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Abstract

The main focus of this PhD thesis is the study of minors of Toeplitz, Hankel and Toeplitz±Hankel

matrices. These can be expressed as matrix models over the classical Lie groups G(N) =

U(N), Sp(2N), O(2N), O(2N + 1), with the insertion of irreducible characters associated to

each of the groups. In order to approach this topic, we consider matrices generated by formal

power series in terms of symmetric functions.

We exploit these connections to obtain several relations between the models over the different

groups G(N), and to investigate some of their structural properties. We compute explicitly

several objects of interest, including a variety of matrix models, evaluations of certain skew

Schur polynomials, partition functions and Wilson loops of G(N) Chern-Simons theory on S3,

and fermion quantum models with matrix degrees of freedom. We also explore the connection

with orthogonal polynomials, and study the large N behaviour of the average of a characteristic

polynomial in the Laguerre Unitary Ensemble by means of the associated Riemann-Hilbert

problem.

We gratefully acknowledge the support of the Fundação para a Ciência e a Tecnologia through

its LisMath scholarship PD/BD/113627/2015, which made this work possible.

Keywords: Random matrix theory; Toeplitz determinant; Schur polynomial; Chern-Simons

theory; Riemann-Hilbert problem.





Resumo

A teoria das matrizes aleatórias, e das propriedades dos seus autovalores, é um âmbito de estudo

com grande atividade desde os trabalhos de Wigner e Dyson dos anos 1950 e 1960. De certa

maneira, a área deve a sua existência às aplicações, e a quantidade de conexões com vários

ambitos da matemática e da f́ısica é ainda uma das suas qualidades mais importantes.

As matrizes estruturadas, como as matrizes de Toeplitz ou Hankel, têm um papel

fundamental no estudo das matrizes aleatórias. Por exemplo, modelos unitários com suporte

no ćırculo unidade ou na reta real podem ser expressados como determinantes de Toeplitz ou

Hankel. Entre outras aplicações, esta relação é relevante na área da combinatória, pois permitiu

a resolução de problemas abertos de importância. Assim, resultados da teoria das funções

simétricas foram essenciais no problema da maior subsequência crescente numa permutação

aleatória, estudado por Baik, Deift e Johansson.

Desenvolvimentos deste tipo mostram o alcance da teoria das matrizes aleatórias, onde a

aparição de técnicas de áreas diversas da matemática é a norma, e não uma exeção.

O principal objetivo desta tese é o estudo dos menores das matrizes de Toeplitz, Hankel, e

Toeplitz±Hankel. Parte do nosso interesse neste tópico deve-se ao fato de que estos menores

podem ser expressados como as integrais∫
G(N)

χλG(N)(U
−1)χµG(N)(U)f(U)dU,

onde dU é a medida de Haar num dos grupos de Lie clássicos

G(N) = U(N), Sp(2N), O(2N), O(2N + 1),

e os χµG(N)(U) são os caracteres associados às representações irredut́ıveis destes grupos. Estas

integrais supõem uma generalização natural dos ensembles clássicos de matrizes aleatórias, pois

envolvem o uso de técnicas algébricas e anaĺıticas no seu estudo. Além disso, estes modelos têm

também expressões em termos de funções simétricas. Outras motivações para o nosso estudo

incluem

• O estudo de inserções generalizadas em modelos de matrizes aleatórias, em particular por

meio de expansões em caracteres,

• A obtenção de propriedades estruturais de ensembles de matrizes nos grupos de Lie

clássicos, mediante o uso de técnicas da teoria das representações, assim como o cálculo

de vários objetos de interesse no campo da combinatória,

• A computação das funções de partição e de observáveis de teorias gauge com grupo de

simetria G(N), no contexto finito e infinito,



• A exploração das aplicações da formulação en termos de funções simétricas e modelos de

matrizes na teoria de polinómios ortogonais.

Na primeira parte da tese, focalizamo-nos no desenvolvimento do formalismo de menores

de Toeplitz, e explicamos a sua relação com as integrais unitárias. Depois de revisar alguns

resultados da teoria das funções simétricas, expressamos estes menores em termos de polinómios

de Schur e obtemos o seu comportamento assintótico em termos dos determinantes de Toeplitz

associados. Depois, calculamos as inversas de várias matrizes de Toeplitz, utilizando polinómios

de Chebyshev, a fórmula de Duduchava-Roch e o kernel associado a duas sequências de

polinómios biortogonais no ćırculo unidade. Comparando as nossas fórmulas para menores de

Toeplitz com estas inversas, obtemos evaluações expĺıcitas de uma integral de Selberg-Morris e

de certos polinómios skew Schur. Utilizamos também a fórmula de Laplace num determinante

de Toeplitz geral para deduzir un conjunto de relações verificadas por polinómios skew Schur.

