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Chromodynamique quantique & haute énergie, théorie et
phénoménologie appliquée aux collisions de hadrons

Résumé :

En observant des petites distances a l'intérieur d’un hadron, il est possible d’étudier ses
constituants : des quarks et des gluons, ou partons, qui obéissent aux lois du régime pertur-
batif de la Chromodynamique Quantique (QCD). Cette sous-structure est mise a jour lors
de collisions entre hadrons caractérisées par un grand transfert d’impulsion : dans de telles
collisions, un hadron agit comme une collection de partons dont les interactions peuvent étre
décrites en QCD.

Dans une collision d’énergie modérée, un hadron apparait dilué et les partons interagissent
de maniére incohérente. Quand I’énergie de la collision augmente, la densité de partons dans
le hadron augmente. Lorsqu’une énergie beaucoup plus grande que le transfert d’impulsion
est atteinte, on entre dans le régime de saturation de QCD : la densité de gluon est devenue
tellement large que des effets collectifs sont importants.

Nous introduisons un formalisme adéquat pour étudier les collisions hadroniques dans
la limite de haute énergie en QCD, et la transition vers le régime de saturation. Dans ce
formalisme, nous redérivons les résultats connus nécessaires pour présenter nos recherches
personnelles, et nous calculons différentes sections efficaces dans le contexte de la diffraction
dure et de la production de particules.

Nous étudions la transition vers le régime de saturation dans le cadre de ’équation BK. En
particulier, nous dérivons certaines propriétés de ses solutions. Nous appliquons nos résultats
a la diffusion profondément inélastique et nous montrons que, dans le domaine d’énergie
du collisionneur HERA | les prédictions de la QCD a haute énergie sont compatibles avec
les données. Nous considérons aussi la production de jets dans les collisions hadroniques et
discutons des possibilités de tester la saturation au LHC.

Mots clés : physique des particules, chromodynamique quantique, régime perturbatif, densité
de gluons, saturation, effets collectifs.



Quantum chromodynamics at high energy, theory and
phenomenology at hadron colliders

Abstract :

When probing small distances inside a hadron, one can resolve its partonic constituents :
quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This
substructure reveals itself in hadronic collisions caracterized by a large momentum transfer :
in such collisions, a hadron acts like a collection of partons whose interactions can be described
in QCD.

In a collision at moderate energy, a hadron looks dilute and the partons interact incohe-
rently. As the collision energy increases, the parton density inside the hadron grows. Even-
tually, at some energy much bigger than the momentum transfer, one enters the saturation
regime of QCD : the gluon density has become so large that collective effects are important.

We introduce a formalism suitable to study hadronic collisions in the high-energy limit
in QCD, and the transition to the saturation regime. In this framework, we rederive known
results that are needed to present our personal contributions and we compute different cross-
sections in the context of hard diffraction and particle production.

We study the transition to the saturation regime as given by the BK equation. In particular
we derive properties of its solutions. We apply our results to deep inelastic scattering and show
that, in the energy range of the HERA collider, the predictions of high-energy QCD are in
good agreement with the data. We also consider jet production in hadronic collisions and
discuss the possibility to test saturation at the LHC.

Key words : particle physics, quantum chromodynamics, perturbative regime, gluon density,
saturation, collective effects.



Articles de références

Ce rapport de thése reprend des résultats publiés dans les articles suivants :

— Saturation at hadron colliders.
C. Marquet and R. Peschanski.
Phys. Lett. B587 (2004) 201, hep-ph/0312261.

— Saturation and forward jets at HERA.
C. Marquet, R. Peschanski and C. Royon.
Phys. Lett. B599 (2004) 236, hep-ph/0407011.

— A QCD dipole formalism for forward-gluon production.
C. Marquet.
Nucl. Phys. B705 (2005) 319, hep-ph/0409023.

— Traveling waves and geometric scaling at non-zero momentum transfer.
C. Marquet, R. Peschanski and G. Soyez.
Nucl. Phys. A756 (2005) 399, hep-ph/0502020.

— The Balitsky-Kovchegov equation in full momentum space.
C. Marquet and G. Soyez.
Nucl. Phys. A760 (2005) 208, hep-ph/0504080.

— Testing saturation with diffractive jet production in deep inelastic scattering.
K. Golec-Biernat and C. Marquet.
Phys. Rev. D71 (2005) 114005, hep-ph/0504214.

— On the projectile-target duality of the color glass condensate in the dipole picture.
C. Marquet, A.H. Mueller, A.I. Shoshi and S.M.H. Wong.
Nucl. Phys. A722 (2005) 252, hep-ph/0505229.

— QCD traveling waves at non-asymptotic energies.
C. Marquet, R. Peschanski and G. Soyez.
Phys. Lett. B628 (2005) 239, hep-ph/0509074.

— Traveling waves in discretized Balitsky-Kovchegov evolution.
C. Marquet, R. Peschanski, G. Soyez and A. Bialas.
Phys. Lett. B633 (2006) 331, hep-ph/0509216.

— Small—z effects in forward-jet and Mueller-Navelet jet production.
C. Marquet and C. Royon.
Nucl. Phys. B739 (2006) 131, hep-ph/0510266.

— Consequences of strong fluctuations on high-energy QCD evolution.
C. Marquet, R. Peschanski and G. Soyez.
Phys. Rev. D73 (2006) 114005, hep-ph/0512186.



Articles de références

Diffusive scaling and the high-energy limit of deep inelastic scattering in QCD.
Y. Hatta, E. lancu, C. Marquet, G. Soyez and D. Triantafyllopoulos.
Nucl. Phys. AT73 (2006) 95, hep-ph/0601150.

Forward gluon production in hadron-hadron scattering with Pomeron loops.
E. Iancu, C. Marquet and G. Soyez.
hep-ph /0605174, accepté dans Nucl. Phys. A.

Geometric scaling in diffractive deep inelastic scattering.
C. Marquet and L. Schoeffel.
Phys. Lett. B639 (2006) 471, hep-ph/0606079.

On the probability distribution of the stochastic saturation scale in QCD.
C. Marquet, G. Soyez and B.-W. Xiao.
Phys. Lett. B639 (2006) 635, hep-ph/0606233.



Remerciements

En premier lieu je tiens a exprimer ma gratitude envers Robi Peschanski pour avoir di-
rigé ma thése avec une rare disponibilité et partagé ses nombreuses idées avec moi. Il m’a
présenté les différentes facettes du métier de chercheur avec enthousiasme et grace a lui, j’ai
pu m’intégrer au groupe de chromodynamique quantique de Saclay. J’y ai bénéficié de mul-
tiples interactions instructives, en particulier avec Edmond Iancu, Frangois Gélis et Jean-Yves
Ollitrault. Je les remercie vivement pour ce qu’ils m’ont apporté.

Cette thése a 6té effectuée au Service de Physique Théorique du Commissariat a 'Energie
Atomique. Je remercie ses directeurs successifs Jean-Paul Blaizot et Henri Orland ainsi que
tous les membres du laboratoire pour ’environnement scientifique exceptionnel dont j’ai béné-
ficié. Je suis également reconnaissant aux membres du secrétariat, du groupe informatique, et
du groupe de la documentation qui ont toujours répondu a mes diverses questions de maniére
efficace.

Les études phénoménologiques réalisées durant ma thése sont le fruit de collaborations
avec Christophe Royon puis Laurent Schoeffel, expérimentateurs au Service de Physique des
Particules de Saclay. Mes discussions avec eux se sont révélées trés fructueuses. Je remercie
en particulier Christophe pour m’avoir expliqué les difficultés liées aux mesures dans les ac-
célérateurs de particules; ses enseignements me permettent d’interagir efficacement avec les
expérimentateurs.

En plus des conférences auxquelles j’ai participé durant ma thése, j’ai eu la chance de
pouvoir effectuer de nombreux séjours dans des laboratoires & 1’étranger. Larry McLerran,
Dmitri Kharzeev et Raju Venugolpalan m’ont permis d’intégrer leur groupe au Laboratoire
de Brookhaven. Krzysztof Golec-Biernat m’a accueilli & deux reprises a l'institut de physique
nucléaire de Cracovie. Enfin Al Mueller a accepté de me recevoir dans son équipe a I’Université
Columbia. Tous ont fait preuve d’une grande disponibilité, je les en remercie vivement.

Je remercie Benoit Blossier, Rikard Enberg, Darren Forde, Yoshi Hatta, Kazu Itakura,
Stéphane Munier, Yacine Mehtar-Tani, Arif Shoshi, Grégory Soyez, Dyonisis Triantafyllo-
poulos, Stephen Wong, Bowen Xiao et tous les jeunes physiciens avec qui j’ai eu 'occasion
d’interagir, scientifiquement ou non, au cours de ces trois ans. En particulier, je suis redevable
a Grégory pour nos discussions enrichissantes, mais aussi pour son aide généreuse lorsque
j’étais impuissant face & mon écran d’ordinateur. Je remercie aussi Tristan Brunier, Jérémie
Bouttier, Nicolas Chatillon, Stéphane Coulomb, Jéréme Rech et tous les jeunes physiciens du
Service pour la bonne ambiance qui s’est installée durant ces trois années.

Je suis aussi trés honoré que Yuri Dokshitzer, Larry McLerran et Jean-Bernard Zuber
aient bien voulu faire partie de la commission d’examen et je suis extrémement reconnaissant
envers Andrzej Bialas et Al Mueller qui ont accepté de rédiger les rapports.

Pour finir, je dois beaucoup au soutien de mon entourage familial et amical, et je remercie
tout particuliérement Aline, pour avoir attentivement relu ce mémoire.



Remerciements




Table des matieres

Introduction . . . . . . L

1

Collisions a haute énergie en QCD

1.1 Collision entre deux particules hadroniques . . . . . . .. .. ... ... ...
1.2 Description du projectile . . . . . . . . . ...
1.3 Description de la cible . . . . . . . . ...
1.4 Les éléments de la matrice de diffusion . . . . . . . ... ... ... ...
1.A Lignes de Wilsons et identités de Fierz . . . . . . ... .. ... ... .. ...

Collision d'un Onium sur une cible hadronique

2.1 L’onium : un projectileidéal . . . . . . . . .. ... ... L
2.2 Section efficace totale . . . . . . ..o
2.3 Section efficace diffractive . . . . . . ... L
2.4 Section efficace de production de gluons . . . . . . ... ... ... ... ...
2.A Factorisation de la section efficace de production inclusive de gluons . . . . .

Les équations BFKL et BK

3.1 L’équation de Balitsky-Fadin-Kuraev-Lipatov . . . . . . ... ... ... ...
3.2 Solutions homogeénes de I’équation de Balitsky-Kovchegov . . . . . . . . . ..
3.3 Solutions générales de ’équation de Balitsky-Kovchegov . . . . . .. .. ...
3.4 Une paramétrisation générique pour les ondes progressives de QCD . . . . . .
3.A Calcul des valeurs propres du noyau BFKL . . .. ... ... ... .. ....

Phénoménologie appliquée a la diffusion profondément inélastique

4.1 La diffusion profondément inélastique . . . . . . . . . . .. ... ... ... ..
4.2 Le photon virtuel : un exemple d’onium . . . . . .. ... ... ... ... ..
4.3 Des lois d’échelle prédites par la QCD a haute énergie . . . . . .. .. .. ..
4.4 La production diffractive de gluon . . . . . . .. .. ... ... L.
4.A Dérivation de 'amplitude Aa,(x,y,q) dans le cadre du modéle GBW

Phénomeénologie appliquée a la production de jets

5.1 Production inclusive de jets & partir d'un hadron . . . . . .. ... ... ...
5.2 Production de jets vers 'avant en diffusion profondément inélastique . . . . .
5.3 La production de jets de Mueller-Navelet . . . . . . ... ... ... ... ...

Au dela des équations B-JIMWLK

6.1 La dualité entre le régime dense et le régime dilué . . . . . . . .. .. ... ..
6.2 Une équation de Langevin pour I’évolution vers les hautes énergies . . . . . .
6.3 L’équation FKPP stochastique . . . . . ... ... ... .. ... .. ....
6.4 Une nouvelle loi d’échelle en QCD a haute énergie . . . . .. ... ... ...
6.A Dérivation de la premiére équation de la hiérarchie du régime dilué¢ . . . . . .

11

15
15
19
24
25
28

29
30
33
38
41
48

51
52
o4
60
64
69

71
72
75
79
84
89



10 Table des matiéres
Conclusions . . . . . . . 135
Publications personnelles . . . . . . . . . . . ... o0 137

Bibliographie générale . . . . . . . . .. ..o 139



Introduction

Les premiéres expériences de diffusion profondément inélastique réalisées dans les années
60 ont initié d’'importants progrés dans la compréhension des interactions fortes entre hadrons.
Marquées par la découverte de la loi d’échelle de Bjorken, ces expériences ont permis de
mettre en évidence la nature composite des hadrons : elles indiquent qu’ils sont composés de
particules de spin 1/2, appelées partons, a la fois confinés et libres a l'intérieur des hadrons.
La possibilité que ces partons soient caractérisés par un nombre quantique supplémentaire
était aussi discutée, cela permettait de résoudre un probléme lié a la statistique des fermions
de spin 1/2. La chromodynamique quantique (QCD) a alors été proposée comme théorie des
interactions fortes; cette théorie des champs pouvait potentiellement rendre compte a la fois
du confinement, de la description en termes de partons libres, et possédait un degré de liberté
supplémentaire : la charge de couleur.

La QCD est une théorie de jauge non abélienne, qui décrit les interactions fortes en termes
de particules de spin 1/2 appelées quarks et de particules de spin 1 appelées gluons. Le groupe
de jauge de QCD est le groupe SU(N,) avec N, = 3; les quarks et gluons portent une charge
de couleur qui peut prendre N, valeurs différentes pour les quarks et N2 — 1 pour les gluons.
Des observations de violations de la loi d’échelle de Bjorken ont plus tard confirmé la présence
des gluons et la QCD s’est imposée comme la théorie des interactions fortes. C’est une théorie
quantique qui posséde la propriété de liberté asympotique : plus les phénoménes considérés
mettent en jeu des petites distances (ou des grands transferts d’impulsion), plus la constante
de couplage «; est petite. Aux grandes distances, les observations nous montrent que les
états liés de la théorie sont les hadrons. Aux petites distances par contre, les interactions
sont décrites en utilisant les états propres de la théorie libre : les partons. Ce terme désigne
maintenant indifféremment les quarks et les gluons.

Les bases de la QCD sont posées dans les années 70. Dans le régime de couplage fort,
caractérisé par 'échelle d’énergie Agcp ~ 200 MeV, notre capacité a faire des calculs est
limitée ; la physique est dite non perturbative. Au contraire lorsque la théorie est faiblement
couplée (as < 1), il est possible d’effectuer des calculs perturbatifs. La plupart des collisions
entre hadrons sont caractérisées par des transferts d’impulsion faibles et correspondent &
un régime de couplage fort. Cependant, il arrive que certaines collisions mettent en jeu un
transfert d’impulsion trés grand par rapport & Agcp. Ces collisions particuliéres peuvent étre
décrites par des collisions microscopiques entre partons, les sections efficaces partoniques étant
calculables & partir du Lagrangien de QCD, exprimé en termes de quarks et de gluons, en
utilisant la théorie des perturbations par rapport a as.

Dans une telle description, les différents partons interagissent de maniére incohérente et les
différentes contributions sont ajoutées de maniére probabiliste : une section efficace hadronique
est exprimée comme une convolution entre une section efficace partonique et des distributions
de partons, qui mesurent simplement la quantité de partons a I'intérieur des hadrons. Grace a
des outils comme le développement en produit d’opérateurs et le groupe de renormalisation, la
description de ces distributions de partons est devenue trés fine. L’évolution des distributions
de partons avec I'impulsion transférée est décrite par des équations [1] dues & Dokshitzer,
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Gribov, Lipatov, Altarelli et Parisi (DGLAP). Si en plus ’énergie de la collision est trés
grande devant I'impulsion transférée, 1’évolution des distributions de partons avec 1’énergie
de la collision est décrite par une équation [2]| due a Balitsky, Fadin, Kuraev et Lipatov. Ces
équations décrivent comment le nombre de partons a I'intérieur d’un hadron augmente lorsque
I'impulsion transférée augmente (dans le cas des équations DGLAP), ou lorsque I'énergie de
la collision augmente (dans le cas de I’équation BFKL).

A partir des années 80, les expériences se focalisent sur ’étude des distributions de partons
a des énergies de collision relativement faibles. L’approche par les équations DGLAP fait le
succes de la QCD, alors que ’équation BFKL reste ignorée. Les prédictions de violations de la
loi d’échelle de Bjorken par les équations DGLAP sont confirmées et I'ensemble des résultats
expérimentaux est bien décrit. Les données du probléme changent dans les années 90 avec
le démarrage du collisionneur HERA, qui réalise des expériences de diffusion profondément
inélastique & des énergies jamais atteintes auparavant. L’intérét pour équation BFKL est
ravivé et avec lui, la nécessité d’établir les prédictions de la QCD dans un nouveau régime du
domaine perturbatif : le régime de saturation qui apparait dans la limite de haute énergie. En
effet, il est réalisé (3, 4, 5, 6, 7| que lorsque ’énergie de la collision est supposée beaucoup plus
grande que 'impulsion transférée, cet ordonnancement est responsable de grandes densités de
gluons dans les hadrons, impliquant d’importants effets collectifs.

Les équations DGLAP indiquent que lorsque I'impulsion transférée dans la collision aug-
mente, la densité de partons dans le hadron diminue et ce dernier est de plus en plus dilué.
En effet méme si le nombre de partons augmente, ’espace des phases disponibles pour ces
partons augmente plus vite. L’évolution BFKL au contraire n’ouvre pas d’espace de phase
supplémentaire lorsque ’énergie de la collision augmente et le hadron devient de plus en plus
dense dans la limite de haute énergie. A partir d’une certaine énergie, la densité de gluon de-
vient assez grande pour invalider la description en termes de partons interagissants de maniére
incohérente. Lorsque c’est le cas, on dit que I'on a atteint le régime de saturation de QCD.
Ce régime est caractérisé par des effets collectifs diis & une grande densité de gluons dans
les hadrons. L’'universalité de la collection de gluons formée par 1’évolution vers les hautes
énergies est discutée. Il a été proposé d’appeler un tel ensemble de gluons un condensat de
verre de couleur (CGC).

Le but de cette thése est d’étudier la limite de haute énergie de QCD et le régime de
saturation, a la fois du point de vue théorique et du point de vue phénoménologique. Une
partie des communautés de physique des particules et de physique nucléaire s’y intéresse
depuis environ 10 ans (voir [8] pour des revues concises et complétes); a 'heure actuelle,
c’est d’autant plus important en vue du démarrage du collisionneur LHC, prévu en 2007.
Le LHC réalisera des collisions proton-proton & des énergies jamais atteintes auparavant et
la compréhension du régime de saturation de QCD pourrait s’avérer essentielle pour guider
les futures expériences. Des manifestations du régime de saturation ont d’ailleurs peut-étre
déja été observées aux accélérateurs HERA [9] et RHIC [10] (qui réalise des collisions d’ions
lourds).
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Organisation du mémoire

Dans la suite, les résultats déja connus et les calculs originaux sont présentés de maniére
unifiée. Pour mettre en valeur les travaux personnels, les publications correspondantes sont
évoquées avec une numérotation en chiffres romains, tandis que les autres sources bibliogra-
phiques sont indiquées par des chiffres arabes. Les publications personnelles sont référencées
page 137 et la bibliographie générale est présentée page 139.

Dans le Chapitre 1 nous considérons une collision entre deux hadrons dans la limite de
haute énergie. Nous expliquons de maniére qualitative puis quantitative comment décrire une
telle collision avec le régime perturbatif de la QCD. Le formalisme et les objets mathématiques
nécessaires a nos recherches personnelles y sont présentés. Les notations introduites dans ce
chapitre seront reprises dans la suite.

Dans le Chapitre 2, nous introduisons un projectile hadronique particulier, un Onium.
Son utilisation permet de simplifier les calculs sans altérer leur pertinence. Ce chapitre a
plusieurs objectifs : il permet & la fois d’illustrer le formalisme présenté au Chapitre 1, de
dériver la hiérarchie d’équations de Balitsky, et aussi de présenter des calculs de sections
efficaces adaptées pour I'étude la limite de haute énergie de QCD. De telles observables sont
des sections efficaces totale, diffractive, et de production inclusive et diffractive de gluons.
Dans ce chapitre, nous avons choisi de dériver les résultats déja connus et les calculs originaux
de Particle [IV] de maniére pédagogique, plutot que chronologique.

Le Chapitre 3 est consacré a I’étude de I’équation de Balitsky-Kovchegov (BK), une équa-
tion qui résulte d’une approximation de la hiérarchie de Balitsky mais qui a essentiellement le
méme contenu physique. Nous montrons comment 1’équation BK décrit la transition entre le
régime d’énergie gouverné par I’équation BFKL et le régime de saturation atteint & haute éner-
gie. Nous insistons sur I’étude des solutions asymptotiques de ’équation BK en reproduisant
les résultats des articles [VII, VIII, XIV].

Le Chapitre 4 discute de phénoménologie dans le cadre des expériences de diffusion pro-
fondément inélastique. Nous utilisons les résultats des Chapitres 2 et 3 pour établir des pré-
dictions pour les sections efficaces totale et diffractive que nous comparons avec les données
expérimentales. Nous montrons que, dans le domaine d’énergie du collisionneur HERA, les
prédictions de la QCD & haute énergie sont en bon accord avec les données. Nous reprenons
les résultats de la publication [XXI| qui discute de lois d’échelle observées dans les données, et
potentiellement reliées a la physique de la saturation. Nous exposons aussi la proposition de
larticle [X] qui consiste & mesurer une observable possédant un grand potentiel pour tester
le régime de saturation.

Le Chapitre 5 traite de phénoménologie dans le cadre de la production inclusive de gluons;
les résultats des articles [I, III, XVII] y sont exposés. Plus précisément, les productions de
jets vers 'avant en diffusion profondément inélastique et de jets de Mueller-Navelet dans les
collisions hadron-hadron sont considérées. Ce sont des processus idéaux pour tester 1’évolu-
tion BFKL, puis pour de plus hautes énergies, le régime de saturation. Nous discutons des
possibilités de tester ces régimes de QCD au LHC.

Enfin, le Chapitre 6 présente de nouveaux développements théoriques obtenus au cours des
deux derniéres années. Ceux-ci mettent en évidence une limitation de la hiérarchie d’équations
de Balitsky, et prososent certaines modifications. Nous présentons les études des articles [XI,
XVIII, XXII] qui discutent de ces nouveaux concepts et d’un nouveau lien avec la physique
statistique. Nous présentons les potentielles implications phénoménologiques pour la diffusion
profondément inélastique & trés haute énergie [XIX], et pour la production de jets vers 'avant
dans les collisions hadron-hadron au LHC [XX].
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CHAPITRE 1
Collisions a haute énergie en QCD

Sommaire
1.1 Collision entre deux particules hadroniques . . . . . .. ... ...... 15
1.1.1 Cinématique de la collision . . . . . ... ... ... ... ...... 15
1.1.2 Description de la collision en QCD perturbative a haute énergie . . . 17
1.1.3 Choix durepére . . . . . . . . .. ... 18
1.2 Description du projectile . . . . . . ... ... . L oo 19
1.2.1 Quantification des champs libres et espace de Fock . . . . . . . . .. 20
1.2.2 Exemple de calcul : le vertex ¢ —qg: . . . . .. .. .. ... ... 22
1.2.3 Fonctions d’ondes en espace mixte . . . . . . .. .. ... ... ... 23
1.3 Descriptiondelacible. . .. .. ... ... ... .. .. .. ..., 24
1.4 Les éléments de la matrice de diffusion . . . ... ... ... ...... 25
1.A Lignes de Wilsons et identités de Fierz . . . . ... ... ........ 28

Ce premier Chapitre présente le cadre d’étude de cette thése : une collision entre deux
hadrons dans la limite de haute énergie. La premiére partie introduit la cinématique du
probléme et explique de maniére qualitative comment décrire une telle collision en QCD
perturbative. Les sections suivantes reprennent les différentes étapes de maniére plus détaillée :
les objets mathématiques nécessaires a ’étude sont présentés et un formalisme adapté a la
limite de haute énergie est développé. Le but de ce chapitre est d’introduire les outils qui
permettront d’exhiber les prédictions de la QCD perturbative, pour pouvoir étudier jusqu’a
quel point elle peut décrire les collisions entre deux hadrons dans la limite de haute énergie.

1.1 Collision entre deux particules hadroniques

1.1.1 Cinématique de la collision

Plagons nous dans le référentiel du laboratoire et choisissons le repére de telle sorte que
'axe de la collision soit 1'axe 23 = z et que la collision ait lieu & z = 0. Nous appellerons
projectile la particule qui se déplace dans le sens des z positifs et noterons P? = P, son
impulsion longitudinale et Mp sa masse. De méme, nous appellerons cible la particule qui se
déplace dans le sens des z négatifs et noterons Q3 = —@Q. son impulsion longitudinale et M
sa masse. Nous allons utiliser des coordonnées appelées coordonnées du cone de lumiére et
définies par :

e

= (kT k, k), Kkt ,
( ) NG

k = (' k%) . (1.1)
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F1G. 1.1 — Cinématique de la collision P—C. L’axe de la collision est I’axe x> = z, par rapport

auquel sont définies les coordonnées du cone de lumiére (1.1) et la rapidité (1.5) des particules
émises par la collision.

Dans ces coordonnées, le produit de deux quadri-vecteurs s’écrit
k”kL kK + kKT -k K. (1.2)

Les quadri-impulsions du projectile P* et de la cible @Q* sont données par

PH = (Pt ;‘fﬁ) L Qe (%3_,0,@—) . (1.3)

Pour des particules se déplacant & des vitesses proches de celles de la lumiére telles que
P,> Mpet@Q,> Me,ona Pt ~+v2P,, P~ ~0,Q" =+v2q.,, QT ~0, et I'énergie de la
collision est s = (P* + Q")(P, + Q) ~2PTQ™.

Une telle collision entre deux hadrons de trés haute énergie libére de nombreuses particules
dans I’état final. Pour une particule de masse my, la quadri-impulsion s’écrit

kY = (kf, kg ky) avec 2kfk; = K7 +mj . (1.4)

Introduisons une variable trés commode pour caractériser ces particules libérées par la colli-
sion : la rapidité y définie par

1 2 2
e — <k?>2 _ V2R _ylarmy (1.5)

Ry

kfc—I—m; \@k;

Une particule émise perpendiculairement a I'axe de la collision (k;’c =0 et kj[ = k;) a une
rapidité nulle, une particule émise dans I’hémisphére des z positifs (k:i’c >0et k;{ > k;) a une
rapidité positive, et une particule émise dans 'hémisphére des z négatifs (kf; <0Oet k}" < k;)
a une rapidité négative. Notons que pour une particule de masse nulle, la rapidité est égale a
la pseudo rapidité i définie par

e " = tan (g) (1.6)

ou 0 est 'angle d’émission de la particule par rapport a la direction des z positifs. La pseudo
rapidité d’une particule est facilement mesurable expérimentalement. La figure 1.1 résume la
cinématique de la collision que nous venons d’introduire.
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00

Fia. 1.2 — Collision entre le projectile P et la cible C, tous deux habillés. Les partons de
valence sont accompagnés d’ensembles cohérents de partons virtuels.

1.1.2 Description de la collision en QCD perturbative a haute énergie

Nous allons maintenant expliquer de maniére qualitative comment la collision est décrite
en QCD perturbative, dans la limite de haute énergie. Signalons d’abord que nous considé-
rons seulement des collisions au cours desquelles il se produit un transfert d’impulsion assez
important : le traitement perturbatif n’est justifié que dans ce cas. En notant kg 'impul-
sion transverse typique des particules de I’état final (plus précisément kfc + m% ~ /@8), nous
travaillons dans le régime

ko> Agep = as(ko) < 1. (1.7)

Agcep est une échelle caractéristique du régime non perturbatif de QCD et vaut environ
200 MeV. ay est la constante de couplage de la QCD.

Asymptotiquement avant la collision, les particules sont nues, c¢’est-a-dire qu’elles sont
composées uniquement de partons de valence. Ces particules nues évoluent jusqu’a l'instant
de la collision ce qui les transforme en particules habillées, c’est-a-dire que leurs partons de
valence sont accompagnés d’un ensemble cohérent de partons virtuels. Formellement, cela
correspond a décomposer les états initiaux en superpositions d’états de Fock de quarks et
gluons ; par exemple pour un proton, on écrit :

‘pI‘OtOH> = ’CIU(]vQU> + IQUQvag> + o+ ’CIUQvag e 'ggqqg> + (1~8>

La collision a lieu entre les particules habillées, comme représenté Figure 1.2, et a pour effet
de détruire la cohérence des partons qui habillent le projectile et de ceux qui habillent la cible.
Ces partons sont donc libérés par la collision, ils vont former les particules de ’état final.
Les coefficients des différents états de Fock dans (1.8) sont calculés en théorie des per-
turbations. En faisant cela, il apparait a priori des divergences infrarouges : la probabilité
que le projectile (ou la cible) soit habillé d'un gluon est proportionnelle & ag/k™ ou kT re-
présente 'impulsion londitudinale du gluon. En intégrant cette probabilité sur k™, les petites
impulsions sont responsables d’une divergence logarithmique. En fait, cette divergence n’est
qu’apparente car les gluons virtuels qui en sont responsables ne jouent aucun rble dans la
collision : ils ont une impulsion longitudinale trop petite pour pouvoir étre transformés en
particules réelles. On peut donc ne pas les prendre en compte et considérer que 'impulsion
longitudinale des gluons qui habillent le projectile (ou la cible) est bornée inférieurement. Nous
verrons plus loin que cette borne est déterminée par la cinématique de la collision, et que dans



18 Collisions a haute énergie en QCD

la limite de haute énergie, elle devient trés petite. Concentrons nous sur la décomposition en
états de Fock du projectile et appelons zp P cette borne inférieure (zp < 1). La probabilité
que le projectile soit habillé d’un gluon est proportionnelle &

pt +
dk 1
Qg /ZPP+ kT = Qg In <Z,P> . (19)

De maniére similaire, la probabilité que le projectile soit habillé de n gluons est proportionnelle

a
1 z Zn—
d 1d n—-1 1 1
o/;/ zl/ 22/ @n _ Longn <> , (1.10)
op 21 Jop 22 op Zn n! zZp

Nous remarquons que quand zp est assez petit pour compenser le facteur a; et est tel que
asIn(1/zp) ~ 1, alors tous les ordres n contribuent de la méme maniére. Ces gluons a petites
impulsions longitudinales (~ zpP™) qui sont responsables de contributions & tous les ordres
sont appelés des gluons mous, et 'approximation qui consiste a ne garder que les contributions
dominantes en a;In(1/zp) s’appelle I'approximation des logarithmes dominants.

Nous devons faire une approximation pour tronquer une décomposition telle que (1.8)
car il n’est pas possible de calculer toutes les composantes. La discussion ci-dessus montre
que la maniére d’effectuer cette troncation dépend de la valeur de zp. Si zp < 1, alors on
peut effectuer normalement un développement par rapport a la constante de couplage g,
puis tronquer a 'ordre désiré. Par contre si zp < 1, cette procédure devient inconsistante et
I’approximation appropriée est I'approximation des logarithmes dominants. Cette discussion
est aussi valable pour la décomposition en états de Fock de la cible, pour laquelle nous noterons
zc@~ la borne inférieure sur les impulsions longitudinales des gluons virtuels qui ’habillent.
Lors de la collision projectile-cible, les particules libérées viennent des collisions élémentaires
entre les partons virtuels. En fait les seules collisions possibles sont celles qui impliquent des
particules avec suffisamment d’impulsion longitudinale pour pouvoir donner lieu & une masse
invariante positive. Cela se traduit par la condition

zpzes = ki (1.11)

ol nous rappelons que kg est I'impulsion transverse typique des particules de I’état final. Cela
a pour conséquence que, dans la limite de haute énergie, soit zp, soit z¢, soit les deux sont
tres petits.

1.1.3 Choix du repére

Les particules virtuelles qui habillent le projectile et la cible sont libérées lors de la collision

avec les propriétés suivantes.

— Leur rapidité maximale est Ymqz = In(v/2PT/kg) > 0 et correspond & une particule
qui habillait le projectile avec une impulsion longitudinale maximale PT. La plus pe-
tite rapidité possible pour une particule qui provient du projectile est In(v/22zpPT /k),
I'intervalle de rapidité sur lequel les particules du projectile sont émises est donc Yp =
In(1/2zp). Par abus de language, on appele Yp la rapidité du projectile habillé.

— Leur rapidité minimale est ¥min = — In(v/2Q~ /ko) < 0 et correspond & une particule qui
habillait la cible avec une impulsion longitudinale maximale @) ~. La plus grande rapidité
possible pour une particule qui provient de la cible est — ln(ﬂch* /ko), Uintervalle
de rapidité sur lequel les particules de la cible sont émises est donc Y¢ = In(1/2¢). Par
abus de language, on appele Y¢ la rapidité de la cible habillée.

Les particules émises occupent donc un intervalle de rapidité total

Ymaz — Ymin = ln(s/k(Q)) =Y. (112)
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F1Gc. 1.3 — En fonction du choix de repére, qui est caractérisé par les intervalles de rapidité
Yp et Ye, Dorigine des particules émises lors de la collision est différente. Les particules de
rapidité y > y. sont décrites comme provenant de partons qui habillaient le projectile et les
particules de rapidité y < y. sont décrites comme provenant de partons qui habillaient la
cible.

La condition (1.11) implique alors Y = Yp + Y¢ et la rapidité définie par v = Ymaz — Yp =
Ymin + Y joue un role particulier : les particules finales avec y > y, proviennent du projectile
et celles avec y < y, proviennent de la cible. Ceci est résumé Figure 1.3, nos notations sont
telles que les rapidités mesurées sur l'axe y (qui peuvent étre positives ou négatives) sont
notées avec des minuscules, alors que les intervalles de rapidité sont notés avec des majuscules
(et sont toujours positifs). Signalons que les rapidités Ymin, Ys €t Ymae sont définies a des
incertitudes prés dues aux impulsions transverses dont les valeurs peuvent a priori différer de
ko. Cependant dans la limite de haute énergie, ces incertitudes sont des nombres de 1'ordre
de I'unité comparés a In(P* /kg) ou In(Q~ /ko) et sont négligeables.

La valeur de zp peut étre choisie arbitrairement entre k% /s et 1 ce qui impose la valeur de
zc, ou inversement. En terme de rapidité, ceci consiste & choisir une fagon de diviser Y en deux,
en choisissant Yp (et par conséquent Y¢). Cette liberté peut étre considérée comme un choix
de repére pour décrire la collision. En fonction de ce choix qui détermine aussi y,, les particules
finales sont décrites comme provenant soit du projectile, soit de la cible. Dans la suite nous
choisirons des repéres tels que Yp ~ 0 (2p < 1) et donc Yo ~ Y (2¢ ~ k3/s < 1). Nous
calculerons donc la décomposition en états de Fock du projectile en théorie des perturbations
par rapport a ay, et a P'ordre dominant le projectile sera seulement composé de partons de
valence. Au contraire nous allons décrire la cible comme un ensemble cohérent de gluons, ol
toutes les contributions en af In"(1/z¢) a la décomposition en états de Fock sont prises en
compte. En ce qui concerne les particules finales, un tel choix implique yx < Ymaz donc la
plupart d’entre elles seront décrites comme provenant de la cible. Seules les particules de trés
grandes rapidités (yx < ¥y < Ymaqz) seront décrites comme provenant du projectile.

Ce choix d’une configuration asymétrique & un avantage particulier : les incertitudes liées
au projectile seront minimales, le développement perturbatif par rapport & o étant bien mai-
trisé. Cela nous permettra une étude précise de la description de la cible et de sa composition
dans la limite de haute énergie. Une telle étude est indispensable pour pouvoir ensuite décrire
correctement des situations plus symétriques, pour lesquelles les effets de la limite de haute
énergie sont importants a la fois pour le projectile et pour la cible.

1.2 Description du projectile

Nous choisirons de paramétrer les quadri-impulsions k* des particules qui habillent le
projectile par leurs composantes longitudinales kT et transverses k, la condition de couche de
masse fixant la valeur de k~. C’est la quantification des champs libres de QCD, les quarks
et gluons, qui fournit I'espace de Fock nécessaire pour décrire le projectile. Cet espace est
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composé d’états avec un nombre donné de quarks et de gluons, d’impulsions fixées. Ces états
fournissent une base sur laquelle on peut décomposer le projectile nu, en incluant seulement
les partons de valence, ou le projectile habillé, en incluant dans la décomposition des états
avec plus de partons, jusqu’a l'ordre souhaité en théorie des perturbations par rapport a as.
Notons que ces partons sont toujours sur couche de masse. Leur virtualité vient du fait que la
quadri-impulsion n’est pas conservée a chaque vertex, seule la tri-impulsion, que nous noterons
k = (k™ k), est conservée.

Formalisons maintenant cette procédure et commencgons par traiter le cas des gluons.
Nous effectuerons la quantification du champ de gluons A# dans la jauge AT = 0, souvent
appelée jauge du céne de lumiére. Ce choix de jauge apporte de grandes simplifications, par
exemple nous n’aurons pas besoin de fantémes de Faddeev- Popov pour la quantification et
nous aurons seulement besoin des deux quadri-vecteurs 5( 1 et 6( 5) bour décrire les deux
polarisations physiques des gluons.

1.2.1 Quantification des champs libres et espace de Fock

On quantifie les champs libres de maniére habituelle, en les décomposant en modes de
Fourier. Pour le champ de gluon A%, ol ¢ est I'indice de couleur, on obtient

acx(k)e *% L he. (1.13)

1= 3 | oy oo

ou + h.c. signifie qu’il faut ajouter le conjugué hermitien du terme précédent.

Comme manifeste dans cette formule, les gluons ont seulement deux polarisations pos-
sibles, elles sont transverses et imposent kte( A)u(k) = 0. De plus la jauge AT = 0 impose
Ea) = ag) = 0. Les quadri-vecteurs de polarisation sont donc paramétrables par deux vec-

teurs & deux composantes, que I'on choisira transverses et notera €1 et €2. On a

4 k'E,')\
EI(A)(k) = <07€)\7 /c*‘) A=1,2. (1.14)

Une base pratique pour les vecteurs €1 et €5 est

1 1
ﬁ(l,l) 62—\/§

£ = (1,—i) . (1.15)

Les opérateurs ai \(k) et acx(k) de la décomposition (1.18) s’interprétent comme des
opérateurs de création et d’annihilation de gluons d’impulsion k, de couleur c et de polarisation
A. Ils agissent sur le vide de la maniére suivante

al \(K)[0) = [k, e, ) aca(k)|0) =0 (1.16)
et obéissent aux relations de commutations

[er(k). @l ()] = 8uadrn @k — K) (1.17)

Notons que ces relations impliquent des relations de commutations & ™ égaux entre champs
et leurs conjugués. Pour cette raison, cette procédure est souvent appelée quantification sur
le cone de lumiére. Par application successive d’opérateurs de création, on forme les états a
N gluons |(ki,c1,A1), -+, (kn,eN, AN))-
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Munis de notre base d’états de Fock, nous pouvons écrire la décomposition du projectile

|P) :

N>1 ;AN
€1, ,CN

|(k17017)\1)7"' 7(]{;N)CN’)‘N)> (118)

o, en accord avec nos notations, P = (P71, 0) est la tri-impulsion du projectile. La fonction
§®) dans la décomposition (1.18) assure la conservation de la tri-impulsion. Les fonctions
d’ondes w)‘l’ . ’\N se calculent en théorie des perturbations; un exemple simple d’un tel calcul
est donné par la suite, dans le but d’illustrer ce formalisme. En tronquant la décomposition
(1.18) a l'ordre souhaité en théorie des perturbations par rapport & «g, on décrit un pro-
jectile habillé avec plus ou moins de gluons. Précisons que la coupure inférieure zp P sur
les impulsions longitudinales kf des gluons virtuels n’est pas écrite explicitement mais est
sous-entendue. Cette coupure précise le repére dans lequel la décomposition |P) est calculée.
Signalons finalement le probléme de la normalisation de 1'état |P) :

(PIP) = 50 Z/(Hd3 )5(3) (ZN;;CP) MZ

N>1 AN
C1,"",CN

C1,°

2
Al’-’CN (klv akN7P+)‘

(1.19)
Le facteur §(3(0) est reli¢ au probléme bien connu de la normalisation des ondes planes en
volume infini. Un calcul en volume fini [11, 12|, ou un traitement qui utiliserait des paquets
d’ondes normalisables au lieu des ondes planes [13], permettrait d’éviter ce facteur probléma-
tique. Une maniére moins satisfaisante de s’en débarrasser, mais que nous utiliserons néan-
moins par la suite, est d’appliquer la prescription suivante : lors du calcul de normes, nous
diviserons systématiquement le résultat par 6©)(0). La normalisation de I’état |P) a 1 impose
alors la condition suivante sur les fonctions d’ondes qui interviennent dans la décomposition :

N
Z/(Hd?’ >5(3)(Zki—P> ’ng{v (ky, - ,kN;P+)(2=1. (1.20)
i=1 A AN

N>1
el e
Physiquement, cela signifie qu’en introduisant un gluon de plus dans le projectile habillé, on
renormalise les contributions des gluons déja présents, ce qui correspond & prendre en compte
a la fois les termes réels et virtuels. Ce phénoméne sera aussi illustré par la suite.

Dans notre description du projectile, nous inclurons évidemment aussi des états contenant
des quarks et antiquarks. Cela se fait de la méme maniére que pour les gluons et nous déno-
terons un état & un quark |k, «, s) ot k est 'impulsion, « l'indice de couleur et s 'indice de
spin :

bl (R)]0) = [k, a,s)  ba(k)|0) = 0. (1.21)

Pour les antiquarks, nous utiliserons la notation |k, @, ) :
dbo(k)|0) = [k, a5)  das(k)[0)=0. (1.22)

Dans les équations ci-dessus, les opérateurs bf et b (dJr et d) sont les opérateurs de création
et d’annihilation de quark (antiquark) qui apparaissent dans la décomposition en modes de
Fourier du champ fermionique. Ils obéissent aux relations d’anticommutations

{ba,s(k), bgs,(k’)} = 00550 (k — k') | (1.23)
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Fi1G. 1.4 — La transition ¢ — qg : le quark nu d’impulsion p, de couleur «, et de spin s, s’habille
d’un gluon d’impulsion k, de couleur c et de polarisation \. Le quark habillé a pour impulsion
p — k, son indice de couleur est 3 et son indice de spin s’. La fonction d’onde associée est
donnée par 'équation (1.26).

{da,s(k), dg,s,w)} = 0330550 (k — k') . (1.24)

Par application successive des opérateurs de création sur le vide, on forme les états a plusieurs
quarks ou antiquarks.

1.2.2 Exemple de calcul : le vertex ¢ — ¢g :

Nous allons & présent illustrer ce formalisme en présentant un calcul de fonction d’onde.
Un tel calcul est réalisé en utilisant des régles de Feynman, particuliéres & la quantification
sur le cone de lumiére, néanmoins similaires aux régles de la quantification covariante. Les
régles de Feynman que nous utiliserons sont dérivées par exemple dans [14]. Nous considérons
un exemple simple : le cas ot le projectile est un quark habillé d’un gluon. Ceci est représenté
figure 1.4.

