour u
soient les mêmes que précédemment, c’est-à-dire u(1−u)+u′. Postuler s̃= L̃ a(Y/L̃2) détermine
une solution pour la fonction a et donne la variable d’échelle [XIV]

s̃ ≡ L̃

(
−A0

A1
− 1

c̃

√
b− 2A1

Y

L̃2

)
(3.64)

où c̃ est un paramètre libre. En insérant cela dans (3.62), nous obtenons l’équation suivante
pour u :

u(1− u) + u′ +
P∑

p=2

(
A0

A1

)p Ap

A0
u(p) +O

(
1
c̃

)
= 0 (3.65)

où les termes dominants dans un développement par rapport à 1/c̃ sont bien les mêmes que
précédemment. Signalons que les termes d’ordre O(1/c̃) que nous allons négliger contiennent
des violations de la loi d’échelle (3.63) qui décroissent comme 1/L̃. En utilisant la méthode
introduite dans la section précédente, nous obtenons la solution suivante :

u(s̃) =
1

1+es̃
−

(
A0

A1

)2 A2

A0

es̃

(1+es̃)2
ln

[(
1+es̃

)2

4es̃

]
+O

(
A3

0

A3
1

)
(3.66)
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avec comme paramètre de développement A0/A1.

Pour obtenir la vitesse de l’onde, on écrit qu’à grand Y

s̃ ' −A0

A1

(
L̃ +

A1

A0c̃

√
−2A1Y

)
. (3.67)

En comparant avec notre définition de la vitesse de l’onde dans le cas des ondes progressives
de type f(L̃−

√
(2v/b)Y ), nous obtenons

v(c̃) = − bA3
1

A2
0 c̃2

. (3.68)

En ajustant c̃ pour obtenir une vitesse donnée, on peut vérifier que 1/c̃ est bien petit. En
définissant Q̃2

s(Y ) = Λ2
QCD exp(

√
(2v(c̃)/b)Y ) qui joue le rôle de l’échelle de saturation, la

variable d’échelle peut s’écrire en termes des variables physiques :

s̃ = −A0

A1
log

(
k2

Λ2
QCD

)
− 1

c̃

√√√√b log2

(
k2

Λ2
QCD

)
+

A2
0 c̃2

A2
1

log2

(
Q̃2

s(Y )
Λ2

QCD

)
. (3.69)

Finalement, en ne gardant que les deux premiers termes de (3.66), nous obtenons

T (k, Y ) =
A0

1+es̃
−A2

0A2

A2
1

es̃

(1+es̃)2
ln

[(
1+es̃

)2

4es̃

]
(3.70)

qui, avec (3.69) donne une solution paramétrique de type onde progressive de l’équation (3.62).
Signalons que la loi T (k, Y ) = T (k/Q̃s(Y )) n’est obtenue que pour des grandes rapidités.

Les formules (3.69) et (3.70) fournissent une paramétrisation pour l’amplitude de dipôle
en espace d’impulsion. Elle est basée sur les prédictions de la QCD à haute énergie dans
l’approximation des logarithmes dominants mais prend aussi en compte des effets dûs à des
logarithmes sous dominants. Cette paramétrisation, qui décrit la transition vers le régime
de saturation pour des rapidités pas nécessairement asymptotiques, est bien adaptée pour
être utilisée dans des études phénoménologiques. Il serait intéressant d’étudier si la méthode
utilisée ici peut être étendue pour obtenir une paramétrisation en espace de coordonnées. Le
terme linéaire de l’équation (3.18) est le même mais le terme non linéaire risque d’introduire
des complications. De même, il serait aussi très intéressant de traiter le cas de l’équation
(3.37) pour obtenir des solutions plus générales, applicables à des processus diffractifs avec
transfert d’impulsion non nul.

3.A Calcul des valeurs propres du noyau BFKL

Dans cette appendice, nous donnons une dérivation des valeurs propres (3.11) du noyau
de l’équation BFKL (3.2). Nous souhaitons ainsi calculer

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
[En,ν(x, z) + En,ν(z,y)−En,ν(x,y)] . (3.71)

Rappelons que les fonctions propres En,ν(x,y) (données par la formule (3.8)) sont indexées
par un entier relatif n et par une variable réelle ν, regroupés dans h = 1/2 + iν + n/2 et
h̃ = 1/2 + iν − n/2. Pour pouvoir séparer l’intégrale (3.71) en morceaux, nous régularisons
les divergences ultraviolettes à l’aide de la coupure ρ : |x− z|, |z−y| > ρ.
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Commençons par évaluer l’expression suivante (nous utilisons la représentation complexe
des vecteurs transverses (3.7)) :

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
En,ν(x, z) =

∫
dzdz̄

4π

|x− y|2
|x− z|2|z − y|2

(
x− z

x z

)h(
x̄− z̄

x̄ z̄

)h̃

(3.72)

où la restriction |z−y| > ρ est sous entendue. Effectuons successivement les changements
de variables suivants : z → u = z/x et z̄ → ū = z̄/x̄ (impliquant |u−y/x| > ρ/|x|) puis
u→v = u/(u− 1) et ū→ v̄ = ū/(ū− 1) (impliquant |(1− x/y)v−1| > ρ̃ ≡ ρ|x|/(|x− y||y|)),
puis finalement v → w = (1 − x/y)v et v̄ → w̄ = (1 − x̄/ȳ)v̄ (impliquant |w−1| > ρ̃). Les
intégrales sur z et z̄ se simplifient alors de la même manière ; traitons le cas de l’intégrale sur
z :

∫
dz(x− z)h−1x−hz−h x− y

z − y
= x−h(1− x/y)

∫
du

1− u

(
1− u

u

)h(
1− x

y
u

)−1

= x−h(1− x/y)
∫

dv(−v)−h

(
v

(
1− x

y

)
− 1

)−1

=
(

x− y

x y

)h ∫
dw

w − 1
w−h . (3.73)

Nous avons ainsi
∫

d2z
2π

(x− y)2

(x− z)2(z− y)2
En,ν(x, z) = En,ν(x,y)

∫
dzdz̄

4π

z−hz̄−h̃

|1− z|2 (3.74)

où la restriction |z−1| > ρ̃ est sous entendue. Introduisons maintenant z = reiθ et z̄ = re−iθ,
ce qui permet d’obtenir :

∫
dzdz̄

4π

z−hz̄−h̃

|1− z|2 =
∫

rdrdθ

2π

r−1−2iνe−inθ

1− 2r cos θ + r2

=
∫ 1−ρ̃

0
rdr

r−1−2iν+|n|

1− r2
+

∫ ∞

1+ρ̃
rdr

r−1−2iν−|n|

r2 − 1

=
∫ 1−ρ̃

0

rdr

1− r2

(
r−1−2iν+|n| + r−1+2iν+|n|

)

=
∞∑

k=0

(1− ρ̃)2k−2iν+|n|+1

2k − 2iν + |n|+ 1
+

(1− ρ̃)2k+2iν+|n|+1

2k + 2iν + |n|+ 1
. (3.75)

La contribution du terme contenant En,ν(z,y) est identique (sauf pour la coupure ρ̃ dans
laquelle il faut échanger x et y) et la contribution du terme contenant En,ν(x,y) est

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
= ln

(
(x− y)2

ρ2

)
= 2

∞∑

k=0

(1− ρ/|x− y|)k+1

k + 1
. (3.76)

En regroupant les trois termes, la coupure ρ peut être prise nulle et nous obtenons
∫

d2z
2π

(x− y)2

(x− z)2(z− y)2
[En,ν(x, z) + En,ν(z,y)− En,ν(x,y)] = χ(n, ν)En,ν(x,y) (3.77)

avec

χ(n, ν) =
∞∑

k=0

1
k + 1/2− iν + |n|/2

+
1

k + 1/2 + iν + |n|/2
− 2

k + 1

= 2ψ(1)− ψ

(
1 + |n|

2
+ iν

)
− ψ

(
1 + |n|

2
− iν

)
. (3.78)
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Les expériences de diffusion profondément inélastique réalisent pour une grande part des
collisions entre un photon virtuel et un proton, très similaires aux collisions étudiées dans le
Chapitre 2. On y mesure des observables qui sont appropriées à l’étude phénoménologique de
la limite de haute énergie de QCD. Dans ce chapitre, nous utilisons les résultats du Chapitre
3 pour établir des prédictions pour ces observables, et nous comparons ces prédictions avec
les données expérimentales disponibles.

La première partie présente la diffusion profondément inélastique en introduisant les va-
riables cinématiques du problème et les sections efficaces inclusive et diffractive qui sont
mesurées dans les expériences. Dans la deuxième partie, le lien entre le photon virtuel et un
onium est explicité et les expressions des sections efficaces inclusive et diffractive sont données.
La troisième partie reprend les résultats de la publication [XXI] qui discutent de lois d’échelle
observées dans les données et de leur lien avec la QCD à haute énergie. Enfin la dernière
partie reprend les résultats de l’article [X] et de l’article de conférence [XIII] dans lesquels
il est proposé de mesurer une observable particulière, potentiellement très intéressante pour
tester la physique de la saturation. Une revue des résultats de ce chapitre peut aussi être
trouvée dans l’article de conférence [XVI].
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lµ

l′µ
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Qµ
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W 2

Fig. 4.1 – La diffusion profondément inélastique : un électron d’impulsion lµ diffuse sur le
proton cible d’impulsion Qµ. L’impulsion de l’électron sortant est l′µ et l’interaction se fait
par l’intermédiaire d’un photon virtuel d’impulsion lµ − l′µ. Pour tester les prédictions de la
QCD à haute énergie, nous sommes intéressés par la collision photon-proton dans la limite où
l’énergie de la collision W est très grande devant Q, l’échelle perturbative du problème.

4.1 La diffusion profondément inélastique

La diffusion profondément inélastique est représentée figure 4.1 : lors de la collision d’un
électron sur un proton, l’interaction hadronique se fait par l’intermédiaire d’un photon virtuel.
La quadri-impulsion de l’électron entrant sera notée lµ et celle de l’électron sortant sera notée
l′µ. On dit que le photon est virtuel car le carré de sa quadri-impulsion est non nul et on
introduit la quantité

Q2 = −(lµ − l′µ)(lµ − l′µ) > 0 . (4.1)

La variable Q2 est appelée virtualité du photon, et représente l’impulsion transférée par l’élec-
tron lors de la collision. Nous considérons des collisions caractérisées par Q2 À Λ2

QCD, qui
peuvent être décrites par le régime perturbatif de QCD. Quand Q2 est suffisamment grand
(typiquement Q2 > 10000 GeV2), la particule intermédiaire peut aussi être un boson Z0 ou
W±. Nous ne considérons pas ces situations qui permettent plutôt d’étudier les interactions
faibles.

Nous considérons donc des collisions entre un photon et un proton. Le photon virtuel va
jouer le rôle du projectile |P〉 = |γ∗〉 et le proton celui de la cible |C〉. Nous notons donc la
quadri-impulsion du proton Qµ, en accord avec les notations du Chapitre 1. Les énergies des
collisions électron-proton et photon-proton sont respectivement

s = (lµ + Qµ)(lµ + Qµ) et W 2 = (lµ − l′µ + Qµ)(lµ − l′µ + Qµ) . (4.2)

Au lieu de travailler avec les variables s et W 2, il est d’usage d’introduire les invariants
cinématiques suivants :

x =
Q2

2(lµ − l′µ)Qµ
=

Q2

W 2 + Q2 −M2
C
≤ 1 et y =

Q2

xs
≤ 1 . (4.3)

Nous sommes intéressés par la limite de haute énergie dans la collision photon-proton, donc à
la limite W 2/Q2 À 1. W 2 représente la masse invariante des particules émises par la collision
photon-proton (voir la Figure 4.1). La situation où W = MC (ou x = 1) correspond à une
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collision électron-proton élastique dans laquelle le photon virtuel est simplement absorbé par le
proton qui ne se dissocie pas. Plus W 2 est grand (ou plus x est petit), plus la collision photon-
proton est inélastique. La limite qui nous intèresse ici est x → 0. Signalons que l’intervalle de
rapidité sur lequel les particules finales sont émises est Y = ln(1/x).

4.1.1 La section efficace inclusive

Il est possible de mesurer une section efficace complètement inclusive par rapport aux
produits de la collision photon-proton, en ne mesurant que l’électron sortant. En intégrant
sur l’angle azimuthal de l’impulsion de l’électron, on obtient une section efficace doublement
différentielle qu’il est d’usage d’exprimer en fonction des variables x et Q2. En calculant la
transition e− → e−γ∗ au premier ordre (le seul pertinent) en théorie des perturbations par
rapport à αem, cette section efficace peut s’exprimer en fonction de la section efficace totale
de la collision photon-proton. Plus précisément, on a

d(2)σep→eX

dxdQ2
=

αem

πxQ2

[(
1− y +

y2

2

)
σT

tot(x,Q2) + (1− y)σL
tot(x,Q2)

]
(4.4)

où σλ
tot est la section efficace totale de la collision photon-proton pour un photon virtuel

de polarisation transverse (λ = T ) ou longitudinale (λ = L). La polarisation transverse est
une moyenne des deux polarisations physiques, ce sont les seules possibles pour un photon
réel (Q2 = 0). Comme le photon est virtuel (Q2 6= 0), il existe une troisième polarisation :
la polarisation longitudinale ; ceci sera rediscuté plus loin. Les expériences qui mesurent la
section efficace (4.4) présentent en général les résultats pour la section efficace

σγ∗p→X
tot (x,Q2) =

∑

λ=T,L

σλ
tot(x,Q2) . (4.5)

4.1.2 La section efficace diffractive

Comme expliqué dans le Chapitre 2, un processus diffractif est caractérisé par des évé-
nements au cours desquels le proton interagit de manière élastique, laissant un intervalle de
rapidité vide de particule dans l’état final comme représenté figure 4.2. Il est possible de me-
surer la section efficace diffractive [58], en ne mesurant que l’électron et le proton sortants,
et en restant inclusif par rapport aux autres particules émises par la collision photon-proton.
En intégrant sur les angles azimuthaux des impulsions de l’électron et du proton, on obtient
une section efficace quadruplement différentielle ; deux variables supplémentaires sont donc
nécessaires pour l’exprimer.

En appelant Q′µ la quadri-impulsion du proton sortant, nous pouvons obtenir la masse
invariante MX des particules non mesurées et la quadri-impulsion t transférée par le proton
lors de la collision :

M2
X = (lµ − l′µ + Qµ −Q′µ)(lµ − l′µ + Qµ −Q′

µ) , t = (Qµ −Q′µ)(Qµ −Q′
µ) < 0 . (4.6)

x, Q2, MX et t forment les quatre variables indépendantes nécessaires pour décrire la sec-
tion efficace diffractive. Mais au lieu de travailler avec les variables x et MX , il est d’usage
d’introduire les invariants cinématiques suivants :

β =
Q2

2(lµ − l′µ)(Qµ −Q′
µ)

=
Q2

Q2 + M2
X − t

xP =
x

β
. (4.7)

Les particules de l’état final qui forment le système de masse invariante MX sont émises sur
un intervalle de rapidité ln(1/β) et l’intervalle de rapidité vide de particule est ∆η = ln(1/xP).



74 Phénoménologie appliquée à la diffusion profondément inélastique

lµ

l′µ

e−

e− γ∗

C

Qµ

Q′µ

C

M2

X

gap

Fig. 4.2 – Les événements diffractifs en diffusion profondément inélastique : le proton cible
interagit élastiquement et son impulsion finale est dénotée Q′µ. Dans l’état final, un intervalle
de rapidité vide de particules sépare le proton du système de particule de masse invariante
MX .

La section efficace diffractive s’écrit

d(4)σep→eXp

dβdxPdQ2dt
=

αem

πxPQ2

[(
1− y +

y2

2

)
dσT

diff

dβdt
(β, xP, Q

2, t)

+(1− y)
dσL

diff

dβdt
(β, xP, Q

2, t)

]
(4.8)

en fonction des sections efficaces diffractives dσλ
diff/dβdt des collisions photon-proton pour

un photon de polarisation transverse ou longitudinale. Les expériences qui mesurent la section
efficace (4.8) présentent en général les résultats pour la section efficace

dσγ∗p→Xp
diff

dβdt
(β, xP, Q

2, t) =
∑

λ=T,L

dσλ
diff

dβdt
(β, xP, Q

2, t) . (4.9)

Les résultats expérimentaux montrent que cette section efficace décroît exponentiellement
avec |t| (pour une revue des descriptions théoriques, voir [59, 60]). On a

dσγ∗p→Xp
diff

dβdt
=

dσγ∗p→Xp
diff

dβdt

∣∣∣∣∣
t=0

eBt (4.10)

avec un coefficient B ' 6 GeV−2 indépendant (aux incertitudes de mesure près) de β, xP, et
Q2 dans le domaine cinématique couvert expérimentalement. L’observable pour laquelle les
données sont les plus nombreuses est la section efficace dσγ∗p→Xp

diff /dβ intégrée sur t, qui est
donc proportionnelle à dσγ∗p→Xp

diff /dβdt pour t = 0. Dans la suite nous nous intéresserons donc
à la section efficace

dσγ∗p→Xp
diff

dβ
(β, xP, Q

2) =
1
B

∑

λ=T,L

dσλ
diff

dβdt
(β, xP, Q

2, t = 0) . (4.11)
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P − k
ᾱ, s′

k

α, s

ψ
ss′,λ
αᾱ

P, λ

Fig. 4.3 – La transition γ → qq̄ : le photon nu d’impulsion P et de polarisation λ fluctue
en une paire quark-antiquark. L’impulsion du quark est notée k, sa couleur α et son spin s.
L’impulsion de l’antiquark est P − k, sa couleur ᾱ et son spin s′. La fonction d’onde associée
est donnée par l’équation (4.18).

4.2 Le photon virtuel : un exemple d’onium

Dans tout ce chapitre, le projectile considéré sera donc un photon virtuel que nous noterons
|P〉 = |γ∗〉λ ou λ représente la polarisation du photon. A priori, la décomposition en états
de Fock du photon peut contenir des états liés hadroniques, mais comme nous travaillons à
Q2 À Λ2

QCD, ces composantes non perturbatives sont supprimées. La seule composante du
photon virtuel qui peut participer à une interaction hadronique est donc sa composante quark-
antiquark (avec en plus des gluons mous en fonction du choix de repère). En ce sens, un photon
virtuel est identifiable à un onium. Nous allons calculer la fonction d’onde correspondante au
premier ordre en théorie des perturbations par rapport à αem.

4.2.1 La fonction d’onde du photon : la transition γ → qq̄

Nous choisissons de garder la composante transverse du quadrivecteur du photon non nulle
et donc

Pµ =
(

P+,P,
P2−Q2

2P+

)
. (4.12)

La décomposition en états de Fock du photon virtuel s’écrit (rappelons que P désigne le
tri-vecteur (P+,P)) :

|γ∗〉λ =
∫

d3k
∑

fαᾱss′
ψss′,λ

αᾱ (k; P )|(k, α, s); (P−k, ᾱ, s′)〉 (4.13)

où, en accord avec les notations du Chapitre 1, l’impulsion du quark (antiquark) est notée k,
(P − k) sa couleur α (ᾱ) et son spin s (s′). f désigne le degré de liberté de saveur et n’est pas
explicitement noté en indice de la fonction d’onde ; l’indice λ relatif au photon virtuel entrant
est par contre indiqué sur la fonction d’onde. Calculons cette fonction ψss′,λ

αᾱ qui décrit la
fluctuation d’un photon sur une paire quark-antiquark comme représenté sur la Figure 4.3.
En quantifiant le champ de photon de la même façon (et dans la même jauge) que le champ
de gluon du Chapitre 1, nous utilisons les mêmes règles de Feynman.

– Nous notons l’impulsion du photon entrant P, et son indice de polarisation λ; il lui est
donc associé le vecteur de polarisation εµ

(λ)(P )/
√

(2π)32P+.
– Nous notons l’impulsion du quark sortant k, son indice de couleur α, et son indice de

spin s; il lui est ainsi associé le spineur ūs(k)/
√

(2π)32k+.
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– La tri-impulsion étant conservée, l’impulsion de l’antiquark sortant est P − k. Nous
notons son indice de couleur ᾱ et son indice de spin s′, et nous lui associons donc le
spineur vs′(P − k)/

√
(2π)32(P−k)+.

– Au vertex est associé un facteur (2π)3gemef δαβγµ, avec ef la charge du quark de saveur
dénotée par l’indice f.

– Pour finir, le dénominateur d’énergie est ((P−k)− + k− − P−)−1.

La fonction d’onde correspondante est donc

ψss′,λ
αᾱ (k;P ) =

ūs(k)√
(2π)32k+

γµε(λ)µ(P )√
(2π)32P+

vs′(P − k)√
(2π)32(P−k)+

(2π)3gemδαβ

(P−k)− + k− − P− . (4.14)

Les quadri-vecteurs εµ
(1) et εµ

(2) des polarisations transverses du photon sont paramétrés
comme l’étaient ceux des gluons (voir formule (1.14)) :

εµ
(λ)(P ) =

(
0, ελ,

P · ελ

P+

)
λ = 1, 2 . (4.15)

Comme le photon n’est pas sur couche de masse (PµPµ = −Q2), la relation (2.15) pour le
tenseur de polarisation n’est pas vérifiée, ce qui montre la nécessité d’un troisième état de
polarisation. En l’introduisant, le tenseur de polarisation est de nouveau correct :

∑

λ=1,2

εµ∗
(λ)(P )εν

(λ)(P )− εµ∗
(L)(P )εν

(L)(P ) = −gµν +
Pµ

P+
δν− +

P ν

P+
δµ− (4.16)

avec εµ
(L) le quadri-vecteur correspondant à la polarisation supplémentaire. On obtient alors

εµ
(L)(P ) =

(
0,0,

Q

P+

)
(4.17)

qui est bien un vecteur longitudinal.
Pour poursuivre le calcul de la fonction d’onde (4.14), il faut maintenant choisir une

représentation pour les matrices de Dirac (la représentation chirale est bien adaptée ici) et
résoudre l’équation de Dirac dans cette représentation pour obtenir les spineurs. Tous calculs
faits, on obtient

ψss′,λ
αᾱ (k; P ) =

gemefδαβ√
2(2π)3P+

(
(P+k−k+P)2+P+2m2

f + k+(P+−k+)Q2
)−1 ×





2
(
P+k−k+P

) · ε1

(
k+δs−δs′+−(P+−k+)δs+δs′−

)
+
√

2mfP+2δs+δs′+ si λ = 1

2k+(P+−k+)Q(δs−δs′++δs+δs′−) si λ = L .

2
(
P+k−k+P

) · ε2

(
k+δs+δs′−−(P+−k+)δs−δs′+

)
+
√

2mfP+2δs−δs′− si λ = 2

(4.18)

Pour obtenir la fonction d’onde en espace mixte (voir au Chapitre 1), nous effectuons la
transformée de Fourier des impulsions transverses. De manière similaire à (2.3), nous extrayons
un facteur δαᾱ/

√
Nc de la fonction d’onde :

δαᾱ√
Nc

φss′,λ(k+, r;P ) =
∫

d2keik.rψss′,λ
αᾱ (k; P ) . (4.19)
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On obtient alors

φss′,λ(k+, r; P ) = gemef

√
Nc

4πP+
eizP.r ×





2iεfK1(εf |r|)r · ε1

|r| (zδs−δs′+−(1−z)δs+δs′−) +
√

2mfK0(εf |r|)δs+δs′+ si λ = 1

2z(1−z)QK0(εf |r|)(δs−δs′++δs+δs′−) si λ = L

2iεfK1(εf |r|)r · ε2

|r| (zδs+δs′−−(1−z)δs−δs′+) +
√

2mfK0(εf |r|)δs−δs′− si λ = 2

.(4.20)

où nous avons introduit les variables z et εf données par

z =
k+

P+
, εf =

√
m2

f + z(1− z)Q2 . (4.21)

4.2.2 Collision du photon virtuel sur le proton cible

Dans les calculs de sections efficaces du Chapitre 2, nous avions gardé les indices de spins
implicites, ce qui explique qu’ils n’apparaissent pas sur les fonctions φ dans nos formules
finales. Pour rétablir ces indices, il suffit d’effectuer la substitution suivante :

φ∗(k+, r′)φ(k+, r) →
∑

fss′
φss′,λ(k+, r′; P )φss′,λ(k+, r; P ) . (4.22)

Nous définissons donc la fonction

P+

(2π)2
∑

ss′
φ(k+, r′; P )ss′,λ∗φ(k+, r;P )ss′,λ = Ψf

λ(z, r, r′) . (4.23)

et pour faire apparaître les polarisations longitudinales et transverses, nous donnons les for-
mules finales pour Ψf

T = (Ψf
1 + Ψf

2)/2 et Ψf
L :

Ψf
T (z, r, r′) = eizP.(r−r′) αemNc

2π2
e2
f

(
(z2 + (1− z)2)ε2f

r · r′
|r||r′|K1(εf |r|)K1(εf |r′|)

+m2
fK0(εf |r|)K0(εf |r′|)

)
(4.24)

Ψf
L(z, r, r′) = eizP.(r−r′) αemNc

2π2
e2
f4Q2z2(1− z)2K0(εf |r|)K0(εf |r′|) . (4.25)

Section efficace totale

La fonction qui intervient dans la section efficace totale (voir l’équation (2.23)) est dénotée
Ψλ et est définie par

Ψλ(z, |r|) ≡
∑

f

Ψf
λ(z, r, r) . (4.26)

La section efficace totale dans la collision du photon virtuel de polarisation λ avec le proton
cible s’écrit alors

σλ
tot(x, Q2) = 2

∫
dzd2r Ψλ(z, |r|)

∫
d2b Tqq̄(r,b; Y ) . (4.27)

En sommant sur les polarisations du photon, on obtient la section efficace mesurée (4.5).
La dépendance en Q2 vient des fonctions ΨT et ΨL et la dépendance en x (ou Y ) vient de
l’amplitude de dipôle Tqq̄; cette factorisation est souvent appelée factorisation des dipôles
[61, 62].
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Section efficace diffractive pour β . 1

Dans le cas de la section efficace diffractive calculée au Chapitre 2 (voir l’équation (2.43)),
c’est la fonction Ψf

λ qui intervient :

dσλ
diff

d2qd2q′dz
=

∫
d2x
2π

d2x′

2π

d2y
2π

d2y′

2π
eiq.(x′−x)ei(q′−P).(y′−y)

∑

f

Ψf
λ(z,x−y,x′−y′) 〈

Tx′y′
〉
∆η
〈Txy〉∆η (4.28)

avec maintenant z = q+/P+. Signalons que nous avons ajouté le facteur e−iP.(y′−y) qui n’était
pas présent dans (2.43), car nous avions choisi P = 0. Cette section efficace décrit un état final
diffractif X qui contient un quark d’impulsion q (avec q+ =zP+) et un antiquark d’impulsion
q′ (avec q′+ = (1−z)P+). En notant κ = (1−z)q−zq′, on obtient la masse invariante du
système quark-antiquark : M2

X =(κ2+m2
f )/(z(1−z)) qui est différente pour chaque saveur f.