A continuação, estudamos integrais de matrizes nos grupos de Lie clássicos G(N) =

U(N), Sp(2N), O(2N) e O(2N + 1), por meio de funções simétricas e a formulação equivalente

em termos de determinantes e menores de matrizes Toeplitz±Hankel. Isto permite-nos obter

relações entre estas integrais, incluindo

1. Fatorações de integrais unitárias como produtos e somas de produtos de integrais

simpléticas e ortogonais,

2. A expressão de uma classe de modelos como a especialização de um único caracter associado

ao grupo de simetria correspondente,

3. Expansões de integrais simpléticas e ortogonais como somas ponderadas de integrais

unitárias com caracteres ou, equivalentemente, expansões de determinantes de matrizes

Toeplitz± Hankel como somas ponderadas de menores de matrizes de Toeplitz,

4. Generalizações da identidade de Gessel, expressando as integrais em estudo como séries de

funções de Schur,

5. O comportamento assintótico das médias de caracteres irredut́ıveis sobre os modelos de

matrizes mencionados.

Consideramos então o modelo associado à terceira função teta de Jacobi, que modeliza a

teoria de Chern-Simons em S3. Calculamos as funções de partição, os Wilson loops e os

Hopf links das teorias com grupos de simetria G(N), e mostramos que os modelos são

Giambelli-compat́ıveis. Neste contexto, as relações gerais antes encontradas traduzem-se em

identidades entre observáveis das teorias com diferentes grupos de simetria. Finalmente, usamos

expansões em caracteres e o comportamento assintótico dos determinantes associados para

estudar inserções particulares no modelo de Chern-Simons, descrevendo espectros de modelos

fermiônicos com graus de liberdade matriciais.

Finalmente, tratamos os menores de matrizes de Hankel, e estabelecemos algumas

conexões com a teoria de polinómios ortogonais. Em particular, expressamos o kernel de

Christoffel-Darboux associado a um conjunto de polinómios ortogonais em forma de soma

ponderada sobre polinómios de Chebyshev, cujos coeficientes são menores da matriz de Hankel



associada. Depois, estudamos como exemplo a inserção de um polinómio caracteŕıstico no

Laguerre Unitary Ensemble. Analisamos o modelo correspondente, tanto no contexto finito,

utilizando expansões em polinómios de Schur, como no contexto infinito, resolvendo o problema

de Riemann-Hilbert associado.

Agradecemos o apoio da Fundação para a Ciência e a Tecnologia através da bolsa LisMath

PD/BD/113627/2015, que possibilitou o presente trabalho.

Palavras-chave: Teoria das matrizes aleatórias; determinante de Toeplitz; polinómio de

Schur; teoria de Chern-Simons; problema de Riemann-Hilbert.
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Chapter 1

Context and general overview

1.1 Introduction

The study of random matrices, and in particular the properties of their eigenvalues, has been an

active field of research since the seminal works of Wigner and Dyson in the 1950s and 1960s1.

In a sense, the area owes its existence to applications, and one of its main appeals is the large

number of connections it possesses with different branches of mathematics and physics.

As the field continues to evolve, the statistical properties of a surprising number of

mathematical objects and physical systems are found to be modeled by the eigenvalues of

matrices belonging to random ensembles. Moreover, diverse techniques are naturally involved

in the study of these ensembles, including tools from linear algebra, functional analysis,

combinatorics, classical analysis and representation theory, among others.

Specially structured matrices play a central role in random matrix theory. Indeed, unitary

models supported on the unit circle or the real line can be expressed as Toeplitz or Hankel

determinants, respectively. Also the determinants of matrices that are the sum or difference of

a Toeplitz and a Hankel matrix arise in this context, as they express integrals over the classical

Lie groups with respect to Haar measure.

Numerous properties of these matrices have been studied over the years2. A fundamental

result is the strong Szegő limit theorem, which describes the asymptotic behaviour of Toeplitz

determinants generated by a sufficiently smooth function. While being a less investigated topic,

several developments concerning Toeplitz±Hankel determinants have also been accomplished,

including generalizations of Szegő’s theorem.