— Nous notons I"impulsion du quark entrant p, son indice de couleur «, et son indice de
spin s; il lui est donc associé le spineur us(p)/+/(2m)32pt.

— Nous notons I'impulsion du gluon émis &, son indice de couleur ¢, et son indice de
polarisation A; il lui est ainsi associé le vecteur de polarisation s’(‘ )\)(k) /\/(2m)32k .

— La tri-impulsion étant conservée, 'impulsion du quark sortant est p — k. Nous notons
son indice de couleur 3 et son indice de spin s’, et nous lui associons donc le spineur
Uy (p—k)/\/(2m)32(p—k)*.

— Au vertex est associé un facteur (27r)3gsT§I3*y“, le (27)3 venant avec le 6©) de (1.18).
T° est le générateur de SU(IV,) dans la représentation fondamentale.

— Le dernier facteur a rajouter est ((p—k)~+k~ —p~) L. Cest un dénominateur d’énergie

du type (Efpal — Einitial)_l qui refléte la non-conservation de I'impulsion dans la

direction z~ en théorie des perturbations sur le cone de lumiére. Ces facteurs remplacent

les propagateurs de la quantification covariante.
La fonction d’onde correspondante est donc

ay(p—k)  Yeulk)  us(p) (27)%gsT

Whous (k;p) =
Be,a V(2n)32(p—k)t \/(2m)32kT \/(2m)32p* (p—k)~ +k —p-

(1.25)

avec les indices relatifs & la particule entrante aussi indiqués sur la fonction d’onde. Pour mener
le calcul plus loin, il faut choisir une représentation pour les matrices de Dirac (la représen-
tation chirale est bien adaptée ici) et résoudre I’équation de Dirac dans cette représentation
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pour obtenir les spineurs. Tous calculs faits, on obtient
s'\,s gsTacﬁ + +.8\2 .42 2\ —1
= — k—k +EkT™m X

2(p+k—k+p) €1 (p+65_5s/_+(p+—/<:+)55+(5s/+) +V2mkt25, 0y sid=1
.(1.26)
2(p+k—k+p) €9 (p+(5s+(53/++(p+—k+)(5s_5s/,) —V2mkT25,_ 0y, siA=2

Signalons que cette fonction d’onde se simplifie beaucoup dans la limite ou le gluon est
mou kT /pt — 0. La simplification principale est que le spin du quark est conservé :
gsTgﬂ X k
Vamskt kK

Nous retrouvons bien le résultat utilisé précédemment : la probabilité que le quark soit habillé
d’un gluon mou est proportionnelle a g /k™.

1/};2&8(]‘7’1)) = Ogg/ (1-27)

1.2.3 Fonctions d’ondes en espace mixte

Pour des raisons qui apparaitront claires par la suite, il est commode de travailler dans
un espace mixte, dans lequel les impulsions transverses sont transformées de Fourier. Nous
définissons donc les opérateurs de création et d’annihilation de particules en espace mixte
(nous donnons l’exemple des gluons, les opérateurs et états de Fock en espace mixte relatifs
aux quarks et antiquarks se définissent de maniére similaire) :

ai)\(kﬁ,x) = /d2k e_ik'xal/\(k) acx(kT,x) = /ko e®*q,\ (k). (1.28)
Ils obéissent aux relations de commutation suivantes
laca(F,%), af o (K ,5)| = (2m)0adan (K = K)8® (x = ) (1.29)
et nous noterons les états de Fock correspondants :
al \(k*,%)[0) = [k*,x,¢,\) . (1.30)

La décomposition du projectile |P) sur ces états s’écrit (pour l'instant, nous incluons
seulement les gluons)

-3 [ (o

N>1

> (Z/# P*) Z DR AN ({kF, xi} PT)

Cl, CN

|(kf,X1,Cl,)\1),'” ,(k%,XN,CN,AN» (1.31)
ot les fonctions d’onde en espace mixte ol ’)‘N sont obtenues & partir des fonctions w)‘l’ . c)‘NN
en espace des impulsions par transformee de Fourler :

N
=1

(1.32)
A cause de la fonction delta, les fonctions 1//\1" C/EVN sont des fonctions de N — 1 positions
transverses. Pour cette raison, lorsqu’on calcule la normalisation (P|P) a partir de (1.31), le
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JAL AN
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ne dépend pas. On supprime ce facteur en suivant notre prescription et la normahsamon de
I’état |P) impose la condition suivante :

Z / (Hdkj+ Xz) (Z k,+ P+> (2n) 5(2)( ‘¢2\117, {k’ Xi};P—")‘Q 1

N>1

facteur (3 (0) apparait sous la forme §(0) [ (d

clieN

(1.33)
avec le facteur (27)26() (xy) introduit pour garder la mesure d’intégration sur les N positions
transverses.

1.3 Description de la cible

Comme expliqué dans la section introductive, nous choisissons de décrire la collision dans
un repére défini par Yo ~ Y, dans lequel les gluons qui habillent la cible sont trés nombreux.
Nous avons déja insisté sur le fait qu’il est important de prendre en compte dans la décompo-
sition en états de Fock de la cible, toutes les composantes contenant un nombre arbitrairement
grand de gluons avec des petites impulsions longitudinales de I'ordre de e Y¢Q~ <« Q~. En
fait, dans la limite de haute énergie, la cible est habillée par un ensemble de gluons tellement
dense, que des effets collectifs deviennent importants. La description de la cible a ’aide des
états a n gluons, qui peut étre qualifiée de description microscopique, n’est pas adaptée pour
rendre compte de tels phénoménes. Il est plus adéquat de travailler avec des degrés de liberté
collectifs.

Les gluons mous étant trés nombreux, ils créent des champs de couleur A trés importants,
de l'ordre de 1/gs, qui sont a l'origine des effets collectifs. La cible habillée de gluons mous peut
donc étre décrite de maniére effective par des champs classiques [15, 16]. Nous remplagons
ainsi la décomposition en états de Fock de la cible par un champ classique :

IC) = lqqq) + lqqqg) + - -+ lqqag - - - 999) (1.34)
(8
_ / DA By, [A]|A) (1.35)

La fonctionnelle ®y, [A] qui pondére les différentes valeurs possibles du champ A est inconnue,
mais est normalisée par

/DA|<I>YC AP =1. (1.36)
Nous verrons plus tard que I'évolution de |®y,[A]|* par rapport Y est calculable, et qu'elle
permet de prédire le comportement d’observables (par exemple la section efficace totale de
la collision) dans la limite de haute énergie. Pour l'instant, la décomposition (1.35) apparait
simplement formelle, et la validité d’une telle description n’est pas a priori évidente. Elle le
devriendra a posteriori, en constatant sa capacité a reproduire les résultats expérimentaux et
son pouvoir prédictif. Signalons aussi qu’avec une telle description de la cible, nous perdons
la capacité de décrire individuellement les particules émises dans I’état final avec y < y,, qui
nous le rappelons sont vues comme des particules qui habillaient la cible avant la collision.
Par exemple pour calculer le spectre d’une particule émise avec un certain gy, nous sommes
contraints de la décrire comme provenant du projectile et donc de choisir notre repére tel que
Y« < y. Avec nos choix de repéres asymétriques (Yp < Y¢), nous sommes limités au calcul de
spectres de particules émises avec une rapidité proche de ymq. On dit que ces particules sont
produites vers 'avant. Ceci sera repris dans le chapitre suivant.
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Donnons a présent plus de détails sur le champ A qui décrit la cible. Celle ci se déplace
dans la direction des z négatifs, & une vitesse proche de celle de la lumiére, elle se déplace
donc sur le cone de lumiére suivant la direction des 7. Son courant de couleur J* a ainsi une
seule composante non nulle : J~. Rappelons que notre choix de jauge, qui s’applique aussi
bien pour le champ quantique A* des gluons qui habillent le projectile que pour le champ
classique A* qui décrit la cible, est AT = 0. Dans ces conditions, la conservation du courant
s'écrit [Dy, JH] =90TJ~ =0, et J~ ne dépend pas de 7. On a donc

JH(x") =o' J (2T, %) . (1.37)

En résolvant les équations de Yang-Mills [D,,, F**] = J”, nous obtenons (voir par exemple
[17])

A (") = 6 A (2, x) ~VZA (2T, x) = J (27,x) . (1.38)

Nous sommes maintenant en mesure de préciser que l'intégration fonctionnelle dans (1.35)
concerne la composante du champ A~. Nous aurons aussi besoin de la transformée de Fourier
du champ A~ qui s’écrit

A~ (k") = /d4a: e A () = 278 (k) /dw+d2m eikiﬁ_ik"‘A_(:ﬁ,x) . (1.39)

1.4 Les éléments de la matrice de diffusion

Nous savons a présent décrire I’état du systéme avant la collision |P) ® |C) : Détat |P)
du projectile est une superposition cohérente d’états de quarks |k, x,«,s), d’antiquarks
|kT,x,@,s) et de gluons |kT,y,c,\) et I'état |C) de la cible est décrit en termes d’état d’un
champ classique |.A).

Nous souhaitons maintenant obtenir I’état du systéme aprés la collision, c’est-a-dire nous
souhaitons calculer S|P)® |C) ou S est la matrice de diffusion. Cela revient a calculer 'action
de S sur des états du type |(k1,x, a, s), (K'F,y,¢,\), - -)®|A). En d’autres termes, il nous faut
calculer comment les partons qui habillent le projectile diffusent sur le champ classique créé
par la cible. Comme nous travaillons dans la limite de haute énergie, il est justifié d’utiliser
ce qu’on appelle 'approximation eikonale : les partons qui habillent le projectile interagissent
avec la cible de maniére indépendante et le champ de couleur de la cible n’est pas affecté
par Uinteraction. Ceci est justifié car le projectile et la cible se déplacent a presque la vitesse
de la lumiére, et le temps d’interaction est beaucoup plus court que les échelles de temps
sur lesquelles le projectile et la cible évoluent. Pendant I'interaction, les partons du projectile
peuvent étre considérés comme libres, et la cible peut-etre considérée comme une source de
couleur statique.

Nous allons donc nous concentrer sur le cas d’'un quark en calculant de maniére detaillée
Pélément de matrice (A'| @ (K'T,y, 3,5'|S|kT,x,a,s) ®|A) . La généralisation pour des états
a plusieurs partons sera ensuite évidente. Pour effectuer ce calcul, retournons en espace des
impulsions :

<‘AI‘ ® <k/+7 Yy, /87 SI‘S"k+7 X, &, 8> & ’A> = /d2kd2k’eik/.yik.x
(A @ (K, 8,5 S|k, a,s) @ |.A) (1.40)

Nous allons calculer I’élément de matrice (A'| ® (K, 3,5'|S|k, a,s) ® |A) ordre par ordre en
perturbations par rapport a gsA~, comme représenté Figure 1.5. Pour obtenir le résultat
final, il faudra ressommer les contributions de tous les ordres car, A~ étant un grand champ
classique, g5 A~ est d’ordre 1.
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Fi1c. 1.5 — Représentation de la collision d’un des partons qui habille le projectile avec la cible.
Le champ classique A~ créé par la cible habillée de nombreux gluons mous étant d’ordre 1/gs,
il faut prendre en compte des collisions avec un nombre arbitraire d’interactions.

L’ordre zéro est trivial : il n’y a pas d’interaction et SO = 1. La contribution du premier
ordre est :

(A& (K, 8,515V |k, o, s) @ |A) = 6(A — A)AZ (K kM)
ug (K) + us(k)

U g Tyt e
@kt e g

Le champ flg contient un §(k*T—k'"), 'impulsion longitudinale du quark est donc conservée.
Dans la limite de haute énergie, nous avons k™ >> |k|, |k'| et 4y (K')yTus(k) = 2k d5y, le spin
du quark est donc conservé aussi. Nous verrons que ces résultats sont vrais & tout ordre en
gs- On a finalement

(1.41)

) 95T
(A @ (K, 8,5/ |SD Ik, a, 5) @ |A) = Z(g%)fass,a(ktk'ﬂa(,zt _yy

/d 2 eilkK)2 / dzt AZ (21, 2) . (1.42)

La contribution du deuxiéme ordre est :

~ 4 ~ ~
(A (0,518 k) ©1.4) = 54 - A) [ (§W§4Az<z“—kﬂ>«4d<k’“—z~>
s (k') us (k)
W gSTa77 l 295T757 W (1.43)
En utilisant v (1/4%1,)y" = ~* /(1= —12/(2IT)), on obtient
/ / 11 &(2) i(igs)* cd /
(A © (0, B.1Pk .5) @ |4) = (5 (TT )by d(A — A)
A7 A= (T _ el A= (I 1
/ ¢ A k) Ag 1)
(2m) - — 21T+ + i€

Le spin du quark est bien conservé, et son impulsion longitudinale aussi, car le produit flc_ flc_
contient bien un §(kT — k). L’intégration sur I* se fait facilement, celle sur [~ donne une
fonction © qui ordonne les valeurs de 1 des champs A_

[\

—~

igs)
)2

/dQZ et k/)z/ dzy / dzf A; (2 ,2) A7 (25 ,2) . (1.45)

[e.9]

(A (K, 3,515k, a,s) @A) = (TT%) 0505 0(KT =K' T)3(A - A)

/\
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Il est facile d’obtenir le résultat pour un ordre n quelconque, il aura la méme forme avec
un facteur (igs)" T ---T* A_ --- A_ ou les champs A, sont ordonnés en . Il est simple de
retourner en espace mixte en utilisant (1.40). Pour simplifier nous n’indiquons plus le spin s et
I'impulsion longitudinale k™ du quark qui en fait ne jouent aucun role : ils restent inchangés
lors de linteraction et I'élément de matrice S n’en dépend pas. Nous obtenons

(A ® (v, 85x, @) ® |A) = (2m)*61) (x—y)5(A — A) {1 +igsT* /OO drT A (27, x)

—00

oo 2
+%77 <igs/ dx+TCAc(x+,x)> +---

ou P indique qu’il faut ordonner les champs A selon leurs valeurs de 2, la plus petite étant
placée a gauche. La commodité de 'espace mixte dans la limite de haute énergie apparait
maintenant évidente : il diagonalise la matrice S. Les termes d’ordre supérieur non indiqués
sont tels que leur resommation est une exponentiation.

On peut donc écrire action de la matrice S sur 'état |x) @ |.A), sa seule action non triviale
étant d’agir comme une matrice de couleur :

(1.46)
af

Six, @) © |A) = Y WrlA(x)y %, 6) ® [ A) - (1.47)
B

La matrice Wr[A](x) est appelée ligne de Wilson dans la représentation fondamentale et a
pour expression

Wr[A](x) = Pexp {igs/dx+TCAc_(:U+,x)} . (1.48)
Dans le cas de 'interaction d’un antiquark |x, @), 'action de la matrice S est

Six.a) @ 14) = 3 [WHAI)| x5 @14) (1.49)
B

car le générateur de SU(N,.) dans la représentation fondamentale complexe conjuguée est

—4(T°). Dans le cas de I'interaction d’'un gluon |x,c) avec la cible, la matrice S est aussi
diagonale sauf dans I’espace de couleur :

Slx,c) @ |A) = Z x)|x, d) @ |A) . (1.50)

La matrice W[A](x) est une ligne de Wilson dans la représentation adjointe et a pour ex-
pression

WAlAl(x) = Pexp{ /dm*TCA (z* x)} (1.51)

ot (T)ge = —if°% est le générateur de SU(N..) dans la représentation adjointe. Notons que le
résultat (1.50) est valable a cause du choix de jauge A = 0. En jauge covariante par exemple,
la polarisation du gluon est modifiée lors de 'interaction.

Les lignes de Wilson Wr[A] et W4[A] jouent des roles trés importants : elles font le lien
entre les amplitudes de diffusion (et donc les observables physiques) et le champ A qui rend
compte des phénoménes collectifs (qui se manifestent dans la limite de haute énergie) dis aux
grandes densités de partons dans la cible. Ce sont des objets centraux pour ’étude de la QCD
dans la limite de haute énergie [18, 19] (pour une revue, voir [20]), nous le montrerons dans
le chapitre suivant par des calculs explicites de sections efficaces.
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1.A Lignes de Wilsons et identités de Fierz

Dans cet appendice, nous donnons quelques formules qui permettent de simplifier des
traces de produits ou produits de traces de lignes de Wilson. Ces formules découlent des
identités de Fierz, des identités trés utiles qui relient les lignes de Wilson fondamentale Wr[A]
et adjointe Wy [A]. Dans la suite de cet appendice nous garderons la dépendance des lignes
de Wilson par rapport & A implicite. Les identités de Fierz s’écrivent

1 Ci C
(We); WE&)w = ﬁ5il5jk+2WAd(x) ST (1.52)
1 1
5Ty = §5z’l5jk - Wfsijékl - (1.53)

Dans le chapitre suivant nous manipulerons des expressions qui contiennent a la fois Wg
et W4. Il sera commode de les transformer de fagon & ce qu’elles contiennent seulement soit
Wr, soit W4. Pour cela nous utiliserons les formules suivantes, qui s’obtiennent & partir des
identités de Fierz. En combinant (1.52) et (1.53) nous obtenons

Wel(x) = zTr(W}(x)TCWF(x)Td) , (1.54)
puis en combinant (1.53) et (1.54) nous obtenons ensuite

2Tr(W;<y)TCWF(x)Td) Wel(z) = Tr (W;(y)wp(z))Tr<WIL(z)WF(x)>
1

NCTr(W}(y)WF(x)) .(1.55)

En utilisant (1.55) avec y = X, nous écrivons

2Tr(W}(x)TCWF(X)Td) Wel(z) = Tr<W}(x)WF(z)) (2 1= Tr(Wj,(x)WA(z)) (1.56)

avec la deuxiéme égalité obtenue a partir de (1.54). Pour finir, la formule
2Tx (We ()T W) Wr ()T W x)) = Te(Wh)Walx)) (157)

découle en utilisant deux fois (1.52) avec (1.53).
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Dans ce Chapitre, nous considérons un projectile hadronique particulier dont la décompo-
sition en états de Fock est simple : un onium. Cela nous permet d’approfondir I’étude de la
cible dont la fonction d’onde est sensible & la physique de QCD & haute énergie. Nous utili-
sons le formalisme que nous venons d’introduire pour calculer plusieurs sections efficaces. Les
observables que nous considérons sont choisies parce qu’elles correspondent & des situations
réalisables en pratique, dans le but de pouvoir confronter nos prédictions a ’expérience.

La premiére partie introduit ce qu’est un onium, le projectile que nous utiliserons dans tout
ce chapitre. La deuxiéme partie présente notre premier calcul de section efficace, celui de la
section efficace totale. Ce calcul est relativement simple car il n’impose aucune restriction sur
I’état final. La troisiéme partie est consacrée au calcul de la section efficace diffractive, pour
laquelle la cible interagit de maniére élastique. La quatriéme et derniére partie reprend les
résultats publiés dans l'article [IV] et 'article de conférence [V] : nous y calculons les sections
efficaces inclusives et diffractives de production de gluons a grande rapidité. Les observables
considérées correspondent toutes & des processus mesurables dans les collisionneurs.

Au dela de son intérét d’illustration du formalisme, ce chapitre a pour but de montrer
pourquoi les observables mentionnées ci-dessus sont des laboratoires idéaux pour I'étude de
la limite de haute énergie de QCD.
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Fi1G. 2.1 — La composante quark-antiquark d’un onium, sa seule composante quand il est nu.
Deux représentations sont données, en espace d’impulsion et en espace mixte. L’impulsion du
quark est k et son indice de couleur est «, 'impulsion de "antiquark est P — k et son indice de
couleur est @. En représentation mixte, le quark a pour position transverse x et I'antiquark

y.

2.1 L’onium : un projectile idéal

Dans tout ce chapitre nous travaillerons avec un projectile particulier, un onium que nous
noterons |P) = |O). Un onium peut étre considéré comme un projectile hadronique idéal : dans
le repére ot il est nu, sa décomposition en états de Fock |O) a une seule composante, une paire
quark-antiquark dans un état singlet de couleur. Plus précisément le quark et ’antiquark sont
les partons de valence de l‘onium : dans le repére ou ce dernier est nu (Yp ~ 0), ils donnent
la contribution dominante en théorie des perturbations par rapport a as. Nous utiliserons
aussi un repére dans lequel 'onium est habillé d’un gluon mou, caractérisé par un Yp non
nul. Rappelons que la contribution due au gluon n’est pas supprimée si le gluon est mou : un
facteur Yo = In(1/z0) compense le facteur as.

2.1.1 Le repére ot I'onium est nu

Nous considérons d’abord le repére Yo ~ 0 (et donc Yz ~ Y'). En utilisant les notations
du chapitre précédent, la décomposition de I'onium en une paire quark-antiquark s’écrit en
espace mixte :

(27)? (

ol X et y sont les positions transverses du quark et de 'antiquark respectivement. Pour alléger
les notations, nous n’indiquons pas les indices de spins des états fermioniques. Les indices de
spins et la dépendance en Pt (I'impulsion longitudinale de I'onium) de la fonction d’onde
QEO@ sont aussi gardés implicites. Cette fonction d’onde est la transformée de Fourier de la
fonction Y5 :

d*>x  d? ~
’O> = /dk+ x 27_[_})’2 Z¢a5¢(k+7x_Y)|(k+7xaa)7(P+_k+7Y7d)> (21)

Voa(kt,r) = / d’k €T 1hq (k) (2.2)

et cette correspondance est représentée Figure 2.1.
Comme la paire quark-antiquark qui compose 'onium est singlet de couleur, on peut
extraire un facteur d,5 de la fonction d’onde :

5a&

Yoa(kt,r) = ﬁwﬁ,r) . (2.3)
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La fonction ¢ est normalisée ainsi :

2
/ i+ (;l;;? okt o)) =1. (2.4)
L’onium posséde une caractéristique importante : la fonction ¢ est telle que seuls les dipoles
de taille transverse |x — y| < 1/Agcp contribuent dans la décomposition (2.1). Ceci définit
I’onium comme un objet perturbatif. Bien que I’onium soit un objet théorique utilisé pour faire
des calculs, nous verrons plus tard que c’est une bonne approximation de certaines particules
hadroniques utilisées expérimentalement. Un exemple sera donné au Chapitre 4 : le photon
virtuel de la diffusion profondément inélastique peut étre identifié & un onium (et les fonctions
Paa et 1;&@ seront calculées explicitement dans ce cas).

2.1.2 Le repére ou I'onium est habillé d’'un gluon mou

Nous considérons maintenant le repére dans lequel 'onium est habillé d’un gluon mou. Ce
repére est caractérisé par un Y» non nul et un Yy < Y. En utilisant les notations du chapitre
précédent, écrivons la décomposition de 'onium en espace mixte, en incluant cette fois les
composantes quark-antiquark et quark-antiquark-gluon :

](9>YO _/dk+ d*x d2y "yO(k—i- )|(k‘+ ) (P+ Lt —)>_+_/P+ Ak
- (2m)2 (27)2 — ad y XY )y Xy Q) Y, & -

d’z ~ _
(27_‘_)2 Z ¢éac(k+, kH_v XY, Z*Y)|(k+x7 Oé), (P+ 7k+ *kH_a Yy, O(), (k:H_v z, ¢, >‘)>] ‘(25)
Ac

En plus des positions transverses du quark et de I'antiquark toujours désignées par x et y,
la position transverse du gluon est notée z. Notons que, dans ce nouveau repére, la fonction
d’onde &Zg de la composante quark-antiquark est différente de la fonction d’onde ’L[Ja@ du
repére Yp = 0. Comme expliqué précédemment, ceci vient du fait qu’en ajoutant un gluon
dans la description de 'onium, nous renormalisons la contribution de la composante quark-
antiquark ce qui correspond & prendre en compte & la fois les termes réels et virtuels. La
condition de normalisation (1.20) permet d’obtenir facilement la fonction 1[12:% a partir de la
fonction ¢ introduite précédemment par (2.3) et de la fonction ¢/, que nous allons calculer

par la suite :
1
) 2
) . (2.6)

igdc(kJr? k/Jrv r, I‘/) = /d2k d2k/ eik.r+ik/'r/¢2&c(k7 k/) (27>

1;3660<k+7 k/—‘r? r’ r/)

~Y(—9(k+ I‘) _ (50464 ‘¢(k+ r)‘g _/P+ dk}/+ d2r9 Z
SN A L A @)y £

oP*

A

Pour calculer ¥, retournons en espace d’impulsion :

avec k I'impulsion du quark, ¥’ 'impulsion du gluon, et P—k—k&’ 'impulsion de I'antiquark,
sous-entendue. Le calcul de la fonction 9. est représenté Figure 2.2. Dans la limite ot le
gluon est mou (P* > k1), les spins du quark et de I'antiquark (rappelons que les indices
correspondants ne sont pas explicitement indiqués sur les fonctions d’ondes) sont inchangés par
I’émission du gluon, comme montré par le résultat (1.27) du chapitre précédent. La fonction

d’onde est alors donnée par

9s E)- K’

A A
wa&cu{:ak)—m k/2

(Teatralk + k) = Téstbary (k) (2.8)
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F1G. 2.2 — L’onium habillé d’un gluon d’impulsion &', de couleur ¢ et de polarisation A. Les
deux contributions & la fonction d’onde sont représentées, le gluon étant émis par le quark
ou par l'antiquark. Dans la limite ou le gluon est mou (Pt > k™), le spin du quark (ou
de l'antiquark) est inchangé par l’émission du gluon et la fonction d’onde est donnée par
I'équation (2.8).

en terme de la fonction d’onde de I'onium nu %,5. En effectuant la transformée de Fourier
(2.7), nous obtenons pour la fonction d’onde en espace mixte :

A + o+ N + 2 /( ik’ .(r'—r) _ ik/.r/) ex- kK
wadc(k’i 7k ,I',I') - \/qu(k ,I‘) /d kife e k’2 (29)
L’intégrale restante est facilement réalisée en utilisant la formule suivante :
k4 .k-x  ir-x
—— e T = —5 2.10
or ¢ K (2.10)
On obtient alors la fonction d’onde 1/?2\@6 de la composante quark-antiquark-gluon :
TA 4+ I+ N _igsTéa + EN- r’ €\ (I'/ — I')
Qpadc(k 7k 7r7r ) — Wﬂb(k 7r)< I'/2 - (r/ 7r)2 . (2.11)

Crace a la relation (2.6), nous déduisons de ce résultat la fonction d’onde 9Y2 de la
composante quark-antiquark :

1
~ Oa asC r? 2
Y + _ CYaa + sVF 2.9
aa (k7,r) = ﬁ¢<k ,r)<1— 2 Yo/d r r’2(r—r’)2) (2.12)
ou le facteur Yy vient de I'intégrale sur 'impulsion longitudinale du gluon :
Pt 1+
dk

=Yo . 2.13
/zoP+ k't © ( )

Nous avons aussi utilisé la propriété suivante, valable pour tous vecteurs transverses x et x’ :
Zsj'xs,\-x':x-x’. (2.14)
A=1,2
Cette égalité est la projection dans ’espace transverse de la relation
kH kY

D el Rl (k) = =g + 0" + 0 (2.15)
A=1,2
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pour le tenseur de polarisation dans notre jauge.
Considérons un instant les intégrales suivantes :

d*r’ r? _[dr o (x—T) _ r? 516

/ 21 r2(r — r/)? / 21 r2(r —1')2 n<p2> (2.16)

ou p est une coupure ultraviolette (|r'|, [r—r’| > p). Cela nous dit que I'intégrale sur r’ dans

(2.12) est logarithmiquement divergente dans l'ultraviolet. Ceci n’est pas un probléme, nous

verrons que la divergence de cette contribution virtuelle s’annule avec une divergence similaire

dans la contribution réelle lors du calcul de sections efficaces. Pour rendre cette annulation
explicite, nous gardons le logarithme (2.16) sous sa forme intégrale.

Nous pouvons maintenant écrire la décomposition |@) de l'onium, dans le repére ou il

est habillé d’un gluon mou (dorénavant nous n’indiquons plus les impulsions longitudinales

explicitement) :

d?x  d?
070 = [ 5 o xn) e x

- asCr 2Z (X_Y)Q % Al (X, a [0} P /+ﬁ
{(1 71-2 YO/d (X_z)z(z_y)2> 5@(@’( ) )a(y7 )>+/ZOP+CU€ (271_)2

Z igs |:€)\ (x — z) _EA-(y_Z)]Taca’<x,04),(y,a),(z,c7)\)>} (2.17)

Vk'T z)? (y —2)?

2.2 Section efficace totale

Calculons la section efficace totale dans la collision de I'onium |O) sur une cible hadro-
nique |C) quelconque. Pour des raisons qui apparaitront claires aprés, nous allons calculer
cette quantité en utilisant les deux repéres introduits dans la section précédente : celui ol
I’onium est nu et celui ou il est habillé d’'un gluon mou. En tant qu’observable physique, la
section efficace totale est indépendante du repére ; ceci nous permettra d’obtenir un résultat
important. Signalons que c’est la taille de 'onium qui joue le role de I'échelle perturbative
(1/|x —y| > Agcp) dans les calculs qui suivent. En effet, la section efficace totale étant une
mesure purement inclusive, il n’y a pas d’échelle d’impulsion dans I’état final.

2.2.1 Dans le repére ou I'onium est nu
Dans le repére (Yo ~ 0,Yz < Y), l'état du systéme avant la collision |¥;,) = |O) ® |C)
s’écrit :
2X d2
W) = [k 5 Gt Xy ) [ DAy LA Z ), (P, y, @) 8| A)
(2.18)

L’action de la matrice S sur |W;,,) s’obtient en appliquant les résultats du chapitre précédent.
L’état du systéme apreés la collision |Wy,:) = S|¥;,,) est ainsi :

2X 2
o) = [ i s oot <) [ DABYALS e [WHAI W40

|(k:+,x, a), (PT—kT,y,a)) @ |A) (2.19)

Pour obtenir la section efficace totale, nous allons maintenant calculer I'amplitude de
collision élastique Ag(Y) = i(Win|1—=5|Win) = i(Vin|(|Vin) — |Your)). En effectuant ce produit
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scalaire, un facteur 6(0) apparait. Il a la méme origine que le facteur 6(* (0) qui apparait lors
du calcul d’une norme (ceci a été discuté au chapitre précédent). Le calcul d’une observable
physique aurait di faire disparaitre ce probléme, et c’est d’ailleurs ce qui se passe avec les
deux dimensions transverses : le facteur 6©)(0) qui apparait lors du calcul de (O|O) est
réduit au simple facteur 6(0) dans A (Y). Le facteur 6(0) restant provient de I'intégration sur
I'impulsion longitudinale et il n’a pas disparu car, dans la limite de haute énergie considérée ici,
les impulsions longitudinales sont conservées par 'interaction, contrairement aux impulsions
transverses. Mais insistons une nouvelle fois sur le fait que nous ne rencontrerions pas ce
probléme si nous utilisions des paquets d’ondes normalisables au lieu des ondes planes. La
prescription & utiliser pour se débarrasser du ¢(0) problématique est de le remplacer par un
facteur (27)2. On obtient alors

d*x d?
—ida(v) = [ 2T o x-y) [DAlVART I 220)
otll nous avons introduit
1
T [A] = 1= 5 T (WHAI) Wr[A]()) (2:21)

qui représente 'interaction de la paire quark-antiquark avec le champ A.

Introduisons aussi une nouvelle notation utile pour la moyenne sur la fonction d’onde de
la cible : I'intégration sur les différentes configurations du champ A pondérée par la fonction
| @y [A]|* sera notée

/ DA|®y [AI2 f1A] = {f)y . (2.22)

Lors du calcul de quantités physiques, c’est toujours sous cette forme que se manifestera
la fonction d’onde de la cible. En utilisant le théoréme optique o4t (Y) = 2ImA(Y), nous
pouvons écrire la section efficace totale sous une forme relativement simple :

ot = 2/dk+d xdy (Kt x—3))* (Ty )y - (2.23)

La quantité (Txy), est appelée amplitude de diffusion du dipole, le dipole (sous entendu de
couleur) faisant référence a la paire quark-antiquark singlet de couleur. Cette quantité, qui est
la moyenne d’une trace d’un produit de lignes de Wilson, contient la dépendance en rapidité
Y et donc en énergie (rappelons que Y ~ In(s)). Nous comprenons maintenant pourquoi
I'évolution de |y [A]|?
physiques. En effet, d’une équation d’évolution fonctionnelle pour |®y [A]

par rapport & Y permet de prédire le comportement d’observables
2 du type

Aoy AR = ey AR 229

il est possible de déduire une équation pour (Txy), , et pour n’importe quelle moyenne (f),-
d’ailleurs. Il est possible de dériver une telle équation fonctionnelle, cela sera discuté plus loin.

La factorisation de la section efficace totale exprimée par la formule (2.23) est représentée
Figure 2.3. Introduisons la fonction T,; définie par

qu(r,b; Y) = <T(b+r/2)(b—r/2)>y . (2.25)

C’est simplement une réécriture de 'amplitude de dipole avec des variables adaptées. En effet,
en changeant dans (2.23) les positions transverses x et y en variables de taille r = x — y et
de parameétre d’impact b = (x+y)/2, la section efficace totale se réécrit :

Ctot = / dit -4 2n)? o(k+,1)|? / d*b Tyq(r,b;Y) . (2.26)

La factorisation exprimée par cette formule est appelée factorisation des dipéles.
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F1G. 2.3 — L’amplitude de diffusion élastique dans la collision de 'onium O sur la cible C. Ce
schéma décrit la factorisation exprimée par la formule (2.23), obtenue dans le repére o 'onium
est nu. On obtient la section efficace en prenant la partie imaginaire de 'amplitude élastique.
Ceci peut étre représenté par une coupure verticale au milieu du diagramme montrant 1’état
final. Dans le cas de la section efficace totale, I’état final est complétement inclusif.

2.2.2 Dans le repére ou I'onium est habillé d’'un gluon mou

Lorsque 'onium est habillé d’'un gluon mou (Yo > 0,Ye < Y), I'état du systéme avant
la collision |¥;,) = |O) ® |C) s’obtient en utilisant (2.17). Comme précédemment, ’action de
la matrice S sur |W,;,) s’obtient en appliquant les résultats du chapitre précédent. L’état du
systéme aprés la collision |Wy,,) = S | W) s’écrit alors

|\Ilout> = "llout>1 + |‘1Jout>2 (227)

ot nous séparons |¥,,;) en deux morceaux : la composante quark-antiquark |W¥,,)! et la
composante quark-antiquark-gluon |W,,;)2. Elles sont données par

2X 2
) = [ Y 0 xy) [ DAG Y [WHAGWeAI]

ax

o K—v)2 1 .
1 <1 _ ngYO/d2ZM) |(x, ), (y,a)) @ |A) , (2.28)

VNe —z)*(z—y

W t)? = / aitEX Y gk oy / i / DADy (4] 2
out/ = @m2 2r)2? Y T )2 e L Nk

{Eig(fz_)f) - E?;?;zz)] [W}[A](y)TdWF[A] (X)]aa Wi A](2)

|(x, ), (y, @), (z,c,\)) @ |A) (2.29)
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Fic. 2.4 — ’amplitude de diffusion élastique dans la collision de 'onium O sur la cible C.
Ce schéma décrit la formule (2.31) obtenue dans le repére ou 'onium est habillé d’un gluon
mou. L’amplitude de gauche montre 'interaction de la composante qq renormalisée par une
contribution virtuelle. L’amplitude de droite montre I'interaction de la composante ¢gg. On
calcule la section efficace totale en coupant ces diagrammes. Le résultat doit étre indépendant
du repére choisi : que le gluon dessiné sur la figure soit décrit comme provenant de I"onium
ou de la cible (comme sur la figure 2.3), le résultat doit étre le méme.

L’amplitude de collision élastique Ag(Y) = i(¥;,|1 — S|¥;,) s'obtient facilement

d’>x d’y 2 o (x —y)?
4 — +2 77 + s 2
ida = [ar GEGX o0 x| [<TXY>YC+W2YO/ RCErE TR

_<Tr<W}(y)TCWF(X)Td)Wﬁd(z)>YC>} . (2.30)

¥ (e (m(wiwmwee))

c Ye

Comparons ce résultat avec celui obtenu dans le repére Yp =~ 0 : le terme qui n’a pas de facteur
s est similaire au résultat précédent, a la différence prés que la moyenne sur la fonction
d’onde de la cible s’effectue avec une rapidité Yo < Y. Le terme proportionnel a ay vient
de l’émission du gluon, comme ce dernier est mou, il y a aussi un facteur Yo = In(1/zp).
Dans ce terme, on reconnait une partie réelle ou le gluon interagit, qui contient Wy4(z),
et une partie virtuelle qui provient de la renormalisation de la partie quark-antiquark. La
divergence ultraviolette remarquée précédemment s’annule entre ces deux termes. Pour le voir
explicitement nous pouvons utiliser I'identité (1.55), donnée dans I'appendice du Chapitre 1,
pour réécrire 'amplitude A, en termes de dipodles seulement. Donnons le résultat final pour
la section efficace totale :

d*x d’y 2 d*z (x—y)?
=2 [ dkT——L|o(kT,x— Ty aYo | —
Ttot / 21 27 ‘d)( X y)‘ [< y>YC ta O/ 21 (x—2z)%(z—y)?

((Teahye + (Tayhye = (Tayye = (TaTayhy, )| (2:31)

avec & = ajiv ¢ . Les différentes parties de cette formule sont représentées Figure 2.4.

Le calcul des deux expressions (2.23) et (2.31) va maintenant nous permettre de dériver
une équation pour décrire I'évolution de (Ty ),  avec Y. Nous I'obtiendrons en utilisant le fait
que la section efficace totale o est indépendante du repére choisi pour la calculer. Cette
dérivation a l'avantage de ne pas nécessiter I'utilisation d’une équation du type (2.24).
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2.2.3 La hiérarchie d’équations de Balitsky

Nous avons calculé la section efficace totale de la collision d’un onium sur une cible quel-
conque dans deux repéres différents. Les formules finales sont données par (2.23) et (2.31). Ces
deux expressions n’ont par ’air identiques, et pourtant elles doivent I’étre car une observable
physique ne peut pas dépendre du repére utilisé pour la calculer. En écrivant que le résultat
(2.23) est identique au résultat (2.31) dans la limite Yo — 0 (et donc Yo — Y'), on obtient
I'équation suivante pour 'amplitude de diffusion du dipole (Txy), :

d<Txy>Y . a/ @ (X - Y)2
ay 21 (x —2z)%(z —y)?

(Txz)y + (Tny)y — (Txy)y — (TxaTny)y) - (2.32)

Ce résultat a été obtenu en utilisant seulement la partie de zﬁé&c contenant le logarithme
dominant Yp = In(1/z0), I’équation (2.32) est donc valable dans I’approximation des loga-
rithmes dominants. Comme expliqué ci-dessus, une telle équation peut aussi étre dérivée en
utilisant une équation du type (2.24) pour la fonction d’onde de la cible. Dans I"approximation
des logarithmes dominants, ’équation (2.24) est connue et est appelée I'équation JIMWLK
[21, 22] (ces lettres représentent les initiales des noms des auteurs : Jalilian-Marian, lancu,
McLerran, Weigert, Leonidov et Kovner). Elle permet en effet de dériver le résultat (2.32)
(pour une revue, voir [23, 24, 25]).

L’équation (2.32) n’est pas une équation fermée, car le terme (Tx;7%y), dans le membre
de droite agit comme un terme source. En fait, c’est la premiére équation d’une hiérarchie
infinie d’équations dérivée par Balitsky [26]. En plus de (2.32), la hiérarchie donne ’évolution
de (TxzT%y)y et de tous les corrélateurs d’un nombre arbitraire d’amplitudes de dipoles, un
corrélateur a n amplitudes agissant comme source dans ’équation pour le corrélateur & n — 1
amplitudes. Pour exemple, I'équation pour (TxzTyy)y est :

d (a7 (x —z)?
dy (BaaTay)y = a/ 27 [(X —2')%(z — z)

(z—y)?
- <TXZ’TZ’ZTZY>Y> T a2 —y)p ( (TxaTow)y + (TxaTwy)y — (TxaTay)y

1 (x — 2)? (z— y)?
((x "

~ BTy )+ 3 (G ot =27 ¥ e —57

2 < (TxzTay)y + (TweTay)y — (TxaTzy)y

C(x _(;);(Z/)Q_ y)z) (2 (Txy)y = (Mxazyzz)y — (Mxzzyza)y )} (2.33)

ol nous avons introduit le multipole

MasseysalA] = 1 = - T (WHAIQ W A WELA )W AW LA W A )

N,

(2.34)
On remarque qu’en plus des amplitudes de dipdles apparait un nouvel objet qui est une trace
de six lignes de Wilson ; ce genre d’objet est appelé un multipole. Ces multipoles apparaissent
toujours sous-dominants dans un comptage de puissance en 1/N.. La limite de large N, per-
met donc de restreindre la hiérarchie & des corrélateurs de dipoles. Encore une fois, cette
équation (comme toutes les équations de la hiérarchie de Balitsky) peut étre dérivée en uti-
lisant I’équation JIMWLK, et est valable dans I’approximation des logarithmes dominants.
Nous appellerons dorénavant ces équations les équations B-JIMWLK.

La stratégie pour calculer la section efficace totale dans la limite de haute énergie, est d’ob-
tenir (Tky), a partir des équations B-JIMWLK, et ensuite d’utiliser la factorisation (2.23).
Bien str, il est aussi possible d’utiliser la formule (2.31), qui est équivalente, mais cela in-
troduirait d’inutiles complications. Comme nous allons le voir dans les sections suivantes, le
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Cible C au repos

F1G. 2.5 — Représentation de la diffraction dans le référentiel ot la cible est au repos. Analogie
avec 'optique : la cohérence entre les partons qui forment le projectile est détruite par la
traversée de la cible.

formalisme introduit ne nous restreint pas au calcul de la section efficace totale. De nom-
breuses observables peuvent étre calculées et exprimées en fonction de I’amplitude de dipole
(Tky)y ou de corrélateurs tels que (TxzTyy)y - Les solutions des équations B-JIMWLK per-
mettent donc d’établir les prédictions de la QCD & haute énergie pour un grand nombre de
sections efficaces. Dans la suite, toujours dans le contexte de la collision d’un onium sur une
cible hadronique, nous allons calculer la section efficace diffractive et la section efficace de pro-
duction de gluons. Nous choisissons ces exemples car ce sont des observables pour lesquelles
il existe des données expérimentales, ce qui nous permettra ensuite de tester les prédictions
de la QCD a haute énergie.

2.3 Section efficace diffractive

La section efficace diffractive est une partie de la section efficace totale qui mesure seule-
ment des collisions particuliéres : celles pour lesquelles la cible interagit de maniére élastique.
Lors d’une collision & haute énergie, 'onium et la cible se dissocient généralement en libérant
des particules hadroniques dans I’état final. En fait dans certaines collisions appelées diffrac-
tives, la cible ne se dissocie pas et est présente dans I’état final, en compagnie des particules
qui proviennent de la dissociation de l'onium. Si le projectile ('onium) ne se dissocie pas
non plus, alors la collision est simplement élastique. Comme dans le cas de la section efficace
totale, il n’y a pas d’échelle d’'impulsion pour caractériser 1’état final. C’est donc toujours la
taille de I'onium qui joue le role de 'échelle perturbative (1/|x —y| > Agcep) dans les calculs
qui suivent.