En introduisant aussi ∆=q+q′−P, le transfert d’impulsion t est simplement t=−∆2.
Il est possible de faire le lien avec la section efficace mesurée (4.11), en effectuant les

changements de variable suivants : r=x−y, b=zx+(1−z)y, r′=x′−y′, et b′=zx′+(1−z)y′.
Nous obtenons alors une section efficace différentielle par rapport à κ, ∆ et z. En remplaçant
la variable ∆ par t, et pour chaque saveur f la variable κ par M2

X puis par β, nous obtenons
finalement

dσλ
diff

dβdt
(β, xP, Q

2, t = 0) =
Q2

4β2

∑

f

∫
dzz(1− z)

∫
d2r
2π

d2r′

2π
ei(κf+zP).(r′−r)Ψf

λ(z, r, r′)

∫
d2b d2b′ Tqq̄(r′,b′;∆η) Tqq̄(r,b;∆η)(4.29)

pour la section efficace diffractive dans la collision du photon virtuel de polarisation λ avec
le proton cible. Elle dépend de κf = |κf | qui vaut κf =

√
Q2z(1−z)(1−β)/β −m2

f . En
sommant sur les polarisations du photon, on obtient la section efficace mesurée (4.11). La
dépendance en Q2 vient des fonctions Ψf

T et Ψf
L, la dépendance en xP (ou ∆η) vient des

amplitudes de dipôle Tqq̄, et la dépendance en β vient des transformées de Fourier sur les
tailles des dipôles.

Section efficace diffractive pour β ¿ 1

Comme expliqué au Chapitre 2, pour calculer la section diffractive avec une valeur de
β fixée, il faut utiliser le repère dans lequel la rapidité du photon est ln(1/β). La formule
précédente a été établie dans le repère où le photon est nu et est donc valable seulement pour
β . 1. Nous n’avons pas calculé la section efficace diffractive dans le repère ou le photon est
habillé d’un gluon mou, et pour laquelle l’état diffractif de masse MX contient un gluon en
plus du quark et de l’antiquark. Rappelons que cette contribution n’est pas supprimée si le
gluon est mou car le facteur αs est compensé par un facteur ln(1/β).

Il est possible d’obtenir la composante quark-antiquark-gluon de la section efficace intégrée
sur t à partir de la section efficace (2.67) pour la production diffractive de gluon d’impulsion
q. En effet, comme le gluon émis est tel que q+ ¿ P+, la masse diffractive MX est simplement
reliée à q+ : M2

X ' P+q2/q+. On a alors

β(1− β)
dσ

γ∗p→(X=qq̄g)p
diff

dβ
=

∑

λ=T,L

q+
dσλ

diff

dq+
(4.30)
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où dσλ
diff/dq+ est la section efficace pour la production diffractive de gluon, intégrée par

rapport à t, dans la collision du photon virtuel de polarisation λ avec le proton cible. Cette
section efficace peut être obtenue (voir aussi [63, 64]) en intégrant la formule (2.67) sur q2 (ce
qui revient à intégrér sur t). On obtient

q+
dσλ

diff

dq+
=

αsN
2
c

CF

∫
dz

d2x
2π

d2y
2π

Ψλ(z, |x− y|)
∫

d2z
(x− y)2

(x− z)2(z− y)2(
〈Txz〉∆η + 〈Tzy〉∆η − 〈Txy〉∆η − 〈TxzTzy〉∆η

)2
. (4.31)

Cette expression a été obtenue de plusieurs manières [65, 66, 67, 68] dans différents contextes.
Pour obtenir la section efficace pour des valeurs de β ¿ 1, la contribution donnée par

(4.30) et (4.31) doit être ajoutée à la contribution (4.29) calculée précédemment. Bien sûr,
ceci reste incomplet pour des valeurs de β trop petites : en diminuant β, des états finals avec
plus de gluons mous finiront par contribuer. Une formulation contenant ces contributions
[XIX] existe dans la limite de grand Nc. Les données disponibles montrent cependant que
les contributions quark-antiquark et quark-antiquark-gluon sont suffisantes pour décrire les
valeurs de β accessibles expérimentalement (voir par exemple [69]).

4.3 Des lois d’échelle prédites par la QCD à haute énergie

Nous avons exprimé les sections efficaces totales (4.27) et diffractives (4.29) en fonction
de Tqq̄, l’amplitude de diffusion d’un dipôle sur le proton. L’évolution de cette amplitude avec
la rapidité est donnée, dans l’approximation des logarithmes dominants, par les équations
B-JIMWLK présentées au Chapitre 2. Ces équations permettent donc en principe de prédire
l’évolution des sections efficaces (4.27) et (4.29) vers les petites valeurs de x. Dans cette
section nous allons nous concentrer sur les prédictions de l’équation BK, étudiée au chapitre
précédent. Même si l’équation BK est seulement une approximation, son étude nous a appris
beaucoup sur l’évolution du régime dilué Tqq̄¿1 vers le régime de saturation Tqq̄ =1.

Considérons le cas des solutions homogènes, dont la prédiction la plus importante est
probablement la loi d’échelle suivante : aux grandes valeurs de Y, au lieu d’être fonction d’a
priori deux variables r et Y, Tqq̄(r,b'0;Y ) est fonction de la seule variable r2Q2

s(Y ), et ceci
jusqu’à des tailles de dipôles beaucoup plus petites que l’inverse de l’échelle de saturation
Qs(x). On peut ainsi écrire

Tqq̄(r,b; Y ) = S(b) T (r2Q2
s(Y )) (4.32)

où nous avons introduit un profil en paramètre d’impact S(b). Typiquement, S(b)=e−b
2/R2

p

avec Rp le rayon transverse du proton. En effectuant l’intégration sur le paramètre d’impact
b, cela contribue seulement à la normalisation par la constante

∫
d2b S(b) = πR2

p ≡ Sp (4.33)

qui caractérise l’aire transverse du proton.
Si r2Q2

s > 1 alors T = 1, et la loi (4.32) devient évidente. Cependant, ce n’est pas une
prédiction triviale pour r2Q2

s ¿ 1, un régime où l’amplitude T est toujours beaucoup plus
petite que 1 [70, 71]. Bien sûr la région de validité est limitée : pour des tailles de dipôles
vraiment très petites, la loi d’échelle devient fausse, comme nous l’avons indiqué au Chapitre 3.
Dans cette section, nous considérons que l’amplitude de dipôle vérifie la loi (4.32) de manière
exacte, et donnons les conséquences pour les sections efficaces totales (4.5) et diffractives
(4.11) en diffusion profondément inélastique.
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Fig. 4.4 – La section efficace totale σγ∗p→X
tot en fonction de τ = Q2/Q2

s(x) pour x<0.01. Les
données sont les plus récentes fournies par les collaborations H1, ZEUS, E665 et NMC. Seules
les erreurs statistiques sont montrées.

4.3.1 Pour la section efficace totale

Etudions d’abord les conséquences pour la section efficace totale. En négligeant les masses
des quarks devant Q2, on peut réécrire la section efficace totale de la manière suivante :

σγ∗p→X
tot (x, Q2) = 2Sp

αemNc

π

∑

f

e2
f

∫ ∞

0
r̄dr̄

∫ 1

0
dz

{
fT (z)K2

1 (
√

z(1−z)r̄)

+fL(z)K2
0 (

√
z(1−z)r̄)

}
T

(
Q2

s(x)
Q2

r̄2

)
(4.34)

où nous avons introduit les fonctions fT (z) = (z2 + (1−z)2)z(1−z) et fL(z) = 4z2(1−z)2 et
redéfini la variable de taille |r| par la variable sans dimension r̄ = Q|r|. Nous obtenons alors
la loi d’échelle suivante pour la section efficace totale à petit x :

σγ∗p→X
tot (x,Q2) = σγ∗p→X

tot (τ) , τ = Q2/Q2
s(x) . (4.35)

Paramétrons l’échelle de saturation Qs(x) par

Qs(x) = Q0

(
x

x0

)−λ/2

, Q0 ≡ 1 GeV , (4.36)

ce qui correspond au comportement dominant (3.29). L’incertitude sur l’échelle Q0 est conte-
nue dans le paramètre x0 dans (4.36), tandis que λ joue le rôle de ᾱvc.

La loi d’échelle (4.35) est vérifiée par les données expérimentales [9] avec les paramètres
λ=0.288 et x0 =3.04 10−4. Ces valeurs avaient été précédemment obtenues par Golec-Biernat
et Wüsthoff qui avaient introduit un modèle [72] pour T satisfaisant la loi d’échelle (4.32).
Ils ont ajusté leurs paramètres avec succès pour décrire les données de σγ∗p→X

tot . Pour illustrer
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Fig. 4.5 – L’amplitude de dipôle en espace d’impulsion Ũ(k, Y ) en fonction de k pour diffé-
rentes valeurs de la rapidité : Y = 4, 5, . . . , 12. Les courbes en trait plein sont obtenues à partir
de la paramétrisation MRST pour σγ∗p→X

tot et les courbes en pointillés sont la paramétrisation
générique (3.70) pour les solutions en ondes progressives de QCD. Les paramètres sont ajustés
aux valeurs A0 =17.1, A1 =−15.8, A2 =0, et v=1.76.

la loi d’échelle, la figure 4.4 est une version actualisée [XXI] de la figure originale de [9]
qui montre la section efficace σγ∗p→X

tot en fonction de τ avec les dernières données [73] des
différentes expériences qui mesurent des valeurs de x < 0.01 : les collaborations H1, ZEUS,
E665 and NMC. Excepté pour un point de E665, les données apparaissent sur une ligne. Cela
est même vrai pour les petites valeurs de Q2, pour lesquelles on aurait pu s’attendre à des
violations de la loi (4.35) dues à la masse du quark charmé [74]. On voit sur la figure que ces
violations ne sont pas importantes.

La valeur du paramètre λ est trop petite pour être compatible avec la prédiction vc = 4.88
(voir Chapitre 3). Par contre, elle est compatible avec la valeur obtenue en prenant en compte
des effets dûs à des logarithmes sous dominants, cela a été montré par Triantafyllopoulos [75].
Le fait que les données expérimentales pour σγ∗p→X

tot vérifient la loi d’échelle (4.35) représente
un succès en faveur de la QCD à haute énergie et du régime de saturation de QCD.

Lien avec les ondes progressives de QCD

Il existe cependant de nombreuses descriptions des données expérimentales pour σγ∗p→X
tot

qui ne sont pas caractérisées explicitement par la loi d’échelle (4.35). En fait, comme ces
descriptions reproduisent correctement les données montrées Figure 4.4, elles possèdent cette
loi d’échelle de manière effective dans le domaine cinématique du collisionneur HERA, et
pour x < 0.01. Pour illustrer cela, nous allons considérer une de ces descriptions classiques :
la paramétrisation de Martin, Roberts, Stirling et Thorne, appelée paramétrisation MRST.
Elle est fondée sur les prédictions des équation DGLAP, qui sont différentes de celles que nous
avons considérées.

Il est possible d’extraire, à partir de la paramétrisation MRST, une amplitude de dipôle
effective en inversant la formule (4.27), comme expliqué dans l’article [XIV]. En fait il est plus
simple d’extraire une amplitude effective en espace des impulsions, pour

∫
d2r
2πr2

eik.r
∫

d2b Tqq̄(r,b; Y ) = Sp Ũ(|k|, Y ) (4.37)
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avec la fonction Ũ définie au Chapitre 3 (voir (3.33)). Sur la figure 4.5 nous comparons la
fonction SpŨ(k, Y ) extraite de la paramétrisation MRST (en traits pleins) avec la paramé-
trisation générique (3.70) pour les solutions en ondes progressives de QCD (en traits tiretés),
obtenue au Chapitre 3 à partir de l’équation (3.61).

Les différentes lignes correspondent à différentes valeurs de la rapidité : Y = 4, 5, . . . , 12.
Le domaine cinématique de la paramétrisation MRST ne permet pas d’extraire l’amplitude
Ũ pour des valeurs de k < 1 GeV. Rappelons que la paramétrisation (3.70) n’est pas valable
aux petites valeurs de Y et aux grandes valeurs de k pour lesquelles des violations de la
loi T (k, Y ) = T (k/Qs) sont attendues. Dans le domaine de recouvrement entre les deux
paramétrisations, T (k, Y ) = T (k/Qs) implique la loi d’échelle (4.35) pour la section efficace
σγ∗p→X

tot contrairement à la paramétrisation MRST, cependant il est clair qu’elle est compatible
avec un motif suggestif d’ondes progressives. A des rapidités trop faibles ou à des valeurs de
k trop grandes, des déviations sont visibles mais la paramétrisation MRST possède bien la loi
d’échelle (4.35) de manière effective, dans le domaine cinématique x< 0.01, correspondant à
Y > 4.6.

4.3.2 Pour la section efficace diffractive

Etudions maintenant les conséquences de la loi d’échelle (4.32) pour la section efficace dif-
fractive (4.29). En négligeant les masses des quarks devant Q2 et en redéfinissant les variables
de taille comme précédemment, la section efficace diffractive se réécrit

dσγ∗p→Xp
diff

dβ
(β, xP, Q

2) = S2
P

αemNc

8Bπ2β2

∑

f

e2
f

∫ 1

0
dzz(1− z)

∑

λ=L,T

fλ(z) I2
λ(z, β,Q2

s(xP)/Q2) .

(4.38)
Les intégrales IT et IL sont données par

IT,L(z, β, Q2
s/Q2) =

∫ ∞

0
r̄dr̄K1,0(

√
z(1−z)r̄)J1,0(

√
z(1−z)(1−β)/βr̄)T

(
Q2

s

Q2
r̄2

)
(4.39)

où IT dépend des fonctions de Bessel K1 et J1 et IL de K0 et J0. Nous en déduisons donc
une autre prédiction du régime de saturation de QCD : une loi d’échelle [XXI] pour la section
efficace diffractive à β fixé et petit xP :

dσγ∗p→Xp
diff

dβ
(β, xP, Q

2) =
dσγ∗p→Xp

diff

dβ
(β, τd) , τd = Q2/Q2

s(xP) . (4.40)

Les expressions (4.30) et (4.31) complètent la formulation de la section efficace diffractive
(4.29) pour des valeurs de β petites. Avec l’approximation 〈TxzTzy〉Y =〈Txz〉Y 〈Tzy〉Y de
l’équation BK, la prédiction de la loi d’échelle (4.40) reste valable. Signalons qu’il existe
une autre approche pour inclure la contribution du singlet de couleur quark-antiquark-gluon
responsable de la contribution (4.31). Dans cette approche, la cinématique de l’état final n’est
pas traitée de la même manière [76] et l’interaction de la composante quark-antiquark-gluon
est décrite par un dipôle de gluon effectif. La prédiction (4.40) reste cependant valable.

Sur la figure 4.6, nous présentons les données [77] des collaborations H1 et ZEUS pour
β dσγ∗p→Xp

diff /dβ en fonction de τd = Q2/Q2
s(xP) pour six valeurs de β fixées : 0.04, 0.1, 0.2,

0.4, 0.65 et 0.90. Pour chacune d’entre elles, nous incluons tout les points de données pour
des valeurs de Q2 dans le domaine [5, 90] GeV2 et pour xP<0.01. Nous avons utilisé l’échelle
de saturation (4.36) avec les paramètres inchangés. Il est clair que les données de HERA sont
compatibles avec la loi prédite par la formule (4.40), car pour chaque valeur de β, les différents
points apparaissent sur une ligne. Cela représente un argument de plus en faveur du régime
de saturation.
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Fig. 4.6 – La section efficace diffractive β dσγ∗p→Xp
diff /dβ fournie par les collaborations H1 et

ZEUS, en fonction de τd = Q2/Q2
s(xP) pour des valeurs de Q2 dans le domaine [5; 90] GeV2 et

pour xP<0.01. Six valeurs de β sont considérées. Seules les erreurs statistiques sont montrées.

Insistons sur le fait que les paramètres utilisés pour l’échelle de saturation Qs sont ceux
obtenus dans [72], et que nous n’avons pas essayé de les ajuster pour obtenir de meilleurs
résultats. Différents modèles inspirés par la QCD à haute énergie peuvent être ajustés pour
décrire les données. Les paramètres obtenus avec un modèle qui possède la loi d’échelle (4.32)
de manière exacte diffèrent [72] de ceux obtenus avec des modèles qui incluent des violations
de cette loi [78, 79, 80]. Les paramètres sont aussi sensibles aux types de violations incluses.
Ceci montre que des valeurs précises de ces paramètres n’auraient pas de sens. Dans tous les
cas, les valeurs sont toujours compatibles avec celles utilisées ici.

Nous n’avons étudié que des sections efficaces intégrées par rapport au transfert d’im-
pulsion du proton t. En diffusion profondément inélastique, plusieurs observables diffractives
peuvent être mesurées de manière différentielle par rapport à t. En termes d’amplitudes de
dipôles, la dépendance en t est reliée à la dépendance en paramètre d’impact par transformée
de Fourier. Nous l’avons montré explicitement pour la section efficace diffractive, c’est aussi
le cas pour d’autres observables comme la production diffractive de mésons vecteurs [81, 82].
De telles observables n’ont pas encore été étudiées, cependant elles représentent des opportu-
nités pour rechercher une loi d’échelle à transfert d’impulsion non nul. Cette prédiction a été
discutée au Chapitre 3. Pour pouvoir la tester, il faudrait pouvoir faire des mesures sur un
large domaine cinématique en x et Q2 (c’est-à-dire un large domaine pour τ), pour différentes
valeurs de t fixées. Cela représente un défi expérimental, mais cela nous permettrait certaine-
ment de mieux comprendre la dépendance en paramètre d’impact b de Tqq̄ et de comprendre
comment elle intervient dans l’évolution vers les hautes énergies.
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4.4 La production diffractive de gluon

Cette dernière section reprend les résultats de la publication [X] et de l’article de conférence
[XIII]. Nous y étudions une observable particulière : la production diffractive de gluons en
diffusion profondément inélastique, dans un régime où le gap de rapidité ∆η est suffisamment
grand. La section efficace correspondante s’obtient à partir du résultat (2.67) du Chapitre 2,
en remplaçant la fonction d’onde de l’onium par la fonction d’onde du photon (4.26). Nous
obtenons

q+ dσ

d2qdq+
=

αsN
2
c

CF

∫
dz

d2x
2π

d2y
2π

∑

λ=L,T

Ψλ(z, |x− y|)A∆η(x,y,q) ·A∗
∆η(x,y,q) (4.41)

où q+ et q désignent les impulsions longitudinales et transverses du gluon mesuré. Rappelons
que ce résultat décrit des états finals pour lesquels le gluon est mou (q+ ¿ P+) et est la
particule bordant le gap de rapidité. Le quark et l’antiquark provenant de la dissociation de
l’onium ont des rapidités supérieures à celle du gluon. Le vecteur transverse A∆η qui apparaît
dans la formule (4.41) est donné par la formule (2.68) du Chapitre 2.

4.4.1 Quelques estimations analytiques générales

Le vecteur transverse A∆η peut s’écrire

A∆η(x,y,q) =
∫

d2z
2π

e−iq.z
[

x− z
(x− z)2

− y− z
(y− z)2

](
S(2)(x, z,y;∆η)− S(x,y;∆η)

)
(4.42)

où nous avons introduit les quantités S et S(2).

S(x,y;∆η) = 1− 〈Txy〉∆η (4.43)

est l’élément de matrice de diffusion dans la collision d’un dipôle sur le proton cible évolué
jusqu’à la rapidité ∆η. Rappelons que x et y dénotent les positions transverses du quark et
de l’antiquark formant le dipôle.

S(2)(x, z,y;∆η) = 1− 〈Txz〉∆η − 〈Tzy〉∆η + 〈TxzTzy〉∆η (4.44)

est l’élément de matrice de diffusion dans la collision d’un système de deux dipôles ((xz) et
(zy)) sur le proton cible évolué jusqu’à la rapidité ∆η. Il est possible d’obtenir la dépendance
en q de la section efficace (4.41).

La limite |q| → 0

Dans la limite |q| → 0, l’amplitude A∆η est une constante. Les divergences infrarouges
qui apparaissent a priori dans la contribution virtuelle s’annulent entre les termes contenant
x et y. La contribution dominante à l’intégrale sur z est déterminée par le comportement à
grand z de S(2)(x, z,y;∆η). En particulier, la valeur de z à partir de laquelle S(2)(x, z,y; ∆η)
commence à décroître vers zéro coupe l’intégrale et détermine la valeur de A∆η. La valeur
constante de la section efficace (4.41) à petit q est donc déterminée par l’échelle d’unitarisation
de S(2). Pour des valeurs de ∆η suffisamment grandes, cette échelle d’unitarisation est l’échelle
de saturation Qs(∆η).
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La limite |q| → ∞
Dans la limite |q| → ∞, l’amplitude A∆η décroît comme 1/q2. En effet, en changeant de

variable on peut écrire

A∆η(x,y,q) =
e−iq.x

|q|
∫

d2z
2π

e−iq.z/|q| z
|z|2

(
S(2)(x, z/|q|+ x,y; ∆η)− S(x,y;∆η)

)

−(x↔ y). (4.45)

En prenant ensuite la limite |q|→∞, et en utilisant

S(2)(x,x,y;∆η) = S(2)(x,y,y;∆η) = S(x,y;∆η) (4.46)

on voit que le terme en 1/|q| s’annule. La contribution dominante se comporte alors comme
1/q2 :

A∆η(x,y,q) =
1
q2

(
e−iq·x ∇zS

(2)
∣∣∣
z=x

− e−iq·y ∇zS
(2)

∣∣∣
z=y

)
. (4.47)

En mettant au carré et en intégrant sur b = (x+ y)/2, on obtient

q+ dσ

d2qdq+
∝ 1

q4

∫
dzd2rΨλ(z, |r|)(F (|r|) + G(|r|) cos(q · r)) (4.48)

avec les fonctions F et G dépendant de la forme précise de S(2). En intégrant par rapport à
l’angle polaire de r, la partie en G est supprimée et la section efficace décroît donc comme
1/q4.

Ces caractéristiques sont générales, indépendantes de la forme précise des éléments de
matrice S et S(2). Si l’on choisit d’étudier le comportement de l’observable

q2q+ dσ

d2qdq+
(4.49)

en fonction de l’impulsion transverse du gluon q, celle ci va augmenter comme q2 pour les
petites valeurs de q et décroître comme 1/q2 pour les grandes valeurs de q. Il y aura un
maximum pour une valeur de q que nous noterons q0. Cette valeur indiquera l’inverse de la
taille typique pour laquelle les éléments de matrice de diffusion approchent zéro. En d’autres
termes, le maximum q0 reflètera l’échelle d’unitarisation. Pour des valeurs de ∆η suffisamment
grandes, la QCD à haute énergie prédit que cette échelle est dans le domaine perturbatif :
q0 ' Qs(∆η), l’échelle de saturation.

4.4.2 Prédictions du modèle GBW

La forme exacte des éléments de matrice S et S(2) n’est pas connue, et nous allons consi-
dérer un modèle pour pouvoir estimer la section efficace (4.41) pour des valeurs quelconques
de q. Cela nous permettra aussi de tester nos prédictions analytiques sur les comportements
aux limites |q| → 0 et |q| → ∞. Pour cela considérons le modèle suivant inspiré de la para-
métrisation [72] de Golec-Biernat et Wüsthoff :

1− S(x,y;∆η) = S(b)
(
1− e−Q2

s(∆η)r2/4
)

1− S(2)(x, z,y;∆η) = S(b)
(
1− e−Q2

s(∆η)(x−z)2/4e−Q2
s(∆η)(z−y)2/4

)
, (4.50)

où comme précédemment r=x−y, b = (x+ y)/2, et Rp est le rayon transverse du proton.
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Fig. 4.7 – La figure de gauche montre la section efficace σscaled (4.53) en fonction de q,
l’impulsion transverse du gluon. Les courbes sont obtenues avec le modèle (4.50) mais on
observe bien les caractéristiques universelles : la section efficace est constante aux petites
valeurs de q (et sa valeur est determinée par Qs) et décroît comme 1/q4 aux grandes valeurs
de q. La figure de droite montre la même section efficace multipliée par q2. Le maximum est
obtenu pour la valeur q0 qui est proche de Qs.