Combinatorics is one of the areas that has benefited from the appearance of random matrix

theory. Several problems in the field, some of which were long standing, have been solved after

recognizing that a matrix model formulation is available for them. The application of techniques

from the theory of random matrices has then sometimes lead to a solution for these problems3.

1We do not attempt to provide a comprehensive historical review of the vast field of random matrix theory

here, but refer to [93] for an excellent survey on the topic.
2Once again, since reviewing in detail the history and advances in the area would be an unfeasible task, we

rather point to the outstanding survey [68] and references therein.
3A detailed exposition of two such examples can be found in [17], including the longest increasing subsequence

problem outlined below.

1



2 Schur Averages in Random Matrix Ensembles

Reciprocally, tools from combinatorics have also been found to be useful for studying matrix

ensembles.

A key example of this premise is due to Baik, Deift and Johansson [15]. These authors found

that the distribution of the longest increasing subsequence of a random permutation (properly

centered and re-scaled) converges, as the size of the permutation grows to infinity, to the famous

Tracy-Widom distribution, which also models the behaviour of the largest eigenvalue of a random

Gaussian Hermitian matrix. To prove this, they used the well known RSK correspondence

to express the relevant probability as a Toeplitz determinant, by means of an identity of

Gessel involving Schur polynomials. The analysis was concluded using the Riemann-Hilbert

methodology, that exploits the connection of Toeplitz determinants with orthogonal polynomials

on the unit circle.

Developments like this showcase the full extent of random matrix theory, where the

appearance of techniques from diverse branches of mathematics is rather the norm than

an exception. While the tools employed in these studies may sometimes be technical, they

often reveal fundamental information about such universal objects as random and structured

matrices.

One of the aims of our work is to investigate further the relationship between random

matrices, Toeplitz and Hankel determinants and symmetric functions.

The main focus of this thesis is the study of minors of Toeplitz, Hankel and Toeplitz±Hankel

matrices. The aforementioned relationship extends naturally to this setting, as these minors can

also be expressed as random matrix models, and in terms of symmetric functions. In particular,

their matrix model expression includes the insertion of Schur polynomials in the integrand.

We draw inspiration from the work of Bump and Diaconis [50] concerning Toeplitz minors. In

particular, they expressed these as unitary matrix models, and proved a generalization of Szegő’s

theorem, describing their asymptotic behaviour. It turns out that, as long as the generating

function is sufficiently smooth, Toeplitz minors behave asymptotically as the corresponding

Toeplitz determinant times a combinatorial factor, independent of the size of the minor.

We will generalize these observations, make some new ones, and use the results of our

investigations to study related mathematical structures and physical theories.

1.2 Background

One motivation to study the minors of Toeplitz and Toeplitz±Hankel matrices, besides their

own mathematical interest, arises from the fact that these can be expressed as the “twisted”

integrals ∫
G(N)

χλG(N)(U
−1)χµG(N)(U)f(U)dU, (1.1)

where dU denotes Haar measure on one of the classical Lie groups

G(N) = U(N), Sp(2N), O(2N), O(2N + 1),

and the χµG(N)(U) are the characters associated to the irreducible representations of these groups.

Minors of Toeplitz matrices have appeared explicitly in the literature before, often in relation

with symmetric functions and Schur polynomials; articles devoted to their study include [141,

186, 146, 64, 65, 8, 153]. However, besides the already mentioned work of Bump and Diaconis
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[50], none of them exploits the equivalent formulation of Toeplitz minors as matrix models given

by (1.1). These integrals represent a logical step forward in the study of matrix models other

than the more classical ensembles. Let us explain this in more detail.

First, recall the fact that integrals of the type (1.1), without the insertion of irreducible

characters, can be computed as determinants of Toeplitz and Toeplitz±Hankel matrices. Due

to the ubiquity of these matrices and the amount of applications in numerous branches of

mathematics and physics4, many of their properties have been investigated and much is known

about their determinants. In particular, their asymptotic behaviour is now well understood,

thanks to the work of Szegő [181], Johansson [127] and Deift, Its and Krasovsky [67], among

many other authors. While the properties and formulas concerning these determinants are often

algebraic in nature, whenever the size of the matrix is finite (see for instance [62, 37], among

many others), the study of their asymptotic features relies heavily on analytical tools. Moreover,

qualitative differences in their behaviour arise depending on the analyticity of the function f in

(1.1). For instance, the results of [127] make use of fine probabilistic estimations, and the work

[67] features an impressively thorough application of the Riemann-Hilbert methodology.