L’emploi du terme diffractif est dii & une analogie avec la diffraction en optique. L’analogie
devient claire en se placant dans le référentiel ot la cible est au repos : le projectile est
initialement un ensemble cohérent de partons, cette cohérence est détruite par la collision qui
interagit différemment avec les différents partons, 1’état final est alors formé d’un ensemble
incohérent de partons. Ceci est schématisé Figure 2.5. Du point de vue de la cible par contre,
I'interaction étant élastique, elle conserve la cohérence des particules qui ’habillent.

Précisons une propriété de ’état final diffractif. Les particules qui proviennent de la dis-
sociation de l'onium ont des rapidités supérieures a y,.. La rapidité de la cible est ymin (&
I'incertitude sur kg pres) et il n’y a pas d’autre particule libérée avec une rapidité inférieure
a y4. En effet, la cohérence de la cible habillée étant conservée lors de la collision diffractive,
aucune des particules qui I’habillaient ne peut avoir été libérée. L’état final diffractif est donc
caractérisé par ce qu’on appelle un gap de rapidité : un intervalle de rapidité vide de particule,
que l'on notera An. La taille de ce gap est yx — Ymin = Y. Cela signifie qu’avec un choix
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de repére particulier, on ne peut calculer la section efficace diffractive que pour une valeur
particuliére du gap : An = Y¢. Avec nos choix de repéres asymétriques (Yo < Y¢), nous
sommes donc limités & des cas oul le gap est trés large et ot il y a trés peu de particules dans
I’état final : la cible de rapidité y,:, et les quelques particules provenant de la dissociation de
I’onium, de rapidités proches de 4maz-

Dans le repére Yp» ~ 0, les particules provenant de la dissociation de ’onium sont un
quark et un antiquark ; dans le repére ot 'onium est habillé d’un gluon mou (Y» non nul),
I’état final pourrait aussi contenir en plus ce gluon. En fait, en augmentant Yy, c’est-a-dire
en utilisant des repéres dans lequel 'onium est habillé de plus en plus de gluons mous, nous
pouvons calculer une section efficace diffractive avec un nombre de particules dans I’état final
de plus en plus important. Nous verrons plus tard que la masse invariante de ce systéme de
particule augmente comme €¥©/2. Il se trouve que les masses accessibles expérimentalement
correspondent a des valeurs de Y relativement petites et a des états finals comprenant (en
plus de la cible) un quark et un antiquark et éventuellement un gluon.

Pour calculer la section efficace diffractive, il nous faut tout d’abord isoler les états finals
qui y contribuent, c’est-a-dire ceux qui contiennent la cible. Notons [W4;¢s) I'état correspon-
dant. Pour obtenir |Wg;r¢), nous projetons 'état de systéme aprés la collision |W,y) sur le
sous espace des états contenant la cible C :

(Wairr) = [CHCI(1Wout) — [¥in)) - (2.35)

Nous avons aussi soustrait |¥;,) de |Usyu), pour ne pas compter le cas ou ’état final est
identique a l’état initial, ce qui ne contribue pas a la section efficace car il n’y a pas eu
d’interaction.

Plagons nous dans le repére o 'onium est nu. L’état |¥,,;) est alors donné par la formule
(2.19) et pour I’état final contribuant a la section efficace diffractive nous obtenons :

d’x  d’y daa
2

(2r)2 (27T)2¢(k:+,x—y) <_TXY>YZ m|(k+aX,04)> (PT—k*,y,a)®]C) .

[Wairs) = / dk*

(2.36)
Pour obtenir ce résultat, nous avons utilisé

—daa) = (T(WEOWe(0) = M), %0 = (T o - (237

([Whewre] N

[e%
Ceci découle d'une propriété de la fonction d’onde de la cible |®y[A]|2, qui nous le rappelons
intervient par I'intermédiaire de la moyenne ( . )y : effectuer la moyenne d’une quantité non
invariante de jauge donne un résultat nul. Cette propriété est a l'origine de la premiére égalité
dans I’équation (2.37) car seules les traces (sur les indices de couleur) de lignes de Wilson
sont invariantes de jauge. Nous ne démontrons pas ici que |®y[A]|? posséde cette propriété
mais considérons plutot qu’elle est imposée par des considérations physiques. Notamment,
cela assure que les quantités physiques que nous calculons sont invariantes de jauge. Nous
signalons que 1'état (2.36) peut aussi s’obtenir d’une autre maniére, sans utiliser 1'égalité
(2.37). Cela se fait en projetant explicitement la paire quark-antiquark de 1’état final |U,y)
sur un sous-espace singlet de couleur. Ceci doit étre le cas car ’état final doit étre globalement
singlet de couleur, et la cible ’est évidemment.

Comme manifeste dans la formule (2.36), I’état final diffractif que nous avons calculé ne
contient que trois particules : le quark et ’antiquark provenant de la dissociation de ’onium,
et la cible. Si nous avions travaillé dans le repére ot I'onium est habillé d’'un gluon mou,
avec l'état (2.27) au lieu de (2.19), I’état final aurait aussi pu contenir en plus ce gluon. Mais
concentrons nous pour l'instant sur le cas ou I’état final contient seulement un quark et un
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F1G. 2.6 — La section efficace diffractive dans la collision de l'onium O sur la cible C. Ce
schéma montre la factorisation exprimée par la formule (2.43).

antiquark en plus de la cible. La section efficace est obtenue a partir de [Wg;7¢) de la maniére
suivante :

L = Wity N @Na(d) Wasg) (2.38)
La section efficace est différentielle par rapport aux tri-impulsions des particules finales, ¢
dénotant I'impulsion du quark et ¢’ celle de 'antiquark. L’impulsion finale de la cible est fixée
par la conservation de 'impulsion totale et n’apparait donc pas dans (2.38). Les opérateurs
N et Ng comptent le nombre de quarks et d’antiquarks dans I'état |Wg;ry). Ils s’écrivent en
termes des opérateurs de création et d’annihilation :

Ny(q) = bh(@)balq) , (2.39)

Nola) = Y di(a)da(a) - (2.40)

Une définition compléte contiendrait aussi les degrés de liberté de spin, mais comme ils ne
sont pas indiqués explicitement dans |Wg;¢r), nous les omettons aussi sur les opérateurs b, et
dg-

Utilisons maintenant ’espace mixte, dans lequel est exprimé [Wy;¢r) :

doaify _ / dx &% &y @Y g x-x) i (v'-y)

Pedq | (@m)? (2m)? (2x)? (2n)? ©
D (Waig bl (g X)) (¢ ¥ balaT, %) dalq™, ¥) [ Waifs) - (2.41)

L’action de b, et dg sur |Wg;rr) s'écrit

604& 3
ba(a®, x)da(q"™,¥) | Vairs) = Uz ePYP(q", x=y) (Tay)y 0(PT—q" =¢")[C)  (2.42)

et il est ensuite facile d’obtenir la section efficace, le facteur 6(0) discuté précédemment étant
toujours & remplacer par un facteur (27)2. La fonction §(P+ —q* —¢'") permet d’effectuer
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I'intégration sur ¢’ et le résultat final est

dO’diff . 1 d27X dQX/ d27y dzyl eiq.(X’—X)eiq’.(y’—y)

d’qd®q’'dqt  (27)2 ) 27 27 27 2«
¢"(q" X' =y)o(a", x=y) (Twy) p (Txy) Ay - (2.43)

Signalons que nous avons remplacé Y (qui dans |Wg¢r) représentait en fait Y et donc le
choix de repére) par An le gap de rapidité dans 1’état final. Pour la section efficace diffractive
que nous avons calculée, on a An <Y, la différence étant négligeable dans la limite de haute
énergie. Cette différence représente en fait I'intervalle de rapidité sur lequel le quark et ’an-
tiquark sont émis. La formule (2.43) est représentée Figure 2.6. Elle montre une factorisation
ou des dipdles de tailles différentes interagissent dans 'amplitude et I’amplitude complexe
conjuguée. Néanmoins, on voit que c’est la méme amplitude de dipole (Tky) An qui intervient
dans les sections efficaces totales et diffractives, comme remarqué dans [27, 28, 29, 30].

2.4 Section efficace de production de gluons

Concentrons nous maintenant sur la section efficace de production de gluons. Comme
expliqué au Chapitre 1, notre description de la cible en terme d’un champ classique ne nous
permet pas de controler la cinématique individuelle des particules finales qui ’habillaient
avant d’étre libérées. On ne peut donc calculer la section efficace de production de gluons que
si le gluon est émis avec une rapidité supérieure y, et décrit comme provenant d’un parton qui
habille le projectile. Dans le repére Yo =~ 0, I'onium est nu & 'ordre dominant en oy et ne peut
contenir un gluon qu’a l'ordre sous-dominant. Il est plus intéressant de nous placer dans le
repére oul 'onium est habillé d’'un gluon mou, pour lequel le facteur o apparait accompagné
d’un facteur Yp. Ce gluon dans I’état final aura une rapidité supérieure & y, mais inférieure a
celle du quark ou de I'antiquark. Signalons aussi que son impulsion transverse fournie 1’échelle
perturbative du probléme (~ ko).

La section efficace est obtenue a partir de |¥,,;) de la maniére suivante (nous n’avons pas
besoin de retirer |V;,,) car la production de gluon est forcément inélastique) :

do
qu = <\I’out‘Ng(Q)|\I’out> (244)
ot l'opérateur N, compte le nombre de gluons dans I'état |We,). Il s’écrit en termes des
opérateurs de création et d’annihilation :

No(q) = al \(@)aca(q) - (2.45)
cA

En utilisant la décomposition (2.27) de |W,), il semble que seule la partie |¥,,;)? contribue
au résultat car c’est la seule qui contient a priori un gluon dans I’état final. En fait ce n’est
pas tout a fait correct : en procédant ainsi, nous compterions trop de gluons [[V]. En effet une
partie des gluons de I’état final ne sont pas mesurables, car ce sont des gluons qui habillent
le quark (ou 'antiquark), lui aussi libéré lors de la collision.

Pour isoler les gluons mesurables, décomposons |¥,,:) d’une maniére différente de (2.27) :

|\I]out> = ’\I’out>qq + |\Ilout>qqg . (246)

Cette nouvelle décomposition s’obtient de la maniére suivante : |W,,:)%%9 contient \\Ilout>2
moins les gluons non mesurables et |W,,;)97 contient |¥,,;)! plus les gluons non mesurables.
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F1G. 2.7 — Représentation de 1'état |W ) Y999, Deux des 4 contributions sont représentées : le
gluon émis par le quark avant 'interaction et le gluon émis par I'antiquark aprés I'interaction.
Cette derniére vient avec un signe moins. Les particules de I’état final non indiquées par une
position transverse proviennent du nuage de particules de la cible.

Ces deux contributions sont données par

d?

X 2
W) = [ i 520 00 x=y) [ DAGLAS [WEAG)WrAI)

asC x—y)? 2 _
{ (1- 2555 [ e B0 ) (o). (v e )

x—z)*(z—y

[67e}

+/ P 2ZW ZM wol GO o) s A0

Z WTEQ|(X’ a)> (Y7 B), (Z, c, )\)> ® |_A> (2_47)
B

k:’+

;W
wmm{MwmmwwﬂJ

WA - [TWHAGWA)] )
|(x, ), (y, @), (z,¢,\)) @ |A) (2.48)

Les deux premiéres lignes de |W,,;)% forment |W,,;)! et les deux autres lignes représentent
les gluons non mesurables, qui habillent le quark ou 'antiquark. En effet, les contributions a
| W0t )99 qui sont entre accolades peuvent se réécrire simplement |(x, ), (y, @)Y ® |A) qui
représente un quark et un antiquark dans le repére caractérisé par Y» dans lequel ils sont
habillés d’un gluon mou.
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Létat |Wyu)799 est état a considérer pour le calcul de la section efficace de production
de gluons. On y distingue quatre contributions différentes qui ont une signification claire :
le terme €) - (x — z) représente I’émission du gluon par le quark et le terme €y - (y — z)
représente 1’émission du gluon par I'antiquark. Pour chacun d’entre eux, la contribution avec
trois lignes de Wilson correspond & I’émission du gluon avant l'interaction. Les contributions
avec seulement deux lignes de Wilson, qui viennent avec un signe moins, sont les contribu-
tions soustraites et réabsorbées dans |¥,,;)9%. Elles s’interprétent naturellement comme des
contributions ot le gluon a été émis aprés 'interaction. Ceci est représenté Figure 2.7.

2.4.1 Production inclusive de gluons

Commencgons par calculer la section efficace de production inclusive de gluons donnée par
(2.44) ou seule la partie |W,,;)799 de |¥,,;) contribue. En utilisant ’espace mixte, la section
efficace s’obtient par

do d?z d2’ i (2~ _
2= | e Y S el sl ) 219

Dans ce calcul, Y¢ est & remplacer par 'intervalle de rapidité sur lequel les particules provenant
de la cible sont émises :

vq = (V24" [ko) = ymin =Y —In(P*/q") . (2.50)

La section efficace peut s’écrire sous la forme suivante (aprés la substitution habituelle de §(0)
par (27)%)

do 4o d?x d2y 42z d27 . ,
+ = 5 dkT == Lkt zq z'—z) F /
1 qudq+ 7T2Nc / 2m 27 ‘d)( ‘ / 27 2w < (X7 y.z,z )>yq
(2.51)

avec la fonction F[A] donnée par

x—z

FlA|(x,y,2,2') = Tr H T ([WheoTwety)| Wie(a) - [T W wey))
—;:ZZ/IP ( [W}(X)TGWF(Y)} wic(z) - [W}(X)Wp(y)TC} ) }
{2 m (Wi wew] wit - [Whoweoor])

s (oWt Wi ) — [Tl ) }] (252)

Dans cette expression, les quatre contributions de amplitude (fonctions de x, y et z)
associées aux quatre contributions de 'amplitude complexe conjuguée (fonctions de x, y et
z') forment seize termes. Ils contiennent quatre, cing ou six lignes de Wilsons (pour lesquelles
la dépendance en A est implicite dans (2.52)) et peuvent tous étre simplifiés. Les termes
contenant a priori six lignes de Wilson sont en fait des traces de deux lignes de Wilson adjointes
car les lignes de Wilson fondamentales disparaissent grace a l'identité : W} [A]l(x)Wr[A](x) =
1. Pour la méme raison, les termes formés de cing lignes de Wilson n’en contiennent réellement
que trois et peuvent étre simplifiés en utilisant la formule (1.56) donnée dans 'appendice 1.A.
Enfin, les termes contenant quatre lignes de Wilson sont soit égaux a CrN,, soit réductibles
en utilisant la formule (1.57). Finalement, les seize termes de (2.52) ne contiennent tous que
deux lignes de Wilson adjointes Wa[A] et (F >yq peut étre exprimée en fonction d’une seule
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amplitude : I'amplitude de diffusion d’un dipéle de gluon (99). Cette amplitude sera notée
(Txy)y, avec

TyylA] =1

- (WA WA 2.5

En utilisant la formule (1.56), on peut facilement relier 'amplitude du dipole quark-antiquark

(Tky)y & l'amplitude du dipole de gluons (Txy)y :

<Txy>y - Né\ffl (2 (Tay)y — <T§y>y> . (2.54)

La fonction (F), ~s’écrit en terme de <T xy> de la maniére suivante [IV] :
Yq

1 /
N it (xi—2).(x;—2)
(F(x0,%x1,2,2 )>yq = Crhe Z( 2 |x; —z|2|x;—2/|?

« (<szj>yq () (T - <TZZ,>yq)<z.55>

oul nous avons utilisé la notation (x — xp,y — X1) pour pouvoir écrire les seize termes
de maniére plus compacte. Signalons que cette formule a aussi été obtenue d’une maniére
différente [31, 32| dans le cas de la collision onium-noyau. Avant de simplifier encore le résultat,
on remarque une fois encore que tous ces termes ont une signification simple. Les termes
proportionnels & (x; —z).(x; —2) (i,j = 0,1) correspondent a un gluon émis par le quark
ou antiquark de position transverse x; dans I'amplitude et x; dans 'amplitude complexe
conjuguée. Pour chacune de ces quatre situations :
~ le terme (T; x;x; )y, Teprésente une émission aprés l'interaction & la fois dans I'amplitude
et dans ’amplitude complexe conjuguée,
— le terme <T zxj>yq représente une émission avant I'interaction dans 'amplitude et apreés
I'interaction dans I’amplitude complexe conjuguée
— le terme (T ;7' )y, Teprésente une émission aprés l'interaction dans I'amplitude et apres
I'interaction dans I’amplitude complexe conjuguée,
— le terme <Tzz/>yq représente une émission avant l'interaction a la fois dans amplitude
et dans 'amplitude complexe conjuguée.
Un de ces termes est représenté Figure 2.8.

On peut encore simplifier 'expression de la section efficace, en 1’écrivant

i.j=0

do 4o d’r 9
+ _ S + +
1 2qdgt ~ 72N, /dk (27)2 |6(k", )| Fy, (r,q) (2.56)
ol nous avons introduit la fonction
d2z d2Z/ ) , r r
- [ e (o)
Fulna) / or 21 ¢ TyrTent)), (2.57)

En effet on remarque que pour chacun des termes de (2.55), une des trois intégrations dans
(2.57) peut toujours étre faite indépendamment de 'amplitude de dipole. Ce calcul est expliqué
dans ’appendice 2.A, on obtient :

S P I/ e r'?
= CpN, —iqr’ | 27 5(2) n(-—
fyq(r,q) Cr / o e [q25 (I‘ I') + In |I‘—I"| |I‘—|—I‘/|

2iq [ 2r r'—r r'+r 9
T <r’2 ()2 (r)? /d b Tog(x', bi) (2.58)
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F1G. 2.8 — Section efficace de production inclusive de gluons. Un des seize termes obtenus en
mettant 'amplitude dessinée Figure 2.7 au carré est représenté. Le gluon est émis par le quark
avant l'interaction dans 'amplitude et par I'antiquark avant l'interaction dans ’amplitude
complexe conjuguée. Dans tous les cas l'interaction se réduit & l'interaction effective d’un
dipole de gluons, comme exprimé par les formules (2.51) et (2.55). Seul le gluon dessiné est
mesuré mais des particules sont émises sur toute la coupure. Le quark et I’antiquark provenant
de 'onium sont émis & des rapidités plus grandes que celle du gluon, les autres particules
proviennent de la cible et sont émises & des rapidités plus petites.

ot de maniére similaire a la formule (2.25), nous avons introduit

ng(r,b; Y) = <T(b+r/2)(bfr/2)>y . (259)

Les formules (2.56) et (2.58) montrent que la dépendance en q de F,, (et donc de la
section efficace) s’obtient comme la transformée de Fourier de Ty (', b; y4) multipliée par une
fonction connue de r et de r’. Ce lien entre la production inclusive de gluon et le dipole (gg)
est apparu dans différents contextes [33, 34, 35, 19]. Aprés quelques lignes de calcul, on peut
factoriser la section efficace de production inclusive de gluons (2.58) de la maniére suivante
[IV] :

do 4a;Cp d’r 9 d2r’ o 2
i = - + + q.r /
! Pqdgt T w2 /dk (27)?2 |6k, 0)] /27r6 IR

VE,/de Tye(r',bsy,) . (2.60)

Le calcul menant & ce résultat est expliqué dans 'appendice 2.A. Il montre qu’en fait la dépen-
dance en q de la section efficace s’obtient comme la transformée de Fourier de VE,T 9o (X, biyg).
Le logarithme In(r?/r2) de la formule (2.60) joue aussi un réle important, cela sera repris au
Chapitre 5. Rappelons que cette expression n’est valable que pour des gluons émis & grande
rapidité (Y — In(P*/k™) grand) mais aussi tels que ¢* < PT.
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FIG. 2.9 — Représentation de I'état [Ug;77)9%9, projection de I'état |U,.)999 schématisé Figure
2.7. Deux des quatre contributions de |Wq;f£)999 sont représentées : le gluon émis par le quark
avant l'interaction et le gluon émis par 'antiquark aprés l'interaction. Cette derniére vient
avec un signe moins.

2.4.2 Production diffractive de gluons

Calculons pour finir la section efficace de production diffractive de gluons, c’est-a-dire la
production de gluons dans les collisions ol la cible interagit de maniére élastique. Pour cela
il nous faut isoler les états finals qui y contribuent. Notons |4 7)9%9 1'état correspondant, il
est obtenu a partir de |¥,,;)999 par la projection

[Waip )% = |[C){C][Wour) 1™ . (2.61)
Pour obtenir le résultat, nous allons utiliser la propriété suivante :
T¢
d d
(WW ... W)n)y = <(WW...W)55>Y Ths Gon (2.62)

C’est une conséquence du fait qu’effectuer la moyenne ( . )y d’une quantité non invariante de
jauge donne un résultat nul. Ceci a été discuté plus en détails dans la section 2.3.

En effectuant la projection (2.61), seuls les singlets de couleur ¢gg contribuent a |W g )99,
comme indiqué par (2.62). Par exemple la contribution de la deuxiéme ligne de la formule
(2.48) pour |W,,:)9%9 est

([WhAamr'welde)] Wil @ - [WHAGWrAIT] ) =

ao

=

ﬁ(<TXZTZY>Y - <TXZ>Y - (sz>y + <TXy>y)T§a : (2-63)

En fait, Pautre partie de |W,,)9%9 (la troisiéme ligne de la formule (2.48)) donne la méme
contribution et on obtient

. d’x  d%y d’z g N,

U )99 — + + I+ ki ¢

| dsz) /dk (2m)2 (2ﬂ)2¢(k X y)/dk (2m)?2 gc\/WQCF
ex-(x—2) ex-(y—2

Bl | (Taudy, ~ Ty, — Taydy, + Ty,

(x —2z) (y —2)
T5al(x, ), (v, @), (z,¢,A)) @[C) . (2.64)
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F1G. 2.10 — Section efficace de production diffractive de gluons. Un des seizes termes de la
formule (2.67) obtenus en mettant 'amplitude dessinée Figure 2.9 au carré est représenté.
Le gluon est émis par le quark avant 'interaction dans ’amplitude et par 'antiquark aprés
I'interaction dans ’amplitude complexe conjuguée.

On peut distinguer quatre contributions dans |¥gr7)9%9 avec des significations claires. Le
terme €) - (x —z) représente 1’émission du gluon par le quark et le terme € - (y — z) représente
I’émission du gluon par 'antiquark. En facteur commun & ces deux situations : la contribution
(Txa)y, +(Tzy)y, — (Ixz1Tzy)y, correspond & une émission avant 'interaction et la contribution
<TXY>YC correspond & une émission aprés l'interaction. Ceci est représenté Figure 2.9. Notons
que contrairement au cas inclusif, les amplitudes de dipoles sont déja présentes au niveau de
I’amplitude. C’est bien sur di & la projection (2.61).
La section efficace est obtenue a partir de |Ug;77)9% de la maniére suivante :

do - _
Bq 199U gip£|Ng(q)[Waipr)?® (2.65)
ce qui s’écrit dans I’espace mixte
do A’z d%z .. _ oo N _
qu = / (2m)2 (27)2 ¢l Z)%:qqg<‘ljdiff|ac,,\(q ,Z )ac\(q az)|‘1’diff>qqg . (2.66)

Dans ce calcul, Y est a remplacer par le gap de rapidité An = ln(ﬂqu /ko) — Ymin =
Y — In(P*/q"). Le résultat peut s’écrire sous la forme suivante [[V] (avec la substitution
habituelle §(0) — (27)2)

= (kT x—y) [P A A% 2
q d2qu+ 47T2CF o o ‘d)(k y X Y)’ Aﬂ(XaY7 q) An(X7Y7q) ( 67)

avec I'amplitude A, (qui est un vecteur transverse) donnée par

Aseyia) = [$2 e[ K22 - YR (110 (), - T,

27 X —Z) (y —2)
— (TyaTay) An) . (2.68)
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Rappelons que ce résultat n’est valable que pour des grands gaps de rapidité (Y —In(P*/k™)
grand) mais aussi pour des gluons tels que g7 < PT. On a déja signalé que 'amplitude (2.68)
pouvait étre décomposée en quatre termes. Un des seize termes de la section efficace (2.67)
est représenté Figure 2.10. Encore une fois la méme amplitude de dipole (Txy) An intervient
dans cette section efficace, mais cette fois le corrélateur (Tx,15y) An intervient aussi.

2.A Factorisation de la section efficace de production inclusive de gluons

Dans cet appendice, nous expliquons comment simplifier la section efficace de production
de gluon donnée par (2.56), (2.57) et (2.55). Tout d’abord nous dérivons la formule (2.58)
qui donne Fy, (r,q) en fonction de Tg,(r, b;y,) puis nous obtenons la formule de factorisation
finale (2.60) qui relie la dépendance en q de la section efficace a la transformée de Fourier de
Vi Tgq(r', by yq).

Commencons par calculer F, (r, q) définie par la formule (2.57). Une des trois intégrations
(sur b, z ou z’) de la fonction (F)y, peut étre faite. En effet cette fonction est donnée en
fonction d’amplitudes de dipoles de gluons par la formule (2.55) et on remarque que pour
chacun des termes de (2.55), une des trois intégrations est faisable. Pour le terme contenant

(Tyz')y,, V'intégration sur b donne (i = (0,1), j = (0,1), xo = b+r/2 et x; = b—r/2)

d’b C_g) . (xs — 7!
/ (x; Z)2 (x; — 2 2 —In P (2.69)
21 (x; —2)%(x; — 2') ’xi—yj—i—z’—z|
puis on peut effectuer le changement de variable r’ = z—2' et b = (z+2') /2. p est une coupure
ultraviolette nécessaire car 'intégrale (2.69) est logarithmiquement divergente. Naturellement

ceci est dii & notre maniére de séparer les différents termes de (2.55) et p disparaitra quand
nous les regrouperons. Pour le terme contenant (Tx,)y,, l'intégration sur z’ donne

om (x; —2)%(x; — 2/)? - iq?(x; — 2)?

2 . i ]
/ d Z, eiq~(z’_z) (X’L B Z) ) (X] — ZI) q i (Xl _ Z) eiq'(x]'—z) (270)

puis on peut effectuer le changement de variable r’ = z—x;. Pour le terme contenant (T, /)y, ,

I'intégration sur z donne
) . ; — / . /
_q (X] z ) 6zq~(z —X;) (271>

/d2Z eiCI'(Z,—Z) (X’L — Z) . (X] — Z/) _

27 (x;i —2)%(x; —2')? o?(x; —2/)?

puis on peut effectuer le changement de variable r' = x; — z’. Enfin pour le terme contenant
(Tx;x; )y, les intégrations sur z et z’ donnent

2, 72
C2d7 g i =2) 05 =2) 1 igigx) (2.72)
2n 27 (x; —z)%(x; —2')?
puis on peut utiliser une fonction (2 (r' —x;+x;) pour rétablir 'intégrale sur r’. En regroupant
les différents morceaux et en effectuant ensuite explicitement les sommes sur ¢ et j (la coupure
p présente dans les logarithmes disparait a cette occasion), on obtient le résultat (2.58) :

v . 4w r’2
= CpN, —iqr’ | 20 o(2) (p _ mn({—
Fy,(r,q) = Cr / o e [qQ(S (r'—r)+1In Ty

2iq [ 2r r'—r r'4r 9
+? . <I"2 - (I"—I‘)Q — (I"—I—I‘)2 /d b ng(r’,b;yq) . (2.73)

Pour aller plus loin et obtenir la formule (2.60), nous utilisons le fait que la fonction
|¢)(k‘+,r)|2 ne dépend pas de 'angle polaire du vecteur transverse r. Nous verrons que c’est
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le cas dans le Chapitre 4 ot un calcul explicite d’une telle fonction d’onde est réalisé. FEn
prenant le vecteur q comme référence pour les angles polaires, il est possible d’intégrer la
fonction F,, par rapport a f.q, 'angle entre les vecteurs r et q. Pour cela nous utilisons les
intégrales angulaires suivantes :

27 daq I./2 I./2
] = —'In ( = 2.74
- n<‘r_r,‘,r+r,,) o(lr| \r|>n(r2>, (2.74)

2w / / / /
dbrq 2r r'—r r'+r na-T
. — — :2 — . 2
| S=a ( e (r,H)Q) o (|2 (2.75)

Elles permettent d’obtenir :

2 ., 2iq . I'/ 1 1'2
2 2 —1iq.r
/0 dbrq Fy,(r,q) = 2CFNc/d r'd’b e {@(Ir!—!r’l) [ @z 2l <r/2>]

2
#2300 1) b Ty 1, i) - (270)

En utilisant ’espace de Mellin, on remarque que :
o [2ig-r 1 | r? 2 9 oo
@(|I‘|—|I") w—g n 1'72 +?5(r t ) =

q
dr (r2\*[2iq-¥ 1 2
2 \ 112 22 222 g2r2
ol le contour d’intégration pour la variable complexe A longe ’axe imaginaire en passant a
droite de l'origine. Nous pouvons alors écrire

i [ (50 Mg 12 (2 '
2im \ r'2 A2 2X2 T 22| ) 2im2g2a? Y r’2
1 2 —iq.r’ / r’
:ﬁvr, e O([r|—|r'|) In 7 (2.78)

et obtenir le résultat

o CrNe 2.7 12 2 | _—iqr / r’
; dbrq Fy,(r,q) = & d°r'd“b Vi, |e " O(|r|—|r'|) In 7 Tye(r,bsy,) (2.79)

qui méne & la formule finale (2.60).
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Dans le chapitre précédent, nous avons dérivé la hiérachie des équations dévolution de la
QCD vers la limite de haute énergie. L’équation de Balitsky-Kovchegov (BK) résulte d'une
approximation de la hiérarchie mais a essentiellement le méme contenu physique. C’est une
équation fermée qui décrit 'évolution de (Txy), avec la rapidité Y. Rappelons que (Tky),- est
I’amplitude de collision d’un dipdle sur la cible hadronique ol les vecteurs bidimensionnels
x et y sont les positions transverses du quark et de ’antiquark composant le dipole. Bien
qu’apparaissant comme un intermédiaire de calcul, 'amplitude (Tky), décrit une situation
physique bien définie : la collision d’un objet de nature perturbative sur la cible hadronique.
Une telle collision permet de sonder des petites distances de l'ordre de r=[x—y| < 1/Agcp
& l'intérieur du hadron cible : dans ces conditions le dipole sonde les quarks et gluons qui
composent le hadron. L’équation BK décrit plus particuliérement la transition vers la limite
de haute énergie dans laquelle le dipdle est sensible aux effets collectifs diis & la grande densité
de gluons dans le hadron.

L’équation BK est formellement obtenue en supposant (Tx,T%y )y, = (Txz)y (Tzy), dans
le membre de droite de la premiére équation de Balitsky (2.32), cette simplification a été
considérée par Kovchegov [36]. Nous allons écrire 1’équation BK pour une amplitude que nous
dénoterons Ny (x,y), pour souligner que ces solutions ne sont que des approximations de
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(I'xy)y - L'équation BK s’écrit

2, X — v)2
diYNY(X’Y) = &/ % = _(Z)2(Z)— E [NY(X, z) + Ny (z,y) — Ny (x,y)

—Ny(X,Z)Ny(Z,y):| . (3.1)

La premiére partie discute de I’évolution donnée par la partie linéaire de I’équation BK.
La deuxiéme partie est consacrée a I’étude de solutions homogénes de ’équation BK, nous in-
sisterons sur le fait qu’asymptotiquement de telles solutions sont des ondes progressives. Dans
la troisiéme partie, qui reprend les résultats des articles [VII, VIII| et de larticle de conférence
[IX], cette caractéristique est étendue au cas de solutions asymptotiques générales. Enfin, la
derniére partie présente les calculs de larticle [XIV] : nous obtenons une paramétrisation
générique des solutions de type ondes progressives.

3.1 L’équation de Balitsky-Fadin-Kuraev-Lipatov

Commengons par étudier ’équation qui est obtenue en ne considérant que la partie linéaire
de l'équation BK. Nous écrivons cette équation pour Pamplitude dénotée Ny (x,y) :
d*z (x—y)?
21 (x—2z)%(z—Yy)

d _
Ay =a [ SN (,2) + N (y) ~Nr(x,y) - (32)
Cette équation est équivalente a I’équation dérivée par Balitsky, Fadin, Kuraev et Lipatov [2]
(pour une revue, voir [37]), leurs solutions sont identiques (elles sont données plus loin). Pour
cette raison, nous appellerons 1’équation (3.2) ’équation BFKL.

3.1.1 Le contenu physique de I'équation BFKL

L’équation BFKL est une bonne approximation de I’équation BK quand fo <& Ny, c’est-
a-dire quand Ny < 1. Cela correspond & une situation pour laquelle les effets de densité
dans la cible ne sont pas importants. Autrement dit, I’équation BFKL décrit I’évolution de
I’amplitude de diffusion d’un dipéle sur une cible hadronique décrite par un classique tel que
gsA < 1. Développons Txy[A] & l'ordre le plus bas par rapport & g (voir la formule (2.21)) :

T l] = T° [ doayt (A7 7 3) = A7 (0 9) (A7 (07) = A7 (073) + 052 A7)
‘ (3.3)
Dans une situation ou gsA4 < 1, la ressommation des ordres supérieurs est inutile et nous
obtenons ainsi que amplitude Ny qui obéit a ’équation BFKL est donnée par

™

NY<X7Y) - N

(fy(x,x) + fr(y,y) — 2fv(x,¥)) (3.4)

avec

Frixy) = ( [ detayt d; @04 00 ) (35)
Y

L’amplitude de diffusion Ny est donc donnée en termes d’une fonction fy qui refléte la densité
de gluons dans la cible. Ceci a une interprétation claire : comme gs A < 1, la densité de gluon
dans la cible est faible (fy < 1) et les effets collectifs sont négligeables. Les différents gluons

interagissent de maniére incohérente avec le dipoéle.
Dans ce régime Ny = Ny < 1 qu'on appelle le régime dilué, il est inutile de décrire la
cible en terme d’un champ classique. Si nous avions décrit la cible de la méme maniére que
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nous avons décrit le projectile, en utilisant une description en termes d’états de Fock du type
(1.18), nous aurions pu obtenir 1’équation BFKL. Elle a d’ailleurs aussi été dérivée dans ce
contexte (38, 39|. Pour obtenir I’équivalent de la densité de gluon fy avec une description
pour |C) du type (1.18) au lieu de (1.35), il faut considérer la quantité

[t S clal (5 x)aea k" y) e (3.6)

c,A

En la calculant dans deux repéres différents, il est possible de dériver une équation d’évolution :
I’équation BFKL.

Le fait que la description (1.35) permette de retrouver cette équation représente un des
succés de notre approche : elle est adaptée pour décrire a la fois le régime dilué gs A < 1, et le
régime dense gs; A ~ 1. En particulier, ’équation BK est particuliérement bien adaptée pour
décrire la transition entre les deux régimes.

3.1.2 Les solutions de I'équation BFKL

L’équation (3.2) est linéaire et facilement soluble, car les fonctions propres du noyau de
I'équation sont connues [40, 41]. Elles sont indexées par un entier relatif n, qu’on appelle
le spin conforme, et par une variable réelle v. En utilisant une représentation complexe des
vecteurs transverses :

x = (r1,22) > x = (2,T) avec x = x1 +ixy , T =x1 —iTy, (3.7)

les fonctions propres sont données par

Enu(x,y) = <$x_yy> h (2}33) H (3.8)

oll n et v ont été regroupés dans h et h:

1 . n ~ .
h—§+Zl/+§, h—§+ZU—§ (39)

Les valeurs propres correspondantes sont notées x(n,v) :

Pz (x-y)? _
| S e Ene .8+ B (ey) — Eusey)] = x(n)Eus(xy) (.10

et sont données par (une dérivation est donnée en appendice) :

x(n,v) = 2¢(1) — w(lg'”' + z’u) — w(“;'”' — il/) : (3.11)

La fonction 1 (z) est appelée fonction digamma, c’est la dérivée logarithmique de la fonction
['(z): ¢(x) =T'(x)/T(x). Ainsi, la solution de I'équation BFKL s’écrit de maniére générale

Nebey) = Y0 [ e B0 ) (312

n=—0oo

ot les fonctions ¢g(n, ) spécifient la condition initiale.

Dans la limite de haute énergie, I'intégrale sur v peut étre évaluée par la méthode du
col. Pour chaque valeur de n, le comportement de l'intégrale est alors eX(m0)Y " Quand Y
augmente, cette exponentielle est croissante seulement pour le spin conforme nul, qui domine
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donc tous les autres dans la limite de haute énergie. Pour cette raison nous ne conserverons
dans les solutions de I’équation de BFKL que le spin conforme nul n = 0. La solution de
I'équation (3.2) s’ecrit donc

2+ gy (Y (XYl 2
= L e® 1
Ny (x,5) ﬁ 2ir ¢ ( Ix||y] ) %o(7) (3.13)

3 —100

ou nous utilisons & présent v = % + iv comme variable d’intégration. La valeur propre x(0, )
pour spin conforme nul est notée

xX(7) =29(1) = (y) = (1 = 7). (3.14)

La fonction ¢g(y) spécifie la condition initiale et contient une échelle a priori non perturbative
Qo ~ Agcp qui caractérise la cible hadronique a basse énergie :

do(7) ~ Qy 7. (3.15)

3.2 Solutions homogeénes de I'équation de Balitsky-Kovchegov

Concentrons-nous maintenant sur les solutions de I’équation BK. Nous allons commencer
par considérer des solutions que nous appellerons homogénes : des solutions qui ne dépendent
que de la taille du dipole r = |x—y]| et pas du paramétre d’impact b = (x+y)/2. Dans une
telle situation, le dipdle voit la cible homogéne dans le plan transverse.

3.2.1 Le contenu physique des solutions

Nous allons dans un premier temps analyser qualitativement le comportement des solu-
tions Ny (x,y) = Ny (r), nous ferons des calculs plus formels par la suite. Commengons par
introduire une condition initiale & Y = Yy : Ny, (r). Dans la limite des dipoles de petites
tailles r < 1/Agcp, I'amplitude s’annule comme Ny, ~ r2, c’est la transparence de couleur :
quand le dipéle devient ponctuel, il ne voit plus les partons colorés dans le hadron. Par contre,
plus la taille du dipdle est grande, plus il interagit : 'amplitude Ny est fonction croissante
de r. La limite d’unitarité impose Ny < 1. Pour la condition initiale, I'unitarité est réalisée
de maniére non perturbative et la limite Ny, = 1 est atteinte pour une taille 7 ~ 1/Q¢. Une
paramétrisation possible de la condition initiale est

TQQ% si rQp <1
Nyo(r) = { 1 si rQo > 1 (3.16)

Etudions maintenant comment cette amplitude évolue avec I’équation BK (3.1). L’équation
(3.1) posséde deux points fixes : Ny =0 qui est instable, et Ny =1 qui est stable. En effet si
lamplitude est trés petite mais non nulle, Ny < 1 et on peut négliger dans 1’équation (3.1)
le terme non linéaire (c’est justifié¢ au début de I'évolution tant que Ny > NZ). L’équation
restante est alors une équation linéaire du type dNy /dY o Ny et Pamplitude augmente
exponentiellement avec la rapidité : Ny ~ e¥. Quand Ny devient de lordre de 1, le terme
non linéaire devient important et joue son role, il stoppe la croissance de Ny : quand Ny — 1,
dNy /dY — 0 et la croissance de 'amplitude s’arréte & Ny = 1, point fixe stable de I’équation.

La solution Ny (r) est donc une courbe croissante en fonction de la taille r comprise entre
0 (petites tailles) et 1 (grandes tailles), et une fonction croissante de la rapidité. Ceci est sché-
matisé figure 3.1. Pour chaque valeur fixée de la rapidité Y, appelons r4(Y") la taille a partir de
laquelle le terme non-linéaire devient important ; cette taille définit 1’échelle d’unitarisation
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Y >Y),

| >
N Qo

F1G. 3.1 - L’amplitude Ny (r) en fonction de r. L’évolution BK & partir de la condition initiale
Ny, (r) (voir équation (3.16)) est schématisée par des fleches verticales pour différentes valeurs
de 7. Le front formé par la solution Ny (7) se déplace avec la rapidité. L’échelle d’unitarisation,
qui pour la condition initiale est non perturbative, augmente avec 1’évolution vers de plus
grandes rapidités Y.

pour Ny. L’échelle d'impulsion correspondante Q(Y) = 1/rs(Y) joue un rdle fondamen-
tal dans la QCD a haute énergie, elle est appelée I’échelle de saturation. Elle caractérise la
transition entre le régime dilué, dans lequel 1’évolution est décrite par 1’équation BFKL, et
le régime dense (souvent appelé régime de saturation), dans lequel les effets collectifs dis
au grand nombre de gluons sont importants. La valeur de @, est fonction croissante de la
rapidité, ce qui nous améne & notre premiére conclusion trés importante : dans la limite de
haute énergie, I’échelle d’unitarisation (s rentre dans le domaine perturbatif.

3.2.2 Des solutions asympotiques de I’équation BK

Nous allons maintenant dériver des résultats plus quantitatifs, notamment les comporte-
ments de Ny (r) de Qs(Y) pour des rapidités asymptotiques. Pour cela introduisons

Ny(x,y) = Ny(r)=r> U(r,Y) . (3.17)

L’équation BK pour U(|r[,Y) s’écrit

d a d’r’ , r?
WU(M,Y) =30 / 1) {QUQI‘ ,Y) - I,,QU(|1‘|,Y)}

L [ (el y) .

La partie linéaire de I'équation pour U

Dans un premier temps, il est utile de considérer la partie linéaire de I’équation (3.18).
Elle peut se réécrire sous une forme qui souligne mieux ’annulation des divergences entre le
terme réel et virtuel :

a 2y r2
%U(!r[,}/) = 7r/(rd—r’)2 [U(|r’\,Y) - mU(M,Y) . (3.19)
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F1G. 3.2 — Représentation de la fonction x () (voir équation (3.14)), et détermination de 7.,
solution de I’équation (3.27).

En utilisant les intégrales suivantes :

d2r/ dle d2r/ dle
ne - T 5 ot 2 n2 - " T ’ (3.20)
=9 =] ) ) VA
il est facile d’effectuer 'intégration angulaire et d’obtenir

iU(r, y) = d/ dr'’? [r2U(r",Y) = r2U(r,Y)  r2U(r,Y)
R VI

dYy
Cette équation est simplement ’équation BFKL pour des solutions homogénes. Dans ce
cas, les fonctions propres du membre de droite de (3.21) sont obtenues en espace de Mellin :
r=27 est fonction propre avec la valeur propre ay(y). Cela a inspiré le fait d’écrire I’équation
(3.21) sous la forme compacte

(3.21)

d
d—YU(r,Y) =ax(0)U(r,Y) (3.22)
ol nous avons introduit L = — ln(er%) qui apparait comme une variable naturelle du pro-

bléme. Les solutions de cette équation s’obtiennent de maniére immédiate :

%+ioo d’}/

57 XY (7"2@3) _VUO(’y) ) (3.23)

U Y) = G}

3 —100

Ces solutions peuvent se réécrire pour 'amplitude Ny (r) de la fagon suivante :

L tico d
. 2 ~
Ny = [ S oMy ) (324)
5 —100 LT
avec
o) = X(j) . (3.25)

Ceci permet de faire apparaitre que la solution du probléme linéaire est une superposition
d’ondes progressives. Une onde progressive est une fonction du type f(L—vY') ou v représente
la vitesse de propagation, cela sera discuté par la suite. Dans la superposition d’ondes (3.24),
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X(t) = X(0) + vt

X (to (t3

F1G. 3.3 — La fonction f(x,t) en fonction de x pour différentes valeurs de ¢. Aprés un certain
temps t1, 'évolution efface les traces de la condition initiale f(x,0) et la fonction f devient
une onde progressive f(x — vt). Sa propagation est telle que pour différentes valeurs de ¢, le
front de 'onde a toujours la méme forme, il est simplement translaté proportionnellement &
la différence des temps considérés. Le coefficient de proportionnalité est la vitesse de 'onde.