Formule analytique pour la section efficace

Dans notre modèle les paramétrisations pour S et S(2) sont Gaussiennes, et il est possible
de calculer analytiquement [X] l’amplitude A∆η. La dérivation est donnée en appendice, on
obtient pour le produit A∆η ·A∗

∆η :

A∆η(x,y,q) ·A∗
∆η(x,y,q) = S2(b)

r2

4q2
e−r

2Q2
s/2 ×

∣∣∣2
(
cos(q · r/2)− e−q2/(2Q2

s)+Q2
sr2/8

)
q+ sin(q · r/2)Q2

s r
∣∣∣
2

(q2/Q2
s −Q2

sr2/4)2 + (q · r)2 (4.51)

où la dépendance de Qs par rapport à ∆η est gardée implicite. L’intégration sur b donne
simplement un facteur Sp/2 et le résultat est une fonction de Qs et des vecteurs transverses
q et r. En notant r = |r|, q = |q| et θ l’angle entre les vecteurs r et q, on obtient finalement :

q2q+ dσ

d2qdq+
=

αsN
2
c Sp

8π2CF

∫
r dr dθ dz e−r2Q2

s/2

(q/(rQ2
s)− rQ2

s/(4q))2 + cos2 θ

∑

λ=L,T

Ψλ(z, r)

×
{[

cos
(qr

2
cos θ

)
− e−q2/(2Q2

s)+Q2
sr2/8

]2
+

Q4
sr

2

4q2
sin2

(qr

2
cos θ

)

+
rQ2

s

q
cos θ sin

(qr

2
cos θ

) [
cos

(qr

2
cos θ

)
− e−q2/(2Q2

s)+Q2
sr2/8

]}
. (4.52)

Les intégrations restantes sur r, θ et z peuvent se faire facilement numériquement.
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Fig. 4.8 – L’observable q2σscaled en fonction de q/Qs. Le maximum est obtenu pour la valeur
q0/Qs indépendante de Q2 et de Qs sur des larges gammes cinématiques. On observe q0 '
1.4 Qs.

Phénoménologie

Analysons la dépendance de la section efficace (4.52) en fonction de q. Pour cela définissons
la section efficace suivante :

σscaled(q, Q2, Qs) =
1

αsSp
q+ dσ

d2qdq+
=

1
2αsSp

MX
dσ

d2qdMX
, (4.53)

qui permet d’écarter les incertitudes dues aux valeurs de αs et Sp. La prise en compte de ces
facteurs constants, qui sera nécessaire pour décrire la section efficace (4.52), ne changerait
pas les remarques qui suivent. En plus de l’impulsion transverse du gluon q, σscaled est une
fonction de deux autres variables : la virtualité du photon Q2 et l’échelle de saturation Qs.

Sur la Figure 4.7 nous avons représenté σscaled et q2σscaled en fonction de q, pour Q2 =
1 GeV 2 et pour quatre valeurs de l’échelle de saturation Qs = 0.5, 1, 2, 3 GeV . Comme discuté
précédemment, indépendamment de la forme de S et S(2), σscaled est constante pour des petites
valeurs de q et décroît comme 1/q4 pour des grandes valeurs de q. Nous observons que cela
est bien le cas sur la figure de gauche. Avec notre modèle de saturation, la valeur de σscaled

aux petites impulsions est reliée à l’échelle de saturation, comme prévu. Ceci est encore mieux
illustré sur la figure de droite, qui représente q2σscaled en fonction de q. La transition entre le
comportement en q2 aux petites valeurs de q et le comportement en 1/q2 aux grandes valeurs
de q est très claire. Elle est caractérisée par un maximum piqué pour une valeur q0 qui est
bien de l’ordre de Qs.

Pour quantifier la dépendance de q0 en fonction de Qs, représentons q2σscaled en fonction
de q/Qs. Ceci est fait Figure 4.8 pour les quatre valeurs de Qs données figure 4.7 et pour deux
valeurs extrêmes de la virtualité du photon : Q2 = 0.1 et 100 GeV2. Il est clair que la valeur
de q0/Qs est indépendante de Qs et de Q2 sur le large domaine cinématique considéré. Sur la
figure, nous pouvons lire q0/Qs ' 1.4. Même si cette valeur dépend probablement du modèle
utilisé, la production diffractive de gluon en diffusion profondément inélastique semble être
une observable idéale pour pouvoir déterminer l’échelle de saturation Qs et sa dépendance
avec l’énergie.
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Fig. 4.9 – La section efficace pour la production diffractive de gluons en diffusion profondé-
ment inélastique en fonction de q, l’impulsion transverse du gluon. Les courbes sont obtenues
avec le modèle (4.50) et les prédictions sont faites dans le domaine cinématique du collision-
neur HERA. Les courbes en traits pleins sont des prédictions où le quark charmé est inclus.
Les courbes en pointillés sont obtenues sans la contribution du quark charmé.

Prédictions pour le collisionneur HERA

Il serait intéressant de pouvoir exploiter cette observation dans les collisions électron-
proton. Expérimentalement, le gluon est détecté comme un jet de particule. En se plaçant
dans une situation de grande masse diffractive (β ¿ 1), le jet qui provient du gluon est celui
qui borde le gap de rapidité. Les jets de particules qui viennent du quark ou de l’antiquark
sont détectés à plus grande rapidité et la configuration de l’état final est X + jet + gap + p.
Idéalement, il faudrait déterminer la section efficace correspondante en fonction de l’impulsion
transverse du jet, et pour différentes valeurs de ∆η. Pour chacune d’entre elles, la position
du maximum de la section efficace devrait donner Qs(∆η), indépendamment de Q2. Cette
caractéristique offre la possibilité d’utiliser un grand domaine cinématique en Q2 pour effectuer
les mesures, en gardant tout de même β¿1.

Il existe cependant une limitation expérimentale sur les impulsions transverses qu’il est
possible de mesurer. Dans le cas du collisionneur HERA, la limite inférieure est environ 1 GeV ,
ce qui correspond à une échelle de saturation relativement grande pour les valeurs de ∆η
accessibles. Il est donc peu probable que le maximum q0 de la section efficace (4.41) soit
visible à HERA. Observer le maximum montré sur la Figure 4.8 semble donc être un défi
expérimental majeur.
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Cette situation est illustrée figure 4.9, où nous avons représenté les prédictions du modèle
(4.50) pour la section efficace (4.41). L’échelle de saturation est prise du modèle GBW original
[72] pour lequel nous rappelons que Q2

s(xP) = (x0/xP)λ GeV2. Les paramètres sont λ = 0.288
et x0 = 3.04×10−4 dans le cas où seuls les quarks légers sont inclus dans l’analyse. En incluant
aussi le quark charmé, les paramètres obtenus sont λ = 0.277 et x0 = 4× 10−5. Pour obtenir
les courbes de la figure 4.9, nous avons aussi utilisé les valeurs αs = 0.15 et 2Sp = 23.03 mb
(2Sp = 29.12 mb si le quark charmé est inclus) obtenues dans [72].

Les valeurs de la virtualité du photon Q2, de l’énergie W et de la masse diffractive MX

indiquées Figure 4.9 sont extraites d’une publication récente [77] de la collaboration ZEUS.
Les prédictions montrent bien que le maximum montré figure 4.8 ne devrait pas être accessible
à HERA, indiquant que les données devraient se trouver du côté droit de la bosse. Par contre,
les prédictions montrent aussi qu’il n’est pas nécessaire de voir toute la bosse pour ressentir
l’influence de l’échelle de saturation. En particulier, il y a une grande différence dans la
montée vers les petites valeurs de q entre le graphe correspondant à la plus grande valeur de
xP (MX =40 GeV et W =100 GeV ) et le graphe correspondant à la plus petite valeur de xP
(MX =5 GeV et W =245 GeV ).

La confirmation d’un tel comportement serait un signe que le régime de saturation joue
un rôle aux énergies accessibles et pourrait permettre une autre détermination de l’échelle
de saturation. Si ce comportement n’est pas observé, cela peut refléter que notre modèle est
incomplet, ou bien que les énergies du collisionneur HERA ne sont pas assez importantes
pour que la saturation ait un rôle important. Entre autres, l’unitarisation serait de nature
non-perturbative [83]. Dans ce cas, le maximum de l’observable (4.49) (montré par exemple
sur le graphe de droite de la figure 4.7) serait indépendant de ∆η, et sur la figure 4.9, les 12
graphes seraient identiques.

4.A Dérivation de l’amplitude A∆η(x, y,q) dans le cadre du modèle GBW

Dans cet appendice, nous calculons l’amplitude A∆η(x,y,q) (voir la formule (4.42)), dans
le cadre du modèle (4.50) pour les éléments de matrice S et S(2). La contribution de S(x,y;∆η)
est proportionnelle à

∫
d2z
2π

e−iq.z
[

x− z
(x− z)2

− y− z
(y− z)2

]
=

(
e−iq.x − e−iq.y)

∫
d2z
2π

e−iq.z z
z2

= −2q
q2

e−iq.b sin(q · r/2) . (4.54)

Rappelons que r=x−y et b = (x+y)/2. Nous pouvons alors écrire (en gardant la dépendance
de Qs par rapport à ∆η implicite) :

A∆η(x,y,q) = S(b)
(

e−iq.xI(q, r)− e−iq.yI(q,−r) +
2q
q2

e−iq.b sin(q · r/2)e−Q2
sr2/4

)

(4.55)
où nous avons introduit

I(q, r) =
∫

d2z
2π

e−iq.z z
z2

e−Q2
sz2/4 e−Q2

s(z+r)2/4 . (4.56)

En introduisant θ, l’angle entre z et q, et φ, l’angle entre r et q, nous obtenons :

I(q, r) = e−Q2
sr2/4

∫
d|z|
|z| e−Q2

sz2/2 i∇q

∫
dθ

2π
e−i|q||z| cos(θ)−Q2

s|z||r| cos(θ−φ)/2 . (4.57)
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L’intégration angulaire donne
∫ 2π

0

dθ

2π
e−i|q||z| cos(θ)−Q2

s|z||r| cos(θ−φ)/2 = I0

(
|z|

√
r2Q4

s/4 + iq · r Q2
s − q2

)
(4.58)

puis avec la différentiation i∇q, nous avons

I(q, r) = −
(
iq+ r Q2

s/2
)

e−Q2
sr2/4

√
r2Q4

s/4 + iq · r Q2
s − q2

∫ ∞

0
dz e−Q2

sz2/2 I1

(
z
√
r2Q4

s/4 + iq · r Q2
s − q2

)
.

(4.59)
La dernière intégration donne

I(q, r) =

(
iq+ r Q2

s/2
)

e−Q2
sr2/4

q2 − r2Q4
s/4− iq · r Q2

s

(
e−q

2/(2Q2
s)+r2Q2

s/8+iq·r/2 − 1
)

. (4.60)

En insérant (4.60) dans (4.55), nous obtenons finalement :

A∆η(x,y,q) = S(b)e−iq·b
[

iq+ r Q2
s/2

q2 − r2Q4
s/4− iq · r Q2

s

(
e−q

2/(2Q2
s)+r2Q2

s/8 − e−iq·r/2
)

− iq− r Q2
s/2

q2 − r2Q4
s/4 + iq · r Q2

s

(
e−q

2/(2Q2
s)+r2Q2

s/8 − eiq·r/2
)

+
2q
q2

sin(q · r/2)
]

e−Q2
sr2/4 . (4.61)

En calculant ensuite le produit A∆η ·A∗
∆η, on retrouve la formule (4.51).
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Ce Chapitre discute d’applications possibles de nos résultats dans le contexte des collisions
hadron-hadron, il reprend les résultats des articles [I, III, XVII] et des articles de conférence
[II, XII]. Dans des collisions entre deux hadrons, les sondes perturbatives sont des jets de
particules, initiés par l’émission de quarks ou de gluons de grandes impulsions transverses. Ces
derniers jouent un rôle similaire au photon virtuel de la diffusion profondément inélastique :
ils nous renseignent sur le contenu des hadrons aux petites distances.

Dans ce chapitre, nous considérons donc que le projectile est un hadron, et nous nous
concentrerons sur la production inclusive de gluons en utilisant nos résultats du Chapitre 2.
Pour cela, nous allons devoir faire le lien entre un hadron, qui est une particule de nature non
perturbative, et un onium, qui est l’objet de nature perturbative que nous avons utilisé pour
faire nos calculs. Ceci demande de faire des approximations, et nous travaillerons dans la limite
collinéaire qui permet d’obtenir le lien entre onium et hadron de manière consistante. Cela
sera discuté dans une première partie et nous serons en mesure d’obtenir la section efficace
de production de jets dans la collision entre un hadron projectile et une cible hadronique
quelconque.

La deuxième partie considère l’émission de jets vers l’avant en diffusion profondément
inélastique, un processus où la cible hadronique est un photon virtuel. Le qualificatif vers
l’avant sera précisé plus loin, il indique que le jet est émis dans la direction de propagation
du projectile. Le photon virtuel, qui peut être assimilé à un onium, joue le rôle de la cible
(contrairement au chapitre précédent). Dans la limite de haute énergie, ce processus teste les
effets de densité de gluons dans la fonction d’onde d’un onium. Dans ces conditions, les effets
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de haute énergie sont restreints par rapport à un hadron cible (pour la même énergie) et ce
processus semble idéal [84] pour tester l’évolution BFKL. Cependant dans la limite de haute
énergie, le régime de saturation sera éventuellement atteint, ce qui sera aussi discuté.

La troisième partie discute de la production de jets de Mueller-Navelet dans les collisions
hadron-hadron. Dans ces processus, deux jets vers l’avant sont mesurés, dans les directions de
propagation de chacun des hadrons. La dynamique de QCD impliquée est la même que pour
l’émission de jets vers l’avant en diffusion profondément inélastique.

5.1 Production inclusive de jets à partir d’un hadron

5.1.1 Production d’un gluon mou à partir d’un onium

Au Chapitre 2, nous avons calculé la section efficace de production inclusive de gluons
dans la collision d’un onium sur une cible hadronique quelconque (voir formule (2.60)). En
notant q = (q+,q) la tri-impulsion du gluon mesuré, la section efficace s’écrit :

q+ dσ

d2qdq+
=

4αsCF

π2q2

∫
d2r′

2π
e−iq.r′ g̃(r′2Q2

0)∇2
r′

∫
d2b Tgg(r′,b; yq) (5.1)

avec g̃ une fonction définie à partir de la fonction d’onde de l’onium φ(k+, r) de la manière
suivante :

g̃(r′2Q2
0) =

∫
dk+ d2r

(2π)2
∣∣φ(k+, r)

∣∣2 Θ(|r|−|r′|) ln
(
r2

r′2

)
. (5.2)

La fonction g̃ est sans dimension et l’échelle Q0 est l’échelle caractéristique de
∫

dk+|φ(k+, r)|2.
Dans le cas d’un onium, cette échelle est perturbative : par exemple au Chapitre 4, dans le
cas du photon virtuel, Q2

0 = Q2.

Rappelons que yq = Y − ln(P+/q+) où Y est la rapidité totale de la collision. Dans notre
dérivation, les particules de l’état final dont la rapidité est comprise entre ymin et ymin+yq

sont décrites comme des particules qui habillaient la cible. Notre formule est valable dans la
limite où yq est un intervalle de rapidité suffisamment grand, auquel cas les effets dûs à une
grande densité de gluons dans la cible sont importants. Rappelons que Tgg est l’amplitude de
diffusion d’un dipôle de gluons sur la cible ; nous avons en effet montré au Chapitre 2 que
le dipôle de gluon gg décrivait de manière effective une émission de gluon dans la limite de
haute énergie.

Le gluon mesuré est émis avec la rapidité ymin +yq, qui est proche de ymax, et on dit alors
que le gluon est émis vers l’avant, le qualificatif vers l’avant faisant référence au projectile : le
jet est émis dans la direction de propagation du projectile. Les particules de rapidité supérieure
à celle du gluon, émises encore plus vers l’avant avec une rapidité comprise entre ymax −
ln(P+/q+) et ymax, sont décrites comme des particules qui habillaient le projectile. Dans notre
calcul, ce sont le quark et l’antiquark provenant de la dissociation de l’onium. Il est possible de
généraliser la formule (5.1) pour inclure plus de particules à des rapidités supérieures à celle
du gluon, en travaillant dans un repère où le projectile est habillé par plus d’un seul gluon.
Ceci est réalisé dans l’article [IV], la fonction g̃ correspondante y est explicitement calculée.
Il en résulte une dépendance de g̃ par rapport à q+/P+.

5.1.2 La limite collinéaire

Considérons maintenant que le projectile est un hadron. Dans ce cas, la fonction d’onde
φ(k+, r) correspondante est caractérisée par une échelle Q0 ∼ ΛQCD. On peut alors travailler
dans ce que l’on appelle la limite collinéaire : |q|/Q0 À 1. La transformée de Fourier dans la
formule (5.1) restreint l’intégration à des tailles |r′| telles que |r′| . 1/|q|. La fonction g̃(r′2Q2

0)
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varie sur des tailles beaucoup plus grandes, de l’ordre |r′| ∼ 1/Q0 À 1/|q|, et peut donc être
remplacée par g̃(Q2

0/q
2). On obtient

q+ dσ

d2qdq+
=

4αsCF

π2q2
g̃(q+/P+, Q2

0/q
2)

∫
d2r′

2π
e−iq.r′∇2

r′

∫
d2b Tgg(r′,b; yq) (5.3)

où la seule information provenant du projectile vient de la fonction g̃, factorisée en dehors de
l’intégrale sur r′. Ceci est une manifestation de l’universalité de la limite collinéaire |q|/Q0 À
1. Cette limite est justifiée pour tout projectile de nature non perturbative (tel que Q0 ∼
ΛQCD) et on voit que la dépendance de la section efficace par rapport à yq est universelle :
elle ne dépend pas de g̃ et du projectile considéré. Comme la fonction g̃ dans (5.3) varie
peu pour Q2

0/q
2 ¿ 1, la dépendance par rapport à q de la section efficace provient aussi

principalement de la transformée de Fourier de ∇2
r′Tgg(r′,b; yq).

Il est d’usage d’introduire la notation suivante :

2αsCF

πNc
g̃(q+/P+, Q2

0/q
2 ¿ 1) =

q+

P+
g

(
q+

P+
,q2

)
. (5.4)

La fonction g est appelée densité de gluons dans le projectile, et elle est aussi universelle dans
le sens qu’elle ne dépend que du projectile considéré. Par exemple quelle que soit la cible, c’est
la même fonction g qui interviendra dans la section efficace. Elle est définie seulement dans le
régime |q|/Q0 À 1 et il est d’usage de ne pas indiquer explicitement l’échelle Q0, même si g est
sans dimension. L’interprétation du fait que g soit factorisée est simple. Les différents partons
de la fonction d’onde du projectile interagissent de manière incohérente et il suffit d’ajouter
les différentes contributions pour obtenir la section efficace : g(q+/P+,q2) est la probabilité
que le projectile contienne un gluon d’impulsion longitudinale q+, et d’impulsion transverse
q. Signalons que ceci n’est pas valable si q+/P+ est trop petit et tel que des effets de densité
sont aussi importants dans le projectile. Il faudrait alors traiter de tels effets collectifs comme
nous l’avons fait pour la cible. Cela dit nous nous sommes explicitement restreints à des cas
où les effets de densité sont importants seulement pour la cible.

5.1.3 Production d’un jet vers l’avant à partir d’un hadron

Nous sommes maintenant en mesure d’obtenir la section efficace de production de jets vers
l’avant dans la collision entre un hadron projectile et la cible (pour l’instant non précisée).
Le résultat (5.3) décrit la production de jets initiés par des gluons, il nous reste à lui ajouter
la contribution des jets initiés par des quarks et antiquarks. En fait ces contributions sont
identiques à celle déjà calculée, sauf pour la densité de gluons qui est à remplacer par la
densité de quarks ou d’antiquarks. Introduisons

feff (xJ ,q2) = g(xJ ,q2) +
CF

Nc

(
q(xJ ,q2) + q̄(xJ ,q2)

)
, (5.5)

avec q et q̄ les densités de quark et antiquark dans le projectile. La variable xJ = q+/P+ =
eyq−Y dénote la fraction d’impulsion longitudinale du jet par rapport au projectile et feff est
appelée la distribution de partons effective dans le proton. La section efficace de production
de jets vers l’avant est alors

dσ

d2qdxJ
=

2Nc

πq2
feff (xJ ,q2)

∫
d2r′

2π
e−iq.r′∇2

r′

∫
d2b Tgg(r′,b; yq) . (5.6)

Signalons que nous n’incluons pas les corrections dite d’hadronisation, qui décrivent la tran-
sition du parton émis vers le jet de particules. Ces corrections peuvent modifier la section
efficace mais généralement pas de manière importante.
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kT

yJ = ln(xJ/x)

feff

P

e−

e−

γ∗

xJ

Fig. 5.1 – Production d’un jet vers l’avant dans une collision électron-proton. Le jet mesuré
est représenté par une flèche, son impulsion transverse est kT xJ est sa fraction d’impulsion
longitudinale par rapport au proton incident. ∆y est l’intervalle de rapidité entre le jet et la
particule de plus petite rapidité dans l’état final.

5.2 Production de jets vers l’avant en diffusion profondément inélastique

Nous considérons dans cette section la production de jets vers l’avant en diffusion profon-
dément inélastique. Contrairement au chapitre précédent, le proton joue le rôle du projectile
et le jet est émis vers l’avant par rapport à la direction de propagation du proton. C’est l’élec-
tron qui va jouer le rôle de la cible. Plus précisément, à l’ordre dominant par rapport à αem, il
interagit par l’intermédiaire d’une paire quark-antiquark, cette dernière va donc jouer le rôle
de la cible. Rappelons le lien entre l’électron et la paire quark-antiquark : l’électron interagit
par l’intermédiaire d’un photon virtuel, comme représenté Figure 4.1, et la composante do-
minante (pour un photon de virtualité perturbative) dans la décomposition en état de Fock
du photon est une paire quark-antiquark.

La section efficace est obtenue en mesurant l’électron sortant et le jet, en restant inclusif
par rapport aux autres particules. En intégrant sur les angles azimuthaux des impulsions
de l’électron et du jet, on obtient une section efficace quadruplement différentielle que l’on
exprime en fonction des variables cinématiques x, Q2, xJ et kT . Les variables x et Q2 de la
diffusion profondément inélastique ont été définies au chapitre précédent et kT = |q|ÀΛQCD

est l’impulsion transverse du jet. Rappelons que xJ est la fraction d’impulsion longitudinale
du jet par rapport au proton. La section efficace de production de jet vers l’avant dans la
collision électron-proton s’écrit :

d(4)σpe→JXe

dxdQ2dxJdk2
T

=
αem

πxQ2

[(
1− y +

y2

2

)
dσpγ∗→JX

T

dxJdk2
T

+ (1− y)
dσpγ∗→JX

L

dxJdk2
T

]
, (5.7)

où dσpγ∗→JX
λ /dxJdk2

T est la section efficace de production de jet vers l’avant dans la collision
photon-proton pour un photon virtuel de polarisation transverse (λ = T ) ou longitudinale
(λ = L). La production de jet vers l’avant est représentée Figure 5.1, avec les différentes
variables cinématiques indiquées.
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Pour finir, rappelons le lien entre le photon virtuel et la paire quark-antiquark, établi au
chapitre précédent. La formule (4.27) exprime la factorisation de la section efficace totale σλ

tot

dans la collision photon-proton en terme de la section efficace totale σ(|r|) = 2
∫

d2b T (r,b)
dans la collision d’un dipôle qq̄ sur le proton. Cette factorisation s’applique aussi pour la
section efficace dσpγ∗→JX

λ /dxJdk2
T . Elle peut donc s’exprimer en terme de la section efficace

dσp(qq̄)→JX/dxJdk2
T pour la production de jet vers l’avant dans la collision du proton sur un

dipôle qq̄ :
dσpγ∗→JX

λ

dxJdk2
T

=
∫

d2r
∫ 1

0
dz Ψλ(z, |r|)dσp(qq̄)→JX

dxJdk2
T

(|r|) . (5.8)

Rappelons que les fonctions d’ondes Ψλ décrivent la transition γ∗ → qq̄, voir la formule (4.26)
du Chapitre 4.

5.2.1 Prédictions de la QCD à haute énergie

La section efficace dσp(qq̄)→JX/dxJdk2
T a été obtenue dans la section précédente. Plus

précisément, la formule (5.6) donne cette section efficace pour une cible quelconque. Nous
allons l’utiliser dans le cas où la cible est un onium (dénoté par (qq̄)). Nous avons montré que
l’émission du jet pouvait être décrite par un dipôle de gluons effectif :

dσp(qq̄)→JX

dxJdk2
T

(r) =
Nc

k2
T

feff (xJ , k2
T )

∫ ∞

0
dr̄ J0(kT r̄)

∂

∂r̄

(
r̄

∂

∂r̄
σ(qq̄)(gg)(r, r̄, yJ)

)
(5.9)

avec yJ =ln(xJ/x). La formule (5.9) est valable dans la limite de haute énergie pour laquelle
l’intervalle de rapidité yJ est très grand. σ(qq̄)(gg)(r, r̄, yJ) est la section efficace de collision
entre un dipôle qq̄ de taille r (l’onium cible) et un dipôle gg de taille r̄ avec une rapidité totale
yJ .