On the other hand, if the function f is chosen to be the identity in (1.1), then the integral

simplifies drastically. Due to the orthonormality of the characters, it vanishes unless the

partitions indexing the two characters coincide, in which case it evalues to 1. This fundamental

fact regarding characters associated to irreducible representations has been used extensively in

the study of random matrices, along the lines of the pioneering work of Diaconis and Shahshahani

[76]. As a consequence, the computation of correlations of algebraic functions on random

matrices over the classical groups can be reduced to sums over the trivial correlations of their

irreducible characters. In particular, the results in [50] are based on this fact, among other

works5, including [74, 49, 89]. This purely algebraic procedure is usually known as character

expansion.

The presence of both an arbitrary integrable function and character insertions in these

integrals, as in (1.1), leads naturally to the combination of both analytic and algebraic tools

in their study. This entails both a challenge and an opportunity, as a richer approach to more

complicated matrix models becomes available if the structure and properties of these integrals

are well understood.

In addition to the already mentioned works [76, 50], we are also inspired by the studies of

Baik and Rains [18] and Bump and Gamburd [49], who perform a systematic analysis of integrals

over the classical groups with the aid of representation theoretical tools, in a spirit we adopt

and generalize in the present thesis. We find further motivation in the works of Borodin and

Okounkov [37] and Tracy and Widom [185], which discuss the interplay between the symmetric

function formulation of Toeplitz determinants and their realization as determinants generated

by actual functions, a central topic in this thesis. We also adopt partly the philosophy of Luque,

Vivo and coauthors [145, 51] in their study of related matrix models, using symmetric function

expansions to provide a computational alternative to the analysis of matrix integrals.

We find worth mentioning the work of Ishikawa and collaborators, who have also studied

minors and minor summation formulas in relation to Schur polynomials and symmetric functions

in a series of articles [118]-[123], also finding applications in random matrix theory (see for

4See for instance the references in section 2 of [198] for a sample of these, and [41] for an introductory monograph

on Toeplitz and Hankel matrices.
5This feature is also rooted in the approach of Weingarten calculus to group integrals developed in [56].
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instance [187]). Another topic intimately related to our work, which we feel deserves deeper

inspection, is the use of symmetric functions in the study of orthogonal polynomials. See [142,

111, 35, 34] for some examples of this approach, among others.

Explicit expressions for the averages of Schur polynomials have been computed over several

random matrix ensembles, even if their realization as Toeplitz or Hankel minors was not explicitly

identified. These include averages over the Gaussian Unitary Ensemble [73], the Jacobi Unitary

Ensemble [130], the Stieltjes-Wigert ensemble [78] and the real [177], complex and quaternionic

[92] Ginibre ensembles.

1.3 Motivations

Further reasons to study the minors of Toeplitz, Hankel and Toeplitz±Hankel matrices include

the following.

• Generalized matrix models. Schur polynomials form a basis in the ring of symmetric

functions and, unlike other distinguished basis in this ring, they do as a vector space.

Therefore, assuming it is possible to characterize the average of a Schur polynomial over

a given ensemble, one can then in principle compute general insertions in the model by

expressing these as sums over such averages. The same holds true for the irreducible

characters of the symplectic and orthogonal groups and the spaces of class functions over

these groups, which in particular are also symmetric6.

Although the above reasoning holds from a theoretical point of view, sometimes this

approach is not satisfactory at the practical level. Often matrix models of interest,

which can be identified with insertions in well understood ensembles, cannot be computed

explicitly. This may be because the insertion itself is complicated, because it poses

structural challenges, or simply because there is not an exact formula available for such

integral. Even in these cases, expanding the insertions in terms of symmetric functions

may be a useful tool, as the natural grading associated to Schur polynomials (by means

of the weight of the associated partition) often provides a simple way to identify the

higher order contributions to the sum on some of the parameters associated to the model,

see [84] for instance. Such expansions also offer the possibility to perform a computer

assisted analysis of the models, providing efficient implementations whenever the size of

the ensemble is small.