X (t1) ) X

la vitesse des différentes ondes av(vy) dépend de . Signalons dés maintenant qu’une des ces
vitesses va jouer un réle important par la suite : la vitesse minimale. Nous la noterons v, et
elle est obtenue pour une valeur de v que nous noterons 7, :

ve = min(v(y)) = v(7e) - (3.26)
g est donc solution de ’équation
X\
v (327)

représentée Figure 3.2 et vaut g, ~ 0.6275. La vitesse minimale correspondante est v, ~ 4.883.

Des solutions de type ondes progressives

Revenons maintenant au cas de I'équation compléte. Nous allons énoncer des résultats
sans les démontrer, puis nous discuterons leur dérivation. La solution asymptotique (Y — oo)
de I’équation (3.18) est une onde progressive de vitesse particuliére. Cette vitesse dépend peu
de la condition initiale : elle dépend seulement de son comportement & grand L, ou de maniére
équivalente a petit r (toute autre information sur la condition initiale disparait complétement
au cours de I’évolution avec Y'). Avec la condition initiale

Ny, (r) ~ e quand L — oo, (3.28)

deux situations sont possibles (v; > 0).

— Si 7 < 7., alors la vitesse de l'onde progressive, solution asymptotique de (3.18), est
av; avec v; = x(7:)/7v- On dit que 'onde est poussée par la condition initiale et nous
appellerons ce type de solution le type front poussé.

— Siv; > 7., alors la vitesse de I'onde propagatrice, solution asymptotique de (3.18), est
ave avec ve = X(7¢)/7Ve- On dit que l'onde est tirée par la condition initiale et nous
appellerons ce type de solution le type front tiré.
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L=~ (r’Q})

— /x5 X7\
QU3 — I2)

F1c. 3.4 — L’amplitude Ny (r) solution de 1’équation BK (3.18) en fonction de L pour diffé-
rentes valeurs de Y (Y3 > Yy > Y7 > V(). La solution est de type front tiré : la condition
initiale Ny, (r) (voir I'équation (3.28)) est petit & petit effacée avec 'évolution pour laisser
place & un front en e, Une fois le régime d’onde progressive atteint, augmenter Y revient
& translater le front, la vitesse de ’onde étant awv..

En QCD, nous nous trouvons dans ce deuxiéme cas (voir la condition initiale (3.16) pour
laquelle v; = 1.) et la solution asymptotique de I’équation (3.18) est une onde progressive
de vitesse av. : Ny(r) = N(L — av.Y). Une onde progressive fait référence a une fonction
d’une variable d’espace x et d’une variable de temps t qui est en fait une fonction d’une seule
variable : f(x,t) = f(x — vt). En raison de sa dimension, le coefficient v est appelé la vitesse
de 'onde. Dans notre probléme, la vitesse qui intervient est en fait un nombre sans dimension
(c’est un rapport de deux logarithmes), cependant nous 'appelons tout de méme une vitesse,
en raison de l'analogie présentée ci-dessus. La figure 3.3 décrit les caractéristiques de la pro-
pagation d’une onde progressive f(x — vt) comprise entre zéro et un, fonction décroissante de
x et fonction croissante de t. Dans notre probléme, ’analogue de = est L et ’analogue de ¢
est Y.

En fait Ny (r) n’est pas partout une onde progressive : dans la limite L —av.Y — oo, on
tend vers le régime dilué (Ny(r) — 0) oit Ny (r) est donnée par (3.24) qui est une superpo-
sition d’ondes progressives. Dans la limite L —awv.Y — —o0, on tend vers la limite d’unitarité
(Ny(r) — 1) et Ny(r) est une onde progressive de maniére évidente. Le résultat non trivial
est que partout en dehors de la limite L —av.Y — oo, Ny (r) est une onde progressive. La
transition entre les régimes dilués et denses se fait pour L ~aw.Y, c’est-a-dire autour du milieu
du front de 'onde. L’échelle de saturation est ainsi donnée par

QIY) = Qf e (3.29)
Dans la partie avant du front de 'onde L > awv.Y, la solution s’écrit
Ny (r) = N(rQs(Y)) ~ e 7eel) = (12Q3(v) ™ . (3.30)

Ceci est résumé Figure 3.4.

Les résultats que nous venons de donner sont valables asymptotiquement en Y, I’échelle
de saturation (3.29) et le front d’onde (3.30) ne contiennent que les termes dominants dans
la limite Y — oo. De maniére remarquable, il existe aussi des résultats sous-asymptotiques
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universels, c’est-a-dire qui ne dépendent ni de la forme précise de la condition initiale (mais
seulement de son comportement a grand L), ni de la forme du terme non linéaire. Pour I’échelle
de saturation, deux corrections sous-asymptotiques sont connues [42| (pour la premiére, voir
aussi [43]) :

QQ(Y)> _ 3 3 2w 1
In|{ =252 ) =av.Y — InY)— =4/ —————=+0(1/Y)=Q(Y) . 3.31
( Q5 2%e ¥) 72\ ax"(ve) VY 1/Y) = ay) (3:31)
Dans le cas du front d’onde, la forme de Ny (r) dans la région r2Q?(Y) < 1 est
- In® (@2 (Y))
212 22 Ve

Une de ces corrections sous-asymptotiques nous rappelle que, trés en avant du front d’onde
(dans la limite r2Q2(Y) — 0), Ny(r) n’est pas une onde progressive. En effet, le terme en
In2(r2Q%(Y))/Y provient du régime dans lequel Ny (r) est donné par (3.24). On dit que
ce terme est di a la diffusion BFKL. Il nous permet d’ailleurs de quantifier jusqu’a quel
point en avant du front Ny (r) peut étre considéré comme une onde progressive : tant que
r2Q%(Y) > exp (—2v.ax”(1.)Y).

Il est possible de tester ces prédictions avec des simulations numériques de 1’équation
(3.18) ; les résultats sont montrés Figure 3.5. La figure de gauche représente 'amplitude de
dipole Ny (r) en fonction de rQq pour plusieurs valeurs de Y, montrant de maniére claire que
des ondes progressives sont formées au cours de ’évolution en Y. La figure de droite montre
la dépendance de I’échelle de saturation en fonction de Y. Cette dépendance est extraite de
I'amplitude Ny (r) en résolvant I’équation Ny (1/Qs(Y)) = C, différentes courbes correspon-
dant & différentes valeurs de la constante C : 0.001, 0.01, 0.05 et 0.1. On constate que ce choix
n’influence pas la vitesse asymptotique, ce qui est di au fait que Ny (r) est une onde pro-
gressive. La vitesse asymptotique obtenue correspond bien & v.. Plusieurs groupes ont réalisé
des simulations numeériques de I’équation BK [44, 45, 46, 47, 48, 49, 50| et les résultats sont
compatibles.

Lien avec I'équation FKPP

Considérons la fonction U(k,Y") définie par

- d
Uk,Y) :/r dr Jo(kr)U(r,Y) :/:Jo(kr) Ny (r) (3.33)
pour laquelle I’équation BK s’écrit
d - a d?K’ N k% - N
—U(k|,Y)= — | ——— [20(K'|,Y) = = U(k|,Y)| — aU?(|k|,Y) . 3.34
ayOY) = 5 [ Ee [20(1Y) - (50K Y| - al?(K.Y) . (33

L’avantage d’utiliser la fonction U (k,Y) est que le terme non linéaire de I’équation BK est
grandement simplifié. Le terme linéaire a exactement la méme forme que celui de ’équation
pour U(r,Y), ceci est dii aux propriétés d’'invariance conforme du noyau de I’équation BFKL.
Les résultats importants donnés ci-dessus ont été dérivés par Munier et Peschanski [42]. Ils ont
remarqué que I’équation (3.34) appartenait a la méme classe d’équivalence qu’une équation
bien connue depuis les années 1930, 1’équation de Fisher-Kolmogorov-Petrovsky-Piscounov (F-
KPP) [51]. Cette équation a été étudiée de maniére trés approfondie en physique statistique
et les résultats présentés ci-dessus ont été obtenus grace & son équivalence avec les équations
de QCD. En fait de maniére plus générale, les résultats sont valables pour toute équation
d’évolution qui, comme 1’équation FKPP, I’équation (3.18) ou I’équation (3.34), satisfait les
conditions suivantes.
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Fic. 3.5 — La figure de gauche est une simulation numérique de 1’évolution BK de ’amplitude
de dipole Ny avec la rapidité Y. Ny (r) est représentée en fonction de L pour différentes
valeurs de Y entre 0 et 10 par intervalles d’une unité. Des ondes progressives sont formées au
cours de I’évolution en Y. La figure de droite représente 1’échelle de saturation )5 en fonction
de Y et montre qu’asymptotiquement les quatre courbes (obtenues en résolvant 1’équation
Ny (1/Qs(Y)) = C pour C =0.001, 0.01, 0.05 et 0.1) convergent vers une valeur compatible
avec v. = 4.88, indiquée par un trait épais.

— U = 0 est un point fixe instable di au fait que la partie linéaire de 1’équation provoque
la croissance de la solution.

— La solution de la partie linéaire de 1’équation est une superposition d’ondes progressives
du type (3.24).

— L’équation posséde un terme non linéaire (la forme du terme non linéaire peut étre
quelconque) qui arréte la croissance de la solution.

Dans le cas de I'équation (3.34), la solution de la partie linéaire de 1’équation est

1 . — 1 .
0lin<k’}/) _ /2+ZOO di eax('y)Y<k22> ’YUO(’Y) = /2+ZOO d—’y eiV(i*éU(V)Y)ﬁo(’y) (3.35)
1 oo 24T Q5 1 oo 2im

avec L = In(k2/ Q%) et la solution asymptotique de I’équation est donc une onde progressive
U(k,Y) = U(L—av.Y) . Toutes les caractéristiques données dans le cas de la fonction U(r,Y)
(ou Ny (r)) sont aussi valables pour U et pour toute solution d'une équation d’évolution
qui satisfait les conditions énoncées ci-dessus, c’est-a-dire qui appartient & la méme classe

d’équivalence que 1’équation FKPP.

3.3 Solutions générales de I'équation de Balitsky-Kovchegov

Nous souhaitons maintenant étudier des solutions plus générales. L’équation BK est une
équation pour Ny (x,y) et ne contient pas seulement de 'information sur la dépendance de
Ny avecr = x—y. L’équation compléte (3.1) contient aussi de I'information sur la dépendance
en b = (x +y)/2. Il est possible d’extraire une partie de cette information, en utilisant les
résultats enoncés ci-dessus : Ny = 0 est un point fixe instable de I’équation BK et Ny =1
est un point fixe stable. Le seul critére non déterminé est le suivant : les solutions de la
partie linéaire de I’équation (3.1) sont-elles des superpositions d’ondes du type (3.24) 7 Or
nous connaissons ces solutions explicitement, ce sont les solutions de I’équation BFKL dérivée
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dans la premiére section de ce chapitre. En les analysant, nous pouvons déterminer si oui ou
non ce dernier critére est rempli.

En fait il est facile de voir que la solution (3.13) n’est pas une superposition d’ondes
progressives, sauf dans le cas particulier ou |b| > |r|. Mais dans ce cas de larges effets non
perturbatifs diis au confinement sont attendus, et nous n’attendons pas qu'une équation per-
turbative décrive correctement la collision. D’ailleurs les prédictions en ondes progressives que
'on obtient dans cette limite |b| > |r| sont explicitement en contradiction avec le confinement,
car elles prédisent des solutions asympotiques qui décroissent comme une loi de puissance
avec b. Ceci a été discuté dans [52, 53, 48, 49| et cela a amoindri les espoirs d’extraire de
I'information utile sur la dépendance en paramétre d’impact a partir de I’équation BK. Dans
la publication [VII], nous avons trouvé un moyen d’extraire des solutions asymptotiques en
ondes progressives, malgré le fait que la solution (3.13) n’est pas une superposition du type
(3.24). L’astuce est de passer en espace des impulsions par double transformée de Fourier sur
les variables de Ny (x,y).

3.3.1 Résultats analytiques

Définissons la double transformée de Fourier suivante :

- 1 Cxd*y ok ila—
Ny (k,q) = (27T)2/(X_y)2 ekx glak)Y Ny (xy) (3.36)

En utilisant les formules (3.1) et (3.36), il est possible d’obtenir I'équation BK vérifiée par la
fonction Ny . Elle est donnée par

iJ\?y(k, q) = :/de/ {Ny(kQQ) 1 [(q_k)2 + kz] Ny (k, q>}

dy (k—K')? 4 [(q—-K)?  Kk?
4’k - .
d/2N(k, K)Ny(k-kK,q-k).  (3.37)
™

Cette nouvelle forme de I’équation BK a été dérivée dans larticle [VIII]. Signalons que les
solutions homogeénes discutées dans la section précédente Ny (|x — y|) impliquent en espace
d’impulsion Ny (k,q) =276 (q) U(|k|,Y) ot U(k,Y) est la fonction introduite précédem-
ment qui obéit a I'équation (3.34). Nous retrouvons bien cette équation en prenant q = 0
dans (3.37). Enfin, avec la définition (3.36), q est la variable conjuguée a b et k'=k—q/2 est
la variable conjuguée a r.

La partie linéaire de cette équation est I’équation BFKL en espace d’impulsion et peut se
réécrire sous une forme qui souligne mieux ’annulation des divergences entre le terme réel et

virtuel :
d -~ _«a d?k’ - , 1 (q—k)2
dTNy(k,q) = 7'('/(1(—1(/)2 {NY(k ,q) — ) [(q—k/)z-i-(k—k/)z
k2

+k,2+(kk,)2] Ny (k, q)} - (3:38)

En transformant de Fourier la solution de 1’équation BFKL en espace des coordonnées (3.13),
nous obtenons la solution de I’équation (3.38) en espace des impulsions :

) Liico g,
Ky (k. q) = / DX 11k, q) dolr.q) (3.39)

1 ioo 2
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Fi1G. 3.6 — Simulation numérique de I’évolution BK de 'amplitude de dipdle Ny(k, q) avec
la rapidité Y. Ny (k,q) est représentée en fonction de |k'|/Qq pour différentes valeurs de Y
entre 0 et 25 par intervalles de 2.5. Pour la figure de gauche In(|q|/Qo) = —1 et pour la figure
de gauche In(|q|/Qo) = 2. Des ondes progressives sont formées au cours de I’évolution en Y,
dans le régime |K'|/|q| > 1.

ou la fonction f7 est donnée par (en utilisant la représentation complexe introduite par les
formules (3.7))

I'%(v)

2v—1
I2(1+4+) ]kz\’4k’

f(k,q) = 2Fy (%7; 27; %)QFI (%7; 27; %) —(y—=1-9). (3.40)

Un facteur antisymétrique sous le changement v — 1 — v a été absorbé dans ¢(7,q). On
peut vérifier explicitement que (3.40) est fonction propre du noyau de I’équation (3.38) et a
pour valeur propre (3.14), ce résultat est dérivé dans 'appendice du papier [VIII].

Nous pouvons maintenant analyser si la solution (3.39) est une superposition d’ondes
progressives. Ceci a été fait en détail dans la publication [VII] et nous avons démontré que
c’était le cas dans la limite |k| > |q|. En effet, dans cette limite la fonction hypergéométrique
de (3.40) tend vers 1 et f7(k,q) devient une simple puissance de |q|/|k|. La solution de
I’équation linéaire devient alors dans cette limite :

/\ny(kﬂl) :ﬁ

57100

T Ay ()
— e Vamv , 3.41
i ¢o(7,a) (3.41)
avec Lg = In(k?/q?) et ot les facteurs non importants ont été une fois de plus absorbés dans
®0(7,q). Cette expression montre que les conditions pour obtenir des solutions asymptotiques
en ondes progressives sont remplies. Plus précisément, nous prédisons pour k? /(q? eQ(Y)) > 1:

_ k2 —Ye
Ny (k,q) ~ <q269(y)> (3.42)

ot I’échelle de saturation est la méme que précédemment (voir la formule (3.31)), en dehors
de I’échelle d’impulsion qui était fixée par QQp et qui maintenant est fixée par |q|. En fait, tout
se passe comme dans le cas précédent avec la substitution Q9 — |q| et on peut montrer que
lorsque |q| devient plus petit que 1’échelle caractéristique de la cible Qg, ¢’est Qg qui redevient
I'impulsion qui entre dans ’échelle de saturation. (s est proportionnelle & g seulement quand
q > Qo. Bien sir, les comportements sous-asymptotiques (3.31) et (3.32) sont aussi valables.
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F1G. 3.7 — Ces figures représentent les dépendances de ’échelle de saturation )5 en fonction
de la rapidité Y (figure de gauche) et en fonction de la variable |q| (figure de droite). La
figure de gauche montre qu’asymptotiquement en Y, les différentes courbes convergent vers
une valeur compatible avec av, = 0.2 x 4.88 = 0.98. La figure de droite montre que I’échelle
de saturation est proportionnelle & Qo si |[q] < Qo, et & g si |q| > Q. Le changement de pente
pour les grandes valeurs de |q| n’est pas pertinent, comme signalé dans le texte.

3.3.2 Analyse numérique

Il est possible de tester ces prédictions grace a des simulations numériques de 1’équation
(3.37). Les résultats sont montrés Figure 3.6 ou "amplitude Ny (k,q) est représentée en fonc-
tion de |k’|/Qo pour deux valeurs de |q|/Qq et plusieurs valeurs de Y. Il est clair que des ondes
progressives sont formées au cours de I'évolution en Y, dans le régime |k’|/|q| > 1 (équivalent
a |k|/|q| > 1). La maniére dont ces résultats numériques ont été obtenus est détaillée dans la
publication [VIII]. Signalons par exemple que nous avons fixé @ = 0.2 dans nos simulations.

A partir des résultats numériques présentés Figure 3.6, il est possible d’extraire ’échelle de
saturation. Les résultats sont présentés Figure 3.7 ot les dépendances de ’échelle de saturation
avec Y et q? sont représentées et sont en accord avec les prédictions. Pour obtenir la figure de
gauche, ’échelle de saturation a été extraite des résultats de la figure 3.6 et de résultats pour
d’autres valeurs de |q|/Qo, comme indiqué sur le graphe. Asymptotiquement, les courbes
convergent vers une unique valeur, compatible avec av, = 0.2 x 4.88 = 0.98. La figure de
droite montre que si |q|/Qo < 1, alors Q5 x Qp et que pour |q|/Qp > 1, alors Qs  |q|. La
structure en fin de courbe est due au fait que pour les grandes valeurs de |q|, les courbes qui
servent & extraire ’échelle de saturation n’ont pas encore atteint le régime asympotique.

Insistons une fois de plus sur le fait que nos conclusions ne peuvent pas étre dérivées en
espace de coordonnées et que nos résultats, qui sont valables & q donné, ne sont pas vrais a
paramétre d’impact b donné. Cela peut étre compris assez facilement en regardant les deux
versions de '’équation BFKL (3.2) et (3.38). On voit clairement que I’équation (3.38) en espace
des impulsions est locale en q alors que 'équation (3.2) en espace de coordonnées couple
différentes valeurs du paramétre d’impact. Signalons finalement qu’il n’est pas nécessaire
de retourner en espace de coordonnées pour pouvoir utiliser nos résultats, car il existe des
observables qui s’expriment directement en fonction de Ny (k,q). Dans le cadre de la collision
d’un onium sur une cible hadronique discutée dans le chapitre précédent, c’est par exemple
le cas de la production diffractive de mésons vecteurs. La variable q? décrit alors le transfert
d’impulsion de la cible pendant sa collision élastique.
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3.4 Une paramétrisation générique pour les ondes progressives de QCD

Les résultats que nous avons dérivés jusqu’ici ont quelques limitations, qui peuvent re-
mettre en cause leur pertinence pour des applications phénoménologiques. D’une part, nos
résultats sont valables asymptotiquement en Y. D’autre part, la forme de la solution (3.32) est
seulement correcte en avant du front pour 72Q? < 1, et ne décrit pas correctement 1’approche
vers Ny (r) = 1; la transition vers la saturation est en effet plus douce que celle qui est re-
présentée Figure 3.4, comme le montre les simulations numeériques de la Figure 3.5 (voir aussi
[54]). D’une maniére plus générale, I’équation BK est dérivée dans 'approximation des loga-
rithmes dominants, on peut par conséquent douter que nos prédictions quantitatives soient
utilisables aux énergies accessibles expérimentalement.

Dans cette section, nous introduisons une version modifiée de 1'équation BK [55, XIV],
qui permet de traiter les limitations mentionnées ci-dessus. Cette nouvelle équation permet
de prendre en compte des effets créés par des logarithmes sous dominants, et elle permet
d’exploiter le terme non linéaire de maniére plus approfondie que dans 'approche discutée
précédemment. Celle-ci obtenait les solutions approchées d’une équation exacte ; la méthode
que nous allons exposer maintenant consiste a trouver des solutions exactes d’'une équation
approchée. Nous montrons que I’équation proposée admet des solutions en ondes progressives
pour des rapidités non asymptotiques, et nous obtenons une paramétrisation analytique qui
décrit la transition vers le régime de saturation.

3.4.1 Une équation effective pour I'amplitude de dipéle
Notre point de départ est de réécrire I’équation (3.34) de la maniére suivante :

d -~ ~ ~
UkY) = ax(—0;)U(k,Y) —aU?(k,Y) . (3.43)
L’équation BK modifi¢e que nous allons considérer est la suivante, nous I'écrivons pour une
amplitude que nous noterons T'(L,Y) :

d ~

d—yT(E, Y)=ax(-0;)T(L,Y) — aT*(L,Y) . (3.44)

Dans cette équation, la fonction x est maintenant un polynéme :
P
- p
X(=0p) =D Ap(=0z)" (3.45)
p=0

L’ordre du polynéme P et les coefficients A, doivent étre considérés comme des parameétres
pouvant donner lieu & différentes fonctions y. Nous considérons cette équation pour les raisons
suivantes.

— Il est possible de prendre en compte des effets de logarithmes sous dominants de maniére
effective en modifiant le noyau y. Différents schémas ont été proposés dans la littérature
et le fait d’utiliser un polynéme paramétrable peut permettre de les implémenter.

— Le front d’onde (3.32) est obtenu uniquement & partir d’informations sur la partie li-
néaire de I’équation (3.18) (le terme non-linéaire doit étre présent, mais sa forme peut
étre quelconque) et c’est la raison pour laquelle il ne peut pas décrire la transition vers
le régime de saturation. Pour pouvoir le faire, il faut utiliser de l'information sur le
terme non linéaire. En utilisant I’équation (3.34) (et pas 1’équation (3.18)), nous avons
4 manipuler un terme non linéaire dont la forme est plus simple. Signalons d’ailleurs
que le point fixe stable de 'équation (3.44) est T' = Ap, au lieu Ny = 1 dans le cas de
I'équation (3.18).
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— Il est manifeste sur la formule (3.43) que I’équation BK est une équation différentielle
d’ordre infini. En utilisant un polynéme pour la fonction y, I'ordre de I’équation diffé-
rentielle (3.44) est fini. Cela simplifie le probléme car il est alors possible de résoudre
analytiquement 1’équation [56, 57, 55]. Pour une certaine classe de polynéme X préci-
sée ci-dessous, nous allons dériver des solutions de type ondes progressives pour des
rapidités non asymptotiques.

Nous souhaitons considérer des polynémes x proches de la fonction originale y. Pour étre
plus spécifiques, nous nous limitons & des fonctions y définies positives et telles que Ag >0,
A1 <0 et As > 0. Imposons aussi que, tout comme pour y, I’équation x(v)/v = x'(7) >0
admette une unique solution 7.. Cela assure que I'équation (3.44) admet aussi des solutions
asymptotiques qui sont des ondes progressives. Nous noterons la vitesse correspondante ..

Signalons des choix possibles pour la fonction y. Comme c’est un polynéme d’ordre P
(P > 2), elle peut étre choisie comme étant la fonction originale y, développée en série de
Taylor autour d’une valeur 79 (0<7p<1) et tronquée a 'ordre P. On aurait alors

p
=S X g — )" (3.46)

p=0
ou bien écrit en termes des coefficients :
pPp (i+p)
X ()
i=0

Un choix naturel pour 7 est de prendre 79 = 7. (ou 79 = 7; dans le cas de solutions de type
fronts poussés). En effet dans ce cas 4. = 7. et 9. = v¢, ce qui assure que les solutions de
(3.44) ont la méme vitesse critique que celles de (3.43).

3.4.2 Ondes progressives génériques

L’équation (3.44) se réécrit :

R

P
Ao T(L,Y) - T*(L,Y) — (iay + A18E> T(L,Y)+Y (—1)P4, & T(L,Y)=0. (3.48)
p=2

Cherchons des solutions en ondes progressives du type
T(L,Y) = Ag u(s) , (3.49)

avec la variable d’échelle s donnée par

Q\>/

<A0 + )\A1> é(i—am(c)y) : (3.50)

Cc

A=+/Ag/Az et c est un paramétre relié a la vitesse de 'onde v(c) :

’U(C):Al—i-C\/AoAQ . (3.51)

L’équation pour I'onde propagatrice u (comprise entre 0 et 1) devient alors une équation
différentielle ordinaire :

1)P AP A,
Ao

P
1
u(l =)+ + Su + Z Lu® =0. (3.52)
p=3
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Les valeurs de ¢ > —A;/y/AgAy pour lesquelles Iéquation (3.52) a une solution définissent
les vitesses possibles v(c) de la solution (3.49). Il est important d’insister sur le fait que
dans notre approche, ¢ est un paramétre libre et donc ajustable. Cela signifie qu’en général,
I'équation (3.44) posséde un ensemble continu de solutions avec des vitesses différentes. Si nous
souhaitons par exemple décrire des solutions asymptotiques, nous savons qu’il faut choisir la
valeur de c telle que

{ U(C) = "Zc = 5(,(:}/6) 51 Yi 2 Ve ' (3.53>

v(e) =x(vi)/v sty <7e

En effet une fois la condition initiale fixée, la vitesse asymptotique est v, ou X(v;)/7vi en
fonction du type de solutions (front tiré ou front poussé), comme confirmé par des simulations
numériques. Cela dit nous pouvons aussi utiliser la liberté de changer la valeur de ¢ pour
étudier des propriétés de solutions non asymptotiques.

L’équation (3.52) est un développement par rapport a 1/¢ (sans terme d’ordre 1). Le point
crucial de la méthode de résolution de cette équation est que 1/c est petit [56, 57|, car les
vitesses que nous voulons décrire sont grandes. Ceci nous permet de chercher une solution
itérative :

| =

h(s) = ho(s) + C%hg(s) + Z Ciphp(s) —u(s) . (3.54)

p=>3

En insérant ceci dans (3.52), on obtient la hiérarchie d’équations suivante :

b+hd—1/4 =

hY + 2hoha + by =

hy 4 2hohs — N3 Azhy JAy =

Wy 4 2hoha + h3 + bl + M\ ALY /Ay =

o O o O

(3.55)

oil nous avons écrit les équations jusqua I'ordre O(1/c%). 1l est facile de résoudre cette hiérar-
chie car seule I’équation d’ordre zéro est non linéaire et sa solution est connue. A partir de
celle-ci, on peut obtenir les solutions des équations linéaires suivantes par itération. En fixant
les conditions initiales de maniére appropriée, ho(£00) ==£3 et h;zo(£o0) = h;(0) =0, nous
obtenons tout d’abord hg= 3 tanh(3). En utilisant ensuite

d 1 d

—hp(8) 4 2hohn(s) = ———— — [cosh?(s/2) hn(s)] 3.56
2P () + 2hon(5) = s o [eosh(5/2) )] (356)
toutes les autres équations linéaires se réduisent & de simples intégrations. Pour donner un
exemple, la solution jusqu’au deuxiéme ordre est

g i <1+6;>2 [38+23+8]+O (14) 590

(1+e°)?
4es

1 1 e’

u(s)

Signalons que si h(s) est solution alors h(s+sp) est aussi solution ; ceci est une manifestation
de Parbitraire de ’échelle Q) (qui intervient dans f)).

Les deux premiers termes du développement (les ordres 1/c? et 1/¢?) (3.57) sont univer-
sels : ils ne dépendent pas des coefficients A,,. Pour toute fonction y, I’équation (3.44) admet
des solutions en ondes progressives dont les deux premiers termes (dans le développement
par rapport & 1/c) sont ceux de (3.57). Les solutions différent seulement a travers la variable
d’échelle s qui dépend des coefficients Ag, Ay et Ay (3.50). En ce sens, nous avons obtenu une
solution paramétrique générique.

Il existe un moyen de tester l'efficacité de notre solution paramétrique, c’est-a-dire de
tester si la troncation du développement (3.57) & I'ordre 1/c? est une bonne approximation.



3.4 Une paramétrisation générique pour les ondes progressives de QCD 67

1 \\\\\ I I I I I I I
== exact
s ordre 1 —----
0.8 F A ordre 2 ------ |
\\
N\
N\
0.6 -
=
3
04 F i
N\
0.2 L i
0 1 1 1 1 1 1 g
-4 -3 -2 -1 0 1 2 3 4

FIG. 3.8 — La fonction u(s) solution de 'équation u(1—u)+u'4+u"/c?=0 pour c¢=5//6 avec
u(—o00)=1 et u(0)=1/2. La ligne en trait plein est la solution exacte (3.58). La ligne tiretée
est la solution (3.57) contenant seulement le premier ordre. La ligne pointillée (difficilement
distinguable de la ligne pleine) est la solution (3.57) contenant seulement les deux premiers
ordres.

Pour cela, considérons le cas P = 2 : I'équation u(1 — u) + v’ + u” = 0 admet une solution
exacte pour la valeur c=5/ V6~2.04. Cette solution est

u(s) = |1+ (V2—1) exp (3‘2)} - (3.58)

et elle nous permet de montrer que d’utiliser seulement les termes universels est une bonne
approximation. En effet sur la Figure 3.8 nous avons représenté la solution exacte (3.58) et
nous la comparons avec le développement (3.57) tronqué & lordre 1/c ou 1/c. 1 est trés
difficile de distinguer la solution exacte de la solution paramétrique générique formée des
deux premiers termes de (3.57).

Réécrivons notre solution générique en termes des variables physiques :

¢ AJc\ 2
Thy)=— Ao Ao [#ﬂ/ o <1+[Q'§(2Y)} )

tefain] " (e et )

ott Q%(Y) = kZexp [av(c)Y] joue le role de I'échelle de saturation. Les paramétres sont les
coefficients A, (rappelons que A=/Ap/A2) et la vitesse de I'onde v(c)=A;+c\/ApAs fixée
par c. La vitesse étant un paramétre, notre solution peut décrire une solution asymptotique
de type front tiré (avec v(c) = 0.) ou de type front poussé (avec v(c) = Xx(7i)/7:) ou bien des
solutions non asymptotiques, avec des vitesses plus faibles. La solution (3.59) est une onde
progressive par construction et nous n’attendons pas qu’elle décrive correctement la limite
k2/Q%(Y) > 1 dans laquelle des violations de la loi T(k,Y) = T(k/Qs) sont attendues (voir
la formule (3.32)). Par contre, nous attendons qu’elle décrive correctement le domaine de
validité de I'onde progressive, en particulier le régime de transition vers la saturation, pour

lequel k& ~ Qs(Y).

, (3.59)
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3.4.3 Cas d’'une constante de couplage mobile

Un des effets importants diis aux logarithmes sous dominants que nous n’avons pas encore
pris en compte est le fait que la constante de couplage o, devient variable & une boucle, c’est
a dire qu’elle varie avec I'impulsion transférée de la maniére suivante :

—1
N, 5 k2 11N, — 2Ny
—_— s = 1 —_— = .
—a (k%) [b n <A%CD>] avec b 12N, (3.60)

Prendre en compte un tel effet n’est pas simple, méme de maniére effective. Par exemple,
une premiére approche peut consister a utiliser la méme équation BK (3.1) (dérivée dans
Papproximation des logarithmes dominants) en remplacant @ par la formule (3.60). Mais
méme cette maniére de faire n’est pas sans ambiguités car il y a plusieurs choix possibles pour
I’échelle d’impulsion & utiliser : on peut choisir £ = 1/|x—y| & lextérieur de I'intégrale sur z
ou bien k = 1/|x—z| et k = 1/|z—y| a l'intérieur de I'intégrale.

Dans notre approche qui utilise I’équation effective (3.44), la maniére naturelle d’introduire
une constante de couplage variable est de choisir Qo = Agcp et de remplacer & par 1/ (bf,)
o varie donc avec ’échelle d’impulsion &k, qui est une variable de T(i,Y) (rappelons que
L =1n(k?/ Aéc p))- Notre équation effective avec constante de couplage variable s’écrit donc
[XTIV]

bL OyT(L,Y) = x(-0;)T(L,Y) - T*(L,Y) . (3.61)

Tout comme dans le cas précédent, cette équation admet des solutions asymptotiques en ondes
progressives [42], mais cette fois de forme f(L—+/(20/b)Y) ot la vitesse v est toujours v, pour
le type front tiré et x(7;)/v: pour le type front poussé. En considérant la méme fonction y
que dans la section précédente, I’équation (3.61) devient

P
Ao T(L,Y) = T(L,Y)? — (bLay + Alai) T(LY)+ > (~1)PA4, & T(L,Y)=0. (3.62)
p=2
Il est possible de trouver des solutions du type
T(L,Y) = Ag u(3) (3.63)

en réduisant le probléme & celui que nous venons de résoudre. Pour cela il faut choisir la
variable § de maniére appropriée : en imposant que les termes universels de I’équation pour u
soient les mémes que précédemment, ¢’est-a-dire u(1—u)+u’. Postuler =L a(Y/L?) détermine
une solution pour la fonction a et donne la variable d’échelle [XIV]

(A 1 Y
§EL<—O—5 b—2A1~> (3.64)

ol ¢ est un paramétre libre. En insérant cela dans (3.62), nous obtenons I’équation suivante

pour u :
P
Ao\’ A 1
1— / 20\ v (p) il - .
u(l—u)+u +p§2<A1> Aou +0 Z 0 (3.65)

ot les termes dominants dans un développement par rapport a 1/¢ sont bien les mémes que

précédemment. Signalons que les termes d’ordre O(1/¢) que nous allons négliger contiennent

des violations de la loi d’échelle (3.63) qui décroissent comme 1/L. En utilisant la méthode
introduite dans la section précédente, nous obtenons la solution suivante :

2 5 5)2 3

u(3) = 1j §—<i0> % c (1+e§) o) (Ag> (3.66)

e 1 0 (1+€%) de Ay
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avec comme paramétre de développement Ag/Aj.
Pour obtenir la vitesse de ’'onde, on écrit qu’a grand Y

5o Ao (/i + A1~\/—2A1Y> . (3.67)
C

En comparant avec notre définition de la vitesse de I'onde dans le cas des ondes progressives
de type f(L—+/(2v/b)Y), nous obtenons

bA3
Az

v(e) =

(3.68)

En ajustant ¢ pour obtenir une vitesse donnée, on peut vérifier que 1 /¢ est bien petit. En
définissant Q?(Y) = A%CD exp(y/(2v(¢)/b)Y) qui joue le role de I’échelle de saturation, la
variable d’échelle peut s’écrire en termes des variables physiques :

A k2 1 k2 AZ & )2(Y
s = _20 IOg v b10g2 2 + § 26 10g2 Q;( ) : (369)
A Apep) @ Abep A Abep

Finalement, en ne gardant que les deux premiers termes de (3.66), nous obtenons

(1+€§)2
4e

AO A2A2 6§
T(kY)=——=—"2 — In
1+€ Al (1_|_es)

(3.70)

qui, avec (3.69) donne une solution paramétrique de type onde progressive de I’équation (3.62).
Signalons que la loi T(k,Y) = T(k/Qs(Y)) n’est obtenue que pour des grandes rapidités.

Les formules (3.69) et (3.70) fournissent une paramétrisation pour I'amplitude de dipdle
en espace d’impulsion. Elle est basée sur les prédictions de la QCD a haute énergie dans
I’approximation des logarithmes dominants mais prend aussi en compte des effets dis & des
logarithmes sous dominants. Cette paramétrisation, qui décrit la transition vers le régime
de saturation pour des rapidités pas nécessairement asymptotiques, est bien adaptée pour
étre utilisée dans des études phénoménologiques. Il serait intéressant d’étudier si la méthode
utilisée ici peut étre étendue pour obtenir une paramétrisation en espace de coordonnées. Le
terme linéaire de I’équation (3.18) est le méme mais le terme non linéaire risque d’introduire
des complications. De méme, il serait aussi trés intéressant de traiter le cas de I’équation
(3.37) pour obtenir des solutions plus générales, applicables a des processus diffractifs avec
transfert d’impulsion non nul.

3.A Calcul des valeurs propres du noyau BFKL

Dans cette appendice, nous donnons une dérivation des valeurs propres (3.11) du noyau
de I’équation BFKL (3.2). Nous souhaitons ainsi calculer

Pz (x—y)’ e
/ g (X — Z)Q(Z — y)2 [En,V(X, Z) + En’V(Z, y) En,y( 7y)] . (371)

Rappelons que les fonctions propres E, ,(x,y) (données par la formule (3.8)) sont indexées
par un entier relatif n et par une variable réelle v, regroupés dans h = 1/2 + iv + n/2 et
h=1 /2 +iv — n/2. Pour pouvoir séparer 'intégrale (3.71) en morceaux, nous régularisons
les divergences ultraviolettes a 1’aide de la coupure p : |x — zl,|z—y]| > p.
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Commengons par évaluer l'expression suivante (nous utilisons la représentation complexe
des vecteurs transverses (3.7)) :

2 —v)2 5 a2 o Nh/=_ \h
/dz (x—y) By (x.2) / dzdz |z —y| r—z Tz (3.72)
21 (x—2z)%(z—y)? A |z —zPlz—y]? \ z 2 Tz

ol la restriction |z—y| > p est sous entendue. Effectuons successivement les changements
de variables suivants : z — u = z/x et Z — u = z/z (impliquant |u—y/z| > p/|z|) puis
u—v =uf(u—1) et 1—7 = 5/(5—1) (mpliquant |(1 — z/y)o—1| > 5= plel/(|z — ylly))),
puis finalement v —w = (1 — z/y)v et v - w = (1 — z/y)v (impliquant |w—1| > p). Les
intégrales sur z et Z se simplifient alors de la méme maniére ; traitons le cas de 'intégrale sur

| /dz(x B Z)h_1x—hz—h% — - x/y)/ 1022 (1 ; U>h(1 - §“>_1
= o M1~ x/y)/dv<—“)_h <” <1 - ;) - 1> _1

- (Y h/ dw_ (3.73)
N xy w—1 ’ '
Nous avons ainsi

d*z (x—y)? dzdz 2~hzh
Enu ) :Enu ) — T o 3.74
| ey e = Eustoey) [ G (374)

oil la restriction |z—1| > j est sous entendue. Introduisons maintenant z = re'? et z = re=%,

ce qui permet d’obtenir :

/dZdZZhEB B /’rdrd@ r —1—2iv 7zn9
Am [1—2z]2 27 1 —2rcosf + r2

1- p r—1l- 2iv+|n| 00 T7172iuf|n\
= [t
0 1— 7’2 1+p 7'2 —1
_ /1 rdr 1= 2iv+n] + T71+2w+\n|>
0 ]. — T
o B )
(1— p)%- 2w+|n\+1 1 — 5)2k+2iv+n|+1
. )l . (37
2@1/—|—|n]—|—1 2k 4 2iv + |n| + 1

k=0

La contribution du terme contenant E,, ,(z,y) est identique (sauf pour la coupure p dans
laquelle il faut échanger x et y) et la contribution du terme contenant E, ,(x,y) est

Pz (x-y)? . ((x=y)?) _ o= (1= p/lz -yt
/27T(X—z)2(z—y)2 ln< 02 > 2kZ:0 k+1 ) (3.76)

En regroupant les trois termes, la coupure p peut étre prise nulle et nous obtenons

'z (x—y)* _
/27r x— 22z —y) [Eny(x,2) + Epy(2,y) — Eny(x,y)] = x(n,v)Ep o (x,y)  (3.77)

avec

WIS 1 . 1 2
AT B hk+1/2—w+n|/2  k+1/2+iw+n|/2 k+1

= 2¢(1) —zp(“;"‘ +iu> —zp<1+2’”’ —iy> . (3.78)




CHAPITRE 4

Phénoménologie appliquée a la
diffusion profondément inélastique
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Les expériences de diffusion profondément inélastique réalisent pour une grande part des
collisions entre un photon virtuel et un proton, trés similaires aux collisions étudiées dans le
Chapitre 2. On y mesure des observables qui sont appropriées a ’étude phénoménologique de
la limite de haute énergie de QCD. Dans ce chapitre, nous utilisons les résultats du Chapitre
3 pour établir des prédictions pour ces observables, et nous comparons ces prédictions avec
les données expérimentales disponibles.

La premiére partie présente la diffusion profondément inélastique en introduisant les va-
riables cinématiques du probléme et les sections efficaces inclusive et diffractive qui sont
mesurées dans les expériences. Dans la deuxiéme partie, le lien entre le photon virtuel et un
onium est explicité et les expressions des sections efficaces inclusive et diffractive sont données.
La troisiéme partie reprend les résultats de la publication [XXI] qui discutent de lois d’échelle
observées dans les données et de leur lien avec la QCD a haute énergie. Enfin la derniére
partie reprend les résultats de l'article [X] et de D'article de conférence [XIII| dans lesquels
il est proposé de mesurer une observable particuliére, potentiellement trés intéressante pour
tester la physique de la saturation. Une revue des résultats de ce chapitre peut aussi étre
trouvée dans larticle de conférence [XVI].
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Fi1G. 4.1 — La diffusion profondément inélastique : un électron d’impulsion I* diffuse sur le
proton cible d’impulsion Q*. L’impulsion de 1’électron sortant est I’* et I'interaction se fait
par l'intermédiaire d’un photon virtuel d’impulsion ¥ — I’*. Pour tester les prédictions de la
QCD a haute énergie, nous sommes intéressés par la collision photon-proton dans la limite ou
I’énergie de la collision W est trés grande devant ), I’échelle perturbative du probléme.

4.1 La diffusion profondément inélastique

La diffusion profondément inélastique est représentée figure 4.1 : lors de la collision d’un
électron sur un proton, I'interaction hadronique se fait par I'intermédiaire d’un photon virtuel.
La quadri-impulsion de I’électron entrant sera notée [* et celle de I’électron sortant sera notée
I'". On dit que le photon est virtuel car le carré de sa quadri-impulsion est non nul et on
introduit la quantité

Q=—"=1I")(1y—1,)>0. (4.1)

La variable Q? est appelée virtualité du photon, et représente I'impulsion transférée par I’élec-
tron lors de la collision. Nous considérons des collisions caractérisées par Q? >> AQQCD7 qui
peuvent étre décrites par le régime perturbatif de QCD. Quand @Q? est suffisamment grand
(typiquement Q% > 10000 GeV?), la particule intermédiaire peut aussi étre un boson Z° ou
W=*. Nous ne considérons pas ces situations qui permettent plutot d’étudier les interactions
faibles.