Les formules (5.7)-(5.9) expriment l’observable des jets vers l’avant en termes de la section
efficace σ(qq̄)(gg) qui contient la dynamique de QCD à haute énergie : le problème est analogue
à celui de la diffusion onium-onium (et donc à celui de la collision photon-photon [85, 86, 87,
88, 89]). Dans un régime d’énergie intermédiaire σ(qq̄)(gg) est donnée par l’équation BFKL,
puis pour de plus hautes énergies on entrera dans un régime de saturation dû aux effets de
grande densité de gluons dans la fonction d’onde de la cible, autrement dit de l’onium qq̄.
Dans la suite, nous donnons les prédictions du domaine d’énergie BFKL et nous proposons
une paramétrisation pour étudier le régime de saturation.

Le régime de l’évolution BFKL

Dans le régime d’énergie de l’évolution BFKL, pour lequel nous rappelons que les effets
de densité ne sont pas encore importants, σ(qq̄)(gg) est connue de manière exacte. En effet,
la solution de l’équation BFKL est connue (voir formule (3.13)), et comme le processus de
diffusion onium-onium est purement perturbatif, nous connaisons aussi la condition initiale
σ(qq̄)(gg)(r, r̄, Y = 0). Cette dernière s’obtient en calculant le processus à l’ordre dominant par
rapport à αs, nous obtenons (voir par exemple [90]) :

σ(qq̄)(gg)(r, r̄, 0) = 4πα2
s min(r2, r̄2)

{
1+ln

max(r, r̄)
min(r, r̄)

}
= 2πα2

sr
2

∫ 1
2
+i∞

1
2
−i∞

dγ

2iπ

(r̄/r)2γ

γ2(1−γ)2
.

(5.10)
Il est ensuite immédiat d’obtenir la dépendance par rapport à la rapidité dans le régime de
l’évolution BFKL (les bornes de l’intégration sur γ sont les mêmes que dans (5.10) et ne sont
plus données explicitement, elles seront dorénavant sous-entendues) :

σBFKL
(qq̄)(gg)(r, r̄, Y ) = 2πα2

sr
2

∫
dγ

2iπ

(r̄/r)2γ

γ2(1−γ)2
eᾱχ(γ)Y . (5.11)
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Rappelons que la fonction χ(γ) est donnée par l’équation (3.14) où ψ(γ) est la dérivée lo-
garithmique de la fonction Γ(γ). La section efficace (5.11) croît exponentiellement avec la
rapidité.

En insérant l’équation (5.11) dans (5.9) et (5.8), nous obtenons

dσpγ∗→JX
λ

dxJdk2
T

=
4πNcα

2
s

k2
T Q2

feff (xJ , k2
T )

∫
dγ

2iπ

(
Q2

k2
T

)γ 4γΓ(γ) Ψ̃λ(γ)
(1−γ) Γ(2−γ)

eᾱχ(γ)yJ (5.12)

où nous avons défini les transformées de Mellin suivantes :

Ψ̃λ(γ) =
∫

d2r (r2Q2)1−γ

∫ 1

0
dz Ψλ(z, |r|) . (5.13)

Dans ce qui suit nous négligerons les masses des quarks devant Q2, ce qui est justifié car
nous travaillerons toujours avec des grandes valeurs de Q2 par la suite (Q2 > 5 GeV2). Les
transformées de Mellin Ψ̃λ(γ) sont alors données par

(
Ψ̃T (γ)
Ψ̃L(γ)

)
=

2αemNc

π

∑
q

e2
q

1
4γγ

Γ2(1 + γ)Γ2(1− γ)Γ2(2− γ)
Γ(2− 2γ)Γ(2 + 2γ)(3− 2γ)

(
(1 + γ)(2− γ)

2γ(1− γ)

)
. (5.14)

En insérant la formule (5.12) dans (5.7), on obtient la section efficace pour la production
de jets vers l’avant dans le domaine d’énergie de l’évolution BFKL. On montre facilement
que le résultat est identique à celui obtenu en utilisant ce qu’on appelle la kT−factorisation
[91, 92, 93, 94]. Ce n’est pas surprenant car c’est un formalisme dans lequel l’interaction
entre le projectile et la cible est restreinte à un échange de deux gluons. Nous avions indiqué
au Chapitre 3 que c’était le cas dans le régime dilué décrit par l’équation BFKL. Le seul
paramètre indéterminé dans la formule (5.12) est ᾱ qui apparaît dans l’exponentielle.

Le régime de saturation

Contrairement au cas du régime d’énergie BFKL, la section efficace onium-onium σsat
(qq̄)(gg)

est encore inconnue pour de plus hautes énergies, telles qu’on entre dans le régime de sa-
turation où les effets dûs à une grande densité de gluons deviennent importants (pour des
estimations numériques, voir [95, 96]). Pour prendre en compte des effets de saturation, nous
allons proposer une paramétrisation phénoménologique. Nous considérons le modèle suivant,
introduit dans [III] et inspiré des approches [72, 88] :

σsat
(qq̄)(gg)(r, r̄, Y ) = 4πα2

sσ0

(
1− exp

(
−r2

eff (r, r̄)
4R2

s(Y )

))
. (5.15)

Le rayon effectif de l’interaction onium-onium reff (r, r̄) est défini à l’aide de la section efficace
σ(qq̄)(gg)(r, r̄, Y = 0) (voir formule (5.10)) :

r2
eff (r, r̄) ≡ min(r2, r̄2)

{
1+ln

max(r, r̄)
min(r, r̄)

}
. (5.16)

Pour le rayon de saturation Rs, que l’on peut identifier à l’inverse de l’échelle de saturation,
nous utilisons la paramétrisation suivante :

Rs(Y ) = e−
λ
2
(Y−Y0)/Q0 , Q0≡1 GeV . (5.17)

Exprimons la section efficace (5.15) sous la forme d’une double transformée de Mellin :

σsat
(qq̄)(gg)(r, r̄, Y ) = 4πα2

sσ0

∫
dγ

2iπ

∫
dτ

2iπ

(
r2

4R2
s(Y )

)1−γ(
r̄2

4R2
s(Y )

)τ

g(γ, τ) (5.18)
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avec la fonction g(γ, τ) définie pour Re(τ), Re(γ), et Re(γ− τ) tous compris entre 0 et 1. En
inversant la formule (5.18), on obtient

g(γ, τ) =
∫ ∞

0
du2

∫ ∞

0
dū2u2γ−4ū−2τ−2

(
1− e−r2

eff (u,ū)
)

=
2Γ(γ − τ)
1 + τ − γ

{Ψ(1, 3+τ−γ, 2τ) + Ψ(1, 3+τ−γ, 2−2γ)}
où la fonction hypergéométrique confluente de Tricomi Ψ(1, a, b) peut être exprimée en termes
de fonctions Gamma incomplètes [97]. En insérant (5.18) dans (5.9) et (5.8), nous obtenons

dσpγ∗→JX
λ

dxJdk2
T

=
2πNcα

2
sσ0

Q2k2
T R2

s(yJ)
feff (xJ , k2

T )
∫

dγ

2iπ
(4Q2R2

s(yJ))γΨ̃λ(γ)

∫
dτ

2iπ
(4k2

T R2
s(yJ))−τ 4ττ2Γ(τ)

Γ(1−τ)
g(γ, τ) . (5.19)

En insérant ensuite la formule (5.19) dans (5.7), nous obtenons notre paramétrisation
pour la section efficace de production de jets vers l’avant dans le régime de saturation. Les
paramètres sont λ, Y0 et la normalisation σ0.

5.2.2 Comparaisons avec les données du collisionneur HERA

Détermination des paramètres

Les premières données [98] publiées par les collaborations H1 et ZEUS concernaient l’ob-
servable dσ/dx. Les paramètres des descriptions BFKL [94] et saturation [III] ont été ajustés
sur ces données avec la restriction x < 10−2. Bien que les paramétrisations (5.12) et (5.19)
correspondent à des régimes d’énergie différents, dans les deux cas les résultats sont obtenus
avec des valeurs de χ2 voisines de 1. Les valeurs des paramètres obtenues sont indiquées dans
la Table I avec les valeurs de χ2 (par degrés de liberté) correspondantes.

description paramètres 1/Rs(Y =0) χ2(/d.d.l.)
BFKL 4ᾱ ln(2)=0.430 —— 12 (/13)

sat. forte λ = 0.402 and Y0 = −0.82 1.18 Gev 6.8 (/11)
sat. faible λ = 0.370 and Y0 = 8.23 0.22 Gev 8.3 (/11)

Tab. 5.1 – Résultats de l’ajustement des paramètres pour les descriptions données par les
formules (5.12) (BFKL) et (5.19) (saturation) sur les premières données du collisionneur
HERA pour la production de jets vers l’avant. Pour la paramétrisation (5.19), deux solutions
sont possibles, avec des effets de saturation soit forts, soit faibles.

Dans le cas dénoté BFKL dans la Table I, le seul paramètre est ᾱ et la valeur obtenue
est 4ᾱ ln(2) = 0.430. Dans le cas du régime de saturation, les deux paramètres importants
sont λ et Y0 et l’ajustement a donné deux minima pour χ2 : pour (λ = 0.402, Y0 = −0.82)
et (λ=0.370, Y0 =8.23). Nous appellerons le premier cas saturation forte et le deuxième cas
saturation faible. En effet, le premier minimum correspond à des effets de saturation forts car
pour les valeurs de yJ typiques, l’échelle de saturation vaut environ 5 Gev, ce qui correspond
aux valeurs typiques de kT . Le deuxième minimum correspond à des effets de saturation faibles
et reflète plutôt une description de type BFKL.

Avec les formules (5.12) et (5.19), les valeurs des paramètres données Table I déterminent
complétement les prédictions du régime BFKL et deux paramétrisations pour le modèle de
saturation. Nous allons à présent les comparer avec les nouvelles données sans aucun réajus-
tement des paramètres, ce qui sera un test pertinent des effets de la QCD à haute énergie.
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Fig. 5.2 – La section efficace dσ/dx dans la production de jet vers l’avant en diffusion profon-
dément inélastique. Les points de mesure viennent des collaborations H1 (figure de gauche)
et ZEUS (figure de droite). Les courbes sont des comparaisons avec les prédictions BFKL
(lignes pleines) et du modèle de saturation (lignes tiretées et en pointillé). Dans tous les cas,
elles sont en accord avec les données. Pour comparaison, les prédictions sans resommation de
logarithmes dominants (NLOQCD) sont indiquées.

Comparaisons avec les données de 2005

Nous souhaitons comparer la section efficace (5.7) obtenue à partir de la prédiction du
régime d’évolution BFKL (5.12), ou à partir de la paramétrisation des effets de saturation
(5.19), avec les données récentes mesurées au collisionneur HERA [99]. D’un côté, nos résultats
théoriques concernent la section efficace (5.7) qui est différentielle par rapport à toutes les
variables cinématiques du problème : x, Q2, xJ et kT . De l’autre côté, les observables mesurées
à HERA sont des sections efficaces qui sont moins différentielles : dσ/dx, dσ/dQ2, dσ/dk2

T ,
et dσ/(dxdQ2dk2

T ). Par conséquent, en plus des transformations de Mellin inverses (qui sont
des intégrations dans le plan complexe) à effectuer pour calculer les sections efficaces (5.12) et
(5.19), nous devons réaliser un certain nombre d’intégrations sur les variables cinématiques,
en prenant en compte au mieux les coupures expérimentales appliquées pour les différentes
mesures. Une description détaillée de l’implémentation de ces intégrations est donnée dans
les appendices de l’article [XVII] (voir aussi [100]). La méthode permet une comparaison
directe des données avec les prédictions théoriques, mais elle ne permet pas de contrôler les
normalisations absolues. Par conséquent dans la suite, nous comparons seulement la forme
des courbes, sans discuter des normalisations. Insistons encore sur le fait que les paramètres
de la Table I ne sont pas ajustés.

Commençons avec l’observable dσ/dx qui a été mesurée par les collaborations H1 et ZEUS
jusqu’à des valeurs de x plus petites que lors des premières mesures. La comparaison est
montrée Figure 5.2 et nos trois paramétrisations décrivent bien les données. On ne peut
pas vraiment distinguer les courbes, sauf aux petites valeurs de x pour lesquelles la courbe
dénotée BFKL-LL est au dessus des courbes obtenues avec la paramétrisation des effets de
saturation. Pour celles-ci, la courbe correspondant aux paramètres du cas saturation faible
est au dessus de celle qui correspond aux paramètres du cas saturation forte. Sur la figure,
BFKL-LL signifie que les prédictions correspondantes sont obtenues dans l’approximation des
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Fig. 5.3 – Les sections efficaces dσ/dQ2 (figure de gauche) et dσ/dkT (figure de droite) dans
la production de jets vers l’avant en diffusion profondément inélastique. Les points de mesure
viennent de la collaboration ZEUS. Les courbes sont des comparaisons avec les prédictions
BFKL (lignes pleines) et celles du modèle de saturation (lignes tiretées et en pointillé). Pour
les deux observables, il y a bon accord avec les données.

logarithmes dominants. La conclusion principale est la suivante [XVII] : les données semblent
montrer la croissance BFKL vers les petites valeurs de x.

Pour comparaison, une prédiction sans resommation de logarithmes dominants est mon-
trée sur la figure. Elle a été obtenue [99] avec le programme DISENT [101] et aux plus petites
valeurs de x, la prédiction est un facteur entre 1.5 et 2.5 en dessous des données, dépendant
de la barre d’erreur. Même en ajoutant une partie des corrections de l’ordre sous-dominant
(appelée contribution du photon résolu [102]), la courbe théorique reste en dehors des barres
d’erreurs. C’est une différence intéressante avec la production de pions vers l’avant, une ob-
servable pour laquelle la contribution du photon résolu semble être suffisante pour décrire les
données [103].

Discutons brièvement de deux autres sections efficaces représentées sur la figure 5.3 :
dσ/dQ2 et dσ/dkT mesurées par la collaboration ZEUS. Encore une fois les trois paramé-
trisations des effets de haute énergie décrivent correctement les données. C’est un résultat
important que nous soyons capable de décrire ces dépendances en Q2 et en kT sans ajuster
les paramètres. Rappelons qu’ils ont été ajustés pour décrire la dépendance en x des données
antérieures.

Nous allons finalement comparer nos prédictions avec la section efficace triplement dif-
férentielle dσ/dxdQ2dk2

T mesurée par la collaboration H1. L’intérêt de cette observable est
qu’elle a été mesurée avec 9 coupures différentes sur la variable r≡k2

T /Q2 de 0.1<r < 1.8 à
9.5<r<80. Cela permet de tester les limites de nos paramétrisations qui sont supposées être
valides pour r∼ 1. En effet, elles ne prennent pas en compte des effets qui peuvent jouer un
rôle important quand r¿1 ou rÀ1. De telles situations créent une hiérarchie des impulsions
transverses des gluons libérés à des rapidités inférieures à celles du jet vers l’avant. Cette
hiérarchie est à l’origine de contributions que notre approche ne prend pas en compte [XVII].

La comparaison avec les données est montrée sur la Figure 5.4 et la tendance attendue est
confirmée. Les cas pour lesquels r∼1 sont bien décrits par nos paramétrisations des effets de
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Fig. 5.4 – La section efficace dσ/dxdQ2dk2
T dans la production de jet vers l’avant en diffusion

profondément inélastique. Les points de mesure viennent de la collaboration H1. Les courbes
sont des comparaisons avec les prédictions BFKL (lignes pleines) et celles du modèle de satu-
ration (lignes tiretées et en pointillé pour les paramétrisations faible et forte respectivement).
Dans le régime r≡k2

T /Q2∼1 pour lequel nos paramétrisations sont valides, il y a bon accord
avec les données. Dans le régime rÀ1, nos paramétrisations ne reproduisent pas les données,
comme prévu à cause de la hiérarchie entre les échelles Q2 et k2

T .

QCD à haute énergie, alors que les autres ne le se sont pas : pour ceux-ci, les prédictions sont
au dessus des données, indiquant que la croissance BFKL vers les petites valeurs de x est trop
importante. Au contraire, quand r∼ 1, les données montrent que la resommation BFKL est
nécessaire. Les cas avec r À 1 montrent aussi une limitation des modèles de saturation car
la paramétrisation saturation forte est au dessus de la paramétrisation saturation faible. Ceci
indique que les modèles de saturation ne sont pas satisfaisants lorsque k2

T ÀQ2.

Un dernier commentaire s’impose sur les paramétrisations de saturation. Contrairement
à la formule BFKL (5.12) qui est une prédiction robuste de la QCD, la formule (5.19) vient
d’un modèle phénoménologique. Le fait qu’elle décrive correctement les données n’implique
pas les mêmes conclusions. Cela montre juste que, comme c’est le cas pour de nombreuses
observables, les données sont compatibles avec des effets de saturation même pour des énergies
auxquelles ils ne sont pas nécéssaires. Autrement dit, aux énergies accessibles aujourd’hui, les
jets vers l’avant ne permettent pas de distinguer le régime d’énergie BFKL du régime de
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Fig. 5.5 – Production de jets de Mueller-Navelet dans une collision hadron-hadron. Les jets
mesurés sont indiqués par des flêches, Q1 et Q2 sont des coupures inférieures sur leurs impul-
sions transverses k1 et k2. x1 et x2 sont les fractions d’impulsion longitudinale des jets par
rapport aux protons incidents. ∆y est l’intervalle de rapidité entre les deux jets.

saturation. Il faudrait des énergies plus importantes pour pouvoir séparer ces deux régimes.

5.3 La production de jets de Mueller-Navelet

Dans cette section nous considérons la production de jets de Mueller-Navelet dans les
collisions hadron-hadron [104]. C’est un processus étudié pour la première fois par Mueller
et Navelet, caractérisé par la production de deux jets vers l’avant (en fait un vers l’avant et
un vers l’arrière), un dans la direction de propagation du projectile, et un dans la direction
de propagation de la cible. Des premières mesures ont pu être effectuées au collisionneur
Tevatron qui réalise des collisions proton-antiproton. Les jets de Mueller-Navelet sont attendus
en grand nombre au futur collisionneur proton-proton, le LHC, qui effectuera des collisions à
des energies jamais atteintes auparavant.

Dans la limite de haute énergie, la production de jets de Mueller-Navelet est un processus
similaire à la production de jets vers l’avant en diffusion profondément inélastique. Nous ve-
nons de voir qu’au collisionneur HERA, les mesures ne permettent pas de distinguer le régime
d’énergie BFKL du régime de saturation. Notre but est d’estimer si les énergies atteintes au
LHC seront assez grandes pour pouvoir être sensibles au régime de saturation, et de proposer
des observables pour pouvoir clairement conclure sur l’origine des effets de haute énergie.

La section efficace de production de jets de Mueller-Navelet est obtenue en mesurant les
deux jets vers l’avant et en restant inclusif par rapport aux autres particules. En intégrant sur
les angles azimuthaux des impulsions des jets, on obtient une section efficace quadruplement
différentielle. En appelant q1 et q2 les tri-impulsions des deux jets vers l’avant, la section
efficace s’exprime en fonction de k1 = |q1| À ΛQCD et k2 = |q2| À ΛQCD les impulsions
transverses des jets, et de x1 = q+

1 /P+ et x2 = q−2 /Q− leur fraction d’impulsion longitudinale
par rapport aux hadrons projectile et cible. Le jet émis dans la direction de propagation du
projectile a une rapidité ymax − ln(1/x1) proche de ymax et le jet émis dans la direction de
propagation de la cible a une rapidité ymin +ln(1/x2) proche de ymin. Dans la limite de haute
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énergie, la différence de rapidité entre les deux jets ∆y = Y + ln(x1x2) atteint de grandes
valeurs.

La production de jets de Mueller-Navelet est représentée Figure 5.5, où les variables ci-
nématiques sont indiquées. Comme dans le papier original [104], nous allons considérer la
section efficace intégrée par rapport aux impulsions transverses des jets k1 et k2, avec des
coupures inférieures que nous dénoterons Q1 et Q2. Ces coupures expérimentales k1 >Q1 et
k2 >Q2 sont nécessaires pour effectuer la mesure. Après intégration, la section efficace devient
doublement différentielle par rapport à x1 et à x2 :

d(2)σpp→JXJ

dx1dx2
=

∫ ∞

Q2
1

dk2
1

∫ ∞

Q2
2

dk2
2

d(4)σpp→JXJ

dx1dk2
1dx2dk2

2

. (5.20)

En appelant
√

s l’énergie totale de la collision, l’intervalle de rapidité entre les jets est ∆y =
ln(x1x2s/(Q1Q2)). Rappelons que la rapidité totale Y est définie aux incertitudes près dues à
la valeur de k0, l’impulsion transverse typique des particules de l’état final (voir la discussion
du Chapitre 1). Dans la limite de haute énergie, ces incertitudes sont négligeables par rapport
à la valeur de Y. Nous avons choisi k2

0 = Q1Q2.

5.3.1 Prédictions de la QCD à haute énergie

Nous considérons des valeurs de Q1 et Q2 dans le régime perturbatif, ainsi que des valeurs
de x1 et x2 assez grandes pour pouvoir négliger les effets dûs à de grandes densités de gluons
dans le projectile ou la cible. Pour chacun des deux jets vers l’avant, la formule (5.6) est donc
utilisable. En la symétrisant de manière à obtenir une émission de jet à la fois pour le projectile
et pour la cible, on obtient [IV] la section efficace d(4)σpp→JXJ/(dx1dk2

1dx2dk2
2). En effectuant

ensuite l’intégration (5.20), la section efficace pour la production de jets de Mueller-Navelet
s’écrit [I] :

d(2)σpp→JXJ

dx1dx2
= 4N2

c Q1Q2feff (x1, Q
2
1)feff (x2, Q

2
2)

∫ ∞

0
dr J1(Q1r)

∫ ∞

0
dr̄ J1(Q2r̄)

σ(gg)(gg)(r, r̄, ∆y) . (5.21)

Cette formule est valable dans la limite de haute énergie avec l’intervalle de rapidité
entre les deux jets ∆y suffisamment grand. Comme dans la section précédente, feff est la
distribution de partons effective (5.5). Signalons que pour effectuer les intégrations sur k1

et k2, nous avons remplacer feff (x1, k
2
1)feff (x2, k

2
2) par feff (x1, Q

2
1)feff (x2, Q

2
2). Ceci est

justifié car la fonction feff (x, k2) varie peu avec k2. σ(gg)(gg)(r, r̄, ∆y) est la section efficace
totale dans la collision de deux dipôles de gluons gg de taille r et r̄ avec une rapidité totale
∆y. Chaque dipôle de gluon décrit de manière effective l’émission d’un jet, comme expliqué
dans le Chapitre 2. La production de jets de Mueller-Navelet est ainsi exprimée en termes de
σ(gg)(gg) qui contient la dynamique de la QCD à haute énergie. Comme pour la production
de jet vers l’avant en diffusion profondément inélastique discutée précédemment, le problème
est analogue à celui de la diffusion onium-onium. Dans un régime d’énergie intermédiaire,
σ(gg)(gg) est donnée par l’équation BFKL puis pour de plus hautes énergies, on entrera dans
un régime de saturation dû aux effets de grande densité de gluons. Dans la suite, nous donnons
les prédictions du domaine d’énergie BFKL nous proposons une paramétrisation pour étudier
le régime de saturation.

Insistons sur le fait que les grandes densités de gluons ne proviennent pas directement
de la fonction d’onde de la cible, comme précisé ci-dessus. Elles proviennent de la fonction
d’onde du dipôle de gluons de taille r̄ qui décrit l’émission du jet d’impulsion q2, et sont
sondées par le dipôle de gluons de taille r qui décrit l’émission du jet d’impulsion q1. Un
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dipôle gg est similaire à un dipôle qq̄, c’est-à-dire à un onium. En augmentant ∆y, la densité
de gluons dans sa fonction d’onde augmente. En fait le problème est symétrique et les effets
de densité peuvent être aussi décrits comme provenant du dipôle gg qui décrit l’émission du
jet d’impulsion q1 et sondés par le dipôle gg qui décrit l’émission du jet d’impulsion q2.

Le régime de l’évolution BFKL

Dans le régime d’énergie de l’évolution BFKL pour lequel les effets de densité ne sont pas
encore importants, σ(gg)(gg) est connue de manière exacte. Tout d’abord, la section efficace à
l’ordre dominant par rapport à αs est connue, car c’est un processus purement perturbatif (en
dehors d’un facteur de couleur, elle est identique à σ(qq̄)(gg), voir formule (5.10)). Ensuite, à
partir de la solution de l’équation BFKL, on peut évoluer cette condition initiale pour obtenir :

σBFKL
(gg)(gg)(r, r̄, Y ) =

2πNcα
2
s

CF
r2

∫
dγ

2iπ

(r̄/r)2γ

γ2(1−γ)2
eᾱχ(γ)Y . (5.22)

En utilisant la formule (5.21), on peut écrire la section efficace pour la production de jets de
Mueller-Navelet dans le domaine d’énergie de l’évolution BFKL :

dσBFKL

dx1dx2
=

32πN3
c α2

s

CF Q2
1

feff (x1, Q
2
1)feff (x2, Q

2
2)

∫
dγ

2iπ

(Q1/Q2)
2γ

γ(1−γ)
eᾱχ(γ)∆y . (5.23)

On montre facilement que le résultat est identique à celui obtenu en utilisant le formalisme
de la kT−factorisation [104], dans lequel nous rappelons que l’interaction entre le projectile
et la cible est restreint à un échange de deux gluons. Le seul paramètre indéterminé dans
la formule (5.23) est ᾱ qui apparaît dans l’exponentielle. En s’appuyant sur l’analyse de la
section précédente, nous attribuons à ce paramètre la valeur effective ᾱ=0.16, ajustée sur les
données pour la production de jets vers l’avant en diffusion profondément inélastique.