• Symmetric functions and combinatorics. The techniques of random matrix theory

can also be employed to investigate symmetric functions and to obtain explicit results

concerning these objects. This is due to the deeper relationship between matrices chosen at

random from the groups G(N) with respect to Haar measure and the universal characters

associated to them in the ring of symmetric functions, a connection rooted in the common

framework of representation theory.

In addition to this, and in a more direct fashion, several quantities of combinatorial interest

have expressions in terms of Toeplitz or Toeplitz±Hankel determinants and minors [157].

For instance, the number of standard and semi-standard Young tableaux (respectively

6One might of course forget about the group theoretical origin of the ensembles considered and investigate

non-symmetric insertions. Also in this case, usually the symmetry of the density of Haar measure on the groups

G(N) allows an easy expression of such integrals in terms of the symmetrized insertions.
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symplectic and orthogonal tableaux) of some shape is given by a specialization of the

Schur polynomial (respectively symplectic and orthogonal Schur polynomial) indexed by

the corresponding partition [158]. A richer example is given by the already reviewed

longest increasing subsequence problem, where the exponential specialization in the ring

of symmetric functions plays a central role. Further examples include nonintersecting

random walks [110, 4] and Brownian motions [109], and enumeration of plane partitions

and rhombus tilings [54], among others.

Toeplitz minors also play a central role in the rich Schur process [163], which is a source

of applications to the study of probabilistic properties of random partitions and other

combinatorial objects.

• Gauge theory. Averages of Schur polynomials over random matrix ensembles also appear

in contemporary physical theories. In gauge theories with a matrix model description, these

correspond to non-local observables such as Wilson loops. The approach of symmetric

functions at the structural level is still underdeveloped in this context (see [156, 12]

nevertheless), but it is of particular interest. This is due to the fact that symmetric

functions provide a unified tool to study theories with any symmetry group G(N), while

the classical techniques are usually best suited for the unitary setting. Particularly relevant

for us is the case of Chern-Simons theory on S3, for which both the partition function

and Wilson loops are known and have been studied in detail for the unitary theory

[148, 78], while only the partition function in the large N regime has been computed

for the symplectic and orthogonal theories [176].

It is worth mentioning that the determinants of Toeplitz±Hankel matrices have many

applications in statistical mechanics problems and describe several physical properties of

a number of strongly correlated systems [33], starting with their appearance in the Ising

model [68]. In such applications, the Toeplitz±Hankel case corresponds to open boundary

conditions, whereas Toeplitz determinants correspond to periodic boundary conditions

[60]. Although the study of minors is less developed, they appear in the same context as

the determinants, allowing the treatment of more general interaction patterns [32, 174].

• Orthogonal polynomials. Minors of Toeplitz and Hankel matrices also appear in the

well known connection between the determinants of these matrices and the theory of

orthogonal polynomials. Indeed, many quantities of interest for the orthogonal polynomials

with respect to a given weight function in the unit circle or the real line can be expressed

in terms of minors of the Toeplitz or Hankel matrix generated by this function, including

the coefficients of the polynomials themselves, the coefficients in the three-term recurrence

relations or the Christoffel-Darboux kernel, for instance.

• Relations between unitary, orthogonal and symplectic matrix ensembles.

Matrix integrals over the unitary group have attracted much more attention in the

literature than their symplectic and orthogonal counterparts. Despite some recent

advances on the topic, where some classical results known for Toeplitz matrices have been

generalized to the Toeplitz±Hankel case (see for instance [127, 67, 82, 90, 30]), much

fewer works are concerned with the relation between ensembles with different symmetries,

as in [91, 54]. Finding examples of such connections is a topic of interest, particularly for

the reviewed applications in gauge theory and combinatorics, as they provide relations

between objects with different underlying symmetries.
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• Representation theory. While we have not adopted this perspective in the present

work, we feel that the study of integrals of the type (1.1) may be valuable from the point

of view of representation theory. Indeed, these integrals may be understood as deformed

inner products in the space of class functions on the groups G(N). This provides a natural

generalization of a basic tool in character theory, which we believe is worth investigating.

Furthermore, the equivalent expressions of the integrals in terms of symmetric functions

may also yield information concerning the irreducible representations of the groups G(N).