Nous considérons donc des collisions entre un photon et un proton. Le photon virtuel va
jouer le role du projectile |P) = |y*) et le proton celui de la cible |C). Nous notons donc la
quadri-impulsion du proton @Q*, en accord avec les notations du Chapitre 1. Les énergies des
collisions électron-proton et photon-proton sont respectivement

= (1" + QUYL+ Qu) et W2 = (" =" 4 Q") (I — U, + Q) - (4.2)

Au lieu de travailler avec les variables s et W2, il est d’'usage d’introduire les invariants
cinématiques suivants :

Q* Q? Q?
= <l e y=-"2-<1. 4.
20 —1mQ,  Wr@—mZ2 = T YT g = (43)

€r =

Nous sommes intéressés par la limite de haute énergie dans la collision photon-proton, donc a
la limite W?2/Q? >> 1. W? représente la masse invariante des particules émises par la collision
photon-proton (voir la Figure 4.1). La situation ot W = M¢ (ou x = 1) correspond & une
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collision électron-proton élastique dans laquelle le photon virtuel est simplement absorbé par le
proton qui ne se dissocie pas. Plus W? est grand (ou plus z est petit), plus la collision photon-
proton est inélastique. La limite qui nous intéresse ici est x — 0. Signalons que l'intervalle de
rapidité sur lequel les particules finales sont émises est Y = In(1/z).

4.1.1 La section efficace inclusive

Il est possible de mesurer une section efficace complétement inclusive par rapport aux
produits de la collision photon-proton, en ne mesurant que I’électron sortant. En intégrant
sur I’angle azimuthal de 'impulsion de I’électron, on obtient une section efficace doublement
différentielle qu'il est d’usage d’exprimer en fonction des variables z et Q2. En calculant la
transition e~ — e~ * au premier ordre (le seul pertinent) en théorie des perturbations par
rapport & aepn,, cette section efficace peut s’exprimer en fonction de la section efficace totale
de la collision photon-proton. Plus précisément, on a

d(Z)O'ep_’eX aem y2
drdQ? w2Q? [(1 -yt 2) ol (x,Q%) + (1 —y)ok,(x, Q%) (4.4)

ol Uf\ot est la section efficace totale de la collision photon-proton pour un photon virtuel

de polarisation transverse (A = T') ou longitudinale (A = L). La polarisation transverse est
une moyenne des deux polarisations physiques, ce sont les seules possibles pour un photon
réel (Q? = 0). Comme le photon est virtuel (Q? # 0), il existe une troisiéme polarisation :
la polarisation longitudinale; ceci sera rediscuté plus loin. Les expériences qui mesurent la
section efficace (4.4) présentent en général les résultats pour la section efficace

ol TN (@.QY) = D opy(@.Q?) (4.5)

A=T,L

4.1.2 La section efficace diffractive

Comme expliqué dans le Chapitre 2, un processus diffractif est caractérisé par des évé-
nements au cours desquels le proton interagit de maniére élastique, laissant un intervalle de
rapidité vide de particule dans I’état final comme représenté figure 4.2. Il est possible de me-
surer la section efficace diffractive [58|, en ne mesurant que 1’électron et le proton sortants,
et en restant inclusif par rapport aux autres particules émises par la collision photon-proton.
En intégrant sur les angles azimuthaux des impulsions de 1’électron et du proton, on obtient
une section efficace quadruplement différentielle; deux variables supplémentaires sont donc
nécessaires pour ’exprimer.

En appelant Q'* la quadri-impulsion du proton sortant, nous pouvons obtenir la masse
invariante Mx des particules non mesurées et la quadri-impulsion ¢ transférée par le proton
lors de la collision :

Mg = ="+ Q" = Q") — 1, +Qu—Q,,) , b= (Q"=Q")(Qu—@Q,) <0. (46)

x, Q% Myx et t forment les quatre variables indépendantes nécessaires pour décrire la sec-
tion efficace diffractive. Mais au lieu de travailler avec les variables x et My, il est d’usage
d’introduire les invariants cinématiques suivants :

Q* _ Q? x
(=) (Qu— Q) Q2+ Mj —t B

Les particules de I’état final qui forment le systéme de masse invariante Mx sont émises sur
un intervalle de rapidité In(1/5) et I'intervalle de rapidité vide de particule est Anp = In(1/xp).

p=5 Tp = (4.7)
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gap

Q"

C N/u
C

Fi1G. 4.2 — Les événements diffractifs en diffusion profondément inélastique : le proton cible
interagit élastiquement et son impulsion finale est dénotée Q. Dans I’état final, un intervalle
de rapidité vide de particules sépare le proton du systéme de particule de masse invariante
Mx.

La section efficace diffractive s’écrit

d(4)0.ep—>eXp Qom 2 do 7;
2 = 2 1_y+ dff(ﬁaxP7Q27t)
dBdzpdQ%dl  mxpQ d3dt
d Tdifs
1- : 2 4.

en fonction des sections efficaces diffractives do’c’}i if /dBdt des collisions photon-proton pour
un photon de polarisation transverse ou longitudinale. Les expériences qui mesurent la section
efficace (4.8) présentent en général les résultats pour la section efficace

g *p—Xp
%(5 ap, Q2,1) d“‘f ap, Q1) . (4.9)
dpdt par e @

A=TL
Les résultats expérimentaux montrent que cette section efficace décroit exponentiellement
avec |t| (pour une revue des descriptions théoriques, voir [59, 60]). On a

*p—X *p—X
Ao "
dpdt dBdt '

t=0
avec un coefficient B ~ 6 GeV~2 indépendant (aux incertitudes de mesure prés) de 3, zp, et
()? dans le domaine cinématique couvert expérimentalement. L’observable pour laquelle les

données sont les plus nombreuses est la section efficace daf;’]? XP /4B intégrée sur ¢, qui est

donc proportionnelle & do), f;Xp /dBdt pour t = 0. Dans la suite nous nous intéresserons donc

A la section efficace

doj fr " d“dff >
17 E ! t=20). 4.11
dﬁ (ﬁawpvQ dﬁdt ﬁax]?aQ ) ) ( )

)\TL
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P—k"
F1G. 4.3 — La transition v — ¢ : le photon nu d’impulsion P et de polarisation A fluctue
en une paire quark-antiquark. L’impulsion du quark est notée k, sa couleur « et son spin s.
L’impulsion de I'antiquark est P — k, sa couleur & et son spin s’. La fonction d’onde associée
est donnée par I’équation (4.18).

4.2 Le photon virtuel : un exemple d’onium

Dans tout ce chapitre, le projectile considéré sera donc un photon virtuel que nous noterons
|P) = |7*)x ou A représente la polarisation du photon. A priori, la décomposition en états
de Fock du photon peut contenir des états liés hadroniques, mais comme nous travaillons &
Q?* > AQCD, ces composantes non perturbatives sont supprimées. La seule composante du
photon virtuel qui peut participer & une interaction hadronique est donc sa composante quark-
antiquark (avec en plus des gluons mous en fonction du choix de repére). En ce sens, un photon
virtuel est identifiable & un onium. Nous allons calculer la fonction d’onde correspondante au
premier ordre en théorie des perturbations par rapport a cep,.

4.2.1 La fonction d’onde du photon : la transition v — ¢g

Nous choisissons de garder la composante transverse du quadrivecteur du photon non nulle
et donc

P2—Q2
— +
P“__<F’,P,2P+>. (4.12)

La décomposition en états de Fock du photon virtuel s’écrit (rappelons que P désigne le
tri-vecteur (PT,P)) :

" /d3k: 3= A ks P)l(k, o, 5); (P—k, &, ') (4.13)

faass’

o, en accord avec les notations du Chapitre 1, 'impulsion du quark (antiquark) est notée k,
(P — k) sa couleur a (@) et son spin s (s'). f désigne le degré de liberté de saveur et n’est pas
explicitement noté en indice de la fonction d’onde ; I'indice A relatif au photon virtuel entrant
est par contre indiqué sur la fonction d’onde. Calculons cette fonction 1/12‘2—2”\ qui décrit la
fluctuation d’un photon sur une paire quark-antiquark comme représenté sur la Figure 4.3.
En quantifiant le champ de photon de la méme fagon (et dans la méme jauge) que le champ
de gluon du Chapitre 1, nous utilisons les mémes régles de Feynman.

— Nous notons I'impulsion du photon entrant P, et son indice de polarisation A; il lui est

donc associé le vecteur de polarisation el(‘A)(P)/\/(QﬂPQP*.

— Nous notons 'impulsion du quark sortant k, son indice de couleur «, et son indice de
spin s; il lui est ainsi associé le spineur as(k)/+/(2m)32k7.
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— La tri-impulsion étant conservée, I'impulsion de l'antiquark sortant est P — k. Nous
notons son indice de couleur @ et son indice de spin s’, et nous lui associons donc le
spineur vy (P — k) /+/(27)32(P—k)*.

— Au vertex est associé un facteur (27)3geme 1 0ap7*, avec ey la charge du quark de saveur
dénotée par l'indice f.

— Pour finir, le dénominateur d’énergie est ((P—k)~ + k= — P~)~ L

La fonction d’onde correspondante est donc

ﬂs(k) VHE(A);L(P) 'Us’(P - k) (27r)ggem5aﬁ

ss' A/1.. _
Vaa"(k: P) = V@2r)32k+ \/(2m)32PF /(21)32(P—k)* (P—k)~ + k= — P~

(4.14)

Les quadri-vecteurs 5’(1) et 5’(2) des polarisations transverses du photon sont paramétrés
comme ’étaient ceux des gluons (voir formule (1.14)) :

P €\
Comme le photon n’est pas sur couche de masse (P*P, = —Q?), la relation (2.15) pour le

tenseur de polarisation n’est pas vérifiée, ce qui montre la nécessité d’un troisiéme état de
polarisation. En I'introduisant, le tenseur de polarisation est de nouveau correct :

* v * v v pr v— P -
Y ey (P)ety(P) = eliy (Pe(yy(P) = =g + 570+ o (4.16)
A=1,2

avec 5‘(‘ L) le quadri-vecteur correspondant a la polarisation supplémentaire. On obtient alors

el (P) = <o, 0, 1&) (4.17)

qui est bien un vecteur longitudinal.

Pour poursuivre le calcul de la fonction d’onde (4.14), il faut maintenant choisir une
représentation pour les matrices de Dirac (la représentation chirale est bien adaptée ici) et
résoudre I'équation de Dirac dans cette représentation pour obtenir les spineurs. Tous calculs
faits, on obtient

58\ gemeféa,@ + FD\2 +2 2 +/pt 4y 2\ 1

e (ks P) = =22 L2 ((PYk—kYP)’+ PP?m} + kT (Pt —k x

Yaa” (k5 P) 2(%)BP+(( ) ;R )Q%)
2(PTk—k"P) &1 (k105094 — (PT—kM)5s.60—) + V2myPt20,, 00 siA=1

2k (P — kM) Q0504+ 05405 ) si A= L .(4.18)
2(PTk—kTP) - &2 (kT 05405 — (PT—k")0s_054) + V2my P26, 6y siA=2

Pour obtenir la fonction d’onde en espace mixte (voir au Chapitre 1), nous effectuons la
transformée de Fourier des impulsions transverses. De maniére similaire & (2.3), nous extrayons

un facteur d,5/v/N. de la fonction d’onde :

6&07 / ; ss’
ﬁws A(kT,r; P) = / ke TS A (K P) (4.19)
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On obtient alors

/ /| N, )
¢ss ’)\(k+,I‘;P) = Gemey = fC)Jr ezzP.r «

( ies Ky (effr]) ==t = L (204 634 —(1=2)65109_) + V2m Ko(e|r))0sr 0y siA=1

22(1—-2)QKo(ef|r|) (05054 405465 —) siA=L (4.20)

€2 .
™ (2054 05— —(1—2)85_ 01 ) + V2m Koes|r|)0s_ 0y~ si A =2
ol nous avons introduit les variables z et €; données par

kt
2= 57 ef:\/m?c—l—z(l—z)Q2 . (4.21)

, r
2iep K (eglr])

4.2.2 Collision du photon virtuel sur le proton cible

Dans les calculs de sections efficaces du Chapitre 2, nous avions gardé les indices de spins
implicites, ce qui explique qu’ils n’apparaissent pas sur les fonctions ¢ dans nos formules
finales. Pour rétablir ces indices, il suffit d’effectuer la substitution suivante :

¢*(k* (kT r) = > ¢ Ak, v P)g Ak xs P) (4.22)
fss!

Nous définissons donc la fonction
2 Zqﬁ SS Mokt r; P)SS A \I/f(z r,r'). (4.23)

et pour faire apparaitre les polarisations longitudinales et transverses, nous donnons les for-
mules finales pour \1151 = (\I/{ + \I/%c)/2 et \I/£

_/aemch 2 21’-1‘, /
" 92 f<(z +(1- HWWKI(Gf\TDKl(ﬁf’rD

+miKo(esle) Ko(eg ) (4.24)

\:[/,]Ii(z7 r, I'/) _ eizP.(r

r— r/) CkemN
212

U (z,1,1) = e ©e34Q%22 (1 — 2)*Ko(es|r)) Koles ') - (4.25)

Section efficace totale

La fonction qui intervient dans la section efficace totale (voir I’équation (2.23)) est dénotée
W, et est définie par

z, |r|) Z\IJ Z,r,r) . (4.26)

La section efficace totale dans la collision du photon virtuel de polarisation A\ avec le proton
cible s’écrit alors

oz, Q%) = 2/dzd2r Wy (z, |r|)/d2b Ty7(r,b;Y) . (4.27)

En sommant sur les polarisations du photon, on obtient la section efficace mesurée (4.5).
La dépendance en Q2 vient des fonctions Ur et WUy et la dépendance en = (ou Y) vient de
I'amplitude de dipole Tgq; cette factorisation est souvent appelée factorisation des dipoles
[61, 62].
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Section efficace diffractive pour 5 <1

Dans le cas de la section efficace diffractive calculée au Chapitre 2 (voir I'équation (2.43)),
c’est la fonction \I/]; qui intervient :

A
oy [ ExEXPYEY g i) i —P).(y )
d2qd?q'dz 27 27w 27 27
S w(z,x—y,x'—y) (Twy) A (Do) A (4.28)
s

avec maintenant z = ¢*/PT. Signalons que nous avons ajouté le facteur e P-'=¥) qui n’était
pas présent dans (2.43), car nous avions choisi P = 0. Cette section efficace décrit un état final
diffractif X qui contient un quark d’impulsion ¢ (avec ¢*=2zP7) et un antiquark d’impulsion
q (avec ¢ = (1—2)P"). En notant k = (1—2)q—2q/, on obtient la masse invariante du
systéme quark-antiquark : M% = (n2+m?) /(2(1=2)) qui est différente pour chaque saveur f.
En introduisant aussi A=q+q'—P, le transfert d’impulsion ¢ est simplement t=—AZ2.

Il est possible de faire le lien avec la section efficace mesurée (4.11), en effectuant les
changements de variable suivants : r=x—y, b=z2x+(1-2)y, r'=x'—y/, et b’ =2x'+(1-2)y’.
Nous obtenons alors une section efficace différentielle par rapport & k, A et z. En remplagant
la variable A par t, et pour chaque saveur f la variable k par M)% puis par (3, nous obtenons
finalement

doy; Q? d’r d’r . /

if f 2 4 _ i(kp+2P).(r' =) g f /
QRt=0)=-5 1 s v

dpadt (8,29,Q%t=0) 432 7 /dzz( 2 o 21 © Az

/ d®b d®b' Tyg(r',b'; An) Tya(r, b; An)(4.29)

pour la section efficace diffractive dans la collision du photon virtuel de polarisation A avec

le proton cible. Elle dépend de k5 = |k¢| qui vaut xy = \/Q2z(1—z)(1—ﬁ)/ﬁ— m?c En
sommant sur les polarisations du photon, on obtient la section efficace mesurée (4.11). La
dépendance en Q? vient des fonctions \Ilé et \Ilé, la dépendance en xp (ou An) vient des
amplitudes de dipodle Tjg, et la dépendance en (3 vient des transformées de Fourier sur les
tailles des dipoles.

Section efficace diffractive pour § < 1

Comme expliqué au Chapitre 2, pour calculer la section diffractive avec une valeur de
g fixée, il faut utiliser le repére dans lequel la rapidité du photon est In(1/3). La formule
précédente a été établie dans le repére ou le photon est nu et est donc valable seulement pour
8 < 1. Nous n’avons pas calculé la section efficace diffractive dans le repére ou le photon est
habillé d’un gluon mou, et pour laquelle I’état diffractif de masse Mx contient un gluon en
plus du quark et de I'antiquark. Rappelons que cette contribution n’est pas supprimée si le
gluon est mou car le facteur a;s est compensé par un facteur In(1/3).

I1 est possible d’obtenir la composante quark-antiquark-gluon de la section efficace intégrée
sur ¢ & partir de la section efficace (2.67) pour la production diffractive de gluon d’impulsion
q. En effet, comme le gluon émis est tel que ¢t < PT, la masse diffractive Mx est simplement
reliée & g7 : M% ~ PTq?/q". On a alors

de*pﬁ(X:qqg)p

. do?.
di di

= p)— = > (4.30)
A=T,L q
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ol do’é‘i if /dq™t est la section efficace pour la production diffractive de gluon, intégrée par
rapport & t, dans la collision du photon virtuel de polarisation A avec le proton cible. Cette
section efficace peut étre obtenue (voir aussi [63, 64]) en intégrant la formule (2.67) sur g2 (ce
qui revient & intégrér sur t). On obtient

do™ N2 d?x d? )2
+0diff Qe [ CXOY _ /d2 (x—y)
1 dg* Cr / “or o Az = yl) z (x—2z)%(z—y)?

(B + Ty sy~ Ty — BeaTiy)s,) - (431)

Cette expression a été obtenue de plusieurs maniéres [65, 66, 67, 68| dans différents contextes.

Pour obtenir la section efficace pour des valeurs de 8 < 1, la contribution donnée par
(4.30) et (4.31) doit étre ajoutée a la contribution (4.29) calculée précédemment. Bien sir,
ceci reste incomplet pour des valeurs de 3 trop petites : en diminuant 3, des états finals avec
plus de gluons mous finiront par contribuer. Une formulation contenant ces contributions
[XIX] existe dans la limite de grand N.. Les données disponibles montrent cependant que
les contributions quark-antiquark et quark-antiquark-gluon sont suffisantes pour décrire les
valeurs de [ accessibles expérimentalement (voir par exemple [69]).

4.3 Des lois d’échelle prédites par la QCD a haute énergie

Nous avons exprimé les sections efficaces totales (4.27) et diffractives (4.29) en fonction
de T}, 'amplitude de diffusion d’un dipole sur le proton. L’évolution de cette amplitude avec
la rapidité est donnée, dans 'approximation des logarithmes dominants, par les équations
B-JIMWLK présentées au Chapitre 2. Ces équations permettent donc en principe de prédire
I'évolution des sections efficaces (4.27) et (4.29) vers les petites valeurs de x. Dans cette
section nous allons nous concentrer sur les prédictions de ’équation BK, étudiée au chapitre
précédent. Méme si I’équation BK est seulement une approximation, son étude nous a appris
beaucoup sur ’évolution du régime dilué T35 <1 vers le régime de saturation T,5=1.

Considérons le cas des solutions homogénes, dont la prédiction la plus importante est
probablement la loi d’échelle suivante : aux grandes valeurs de Y, au lieu d’étre fonction d’a
priori deux variables r et Y, Tyq(r,b~0;Y") est fonction de la seule variable r?Q%(Y), et ceci
jusqu’a des tailles de dipoles beaucoup plus petites que l'inverse de I’échelle de saturation
Qs(x). On peut ainsi écrire

Tyq(r,b;Y) = S(b) T(r*Q3(Y)) (4.32)
ot nous avons introduit un profil en parameétre d’impact S(b). Typiquement, S(b) — e P*/Ry

avec R, le rayon transverse du proton. En effectuant 'intégration sur le parametre d’impact
b, cela contribue seulement & la normalisation par la constante

/ d’b S(b) =R =5, (4.33)
qui caractérise l'aire transverse du proton.

Si r2Q? > 1 alors T =1, et la loi (4.32) devient évidente. Cependant, ce n’est pas une
prédiction triviale pour r?Q? < 1, un régime ot 'amplitude T est toujours beaucoup plus
petite que 1 [70, 71]. Bien str la région de validité est limitée : pour des tailles de dipdles
vraiment trés petites, la loi d’échelle devient fausse, comme nous ’avons indiqué au Chapitre 3.
Dans cette section, nous considérons que 'amplitude de dipdle vérifie la loi (4.32) de maniére
exacte, et donnons les conséquences pour les sections efficaces totales (4.5) et diffractives
(4.11) en diffusion profondément inélastique.
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FIG. 4.4 — La section efficace totale 07,7~ en fonction de 7 = Q2/Q2(x) pour z<0.01. Les
données sont les plus récentes fournies par les collaborations H1, ZEUS, E665 et NMC. Seules
les erreurs statistiques sont montrées.

4.3.1 Pour la section efficace totale

Etudions d’abord les conséquences pour la section efficace totale. En négligeant les masses
des quarks devant Q?, on peut réécrire la section efficace totale de la maniére suivante :

o) 1
Jtvo*tpﬂX(x’ Q%) = 2Spozem]\fc Z e?/o Fdf/o dz {fT(z)KIQ(\/z(l—z)F)
f

™

2 X
+fL(z)Kg(\/z(1—z)F)} T(CQQ(Z)) F2> (4.34)

oil nous avons introduit les fonctions fr(z) = (22 + (1—2)%)z(1—2) et fr(z)=42%(1—2)? et
redéfini la variable de taille |r| par la variable sans dimension 7= Q|r|. Nous obtenons alors
la loi d’échelle suivante pour la section efficace totale a petit z :

ol 7N (2, Q%) = o N (1) T =Q%Q%(x) . (4.35)

Paramétrons I’échelle de saturation Q4(z) par

“A/2
Qs<x>=@o(;) . Qo=1Gev, (4.36)

ce qui correspond au comportement dominant (3.29). L’incertitude sur ’échelle Qg est conte-
nue dans le paramétre zy dans (4.36), tandis que A joue le role de av,.

La loi d’échelle (4.35) est vérifiée par les données expérimentales [9] avec les paramétres
A=0.288 et £9=3.04 10~%. Ces valeurs avaient été précédemment obtenues par Golec-Biernat
et Wiisthoff qui avaient introduit un modéle [72] pour T satisfaisant la loi d’échelle (4.32).

.
. . \ \ P p X .
Ils ont ajusté leurs paramétres avec succés pour décrire les données de o F~ . Pour illustrer
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FI1G. 4.5 — L’amplitude de dipole en espace d’impulsion U(k,Y") en fonction de k pour diffé-
rentes valeurs de la rapidité : Y = 4,5,...,12. Les courbes en trait plein sont obtenues a partir
de la paramétrisation MRST pour a;’;tp ~X et les courbes en pointillés sont la paramétrisation
générique (3.70) pour les solutions en ondes progressives de QCD. Les paramétres sont ajustés

aux valeurs Ap=17.1, Ay =—15.8, A5 =0, et v=1.76.

la loi d’échelle, la figure 4.4 est une version actualisée [XXI| de la figure originale de [9]
qui montre la section efficace O'Z;p % en fonction de 7 avec les derniéres données [73] des
différentes expériences qui mesurent des valeurs de z < 0.01 : les collaborations H1, ZEUS,
E665 and NMC. Excepté pour un point de E665, les données apparaissent sur une ligne. Cela
est méme vrai pour les petites valeurs de @2, pour lesquelles on aurait pu s’attendre a des
violations de la loi (4.35) dues a la masse du quark charmé [74]. On voit sur la figure que ces
violations ne sont pas importantes.

La valeur du paramétre \ est trop petite pour étre compatible avec la prédiction v, = 4.88
(voir Chapitre 3). Par contre, elle est compatible avec la valeur obtenue en prenant en compte
des effets diis a des logarithmes sous dominants, cela a été montré par Triantafyllopoulos [75].
Le fait que les données expérimentales pour J;*tp X vérifient la loi d’échelle (4.35) représente
un succes en faveur de la QCD a haute énergie et du régime de saturation de QCD.

Lien avec les ondes progressives de QCD

.
: o . - X
Il existe cependant de nombreuses descriptions des données expérimentales pour o} /™

qui ne sont pas caractérisées explicitement par la loi d’échelle (4.35). En fait, comme ces
descriptions reproduisent correctement les données montrées Figure 4.4, elles possédent cette
loi d’échelle de maniére effective dans le domaine cinématique du collisionneur HERA, et
pour x < 0.01. Pour illustrer cela, nous allons considérer une de ces descriptions classiques :
la paramétrisation de Martin, Roberts, Stirling et Thorne, appelée paramétrisation MRST.
Elle est fondée sur les prédictions des équation DGLAP, qui sont différentes de celles que nous
avons considérées.

Il est possible d’extraire, & partir de la paramétrisation MRST, une amplitude de dipdle
effective en inversant la formule (4.27), comme expliqué dans larticle [XIV]. En fait il est plus
simple d’extraire une amplitude effective en espace des impulsions, pour

d’r ikr -
/27rr2 ek /d2b Tyi(r,b;Y) =S, U(|k|,Y) (4.37)
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avec la fonction U définie au Chapitre 3 (voir (3.33)). Sur la figure 4.5 nous comparons la
fonction Sp(j(k,Y) extraite de la paramétrisation MRST (en traits pleins) avec la paramé-
trisation générique (3.70) pour les solutions en ondes progressives de QCD (en traits tiretés),
obtenue au Chapitre 3 & partir de I’équation (3.61).

Les différentes lignes correspondent & différentes valeurs de la rapidité : Y =4,5,...,12.
Le domaine cinématique de la paramétrisation MRST ne permet pas d’extraire I’amplitude
U pour des valeurs de k < 1 GeV. Rappelons que la paramétrisation (3.70) n’est pas valable
aux petites valeurs de Y et aux grandes valeurs de k pour lesquelles des violations de la
loi T(k,Y) = T(k/Qs) sont attendues. Dans le domaine de recouvrement entre les deux
paramétrisations, T (k,Y) = T(k/Qs) implique la loi d’échelle (4.35) pour la section efficace
crzotp —X contrairement a la paramétrisation MRST, cependant il est clair qu’elle est compatible
avec un motif suggestif d’ondes progressives. A des rapidités trop faibles ou a des valeurs de
k trop grandes, des déviations sont visibles mais la paramétrisation MRST posséde bien la loi
d’échelle (4.35) de manieére effective, dans le domaine cinématique x < 0.01, correspondant a
Y > 4.6.

4.3.2 Pour la section efficace diffractive

Etudions maintenant les conséquences de la loi d’échelle (4.32) pour la section efficace dif-
fractive (4.29). En négligeant les masses des quarks devant Q? et en redéfinissant les variables
de taille comme précédemment, la section efficace diffractive se réécrit

— (8,02, Q%) = %gojémzmzef/ dez(l=2) 3, He) (8, QUan)/Q7)
A=L,T

(4.38)
Les intégrales I7 et I, sont données par

o) 2
(5 Q/Q) = [ rdrt oI (VA=A /0T (5 ) (439
0
ou I dépend des fonctions de Bessel K7 et Jy et I, de Ky et Jy. Nous en déduisons donc
une autre prédiction du régime de saturation de QCD : une loi d’échelle [XXI| pour la section
efficace diffractive & 3 fixé et petit xp :

Y*p—Xp Y*p—Xp

do’) do’,
diw (8,78, Q%) = d’jg Bira) s Ta=Q%/Q(wp) . (4.40)
Les expressions (4.30) et (4.31) complétent la formulation de la section efficace diffractive
(4.29) pour des valeurs de (3 petites. Avec 'approximation (TxzT5y)y = (Txz)y (Tzy), de
Iéquation BK, la prédiction de la loi d’échelle (4.40) reste valable. Signalons qu’il existe
une autre approche pour inclure la contribution du singlet de couleur quark-antiquark-gluon
responsable de la contribution (4.31). Dans cette approche, la cinématique de I’état final n’est
pas traitée de la méme maniére [76] et I'interaction de la composante quark-antiquark-gluon
est décrite par un dipole de gluon effectif. La prédiction (4.40) reste cependant valable.
Sur la figure 4.6, nous présentons les données [77] des collaborations H1 et ZEUS pour
I5; dag;?FXp/dﬁ en fonction de 74 = Q?/Q?%(xp) pour six valeurs de 3 fixées : 0.04, 0.1, 0.2,
0.4, 0.65 et 0.90. Pour chacune d’entre elles, nous incluons tout les points de données pour
des valeurs de Q? dans le domaine [5,90] GeV? et pour zp<0.01. Nous avons utilisé Péchelle
de saturation (4.36) avec les paramétres inchangés. Il est clair que les données de HERA sont
compatibles avec la loi prédite par la formule (4.40), car pour chaque valeur de 3, les différents
points apparaissent sur une ligne. Cela représente un argument de plus en faveur du régime
de saturation.



4.3 Des lois d’échelle prédites par la QCD a haute énergie 83

g 8=0.04 for Q% in (5-90) GeV? [ 8=0.1for Q*in (5-90) GeV?
2 L |
g g °
o 5 E
S | %ﬂcb N ®
e
° r 85 8
[Sa8 -1
© = O Hldaa(LRe) E Sty
[ O ZEUSdaa(Mx)*085 F 3
b & ZEUSdaa(LPS)*1.23
10'2 L L I L I I
[ p=0.2 for Q*in (5—-90) GeV* [ $=0.4for Q*in (5-90) GeV*
1 ol
3 = 3 %
i % i )
1 o n.ﬁ:

10 -

L L L L L L
[ §=0.65for @in (5-90) GeV* | =0.90 for @ in (5—90) GeV?

¥
i i

10 I I I I I

1 10 10° Tt 10 10° T
d d

FIG. 4.6 — La section efficace diffractive /3 da(}; ]?f_’Xp /df3 fournie par les collaborations H1 et

ZEUS, en fonction de 74 = Q2/Q?%(xp) pour des valeurs de Q? dans le domaine [5;90] GeV? et
pour xp <0.01. Six valeurs de 3 sont considérées. Seules les erreurs statistiques sont montrées.

Insistons sur le fait que les paramétres utilisés pour ’échelle de saturation )5 sont ceux
obtenus dans [72], et que nous n’avons pas essayé de les ajuster pour obtenir de meilleurs
résultats. Différents modéles inspirés par la QCD & haute énergie peuvent étre ajustés pour
décrire les données. Les paramétres obtenus avec un modeéle qui posséde la loi d’échelle (4.32)
de maniére exacte différent |72] de ceux obtenus avec des modéles qui incluent des violations
de cette loi [78, 79, 80]. Les parameétres sont aussi sensibles aux types de violations incluses.
Ceci montre que des valeurs précises de ces paramétres n’auraient pas de sens. Dans tous les
cas, les valeurs sont toujours compatibles avec celles utilisées ici.

Nous n’avons étudié que des sections efficaces intégrées par rapport au transfert d’im-
pulsion du proton ¢. En diffusion profondément inélastique, plusieurs observables diffractives
peuvent étre mesurées de maniére différentielle par rapport a t. En termes d’amplitudes de
dipdles, la dépendance en t est reliée a la dépendance en paramétre d’impact par transformée
de Fourier. Nous 'avons montré explicitement pour la section efficace diffractive, c¢’est aussi
le cas pour d’autres observables comme la production diffractive de mésons vecteurs [81, 82].
De telles observables n’ont pas encore été étudiées, cependant elles représentent des opportu-
nités pour rechercher une loi d’échelle & transfert d’impulsion non nul. Cette prédiction a été
discutée au Chapitre 3. Pour pouvoir la tester, il faudrait pouvoir faire des mesures sur un
large domaine cinématique en x et Q2 (c’est-a-dire un large domaine pour 7), pour différentes
valeurs de t fixées. Cela représente un défi expérimental, mais cela nous permettrait certaine-
ment de mieux comprendre la dépendance en parametre d'impact b de 7,5 et de comprendre
comment elle intervient dans I’évolution vers les hautes énergies.



84 Phénoménologie appliquée a la diffusion profondément inélastique

4.4 La production diffractive de gluon

Cette derniére section reprend les résultats de la publication |X] et de 'article de conférence
[XIII]. Nous y étudions une observable particuliére : la production diffractive de gluons en
diffusion profondément inélastique, dans un régime ou le gap de rapidité An est suffisamment
grand. La section efficace correspondante s’obtient a partir du résultat (2.67) du Chapitre 2,
en remplagant la fonction d’onde de I'onium par la fonction d’onde du photon (4.26). Nous
obtenons

do asN? d*x d? N
+ = /dz271'273, \I])\(Za ‘X - YDAAW(Xv Yy, q) ' AAU(X? Y, q) (441)

q 2 + -
d?qdq Cr LT

ou ¢ et q désignent les impulsions longitudinales et transverses du gluon mesuré. Rappelons
que ce résultat décrit des états finals pour lesquels le gluon est mou (¢7 < PT) et est la
particule bordant le gap de rapidité. Le quark et 'antiquark provenant de la dissociation de
I'onium ont des rapidités supérieures a celle du gluon. Le vecteur transverse A, qui apparait
dans la formule (4.41) est donné par la formule (2.68) du Chapitre 2.

4.4.1 Quelques estimations analytiques générales

Le vecteur transverse Aa, peut s’écrire

d?z

AA’](vaaq) = P e—iq.z |:<X—Z y—z

x—2)2  (y—2z)?

2 ] (5(2)(X,Z,y; An) — S(x,y; An)) (4.42)

ot nous avons introduit les quantités S et S,

S(x,y; An) =1 — (Txy) o (4.43)

n
est I’élément de matrice de diffusion dans la collision d’un dipéle sur le proton cible évolué
jusqu’a la rapidité An. Rappelons que x et y dénotent les positions transverses du quark et
de l'antiquark formant le dipdle.

5(2) (X, z,y; Aﬁ) =1- <TXZ>A

n_ <sz>A77 + <TXZTZY>A (4.44)

n
est I’élément de matrice de diffusion dans la collision d’un systéme de deux dipoles ((xz) et
(zy)) sur le proton cible évolué jusqu’a la rapidité An. Il est possible d’obtenir la dépendance
en q de la section efficace (4.41).

La limite |q| — 0

Dans la limite |q| — 0, Pamplitude Aa,, est une constante. Les divergences infrarouges
qui apparaissent a priori dans la contribution virtuelle s’annulent entre les termes contenant
x et y. La contribution dominante & l'intégrale sur z est déterminée par le comportement &
grand z de S (x,z,y; An). En particulier, la valeur de z & partir de laquelle S (x, z, y; An)
commence & décroitre vers zéro coupe l'intégrale et détermine la valeur de Ap,. La valeur
constante de la section efficace (4.41) a petit q est donc déterminée par 1’échelle d’unitarisation
de S@. Pour des valeurs de A suffisamment grandes, cette échelle d’unitarisation est I’échelle
de saturation Qs(An).
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La limite |q] — o

Dans la limite |g| — oo, lamplitude A, décroit comme 1/q>. En effet, en changeant de
variable on peut écrire

e

—iq.x d?z . 2 z
Anyxyia) =5 [ 58 el R (5O a/la] +x, v An) - S(x,yi An)

al J 2w 2|
—(x < y). (4.45)

En prenant ensuite la limite |q| — o0, et en utilisant

S (x,x,y; An) = 5@ (x,y,y; An) = S(x,y; An) (4.46)
on voit que le terme en 1/|q| s’annule. La contribution dominante se comporte alors comme
1/9%:

1 . .
Any(%,y,9) = p <e—“rx v.,5?| —emaY v,502) ) : (4.47)
zZ=x z=y

En mettant au carré et en intégrant sur b = (x +y)/2, on obtient

L do

T Padgt

> ;/ dzdr ¥ (=, |r|) (F(Jr]) + G(Jr]) cos(q - ) (4.48)

avec les fonctions F' et G dépendant de la forme précise de S?). En intégrant par rapport a
I’angle polaire de r, la partie en G est supprimée et la section efficace décroit donc comme
1/q*.

Ces caractéristiques sont générales, indépendantes de la forme précise des éléments de
matrice S et S, Si l'on choisit d’étudier le comportement de observable

do
d2qdq™

qQ’q" (4.49)
en fonction de I'impulsion transverse du gluon q, celle ci va augmenter comme q? pour les
petites valeurs de q et décroitre comme 1/q? pour les grandes valeurs de q. Il y aura un
maximum pour une valeur de q que nous noterons ¢y. Cette valeur indiquera l'inverse de la
taille typique pour laquelle les éléments de matrice de diffusion approchent zéro. En d’autres
termes, le maximum gg reflétera 1’échelle d’unitarisation. Pour des valeurs de An suffisamment
grandes, la QCD & haute énergie prédit que cette échelle est dans le domaine perturbatif :
qo =~ Qs(An), l'échelle de saturation.

4.4.2 Prédictions du modéle GBW

La forme exacte des éléments de matrice S et S n’est pas connue, et nous allons consi-
dérer un modeéle pour pouvoir estimer la section efficace (4.41) pour des valeurs quelconques
de q. Cela nous permettra aussi de tester nos prédictions analytiques sur les comportements
aux limites |q| — 0 et |q| — oo. Pour cela considérons le modéle suivant inspiré de la para-
métrisation [72] de Golec-Biernat et Wiisthoff :

1-S(x,y;An7) = S(b) (1 - e—QE(An)r2/4)

1Sy Ay = S(b)(1 - e BANC? i@ ) | (150)

ol comme précédemment r=x—y, b = (x +y)/2, et R, est le rayon transverse du proton.
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FIG. 4.7 — La figure de gauche montre la section efficace 0°°?¢? (4.53) en fonction de ¢,
I'impulsion transverse du gluon. Les courbes sont obtenues avec le modeéle (4.50) mais on
observe bien les caractéristiques universelles : la section efficace est constante aux petites
valeurs de ¢ (et sa valeur est determinée par Q) et décroit comme 1/ ¢* aux grandes valeurs
de ¢. La figure de droite montre la méme section efficace multipliée par ¢°. Le maximum est
obtenu pour la valeur gg qui est proche de Q.

Formule analytique pour la section efficace

Dans notre modeéle les paramétrisations pour S et S sont Gaussiennes, et il est possible
de calculer analytiquement [X]| 'amplitude Aa,,. La dérivation est donnée en appendice, on
obtient pour le produit A, - A*An :

* r? _r202
AA??(Xa Y, q) ’ AAn(Xa Yy, CI) = 52(b)47qz e Q3/2 X
’2(cos(q r/2) — e—q2/(2Q§)+Q§r2/8) q + sin(q - /2)Q2 r
(q?/Q2% — Q%r2/4)2 4+ (q - 1)2

(4.51)

ou la dépendance de Qs par rapport & An est gardée implicite. L’intégration sur b donne
simplement un facteur S,/2 et le résultat est une fonction de Qs et des vecteurs transverses
q et r. En notant r = |r|, ¢ = |q| et 6 angle entre les vecteurs r et g, on obtient finalement :

2qt do :astSp/ rdr df dz e Q32 Z Uy (2. 7)
Padgt ~ 8n2Cr ) (¢/(rQ2) —rQ2/(40))? +cos?6 £ 2

X { [cos (% cos 0) — e*qz‘/@QgHQgﬂ/S] Ci Z sin (q—; cos 9)

+r22§ cos f sin (qg cos 9) [cos (qg cos 9) - e_qg/(QQzHQgﬁ/g} } - (452)

Les intégrations restantes sur 7, 8 et z peuvent se faire facilement numériquement.
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F1G. 4.8 — L’observable ¢?c5@¢? en fonction de ¢ /Qs. Le maximum est obtenu pour la valeur
q0/Qs indépendante de Q2 et de Q4 sur des larges gammes cinématiques. On observe gy ~

1.4 Q,.

Phénoménologie

Analysons la dépendance de la section efficace (4.52) en fonction de g. Pour cela définissons
la section efficace suivante :

scale do 1 do
o™ (q, Q% Qs) =

+ = M 4.53
d’qdgt 2045, X &qdMy ’ (4.53)

Sy 1
qui permet d’écarter les incertitudes dues aux valeurs de o et \S),. La prise en compte de ces
facteurs constants, qui sera nécessaire pour décrire la section efficace (4.52), ne changerait
pas les remarques qui suivent. En plus de I'impulsion transverse du gluon ¢, o%°*¢? est une
fonction de deux autres variables : la virtualité du photon Q2 et I'échelle de saturation Q.

Sur la Figure 4.7 nous avons représenté o%°@ed et g2g5¢@¢d en fonction de g, pour Q% =
1 GeV? et pour quatre valeurs de I’échelle de saturation Qs = 0.5,1,2,3 GeV. Comme discuté
précédemment, indépendamment de la forme de S et S2), g5¢aled egt constante pour des petites
valeurs de ¢ et décroit comme 1/¢* pour des grandes valeurs de q. Nous observons que cela
est bien le cas sur la figure de gauche. Avec notre modeéle de saturation, la valeur de oscated
aux petites impulsions est reliée & 1’échelle de saturation, comme prévu. Ceci est encore mieux
illustré sur la figure de droite, qui représente ¢2o°°¢? en fonction de ¢. La transition entre le
comportement en ¢ aux petites valeurs de g et le comportement en 1/¢? aux grandes valeurs
de ¢ est trés claire. Elle est caractérisée par un maximum piqué pour une valeur gg qui est
bien de 'ordre de Q.

Pour quantifier la dépendance de g en fonction de Q,, représentons g2o°°€? en fonction
de q/Qs. Ceci est fait Figure 4.8 pour les quatre valeurs de Q)5 données figure 4.7 et pour deux
valeurs extrémes de la virtualité du photon : Q% = 0.1 et 100 GeV?2. 1l est clair que la valeur
de qo/Qs est indépendante de Qs et de Q2 sur le large domaine cinématique considéré. Sur la
figure, nous pouvons lire qp/Qs ~ 1.4. Méme si cette valeur dépend probablement du modéle
utilisé, la production diffractive de gluon en diffusion profondément inélastique semble étre
une observable idéale pour pouvoir déterminer ’échelle de saturation Qs et sa dépendance
avec I’énergie.
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F1G. 4.9 — La section efficace pour la production diffractive de gluons en diffusion profondé-
ment inélastique en fonction de g, 'impulsion transverse du gluon. Les courbes sont obtenues
avec le modeéle (4.50) et les prédictions sont faites dans le domaine cinématique du collision-
neur HERA. Les courbes en traits pleins sont des prédictions ot le quark charmé est inclus.
Les courbes en pointillés sont obtenues sans la contribution du quark charmé.

Prédictions pour le collisionneur HERA

Il serait intéressant de pouvoir exploiter cette observation dans les collisions électron-
proton. Expérimentalement, le gluon est détecté comme un jet de particule. En se plagant
dans une situation de grande masse diffractive (5 < 1), le jet qui provient du gluon est celui
qui borde le gap de rapidité. Les jets de particules qui viennent du quark ou de 'antiquark
sont détectés a plus grande rapidité et la configuration de I’état final est X + jet + gap + p.
Idéalement, il faudrait déterminer la section efficace correspondante en fonction de I'impulsion
transverse du jet, et pour différentes valeurs de Ar. Pour chacune d’entre elles, la position
du maximum de la section efficace devrait donner Qs(An), indépendamment de Q2. Cette
caractéristique offre la possibilité d’utiliser un grand domaine cinématique en Q? pour effectuer
les mesures, en gardant tout de méme < 1.