Le régime de saturation

La section efficace σsat
(gg)(gg) est inconnue dans le régime de saturation, pour lequel les effets

dûs à une grande densité de gluons sont importants. Pour prendre en compte des effets de
saturation, nous proposons la paramétrisation suivante, introduite dans [I] :

σsat
(gg)(gg)(r, r̄, Y ) =

4πNcα
2
s

CF
σ0

(
1− exp

(
−r2

eff (r, r̄)
4R2

s(Y )

))
. (5.24)

En dehors de la normalisation, cette paramétrisation est identique à celle utilisée dans la
section précédente (voir la formule (5.15)) : le rayon effectif reff est défini par la formule
(5.16) et le rayon de saturation par la formule (5.17). En insérant (5.24) dans (5.21), nous
obtenons la paramétrisation suivante pour la section efficace de production de jets de Mueller-
Navelet dans le régime de saturation [I] :

dσsat

dx1dx2
=

16πN3
c α2

sσ0

CF
feff (x1, Q

2
1)feff (x2, Q

2
2)

{
1− 2R2

s(∆y)Q1Q2

∫ ∞

1

du

1 + ln(u)

I1

(
2Q1Q2uR2

s(∆y)
1 + ln(u)

)[
exp

(
−Q2

1 + u2Q2
2

1 + ln(u)
R2

s(∆y)
)

+ exp
(
−Q2

2 + u2Q2
1

1 + ln(u)
R2

s(∆y)
)]}

.(5.25)

Les paramètres sont λ, Y0 et la normalisation σ0. Dans ce qui suit, nous leur attribuons
les valeurs obtenues au chapitre précédent. Pour le cas saturation forte, on a λ = 0.402 et
Y0 =−0.82 et pour le cas saturation faible, on a λ=0.370 et Y0 =8.23. La normalisation n’est
a priori pas déterminée, mais nous la fixons de telle sorte que pour des grandes impulsions
et des petites valeurs de ∆y, nous obtenions le résultat prédit pour le régime de l’évolution
BFKL.
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5.3.2 Phénoménologie

Nous souhaitons étudier la dépendance des sections efficaces (5.23) et (5.25) en fonc-
tion de l’intervalle de rapidité ∆y. Nous souhaitons considérer des grandes valeurs de ∆y,
pour pouvoir observer la croissance de la section efficace en fonction de ∆y due à l’évolution
BFKL, puis ensuite le ralentissement de cette croissance dû à la saturation. Malheureusement
ces observations ne sont pas possibles directement avec l’observable d(2)σpp→JXJ/dx1dx2. Le
problème est le suivant : ∆y grand implique des grandes valeurs de x1 et x2. Quand ces va-
riables s’approchent de 1, leur valeur maximale, ∆y grandit mais la section efficace décroît
car son comportement est complétement dominé par les distributions de partons feff (x1, Q

2
1)

et feff (x2, Q
2
2). Ces dernières sont très fortement décroissantes quand x1 et x2 s’approche de

1, elles compensent la croissance de la section efficace due à l’évolution BFKL.
Pour illustrer cette situation de manière quantitative, nous choisissons de fixer

√
s =

14 TeV, la valeur maximale de l’énergie au LHC. Signalons que la normalisation absolue de
nos prédictions est fixée pour reproduire les données du Tevatron mesurées avec l’énergie√

s = 1.8 TeV et publiées dans [105]. Ces données sont caractérisées par des barres d’erreur
assez importantes ce qui implique une incertitude non négligeable sur la normalisation des
prédictions pour le LHC. L’ordre de grandeur des sections efficaces est cependant indicatif.
Introduisons les rapidités des deux jets :

y1 = ln
(

x1
√

s

Q1

)
, y2 = − ln

(
x2
√

s

Q2

)
. (5.26)

Plaçons nous dans une situation pour laquelle la cinématique d’un des jets est fixée (Q2 =
30 GeV et y2 =−4.5) et regardons la dépendance de la section efficace

d(2)σpp→JXJ

dy1dy2
= x1x2

d(2)σpp→JXJ

dx1dx2
(5.27)

en fonction des variables cinématiques de l’autre jet, y1 et Q1.

Sur la figure 5.6, nous représentons les résultats obtenus avec la prédiction du régime de
l’évolution BFKL (formule (5.23)) et avec la paramétrisation du régime de saturation (formule
(5.25)). Les différents graphes montrent la dépendance par rapport à y1 pour différentes valeurs
de Q1. On observe le comportement attendu : la section efficace décroît très rapidement quand
x1 s’approche de 1 (correspondant à y1 s’approchant de la limite cinématique, voir les formules
(5.26)). Pour chaque valeur de Q1 sur la figure 5.6, on ne peut pas vraiment voir de différence
de comportement entre la courbe en ligne pleine et la courbe tiretée. Par contre plus Q1 est
petit, plus les courbes sont distinctes. Ceci est un signe que, d’après notre paramétrisation,
le régime de saturation devrait être accessible au LHC. Dans le cas de la paramétrisation des
effets de saturation, nous n’avons montré que le cas saturation forte. Les courbes obtenues dans
le cas saturation faible apparaîtraient au milieu des courbes correspondant aux prédictions du
régime de l’évolution BFKL et des courbes correspondant au cas saturation forte.

Il est possible d’étudier le comportement de la section efficace dσ/dy1dy2 dans d’autres
situations que celle développée ici. C’est fait dans la publication [XVII] en considérant des
jets émis de façon plus symétrique par exemple. La conclusion suivante se dégage : tester
les effets dûs à la limite de haute énergie de QCD avec l’observable dσ/dy1dy2 au LHC
sera expérimentalement difficile car il faudra réaliser des mesures de précision. Insistons une
nouvelle fois sur le fait que c’est dû aux distributions de partons qui suppriment la section
efficace pour les grandes valeurs de x1 ou de x2. Obtenir une grande précision n’est pas
irréalisable à cause de la haute luminosité disponible au LHC, mais cela demandera une très
bonne compréhension des erreurs systématiques.
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Fig. 5.6 – La section efficace d(2)σpp→JXJ/dy1dy2 pour la production de jets de Mueller-
Navelet au LHC, en fonction de la rapidité d’un jet y1 pour différentes valeurs de Q1. Les
variables cinématiques de l’autre jet sont fixées à Q2 =30 GeV et y2 =−4.5. Les lignes pleines
sont les prédictions du régime de l’évolution BFKL tandis que les lignes tiretées sont obtenues
avec la paramétrisation de saturation forte.

Une observable adaptée

Il est possible de contourner le problème mentionné ci dessus, en considérant l’observable
suivante :

R∆y/∆ỹ ≡
d(2)σpp→JXJ

dx1dx2
(Q1, Q2,∆y)

/d(2)σpp→JXJ

dx1dx2
(Q1, Q2, ∆ỹ) . (5.28)

C’est un rapport de deux sections efficaces mesurées avec les variables cinématique x1, x2,
Q1 et Q2 identiques mais pour deux énergies de collision s et s̃ différentes, résultant en deux
intervalles de rapidité ∆y et ∆ỹ différents. L’avantage de cette observable est évident : elle
est indépendante des distributions de partons et permet d’étudier de manière plus directe
l’influence des effets dûs à l’évolution BFKL et au régime de saturation [I, III, 94]. Par contre,
elle impose de devoir effectuer des collisions à deux énergies différentes, en pratique cela peut
poser des difficultés.

La prédiction obtenue avec la formule (5.23) qui décrit le régime BFKL est (après une
approximation de point de selle pour la transformation de Mellin inverse) :

R∆y/∆ỹ '
√

∆ỹ

∆y

(s

s̃

)4ᾱ ln(2)
. (5.29)
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Fig. 5.7 – Les rapports de sections efficaces R8/2 et R4.6/2.4 obtenus à partir de la paramétri-
sation des effets de saturation (5.25). R4.6/2.4 est défini par les intervalles de rapidité ∆y = 4.6
et ∆y = 2.4 déjà utilisés au Tevatron, les courbes correspondantes sont celles du dessous sur
le graphe. R8/2 est défini par les intervalles de rapidité ∆y = 8 et ∆y = 2 dans l’optique
LHC, les courbes correspondantes sont les plus hautes sur le graphe. Les lignes pleines sont
obtenues avec la paramétrisation saturation forte et les lignes tiretées avec la paramétrisation
saturation faible.

Il a été possible d’effectuer des collisions proton-antiproton au collisionneur Tevatron pour
deux énergies de collision différentes :

√
s = 1.8 TeV et

√
s = 630 GeV. La vérification de la

valeur (5.29) ne fut pas un succès : les données ont indiqué une valeur pour R4.6/2.4 supé-
rieure à la prédiction [105]. Cependant, il a été discuté [106] que les mesures étaient biaisées
par l’utilisation de coupures supérieures sur l’impulsion des jets, par un choix de coupures
inférieures identiques, et par des corrections d’hadronisation.

Il serait intéressant de pouvoir mesurer le rapport (5.28) au LHC, où la production de
jets de Mueller-Navelet sera plus importante qu’au Tevatron. Cela permettrait d’améliorer
les mesures (au minimum en réduisant les erreurs statistiques) et donc de tester la prédiction
(5.29) de manière plus précise. Dans cette optique, nous souhaitons aussi tester l’influence des
effets de saturation. Pour cela, calculons le rapport R∆y/∆ỹ avec la section efficace (5.25) qui
paramétrise les effets de saturation. Les résultats pour R8/2 et R4.6/2.4 sont montrés Figure
5.7. R4.6/2.4 est défini par les intervalles de rapidité ∆y = 4.6 et ∆y = 2.4 déjà utilisés au
Tevatron et R8/2 est défini par les intervalles de rapidité ∆y = 8 et ∆y = 2 accessibles au
LHC. Nous avons représenté ces rapports en fonction de Q ≡ Q1 = Q2, ce qui permet d’être
sensible à la transition vers le régime de saturation.

Pour des grandes valeurs de Q, les sections efficaces du numérateur et dénominateur de
(5.28) sont toutes deux sensibles au régime dilué et les rapports tendent vers des valeurs
compatibles avec (5.29). Quand Q diminue, comme ∆y > ∆ỹ, la section efficace au numérateur
de (5.28) est sensible au régime de saturation avant la section efficace au dénominateur. Pour
cette raison, les rapports R8/2 et R4.6/2.4 sont clairement influencés par les effets de saturation
[I, III] : en fonction décroissante de la variable Q, les rapports décroissent jusqu’à la valeur 1.
On constate sur la figure 5.7 que cette décroissance est assez rapide.
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Signalons que les valeurs des rapports R8/2 et R4.6/2.4 pour des grandes valeurs de Q
ne sont pas exactement égales à la prédiction BFKL (5.29). Ceci est dû au fait que notre
modèle de saturation (5.24) n’est pas exactement identique aux prédictions BFKL (5.22)
dans le régime dilué. C’est aussi l’origine de la différence entre les valeurs obtenues pour le
cas saturation forte et pour le cas saturation faible. En ce qui concerne les petites valeurs de
Q, les prédictions n’ont de sens que pour Q À ΛQCD, c’est-à-dire ln(Q/Q0) > 0. Dans le cas
de la paramétrisation saturation faible, la zone de décroissance vers le régime de saturation ne
se produit pas à l’intérieur du régime de validité, par contre c’est le cas de la paramétrisation
saturation forte. Pour celle-ci, on voit aussi que dans le cas de R8/2, la décroissance commence
pour des valeurs de Q assez larges. Cela permet d’être optimiste par rapport à la possibilité
de tester des effets de saturation au LHC.

L’observable (5.28) dans la production de jet de Mueller-Navelet est bien adaptée pour
tester la limite de haute énergie de QCD dans les collisions proton-proton au LHC. Et il
existe aussi des alternatives : au lieu de mesurer des jets, la production de mesons vecteurs
vers l’avant est une observable intéressante [I]. L’intérêt est la possibilité de les détecter pour
des impulsions transverses plus faibles que dans le cas des jets, et avec une précision plus
grande. Dans l’optique de tester la limite de haute énergie de QCD, ces observations montrent
l’importance de pouvoir réaliser des collisions à des énergies différentes au LHC.
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Chapitre6
Au delà des équations B-JIMWLK
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Dans le cadre de collisions entre deux particules hadroniques (un projectile P et une cible
C), nous avons étudié dans les chapitres précédents les prédictions de la QCD dans la limite
de haute énergie. Nous avons utilisé des repères particuliers en divisant l’intervalle de rapidité
totale de la collision Y ' ln(s) de manière asymétrique : Y = YP + YC tels que YP ' 0 et
YC ' Y. Une telle configuration nous a permis de décrire le projectile par une superposition
d’états de Fock (1.18) alors que la cible habillée de nombreux gluons mous est décrite par
un champ classique (1.35). Nous avons obtenu que l’évolution de la fonction d’onde de la
cible |ΦYC [A]|2 par rapport à sa rapidité YC permet de prédire la dépendance en énergie des
observables physiques.

Jusqu’ici nous avons travaillé dans un contexte où l’équation d’évolution (2.24) de la
fonction d’onde |ΦYC [A]|2 est l’équation JIMWLK. De manière équivalente, cette évolution
est donnée par la hiérarchie d’équations de Balitsky (voir les équations (2.32) et (2.33)), écrite
pour des amplitudes de diffusion de dipôles (équivalents de projectiles tests) sur la cible. Il a
été réalisé très récemment que les équations B-JIMWLK sont en fait incomplètes. Le but de
ce chapitre est de présenter ces nouveaux développements théoriques (dans l’état actuel des
choses), ainsi que les implications phénoménologiques potentielles. Les résultats reproduits
dans ce chapitre, connus ou originaux, ont été obtenus au cours des deux dernières années.
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La première partie présente l’équation JIMWLK (2.24) discutée au Chapitre 2 et introduit
la notion de dualité entre le régime dense et le régime dilué. Cette dualité révèle que les
équations B-JIMWLK ne décrivent correctement que le régime dense et ne représentent qu’une
partie de l’équation complète. Nous reprenons les résultats de l’article [XI] et dérivons la
hiérarchie d’équations qui décrit le régime dilué. La deuxième partie discute de possibles
modifications des résultats du Chapitre 3 pour l’amplitude de dipôle 〈Txy〉Y , et de la relation
entre les collisions à haute énergie en QCD et l’équation FKPP stochastique ; les calculs
des articles [XVIII, XXII] sont présentés. Enfin la troisième partie est dédiée aux premières
études phénoménologiques dans le cadre des équations B-JIMWLK modifiées. Une nouvelle
loi d’échelle est prédite pour la diffusion profondément inélastique à très haute énergie [XIX,
XXIII], et pour la production de jets vers l’avant dans les collisions hadron-hadron [XX].

6.1 La dualité entre le régime dense et le régime dilué

D’une équation d’évolution fonctionnelle pour |ΦY [A]|2 du type (2.24), il est possible de
déduire une équation pour n’importe quelle moyenne 〈f〉Y :

d

dY
|ΦY [A]|2 = H|ΦY [A]|2 ⇒ d

dY
〈f〉Y =

∫
DA H |ΦY [A]|2 f [A] . (6.1)

Par exemple, comme signalé au Chapitre 2 dans le cas de l’amplitude de dipôle 〈Txy〉Y ,
l’équation d’évolution JIMWLK pour la fonction d’onde au carré |ΦY [A]|2 permet d’obtenir
les équations (2.32) et (2.33) de la hiérarchie de Balitsky. Nous allons à présent introduire
l’équation JIMWLK. Bien qu’il agisse sur une fonction d’onde au carré, l’opérateur H est
souvent appelé Hamiltonien dans la littérature. Nous utiliserons aussi cet abus de langage.

6.1.1 L’équation JIMWLK

Dans l’approximation des logarithmes dominants, l’équation fonctionnelle qui donne l’évo-
lution de |ΦY [A]|2 par rapport à Y est connue. Rappelons que, dans la jauge A+ = 0, le champ
Aµ

c (xν) = δµ−A−c (x+,x) représente le champ classique créé par la cible. Celle ci se déplace à
une vitesse proche de celle de la lumière le long de la direction des z négatifs, c’est-à-dire sur
le cône de lumière suivant la direction des x−. Même si avec notre choix de jauge le champ
A−c ne dépend pas de x−, c’est une fonction sur un espace quadri-dimensionnel. Dans la suite,
nous indiquons la dépendance de A−c par rapport à x− et nous introduisons le champ αc, qui
agit dans un espace tridimensionnel :

αc(x+,x) ≡ A−c (x+,x, x− = 0) ,
δ

δαc(x+,x)
αd(y+,y) = δcdδ(x+− y+)δ(2)(x− y) . (6.2)

L’équation JIMWLK s’écrit en termes de αc et de δ/δαc de la manière suivante :

HJIMWLK |ΦY [α]|2 =
∫

d2x
2π

d2y
2π

d2z
2π

(x− z) · (y− z)
(x− z)2(z− y)2

δ

δαc(x)

[
1 + W †

A(x)WA(y)

−W †
A(x)WA(z)−W †

A(z)WA(y)
]cd δ

δαd(y)
|ΦY [α]|2 (6.3)

où la dépendance des lignes de Wilson WA par rapport à αc est implicite. Dans (6.3), les
dérivées fonctionnelles δ/δαc(x) doivent être entendues comme agissant à la plus grande valeur
de x+. De manière équivalente, elles sont données par :

δ

δαc(x)
≡ lim

x+→∞
δ

δαc(x+,x)
. (6.4)

Avec l’équation (6.3), il est possible de redériver la hiérarchie d’équations de Balitsky présentée
au Chapitre 2, ceci est fait explicitement dans [22].
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6.1.2 La dualité dense-dilué

La dualité entre le régime dense et le régime dilué a été introduite par Kovner et Lublinsky
[107]. C’est une propriété de l’équation d’évolution

d

dY
|ΦY [α]|2 = H

[
iα,

δ

δα

]
|ΦY [α]|2 (6.5)

qui relie le régime dense gsα ∼ 1 au régime dilué α ∼ gs : à partir de l’Hamiltonien du régime
dense, une transformation de dualité permet de déduire l’Hamiltonien du régime dilué, et vice-
versa. Un Hamiltonien qui décrit les deux régimes de manière unifiée doit être invariant par
la transformation de dualité. Ce n’est pas le cas de HJIMWLK . Ceci a permis de comprendre
que l’équation JIMWLK est valable seulement dans le régime dense (voir aussi [108] pour
des conclusions similaires dans l’étude de l’équation BK). Nous donnons ici une dérivation
de la propriété de dualité, et à partir de l’Hamiltonien JIMWLK, nous obtenons l’équation
d’évolution (6.5) valable dans le régime dilué.

De manière générale, l’amplitude de diffusion élastique dans une collision projectile-cible
quelconque peut s’écrire

S(Y ) =
∫

Dα |ΦY−YP [α]|2 ΞYP [α] , (6.6)

S(Y ) ne dépendant pas de la valeur de YP choisie pour faire le calcul. La fonctionnelle ΞYP [α]
est l’amplitude de diffusion élastique du projectile sur une valeur particulière du champ α.
Un exemple explicite a déjà été donné dans le cas où le projectile est un onium : dans le
repère où l’onium est nu, la fonction Ξ0[α] peut être lue sur l’équation (2.20) ; dans le repère
où l’onium est habillé d’un gluon mou, la fonction ΞYP [α] peut être lue sur l’équation (2.30)
(à la différence près que ces équations donnent 1−S(Y )). Comme toute observable physique,
S(Y ) ne peut pas dépendre du repère utilisé pour la calculer :

d

dYP
S(Y ) = 0 . (6.7)

Les équations (6.5), (6.6) et (6.7) permettent d’obtenir l’équation d’évolution de ΞY [α] (en
utilisant l’intégration par partie) :

d

dY
ΞY [α] = H

[
iα,− δ

δα

]
ΞY [α] . (6.8)

La preuve de la dualité est alors basée sur les hypothèses suivantes : le projectile, qui se
déplace à une vitesse proche de celle de la lumière le long de la direction des z positifs (c’est-
à-dire sur le cône de lumière suivant la direction des x+), peut être assimilé à un courant
Jµ(xν) = δµ+T cJ+

c (xν) d’ordre gs et la fonction ΞY [α] peut être écrite de la manière suivante
[107, 109] :

ΞY [α] =
∫

DρP
∣∣ΦPY [ρP ]

∣∣2 P exp
{

i

∫
d2x dx+αc(x+,x)ρPc (x+,x)

}
(6.9)

où la densité de charge de couleur du projectile ρPc est donnée par

ρPc (x+,x) =
∫

dx−J+
c (x+,x, x−) . (6.10)

Dans la formule (6.9), la fonction
∣∣ΦPY [ρP ]

∣∣2 représente la fonction d’onde du projectile et
pondère l’intégration sur la charge de couleur ρP , tandis que l’exponentielle ordonnée en x+
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est l’élement de matrice de diffusion pour l’interaction entre la charge ρP et la champ de la
cible α. A partir des formules (6.8) et (6.9), nous obtenons

d

dY

∣∣ΦPY [ρP ]
∣∣2 = H

[
δ

δρP
,−iρP

] ∣∣ΦPY [ρP ]
∣∣2 . (6.11)

Nous avons obtenu une équation d’évolution pour la fonction d’onde du projectile dans le
régime dilué ρPc ∼ gs. La distinction entre projectile et cible étant arbitraire, cette équation
doit aussi être valable pour la fonction d’onde de la cible. Cela implique que dans le régime
ρc ∼ gs, nous avons

d

dY
|ΦY [ρ]|2 = H

[
δ

δρ
,−iρ

]
|ΦY [ρ]|2 (6.12)

où maintenant la densité de charge de couleur ρc fait référence à la cible :

ρc(x−,x) =
∫

dx+ J−c (x+,x, x−) = −
∫

dx+ ∇2A−c (x+,x, x−) , (6.13)

δ

δρc(x−,x)
ρd(y−,y) = δcdδ(x− − y−)δ(2)(x− y) . (6.14)

Le courant J−c (xµ) permet d’obtenir à la fois ρc(x−,x) et αc(x+,x). La fonction d’onde de la
cible peut être exprimée en fonction de ces deux variables de manière équivalente.