Another topic which could benefit from this connection is the representation theory of

the infinite symmetric group and the infinite dimensional versions of the classical groups

G(N). Relevant objects for these groups, such as extreme characters, can be approximated

by their finite dimensional analogues, see for instance [38, 59]. It is then natural to wonder

if the well developed study of the asymptotic behaviour of random matrix ensembles can

be exploited in this context, by means of the equivalent expressions of the matrix models

(1.1) in terms of symmetric functions. It is also worth noting that this kind of advances

have numerous applications in related topics [108, 48].

1.4 Plan for the thesis

We outline now the structure of the remainder of the thesis. We adopt here a general point of

view and refer the reader to the short summaries included at the beginning of each chapter for

more detailed descriptions of their contents.

Chapter 2 is concerned with the study of Toeplitz minors, which correspond to the unitary

case of the integral (1.1), and serves as a demonstration of the approach we later adopt for the

rest of the groups G(N). In particular, we introduce a key notion, which is that of matrices

generated by formal expressions in terms of symmetric functions. Exploiting this idea at the

structural level, rather than using symmetric functions as a tool in the study of matrix models,

we obtain a deeper understanding of the objects involved in this connection.

Our main application involves semi-banded Toeplitz matrices, which are especially suited to

this approach. This, in addition to the richer structure present in the unitary case, allows a

fruitful investigation of some properties of skew Schur polynomials.

In chapter 3 we develop the analogous formalism for the case of Toeplitz±Hankel matrices,

which correspond to the symplectic and orthogonal groups. A second key concept is displayed

here, which is the fact that the use of symmetric functions allows a unified approach in the study

of the matrix integrals (1.1) for any of the groups G(N). This allows investigation of analogous

features of four families of objects, those associated to each of the groups G(N), in the same

conceptual framework.

Once the results from chapter 2 have been established, their analogues in this setting follow

using similar reasonings. We therefore turn to examining relations between matrix models with

different underlying symmetries. We have found this to be an attractive but underdeveloped

topic. A third key idea results of particular interest here, which is the fact that the equivalence

between matrix models, symmetric functions and minors of structured matrices is also profitable

at a practical level, and not just a piece of isolated theory. Indeed, once a feature concerning

one of the objects in this connection has been established, usually using the properties intrinsic
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to that object, it may be translated into a statement regarding the rest of the items in the

connection, which may not have been obvious in their separate contexts.

We then concentrate into the study of the exactly solvable ensemble corresponding to Jacobi’s

third theta function, which models Chern-Simons theory on the three-sphere. This serves as an

opportunity to exploit the results and showcase the philosophy of the thesis. We use the various

techniques developed and equivalent formulations of the model to analyze it in various regimes.

We also approach fermion quantum models with matrix degrees of freedom by reducing their

study to the Chern-Simons model, demonstrating how the ideas and features developed in the

thesis might be of use at a practical level.

Lastly, we address the case of Hankel minors in chapter 4. We explore their relation with the

theory of orthogonal polynomials, a topic we believe deserves further investigation. We focus

on a particular example: the insertion of a characteristic polynomial in the Laguerre Unitary

Ensemble. After providing tools for the study of the model in the finite regime, we pose and

solve the associated Riemann-Hilbert problem to obtain its large N behaviour. While analogous

problems have been considered in the literature from this perspective, we choose to employ

this approach due to the prominence and reach of the Riemann-Hilbert methodology in modern

random matrix theory, and in particular in some of the topics covered in this thesis.

We have chosen to prioritize clarity in the exposition and attempt to deliver a fluent

presentation of our results. For ease of reading, let us briefly remark the main original

contributions of our work. All the numbered theorems and corollaries in the text are new

to the best of our knowledge, and comparisons with the existing literature are provided

where appropriate. In addition to these, we obtain novel expressions for Toeplitz minors

(2.30),(2.32), inverses of Toeplitz matrices (2.39), and the biorthogonal polynomials with

respect to a given function on the unit circle (2.61) in terms of symmetric functions. We also

provide explicit expressions of some specializations of certain skew Schur polynomials (as well

as their asymptotic behaviour) (2.43),(2.44),(2.48),(2.52),(2.64),(2.65),(2.67),(2.68) and of the

biorthogonal polynomials with respect to truncated theta functions (2.63),(2.66), which we have

not been able to find in the literature. Moreover, we compute the Hopf links of Chern-Simons

theory on S3 with G(N) symmetry (3.62)-(3.65).





Chapter 2

Toeplitz minors and specializations

of skew Schur polynomials

Chapter summary

We introduce the formalism of Toeplitz minors and explain their relation with unitary integrals.