Il existe cependant une limitation expérimentale sur les impulsions transverses qu’il est
possible de mesurer. Dans le cas du collisionneur HERA, la limite inférieure est environ 1 GeV/,
ce qui correspond & une échelle de saturation relativement grande pour les valeurs de An
accessibles. Il est donc peu probable que le maximum gy de la section efficace (4.41) soit
visible & HERA. Observer le maximum montré sur la Figure 4.8 semble donc étre un défi
expérimental majeur.
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Cette situation est illustrée figure 4.9, ot nous avons représenté les prédictions du modéle
(4.50) pour la section efficace (4.41). L’échelle de saturation est prise du modéle GBW original
[72] pour lequel nous rappelons que Q2(xp) = (zo/zp) GeV2. Les paramétres sont A = 0.288
et 29 = 3.04x 10~ dans le cas ot seuls les quarks légers sont inclus dans ’analyse. En incluant
aussi le quark charmé, les paramétres obtenus sont A = 0.277 et zg = 4 x 10~°. Pour obtenir
les courbes de la figure 4.9, nous avons aussi utilis¢ les valeurs as =0.15 et 25, = 23.03 mb
(2S5, =29.12 mb si le quark charmé est inclus) obtenues dans |72].

Les valeurs de la virtualité du photon Q?, de I’énergie W et de la masse diffractive My
indiquées Figure 4.9 sont extraites d’une publication récente [77] de la collaboration ZEUS.
Les prédictions montrent bien que le maximum montré figure 4.8 ne devrait pas étre accessible
a HERA, indiquant que les données devraient se trouver du c6té droit de la bosse. Par contre,
les prédictions montrent aussi qu’il n’est pas nécessaire de voir toute la bosse pour ressentir
I'influence de I’échelle de saturation. En particulier, il y a une grande différence dans la
montée vers les petites valeurs de g entre le graphe correspondant & la plus grande valeur de
xp (Mx =40 GeV et W =100 GeV) et le graphe correspondant a la plus petite valeur de zp
(Mx =5 GeV et W =245 GeV).

La confirmation d’un tel comportement serait un signe que le régime de saturation joue
un réle aux énergies accessibles et pourrait permettre une autre détermination de 1’échelle
de saturation. Si ce comportement n’est pas observé, cela peut refléter que notre modéle est
incomplet, ou bien que les énergies du collisionneur HERA ne sont pas assez importantes
pour que la saturation ait un réle important. Entre autres, 'unitarisation serait de nature
non-perturbative [83|. Dans ce cas, le maximum de l'observable (4.49) (montré par exemple
sur le graphe de droite de la figure 4.7) serait indépendant de An, et sur la figure 4.9, les 12
graphes seraient identiques.

4.A Dérivation de I'amplitude Ay, (x,y,q) dans le cadre du modéle GBW

Dans cet appendice, nous calculons I'amplitude A, (x,y, q) (voir la formule (4.42)), dans
le cadre du modéle (4.50) pour les éléements de matrice S et S(?). La contribution de S(x, y; An)
est proportionnelle &

d?z

. X—Z y—z . . d’z .z
wa iq.2 _ _ iq.x _ ,—iq.y wa iqz “
o © [(x —-2z)?2  (y—2)? (e c ) o © z?
29 _iqb .
= 2 e “4Pgin(q-r/2) . (4.54)

Rappelons que r=x—y et b = (x+y)/2. Nous pouvons alors écrire (en gardant la dépendance
de Qs par rapport & An implicite) :

. 4 2 .
Apy(x,y,9) = S(b) (6“*"‘1 (q,r) —e"I(q,—r) + q% e "abgin(q - r/2)e” @7/

ol nous avons introduit

Pz
I(q,r) = /2: e_’q'zzz—2 e/ Qe /A (4.56)

En introduisant 8, I’angle entre z et q, et ¢, 'angle entre r et q, nous obtenons :

d o
I(q,r) = e~ @r*/4 yLZ\| @ g / o ¢ilallzlcos(0)—@Q2zlirlcos(0—0)/2 (4 57)
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L’intégration angulaire donne

27
/ ;lj o—ilallz| cos(0) ~Q2z||r| cos(0—-¢) /2 _ Io<|z|\/r2Q§/4 +iq-r Q2 — q2> (4.58)
0 7T

puis avec la différentiation iV g, nous avons

(iq +r QE/Q) e~ Qir?/4

- _ > -Q222/2 ( 204 T 02 _ 2)
I(q,r) = \/r2Q§/4+iq-rQ§—q2/o dz e I z\/r Qi/4+iq-r Q%2 —q?) .
(4.59)
La derniére intégration donne
: 2 —Q32r2/4
I(q r) _ (Zq +r QS/Q) e / (67q2/(2Q§)+I‘2Q§/8+iq1‘/2 . 1) . (460)
T @?-rQi/4—iq-r Q3

En insérant (4.60) dans (4.55), nous obtenons finalement :

) ; 2/9 .
Any(x,y,q) = S(b)e P | — Z;]Qj/tl @ Q? (e_qQ/ (2Q)+r2Q3/8 _ e_zq'rﬂ)
q? —r2Qi/4—iq-r Q?
__ ia-r Q2 /(2R +2QE _ iar/2
P PQi i+ it

2
—l——g sin(q - r/2)] e Q4 (4.61)
q

En calculant ensuite le produit Aa, - A}, on retrouve la formule (4.51).
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Ce Chapitre discute d’applications possibles de nos résultats dans le contexte des collisions
hadron-hadron, il reprend les résultats des articles |I, III, XVII] et des articles de conférence
[II, XII]. Dans des collisions entre deux hadrons, les sondes perturbatives sont des jets de
particules, initiés par ’émission de quarks ou de gluons de grandes impulsions transverses. Ces
derniers jouent un réle similaire au photon virtuel de la diffusion profondément inélastique :
ils nous renseignent sur le contenu des hadrons aux petites distances.

Dans ce chapitre, nous considérons donc que le projectile est un hadron, et nous nous
concentrerons sur la production inclusive de gluons en utilisant nos résultats du Chapitre 2.
Pour cela, nous allons devoir faire le lien entre un hadron, qui est une particule de nature non
perturbative, et un onium, qui est ’objet de nature perturbative que nous avons utilisé pour
faire nos calculs. Ceci demande de faire des approximations, et nous travaillerons dans la limite
collinéaire qui permet d’obtenir le lien entre onium et hadron de maniére consistante. Cela
sera discuté dans une premiére partie et nous serons en mesure d’obtenir la section efficace
de production de jets dans la collision entre un hadron projectile et une cible hadronique
quelconque.

La deuxiéme partie considére I’émission de jets vers 'avant en diffusion profondément
inélastique, un processus ou la cible hadronique est un photon virtuel. Le qualificatif vers
l"avant sera précisé plus loin, il indique que le jet est émis dans la direction de propagation
du projectile. Le photon virtuel, qui peut étre assimilé & un onium, joue le roéle de la cible
(contrairement au chapitre précédent). Dans la limite de haute énergie, ce processus teste les
effets de densité de gluons dans la fonction d’onde d’un onium. Dans ces conditions, les effets
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de haute énergie sont restreints par rapport & un hadron cible (pour la méme énergie) et ce
processus semble idéal [84] pour tester 1'évolution BFKL. Cependant dans la limite de haute
énergie, le régime de saturation sera éventuellement atteint, ce qui sera aussi discuté.

La troisiéme partie discute de la production de jets de Mueller-Navelet dans les collisions
hadron-hadron. Dans ces processus, deux jets vers 'avant sont mesurés, dans les directions de
propagation de chacun des hadrons. La dynamique de QCD impliquée est la méme que pour
I’émission de jets vers I’avant en diffusion profondément inélastique.

5.1 Production inclusive de jets a partir d’un hadron

5.1.1 Production d’un gluon mou a partir d’'un onium

Au Chapitre 2, nous avons calculé la section efficace de production inclusive de gluons
dans la collision d’'un onium sur une cible hadronique quelconque (voir formule (2.60)). En
notant ¢ = (¢*, q) la tri-impulsion du gluon mesuré, la section efficace s’écrit :

o do 4045C'F/d2r’

—iqr’ ~ 2\ 72
d2qdq+ - m2q2 o CEa g(I‘lQQO)Vr/ /de ng(rlabi yq) (5.1)
avec g une fonction définie & partir de la fonction d’onde de onium ¢(k*,r) de la manieére
suivante :

21. 1'2
307Q8) = [ i 5 o (el Din (1 ) (5.2

La fonction g est sans dimension et 'échelle Q est 1’échelle caractéristique de [dk™|p(kT, 1) 2.
Dans le cas d’un onium, cette échelle est perturbative : par exemple au Chapitre 4, dans le
cas du photon virtuel, Q% = Q>

Rappelons que y, =Y —In(P*/q") on Y est la rapidité totale de la collision. Dans notre
dérivation, les particules de ’état final dont la rapidité est comprise entre ¥min €t Ymin+¥q
sont décrites comme des particules qui habillaient la cible. Notre formule est valable dans la
limite ol y, est un intervalle de rapidité suffisamment grand, auquel cas les effets dts a une
grande densité de gluons dans la cible sont importants. Rappelons que Ty, est 'amplitude de
diffusion d’'un dipdle de gluons sur la cible; nous avons en effet montré au Chapitre 2 que
le dipole de gluon gg décrivait de maniére effective une émission de gluon dans la limite de
haute énergie.

Le gluon mesuré est émis avec la rapidité ¥, + ¥4, qui est proche de Y4z, €t on dit alors
que le gluon est émis vers ’avant, le qualificatif vers I’avant faisant référence au projectile : le
jet est émis dans la direction de propagation du projectile. Les particules de rapidité supérieure
a celle du gluon, émises encore plus vers 'avant avec une rapidité comprise entre ¥,q. —
In(P*/q") et Ymaz, sont décrites comme des particules qui habillaient le projectile. Dans notre
calcul, ce sont le quark et ’antiquark provenant de la dissociation de I’onium. Il est possible de
généraliser la formule (5.1) pour inclure plus de particules a des rapidités supérieures a celle
du gluon, en travaillant dans un repére ot le projectile est habillé par plus d’un seul gluon.
Ceci est réalisé dans article [IV], la fonction § correspondante y est explicitement calculée.
Il en résulte une dépendance de g par rapport a g+ /P,

5.1.2 La limite collinéaire

Considérons maintenant que le projectile est un hadron. Dans ce cas, la fonction d’onde
¢(kT,r) correspondante est caractérisée par une échelle Qp ~ Agcp. On peut alors travailler
dans ce que l'on appelle la limite collinéaire : |q|/Qo > 1. La transformée de Fourier dans la
formule (5.1) restreint 'intégration a des tailles |r/| telles que [r'| < 1/|q]. La fonction g(r?Q3)
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varie sur des tailles beaucoup plus grandes, de lordre |r'| ~ 1/Qp > 1/|q|, et peut donc étre
remplacée par §(Q2/q?). On obtient

do 4o CF
+ — S ~r 4+ P+ 2 2
q dquq+ 7r2q2 g(q / 7Q0/q )/

d>r’
27

elar'y?, / d*b T,e(r', b;y,) (5.3)

ou la seule information provenant du projectile vient de la fonction g, factorisée en dehors de
I'intégrale sur r’. Ceci est une manifestation de I'universalité de la limite collinéaire |q|/Qo >
1. Cette limite est justifiée pour tout projectile de nature non perturbative (tel que Qg ~
Agcp) et on voit que la dépendance de la section efficace par rapport a y, est universelle :
elle ne dépend pas de § et du projectile considéré. Comme la fonction g dans (5.3) varie
peu pour Q% /q? < 1, la dépendance par rapport a q de la section efficace provient aussi
principalement de la transformée de Fourier de VE,ng (r',b;yg).
Il est d’usage d’introduire la notation suivante :

20,CF + q+ q+
ety P2/ < 1) =~ g =-.4%) . 4
N 9(¢"/P7,Qp/a” < 1) = 57 9{ 54 (5.4)

La fonction g est appelée densité de gluons dans le projectile, et elle est aussi universelle dans
le sens qu’elle ne dépend que du projectile considéré. Par exemple quelle que soit la cible, c’est
la méme fonction g qui interviendra dans la section efficace. Elle est définie seulement dans le
régime |q|/Qo > 1 et il est d’usage de ne pas indiquer explicitement I’échelle g, méme si g est
sans dimension. L’interprétation du fait que g soit factorisée est simple. Les différents partons
de la fonction d’onde du projectile interagissent de maniére incohérente et il suffit d’ajouter
les différentes contributions pour obtenir la section efficace : g(¢*/PT,q?) est la probabilité
que le projectile contienne un gluon d’impulsion longitudinale g™, et d’impulsion transverse
q. Signalons que ceci n’est pas valable si g™ /P* est trop petit et tel que des effets de densité
sont aussi importants dans le projectile. Il faudrait alors traiter de tels effets collectifs comme
nous l'avons fait pour la cible. Cela dit nous nous sommes explicitement restreints a des cas
ou les effets de densité sont importants seulement pour la cible.

5.1.3 Production d’un jet vers I'avant a partir d’'un hadron

Nous sommes maintenant en mesure d’obtenir la section efficace de production de jets vers
I'avant dans la collision entre un hadron projectile et la cible (pour l'instant non précisée).
Le résultat (5.3) décrit la production de jets initiés par des gluons, il nous reste a lui ajouter
la contribution des jets initiés par des quarks et antiquarks. En fait ces contributions sont
identiques a celle déja calculée, sauf pour la densité de gluons qui est & remplacer par la
densité de quarks ou d’antiquarks. Introduisons

Cr _
fess(xg,@®) = g(ws,a®) + 5 (alzs, @) + (@, a)) (5.5)
C
avec ¢ et ¢ les densités de quark et antiquark dans le projectile. La variable x; = ¢t /P =
e¥a~Y dénote la fraction d’impulsion longitudinale du jet par rapport au projectile et f. rf est
appelée la distribution de partons effective dans le proton. La section efficace de production
de jets vers I'avant est alors

dU 2]\IC d2r/ —iq.r’
2qdry; 7m12f6ff(1‘J,q2)/27T e ' Vf//d2b Tye(r', bsy,) (5.6)

Signalons que nous n’incluons pas les corrections dite d’hadronisation, qui décrivent la tran-
sition du parton émis vers le jet de particules. Ces corrections peuvent modifier la section
efficace mais généralement pas de maniére importante.
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yy = In(z;/x)

(&

FiG. 5.1 — Production d’un jet vers I’avant dans une collision électron-proton. Le jet mesuré
est représenté par une fléche, son impulsion transverse est kp zj est sa fraction d’impulsion
longitudinale par rapport au proton incident. Ay est 'intervalle de rapidité entre le jet et la
particule de plus petite rapidité dans I’état final.

5.2 Production de jets vers I'avant en diffusion profondément inélastique

Nous considérons dans cette section la production de jets vers I’avant en diffusion profon-
dément inélastique. Contrairement au chapitre précédent, le proton joue le role du projectile
et le jet est émis vers 'avant par rapport a la direction de propagation du proton. C’est 1’élec-
tron qui va jouer le role de la cible. Plus précisément, a I’ordre dominant par rapport & ey, il
interagit par 'intermédiaire d’une paire quark-antiquark, cette derniére va donc jouer le role
de la cible. Rappelons le lien entre I’électron et la paire quark-antiquark : 1’électron interagit
par l'intermédiaire d’un photon virtuel, comme représenté Figure 4.1, et la composante do-
minante (pour un photon de virtualité perturbative) dans la décomposition en état de Fock
du photon est une paire quark-antiquark.

La section efficace est obtenue en mesurant ’électron sortant et le jet, en restant inclusif
par rapport aux autres particules. En intégrant sur les angles azimuthaux des impulsions
de I’électron et du jet, on obtient une section efficace quadruplement différentielle que 1’on
exprime en fonction des variables cinématiques x, Q?, z; et kp. Les variables z et Q2 de la
diffusion profondément inélastique ont été définies au chapitre précédent et k7 = |q|>Agep
est 'impulsion transverse du jet. Rappelons que z; est la fraction d’impulsion longitudinale
du jet par rapport au proton. La section efficace de production de jet vers 'avant dans la
collision électron-proton s’écrit :

d(4)o.pe—>JXe o y2 dO.P’Y*—*JX dUPV*—)JX
2 = [(1-v+5 )t -y — |
drdQ?dx jdks.  m2Q 2 dzx ydk7, dx ydk7,

(5.7)

ol daT*_’JX /dx jdk2 est la section efficace de production de jet vers avant dans la collision
photon-proton pour un photon virtuel de polarisation transverse (A = T') ou longitudinale
(A = L). La production de jet vers avant est représentée Figure 5.1, avec les différentes
variables cinématiques indiquées.
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Pour finir, rappelons le lien entre le photon virtuel et la paire quark-antiquark, établi au
chapitre précédent. La formule (4.27) exprime la factorisation de la section efficace totale o7,
dans la collision photon-proton en terme de la section efficace totale o(|r|) = 2 [ d*b T(r,b)
dans la collision d’un dipole ¢q sur le proton. Cette factorisation s’applique aussi pour la
section efficace do)\ —JX /dx Jdk%. Elle peut donc s’exprimer en terme de la section efficace
doPlad)—JX /dx Jdk2 pour la production de jet vers I’avant dans la collision du proton sur un

dipdle qq :
doy” 7 e [ N do?te 7% 5.8

Rappelons que les fonctions d ondes W) decrlvent la transition v* — ¢g, voir la formule (4.26)
du Chapitre 4.

5.2.1 Prédictions de la QCD a haute énergie

La section efficace do?@)=7X /dx sdk2 a été obtenue dans la section précédente. Plus
précisément, la formule (5.6) donne cette section efficace pour une cible quelconque. Nous
allons l'utiliser dans le cas ou la cible est un onium (dénoté par (¢q)). Nous avons montré que
I’émission du jet pouvait étre décrite par un dipéle de gluons effectif :

doPlad)—JX N, oo [ RV i
W(T) = k%feff(fL”J,kT)/O dr Jo(krT) P <r877 a(qq)(gg)(r,r,yj)> (5.9)

avec yy =In(z j/xr). La formule (5.9) est valable dans la limite de haute énergie pour laquelle
intervalle de rapidité y; est trés grand. o(qq)(g9) (7,7, ys) est la section efficace de collision
entre un dipole ¢ de taille r (I’onium cible) et un dipdle gg de taille 7 avec une rapidité totale
Y-

Les formules (5.7)-(5.9) expriment 1’'observable des jets vers 'avant en termes de la section
efficace 0(4q)(49) qui contient la dynamique de QCD a haute énergie : le probléme est analogue
a celui de la diffusion onium-onium (et donc a celui de la collision photon-photon [85, 86, 87,
88, 89]). Dans un régime d’énergie intermédiaire T(qq)(gg9) €St donnée par I'équation BFKL,
puis pour de plus hautes énergies on entrera dans un régime de saturation dii aux effets de
grande densité de gluons dans la fonction d’onde de la cible, autrement dit de 'onium g¢q.
Dans la suite, nous donnons les prédictions du domaine d’énergie BFKL et nous proposons
une paramétrisation pour étudier le régime de saturation.

Le régime de I'évolution BFKL

Dans le régime d’énergie de 1’évolution BFKL, pour lequel nous rappelons que les effets
de densité ne sont pas encore importants, o(,q)(49) €St connue de maniére exacte. En effet,
la solution de I’équation BFKL est connue (voir formule (3.13)), et comme le processus de
diffusion onium-onium est purement perturbatif, nous connaisons aussi la condition initiale
T(4q)(99) (15T, Y = 0). Cette derniére s’obtient en calculant le processus & I'ordre dominant par
rapport a as, nous obtenons (voir par exemple [90]) :

max(r f)} Imas? /%”w &y (r/r)”
min(r, 7) 1o 2im V2(1=7)

(5.10)
Il est ensuite immédiat d’obtenir la dépendance par rapport a la rapidité dans le régime de
I'évolution BFKL (les bornes de l'intégration sur 7 sont les mémes que dans (5.10) et ne sont
plus données explicitement, elles seront dorénavant sous-entendues) :

dy (r/r)*
BFKL o 2o dy (F/T)T sy
Tlaq)(g9) (T T Y) = 2mar /2i7r (1) e (5.11)

T (4q)(g9) (1> T, 0) = 4ra’ min(r? 7 ){1+1
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Rappelons que la fonction x(7) est donnée par I'équation (3.14) ou ¥(7) est la dérivée lo-
garithmique de la fonction I'(y). La section efficace (5.11) croit exponentiellement avec la
rapidité.

En insérant 'équation (5.11) dans (5.9) et (5.8), nous obtenons

do?" 7% 4nN.a? Q*\" 47T() UA(7) 4
_ s £ k 22N FANT Jax(ya 512
drydk2 k2Q? Jess(ws T)/ 2m<k2> (1—y) T(2—) © (512

ol nous avons défini les transformées de Mellin suivantes :
1
= /er (rQQQ)l_V/ dz Uy(z,|r]) . (5.13)
0

Dans ce qui suit nous négligerons les masses des quarks devant Q?, ce qui est justifié car
nous travaillerons toujours avec des grandes valeurs de Q? par la suite (Q% > 5 GeVQ). Les
transformées de Mellin W () sont alors données par

Br() ) _ 20emle 5 2 1 P04 9P -2 ) (142 =)
(e )= 2T Mooy (i ) 619

En insérant la formule (5.12) dans (5.7), on obtient la section efficace pour la production
de jets vers 'avant dans le domaine d’énergie de I’évolution BFKL. On montre facilement
que le résultat est identique & celui obtenu en utilisant ce qu’on appelle la kr—factorisation
[91, 92, 93, 94]. Ce n’est pas surprenant car c’est un formalisme dans lequel Iinteraction
entre le projectile et la cible est restreinte & un échange de deux gluons. Nous avions indiqué
au Chapitre 3 que c’était le cas dans le régime dilué décrit par ’équation BFKL. Le seul
paramétre indéterminé dans la formule (5.12) est & qui apparait dans I’exponentielle.

Le régime de saturation

Contrairement au cas du régime d’énergie BFKL, la section efficace onium-onium a(qq) (99)
est encore inconnue pour de plus hautes énergies, telles qu’on entre dans le régime de sa-
turation ou les effets dis & une grande densité de gluons deviennent importants (pour des
estimations numériques, voir [95, 96]). Pour prendre en compte des effets de saturation, nous
allons proposer une paramétrisation phénoménologique. Nous considérons le modéle suivant,
introduit dans [III] et inspiré des approches |72, 88| :

2 _
sat = _ 2 Teff(rv T’)
(qq)(gg)(r’T7Y) = 47T04500 (1 — eXp <_4Rg(}/) . (5.15)

Le rayon effectif de I'interaction onium-onium re¢z(r, 7) est défini a I’aide de la section efficace
T(4q)(g9) (T, > Y = 0) (voir formule (5.10)) :

6ff(7" 7) = min(r% ) {1+ln m} . (5.16)

Pour le rayon de saturation R, que 'on peut identifier & I'inverse de 1’échelle de saturation,
nous utilisons la paramétrisation suivante :

Ry(Y) = e 2Y=Y0) /0 Qo=1 GeV . (5.17)

Exprimons la section efficace (5.15) sous la forme d’une double transformée de Mellin :

1—7 _9 T
sat T
U(QQ)(QQ)( = dma UO/ 27/71-/ AT <4R2 > <4R§(Y)> g(’Y)T) (518>
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avec la fonction g(v, 7) définie pour Re(7), Re(7), et Re(y — 7) tous compris entre 0 et 1. En
inversant la formule (5.18), on obtient

/ du? / ditu2 422 (1 _ e, u)) 2L(y—1)
1+7—7
{\P(173+7_’77 27—) +\P(173+7_772_2V)}

ot la fonction hypergéométrique confluente de Tricomi W(1, a,b) peut étre exprimée en termes
de fonctions Gamma incomplétes [97]. En insérant (5.18) dans (5.9) et (5.8), nous obtenons

dag'y*ﬂ‘]x 21 Ne.aoyg dy .
= oz e K2) | S (4Q%R2(y,))" ¥
da ydk Q2/<;%Rg(yj)f 712, T)/ 57 (AQ7 R (y7))"¥A(7)

dT 4772T7(7)

4k3 R T

En insérant ensuite la formule (5.19) dans (5.7), nous obtenons notre paramétrisation

pour la section efficace de production de jets vers 'avant dans le régime de saturation. Les
paramétres sont A, Yy et la normalisation .

g(v,7) - (5.19)

5.2.2 Comparaisons avec les données du collisionneur HERA
Détermination des paramétres

Les premiéres données 98] publiées par les collaborations H1 et ZEUS concernaient 1’ob-
servable do/dx. Les parameétres des descriptions BFKL [94] et saturation [III] ont été ajustés
sur ces données avec la restriction x < 1072, Bien que les paramétrisations (5.12) et (5.19)
correspondent a des régimes d’énergie différents, dans les deux cas les résultats sont obtenus
avec des valeurs de x? voisines de 1. Les valeurs des paramétres obtenues sont indiquées dans
la Table I avec les valeurs de x? (par degrés de liberté) correspondantes.

description H parametres ‘ 1/Rs(Y =0) ‘ 2(/d.d.L) ‘

BFKL 4a1n(2)=0.430 — 12 (/13)
sat. forte || A =0.402 and Yy = —0.82 | 1.18 Gev 6.8 (/11)
sat. faible A =0.370 and Yp = 8.23 0.22 Gev 8.3 (/11)

TAB. 5.1 — Résultats de 'ajustement des paramétres pour les descriptions données par les
formules (5.12) (BFKL) et (5.19) (saturation) sur les premiéres données du collisionneur
HERA pour la production de jets vers avant. Pour la paramétrisation (5.19), deux solutions
sont possibles, avec des effets de saturation soit forts, soit faibles.

Dans le cas dénoté BFKL dans la Table I, le seul paramétre est & et la valeur obtenue
est 4aIn(2) = 0.430. Dans le cas du régime de saturation, les deux paramétres importants
sont A et Yy et 'ajustement a donné deux minima pour x? : pour (A = 0.402,Yy = —0.82)
et (A=0.370,Y,=28.23). Nous appellerons le premier cas saturation forte et le deuxiéme cas
saturation faible. En effet, le premier minimum correspond & des effets de saturation forts car
pour les valeurs de y; typiques, ’échelle de saturation vaut environ 5 Gev, ce qui correspond
aux valeurs typiques de k7. Le deuxiéme minimum correspond & des effets de saturation faibles
et refléte plutdt une description de type BFKL.

Avec les formules (5.12) et (5.19), les valeurs des paramétres données Table I déterminent
complétement les prédictions du régime BFKL et deux paramétrisations pour le modéle de
saturation. Nous allons & présent les comparer avec les nouvelles données sans aucun réajus-
tement des parameétres, ce qui sera un test pertinent des effets de la QCD & haute énergie.
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F1G. 5.2 — La section efficace do/dx dans la production de jet vers I'avant en diffusion profon-
dément inélastique. Les points de mesure viennent des collaborations H1 (figure de gauche)
et ZEUS (figure de droite). Les courbes sont des comparaisons avec les prédictions BFKL
(lignes pleines) et du modéle de saturation (lignes tiretées et en pointillé). Dans tous les cas,
elles sont en accord avec les données. Pour comparaison, les prédictions sans resommation de
logarithmes dominants (NLOQCD) sont indiquées.

Comparaisons avec les données de 2005

Nous souhaitons comparer la section efficace (5.7) obtenue & partir de la prédiction du
régime d’évolution BFKL (5.12), ou & partir de la paramétrisation des effets de saturation
(5.19), avec les données récentes mesurées au collisionneur HERA [99]. D’un c6té, nos résultats
théoriques concernent la section efficace (5.7) qui est différentielle par rapport a toutes les
variables cinématiques du probléme : z, Q?, x5 et k. De lautre coté, les observables mesurées
4 HERA sont des sections efficaces qui sont moins différentielles : do/dz, do/dQ?, do/dk,
et do/(dzdQ?*dk2.). Par conséquent, en plus des transformations de Mellin inverses (qui sont
des intégrations dans le plan complexe) a effectuer pour calculer les sections efficaces (5.12) et
(5.19), nous devons réaliser un certain nombre d’intégrations sur les variables cinématiques,
en prenant en compte au mieux les coupures expérimentales appliquées pour les différentes
mesures. Une description détaillée de I'implémentation de ces intégrations est donnée dans
les appendices de l'article [XVII] (voir aussi [100]). La méthode permet une comparaison
directe des données avec les prédictions théoriques, mais elle ne permet pas de controler les
normalisations absolues. Par conséquent dans la suite, nous comparons seulement la forme
des courbes, sans discuter des normalisations. Insistons encore sur le fait que les paramétres
de la Table I ne sont pas ajustés.

Commencons avec l'observable do /dz qui a été mesurée par les collaborations H1 et ZEUS
jusqu’a des valeurs de x plus petites que lors des premiéres mesures. La comparaison est
montrée Figure 5.2 et nos trois paramétrisations décrivent bien les données. On ne peut
pas vraiment distinguer les courbes, sauf aux petites valeurs de x pour lesquelles la courbe
dénotée BFKL-LL est au dessus des courbes obtenues avec la paramétrisation des effets de
saturation. Pour celles-ci, la courbe correspondant aux paramétres du cas saturation faible
est au dessus de celle qui correspond aux paramétres du cas saturation forte. Sur la figure,
BFKL-LL signifie que les prédictions correspondantes sont obtenues dans I’approximation des
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FIG. 5.3 — Les sections efficaces do/dQ? (figure de gauche) et do/dkr (figure de droite) dans
la production de jets vers 'avant en diffusion profondément inélastique. Les points de mesure
viennent de la collaboration ZEUS. Les courbes sont des comparaisons avec les prédictions
BFKL (lignes pleines) et celles du modéle de saturation (lignes tiretées et en pointillé). Pour
les deux observables, il y a bon accord avec les données.

logarithmes dominants. La conclusion principale est la suivante [XVII] : les données semblent
montrer la croissance BFKL vers les petites valeurs de z.

Pour comparaison, une prédiction sans resommation de logarithmes dominants est mon-
trée sur la figure. Elle a été obtenue [99] avec le programme DISENT [101] et aux plus petites
valeurs de z, la prédiction est un facteur entre 1.5 et 2.5 en dessous des données, dépendant
de la barre d’erreur. Méme en ajoutant une partie des corrections de 'ordre sous-dominant
(appelée contribution du photon résolu [102]), la courbe théorique reste en dehors des barres
d’erreurs. C’est une différence intéressante avec la production de pions vers I'avant, une ob-
servable pour laquelle la contribution du photon résolu semble étre suffisante pour décrire les
données [103].

Discutons briévement de deux autres sections efficaces représentées sur la figure 5.3 :
do/dQ? et do/dkr mesurées par la collaboration ZEUS. Encore une fois les trois paramé-
trisations des effets de haute énergie décrivent correctement les données. C’est un résultat
important que nous soyons capable de décrire ces dépendances en Q? et en k7 sans ajuster
les paramétres. Rappelons qu’ils ont été ajustés pour décrire la dépendance en x des données
antérieures.

Nous allons finalement comparer nos prédictions avec la section efficace triplement dif-
férentielle da/d:deQdk% mesurée par la collaboration H1. L’intérét de cette observable est
qu’elle a été mesurée avec 9 coupures différentes sur la variable r= k% /Q* de 0.1<r<1.8 a
9.5 <r < 80. Cela permet de tester les limites de nos paramétrisations qui sont supposées étre
valides pour r ~ 1. En effet, elles ne prennent pas en compte des effets qui peuvent jouer un
role important quand r <1 ou r>> 1. De telles situations créent une hiérarchie des impulsions
transverses des gluons libérés a des rapidités inférieures a celles du jet vers I'avant. Cette
hiérarchie est a lorigine de contributions que notre approche ne prend pas en compte [XVII].

La comparaison avec les données est montrée sur la Figure 5.4 et la tendance attendue est
confirmée. Les cas pour lesquels ~1 sont bien décrits par nos paramétrisations des effets de
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F1G. 5.4 — La section efficace do/ dmdQQdk‘% dans la production de jet vers ’avant en diffusion
profondément inélastique. Les points de mesure viennent de la collaboration H1. Les courbes
sont des comparaisons avec les prédictions BFKL (lignes pleines) et celles du modeéle de satu-
ration (lignes tiretées et en pointillé pour les paramétrisations faible et forte respectivement).
Dans le régime ’I“Eki% /Q?%~1 pour lequel nos paramétrisations sont valides, il y a bon accord
avec les données. Dans le régime r>>1, nos paramétrisations ne reproduisent pas les données,
comme prévu a cause de la hiérarchie entre les échelles Q? et k‘%

QCD a haute énergie, alors que les autres ne le se sont pas : pour ceux-ci, les prédictions sont
au dessus des données, indiquant que la croissance BFKL vers les petites valeurs de x est trop
importante. Au contraire, quand r ~ 1, les données montrent que la resommation BFKL est
nécessaire. Les cas avec r > 1 montrent aussi une limitation des modéles de saturation car
la paramétrisation saturation forte est au dessus de la paramétrisation saturation faible. Ceci
indique que les modeéles de saturation ne sont pas satisfaisants lorsque k% > Q2%

Un dernier commentaire s’impose sur les paramétrisations de saturation. Contrairement
a la formule BFKL (5.12) qui est une prédiction robuste de la QCD, la formule (5.19) vient
d’un modéle phénoménologique. Le fait qu’elle décrive correctement les données n’implique
pas les mémes conclusions. Cela montre juste que, comme c’est le cas pour de nombreuses
observables, les données sont compatibles avec des effets de saturation méme pour des énergies
auxquelles ils ne sont pas nécéssaires. Autrement dit, aux énergies accessibles aujourd’hui, les
jets vers I'avant ne permettent pas de distinguer le régime d’énergie BFKL du régime de
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F1G. 5.5 — Production de jets de Mueller-Navelet dans une collision hadron-hadron. Les jets
mesurés sont indiqués par des fleches, @1 et Q2 sont des coupures inférieures sur leurs impul-
sions transverses ki et ko. 11 et xo sont les fractions d’impulsion longitudinale des jets par
rapport aux protons incidents. Ay est 'intervalle de rapidité entre les deux jets.

saturation. Il faudrait des énergies plus importantes pour pouvoir séparer ces deux régimes.

5.3 La production de jets de Mueller-Navelet

Dans cette section nous considérons la production de jets de Mueller-Navelet dans les
collisions hadron-hadron [104]. C’est un processus étudié pour la premiére fois par Mueller
et Navelet, caractérisé par la production de deux jets vers 'avant (en fait un vers l'avant et
un vers l'arriére), un dans la direction de propagation du projectile, et un dans la direction
de propagation de la cible. Des premiéres mesures ont pu étre effectuées au collisionneur
Tevatron qui réalise des collisions proton-antiproton. Les jets de Mueller-Navelet sont attendus
en grand nombre au futur collisionneur proton-proton, le LHC, qui effectuera des collisions &
des energies jamais atteintes auparavant.

Dans la limite de haute énergie, la production de jets de Mueller-Navelet est un processus
similaire a la production de jets vers 'avant en diffusion profondément inélastique. Nous ve-
nons de voir qu’au collisionneur HERA, les mesures ne permettent pas de distinguer le régime
d’énergie BFKL du régime de saturation. Notre but est d’estimer si les énergies atteintes au
LHC seront assez grandes pour pouvoir étre sensibles au régime de saturation, et de proposer
des observables pour pouvoir clairement conclure sur l'origine des effets de haute énergie.

La section efficace de production de jets de Mueller-Navelet est obtenue en mesurant les
deux jets vers ’avant et en restant inclusif par rapport aux autres particules. En intégrant sur
les angles azimuthaux des impulsions des jets, on obtient une section efficace quadruplement
différentielle. En appelant q; et go les tri-impulsions des deux jets vers ’avant, la section
efficace s’exprime en fonction de ki = |q;| > Agcp et k2 = |qg| > Agep les impulsions
transverses des jets, et de 71 = ¢ /Pt et 23 = ¢; /Q~ leur fraction d’impulsion longitudinale
par rapport aux hadrons projectile et cible. Le jet émis dans la direction de propagation du
projectile a une rapidité ymqer — In(1/x1) proche de ymaqe et le jet émis dans la direction de
propagation de la cible a une rapidité y,i, +In(1/x2) proche de Y. Dans la limite de haute
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énergie, la différence de rapidité entre les deux jets Ay = Y + In(x122) atteint de grandes
valeurs.

La production de jets de Mueller-Navelet est représentée Figure 5.5, ol les variables ci-
nématiques sont indiquées. Comme dans le papier original [104], nous allons considérer la
section efficace intégrée par rapport aux impulsions transverses des jets ki et ko, avec des
coupures inférieures que nous dénoterons @)1 et (J2. Ces coupures expérimentales k1 > ()1 et
ko > Q2 sont nécessaires pour effectuer la mesure. Aprés intégration, la section efficace devient
doublement différentielle par rapport & x1 et & xo :

d(2) gpp—J X J dk:2 . (4) gpr—I X J
) 5.20
" dzidzy / 2 / 2 7 dacldedzgdkg (5:20)

En appelant /s I'énergie totale de la collision, I'intervalle de rapidité entre les jets est Ay =
In(z1228/(Q1Q2)). Rappelons que la rapidité totale Y est définie aux incertitudes prés dues a
la valeur de kg, 'impulsion transverse typique des particules de I’état final (voir la discussion
du Chapitre 1). Dans la limite de haute énergie, ces incertitudes sont négligeables par rapport
a la valeur de Y. Nous avons choisi k = Q1Qa.

5.3.1 Prédictions de la QCD a haute énergie

Nous considérons des valeurs de (01 et Q2 dans le régime perturbatif, ainsi que des valeurs
de z1 et xo assez grandes pour pouvoir négliger les effets diis & de grandes densités de gluons
dans le projectile ou la cible. Pour chacun des deux jets vers I’avant, la formule (5.6) est donc
utilisable. En la symétrisant de maniére & obtenir une émission de jet & la fois pour le projectile
et pour la cible, on obtient [IV] la section efficace dYoPP/XY /(dx1dk?dxodk?). En effectuant
ensuite U'intégration (5.20), la section efficace pour la production de jets de Mueller-Navelet
s’écrit [I] :

d(2) O.pp—>JXJ

:4N02Q1Q2feff<m17Q%)feff(l?yQ%)/ dr J1(Q17“)/0 dr Ji(QoT)

dz1dzo ;
T(g9)(99) (T, T, Ay) . (5.21)

Cette formule est valable dans la limite de haute énergie avec l'intervalle de rapidité
entre les deux jets Ay suffisamment grand. Comme dans la section précédente, fory est la
distribution de partons effective (5.5). Signalons que pour effectuer les intégrations sur ki
et ko, nous avons remplacer feff(xl,k%)feff(xg,k%) par feff(xl,Q%)feff(:cg,Q%). Ceci est
justifié car la fonction fesf(z,k?) varie peu avec k2. T(g9)(99) (1575 Ay) est la section efficace
totale dans la collision de deux dipéles de gluons gg de taille r et ¥ avec une rapidité totale
Ay. Chaque dipéle de gluon décrit de maniére effective I’émission d’un jet, comme expliqué
dans le Chapitre 2. La production de jets de Mueller-Navelet est ainsi exprimée en termes de
T(gg)(g9) Qui contient la dynamique de la QCD a haute énergie. Comme pour la production
de jet vers 'avant en diffusion profondément inélastique discutée précédemment, le probléme
est analogue & celui de la diffusion onium-onium. Dans un régime d’énergie intermédiaire,
T(gg)(g9) €St donnée par I’équation BFKL puis pour de plus hautes énergies, on entrera dans
un régime de saturation di aux effets de grande densité de gluons. Dans la suite, nous donnons
les prédictions du domaine d’énergie BFKL nous proposons une paramétrisation pour étudier
le régime de saturation.

Insistons sur le fait que les grandes densités de gluons ne proviennent pas directement
de la fonction d’onde de la cible, comme précisé ci-dessus. Elles proviennent de la fonction
d’onde du dip6le de gluons de taille ¥ qui décrit ’émission du jet d’impulsion ¢o, et sont
sondées par le dipole de gluons de taille 7 qui décrit I’émission du jet d’impulsion ¢;. Un



5.3 La production de jets de Mueller-Navelet 103

dipole gg est similaire & un dipodle ¢g, c¢’est-a-dire & un onium. En augmentant Ay, la densité
de gluons dans sa fonction d’onde augmente. En fait le probléme est symétrique et les effets
de densité peuvent étre aussi décrits comme provenant du dipole gg qui décrit I’émission du
jet d’impulsion ¢q; et sondés par le dipéle gg qui décrit I’émission du jet d’impulsion g¢o.

Le régime de I'évolution BFKL

Dans le régime d’énergie de ’évolution BFKL pour lequel les effets de densité ne sont pas
encore importants, o(g4)(g¢) €st connue de maniere exacte. Tout d’abord, la section efficace a
I'ordre dominant par rapport a «g est connue, car ¢’est un processus purement perturbatif (en
dehors d’un facteur de couleur, elle est identique & 0(4q)(4¢), voir formule (5.10)). Ensuite, a
partir de la solution de I’équation BFKL, on peut évoluer cette condition initiale pour obtenir :

21 N, o2 dy (F/r)*
BFKL (. = _ % 2 [ 47 ax(mY
G(gg)(gg)(r,T,Y) = CF / % 72(1_7)2 e . (522)
En utilisant la formule (5.21), on peut écrire la section efficace pour la production de jets de
Mueller-Navelet dans le domaine d’énergie de 1’évolution BFKL :

doBFKL 397 N3n2 9 9 dry (Ql/QQ)z'Y -
— c™s LA/ 2] ax(v)Ay
dl‘ldﬂfg CFQ% feff(xl’Ql)feff(xZa QQ)/ 2 7(1_7) € .

On montre facilement que le résultat est identique & celui obtenu en utilisant le formalisme
de la kp—factorisation [104], dans lequel nous rappelons que U'interaction entre le projectile
et la cible est restreint & un échange de deux gluons. Le seul parameétre indéterminé dans
la formule (5.23) est @ qui apparait dans 'exponentielle. En s’appuyant sur I’analyse de la
section précédente, nous attribuons & ce paramétre la valeur effective & =0.16, ajustée sur les
données pour la production de jets vers I’avant en diffusion profondément inélastique.

(5.23)

Le régime de saturation

La section efficace O'fg;)(g ) est inconnue dans le régime de saturation, pour lequel les effets

dis & une grande densité de gluons sont importants. Pour prendre en compte des effets de
saturation, nous proposons la paramétrisation suivante, introduite dans [I] :

47 N2 2. (r,7)
sat = _ cltlg eff
la9)(g9) (1 T+ Y) = —cp 7 (1 — exp <_4R§(Y) : (5.24)

En dehors de la normalisation, cette paramétrisation est identique & celle utilisée dans la
section précédente (voir la formule (5.15)) : le rayon effectif r.p est défini par la formule
(5.16) et le rayon de saturation par la formule (5.17). En insérant (5.24) dans (5.21), nous
obtenons la paramétrisation suivante pour la section efficace de production de jets de Mueller-
Navelet dans le régime de saturation [I] :

do®* 16w N2a? S
= T o @ Seppans @ {1 2S00 [ s
2Q1Q2uR2(Ay) Q2 +u2Q% , Q% +u2Q?
Il( 1+ ln(u) > [eXp <_1—|—111(’IL)RS (Ay)> + exp <_1+1H(U)RS (Ay))} } (5.25)

Les paramétres sont A, Yy et la normalisation oy. Dans ce qui suit, nous leur attribuons
les valeurs obtenues au chapitre précédent. Pour le cas saturation forte, on a A = 0.402 et
Yy =—-0.82 et pour le cas saturation faible, on a A=0.370 et Yy=28.23. La normalisation n’est
a priori pas déterminée, mais nous la fixons de telle sorte que pour des grandes impulsions
et des petites valeurs de Ay, nous obtenions le résultat prédit pour le régime de I’évolution
BFKL.
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5.3.2 Phénoménologie

Nous souhaitons étudier la dépendance des sections efficaces (5.23) et (5.25) en fonc-
tion de lintervalle de rapidité Ay. Nous souhaitons considérer des grandes valeurs de Ay,
pour pouvoir observer la croissance de la section efficace en fonction de Ay due & ’évolution
BFKL, puis ensuite le ralentissement de cette croissance dii & la saturation. Malheureusement
ces observations ne sont pas possibles directement avec 'observable d(2)gPp—/XJ /dx1dzy. Le
probléme est le suivant : Ay grand implique des grandes valeurs de x1 et x5. Quand ces va-
riables s’approchent de 1, leur valeur maximale, Ay grandit mais la section efficace décroit
car son comportement est complétement dominé par les distributions de partons ferf(x1, Q?)
et ferr(zo, Q3). Ces derniéres sont trés fortement décroissantes quand @1 et xa s’approche de
1, elles compensent la croissance de la section efficace due & I’évolution BFKL.