Introduisons la transformation suivante, dite transformation de dualité :

iαc(x+,x) ⇐⇒ δ

δρc(x−,x)
,

δ

δαc(x+,x)
⇐⇒ −iρc(x−,x) . (6.15)

Un Hamiltonien qui décrit les deux régimes de manière unifiée doit être invariant sous cette
transformation (voir [110, 111]). Comme précisé ci-dessus, ce n’est pas le cas de HJIMWLK ,
qui n’est valable que dans le régime dense. En appliquant la transformation de dualité (6.15),
nous obtenons l’équation qui décrit le régime dilué :

Hdilué|ΦY [ρ]|2 = −
∫

d2x
2π

d2y
2π

d2z
2π

(x− z) · (y− z)
(x− z)2(z− y)2

ρc(x)
[
1 + W̃ †

A(x)W̃A(y)

−W̃ †
A(x)W̃A(z)− W̃ †

A(z)W̃A(y)
]cd

ρd(y)|ΦY [ρ]|2 (6.16)

où les charges de couleur ρc(x) doivent être entendues comme agissant à la plus grande valeur
de x−. De manière équivalente, elles sont données par :

ρc(x) = lim
x−→∞

ρc(x−,x) . (6.17)

Dans (6.16), les lignes de Wilson adjointes duales W̃A dépendent implicitement de δ/δρ et
sont données par

W̃A[δ/δρ](x) = P̃ exp
{

gs

∫
dx−T̃ c δ

δρc(x−,x)

}
. (6.18)

P̃ indique qu’il faut ordonner les dérivées fonctionnelles δ/δρc selon leurs valeurs de x−, la plus
petite étant placée à gauche. Alors que l’équation JIMWLK (6.3) est naturellement exprimée
en termes de α(x+,x), le champ créé par la cible et sur lequel le projectile interagit, l’équation
duale (6.16) est exprimée en terme de ρ(x−,x), la densité de charge de couleur de la cible.
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6.1.3 La hiérachie duale de la hiérachie de Balitsky

L’équation JIMWLK (6.3) est équivalente à la hiérarchie de Balitsky (voir les équations
(2.32) et (2.33)), écrites pour des amplitudes de diffusion de projectiles particuliers, des di-
pôles. Nous allons maintenant dériver la hiérarchie d’équations équivalente à l’équation (6.16),
duale de l’équation JIMWLK. Pour ce faire, nous nous plaçons dans le régime où la cible est
diluée. Nous devons aussi considérer un modèle particulier dans lequel la cible est composée
de dipôles [109, 112, XI, 113]. Dans le cadre de ce modèle, les dipôles jouent le rôle des gluons
mous qui habillent la cible et la fonction d’onde |Φd

YC [ρ]|2 s’écrit

|Φd
YC [ρ]|2 ≡

∞∑

N=1

∫ (
N∏

i=0

d2xi

)
PN ({xi}, YC)

N∏

i=1

Rxi−1xi [δ/δρ]δ[ρ] . (6.19)

Dans cette formule, PN ({xi}, YC) dénote la probabilité que la cible, de rapidité YC , soit habillée
de N dipôles avec les coordonnées transverses {(xi−1,xi)} (i = 1..N). L’opérateur Rxy associé
à chaque dipôle est donné par :

Rxy[δ/δρ] =
1

Nc
Tr

(
W̃ †

F [δ/δρ](y)W̃F [δ/δρ](x)
)

(6.20)

avec la ligne de Wilson duale W̃F obtenue de la manière suivante

W̃F [δ/δρ](x) = P̃ exp
{

gs

∫
dx−T c δ

δρc(x−,x)

}
. (6.21)

Une hiérarchie d’équations peut alors être établie à partir de l’équation (6.16). En agissant
sur la configuration à N dipôles, nous obtenons la n-ième équation :

Hdilué
N∏

i=1

Rxi−1xi [δ/δρ]δ[ρ] = −
∫

d2x
2π

d2y
2π

d2z
2π

(x− z) · (y− z)
(x− z)2(z− y)2

ρc(x)

[
1 + W̃ †

A(x)W̃A(y)− W̃ †
A(x)W̃A(z)− W̃ †

A(z)W̃A(y)
]cd

ρd(y)
N∏

i=1

Rxi−1xi [δ/δρ]δ[ρ] . (6.22)

En appendice, nous explicitons la dérivation qui permet d’écrire la première équation de
la hiérarchie de la façon suivante (en gardant la dépendance de Rxy par rapport à [δ/δρ]
implicite) :

HRxyδ[ρ] = ᾱ

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
[RxzRzy −Rxy] δ[ρ] . (6.23)

Ce calcul est fait dans les articles [XI, 113] ainsi que celui qui donne la deuxième équation de
la hiérarchie sous la forme

HRxzRzyδ[ρ] = ᾱ

∫
d2z′

2π

[
(x− z)2

(x− z′)2(z′ − z)2
(
Rxz’Rz’zRzy −RxzRzy

)

+
(z− y)2

(z− z′)2(z′ − y)2
(
RxzRzz’Rz’y −RxzRzy

)
− 1

N2
c

(
(x− z)2

(x− z′)2(z′ − z)2

+
(z− y)2

(z− z′)2(z′ − y)2
− (x− y)2

(x− z′)2(z′ − y)2

)(
2Rxy −Qxzz’yzz’ −Qxz’zyz’z

)]
δ[ρ] . (6.24)

Dans cette équation, en plus des dipôles Rxy, il apparaît une trace de six lignes de Wilson
modifiées :

Quvwyxz[δ/δρ] =
1

Nc
Tr

(
W̃ †

F (u)W̃F (v)W̃ †
F (w)W̃F (x)W̃ †

F (y)W̃F (z)
)

, (6.25)
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sous-dominantes dans un comptage de puissance en 1/Nc. La limite de grand Nc permet donc
de restreindre la hiérarchie aux dipôles.

Cette nouvelle hiérarchie peut être considérée comme duale de la hiérarchie de Balitsky.
En effet, elles sont identiques sous la tranformation (en changeant aussi (1−Q)δ[ρ] en 〈M〉Y )

(1−Rx1y1
) . . . (1−Rxnyn

)δ[ρ] ⇐⇒ 〈
Tx1y1

. . . Txnyn

〉
Y

. (6.26)

La hiérarchie de Balitsky décrit l’évolution d’amplitudes de diffusion de projectiles (en l’occu-
rence des dipôles) sur la cible dans le régime dense lorsque α est d’ordre 1/gs. Cette nouvelle
hiérarchie décrit l’évolution de la fonction d’onde de la cible dans le régime dilué lorsque ρ
est d’ordre gs (en l’occurence dans un modèle où elle est composée de dipôles).

6.2 Une équation de Langevin pour l’évolution vers les hautes énergies

Simplifions pour commencer les équations de la hiérarchie du régime dilué en prenant la
limite de grand Nc : toutes les équations s’obtiennent alors à partir de la première équation
(6.23), en utilisant une formule similaire à celle de la dérivée d’un produit. Par exemple, la
deuxième équation (6.24) s’écrit

HRxzRzyδ[ρ] = (HRxz)Rzyδ[ρ] + Rxz(HRzy)δ[ρ] . (6.27)

Il est ainsi possible d’écrire l’équation d’évolution de |Φd
YC [ρ]|2, la fonction d’onde de la cible

(6.19) dans le modèle des dipôles, de la manière suivante :

d

dY
|Φd

Y [ρ]|2 = ᾱ
∞∑

N=1

∫ (
N∏

i=0

d2xi

)
PN ({xi}, Y )

N∑

i=1

∫
d2z
2π

(xi−1 − xi)2

(xi−1 − z)2(z− xi)2



i−1∏

j=1

Rxj−1xj




[
Rxi−1zRzxi −Rxi−1xi

]



N∏

j=i+1

Rxj−1xj


 δ[ρ] . (6.28)

Dans la limite de grand Nc, il est possible de traduire l’équation (6.28) du régime dilué
pour la fonction d’onde de la cible en équations pour les amplitudes de diffusion de (dipôles)
projectiles sur la cible. En combinant les équations obtenues, valables dans le régime dilué,
avec les équations déjà connues dans le régime dense (c’est-à-dire les équations de Balitsky
dans la limite de grand Nc), nous pouvons alors obtenir une hiérachie d’équations valable à la
fois dans le régime dense et dans le régime dilué. Le but de cette section est de dériver cette
hiérarchie, proposée par Iancu et Triantafyllopoulos [114].

6.2.1 Les équations du modèle des dipôles

L’équation (6.28) est équivalente [114, 115, 116] à l’équation maîtresse suivante pour les
probabilités PN ({xi}, Y ) = PN (x0, . . . ,xN ; Y ) du modèle des dipôles (6.19) :

d

dY
PN (x0, . . . ,xN ;Y ) = −ᾱ

[
N∑

i=1

∫
d2z
2π

(xi−1 − xi)2

(xi−1 − z)2(z− xi)2

]
PN (x0, . . . ,xN ;Y )

+
ᾱ

2π

N−1∑

i=1

(xi−1 − xi+1)2

(xi−1 − xi)2(xi − xi+1)2
PN−1(x0, . . . ,xi−1,xi+1, . . . ,xN ; Y ) , (6.29)

avec P0 ≡ 0. Introduisons à présent la densité de dipôles dans la cible, définie par

n(x,y; YC) =
∞∑

N=1

∫ (
N∏

i=0

d2xi

)
PN ({xi}, YC)

N∑

i=1

δ(2)(xi−1 − x)δ(2)(xi − y) . (6.30)
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En utilisant l’équation maîtresse (6.29) pour les probabilités PN , nous obtenons l’équation
suivante pour la densité de dipôle :

d

dY
n(x,y; Y ) = ᾱ

∞∑

N=1

∫ (
N∏

i=0

d2xi

)
PN ({xi}, Y )

N∑

i=1

∫
d2z
2π

(xi−1 − xi)2

(xi−1 − z)2(z− xi)2
[
δ(2)(xi−1 − x)δ(2)(z− y) + δ(2)(z− x)δ(2)(xi − y)− δ(2)(xi−1 − x)δ(2)(xi − y)

]

= ᾱ

∫
d2z
2π

[
(x− z)2n(x, z; Y )
(x− y)2(y− z)2

+
(z− y)2n(z,y; Y )
(z− x)2(x− y)2

− (x− y)2n(x,y; Y )
(x− z)2(z− y)2

]
. (6.31)

Par souci de simplicité, introduisons le noyau Kxyz pour écrire l’équation d’évolution (6.31)
de la densité n(x,y; Y ) de la manière suivante :

d

dY
n(x,y; Y ) = ᾱ

∫
d2z
2π

Kxyz ⊗ n(x,y; Y ) . (6.32)

On peut montrer [109] que cette équation est équivalente à l’équation BFKL (3.2) étudiée au
Chapitre 3, impliquant que sa solution est donnée par (3.13) (en y remplaçant NY (x,y) par
n(x,y;Y )) et est donc exponentiellement croissante avec la rapidité : n(Y ) ∼ eᾱχ(1/2)Y avec
χ(γ) donné par la formule (3.14).

De manière similaire à (6.30), nous pouvons définir des densités nk de k−uplets de dipôles
dans la cible. Par exemple, la densité de paire de dipôle est définie par

n2(x,y;x′,y′;YC) =
∞∑

N=1

∫ (
N∏

i=0

d2xi

)
PN ({xi}, YC)

N∑
i,j=1

i6=j

δ(2)(xi−1 − x)δ(2)(xi − y)

δ(2)(xj−1 − x′)δ(2)(xj − y′) . (6.33)

En utilisant l’équation maîtresse (6.29), il est possible de dériver les équations d’évolution des
densités nk [117]. Pour exemple, nous donnons l’équation pour n2 :

d

dY
n2(x,y;x′,y′;Y ) = ᾱ

∫
d2z
2π

(
Kxyz + Kx′y′z

)⊗ n2(x,y;x′,y′;Y )

+
ᾱ

2π

[
(x− y′)2n(x,y′; Y )
(x− x′)2(x′ − y′)2

δ(2)(x′ − y) +
(x′ − y)2n(x′,y;Y )
(x′ − x)2(x− y)2

δ(2)(x− y′)
]

. (6.34)

Les termes contenant n dominent la croissance de n2 avec la rapidité tant que n2(Y ) < n(Y ),
puis pour de plus grandes rapidités, la croissance est de type BFKL avec n2(Y ) ∼ e2ᾱχ(1/2)Y .

6.2.2 La hiérarchie de Balitsky complétée

Il est maintenant possible de traduire les équations pour les densités nk(Y ) en équations
pour les amplitudes de diffusion

〈
T k

〉
Y

de k dipôles sur la cible, où T représente l’amplitude
Txy[α] introduite au Chapitre 2 (voir la formule (2.21)). En effet, dans le cadre du modèle des
dipôles (6.19), le lien entre les densités nk(Y ) et les amplitudes

〈
T k

〉
Y

est assez simple.

Lien entre densités nk(Y ) et amplitudes
〈
T k

〉
Y

Plaçons nous dans la jauge A+ = 0 pour laquelle la densité de charge ρc ne dépend pas
de x−. Elle est alors reliée au champ αc de la manière suivante :

ρc(x) = −∇2

∫
dx+ α−c (x+,x) . (6.35)
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En utilisant ∇2 ln(x2) = 4πδ(2)(x), la relation entre ρc et αc peut s’inverser :
∫

dx+ α−c (x+,x) = −
∫

d2y
4π

ln
(
(x− y)2

)
ρc(y) . (6.36)

Il est possible d’exprimer Txy[α] en terme de ρc, dans le régime dilué (voir la formule (3.3)
valable lorsque α ∼ gs) :

Txy[α] =
παs

Nc

∫
d2u
4π

d2v
4π

ln
(

(x− u)2

(y− u)2

)
ln

(
(x− v)2

(y− v)2

)
ρc(u)ρc(v) +O(g2

sρ
2) . (6.37)

En utilisant ensuite
∫

d2u ρc(u) = 0 (la cible est non colorée), nous obtenons

〈Txy〉Y = − 1
g2
sNc

∫
d2ud2vA0(x,y|u,v) 〈ρc(u)ρc(v)〉Y (6.38)

où nous avons introduit

A0(x,y|u,v) =
α2

s

8
ln2

(
(x− u)2(y− v)2

(y− u)2(x− v)2

)
. (6.39)

D’autre part, dans le modèle des dipôles nous avons

〈ρc(u)ρc(v)〉Y =
∫

Dρ ρc(u)ρc(v)|Φd
Y [ρ]|2 , (6.40)

où nous rappelons que la fonction |Φd
Y [ρ]|2 est donnée par la formule (6.19). En utilisant pour

u 6= v (voir la formule (6.119) dans l’appendice) :

− 1
g2
sNc

ρc(u)ρc(v)Rxyδ[ρ] =
CF

Nc
Rxy

(
δ(2)(u− x)δ(2)(v− y) + δ(2)(u− y)δ(2)(v− x)

)

(6.41)
et le fait que dans la limite de grand Nc, les termes ρc(u)ρc(v)

∏N
i=1 Rxi−1xi . . . δ[ρ] se cal-

culent à partir de (6.41) avec une formule similaire à celle de dérivée d’un produit [113], nous
obtenons :

− 1
g2
sNc

〈ρc(u)ρc(v)〉Y =
∞∑

N=1

∫ (
N∏

i=0

d2xi

)
PN ({xi}, YC)

(
N∑

i=1

δ(2)(xi−1 − u)δ(2)(xi − v)

+δ(2)(xi−1 − v)δ(2)(xi − u)
)∫

Dρ

N∏

i=1

Rxi−1xi [δ/δρ]δ[ρ]

=
1
2
(n(u,v; Y )+n(v,u; Y )) .(6.42)

Finalement, le lien entre la densité de dipôles dans la cible n(Y ) et l’amplitude de diffusion
d’un dipôle projectile sur la cible 〈T 〉Y s’écrit

〈Txy〉Y =
∫

d2ud2vA0(x,y|u,v)n(u,v;Y ) . (6.43)

Il est maintenant manifeste que la fonction A0(x,y|u,v) représente l’amplitude de diffusion
élastique (à l’ordre dominant par rapport à αs) dans la collision du dipôle (x,y) avec le
dipôle (u,v). Cette quantité peut aussi s’obtenir en calculant directement le processus (voir
par exemple [90]). Il sera utile dans la suite d’inverser (pour x 6= y) la relation (6.43) :

n(x,y; Y ) + n(y,x; Y ) =
1

4π2α2
s

∇2
x∇2

y 〈Txy〉Y . (6.44)
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Le lien (6.43) entre 〈T 〉Y et n(Y ) est connu depuis les premières études du régime dilué et
de l’équation BFKL, il permet de retrouver que dans le régime dilué, 〈Txy〉Y obéit à l’équation
(3.2) discutée au Chapitre 3. Nous verrons que dans le cas des amplitudes

〈
T k

〉
Y

, l’équation
BFKL n’est plus suffisante pour décrire le régime dilué (si k > 1). Un calcul similaire à celui
effectué pour obtenir (6.43) donne le lien entre la densité n2(Y ) et l’amplitude

〈
T 2

〉
Y

:

〈
TxyTx′y′

〉
Y

=
∫

d2ud2vd2u′d2v′A0(x,y|u,v)A0(x′,y′|u′,v′)n2(u,v;u′,v′;Y )

+
∫

d2ud2vA0(x,y|u,v)A0(x′,y′|u,v)n(u,v; Y ) . (6.45)

L’interprétation physique est claire : le terme qui contient n2 décrit l’interaction entre les
deux dipôles projectiles (x,y) et (x′,y′) avec deux des dipôles qui habillent la cible (u,v) et
(u′,v′) distincts, tandis que le terme qui contient n décrit l’interaction entre les deux dipôles
projectiles (x,y) et (x′,y′) avec le même dipôle de la cible (u,v). Cette deuxième contribution
est sous-dominante dans la limite de haute énergie [XI, 113] et nous la négligerons dans la
suite. C’est le cas parce que, comme expliqué précédemment, n croît avec Y comme eᾱχ(1/2)Y

alors que n2 croît avec Y comme e2ᾱχ(1/2)Y . De manière plus générale, le lien entre la densité
nk(Y ) et l’amplitude

〈
T k

〉
Y

s’écrit de manière schématique
〈
T k

〉
Y

=
∫

Ak
0 nk(Y ).

Une nouvelle hiérarchie d’équations

A partir de la hiérarchie pour les densités nk, on obtient finalement la hiérarchie pour les
amplitudes

〈
T k

〉
Y

dans le régime dilué. Dans le cas de 〈Txy〉Y , on obtient l’équation BFKL
(3.2), en accord avec les termes contenant 〈T 〉Y dans la première équation de la hiérarchie de
Balitsky (2.32). Dans le cas de 〈TxzTzy〉Y , nous obtenons les termes contenant

〈
T 2

〉
Y

dans
la deuxième équation de la hiérarchie de Balitsky (2.33), plus la correction suivante :

d

dY
〈TxzTzy〉Y

∣∣∣∣
corr

=
ᾱ

α2
s

∫
d2u
2π

d2v
2π

d2z
2π

(u− v)2

(u− z)2(z− v)2
A0(x,y|u, z)A0(x′,y′|z,v)

∇2
u∇2

v 〈Tuv〉Y . (6.46)

De manière générale, dans l’équation pour
〈
T k

〉
Y

: les termes contenant
〈
T k

〉
Y

sont les
mêmes que ceux des équations de Balitsky (simplifiées avec la limite de grand Nc), il n’y a
pas de termes contenant

〈
T k+1

〉
Y

, et il y a un terme contenant
〈
T k−1

〉
Y

. Cette hiérarchie
d’équations, dérivée dans le cadre du modèle des dipôles (6.19) pour la cible et dans la limite
de grand Nc, est valable dans le régime dilué α ∼ gs. Au contraire la hiérachie de Balitsky est
valable dans le régime dense αgs ∼ 1.

Pour obtenir une hiérachie d’équation valable à la fois dans le régime dense et dans le
régime dilué, il a été proposé de combiner [114, 118] les deux hiérarchies en ne gardant qu’une
seule fois les termes communs de type BFKL. La première équation de cette nouvelle hiérachie
est la même que la première équation de la hiérarchie de Balitsky :

d 〈Txy〉Y
dY

= ᾱ

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
(〈Txz〉Y + 〈Tzy〉Y − 〈Txy〉Y − 〈TxzTzy〉Y

)
. (6.47)

La deuxième équation de la hiérarchie est par contre différente :

d

dY
〈TxzTzy〉Y = ᾱ

∫
d2z′

2π

[
(x− z)2

(x− z′)2(z′ − z)2
(
〈Txz’Tzy〉Y + 〈Tz’zTzy〉Y − 〈TxzTzy〉Y

−〈Txz’Tz’zTzy〉Y
)

+
(z− y)2

(z− z′)2(z′ − y)2
(
〈TxzTzz’〉Y + 〈TxzTz’y〉Y − 〈TxzTzy〉Y

−〈TxzTzz’Tz’y〉Y
)]

+
d

dY
〈TxzTzy〉Y

∣∣∣∣
corr

,(6.48)
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avec le terme supplémentaire donné par la formule (6.46). En général, l’équation pour
〈
T k

〉
Y

contient des termes de type BFKL contenant
〈
T k

〉
Y

, des termes contenant
〈
T k+1

〉
Y
provenant

uniquement du régime dense, et des termes contenant
〈
T k−1

〉
Y

provenant uniquement du
régime dilué.

6.2.3 Une équation de Langevin

De manière remarquable, la nouvelle hiérarchie que nous venons de dériver est équiva-
lente à une équation de Langevin. Pour montrer cela, étudions d’abord un cas simplifié sans
dimensions transverses. Considérons une fonction stochastique TY qui obéit à l’équation de
Langevin

dTY

dY
= A[TY ] +

√
2B[TY ] ν(Y ) (6.49)

avec A et B des polynômes et où le bruit ν est de moyenne nulle et autocorrélé de la façon
suivante :

〈ν(Y )〉 = 0 〈ν(Y )ν(Y ′)〉 = δ(Y − Y ′) . (6.50)

Pour chaque réalisation du bruit, la solution de (6.49) est une réalisation de TY . En moyennant
sur l’ensemble des réalisations il est possible de construire, à partir de TY , les fonctions 〈Tn

Y 〉.
On montre alors [119] que ces fonctions vérifient la hiérarchie d’équations

d〈Tn
Y 〉

dY
= n〈A[TY ]Tn−1

Y 〉+ n(n− 1)〈B[TY ]Tn−2
Y ]〉 . (6.51)

Signalons que ce résultat est valable dans le cas où l’équation de Langevin (6.49) est considérée
avec la prescription d’Ito.

En généralisant ces résultats, on montre que les solutions de la hiérachie d’équations de
QCD peuvent s’obtenir à partir de l’équation de Langevin suivante (toujours considérée avec
la prescription d’Ito) [114, 120]

d

dY
TY (x,y) = ᾱ

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
[
TY (x, z) + TY (z,y)− TY (x,y)

−TY (x, z)TY (z,y)
]

+

√
(2π)3ᾱ

α2
s

∫
d2u
2π

d2v
2π

d2z
2π

A0(x,y|u, z)
|u− v|
(u− z)2

√
∇2

u∇2
vTY ((u,v)) ν(u,v, z, Y ) (6.52)

où le bruit ν vérifie :
〈ν(u,v, z, Y )〉 = 0 , (6.53)

〈
ν(u,v, z, Y )ν(u′,v′, z′, Y ′)

〉
= δ(2)(u− v′)δ(2)(v− u′)δ(2)(z− z′)δ(Y − Y ′) . (6.54)

En effet, les moyennes d’ensemble 〈TY (x1,y1) . . . TY (xn,yn)〉 obtenues à partir de l’ensemble
stochastique des solutions TY (x,y) de l’équation (6.52) vérifient la même hiérachie d’équations
que les amplitudes de dipôles

〈
Tx1y1

. . . Txnyn

〉
Y

(voir les équations (6.47) et (6.48)). Nous
pouvons ainsi écrire

〈
Tx1y1

. . . Txnyn

〉
Y
≡ 〈TY (x1,y1) . . . TY (xn,yn)〉 (6.55)

où dans le membre de droite, la moyenne 〈 . 〉 est une moyenne sur l’ensemble des réalisations
du processus stochastique, alors que la moyenne 〈 . 〉Y du membre de droite correspond à une
moyenne sur la fonction d’onde de la cible.



6.3 L’équation FKPP stochastique 119

6.3 L’équation FKPP stochastique

Les autocorrélations (6.54) sont particulières : elles sont non diagonales dans les deux
premiers arguments du bruit (u,v). Cette propriété n’est pas usuelle et nous ne savons pas
s’il est possible d’utiliser un tel bruit dans des études numériques. Pour simplifier le problème,
nous allons étudier des solutions homogènes TY (x,y) = TY (r = |x−y|). Nous avons déjà
considéré de telles solutions au Chapitre 3, dans le cadre de l’étude de l’équation BK et de
manière similaire, nous allons utiliser l’espace des impulsions. Introduisons ainsi

T̃ (L̃, Y ) =
∫

dr

r
J0(kr) TY (r) (6.56)

où nous rappelons que L̃ = ln(k2/Q2
0) avec Q0 une échelle d’impulsion donnée par la condition

initiale. Pour obtenir une équation de Langevin fermée pour T̃ , il est nécessaire de faire une
approximation dans le terme de bruit [114]. Nous ne détaillerons pas cette approximation ici,
elle permet d’écrire l’équation pour T̃ sous la forme

d

dY
T̃ (L̃, Y ) = ᾱχ(−∂L̃)T̃ (L̃, Y )− ᾱT̃ 2(L̃, Y ) + ᾱ

√
κα2

sT̃ (L̃, Y ) ν(L̃, Y ) (6.57)

avec 〈
ν(L̃, Y )ν(L̃′, Y ′)

〉
=

2
πᾱ

δ(L̃− L̃′)δ(Y − Y ′) . (6.58)

Le facteur κ dans le terme de bruit provient de l’approximation mentionnée ci-dessus et
doit être considéré comme un paramètre qui caractérise la force du bruit. Pour κ = 0, cette
équation est l’équation BK pour des solutions homogènes (voir l’équation (3.34) que nous
avons étudiée au Chapitre 3) qui appartient à la même classe d’équivalence que l’équation
F-KPP. De manière similaire, il semble que l’équation (6.57) appartienne à la même classe
d’équivalence que l’équation de F-KPP stochastique (sFKPP) [121, 122], même si cela est
moins certain [123]. Dans tous les cas, l’équation (6.57) et l’équation sFKPP sont très simi-
laires, ce qui a permis d’obtenir de nombreux résultats pour l’équation de QCD (6.57).

L’équation sFKPP (qui peut être obtenue en développant la fonction χ(γ) au deuxième
ordre, voir par exemple [XVIII]) s’écrit

d

dt
u(x, t) = ϑ

d2

dx2
u(x, t) + λu(x, t)(1− u(x, t)) + ε

√
u(x, t)(1− u(x, t)) ν(x, t) (6.59)

avec 〈
ν(x, t)ν(x′, t′)

〉
= δ(x− x′)δ(t− t′) . (6.60)

La variable de temps t joue un rôle analogue à ᾱY et la variable de position x joue un rôle
analogue à L̃. L’analogue de la force du bruit κα2

s est λε2 et ϑ est un paramètre qui contrôle
la force de la diffusion.

6.3.1 La limite de bruit faible

Commençons par décrire qualitativement l’évolution de TY (r) (ou de manière équivalente
de T̃ (L̃, Y )). Dans la limite de bruit faible κα2

s ¿ 1, pour chaque réalisation de TY (r) le
bruit a un effet très faible, il est important seulement pour de très petites tailles r, lorsque
l’amplitude TY (r) est très petite. Pour la plus grande partie du front, chaque réalisation est en
fait identique à une solution de l’équation BK : c’est une onde progressive TY (r) = T (L−ᾱvY )
avec L = − ln(r2Q2

0) où v est la vitesse de l’onde (voir le Chapitre 3). Rappelons que l’évolution
de ces solutions est telle que pour différentes valeurs de Y, le front de l’onde en fonction de
L a toujours la même forme et est simplement translaté proportionnellement à la différence
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Y0 Y1 Y2 Y3

TY (r)
1

L = − ln(r2Q2

0
)

Fig. 6.1 – Représentation schématique de la stochasticité de l’évolution de TY (r) à partir de
la condition initiale TY0(r). Chaque réalisation, représentée en fonction de L = − ln(r2Q2

0),
est une onde progressive et l’effet du bruit est d’introduire une dispersion de la position des
fronts d’ondes.

des rapidités considérées (voir les figures 3.3 et 3.4). L’effet principal du bruit est d’introduire
une dispersion des événements : pour une rapidité donnée, les différentes réalisations de TY (r)
sont des fronts d’onde dont la position est stochastique. Ceci est schématisé Figure 6.1.

Il est possible de quantifier la dispersion des événements [124]. Rappelons que, pour chaque
valeur fixée de la rapidité Y, la taille rs(Y ) à partir de laquelle le terme non-linéaire devient
important définit l’échelle de saturation Qs(Y ) = 1/rs(Y ). La stochasticité de la position du
front de l’onde représentée Figure 6.1 est ainsi équivalente à une stochasticité de Q2

s(Y ) =
Q2

0 eᾱvY . Appelons P (ρs) la distribution de probabilité pour la variable ρs = ln(Q2
s(Y )/Q2

0).
Les cumulants κn de cette distribution sont connus [125]. Le premier cumulant que nous
dénoterons κ1 = 〈ρs〉 = ln(Q̄2

s(Y )/Q2
0) est la valeur moyenne de ρs. Le second cumulant que

nous dénoterons κ2 = σ2 est la variance de la distribution et les cumulants d’ordre supérieur
lui sont tous proportionnels.

En résumé, nous avons

κ1 = 〈ρs〉 = ᾱvY , κ2 = σ2 = ᾱDY , κn =
3γ2

c

π2

n!ζ(n)
γn

c

σ2 , (6.61)

où ζ(n) est la fonction Zeta de Riemann et le coefficient v est à partir de maintenant relié à
l’échelle de saturation moyenne Q̄s. Signalons que ces résultats sont valables dans la limite
de haute énergie σ2 À 1. Dans la limite de bruit faible dans laquelle ces résultats ont été
obtenus, nous avons

v = vc − π2γ2
c v′′(γc)

ln2(1/(κα2
s))

(
1− 3 ln[ln(1/(κα2

s))]
ln(1/(κα2

s))

)
, D =

π4γcv
′′(γc)

3 ln3(1/(κα2
s))

, (6.62)

où nous rappelons que v(γ)=χ(γ)/γ, que γc'0.6275 est solution de l’équation (3.27), et que
vc =v(γc)'4.883.

6.3.2 La distribution de probabilité de l’échelle de saturation

Dans cette partie, nous considérons des valeurs quelconques pour la force du bruit κα2
s.

Nous venons de voir que dans la limite de bruit faible, 〈ρs〉 et σ2 sont proportionnels à Y (voir
les formules (6.61)). En fait, cela semble être plus général : c’est confirmé par des simulations
numériques [126, 123] pour des valeurs arbitraires de la force du bruit. Il est d’ailleurs observé



6.3 L’équation FKPP stochastique 121

que, quand la force du bruit augmente, la vitesse v diminue et le coefficient de dispersion D
augmente. En dehors de la limite de bruit faible, il n’existe pas d’expression analytique pour
v et D, donc dans la suite nous considérerons v et D comme des paramètres. Nous allons à
présent reproduire les résultats de l’article [XXII] et obtenir la probabilité P (ρs) à partir des
cumulants (6.61). La connaissance de P (ρs) nous permettra ensuite de calculer des quantités
moyennées sur l’ensemble des réalisations du processus stochatique.

Résultats analytiques

Notre point de départ est la fonction génératrice des moments de P (ρs)
〈
eλρs

〉
=

∫ ∞

−∞
dρs eλρs P (ρs) . (6.63)

La fonction génératrice des cumulants est alors

ln
〈
eλρs

〉
=

∑

n>0

κnλn

n!
= 〈ρs〉λ +

3γ2
c

π2
σ2

∞∑

n=2

ζ(n)λn

γn
c

. (6.64)

En utilisant la représentation intégrale de la fonction Zeta

ζ(n) =
1

Γ(n)

∫ ∞

0
du

un−1

eu − 1
, (6.65)

nous pouvons écrire la fonction génératrice des cumulants (6.64) de la manière suivante

ln
〈
eλρs

〉
= 〈ρs〉λ +

3γ2
c

π2
σ2 λ

γc

∫ ∞

0
du

eλu/γc − 1
eu − 1

= 〈ρs〉λ− 3γcσ
2

π2
λ

[
γE + ψ

(
1− λ

γc

)]
, (6.66)

où γE ≈ 0.577216 est la constante d’Euler. Il est alors possible d’inverser la transformée de
Laplace (6.63) pour obtenir la distribution de probabilité :

P (ρs) =
∫ c+i∞

c−i∞

dλ

2iπ
exp

{
−λz − bλ

[
γE + ψ

(
1− λ

γc

)]}
(6.67)

avec c < γc et les notations

z = ρs − 〈ρs〉 = ln
(

Q2
s

Q̄2
s

)
, b =

3γcσ
2

π2
. (6.68)

La variable z représente la distance entre le logarithme de l’échelle de saturation et sa valeur
moyenne, et b est une redéfinition commode de la variance σ2.

Pour évaluer la probabilité P (ρs) de manière plus approfondie, effectuons l’intégration
par rapport à λ dans l’approximation du point de selle. Nous obtenons que le point de selle
λ̃ ≡ γc(1− ε̃) satisfait l’équation

z + b
[
γE + ψ(ε̃)− (1− ε̃)ψ(1)(ε̃)

]
= 0 , (6.69)

où ψ(n)(x) est la fonction Polygamma définie par ψ(n)(x) = dn

dxn ψ(x). La distribution de
probabilité est ainsi donnée par

P (ρs) =
{

12σ2

π

[
ψ(1)(ε̃)− 1− ε̃

2
ψ(2)(ε̃)

]}−1/2

exp
[
−3σ2

π2
γ2

c (1− ε̃)2ψ(1)(ε̃)
]

. (6.70)

Bien que l’équation (6.69) n’ait pas de solution analytique, nous pouvons la résoudre dans
ces trois limites : z/b → 0 qui correspond à ε̃ → 1, z/b → ∞ qui correspond à ε̃ → 0 ; et
z/b → −∞ qui correspond à ε̃ →∞. Détaillons ces trois possibilités.
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– La limite z/b → 0 ou |z| ¿ γcσ
2. L’équation (6.69) devient (rappelons que ψ(1) = −γE

et ψ(1)(1) = π2/6)

z

b
+

[
γE + ψ(1)− 2(1− ε̃)ψ(1)(1)

]
= 0 ⇒ ε̃ = 1− 3z

π2b
. (6.71)

En utilisant (6.70), nous obtenons

P (ρs) ≈ 1√
2πσ2

[
1− 9ζ(3)

π2

z

γcσ2

]
exp

(
− z2

2σ2

)
. (6.72)

Nous avons gardé le premier terme sous dominant pour montrer que le maximum de la
distribution de probabilité est obtenu pour la valeur constante

−9ζ(3)
π2γc

≈ −1.75 . (6.73)

La valeur la plus probable de ρs n’est donc pas la valeur moyenne 〈ρs〉. Néanmoins pour
|z| ¿ γcσ

2, nous obtenons que la probabilité est Gaussienne :

P (ρs) ≈ 1√
2πσ2

exp
(
− z2

2σ2

)
. (6.74)

– La limite z/b → +∞ ou z À γcσ
2. L’équation (6.69) devient

−
(z

b

)
+

1
ε̃

+
1− ε̃

ε̃2
+

π2

6
= 0 ⇒ ε̃ =

√
3
π2

γcσ2

z

(
1 +

γcσ
2

4z

)
. (6.75)

Nous obtenons alors pour la probabilité :

P (ρs) ≈ 31/4

2πσ

(
γcσ

2

z

)3/4

exp

[
−γcz

(
1− 2

√
3
π2

γcσ2

z

)]
. (6.76)

Cela correspond à une loi de puissance P (ρs) ∼ (Qs/Q̄s)−2γc pour la queue de la dis-
tribution aux grandes valeurs de Qs.

– La limite z/b → −∞ ou z ¿ −γcσ
2. L’équation (6.69) devient

z

b
+ γE + ln(ε̃) + 1− 1

ε̃
= 0 ⇒ ε̃ = exp

(
−π2

3
z

γcσ2
− 1− γE

)
+ 1 . (6.77)

La probabilité correspondante est

P (ρs) ≈
√

π

6
1
σ

exp
{
−π2

6
z

γcσ2
− 1 + γE

2
− 3γ2

c σ2

π2

[
exp

(
−π2

3
z

γcσ2
− 1− γE

)
− 1

2

]}
.

(6.78)
C’est une distribution de Gumbel qui décroît très vite lorsque z ¿ −γcσ

2.

En augmentant z à partir de z = −∞, la transition entre le régime (6.78) et le régime
(6.74) se produit pour z = −γcσ

2 et la transition entre le régime (6.74) et le régime (6.76) se
produit pour z = γcσ

2. Pour ces deux valeurs ρs = 〈ρs〉 ± γcσ
2, la probabilité est de l’ordre

de e−γ2
c σ2

/σ et donc très petite dans la limite de haute énergie. Cela implique que P (ρs) n’est
pas Gaussienne seulement pour des fluctuations très improbables. Pour décrire l’ensemble
stochastique des réalisations de TY (r) (ou de manière équivalente de T̃ (L̃, Y )), la distribution
Gaussienne (6.74) est une bonne approximation.
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Fig. 6.2 – La distribution de probabilité de l’échelle de saturation P (ρs) en fonction de
z = ρs − 〈ρs〉 pour deux valeurs de la force du bruit κ = N2

c /(10π) (graphes du haut) et
κ=N2

c /(2π) (graphes du bas) et pour trois valeurs de la rapidité Y = 20, 30 et 40 (de gauche
à droite). Nous comparons la prédiction analytique (6.70) (lignes pleines) et les histogrammes
obtenus à partir des résultats numériques de [126].

Résultats numériques

Nous allons à présent comparer la probabilité (6.70) avec des résultats obtenus par simu-
lations numériques. Dans la référence [126], l’équation (6.57) a été résolue numériquement à
partir d’une condition initiale fixée et pour ᾱ = 0.2. Plusieurs valeurs possibles pour la force
du bruit ont été étudiées, et les caractéristiques représentées Figure 6.1 ont été confirmées :
chaque réalisation de T̃ (L̃, Y ) est une onde progressive (sauf pour L̃ À Y où les effets du
bruit sont visibles) et les différentes réalisations sont dispersées.

Nous allons considérer les deux valeurs κ = N2
c /(10π) et κ = N2

c /(2π) pour lesquelles
10000 réalisations de T̃ (L̃, Y ) ont été obtenues. Pour une valeur de Y donnée et pour chaque
événement, l’échelle de saturation est extraite en résolvant T̃ (ρs, Y ) = 0.2. De ces résultats,
il est possible d’obtenir la distribution de probabilité P (ρs) en réalisant un histogramme
normalisé. Il est aussi facile de calculer 〈ρs〉(Y ) et σ2(Y ) et de vérifier que ces cumulants sont
bien proportionnels à Y (si Y est suffisamment grand). Pour les trois valeurs Y = 20, 30 et
40, la probabilité P (ρs) ainsi obtenue est représentée Figure 6.2 en fonction de z = ρs − 〈ρs〉.

En résolvant numériquement l’équation de point de selle (6.69), nous pouvons calculer
explicitement la formule (6.70) en fonction de 〈ρs〉 et σ2. La probabilité obtenue en utilisant
les valeurs de 〈ρs〉(Y ) et σ2(Y ) extraites des simulations numériques est comparée aux histo-
grammes de la Figure 6.2. L’accord est remarquable, ce qui confirme qu’autour de la valeur
moyenne la probabilité est Gaussienne (au décalage du maximum près, qui est aussi en accord
avec (6.73)). Nous observons aussi que la probabilité décroît très rapidement vers les valeurs
de ρs négatives mais favorise au contraire les fluctuations vers de grandes échelles de satura-
tion. Cependant les déviations par rapport au comportement Gaussien concernent seulement
des fluctuations qui ont une très faible probabilité.
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Y1 Y2 Y3

〈TY (r)〉
1

L = − ln(r2Q2

0
)

ᾱv(Y3 − Y2)

√

ᾱDY2

√

ᾱDY3

Fig. 6.3 – L’amplitude de diffusion physique 〈TY (r)〉 (lignes pleines) représentée en fonction
de L = − ln(r2Q2

0), et obtenue en moyennant sur les différentes réalisations de TY (r) (lignes
tiretées). Les réalisations TY (r) sont des ondes progressives et lorsque la dispersion des événe-
ments est négligeable (ᾱDY ¿ 1), 〈TY (r)〉 est aussi une onde progressive. Lorsque la rapidité
augmente, la dispersion devient importante (ᾱDY À 1) et l’amplitude 〈TY (r)〉 n’est plus une
onde progressive.

L’amplitude de diffusion moyennée 〈TY (r)〉
L’amplitude de diffusion 〈TY (r)〉 , moyennée sur l’ensemble stochastique des réalisations

de TY (r) se calcule de la manière suivante

〈TY (r)〉 =
∫ ∞

−∞
dρs P (ρs)T (L− ρs) (6.79)

en utilisant la distribution de probabilité P (ρs) que nous venons de dériver. En écrivant cette
formule, nous avons utilisé le fait que chaque réalisation de TY est une onde progressive :
TY (r) = T (L − ρs). Même si pour les petites valeurs de r ce n’est pas le cas, nous verrons
que l’intégrale dans (6.79) n’est de toute façon pas sensible aux grandes valeurs négatives de
ρs. Utiliser la formule (6.79) est donc suffisant. Cette procédure de moyennage est représentée
Figure 6.3, à partir de laquelle nous pouvons inferrer que, si la dispersion des événements est
importante, l’amplitude physique 〈TY (r)〉 n’est plus une onde progressive.

En insérant la distribution de probabilité (6.67) dans (6.79) et en utilisant la représentation
de Mellin

T (L) =
∫

dλ

2iπ
e−λL T̃ (λ), (6.80)

nous obtenons que l’amplitude physique est donnée par

〈TY (r)〉 =
∫ c+i∞

c−i∞

dλ

2iπ
T̃ (λ) exp

{
−λZ − bλ

[
γE + ψ

(
1− λ

γc

)]}
. (6.81)

Nous avons introduit la variable

Z = L− 〈ρs〉 = − ln
(
r2Q̄2

s(Y )
)

. (6.82)

L’intégration sur λ est de manière générale sensible au même point de selle (6.69) que dans
le calcul de la probabilité. La différence principale est que T̃ (λ) possède un pôle en λ = 0,
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qui est dû à la contrainte d’unitarité T (L) ≤ 1. Ainsi, l’expression suivante est suffisante pour
étudier l’intégrale (6.81) :

T (L− ρs) =
{

1 L ≤ ρs

exp [−γc(L− ρs)] L > ρs
, ⇒ T̃ (λ) =

1
λ

+
1

γc − λ
. (6.83)

L’expression ci-dessus pour T̃ (λ) peut être introduite dans (6.81) avec la restrictrion 0 < c <
γc et les différentes limites intéressantes |Z| ¿ γcσ

2, Z À γcσ
2 et Z ¿ −γcσ

2 peuvent être
étudiées de manière similaire aux cas traités précédemment.

Ceci est fait de manière détaillée dans [XXII] et la principale conclusion est la suivante.
Dans le régime |Z| ¿ γcσ

2, qui représente une grande fenêtre autour de Z = 0 (ou bien
r = 1/Q̄s(Y )), il est suffisant d’utiliser une probabilité Gaussienne pour calculer 〈TY (r)〉 et
nous obtenons

〈TY (r)〉 =
1√

2πσ2

∫ ∞

−∞
dρs exp

(
−(ρs − 〈ρs〉)2

2σ2

)
T (L− ρs) ' 1

2
Erfc

(
Z√
2 σ

)
. (6.84)

Pour obtenir la deuxième égalité, nous avons négligé les termes sous-dominants dans la limite
|Z| ¿ γcσ

2 (et dans la limite de haute énergie σ2 À 1). Ainsi, la fonction d’erreur complé-
mentaire Erfc provient seulement de la partie T = 1 de (6.83). De manière plus générale, le
résultat (6.84) ne dépend pas de la forme précise de T (L − ρs) (voir l’équation (6.83)), car
seul le pôle en λ = 0 joue un rôle important dans (6.79), et il provient de la région T = 1. En
d’autres termes, l’amplitude 〈TY (r)〉 est dominée par les fluctuations de TY (r) qui sont dans
le régime de saturation. Cette caractéristique, qui est en fait valable dans le régime Z ¿ γcσ

2,
est remarquable : même si en moyenne l’amplitude de diffusion est petite 〈TY (r)〉 ¿ 1, la phy-
sique pertinente est la physique de la saturation. En conséquence de cette nouvelle physique,
nous obtenons aussi

〈TY (r1) . . . TY (rn)〉 =
1√

2πσ2

∫ ∞

−∞
dρs exp

(
−(ρs − 〈ρs〉)2

2σ2

)
T (L1 − ρs) . . . T (Ln − ρs)

' 1
2
Erfc

(− ln(r2
<Q̄2

s)√
2σ

)
= 〈TY (r<)〉 (6.85)

avec Li = − ln(r2
i Q

2
0) et r< = min(r1, . . . , rn). Les moyennes 〈TY (r1) . . . TY (rn)〉 sont ainsi

dominées par des configurations où tous les TY (ri) sont dans le régime de saturation. Ce
type de corrélations (6.85) est très différent de celles rencontrées dans le cadre des équations
B-JIMLWK [127, 128, 129].

Rappelons que ces résultats sont valables dans la limite σ2 À 1, c’est à dire Y À 1/D.
Dans le régime Y ¿ 1/D, que l’on peut qualifier de régime intermédiaire, la dispersion des
événements est négligeable et l’amplitude moyénée 〈TY (r)〉 est simplement une onde progres-
sive de type (6.83). Formellement, la probabilité P (ρs) tend vers la fonction δ(ρs − 〈ρs〉) et
nous retrouvons les prédictions obtenues dans le cadre de l’équation BK. Ceci indique que le
paramètre D joue un rôle important. Cependant comme précisé précédemment, notre connais-
sance de ce paramètre est limitée, nous le connaissons seulement dans la limite de bruit faible
(voir les formules (6.62)).

6.3.3 La limite de bruit fort

Dans cette partie qui reprend les résultats de l’article [XVIII], nous considérons la limite de
bruit fort κα2

s À 1. La connaissance de la limite de bruit fort, en complément des études de la
limite de bruit faible, est importante pour mieux comprendre le régime de bruit intermédiaire,
notamment dans l’interprétation de résultats numériques. Dans la limite κα2

s À 1, nous
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obtenons une solution analytique de l’équation (6.57), ou plus présisément, de l’équation
sFKPP (6.59). Le problème est soluble à l’aide d’une propriété de dualité [130] : dans la limite
de bruit fort, l’équation sFKPP est équivalente à un processus de coalescence, exactement
soluble [131, 132]. Nous obtenons ainsi une expression analytique pour toutes les moyennes
〈u(x1, t) . . . u(xn, t)〉 . Insistons que la limite κα2

s À 1 ne doit pas être considérée comme une
limite de couplage fort, κα2

s peut atteindre de grandes valeurs dans le régime perturbatif, si
la valeur κ est suffisamment grande.

Un modèle de coalescence

Le point de départ est la relation de dualité entre l’équation sFKPP et certains processus de
réaction-diffusion. Considérons le processus de réaction-diffusion suivant, pour des particules
sur un réseau unidimensionnel avec des sites espacés d’une distance h : en chaque site, il
peut y avoir création ou recombinaison de particules et celles-ci peuvent diffuser sur un site
voisin. Dans la limite continue h → 0, ce système est dual à l’équation (6.59), avec les taux
de création, recombinaison et diffusion donnés par

Ai
λ→ Ai + Ai , Ai + Ai

ε2/h−→ Ai , Ai
ϑ/h2

−→ Ai±1 (6.86)

où Ai désigne une particule sur le site i. Plus précisément, on montre que le système de
particules et la solution de l’équation sFKPP u(x, t) sont reliés de la manière suivante [130] :

〈∏
x

[1− u(x, t)]N(x,0)

〉
=

〈∏
x

[1− u(x, 0)]N(x,t)

〉
, (6.87)

où N(x, t) est la densité de particules du système de réaction-diffusion dans la limite continue.
En choisissant astucieusement les conditions initiales u(x, 0) et N(x, 0), la relation de

dualité (6.87) se simplifie. Par exemple, si N(x, 0) = δ(x − x0) (au départ il n’y a qu’une
particule au site x0), alors le membre de gauche de la relation (6.87) est simplement 1 −
〈u(x0, t)〉. De manière similaire, si au départ il y a n particules aux positions x1 < · · · < xn,
le membre de gauche devient 〈[1 − u(x1, t)] . . . [1 − u(xn, t)]〉. En ce qui concerne la fonction
u, nous allons utiliser la condition initiale u(x, 0) = θ(−x) qui identifie le membre de droite
de la relation (6.87) avec la probabilité que tous les sites du système de particules avec x ≤ 0
soient vides. Cela sera repris dans la suite.

La dualité (6.87) permet de relier la limite de bruit fort de l’équation sFKPP à un modèle
de coalescence. Du point de vue du système de particule, la limite de bruit fort est définie par
ε2À1 et λÀ1 avec le rapport λ/ε2 fixé et petit. Dans cette limite, deux particules sur le même
site se recombinent systématiquement en une particule et le système se réduit à un modèle de
coalescence : il peut y avoir au maximum une particule par site. Les particules diffusent sur
les sites voisins avec le taux ϑ/h2 et créent de nouvelles particules avec un taux ω/h où ω est
donné par ω = 2ϑλ/ε2 (voir [XVIII] pour plus de détails). Ce modèle est exactement soluble
[131, 132] et permet d’obtenir 〈[1− u(x1, t)] . . . [1− u(xn, t)]〉 dans la limite de bruit fort.

L’idée est d’introduire la probabilité E(x, y; t) pour qu’au temps t, les sites entre x et
y ≥ x soient vides. Nous obtenons que, à cause de la diffusion et de la création de particules,
E vérifie l’équation différentielle suivante

∂tE(x, y; t) =
{
ϑ
(
∂2

x + ∂2
y

)
+ ω(∂y − ∂x)

}
E(x, y; t) (6.88)

avec la condition aux limites limy→x E(x, y; t) = 1. Cette équation linéaire peut être résolue
exactement. La densité de particules N(x, t) s’obtient ensuite à partir de la dérivée de E :

N(x, t) = ∂yE(x, y; t)|y→x . (6.89)
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De plus, la probabilité que tous les sites du système de particules avec x ≤ 0 soient vides est
simplement E(−∞, 0; t). Ainsi, avec nos choix de conditions initiales, la relation de dualité
(6.87) devient

〈[1−u(x1, t)] . . . [1−u(xn, t)]〉 = E(−∞, 0; t) avec N(x, 0) = δ(x−x1) . . . δ(x−xn) . (6.90)

Solution du modèle

Introduisons les variables sans dimension

ξ =
ω

ϑ
(x + y) , ζ =

ω

ϑ
(y − x) , τ =

8ω2

ϑ
t . (6.91)

Nous obtenons alors

E(x, y; t) = e−ζ + e−τ

∫ ∞

−∞
dξ′

∫ ∞

0
dζ ′ G(ξ, ξ′, ζ, ζ ′; τ)

[
E(ξ′, ζ ′; 0)− e−ζ′

]
(6.92)

où la fonction de Green G est donnée par

G(ξ, ξ′, ζ, ζ ′; τ) =
1
πτ

e−(ξ−ξ′)2/τe−(ζ−ζ′)/2
[
e−(ζ−ζ′)2/τ − e−(ζ+ζ′)2/τ

]
(6.93)

et où E(ξ′, ζ ′; 0) est la condition initiale.
La condition initiale N(x, 0) = δ(x − x1) . . . δ(x − xn) se traduit sur E par (avec formel-

lement x0 = −∞)

E(x, y; 0) = 1−
n∑

i=1

θ(x− xi−1)θ(xi − x)θ(y − xi) . (6.94)

Traitons explicitement le cas E(x, y; 0) = 1 − θ(x − x0)θ(y − x0) (N(x, 0) = δ(x − x0)) qui
permet d’obtenir 〈[u(x0, t)〉. En insérant cette condition initiale dans (6.92) et en utilisant
(6.93), nous obtenons

E(x, y; t) =
1
2

{
Erfc

(
x−y−2ωt√

8ϑt

)
− Erfc

(
x0−y−ωt

2
√

ϑt

) [
1− 1

2
Erfc

(
x0−x+ωt

2
√

ϑt

)]

+Erfc
(

y−x+2ωt√
8ϑt

)}
+

1
2

e−
ω
ϑ

(y−x)

{
2− Erfc

(
y−x−2ωt√

8ϑt

)
− Erfc

(
x−y+2ωt√

8ϑt

)

+Erfc
(

x0−x−ωt

2
√

ϑt

)[
1− 1

2
Erfc

(
x0−y+ωt

2
√

ϑt

)]}
. (6.95)

La limite x → −∞ et y = 0 donne ensuite simplement

〈u(x0, t)〉 =
1
2
Erfc

(
x0 − ωt

2
√

ϑt

)
. (6.96)

Nous obtenons donc, dans la limite de bruit fort, que la moyenne 〈u(x0, t)〉 est équivalente à
une superposition de fonctions Θ(x−x0) avec une probabilité gaussienne de moyenne ωt et de
variance 2ϑt. La vitesse moyenne ω décroît comme 1/ε2 quand la force du bruit ε2 augmente,
et le coefficient de dispersion ϑ est constant. Pour étudier des valeurs de ε2 intermédiaires,
l’approche par la limite de bruit fort semble donc converger plus rapidement que l’approche
par la limite de bruit faible (6.62), dans laquelle la vitesse se comporte comme vc−| log(ε)|−2

et la dispersion comme | log(ε)|−3.
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En insérant la condition initiale (6.94) dans (6.92) et répétant le calcul précédent, nous
obtenons

〈[1− u(x1, t)] . . . [1− u(xn, t)]〉 = 1− 1
2
Erfc

(
x1 − ωt

2
√

ϑt

)
= 1− 〈u(x1, t)〉 (6.97)

en rappelant que x1 est la plus petite des positions xi. Cette relation peut ensuite se traduire
en

〈u(x1, t) . . . u(xn, t)〉 =
1
2
Erfc

(
xn − ωt

2
√

ϑt

)
= 〈u(xn, t)〉 (6.98)

avec xn la plus grande des positions xi. Rappelons que dans l’analogie entre l’équation sFKPP
(6.59) et l’équation de QCD (6.57), x est l’equivalent de ln(k2/Q2

0) et t est l’equivalent de ᾱY.
Notre étude de la limite de bruit fort confirme ainsi que les corrélateurs sont déterminés par
la plus grande des impulsions, ou de manière équivalente la plus petite des tailles.