Pour illustrer cette situation de maniére quantitative, nous choisissons de fixer /s =
14 TeV, la valeur maximale de 1’énergie au LHC. Signalons que la normalisation absolue de
nos prédictions est fixée pour reproduire les données du Tevatron mesurées avec 1’énergie
/s =1.8 TeV et publiées dans [105]. Ces données sont caractérisées par des barres d’erreur
assez importantes ce qui implique une incertitude non négligeable sur la normalisation des
prédictions pour le LHC. L’ordre de grandeur des sections efficaces est cependant indicatif.
Introduisons les rapidités des deux jets :

y1 =In (x“/g> : o = —In (:,;2\/5) . (5.26)

Q1 Q2

Plagons nous dans une situation pour laquelle la cinématique d’un des jets est fixée (Q2 =
30 GeV et yo=—4.5) et regardons la dépendance de la section efficace

d(2) gpr—=J X J d(2) gpp—=J X J

= T1T2 (5.27)

dy1 dyg d.iCl dl’g

en fonction des variables cinématiques de l'autre jet, y; et Q1.

Sur la figure 5.6, nous représentons les résultats obtenus avec la prédiction du régime de
I'évolution BFKL (formule (5.23)) et avec la paramétrisation du régime de saturation (formule
(5.25)). Les différents graphes montrent la dépendance par rapport a y; pour différentes valeurs
de Q1. On observe le comportement attendu : la section efficace décroit trés rapidement quand
x1 s’approche de 1 (correspondant a y; s’approchant de la limite cinématique, voir les formules
(5.26)). Pour chaque valeur de (1 sur la figure 5.6, on ne peut pas vraiment voir de différence
de comportement entre la courbe en ligne pleine et la courbe tiretée. Par contre plus 1 est
petit, plus les courbes sont distinctes. Ceci est un signe que, d’aprés notre paramétrisation,
le régime de saturation devrait étre accessible au LHC. Dans le cas de la paramétrisation des
effets de saturation, nous n’avons montré que le cas saturation forte. Les courbes obtenues dans
le cas saturation faible apparaitraient au milieu des courbes correspondant aux prédictions du
régime de I’évolution BFKL et des courbes correspondant au cas saturation forte.

Il est possible d’étudier le comportement de la section efficace do/dy;dy, dans d’autres
situations que celle développée ici. C’est fait dans la publication [XVII] en considérant des
jets émis de fagon plus symétrique par exemple. La conclusion suivante se dégage : tester
les effets diis & la limite de haute énergie de QCD avec l'observable do/dyidys au LHC
sera expérimentalement difficile car il faudra réaliser des mesures de précision. Insistons une
nouvelle fois sur le fait que c’est dii aux distributions de partons qui suppriment la section
efficace pour les grandes valeurs de x1; ou de 9. Obtenir une grande précision n’est pas
irréalisable & cause de la haute luminosité disponible au LHC, mais cela demandera une trés
bonne compréhension des erreurs systématiques.



5.3 La production de jets de Mueller-Navelet 105

—~ 10 ¢ —

o) E o)

= £ Q >10GeV | 1 =

= f B;KL T Q,>15Gev
> — : > .

o 1 e satur ation o -

= =0

° r °

) B )

T 10 ho] -

SN
T T
'
'
'
'
‘.
‘.
.
’
’
T T 1T

2 10
10 - E
L | | | ‘ | | | ‘ | | | ‘ | | i | | | ‘ | | | ‘ | | | ‘ | |
-2 0 2 4 -2 0 2 4
Y1 Y1
2 5
=1 : Q,>25GeV| 3 0 £ Q,>35GeV
~— -1 N— C
o~ N R ——
> > -
© © 2
= S
- . S &
6 10 9 r
© E © -3
C 10 E
10 3 o
E ! 10 &
L L L ‘ L L ‘ L L ‘ L : L L ‘ L L ‘ L L ‘ L
-2 0 2 4 -2 0 2 4
y1 yl

Fi1G. 5.6 — La section efficace d(Q)UPIHJXJ/dyldyz pour la production de jets de Mueller-
Navelet au LHC, en fonction de la rapidité d’'un jet y; pour différentes valeurs de Q1. Les
variables cinématiques de 'autre jet sont fixées & Q2 =30 GeV et yo =—4.5. Les lignes pleines
sont les prédictions du régime de I'évolution BFKL tandis que les lignes tiretées sont obtenues
avec la paramétrisation de saturation forte.

Une observable adaptée

Il est possible de contourner le probléme mentionné ci dessus, en considérant ’observable

suivante :
d(2)0_pp—>JXJ d(?)o.pp—JXJ

(Q1,Q2,Ay)

C’est un rapport de deux sections efficaces mesurées avec les variables cinématique x1, xo,
Q1 et Q2 identiques mais pour deux énergies de collision s et § différentes, résultant en deux
intervalles de rapidité Ay et Ay différents. L’avantage de cette observable est évident : elle
est indépendante des distributions de partons et permet d’étudier de maniére plus directe
I'influence des effets dis a I’évolution BFKL et au régime de saturation [I, III, 94|. Par contre,
elle impose de devoir effectuer des collisions & deux énergies différentes, en pratique cela peut
poser des difficultés.

La prédiction obtenue avec la formule (5.23) qui décrit le régime BFKL est (aprés une
approximation de point de selle pour la transformation de Mellin inverse) :

(Q1,Q2, A7) . (5.28)

Ray/ng =

dridzs dxidzs

Aj (5>4a In(2) '

S
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F1G. 5.7 — Les rapports de sections efficaces Rg/o et Ry /2.4 obtenus a partir de la paramétri-
sation des effets de saturation (5.25). Ry /2.4 est défini par les intervalles de rapidité Ay = 4.6
et Ay = 2.4 déja utilisés au Tevatron, les courbes correspondantes sont celles du dessous sur
le graphe. Rg/; est défini par les intervalles de rapidité Ay = 8 et Ay = 2 dans l'optique
LHC, les courbes correspondantes sont les plus hautes sur le graphe. Les lignes pleines sont
obtenues avec la paramétrisation saturation forte et les lignes tiretées avec la paramétrisation
saturation faible.

Il a été possible d’effectuer des collisions proton-antiproton au collisionneur Tevatron pour
deux énergies de collision différentes : /s =1.8 TeV et /s =630 GeV. La vérification de la
valeur (5.29) ne fut pas un succes : les données ont indiqué une valeur pour R/ 4 supé-
rieure a la prédiction [105]. Cependant, il a été discuté [106] que les mesures étaient biaisées
par l'utilisation de coupures supérieures sur I'impulsion des jets, par un choix de coupures
inférieures identiques, et par des corrections d’hadronisation.

Il serait intéressant de pouvoir mesurer le rapport (5.28) au LHC, ou la production de
jets de Mueller-Navelet sera plus importante qu’au Tevatron. Cela permettrait d’améliorer
les mesures (au minimum en réduisant les erreurs statistiques) et donc de tester la prédiction
(5.29) de maniére plus précise. Dans cette optique, nous souhaitons aussi tester I'influence des
effets de saturation. Pour cela, calculons le rapport Ra, /a5 avec la section efficace (5.25) qui
paramétrise les effets de saturation. Les résultats pour Rg/p et Ry /0.4 sont montrés Figure
5.7. Ryg/2.4 est défini par les intervalles de rapidité Ay = 4.6 et Ay = 2.4 déja utilisés au
Tevatron et Rg/y est défini par les intervalles de rapidité Ay = 8 et Ay = 2 accessibles au
LHC. Nous avons représenté ces rapports en fonction de QQ = Q1 = @2, ce qui permet d’étre
sensible & la transition vers le régime de saturation.

Pour des grandes valeurs de @, les sections efficaces du numérateur et dénominateur de
(5.28) sont toutes deux sensibles au régime dilué et les rapports tendent vers des valeurs
compatibles avec (5.29). Quand @ diminue, comme Ay > Ay, la section efficace au numérateur
de (5.28) est sensible au régime de saturation avant la section efficace au dénominateur. Pour
cette raison, les rapports Rg /o et Ry /2.4 sont clairement influencés par les effets de saturation
[I, IIT] : en fonction décroissante de la variable @, les rapports décroissent jusqu’a la valeur 1.
On constate sur la figure 5.7 que cette décroissance est assez rapide.
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Signalons que les valeurs des rapports Rg/; et Ryg/24 pour des grandes valeurs de @
ne sont pas exactement égales a la prédiction BFKL (5.29). Ceci est dii au fait que notre
modéle de saturation (5.24) n’est pas exactement identique aux prédictions BFKL (5.22)
dans le régime dilué. C’est aussi lorigine de la différence entre les valeurs obtenues pour le
cas saturation forte et pour le cas saturation faible. En ce qui concerne les petites valeurs de
@, les prédictions n’ont de sens que pour @ > Agcp, c’est-a-dire In(Q/Qo) > 0. Dans le cas
de la paramétrisation saturation faible, la zone de décroissance vers le régime de saturation ne
se produit pas a l'intérieur du régime de validité, par contre c’est le cas de la paramétrisation
saturation forte. Pour celle-ci, on voit aussi que dans le cas de Rg/y, la décroissance commence
pour des valeurs de @) assez larges. Cela permet d’étre optimiste par rapport a la possibilité
de tester des effets de saturation au LHC.

L’observable (5.28) dans la production de jet de Mueller-Navelet est bien adaptée pour
tester la limite de haute énergie de QCD dans les collisions proton-proton au LHC. Et il
existe aussi des alternatives : au lieu de mesurer des jets, la production de mesons vecteurs
vers l'avant est une observable intéressante [I|. L’intérét est la possibilité de les détecter pour
des impulsions transverses plus faibles que dans le cas des jets, et avec une précision plus
grande. Dans I'optique de tester la limite de haute énergie de QCD, ces observations montrent
I'importance de pouvoir réaliser des collisions & des énergies différentes au LHC.
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CHAPITRE O
Au deld des équations B-JIMWLK
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Dans le cadre de collisions entre deux particules hadroniques (un projectile P et une cible
C), nous avons étudié dans les chapitres précédents les prédictions de la QCD dans la limite
de haute énergie. Nous avons utilisé des repéres particuliers en divisant I'intervalle de rapidité
totale de la collision Y ~ In(s) de maniére asymétrique : Y = Yp + Y tels que Yp ~ 0 et
Ye ~ Y. Une telle configuration nous a permis de décrire le projectile par une superposition
d’états de Fock (1.18) alors que la cible habillée de nombreux gluons mous est décrite par
un champ classique (1.35). Nous avons obtenu que ’évolution de la fonction d’onde de la
cible |®y, [A]|? par rapport & sa rapidité Yo permet de prédire la dépendance en énergie des
observables physiques.

Jusqu’ici nous avons travaillé dans un contexte ou l'équation d’évolution (2.24) de la
fonction d’onde |y, [A]|* est I'équation JIMWLK. De maniére équivalente, cette évolution
est donnée par la hiérarchie d’équations de Balitsky (voir les équations (2.32) et (2.33)), écrite
pour des amplitudes de diffusion de dipoles (équivalents de projectiles tests) sur la cible. Il a
été réalisé trés récemment que les équations B-JIMWLK sont en fait incomplétes. Le but de
ce chapitre est de présenter ces nouveaux développements théoriques (dans 1’état actuel des
choses), ainsi que les implications phénoménologiques potentielles. Les résultats reproduits
dans ce chapitre, connus ou originaux, ont été obtenus au cours des deux derniéres années.
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La premiére partie présente I’équation JIMWLK (2.24) discutée au Chapitre 2 et introduit
la notion de dualité entre le régime dense et le régime dilué. Cette dualité révéle que les
équations B-JIMWLK ne décrivent correctement que le régime dense et ne représentent qu’une
partie de ’équation compléte. Nous reprenons les résultats de article [XI] et dérivons la
hiérarchie d’équations qui décrit le régime dilué. La deuxiéme partie discute de possibles
modifications des résultats du Chapitre 3 pour I'amplitude de dipole (Txy)y , et de la relation
entre les collisions & haute énergie en QCD et I’équation FKPP stochastique; les calculs
des articles [XVIII, XXII| sont présentés. Enfin la troisiéme partie est dédiée aux premiéres
études phénoménologiques dans le cadre des équations B-JIMWLK modifiées. Une nouvelle
loi d’échelle est prédite pour la diffusion profondément inélastique a trés haute énergie [XIX,
XXIII|, et pour la production de jets vers I'avant dans les collisions hadron-hadron [XX].

6.1 La dualité entre le régime dense et le régime dilué

D’une équation d’évolution fonctionnelle pour |®y[A]|? du type (2.24), il est possible de
déduire une équation pour n’importe quelle moyenne (f)y- :

& Uy = [DAHIRAR A )
Par exemple, comme signalé¢ au Chapitre 2 dans le cas de I'amplitude de dipole (Tky)y .
'équation d’évolution JIMWLK pour la fonction d’onde au carré |®y [A]|? permet d’obtenir
les équations (2.32) et (2.33) de la hiérarchie de Balitsky. Nous allons a présent introduire
I’équation JIMWLK. Bien qu’il agisse sur une fonction d’onde au carré, 'opérateur H est
souvent appelé Hamiltonien dans la littérature. Nous utiliserons aussi cet abus de langage.

d
Ty | v AP = H|@y [A]P =

6.1.1 L’équation JIMWLK

Dans 'approximation des logarithmes dominants, ’équation fonctionnelle qui donne I’évo-
lution de |®y [A]|? par rapport & Y est connue. Rappelons que, dans la jauge A+ = 0, le champ
AL (z¥) = *~ A7 (xF, x) représente le champ classique créé par la cible. Celle ci se déplace a
une vitesse proche de celle de la lumiére le long de la direction des z négatifs, c’est-a-dire sur
le cone de lumiére suivant la direction des x—. Méme si avec notre choix de jauge le champ
A_ ne dépend pas de 27, c’est une fonction sur un espace quadri-dimensionnel. Dans la suite,
nous indiquons la dépendance de A7 par rapport & = et nous introduisons le champ a., qui
agit dans un espace tridimensionnel :

6
dae(xt, x)

L’équation JIMWLK s’écrit en termes de o, et de §/da,. de la maniére suivante :

[ PxdPyd*z(x—z)-(y—2z) § n
HIE @y (o] = /27127r27r (x —2)%(z —y)? dae(x) [1 FWaAWal)

O[C(I+7 X) = AC_ ($+7 X, = 0) 3 ad(y+a y) = 5Cd5($+ - y+)6(2) (X - y) . (62)

cd )
~WLE)Wa(2) - WhWay)] " ———lov[a]?  (6.3)

dovq(y)
ou la dépendance des lignes de Wilson W4 par rapport & a. est implicite. Dans (6.3), les
dérivées fonctionnelles § /da.(x) doivent étre entendues comme agissant a la plus grande valeur

de . De maniére équivalente, elles sont données par :

J J
= lim —— . 4
dae(x) o+ oo dae(xt,x) (6.4)

Avec I’équation (6.3), il est possible de redériver la hiérarchie d’équations de Balitsky présentée
au Chapitre 2, ceci est fait explicitement dans [22].



6.1 La dualité entre le régime dense et le régime dilué 111

6.1.2 La dualité dense-dilué

La dualité entre le régime dense et le régime dilué a été introduite par Kovner et Lublinsky
[107]. C’est une propriété de I’équation d’évolution

JylovlalP = i o 5] 8y [a)? (6:5)

qui relie le régime dense gsar ~ 1 au régime dilué a ~ g, : & partir de 'Hamiltonien du régime
dense, une transformation de dualité permet de déduire ’'Hamiltonien du régime dilué, et vice-
versa. Un Hamiltonien qui décrit les deux régimes de maniére unifiée doit étre invariant par
la transformation de dualité. Ce n’est pas le cas de H//MWLEK (Ceci a permis de comprendre
que 'équation JIMWLK est valable seulement dans le régime dense (voir aussi [108] pour
des conclusions similaires dans I’étude de I’équation BK). Nous donnons ici une dérivation
de la propriété de dualité, et a partir de 'Hamiltonien JIMWLK, nous obtenons I’équation
d’évolution (6.5) valable dans le régime dilué.

De maniére générale, 'amplitude de diffusion élastique dans une collision projectile-cible
quelconque peut s’écrire

S(v) = [ Daltyy,falf* Syplal (6.6)

S(Y') ne dépendant pas de la valeur de Yp choisie pour faire le calcul. La fonctionnelle Zy;, [a]
est 'amplitude de diffusion élastique du projectile sur une valeur particuliére du champ «.
Un exemple explicite a déja été donné dans le cas ol le projectile est un onium : dans le
repére ol l'onium est nu, la fonction Zg[a] peut étre lue sur I'équation (2.20) ; dans le repére
ot 'onium est habillé d’un gluon mou, la fonction Zy;, [a] peut étre lue sur I’équation (2.30)
(a la différence prés que ces équations donnent 1 — S(Y')). Comme toute observable physique,
S(Y) ne peut pas dépendre du repére utilisé pour la calculer :
d SY)=0 6.7
Iy S =0. (6.7
Les équations (6.5), (6.6) et (6.7) permettent d’obtenir I’équation d’évolution de Zy[a] (en
utilisant U'intégration par partie) :

% Eyla] = H [z‘a, —fa} Evla] . (6.8)

La preuve de la dualité est alors basée sur les hypothéses suivantes : le projectile, qui se
déplace & une vitesse proche de celle de la lumiére le long de la direction des z positifs (c’est-
a-dire sur le cone de lumicre suivant la direction des z1), peut étre assimilé & un courant
JH(z¥) = SPTTe T (2) d’ordre gs et la fonction Zy [o] peut étre écrite de la maniére suivante
[107, 109] :

Eyla] = /Dpp ‘@7;[pp]}2776xp {i/d2X dx+ac(x+,x)pf(x+,x)} (6.9)
oil la densité de charge de couleur du projectile p¥ est donnée par
pP(zT,x) = /dx_Jj(J:+,x, x7). (6.10)

Dans la formule (6.9), la fonction }@}73[/)73”2 représente la fonction d’onde du projectile et
pondére l'intégration sur la charge de couleur p¥, tandis que I'exponentielle ordonnée en z+
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est I'élement de matrice de diffusion pour l'interaction entre la charge p” et la champ de la
cible a. A partir des formules (6.8) et (6.9), nous obtenons

d 2

0 . 2
o _pr] BR7)° (6.11)

Nous avons obtenu une équation d’évolution pour la fonction d’onde du projectile dans le
régime dilué pf ~ gs. La distinction entre projectile et cible étant arbitraire, cette équation
doit aussi étre valable pour la fonction d’onde de la cible. Cela implique que dans le régime
Pc ~ gs, NOUS avons

iY Py [p)]> = H [;p,—ip] @y (o] (6.12)

ol maintenant la densité de charge de couleur p. fait référence a la cible :

(Spc(:f—x) paly™,y) = bad(a™ —y )0 (x —y) . (6.14)

Le courant J. (z#*) permet d’obtenir & la fois p.(z7,x) et a.(z™,x). La fonction d’onde de la
cible peut étre exprimée en fonction de ces deux variables de maniére équivalente.
Introduisons la transformation suivante, dite transformation de dualité :

’ e iplamx)
dpe(z=,x) 7 dae(zt,x) Wl 5 %)

iae(rT,x) = (6.15)
Un Hamiltonien qui décrit les deux régimes de maniére unifiée doit étre invariant sous cette
transformation (voir [110, 111]). Comme précisé ci-dessus, ce n’est pas le cas de H JIMWLE
qui n’est valable que dans le régime dense. En appliquant la transformation de dualité (6.15),
nous obtenons 1’équation qui décrit le régime dilué :

d2xd2yd2 (x—2) (y—2)
o1 21 27 (x — )2( y)?

gdilé g2 = - pe(x) [1+ WH()Wa(y)

WL GOWa() - Wh@Wa)]” pa)l@vlol?  (616)

ou les charges de couleur p.(x) doivent étre entendues comme agissant a la plus grande valeur
de z7. De maniére équivalente, elles sont données par :

pe(x) = lim p.(xz7,x) . (6.17)

T —00

Dans (6.16), les lignes de Wilson adjointes duales W, dépendent implicitement de §/dp et
sont données par

Wal5/6p] (x) = Pexp{ /da: TC(M‘S_} | (6.18)

r7,X)
P indique qu’il faut ordonner les dérivées fonctionnelles & /0pc selon leurs valeurs de 27, la plus
petite étant placée a gauche. Alors que I’équation JIMWLK (6.3) est naturellement exprimée

en termes de a(z™, x), le champ créé par la cible et sur lequel le projectile interagit, 1’équation
duale (6.16) est exprimée en terme de p(z~,x), la densité de charge de couleur de la cible.
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6.1.3 La hiérachie duale de la hiérachie de Balitsky

L’équation JIMWLK (6.3) est équivalente & la hiérarchie de Balitsky (voir les équations
(2.32) et (2.33)), écrites pour des amplitudes de diffusion de projectiles particuliers, des di-
poles. Nous allons maintenant dériver la hiérarchie d’équations équivalente a ’équation (6.16),
duale de I'équation JIMWLK. Pour ce faire, nous nous plagons dans le régime ot la cible est
diluée. Nous devons aussi considérer un modéle particulier dans lequel la cible est composée
de dipéles [109, 112, XI, 113]. Dans le cadre de ce modéle, les dipoles jouent le role des gluons

mous qui habillent la cible et la fonction d’onde ‘(I)ch [p]|? s’écrit
00 N N
2% 1P =) / (H dQX@-) Pr({xi}, Ye) [ [ Bwioix: [6/001810) - (6.19)
N=1 =0 i=1

Dans cette formule, Py ({x;}, Y¢) dénote la probabilité que la cible, de rapidité Y¢, soit habillée
de N dipoles avec les coordonnées transverses {(x;—1,%;)} (¢ = 1..N). L'opérateur Ry, associé
& chaque dipdle est donné par :

1 ~ -
Roy[0/60) = <=Tx (WH16/60)(y) W[5 /69)()) (6.20)
avec la ligne de Wilson duale W obtenue de la maniére suivante

Wr[6/dp](x) = Pexp {gs/dm_TC(Mfw} : (6.21)

Une hiérarchie d’équations peut alors étre établie a partir de ’équation (6.16). En agissant
sur la configuration & N dipdles, nous obtenons la n-iéme équation :

G 2x d%y d?z (x — z) - — 7
T R fo/00lale) = — [ GGV G0 Y5 )
=1
~ ~ ~ ~ ~ ~ cd N
L+ WLEOWa(y) = WAEWa(2) = Wh@Wa)] ™ paly) [T Rxioix[6/001810] . (6:22)
=1

En appendice, nous explicitons la dérivation qui permet d’écrire la premiére équation de
la hiérarchie de la facon suivante (en gardant la dépendance de Ry, par rapport a [6/dp]
implicite) :
d’z (x —y)?
HRyolpl=a | —
=0 | 3 e =y

Ce calcul est fait dans les articles [XI, 113] ainsi que celui qui donne la deuxiéme équation de
la hiérarchie sous la forme

[BxzRzy — Rxy d[p] - (6.23)

_ [ d*Z (x —2)?
HRyyRaydlp) = & / > [ CE T G (Rxw RoraRay — RxaRsy )

() L Gy
o g (el = Retn) = 5 (=

z—y)? X —y)?
s y>2> (21ey — Qg sz’zyz’z)] o) (6:24)

Dans cette équation, en plus des dipdles Ryy, il apparait une trace de six lignes de Wilson
modifiées :

_'_

Quenysald/09] = - Te (W)W (V)WL) o)W () Wr(2)) , (6.25)

C
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sous-dominantes dans un comptage de puissance en 1/N,. La limite de grand N, permet donc
de restreindre la hiérarchie aux dipoéles.

Cette nouvelle hiérarchie peut étre considérée comme duale de la hiérarchie de Balitsky.
En effet, elles sont identiques sous la tranformation (en changeant aussi (1 —Q)d[p] en (M)y)

(1= Ryyy,) - (1= Ry,y, )0lp] <= (Txry, - - - Ty, )y - (6.26)

La hiérarchie de Balitsky décrit I’évolution d’amplitudes de diffusion de projectiles (en I'occu-
rence des dipoles) sur la cible dans le régime dense lorsque « est d’ordre 1/gs. Cette nouvelle
hiérarchie décrit ’évolution de la fonction d’onde de la cible dans le régime dilué lorsque p
est d’ordre g5 (en 'occurence dans un modéle ou elle est composée de dipoles).

6.2 Une équation de Langevin pour I'évolution vers les hautes énergies

Simplifions pour commencer les équations de la hiérarchie du régime dilué en prenant la
limite de grand N, : toutes les équations s’obtiennent alors a partir de la premiére équation
(6.23), en utilisant une formule similaire a celle de la dérivée d’un produit. Par exemple, la
deuxiéme équation (6.24) s’écrit

HszRzy(S[p] = (HRXZ)RZy‘S[IO} + RXZ(HRzy)é[p] . (6.27)

Il est ainsi possible d’écrire I’équation d’évolution de |<I>§l,C [p]|?, 1a fonction d’onde de la cible
(6.19) dans le modele des dipdles, de la maniére suivante :

d 2 (xi-1 — %)
a1 = /(Hd&)PN bt Z/ G — 220 — i)

Tl | [l Racn] | TT oo |10 629
= j=i+1

Dans la limite de grand N, il est possible de traduire 'équation (6.28) du régime dilué
pour la fonction d’onde de la cible en équations pour les amplitudes de diffusion de (dipoles)
projectiles sur la cible. En combinant les équations obtenues, valables dans le régime dilué,
avec les équations déja connues dans le régime dense (c’est-a-dire les équations de Balitsky
dans la limite de grand N.), nous pouvons alors obtenir une hiérachie d’équations valable a la
fois dans le régime dense et dans le régime dilué. Le but de cette section est de dériver cette
hiérarchie, proposée par Iancu et Triantafyllopoulos [114].

6.2.1 Les équations du modéle des dipdles

L’équation (6.28) est équivalente [114, 115, 116] a ’équation maitresse suivante pour les
probabilités Py ({x;},Y) = Pn(Xo,...,xn;Y) du modéle des dipéles (6.19) :

iPN(XO LLXNY) = —a [Z/ XZ_l_Xi)Q Pn(x0,...,%xN;Y)
dy R 21 (xi—1 — 2)2%(z — x;)? Ty
a = X Xi11)?
to- 2 iy _lez XZ+_1 Xi+1)2PN—1(XOa---aXi71>Xi+17---7XN§Y) . (6.29)

avec Py = 0. Introduisons & présent la densité de dipoles dans la cible, définie par

0o N N
n(x,y;¥e) =y / (H%xi)PN({xi},Yc)25@)(»«@-1—x>5<2><x@-—y>. (6.30)
N=1 =0 =1
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En utilisant ’équation maitresse (6.29) pour les probabilités Py, nous obtenons I’équation
suivante pour la densité de dipdle :

d N - x;)?
v n(x,y;Y —a2/<Hd xZ>PN {xi},Y) Z/ i 1—;)2(zzxi)2
{6(2) (xi—1 —x)0P(z —y) + 6P (2 — x)6@ (x; —y) — 6P (xi_1 — x)0P) (x; — y)}

_ / @z [(x—z)’n(xzY)  (2-y)nzyY) (x-y)n(xyY) (6.31)
=a [ — - . :
2r [ (x—y)*(y—2)? (z—-x)?(x-y)? (x—2)*(z-y)
Par souci de simplicité, introduisons le noyau Kxy, pour écrire I'équation d’évolution (6.31)
de la densité n(x,y;Y) de la maniére suivante :

2
diyn(x v;Y) = a/ C;T Kyyz @ n(x,y;Y) . (6.32)
On peut montrer [109] que cette équation est équivalente a I’équation BFKL (3.2) étudiée au
Chapitre 3, impliquant que sa solution est donnée par (3.13) (en y remplagant Ny (x,y) par
n(x,y;Y)) et est donc exponentiellement croissante avec la rapidité : n(Y) ~ e™x1/2Y ayec
X () donné par la formule (3.14).

De maniére similaire & (6.30), nous pouvons définir des densités ny, de k—uplets de dipdles
dans la cible. Par exemple, la densité de paire de dipéle est définie par

no(x,y; X',y Ye) = Z/(Hd XZ>PN {x:},Ye) 25 (xi— 1—x)5(2)( -y)

1,7=1

(]
0P (x; 1 — x50 (x; —y') . (6.33)

En utilisant I’équation maitresse (6.29), il est possible de dériver les équations d’évolution des
densités ny, [117]. Pour exemple, nous donnons ’équation pour ng :

d d’z
d7n2(x Y7X y Y) - a/%(nyz + Kx’y/z) ® ng(x,y; Xlay,;Y)
= _ 2 1.y I 2 ' v Y
a [(x—y)n(xy] )5(2)(Xl _y+ x' —y)nx'y; )5(2)(X_y,) ' (6.34)

2m | (x —x')*(x' —y')? (x' —x)*(x —y)?

Les termes contenant n dominent la croissance de ng avec la rapidité tant que no(Y) < n(Y),
puis pour de plus grandes rapidités, la croissance est de type BFKL avec ny(Y) ~ e20x(1/2)Y
6.2.2 La hiérarchie de Balitsky complétée

Il est maintenant possible de traduire les équations pour les densités ng(Y') en équations
pour les amplitudes de diffusion <Tk>y de k dipoles sur la cible, ou T représente I'amplitude
Txy|c] introduite au Chapitre 2 (voir la formule (2.21)). En effet, dans le cadre du modéle des
dipoles (6.19), le lien entre les densités ng(Y') et les amplitudes <Tk >Y est assez simple.

Lien entre densités n;(Y) et amplitudes (T*)..

Placons nous dans la jauge AT = 0 pour laquelle la densité de charge p. ne dépend pas
de x~. Elle est alors reliée au champ . de la maniére suivante :

pe(x) = —V? / det o (27,x) . (6.35)
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En utilisant V2 1In(x?) = 476(? (x), la relation entre p. et o, peut s’inverser :

2
[t ozt == [CXm(x-yP)nty) (6.36)

Il est possible d’exprimer Tky[a] en terme de p., dans le régime dilué (voir la formule (3.3)
valable lorsque o ~ g) :

(x —v)

z> In <( z>pc(u)pc(V) +0(g2p?) . (6.37)

TXy [Oé] = y — V)

nas [ d*udv ! (x —u)
——1In

N, 4 4w (y —u)

En utilisant ensuite [ d?u p.(u) = 0 (la cible est non colorée), nous obtenons

1
2N,

Ty = =y [ dud Aol yla,v) (pe(wpe(v)y (6.38)

ol nous avons introduit

a? x —u)?(y — v)?
Ap(x,yu,v) = gs In? <Ey — u§2g — v§2> . (6.39)

D’autre part, dans le modéle des dipdles nous avons

(pe(@pc¥))y = [ Do pelu)pe)|@t ] (6.40)

ot nous rappelons que la fonction |®¢[p]|? est donnée par la formule (6.19). En utilisant pour

u # v (voir la formule (6.119) dans ’appendice) :

1
i o)) Ry l) = T Py (50 =206 (v =)+ 5 = )5 (v = )

(6.41)

et le fait que dans la limite de grand N, les termes p.(u)pc(v) Hfil Ry, ,x,-..0[p] se cal-

culent a partir de (6.41) avec une formule similaire & celle de dérivée d’un produit [113], nous

obtenons :

N

0o N
ey =Y [ (H d2xi> Py({xi}, Ye) (Z 6 (i1 — WD (x; — v)
N=1 1=0

=1

1
92N,
N
#6261y — )i, — w) / Dp T B 1x.16/601010)
=1
1

= E(n(u,v; Y)+n(v,u;Y))(6.42)
Finalement, le lien entre la densité de dipoles dans la cible n(Y) et amplitude de diffusion
d’un dipole projectile sur la cible (1), s’écrit

(Txy)y = /d2ud2vA0(x,y\u,v)n(u,v; Y). (6.43)

Il est maintenant manifeste que la fonction Ag(x,y|u,v) représente 'amplitude de diffusion
élastique (& l'ordre dominant par rapport a «s) dans la collision du dipdle (x,y) avec le
dipole (u,v). Cette quantité peut aussi s’obtenir en calculant directement le processus (voir
par exemple [90]). Il sera utile dans la suite d’inverser (pour x # y) la relation (6.43) :

1

TL(X, Y; Y) + n(Ya X Y) T 4202
s

ViVe (Tay)y - (6.44)
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Le lien (6.43) entre (T')y et n(Y") est connu depuis les premiéres études du régime dilué et
de I'équation BFKL, il permet de retrouver que dans le régime dilué, (Tyy),- obéit a I’équation
(3.2) discutée au Chapitre 3. Nous verrons que dans le cas des amplitudes <T k >Y , ’équation
BFKL n’est plus suffisante pour décrire le régime dilué (si k > 1). Un calcul similaire & celui
effectué pour obtenir (6.43) donne le lien entre la densité na(Y) et Pamplitude <T2>Y :

<TxyTx/y,>Y = /dzud2vd2u’d2V’A0(x,y\u,V)Ao(x’,y'|ul,v’)n2(u,v; u,viY)
—|—/d2ud2vA0(X,y]u,V)Ag(x’,y’\u,v)n(u,v; Y). (6.45)

L’interprétation physique est claire : le terme qui contient ne décrit 'interaction entre les
deux dipoles projectiles (x,y) et (x',y’) avec deux des dipoles qui habillent la cible (u,v) et
(u’,v') distincts, tandis que le terme qui contient n décrit l'interaction entre les deux dipdles
projectiles (x,y) et (x/,y’) avec le méme dipdle de la cible (u, v). Cette deuxiéme contribution
est sous-dominante dans la limite de haute énergie [XI, 113] et nous la négligerons dans la
suite. C’est le cas parce que, comme expliqué précédemment, n croit avec Y comme ex(1/2)Y
alors que ns croit avec Y comme e2X(1/2Y  De maniere plus générale, le lien entre la densité
nk(Y) et 'amplitude <Tk>y s’écrit de maniére schématique <Tk>y = [ Af ni(Y).

Une nouvelle hiérarchie d’équations

A partir de la hiérarchie pour les densités ng, on obtient finalement la hiérarchie pour les
amplitudes <Tk>Y dans le régime dilué. Dans le cas de (Tky), , on obtient I'équation BFKL
(3.2), en accord avec les termes contenant (T')y dans la premiére équation de la hiérarchie de
Balitsky (2.32). Dans le cas de (TxzTzy)y , nous obtenons les termes contenant <T2>Y dans
la deuxiéme équation de la hiérarchie de Balitsky (2.33), plus la correction suivante :

d a [ d*ad*vd*z (u—v)?

- (Ixz1x = 5 o o o A A "y
dY< vy a2 ) 2r 27 27 (u—2)%(z —Vv)? 0(x, ylu,2) Ao, ¥z, v)

corr

ViV (Tuy)y - (6.46)

De maniére générale, dans ’équation pour <Tk >Y : les termes contenant <Tk>y sont les
mémes que ceux des équations de Balitsky (simplifiées avec la limite de grand N.), il n’y a
pas de termes contenant <Tk+1>y, et il y a un terme contenant <Tk_1>y. Cette hiérarchie
d’équations, dérivée dans le cadre du modéle des dipoles (6.19) pour la cible et dans la limite
de grand N, est valable dans le régime dilué a ~ g. Au contraire la hiérachie de Balitsky est
valable dans le régime dense ags ~ 1.

Pour obtenir une hiérachie d’équation valable & la fois dans le régime dense et dans le
régime dilué, il a été proposé de combiner [114, 118]| les deux hiérarchies en ne gardant qu’une
seule fois les termes communs de type BFKL. La premiére équation de cette nouvelle hiérachie
est la méme que la premiére équation de la hiérarchie de Balitsky :

d <Txy> Y

2, % — v)2
L —a [ G2 I (T + (Tady — By — TaTady) - (64)

La deuxiéme équation de la hiérarchie est par contre différente :
d d*z/ (x — z)?

— (T T, =

dY (TaTay)y a/ 2m [(X—Z’)Q(z’ —

7z — v)2
- <TXZ’TZ’ZTZy>Y> + (z _ (Z/)z(Z/)_

5 ( BTy + (TuaTay)y, = (TraTay)y

}’)2 < <szTzz’>y + <szTz’y>y - <szsz>y

d
— (Tyo T Ty )y )} + 7 (TaTaydy|  (6.48)
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avec le terme supplémentaire donné par la formule (6.46). En général, I’équation pour <Tk >Y
contient des termes de type BFKL contenant <Tk>y , des termes contenant <Tk+1>y provenant

uniquement du régime dense, et des termes contenant <Tk*1>y provenant uniquement du
régime dilué.

6.2.3 Une équation de Langevin

De maniére remarquable, la nouvelle hiérarchie que nous venons de dériver est équiva-
lente & une équation de Langevin. Pour montrer cela, étudions d’abord un cas simplifié sans
dimensions transverses. Considérons une fonction stochastique Ty qui obéit & ’équation de

Langevin

C% — A[Ty] + /2B[Ty] v(Y) (6.49)

avec A et B des polyndmes et ol le bruit v est de moyenne nulle et autocorrélé de la fagon
suivante :

W¥)=0 W)Y =58Y Y. (6.50)

Pour chaque réalisation du bruit, la solution de (6.49) est une réalisation de Ty. En moyennant
sur I’ensemble des réalisations il est possible de construire, a partir de Ty, les fonctions (1}}).
On montre alors [119] que ces fonctions vérifient la hiérarchie d’équations

d(Ty)
dYy

= n(A[Ty]Ty™Y) + n(n — D(B[TY]T3 7)) . (6.51)

Signalons que ce résultat est valable dans le cas ou I’équation de Langevin (6.49) est considérée
avec la prescription d’Ito.

En généralisant ces résultats, on montre que les solutions de la hiérachie d’équations de
QCD peuvent s’obtenir a partir de 1’équation de Langevin suivante (toujours considérée avec
la prescription d’Ito) [114, 120]

2Z x — 2
diYTY(X’ y) = O_é/ 27 (X —<Z)2(Z>— y)2 |:TY(X> z) + Ty (z,y) — Ty (x,y)

e 0t )]+ 200 [ TR ot v 2
VYAV (V) v(u, v,z Y)  (652)
ou le bruit v vérifie :
(v(u,v,z,Y)) =0, (6.53)
(v(u,v,z,Y)v(u',v, 2, Y")) = 8P (u— v (v —u)s®(z—2)s(Y —Y) . (6.54)

En effet, les moyennes d’ensemble (Ty (x1,y;) ... Ty (Xn,y,,)) obtenues & partir de ’ensemble
stochastique des solutions Ty (x,y) de '’équation (6.52) vérifient la méme hiérachie d’équations
que les amplitudes de dipoles (Tx,y, ... Tx,y, )y (Voir les équations (6.47) et (6.48)). Nous
pouvons ainsi écrire

(Try, - Ty )y = Ty (x1,51) - - Ty (Xn, ¥)) (6.55)

ou dans le membre de droite, la moyenne ( . ) est une moyenne sur I’ensemble des réalisations
du processus stochastique, alors que la moyenne ( . )y du membre de droite correspond & une
moyenne sur la fonction d’onde de la cible.
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Les autocorrélations (6.54) sont particuliéres : elles sont non diagonales dans les deux
premiers arguments du bruit (u,v). Cette propriété n’est pas usuelle et nous ne savons pas
s’il est possible d’utiliser un tel bruit dans des études numériques. Pour simplifier le probléme,
nous allons étudier des solutions homogeénes Ty (x,y) = Ty (r = |[x—y|). Nous avons déja
considéré de telles solutions au Chapitre 3, dans le cadre de I’étude de I'équation BK et de
maniére similaire, nous allons utiliser ’espace des impulsions. Introduisons ainsi

- dr
T(L,Y) :/Jo(kzr) Ty (1) (6.56)
T
oll nous rappelons que L= In(k2/ Q(Q)) avec (Qg une échelle d’impulsion donnée par la condition
initiale. Pour obtenir une équation de Langevin fermée pour T, il est nécessaire de faire une
approximation dans le terme de bruit [114]. Nous ne détaillerons pas cette approximation ici,

elle permet d’écrire I’équation pour 1" sous la forme

diyf(i, Y) = ax(-0;)T(L,Y) — aT%(L,Y) + ay/wa2T(L, V) v(L,Y) (6.57)

avec

(ALY W Y)) = %5@ _ sy — Y . (6.58)

Le facteur x dans le terme de bruit provient de I'approximation mentionnée ci-dessus et
doit étre considéré comme un paramétre qui caractérise la force du bruit. Pour k = 0, cette
équation est ’équation BK pour des solutions homogenes (voir I’équation (3.34) que nous
avons étudiée au Chapitre 3) qui appartient a la méme classe d’équivalence que I’équation
F-KPP. De maniére similaire, il semble que I’équation (6.57) appartienne a la méme classe
d’équivalence que l'équation de F-KPP stochastique (sFKPP) [121, 122|, méme si cela est
moins certain [123]. Dans tous les cas, I'équation (6.57) et I’équation sFKPP sont trés simi-
laires, ce qui a permis d’obtenir de nombreux résultats pour I’équation de QCD (6.57).

L’équation sFKPP (qui peut étre obtenue en développant la fonction x(7y) au deuxiéme
ordre, voir par exemple [XVIII]) s’écrit

d d?
ﬁu(:c, t) = ﬂwu(x, t) 4+ Au(z, t)(1 — u(z, ) + en/u(z, t)(1 — u(z, 1) v(z,t) (6.59)

avec

(v(z, (' 1)) =6(x —a")o(t —t) . (6.60)

La variable de temps ¢ joue un role analogue a aY et la variable de position z joue un role
analogue & L. L’analogue de la force du bruit xa? est Ae? et 1 est un paramétre qui controle
la force de la diffusion.

6.3.1 La limite de bruit faible

Commencons par décrire qualitativement 1’évolution de Ty (r) (ou de maniére équivalente
de T(L,Y)). Dans la limite de bruit faible ka? < 1, pour chaque réalisation de Ty (r) le
bruit a un effet tres faible, il est important seulement pour de trés petites tailles r, lorsque
lamplitude Ty (r) est trés petite. Pour la plus grande partie du front, chaque réalisation est en
fait identique a une solution de I’équation BK : ¢’est une onde progressive Ty (1) = T'(L—avY’)
avec L = —In(r2Q3) o v est la vitesse de 'onde (voir le Chapitre 3). Rappelons que 1’évolution
de ces solutions est telle que pour différentes valeurs de Y, le front de ’onde en fonction de
L a toujours la méme forme et est simplement translaté proportionnellement & la différence
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TY (’I") A

Y3

L = —In(r*Qj)

F1G. 6.1 — Représentation schématique de la stochasticité de 'évolution de Ty (r) & partir de
la condition initiale Ty, (r). Chaque réalisation, représentée en fonction de L = —In(r?Q3),
est une onde progressive et 'effet du bruit est d’introduire une dispersion de la position des
fronts d’ondes.

des rapidités considérées (voir les figures 3.3 et 3.4). L’effet principal du bruit est d’introduire
une dispersion des événements : pour une rapidité donnée, les différentes réalisations de Ty (r)
sont des fronts d’onde dont la position est stochastique. Ceci est schématisé Figure 6.1.

Il est possible de quantifier la dispersion des événements [124]|. Rappelons que, pour chaque
valeur fixée de la rapidité Y, la taille r4(Y) a partir de laquelle le terme non-linéaire devient
important définit I’échelle de saturation Qs(Y) = 1/r5(Y’). La stochasticité de la position du
front de 'onde représentée Figure 6.1 est ainsi équivalente a une stochasticité de Q(Y) =
Q% Y. Appelons P(p;) la distribution de probabilité pour la variable ps = In(Q2(Y)/Q32).
Les cumulants k, de cette distribution sont connus [125]. Le premier cumulant que nous
dénoterons k1 = (ps) = In(Q2(Y)/Q3) est la valeur moyenne de ps. Le second cumulant que
nous dénoterons kg = o2 est la variance de la distribution et les cumulants d’ordre supérieur
lui sont tous proportionnels.

En résumé, nous avons

_ 372 n!C(n)0_2
™

k1= (ps) = avY , Ko = 0% = aDY Kn , (6.61)
ot ((n) est la fonction Zeta de Riemann et le coefficient v est & partir de maintenant relié a
I’échelle de saturation moyenne ;. Signalons que ces résultats sont valables dans la limite
de haute énergie 02 > 1. Dans la limite de bruit faible dans laquelle ces résultats ont été
obtenus, nous avons

"20"() (- 3la[in(1)(ka2)) ()
( muw&>>’ “swi(1mazyy . OO

ot nous rappelons que v(y)=x(7v)/7, que v.~0.6275 est solution de 'équation (3.27), et que
Ve =0(7.)~4.883.

~ T 2(1/(ka2))

6.3.2 La distribution de probabilité de I'échelle de saturation

Dans cette partie, nous considérons des valeurs quelconques pour la force du bruit xka?.
Nous venons de voir que dans la limite de bruit faible, (ps) et o2 sont proportionnels & Y (voir
les formules (6.61)). En fait, cela semble étre plus général : c’est confirmé par des simulations
numériques [126, 123| pour des valeurs arbitraires de la force du bruit. Il est d’ailleurs observé
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que, quand la force du bruit augmente, la vitesse v diminue et le coefficient de dispersion D
augmente. En dehors de la limite de bruit faible, il n’existe pas d’expression analytique pour
v et D, donc dans la suite nous considérerons v et D comme des paramétres. Nous allons a
présent reproduire les résultats de Particle [XXII] et obtenir la probabilité P(ps) & partir des
cumulants (6.61). La connaissance de P(p;) nous permettra ensuite de calculer des quantités
moyennées sur ’ensemble des réalisations du processus stochatique.

Résultats analytiques

Notre point de départ est la fonction génératrice des moments de P(ps)

<e’\ps> = /OO dps €= P(ps) . (6.63)

—00

La fonction génératrice des cumulants est alors

In <ekps> = “’:jn = (p)A + ?:20202 3 SQL (6.64)

n
n>0 n=2 Te

En utilisant la représentation intégrale de la fonction Zeta
1 [ee) Un_l

= — dy —— 6.65

ORI (6.65)

nous pouvons écrire la fonction génératrice des cumulants (6.64) de la maniére suivante

2 00 Au/ve _
3726 02A e —— !
s Ye Jo et —1
3,02 A
= o= b u(1- 2] (6.66)

ol v =~ 0.577216 est la constante d’Euler. Il est alors possible d’inverser la transformée de
Laplace (6.63) pour obtenir la distribution de probabilité :

Plps) = /:HOO AR {—)\z b [VE +op (1 - A)} } (6.67)

—i00 29 c

In <e)‘ps> = (ps)A\+

avec ¢ < 7. et les notations

Qg 3700'2
z=ps—(ps) =1n (Q% , b= ol (6.68)
La variable z représente la distance entre le logarithme de 1’échelle de saturation et sa valeur
moyenne, et b est une redéfinition commode de la variance o?.
Pour évaluer la probabilité P(ps) de maniére plus approfondie, effectuons 'intégration
par rapport a A dans 'approximation du point de selle. Nous obtenons que le point de selle

A = 7.(1 — €) satisfait I’équation
2+ b ym + (@) - (1 - 9u (@)

|
o

(6.69)

ot (™ (z) est la fonction Polygamma définie par (™ (z) = jx—nnw(az). La distribution de
probabilité est ainsi donnée par

1202 1-¢ 12 302
Plo) = {2 [0 - 55000} e -2t -an@) . @)
T T
Bien que 'équation (6.69) n’ait pas de solution analytique, nous pouvons la résoudre dans
ces trois limites : z/b — 0 qui correspond & € — 1, z/b — oo qui correspond & € — 0; et
z/b — —oo qui correspond a € — oo. Détaillons ces trois possibilités.
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— Lalimite z/b — 0 ou |z| < 7.02. L’équation (6.69) devient (rappelons que /(1) = —yp
et (1) = 7%/6)

% + [vE +(1) —2(1 — e)¢<1>(1)} =0 = é=1- % : (6.71)

En utilisant (6.70), nous obtenons
1 9¢(3) = 22
P(ps) ~ \/W |:1 — 7'(2 760_2:| exp (—%‘-2 . (672)

Nous avons gardé le premier terme sous dominant pour montrer que le maximum de la
distribution de probabilité est obtenu pour la valeur constante

—9¢(3)

T2y,

~ 175 (6.73)

La valeur la plus probable de ps n’est donc pas la valeur moyenne (p). Néanmoins pour
|z| < .02, nous obtenons que la probabilité est Gaussienne :

1 22

— La limite z/b — +00 ou z > v.02. L’équation (6.69) devient

1 1-¢ =2 3 Yeo? §
_<z>+,+7€+£:0:>€: 2 X0 (1+%"). (6.75)

b € €2 6 w2 oz 4z

Nous obtenons alors pour la probabilité :

1/4 2\ 3/4 2
P(ps) ~ 3<%U > exp [—’ycz (1 -2 3 %0 )] . (6.76)

z w2z

Cela correspond & une loi de puissance P(ps) ~ (Qs/Qs)™ 2" pour la queue de la dis-
tribution aux grandes valeurs de Q).
~ La limite z/b — —00 ou z < —7.02%. L’équation (6.69) devient

5 +1In(é) +1 1—0:>~—e ~ 1 +1 (6.77)
- n(e — == €E=exp| —— —1- . .
p TE z p 3 ~e0? VE

La probabilité correspondante est

w1 2 2 14+ 37202 w2 1
P Ry =— - — — —< - -1- - =
(:08) 6 o eXp { 6 ,}%0_2 2 7_‘_2 eXp ’YE

C’est une distribution de Gumbel qui décroit trés vite lorsque z < —v.02.

En augmentant z a partir de z = —o0, la transition entre le régime (6.78) et le régime
(6.74) se produit pour z = —7.0? et la transition entre le régime (6.74) et le régime (6.76) se
produit pour z = 7.02. Pour ces deux valeurs p, = (ps) & 7,02, la probabilité est de I'ordre
de e—20” /o et donc trés petite dans la limite de haute énergie. Cela implique que P(ps) n’est
pas Gaussienne seulement pour des fluctuations trés improbables. Pour décrire ’ensemble
stochastique des réalisations de Ty (r) (ou de maniére équivalente de T'(L,Y)), la distribution
Gaussienne (6.74) est une bonne approximation.
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Fi1Gc. 6.2 — La distribution de probabilité de ’échelle de saturation P(ps) en fonction de
2z = ps — {ps) pour deux valeurs de la force du bruit x = N2/(107) (graphes du haut) et
k=NZ2/(2m) (graphes du bas) et pour trois valeurs de la rapidité¢ Y = 20, 30 et 40 (de gauche
a droite). Nous comparons la prédiction analytique (6.70) (lignes pleines) et les histogrammes
obtenus & partir des résultats numériques de [126].

Résultats numériques

Nous allons a présent comparer la probabilité (6.70) avec des résultats obtenus par simu-
lations numériques. Dans la référence [126], I'équation (6.57) a été résolue numériquement a
partir d’une condition initiale fixée et pour & = 0.2. Plusieurs valeurs possibles pour la force
du bruit ont été étudiées, et les caractéristiques représentées Figure 6.1 ont été confirmées :
chaque réalisation de T(L,Y) est une onde progressive (sauf pour L > Y ou les effets du
bruit sont visibles) et les différentes réalisations sont dispersées.

Nous allons considérer les deux valeurs x = N2/(107) et x = N2/(2n) pour lesquelles
10000 réalisations de T'(L,Y) ont été obtenues. Pour une valeur de Y donnée et pour chaque
événement, 1’échelle de saturation est extraite en résolvant T(ps, Y) = 0.2. De ces résultats,
il est possible d’obtenir la distribution de probabilité P(ps) en réalisant un histogramme
normalisé. 11 est aussi facile de calculer {p,)(Y) et 0?(Y) et de vérifier que ces cumulants sont
bien proportionnels a Y (si YV est suffisamment grand). Pour les trois valeurs Y = 20, 30 et
40, la probabilité P(ps) ainsi obtenue est représentée Figure 6.2 en fonction de z = ps — (ps).

En résolvant numériquement 1’équation de point de selle (6.69), nous pouvons calculer
explicitement la formule (6.70) en fonction de (ps) et 0. La probabilité obtenue en utilisant
les valeurs de (ps)(Y) et 02(Y) extraites des simulations numériques est comparée aux histo-
grammes de la Figure 6.2. L’accord est remarquable, ce qui confirme qu’autour de la valeur
moyenne la probabilité est Gaussienne (au décalage du maximum preés, qui est aussi en accord
avec (6.73)). Nous observons aussi que la probabilité décroit trés rapidement vers les valeurs
de ps négatives mais favorise au contraire les fluctuations vers de grandes échelles de satura-
tion. Cependant les déviations par rapport au comportement Gaussien concernent seulement
des fluctuations qui ont une trés faible probabilité.
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F1G. 6.3 — L’amplitude de diffusion physique (Ty(r)) (lignes pleines) représentée en fonction
de L = —In(r?Q3), et obtenue en moyennant sur les différentes réalisations de Ty (r) (lignes
tiretées). Les réalisations Ty () sont des ondes progressives et lorsque la dispersion des événe-
ments est négligeable (aDY < 1), (Ty(r)) est aussi une onde progressive. Lorsque la rapidité
augmente, la dispersion devient importante (&DY > 1) et 'amplitude (Ty (7)) n’est plus une
onde progressive.

L’amplitude de diffusion moyennée (Ty (r))

L’amplitude de diffusion (Ty(r)), moyennée sur I'ensemble stochastique des réalisations
de Ty (r) se calcule de la maniére suivante

(Ty(r)) = / " dps P(po)T(L - py) (6.79)

en utilisant la distribution de probabilité P(ps) que nous venons de dériver. En écrivant cette
formule, nous avons utilisé le fait que chaque réalisation de Ty est une onde progressive :
Ty (r) = T(L — ps). Méme si pour les petites valeurs de r ce n’est pas le cas, nous verrons
que l'intégrale dans (6.79) n’est de toute fagon pas sensible aux grandes valeurs négatives de
ps. Utiliser la formule (6.79) est donc suffisant. Cette procédure de moyennage est représentée
Figure 6.3, a partir de laquelle nous pouvons inferrer que, si la dispersion des événements est
importante, ’amplitude physique (Ty (r)) n’est plus une onde progressive.

En insérant la distribution de probabilité (6.67) dans (6.79) et en utilisant la représentation
de Mellin

dA ~
TL)= [ = e T :
@)= [ 5 T, (6.80)
nous obtenons que 'amplitude physique est donnée par
c+100 d\ - A
(Ty (r)) = S T(A\) exp —AZ —bA |y + 91— — . (6.81)

Nous avons introduit la variable

Z =L~ (ps)=—In(r’Q%Y)) . (6.82)

L’intégration sur A est de maniere générale sensible au méme point de selle (6.69) que dans
le calcul de la probabilité. La différence principale est que T'(\) posséde un podle en A = 0,
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qui est di & la contrainte d’unitarité T'(L) < 1. Ainsi, '’expression suivante est suffisante pour
étudier I'intégrale (6.81) :

. 1 L < ps ~ _ 1 1
T(L B pS) n { €xXp [_VC(L - ps)] L> Ps ’ ~ T()\) B X * Ye — A (6-8?))

L’expression ci-dessus pour T (M) peut étre introduite dans (6.81) avec la restrictrion 0 < ¢ <
7e et les différentes limites intéressantes |Z| < v.02, Z > .02 et Z < —v.0° peuvent étre
étudiées de maniére similaire aux cas traités précédemment.

Ceci est fait de maniére détaillée dans [XXII] et la principale conclusion est la suivante.
Dans le régime |Z| < 7.02, qui représente une grande fenétre autour de Z = 0 (ou bien
r = 1/Qs(Y)), il est suffisant d’utiliser une probabilité Gaussienne pour calculer (Ty (r)) et
nous obtenons

(Ty () = \/21?/:: dp, exp (—W)T(L—ps) ~ ;Erf(:(\/;U) o (6:84)

Pour obtenir la deuxiéme égalité, nous avons négligé les termes sous-dominants dans la limite
|Z| < 7.0% (et dans la limite de haute énergie 02 > 1). Ainsi, la fonction d’erreur complé-
mentaire Erfc provient seulement de la partie 7= 1 de (6.83). De maniére plus générale, le
résultat (6.84) ne dépend pas de la forme précise de T'(L — ps) (voir I’équation (6.83)), car
seul le pdle en A = 0 joue un role important dans (6.79), et il provient de la région "= 1. En
d’autres termes, 'amplitude (Ty (r)) est dominée par les fluctuations de Ty (r) qui sont dans
le régime de saturation. Cette caractéristique, qui est en fait valable dans le régime Z < .02,
est remarquable : méme si en moyenne "amplitude de diffusion est petite (Ty (1)) < 1, la phy-
sique pertinente est la physique de la saturation. En conséquence de cette nouvelle physique,
nous obtenons aussi

00 _ 2
(Ty (r1) ... Ty (rn)) = \/27/00 dps exp <—(p520<§3>)>T(L1 — ps) .. T(Ly — ps)

~ %Erfc <_1n\(/7:i@> = (Ty (r<)) (6.85)

avec L = —In(r?Q2) et r« = min(ry,...,r,). Les moyennes (Ty(r1)...Ty(r,)) sont ainsi
dominées par des configurations ot tous les Ty (r;) sont dans le régime de saturation. Ce
type de corrélations (6.85) est trés différent de celles rencontrées dans le cadre des équations
B-JIMLWK [127, 128, 129].

Rappelons que ces résultats sont valables dans la limite 0 > 1, c’est a dire Y > 1/D.
Dans le régime Y < 1/D, que l'on peut qualifier de régime intermédiaire, la dispersion des
événements est négligeable et amplitude moyénée (Ty (1)) est simplement une onde progres-
sive de type (6.83). Formellement, la probabilité P(ps) tend vers la fonction 6(ps — (ps)) et
nous retrouvons les prédictions obtenues dans le cadre de ’équation BK. Ceci indique que le
paramétre D joue un rdle important. Cependant comme précisé précédemment, notre connais-
sance de ce paramétre est limitée, nous le connaissons seulement dans la limite de bruit faible
(voir les formules (6.62)).

6.3.3 La limite de bruit fort

Dans cette partie qui reprend les résultats de 'article [XVIII], nous considérons la limite de
bruit fort ka? > 1. La connaissance de la limite de bruit fort, en complément des études de la
limite de bruit faible, est importante pour mieux comprendre le régime de bruit intermédiaire,

notamment dans l'interprétation de résultats numériques. Dans la limite xa? > 1, nous
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obtenons une solution analytique de I’équation (6.57), ou plus présisément, de 1'équation
sFKPP (6.59). Le probléme est soluble a ’aide d’une propriété de dualité [130] : dans la limite
de bruit fort, I’équation SFKPP est équivalente & un processus de coalescence, exactement
soluble [131, 132]. Nous obtenons ainsi une expression analytique pour toutes les moyennes
(u(z1,t) ... u(zy,t)) . Insistons que la limite Ko > 1 ne doit pas étre considérée comme une
limite de couplage fort, ka2 peut atteindre de grandes valeurs dans le régime perturbatif, si
la valeur x est suffisamment grande.

Un modeéle de coalescence

Le point de départ est la relation de dualité entre I’équation sFKPP et certains processus de
réaction-diffusion. Considérons le processus de réaction-diffusion suivant, pour des particules
sur un réseau unidimensionnel avec des sites espacés d’une distance h : en chaque site, il
peut y avoir création ou recombinaison de particules et celles-ci peuvent diffuser sur un site
voisin. Dans la limite continue h — 0, ce systéme est dual a ’équation (6.59), avec les taux
de création, recombinaison et diffusion donnés par

A e?/h 9/h?
A 5 A+ A, Ai+z4i—/> i Az‘/—> i+1 (6.86)
ou A; désigne une particule sur le site i. Plus précisément, on montre que le systéme de
particules et la solution de ’équation sSFKPP wu(x,t) sont reliés de la maniére suivante [130] :

<H [1— u(x,t)]N(w’0)> = <H [1— u(:U,O)]N(m’t)> : (6.87)

x T

ou N(x,t) est la densité de particules du systéme de réaction-diffusion dans la limite continue.

En choisissant astucieusement les conditions initiales u(x,0) et N(z,0), la relation de
dualité (6.87) se simplifie. Par exemple, si N(z,0) = §(x — zp) (au départ il n’y a qu'une
particule au site xzg), alors le membre de gauche de la relation (6.87) est simplement 1 —
(u(xo,t)). De maniére similaire, si au départ il y a n particules aux positions 1 < -+ < zp,
le membre de gauche devient ([1 — u(xy,t)]...[1 — u(xy,t)]). En ce qui concerne la fonction
u, nous allons utiliser la condition initiale u(x,0) = 6(—=z) qui identifie le membre de droite
de la relation (6.87) avec la probabilité que tous les sites du systéme de particules avec z < 0
soient vides. Cela sera repris dans la suite.

La dualité (6.87) permet de relier la limite de bruit fort de ’équation sFKPP a un modéle
de coalescence. Du point de vue du systéme de particule, la limite de bruit fort est définie par
£2>>1 et A\> 1 avec le rapport \/e? fixé et petit. Dans cette limite, deux particules sur le méme
site se recombinent systématiquement en une particule et le systéme se réduit & un modéle de
coalescence : il peut y avoir au maximum une particule par site. Les particules diffusent sur
les sites voisins avec le taux 1/h? et créent de nouvelles particules avec un taux w/h olt w est
donné par w = 29\ /e? (voir [XVIII] pour plus de détails). Ce modéle est exactement soluble
[131, 132] et permet d’obtenir ([1 —u(x1,t)]...[1 — u(xy,t)]) dans la limite de bruit fort.

L’idée est d’introduire la probabilité E(x,y;t) pour qu’au temps t, les sites entre z et
y > x soient vides. Nous obtenons que, & cause de la diffusion et de la création de particules,
E vérifie I’équation différentielle suivante

HE(z,y;t) = {9(92 + 0;) + w(dy — 82) } E(z,y;t) (6.88)

avec la condition aux limites limy_., F(x,y;t) = 1. Cette équation linéaire peut étre résolue
exactement. La densité de particules N(x,t) s’obtient ensuite & partir de la dérivée de E':

N(z,t) = 0yE(x,y;t)| (6.89)

y—x
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De plus, la probabilité que tous les sites du systéme de particules avec z < 0 soient vides est
simplement F(—o00,0;¢). Ainsi, avec nos choix de conditions initiales, la relation de dualité
(6.87) devient

(1 —u(xy,t)]...[1 —u(xn,t)]) = E(—00,0;t) avec N(x,0) =d(xz—x1)...0(x —x,) . (6.90)
Solution du modéle

Introduisons les variables sans dimension

8uw?

52%(x+y), C:%(y—x), r=—t. (6.91)

Nous obtenons alors
Blaait) =<+ [ae [Tac cleg.oin [BE0 -] 69
ot la fonction de Green G est donnée par
Gl € ¢.Cr) = % o~ (E=€)2 /7 ~(C~C)/2 [e—(c—c')% _ e—(<+c’>2/7] (6.93)

et ot E(¢',(’;0) est la condition initiale.
La condition initiale N(z,0) = §(z — 1) ...0(x — x,) se traduit sur E par (avec formel-
lement xp = —00)

E(z,y;0) =1— Z O(z — xi—1)0(z; — 2)0(y — x;) . (6.94)
i=1

Traitons explicitement le cas E(z,y;0) = 1 — 0(x — 20)0(y — x0) (N(2,0) = d(x — z0)) qui
permet d’obtenir ([u(zo,?)). En insérant cette condition initiale dans (6.92) et en utilisant
(6.93), nous obtenons

1 T —y—2wt zo—y—wt> [ 1 <x0—az+wt>]
E(z,y;t) = = { Erfe| ——— | — Erfc| —-—— | |1—=Erfc| ——+——
(®3:%) 2{ < V80t ) ( 2/t 2 /It
y—x+2wt>} 1w ){ (y—x—Zwt) <m—y+2wt>
+Erfc| Y——nrn— | ¢ + = e W2 — Erfc| Z——— | — Erfc| —F——
< V8t 2 V80t V89t

—|—ErfC(W> [1-5&&(%)” . (6.95)

La limite z — —oo et y = 0 donne ensuite simplement

(u(zg, t)) = ;Erfc(x;\;ﬁi;t) . (6.96)

Nous obtenons donc, dans la limite de bruit fort, que la moyenne (u(xg, t)) est équivalente &
une superposition de fonctions ©(x — z() avec une probabilité gaussienne de moyenne wt et de
variance 20t. La vitesse moyenne w décroit comme 1/e% quand la force du bruit €2 augmente,
et le coefficient de dispersion ¥ est constant. Pour étudier des valeurs de €2 intermédiaires,
I’approche par la limite de bruit fort semble donc converger plus rapidement que ’approche
par la limite de bruit faible (6.62), dans laquelle la vitesse se comporte comme v, — |log(e)|~2

et la dispersion comme |log(e)|~3.
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En insérant la condition initiale (6.94) dans (6.92) et répétant le calcul précédent, nous
obtenons

r1 — wt

2V 0t

en rappelant que x; est la plus petite des positions x;. Cette relation peut ensuite se traduire
en

(1 —wu(zr,t)] ... [1 —u(zn,t)]) =1— ;Erfc< ) =1— (u(x,t)) (6.97)

Ty — Wt
24/t
avec x, la plus grande des positions x;. Rappelons que dans ’analogie entre I’équation sFKPP
(6.59) et I'équation de QCD (6.57), x est 'equivalent de In(k?/Q3) et t est I'equivalent de aY.

Notre étude de la limite de bruit fort confirme ainsi que les corrélateurs sont déterminés par
la plus grande des impulsions, ou de maniére équivalente la plus petite des tailles.

(1) . (@, b)) = ;Erfc< > — (u(wn, 1)) (6.98)

Il est remarquable que de la limite de bruit fort donne des résultats similaires a ceux
obtenus précédemment (voir les formules (6.84) et (6.85)). Cela montre l'universalité de la
fonction d’erreur dans la limite de haute énergie. En autres, les résultats (6.84), (6.85), (6.96)
et (6.98) ne dépendent pas des conditions initiales.

6.4 Une nouvelle loi d’'échelle en QCD a haute énergie

Dans cette derniére section, nous étudions les implications phénoménologiques de la solu-
tion homogene (6.84) pour 'amplitude de diffusion d’un dipdle sur une cible hadronique dans
la limite de haute énergie. Nous considérons la diffusion profondément inélastique et la pro-
duction de gluons vers 'avant, traitées respectivement dans les articles [XIX] et [XX]. Nous
rappelons que pour ces processus, les sections efficaces sont exprimées en termes de ’am-

plitude (Tky),- pour un dipole quark-antiquark, ou de I'amplitude <Txy>y pour un dipdle
gluon-gluon.
L’amplitude (Tky), est identique a la moyenne (Ty(x,y)) qui vérifie la méme équation

(6.47). De la méme maniére, ’amplitude <Txy>y s’obtient & partir de (Ty (x,y)) et (TZ(x,y))

(voir la formule (2.54) qui relie le dipole g au dipdle gg). En changeant les positions trans-
verses X et y en variables de taille r = x — y et de paramétre d’impact b = (x+y)/2 (voir la
formule (2.25) qui introduit 'amplitude Ty4(r, b;Y)), nous pouvons écrire dans le cas d'une
solution homogéne :

Tyq(r,b;Y) = S(b) (Ty (|r[)) (6.99)

ou S(b) est le profil en paramétre d’impact introduit au Chapitre 4.

Dans le régime 02 = @DY < 1 la dispersion des événements est négligeable et ’amplitude
(Ty (r)) est une onde progressive de type (6.83) (en remplagant ps par (ps) = In(Q?/Q3) =
avY’). Dans le régime aDY >> 1 la dispersion des événements est importante et (Ty (r)) n’est
plus une onde progressive. Pour Z = L — (p,) < .02, Pamplitude est donnée par la formule
(6.84). Pour obtenir I’expression de I'amplitude quand Z > .02, intégrons exactement la
premiére ligne de la formule (6.84) (avec T'(L — ps) donné par (6.83)) :

(Ty(r)) = \/2;7 /_Z dps exp (—W) [@(ps — L)+ O(L — py) e—Wc(L—ps)]
= % Erfc<\/Z§U> + 1027 [1 = % Erfc(Z/U\é%a>] . (6.100)

Nous obtenons ainsi que si Z > .02 > 1, alors (Ty (1)) ~ e~ 7%,
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La formule (6.100) est commode car elle reproduit le comportement de (Ty(r)) dans les
différentes limites : 02 < 1, 02ggl et Z < 7.02, Z > .02 > 1 (pour une étude plus détaillée,
voir [XIX]). Les variables 7 et Y interviennent par l'intermédiaire de Z = —In(r2Q?(Y)) et
0% = aDY. Méme si a partir des données de HERA qui sont en accord avec les prédictions du
régime 02 < 1 (nous I’avons montré au Chapitre 4), nous savons que av ~ 0.3, nous n’avons
aucune information sur la valeur de D. Ainsi dans la suite, nous dériverons les implications

phénoménologiques du régime o2 > 1, en utilisant les variables Z et o (et non pas r et Y).

6.4.1 Implications pour la diffusion profondément inélastique

La section efficace totale en diffusion profondément inélastique peut étre obtenue de la
formule (4.27) ot nous rappelons que la fonction ¥y (voir formule (4.26)) décrit la fluctuation
du photon virtuel (de polarisation longitudinale A = L ou transverse A = T') sur le dipole qq
qui subit 'interaction hadronique avec la cible. En utilisant (6.99), nous obtenons

ol "N (x,Q%) = 4nS, / dz / rdr Y Ua(z,1) (Ty (1)) (6.101)
A=LT

ou la rapidité totale Y est reliée a la variable cinématique z (voir la formule (4.3)) par

= In(1/z).

Introduisons la variable

Z2q = (gz) ; (6.102)

similaire & Z avec le remplacement 7 — 1/@Q. Nous allons estimer analytiquement la section
efficace ototp _’X(az, Q?) dans le régime Zg K .02 > 1. Pour cela on peut montrer qu'’il est
suffisant d’utiliser la formule (6.84) pour 'amplitude de dipole, ce qui permet d’obtenir les

estimations suivantes

L 2 Na@m P
Olor(, Q%) = == F Zf:ef Erfc(\[0> (6.103)

Z2

tor (2, Q%) = Na”” ”Z f! ¢ 3ot ZQErfC<\/Z§QO_>] : (6.104)

L’estimation de o5, est obtenue en remplacant (Ty- (7)) par (Ty (1/Q)) avant de faire I'intégrale
sur 7. Obtenir I'estimation de o, demande un traitement plus précis qui est expliqué dans
[XIX]. Dans le régime de haute énergie Zg < v.0% > 1, nous obtenons donc la loi d’échelle
suivante

— X 2 *p—X
ot (2,Q) )0 = ol "N (Zg /o) . (6.105)
Dans le régime 0 < Zg < .02, la partie transverse est dominante et donne

7Z2 /(20 )

— X 2 caem
ol 7N (2, Q%) = 5/ 3/22 e ot ——s— 7z (6.106)

Signalons qu’il est possible de faire des estimations aussi dans le cas de la section efficace
diffractive intégrée sur 3 (& = fixé) entre By, < 1 et 1. Dans le régime 0 < Zg < Y.0%, nous
obtenons [XIX]

-72 /O’

. N.« a€ 9
ok (2, Q%) = 126"; S Zef o (6.107)
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integrands

F1G. 6.4 — La fonction a intégrer dans la formule (6.101) (courbes indiquées par tot) et celle
qui méne a la formule (6.107) (courbes indiquées par diff ) sont représentées en fonction de
rQs, pour Q/Qs = 10 fixé. L’amplitude (Ty (r)) est (6.83) (en remplacant ps par (ps)) pour
le régime o < 1 et (6.84) pour le régime Zg < .02 > 1. Les lignes verticales tracées pour
r=1/Q et r = 1/Q, permettent d’estimer les tailles dominantes pour les différents cas.

avec la partie tranverse toujours dominante. Le résultat est indépendant de B, indiquant
que la diffraction est dominée par l'interaction de la composante ¢g. La loi d’échelle (6.105)
est aussi vérifiée.

Ces estimations indiquent que quand Zg < 702 (et 0? > 1), I'interaction entre le dipole
et la cible est dominée par des tailles  de l'ordre de 1/Q), aussi bien dans le cas inclusif
que diffractif. Cela contraste avec le régime 02 < 1, dans lequel la section efficace totale
est dominée par des tailles comprises entre 1/Q et 1/Qs (si Q@ > Q) et la section efficace
diffractive est dominée par des tailles de I'ordre de 1/Q; [72]. Pour exhiber cette différence,
nous avons représenté Figure 6.4 la fonction a intégrer dans la formule (6.101) en fonction de
r obtenue quand (Ty (r)) est donné par : (6.83) (en remplacant ps par (ps)) pour le régime
o < 1 ou bien (6.84) pour le régime Zg < .02 (et 02 > 1). La fonction a intégrer qui
meéne & la section efficace (6.107) est aussi représentée et les comportements que nous venons
d’énoncer sont manifestes sur la figure.

Pour résumer, les différents régimes de haute énergie prédits par la QCD dans le contexte
de la diffusion profondément inélastique sont représentés Figure 6.5. Cette figure indique
notamment les lois d’échelle non triviales qui accompagnent la transition du régime dilué
vers le régime de saturation. La loi (4.35) discutée au Chapitre 4, et compatible avec les
données de HERA, intervient dans le régime d’énergie intermédiaire o> < 1 tandis que la loi
(6.105) que nous venons d’obtenir concerne le régime de trés haute énergie o2 > 1. Comme
notre connaissance du paramétre de dispersion D est pour l'instant limitée, il ne nous est pas
possible d’étre plus précis pour définir ce que sont de trés hautes énergies. En revanche il nous
a été possible de montrer que quand ¢? > 1, méme pour des valeurs de Q? beaucoup plus
grandes que Q%(Y) (telles que l'interaction est faible en moyenne), la physique pertinente est
la physique de la saturation car 'interaction est dominée par des fluctuations de ’échelle de
saturation qui sont aussi grandes que Q2.
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Y =1n(1/z)
In(Q2/Q3) = avy

a(v+D)Y

loi d’échelle

saturation X .
(6.105)

DY > 1

DY <1

régime dilué

In(Q*/Q3)

F1G. 6.5 — Représentation des différents régimes de haute énergie en diffusion profondément
inélastique, en fonction de Y et In(Q?/Q32). La transition du régime dilué vers le régime de
saturation est caractérisée par des lois d’échelle non triviales : si @DY <« 1 la loi d’échelle est
la loi (4.35) et si @DY > 1, la loi d’échelle est (6.105).

6.4.2 Implications pour la production de gluons vers I'avant

Concentrons nous maintenant sur la production de gluon vers I’avant dans les collisions
hadron-hadron. L’étude du régime o2 > 1 dans ce contexte est particuliérement importante
dans l'optique du LHC [133, 134, XX]. La section efficace pour la production de gluons vers
I'avant dans une collision hadron-hadron est donnée par la formule (5.6) du Chapitre 5 (dans
le cas ol le gluon est émis dans la direction du projectile, la particule qui se déplace dans la
direction z1). En notant ¢ = (¢*,q) la tri-impulsion du gluon, et y, = Y — In(P* /q") la
rapidité a laquelle le gluon est émis (le gluon est en fait émis avec la rapidité Ymin + g, Yq
étant véritablement un intervalle de rapidité), nous pouvons écrire

do N, f
d2qdx, - 2q2 eff

(x.,9%)e(a, yq) (6.108)

avec 1y = qT /Pt = e¥Y et oul f.ss est la densité de partons effective dans le projectile
(voir Chapitre 5). Nous avons exprimé la section efficace en termes de la distribution de gluon
non intégrée de la cible ¢ définie a partir de Ty, de la maniére suivante :

o(d,yq) = /d2r e fary? / d*b Tyq(r,b5yqy) - (6.109)
L’amplitude de diffusion du dipole gg sur la cible s’obtient facilement a partir de (Ty (x,y))

et (TZ(x,y)) (voir la formule (2.54) simplifiée dans la limite de grand N). En utilisant (6.99)
et une formule similaire pour <T52, (x, y)> , lous pouvons écrire

P ) =5, [ drian) Sl (20 0) - (130)) (6.110)

ot nous avons effectué U'intégration angulaire et ot ¢ = |q|. Nous pouvons calculer (6.110) a
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1 3
o =6 -
0.1 .
=
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Zy =In(q*/Q3)

F1G. 6.6 — La distribution de gluons non intégrée ¢(q,Y) est représentée en fonction de Z,
pour différentes valeurs de 0 = 2, 4 et 6 et comparée avec une distribution obtenue dans le
régime 02 < 1. Le caractére Gaussien (voir formule (6.114)) de la distribution dans la limite
02 > 1 est manifeste.

partir de (6.100) :

o 0 o? )
rora (Ty() = 505 (T (r=eH2/Qu) ) =

72

e 207 (6.111)

\ﬁai”

ot la deuxiéme égalité est valable dans le régime |Z| < .02 (et 02 > 1). Signalons que pour
obtenir ce résultat, il faut d’abord calculer les dérivées avant de prendre la limite |Z| < .02
(voir [XX] pour plus de détails). En calculant (T%(r)) de la méme maniére que (Ty (r)) (voir
la premiére ligne de (6.100)), nous pouvons montrer que le résultat (6.111) est aussi vrai pour
(TZ(r)) . Finalement nous arrivons a la formule suivante pour ¢ :

o0 2
plq,Y) = 25, / dL J0<506L/2>;LQ<TY(T26L/z/QO)>

25 _tzg?
- \/%73/ dn Jg(@ "/2)(n+Z) = (6.112)

ol nous avons introduit la variable

Z, —ln<q22> (6.113)

s

similaire & Z avec le remplacement r — 1/q.

La fonction de Bessel Jy(x) oscille pour des grandes valeurs de x et amplitude des os-
cillations décroit rapidement avec z. Ainsi, pour évaluer l'intégrale sur n dans (6.112), il est
suffisant de considérer l'intervalle entre n = 1 et n = +00 ou e /2 est le premier zéro de
Jo. Dans cet intervalle, nous pouvons approximer Jy & cste, ce qui introduit une incertitude
sur la normalisation. Nous avons ainsi

(no -‘-Zq)2

e 22 (6.114)

o (”7+Zq)2

1
v(q,Y)fvg/ dn(n+ Zge 2% =
0% Jn

0

S

qui montre que ¢(q,Y’) est une Gaussienne en Z, dont la variance est o2 (et la moyenne un
nombre que nous ne controlons pas).
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Ce résultat est confirmé par une intégration numérique de la formule (6.110) avec les
amplitudes de dipdles obtenues a partir de (6.100). La distribution de gluon obtenue est
représentée Figure 6.6 en fonction de Z; et pour différentes valeurs de o = 2, 4 et 6 (le
maximum de la distribution a été recentré en Z;, = 0 ou ¢ = Qs). Nous la comparons avec
une distribution obtenue dans le régime 02 < 1 (voir [XX] pour les détails). Comme prédit,
la largeur de la Gaussienne augmente avec o. Ces résultats impliquent un comportement trés
différent pour la section efficace de production de gluons en fonction du régime d’énergie
02 < 1 ou 0 > 1. Les prédictions obtenues dans le cas 0> < 1 sont en accord avec les
données du collisionneur RHIC [135, 136, 137, 138, 139, 140, 141, 142, 143] (pour une revue,
voir [144]), mais dans l'optique du LHC, il est possible que les effets que nous venons de
discuter soient importants. Mais une fois de plus, notre mauvaise connaissance du parameétre
de dispersion D nous empéche pour 'instant d’étre plus précis.

6.A Dérivation de la premiére équation de la hiérarchie du régime dilué

Dans cet appendice nous dérivons la premiére équation (6.23) de la hiérarchie duale de la
hiérarchie de Balitsky. Nous souhaitons ainsi simplifier (les dépendances par rapport a [0/dp]
sont implicites)

dud?vd*z (u—1z)- (v—2)

ARy dlp] = = 21 27 27 (u—2)%(z — V)2 pe(w) [1 + WA@Wa(v)

W Wa(e) - Wh@Wa)] s Baydlp] . (6115)

I nous faut tout d’abord faire disparaitre les facteurs p.. Commengons par déplacer p.(u)
jusqu’a la gauche de p4(v). Pour cela il faut utiliser 'action de p.(u) sur W4 (u') ou Wj‘ (u) :

pe(W)Wa(u') = Wa(w)pe(w) — g Wa(w) 76 (u — u) (6.116)

pe()Wi () = Wh)pe(u) + g TWi (0') 6 (u—u') . (6.117)

Ensuite, pour éliminer les facteurs p., nous avons besoin de 'action de pg(v) ou de p.(u)pq(v)
sur Ryy0[p] (donné par la formule (6.20)) :

i) Rylp] = 3 (00 (v =) =0 (v =) ) e (Wi () Wi ()7 ) (6.118)

[\

pe(Wpa(v) Ruydlp] = 32 (6(v—x) =60 (v —y)) [T (Wh(y)Wr () T°T*) 5 (u )
T (W) Wi ()TIT<)6) (1 - )| 6[p[6.119)

Nous obtenons alors

Qg d?z 20x—2z) - (y—z ~ - - -
il = 5o [ S (ot 1+ Wheoway) - Wi oWata)
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Il nous reste maintenant a exprimer les lignes de Wilson adjointes modifiées W4 en termes
de lignes de Wilson fondamentales modifiées Wg. Cela se fait en utilisant I'identité suivante
(dérivée dans I'appendice du Chapitre 1 pour les lignes de Wilson W4 et Wg, voir équation
(1.54)) :

Weld(x) = 2Tr<Wl];(x)TCWF(x)Td) . (6.121)

~ ~ cd
En utilisant ensuite 'identité de Fierz (1.53), nous pouvons écrire le produit [Wj‘(y)WA(X]

de la maniére suivante :
- ~ cd - - - -
WhmWalx]" = 2T (W) TWE ) Wr ()T WE(x)) - (6.122)

Cette égalité peut étre insérée de maniere répétée dans (6.120), laissant seulement des lignes de
Wilson Wg. Finalement, avec I'identité de Fierz (1.53), il est possible de simplifier I'expression
pour obtenir la formule finale (6.23) :

2Z x — 2
HRyydlp) = a / 27 o _(Z)2 é)_ 3 [RoFay = R 1305 (6.123)

En procédant de maniére similaire, nous pouvons aussi dériver la deuxiéme équation de la
hiérachie (6.24). Ceci est fait dans [XI, 113].



Conclusions

Cette thése est consacrée a I’étude du régime de saturation de la chromodynamique quan-
tique, un régime perturbatif qui décrit les grandes densités de partons dans les hadrons,
formées dans la limite de haute énergie. En sondant de petites distances a 'intérieur d’un
hadron a l'aide de collisions de haute énergie, on est en effet sensible & un ensemble dense
de partons, source d’effets collectifs importants. La théorie de la saturation a pour but de
décrire de tels phénoménes et leurs conséquences, comme le comportement des amplitudes de
collisions hadron-hadron dans la limite de haute énergie.

La nécessité d’établir les prédictions de la QCD dans le régime de saturation a été ravivée
au milieu des années 90, avec le démarrage des collisionneurs HERA puis RHIC. Ils réalisent
respectivement des expériences de diffusion profondément inélastique et des collisions d’ions
lourds. Dans ces expériences, certains processus étant potentiellement sensibles aux effets des
grandes densités de partons dans les hadrons, des observables pouvaient mettre en évidence
des effets de saturation.

Treés vite, les équations B-JIMWLK qui décrivent I’évolution vers le régime de saturation
dans 'approximation des logarithmes dominants ont été établies. Ces développements théo-
riques ont alors eu un certain succeés : des lois d’échelle prédites par les équations B-JIMWLK
ont été observées en diffusion profondément inélastique inclusive et diffractive. Cette décou-
verte a indiqué que le régime de saturation était pertinent dés les énergies du collisionneur
HERA. Un succés similaire a été rencontré dans le cadre du collisionneur RHIC : dans la
production de particules vers ’avant, des observables appropriées pour 1'étude d’effets de
saturation sont plus que qualitativement en accord avec les prédictions de la QCD a haute
énergie, mais leurs descriptions semblent nécessiter d’inclure des effets de saturation.

Au cours des deux derniéres années, de nouveaux développements théoriques ont remis
en cause la validité des équations B-JIMWLK : alors qu’on les pensait complétes, elles ne
correspondent en fait qu’a une partie de I’équation d’évolution. Des modifications ont été
proposées, et I’étude de la limite de grand N, a révélé un nouveau lien entre la QCD & haute
énergie et certains problémes de physique statistique. Les implications phénoménologiques
ont été évaluées dans le cadre de la diffusion profondément inélastique et de la production de
gluons vers ’avant dans les collisions hadron-hadron. Méme si les nouvelles équations différent
de celles utilisées précédemment, les solutions sont compatibles dans un régime d’énergie
intermédiaire. Des différences sont attendues pour de trés hautes énergies, avec la prédiction
d’une nouvelle loi d’échelle.

Méme si & ’heure actuelle, il ne nous est pas possible d’étre plus quantitatif, le démarrage
du LHC en 2007 promet un avenir trés intéressant. Il pourrait mettre en évidence le régime
de saturation, et la présence de deux régimes d’énergies. Il pourrait aussi indiquer la nécessité
d’inclure des logarithmes sous-dominants dans les équations d’évolutions. Dans tous les cas,
la QCD & haute énergie restera un domaine de recherche trés actif pour encore de nombreuses
années.

Pour finir, je souhaite que cette thése ait apporté des contributions utiles aux développe-
ments de la théorie de la saturation et aux études phénoménologiques.
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