Il est remarquable que de la limite de bruit fort donne des résultats similaires à ceux
obtenus précédemment (voir les formules (6.84) et (6.85)). Cela montre l’universalité de la
fonction d’erreur dans la limite de haute énergie. En autres, les résultats (6.84), (6.85), (6.96)
et (6.98) ne dépendent pas des conditions initiales.

6.4 Une nouvelle loi d’échelle en QCD à haute énergie

Dans cette dernière section, nous étudions les implications phénoménologiques de la solu-
tion homogène (6.84) pour l’amplitude de diffusion d’un dipôle sur une cible hadronique dans
la limite de haute énergie. Nous considérons la diffusion profondément inélastique et la pro-
duction de gluons vers l’avant, traitées respectivement dans les articles [XIX] et [XX]. Nous
rappelons que pour ces processus, les sections efficaces sont exprimées en termes de l’am-
plitude 〈Txy〉Y pour un dipôle quark-antiquark, ou de l’amplitude

〈
T̃xy

〉
Y

pour un dipôle
gluon-gluon.

L’amplitude 〈Txy〉Y est identique à la moyenne 〈TY (x,y)〉 qui vérifie la même équation

(6.47). De la même manière, l’amplitude
〈
T̃xy

〉
Y
s’obtient à partir de 〈TY (x,y)〉 et 〈

T 2
Y (x,y)

〉

(voir la formule (2.54) qui relie le dipôle qq̄ au dipôle gg). En changeant les positions trans-
verses x et y en variables de taille r = x− y et de paramètre d’impact b = (x+y)/2 (voir la
formule (2.25) qui introduit l’amplitude Tqq̄(r,b; Y )), nous pouvons écrire dans le cas d’une
solution homogène :

Tqq̄(r,b;Y ) = S(b) 〈TY (|r|)〉 (6.99)

où S(b) est le profil en paramètre d’impact introduit au Chapitre 4.
Dans le régime σ2 = ᾱDY ¿ 1 la dispersion des événements est négligeable et l’amplitude

〈TY (r)〉 est une onde progressive de type (6.83) (en remplaçant ρs par 〈ρs〉 = ln(Q̄2
s/Q2

0) =
ᾱvY ). Dans le régime ᾱDY À 1 la dispersion des événements est importante et 〈TY (r)〉 n’est
plus une onde progressive. Pour Z = L− 〈ρs〉 ¿ γcσ

2, l’amplitude est donnée par la formule
(6.84). Pour obtenir l’expression de l’amplitude quand Z À γcσ

2, intégrons exactement la
première ligne de la formule (6.84) (avec T (L− ρs) donné par (6.83)) :

〈TY (r)〉 =
1√

2πσ2

∫ ∞

−∞
dρs exp

(
−(ρs − 〈ρs〉)2

2σ2

) [
Θ(ρs − L) + Θ(L− ρs) e−γc(L−ρs)

]

=
1
2
Erfc

(
Z√
2σ

)
+ eγ2

c σ2/2−γcZ

[
1− 1

2
Erfc

(
Z/σ − γcσ√

2

)]
. (6.100)

Nous obtenons ainsi que si Z À γcσ
2 À 1, alors 〈TY (r)〉 ' e−γcZ .
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La formule (6.100) est commode car elle reproduit le comportement de 〈TY (r)〉 dans les
différentes limites : σ2 ¿ 1, σ2gg1 et Z ¿ γcσ

2, Z À γcσ
2 À 1 (pour une étude plus détaillée,

voir [XIX]). Les variables r et Y interviennent par l’intermédiaire de Z = − ln(r2Q̄2
s(Y )) et

σ2 = ᾱDY. Même si à partir des données de HERA qui sont en accord avec les prédictions du
régime σ2 ¿ 1 (nous l’avons montré au Chapitre 4), nous savons que ᾱv ' 0.3, nous n’avons
aucune information sur la valeur de D. Ainsi dans la suite, nous dériverons les implications
phénoménologiques du régime σ2 À 1, en utilisant les variables Z et σ (et non pas r et Y ).

6.4.1 Implications pour la diffusion profondément inélastique

La section efficace totale en diffusion profondément inélastique peut être obtenue de la
formule (4.27) où nous rappelons que la fonction Ψλ (voir formule (4.26)) décrit la fluctuation
du photon virtuel (de polarisation longitudinale λ = L ou transverse λ = T ) sur le dipôle qq̄
qui subit l’interaction hadronique avec la cible. En utilisant (6.99), nous obtenons

σγ∗p→X
tot (x,Q2) = 4πSp

∫ 1

0
dz

∫ ∞

0
rdr

∑

λ=L,T

Ψλ(z, r) 〈TY (r)〉 (6.101)

où la rapidité totale Y est reliée à la variable cinématique x (voir la formule (4.3)) par
Y = ln(1/x).

Introduisons la variable

ZQ = ln
(

Q2

Q̄2
s

)
, (6.102)

similaire à Z avec le remplacement r → 1/Q. Nous allons estimer analytiquement la section
efficace σγ∗p→X

tot (x,Q2) dans le régime ZQ ¿ γcσ
2 À 1. Pour cela on peut montrer qu’il est

suffisant d’utiliser la formule (6.84) pour l’amplitude de dipôle, ce qui permet d’obtenir les
estimations suivantes

σL
tot(x,Q2) =

NcαemSp

6π

∑

f

e2
f Erfc

(
ZQ√
2 σ

)
, (6.103)

σT
tot(x,Q2) =

NcαemSp

6π

∑

f

e2
f

[
σ√
π/2

e−
Z2

Q

2σ2 − ZQErfc
(

ZQ√
2 σ

)]
. (6.104)

L’estimation de σL
tot est obtenue en remplaçant 〈TY (r)〉 par 〈TY (1/Q)〉 avant de faire l’intégrale

sur r. Obtenir l’estimation de σT
tot demande un traitement plus précis qui est expliqué dans

[XIX]. Dans le régime de haute énergie ZQ ¿ γcσ
2 À 1, nous obtenons donc la loi d’échelle

suivante
σγ∗p→X

tot (x,Q2)/σ = σγ∗p→X
tot (ZQ/σ) . (6.105)

Dans le régime σ ¿ ZQ ¿ γcσ
2, la partie transverse est dominante et donne

σγ∗p→X
tot (x,Q2) =

NcαemSp

12(π/2)3/2

∑

f

e2
f σ3 e−Z2

Q/(2σ2)

Z2
Q

. (6.106)

Signalons qu’il est possible de faire des estimations aussi dans le cas de la section efficace
diffractive intégrée sur β (à x fixé) entre βmin ¿ 1 et 1. Dans le régime σ ¿ ZQ ¿ γcσ

2, nous
obtenons [XIX]

σγ∗p→X
diff (x,Q2) =

NcαemSp

12π2

∑

f

e2
f σ4 e−Z2

Q/σ2

Z3
Q

(6.107)
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Fig. 6.4 – La fonction à intégrer dans la formule (6.101) (courbes indiquées par tot) et celle
qui mène à la formule (6.107) (courbes indiquées par diff ) sont représentées en fonction de
rQ̄s, pour Q/Q̄s = 10 fixé. L’amplitude 〈TY (r)〉 est (6.83) (en remplacant ρs par 〈ρs〉) pour
le régime σ ¿ 1 et (6.84) pour le régime ZQ ¿ γcσ

2 À 1. Les lignes verticales tracées pour
r = 1/Q et r = 1/Q̄s permettent d’estimer les tailles dominantes pour les différents cas.

avec la partie tranverse toujours dominante. Le résultat est indépendant de βmin, indiquant
que la diffraction est dominée par l’interaction de la composante qq̄. La loi d’échelle (6.105)
est aussi vérifiée.

Ces estimations indiquent que quand ZQ ¿ γcσ
2 (et σ2 À 1), l’interaction entre le dipôle

et la cible est dominée par des tailles r de l’ordre de 1/Q, aussi bien dans le cas inclusif
que diffractif. Cela contraste avec le régime σ2 ¿ 1, dans lequel la section efficace totale
est dominée par des tailles comprises entre 1/Q et 1/Q̄s (si Q > Q̄s) et la section efficace
diffractive est dominée par des tailles de l’ordre de 1/Q̄s [72]. Pour exhiber cette différence,
nous avons représenté Figure 6.4 la fonction à intégrer dans la formule (6.101) en fonction de
r obtenue quand 〈TY (r)〉 est donné par : (6.83) (en remplaçant ρs par 〈ρs〉) pour le régime
σ ¿ 1 ou bien (6.84) pour le régime ZQ ¿ γcσ

2 (et σ2 À 1). La fonction à intégrer qui
mène à la section efficace (6.107) est aussi représentée et les comportements que nous venons
d’énoncer sont manifestes sur la figure.

Pour résumer, les différents régimes de haute énergie prédits par la QCD dans le contexte
de la diffusion profondément inélastique sont représentés Figure 6.5. Cette figure indique
notamment les lois d’échelle non triviales qui accompagnent la transition du régime dilué
vers le régime de saturation. La loi (4.35) discutée au Chapitre 4, et compatible avec les
données de HERA, intervient dans le régime d’énergie intermédiaire σ2 ¿ 1 tandis que la loi
(6.105) que nous venons d’obtenir concerne le régime de très haute énergie σ2 À 1. Comme
notre connaissance du paramètre de dispersion D est pour l’instant limitée, il ne nous est pas
possible d’être plus précis pour définir ce que sont de très hautes énergies. En revanche il nous
a été possible de montrer que quand σ2 À 1, même pour des valeurs de Q2 beaucoup plus
grandes que Q̄2

s(Y ) (telles que l’interaction est faible en moyenne), la physique pertinente est
la physique de la saturation car l’interaction est dominée par des fluctuations de l’échelle de
saturation qui sont aussi grandes que Q2.
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Y = ln(1/x)

ln(Q2/Q2

0
)

régime dilué

saturation

D
Y
�

1
D

Y
�

1

ln(Q̄2

s
/Q2

0
) = ᾱvY

ᾱ(v+D)Y

loi d’échelle

(6.105)

loi d’échelle

(4.35)

Fig. 6.5 – Représentation des différents régimes de haute énergie en diffusion profondément
inélastique, en fonction de Y et ln(Q2/Q2

0). La transition du régime dilué vers le régime de
saturation est caractérisée par des lois d’échelle non triviales : si ᾱDY ¿ 1 la loi d’échelle est
la loi (4.35) et si ᾱDY À 1, la loi d’échelle est (6.105).

6.4.2 Implications pour la production de gluons vers l’avant

Concentrons nous maintenant sur la production de gluon vers l’avant dans les collisions
hadron-hadron. L’étude du régime σ2 À 1 dans ce contexte est particulièrement importante
dans l’optique du LHC [133, 134, XX]. La section efficace pour la production de gluons vers
l’avant dans une collision hadron-hadron est donnée par la formule (5.6) du Chapitre 5 (dans
le cas où le gluon est émis dans la direction du projectile, la particule qui se déplace dans la
direction x+). En notant q = (q+,q) la tri-impulsion du gluon, et yq = Y − ln(P+/q+) la
rapidité à laquelle le gluon est émis (le gluon est en fait émis avec la rapidité ymin + yq, yq

étant véritablement un intervalle de rapidité), nous pouvons écrire

dσ

d2qdxJ
=

Nc

π2q2
feff (xJ ,q2)ϕ(q, yq) (6.108)

avec xJ = q+/P+ = eyq−Y et où feff est la densité de partons effective dans le projectile
(voir Chapitre 5). Nous avons exprimé la section efficace en termes de la distribution de gluon
non intégrée de la cible ϕ définie à partir de Tgg de la manière suivante :

ϕ(q, yq) =
∫

d2r e−iq.r∇2
r

∫
d2b Tgg(r,b; yq) . (6.109)

L’amplitude de diffusion du dipôle gg sur la cible s’obtient facilement à partir de 〈TY (x,y)〉
et

〈
T 2

Y (x,y)
〉
(voir la formule (2.54) simplifiée dans la limite de grand Nc). En utilisant (6.99)

et une formule similaire pour
〈
T 2

Y (x,y)
〉
, nous pouvons écrire

ϕ(q, Y ) = Sp

∫ ∞

0
drJ0(qr)

∂

∂r
r

∂

∂r

(
2 〈TY (r)〉 − 〈

T 2
Y (r)

〉)
(6.110)

où nous avons effectué l’intégration angulaire et où q = |q|. Nous pouvons calculer (6.110) à
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Fig. 6.6 – La distribution de gluons non intégrée ϕ(q, Y ) est représentée en fonction de Zq

pour différentes valeurs de σ = 2, 4 et 6 et comparée avec une distribution obtenue dans le
régime σ2 ¿ 1. Le caractère Gaussien (voir formule (6.114)) de la distribution dans la limite
σ2 À 1 est manifeste.

partir de (6.100) :

r
∂

∂r
r

∂

∂r
〈TY (r)〉 =

∂2

∂L2

〈
TY (r=e−L/2/Q0)

〉
' Z√

2πσ3
e−

Z2

2σ2 (6.111)

où la deuxième égalité est valable dans le régime |Z| ¿ γcσ
2 (et σ2 À 1). Signalons que pour

obtenir ce résultat, il faut d’abord calculer les dérivées avant de prendre la limite |Z| ¿ γcσ
2

(voir [XX] pour plus de détails). En calculant
〈
T 2

Y (r)
〉
de la même manière que 〈TY (r)〉 (voir

la première ligne de (6.100)), nous pouvons montrer que le résultat (6.111) est aussi vrai pour〈
T 2

Y (r)
〉
. Finalement nous arrivons à la formule suivante pour ϕ :

ϕ(q, Y ) = 2Sp

∫ ∞

−∞
dL J0

(
q

Q0
e−L/2

)
∂2

∂L2

〈
TY (r=e−L/2/Q0)

〉

=
2Sp√
2πσ3

∫ ∞

−∞
dη J0

(
e−η/2

)
(η + Zq)e

− (η+Zq)2

2σ2 (6.112)

où nous avons introduit la variable

Zq = ln
(

q2

Q̄2
s

)
(6.113)

similaire à Z avec le remplacement r → 1/q.
La fonction de Bessel J0(x) oscille pour des grandes valeurs de x et l’amplitude des os-

cillations décroît rapidement avec x. Ainsi, pour évaluer l’intégrale sur η dans (6.112), il est
suffisant de considérer l’intervalle entre η = η0 et η = +∞ ou e−η0/2 est le premier zéro de
J0. Dans cet intervalle, nous pouvons approximer J0 ≈ cste, ce qui introduit une incertitude
sur la normalisation. Nous avons ainsi

ϕ(q, Y ) ≈ 1
σ3

∫ ∞

η0

dη(η + Zq)e
− (η+Zq)2

2σ2 =
1
σ

e−
(η0+Zq)2

2σ2 , (6.114)

qui montre que ϕ(q, Y ) est une Gaussienne en Zq dont la variance est σ2 (et la moyenne un
nombre que nous ne contrôlons pas).
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Ce résultat est confirmé par une intégration numérique de la formule (6.110) avec les
amplitudes de dipôles obtenues à partir de (6.100). La distribution de gluon obtenue est
représentée Figure 6.6 en fonction de Zq et pour différentes valeurs de σ = 2, 4 et 6 (le
maximum de la distribution a été recentré en Zq = 0 ou q = Q̄s). Nous la comparons avec
une distribution obtenue dans le régime σ2 ¿ 1 (voir [XX] pour les détails). Comme prédit,
la largeur de la Gaussienne augmente avec σ. Ces résultats impliquent un comportement très
différent pour la section efficace de production de gluons en fonction du régime d’énergie
σ2 ¿ 1 ou σ2 À 1. Les prédictions obtenues dans le cas σ2 ¿ 1 sont en accord avec les
données du collisionneur RHIC [135, 136, 137, 138, 139, 140, 141, 142, 143] (pour une revue,
voir [144]), mais dans l’optique du LHC, il est possible que les effets que nous venons de
discuter soient importants. Mais une fois de plus, notre mauvaise connaissance du paramètre
de dispersion D nous empèche pour l’instant d’être plus précis.

6.A Dérivation de la première équation de la hiérarchie du régime dilué

Dans cet appendice nous dérivons la première équation (6.23) de la hiérarchie duale de la
hiérarchie de Balitsky. Nous souhaitons ainsi simplifier (les dépendances par rapport à [δ/δρ]
sont implicites)

HRxyδ[ρ] = −
∫

d2u
2π

d2v
2π

d2z
2π

(u− z) · (v− z)
(u− z)2(z− v)2

ρc(u)
[
1 + W̃ †

A(u)W̃A(v)

−W̃ †
A(u)W̃A(z)− W̃ †

A(z)W̃A(v)
]cd

ρd(v)Rxyδ[ρ] . (6.115)

Il nous faut tout d’abord faire disparaître les facteurs ρc. Commençons par déplacer ρc(u)
jusqu’à la gauche de ρd(v). Pour cela il faut utiliser l’action de ρc(u) sur W̃A(u′) ou W̃ †

A(u′) :

ρc(u)W̃A(u′) = W̃A(u′)ρc(u)− gsW̃A(u′)T̃ cδ(2)(u− u′) , (6.116)

ρc(u)W̃ †
A(u′) = W̃ †

A(u′)ρc(u) + gsT̃
cW̃ †

A(u′) δ(2)(u− u′) . (6.117)

Ensuite, pour éliminer les facteurs ρc, nous avons besoin de l’action de ρd(v) ou de ρc(u)ρd(v)
sur Rxyδ[ρ] (donné par la formule (6.20)) :

ρd(v)Rxyδ[ρ] =
gs

Nc

(
δ(2)(v−y)−δ(2)(v−x)

)
Tr

(
W̃ †

F (y)W̃F (x)T d
)
δ[ρ] , (6.118)

ρc(u)ρd(v)Rxyδ[ρ] =
g2
s

Nc

(
δ(2)(v−x)−δ(2)(v−y)

) [
Tr

(
W̃ †

F (y)W̃F (x)T cT d
)
δ(2)(u− x)

−Tr
(
W̃ †

F (y)W̃F (x)T dT c
)
δ(2)(u− y)

]
δ[ρ] .(6.119)

Nous obtenons alors

HRxyδ[ρ] =
αs

πNc

∫
d2z
2π

{(
2(x− z) · (y− z)
(x− z)2(z− y)2

[
1 + W̃ †

A(x)W̃A(y)− W̃ †
A(x)W̃A(z)

−W̃ †
A(z)W̃A(y)

]cd
− 1

(x− z)2
[
2− W̃ †

A(x)W̃A(z)− W̃ †
A(z)W̃A(x)

]cd

− 1
(z− y)2

[
2− W̃ †

A(y)W̃A(z)− W̃ †
A(z)W̃A(y)

]cd
)
Tr

(
W̃ †

F (y)W̃F (x)T dT c
)

−
(

1
(x− z)2

[
W̃ †

A(z)W̃A(x)T̃ c
]cd

− 1
(z− y)2

[
W̃ †

A(z)W̃A(y)T̃ c
]cd

)

Tr
(
W̃ †

F (y)W̃F (x)T d
)}

δ[ρ] . (6.120)
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Il nous reste maintenant à exprimer les lignes de Wilson adjointes modifiées W̃A en termes
de lignes de Wilson fondamentales modifiées W̃F . Cela se fait en utilisant l’identité suivante
(dérivée dans l’appendice du Chapitre 1 pour les lignes de Wilson WA et WF , voir équation
(1.54)) :

W̃ cd
A (x) = 2Tr

(
W̃ †

F (x)T cW̃F (x)T d
)

. (6.121)

En utilisant ensuite l’identité de Fierz (1.53), nous pouvons écrire le produit
[
W̃ †

A(y)W̃A(x
]cd

de la manière suivante :
[
W̃ †

A(y)W̃A(x
]cd

= 2Tr
(
W̃F (y)T cW̃ †

F (y)W̃F (x)T dW̃ †
F (x)

)
. (6.122)

Cette égalité peut être insérée de manière répétée dans (6.120), laissant seulement des lignes de
Wilson W̃F . Finalement, avec l’identité de Fierz (1.53), il est possible de simplifier l’expression
pour obtenir la formule finale (6.23) :

HRxyδ[ρ] = ᾱ

∫
d2z
2π

(x− y)2

(x− z)2(z− y)2
[RxzRzy −Rxy] δ[ρ] . (6.123)

En procédant de manière similaire, nous pouvons aussi dériver la deuxième équation de la
hiérachie (6.24). Ceci est fait dans [XI, 113].



Conclusions

Cette thèse est consacrée à l’étude du régime de saturation de la chromodynamique quan-
tique, un régime perturbatif qui décrit les grandes densités de partons dans les hadrons,
formées dans la limite de haute énergie. En sondant de petites distances à l’intérieur d’un
hadron à l’aide de collisions de haute énergie, on est en effet sensible à un ensemble dense
de partons, source d’effets collectifs importants. La théorie de la saturation a pour but de
décrire de tels phénomènes et leurs conséquences, comme le comportement des amplitudes de
collisions hadron-hadron dans la limite de haute énergie.

La nécessité d’établir les prédictions de la QCD dans le régime de saturation a été ravivée
au milieu des années 90, avec le démarrage des collisionneurs HERA puis RHIC. Ils réalisent
respectivement des expériences de diffusion profondément inélastique et des collisions d’ions
lourds. Dans ces expériences, certains processus étant potentiellement sensibles aux effets des
grandes densités de partons dans les hadrons, des observables pouvaient mettre en évidence
des effets de saturation.

Très vite, les équations B-JIMWLK qui décrivent l’évolution vers le régime de saturation
dans l’approximation des logarithmes dominants ont été établies. Ces développements théo-
riques ont alors eu un certain succès : des lois d’échelle prédites par les équations B-JIMWLK
ont été observées en diffusion profondément inélastique inclusive et diffractive. Cette décou-
verte a indiqué que le régime de saturation était pertinent dès les énergies du collisionneur
HERA. Un succès similaire a été rencontré dans le cadre du collisionneur RHIC : dans la
production de particules vers l’avant, des observables appropriées pour l’étude d’effets de
saturation sont plus que qualitativement en accord avec les prédictions de la QCD à haute
énergie, mais leurs descriptions semblent nécessiter d’inclure des effets de saturation.

Au cours des deux dernières années, de nouveaux développements théoriques ont remis
en cause la validité des équations B-JIMWLK : alors qu’on les pensait complètes, elles ne
correspondent en fait qu’à une partie de l’équation d’évolution. Des modifications ont été
proposées, et l’étude de la limite de grand Nc a révélé un nouveau lien entre la QCD à haute
énergie et certains problèmes de physique statistique. Les implications phénoménologiques
ont été évaluées dans le cadre de la diffusion profondément inélastique et de la production de
gluons vers l’avant dans les collisions hadron-hadron. Même si les nouvelles équations diffèrent
de celles utilisées précédemment, les solutions sont compatibles dans un régime d’énergie
intermédiaire. Des différences sont attendues pour de très hautes énergies, avec la prédiction
d’une nouvelle loi d’échelle.

Même si à l’heure actuelle, il ne nous est pas possible d’être plus quantitatif, le démarrage
du LHC en 2007 promet un avenir très intéressant. Il pourrait mettre en évidence le régime
de saturation, et la présence de deux régimes d’énergies. Il pourrait aussi indiquer la nécessité
d’inclure des logarithmes sous-dominants dans les équations d’évolutions. Dans tous les cas,
la QCD à haute énergie restera un domaine de recherche très actif pour encore de nombreuses
années.

Pour finir, je souhaite que cette thèse ait apporté des contributions utiles aux développe-
ments de la théorie de la saturation et aux études phénoménologiques.
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