After reviewing some results on symmetric functions, we express such minors in terms of

skew Schur polynomials, and obtain their asymptotic behaviour in terms of the associated

Toeplitz determinants. We then characterize a class of Toeplitz minors for which an exact

asymptotic expression can be obtained, and a class of Toeplitz minors that can be realized

as the specialization of a single skew Schur polynomial. We compute the inverses of several

Toeplitz matrices, using Chebyshev polynomials, the Duduchava-Roch formula and the kernel

associated to two sets of biorthogonal polynomials on the unit circle. Comparing our formulas on

Toeplitz minors with these inverses, we obtain explicit evaluations of a Selberg-Morris integral

and for specializations of certain skew Schur polynomials. Finally, we use Laplace expansion on

a Toeplitz determinant to obtain a set of relations satisfied by skew Schur poynomials7.

2.1 Preliminaries

2.1.1 Toeplitz minors

Let f(eiθ) =
∑

k∈Z dke
ikθ be an integrable function on the unit circle. The Toeplitz matrix

generated by f is the matrix

T (f) = (dj−k)j,k≥1 =


d0 d−1 d−2

d1 d0 d−1
. . .

d2 d1 d0
. . .

. . .
. . .

. . .

 .

7The content of this chapter is based on the preprint [105]. Some results that can be found here but not in

[105] include corollary 2, the computations involving the pentadiagonal Toeplitz matrix in section 2.3.1, identity

(2.69) and theorems 2 and 3.

9
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That is, T (f) is an infinite matrix, constant along its diagonals, which entries are the Fourier

coefficients of the function f , given by

dk =
1

2π

∫ 2π

0
e−ikθf(eiθ)dθ. (2.1)

We denote by TN (f) its principal submatrix of order N , and its determinant by

DN (f) = detTN (f).

We record the statement and a proof of the classical Andréief’s identity, a central result in

random matrix theory, as it will play a significant role in the following.

Lemma (Andréief, [9]). Let g1, . . . , gN and h1, . . . , hN be integrable functions on a measure

space (X,σ). Then,

1

N !

∫
XN

det (gj(zk))
N
j,k=1 det (hj(zk))

N
j,k=1

N∏
k=1

dσ(zk) = det

(∫
X
gj(z)hk(z)dσ(z)

)N
j,k=1

. (2.2)

Proof. Expanding the second determinant in the left hand side above we see that∫
XN

det (gj(zk))
N
j,k=1 det (hj(zk))

N
j,k=1

N∏
k=1

dσ(zk)

=
∑
π∈SN

sgn(π)

∫
XN

det (gj(zk))
N
j,k=1

N∏
k=1

hπ(k)(zk)

N∏
k=1

dσ(zk)

=
∑
π∈SN

sgn(π)

∫
XN

det


f1(z1)gπ(1)(z1) f1(z2)gπ(2)(z2) . . . f1(zN )gπ(N)(xN )

f2(z1)gπ(1)(z1) f2(z2)gπ(2)(z2) . . . f2(zN )gπ(N)(xN )
...

...
...

fN (z1)gπ(1)(z1) fN (z2)gπ(2)(z2) . . . fN (zN )gπ(N)(xN )


N∏
k=1

dσ(zk)

=
∑
π∈SN

sgn(π) det

(∫
X
fj(z)gπ(k)(z)dσ(z)

)N
j,k=1

= N ! det

(∫
X
gj(z)hk(z)dσ(z)

)N
j,k=1

,

which is precisely the desired conclusion.

Choosing as measure dσ(θ) = 1
2πf(eiθ)dθ on [0, 2π) in this identity, where dθ is the usual

Lebesgue measure on this interval, and setting gj(z) = hj(z
−1) = zN−j for j = 1, . . . , N , where

z = eiθ, one obtains the following integral representation for the Toeplitz determinant of size N

DN (f) =
1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0

∏
1≤j<k≤N

|eiθj − eiθk |2
N∏
j=1

f(eiθj )dθj . (2.3)

Note that the first product in the integral above is the square modulus of the usual Vandermonde

determinant on the points eiθj . This is known as Heine, or Heine-Szegő identity.

Toeplitz determinants can also be expressed as integrals over the group of unitary matrices

U(N), a fact of particular interest from the point of view of random matrix theory. Given a

function f on the unit circle, we define, for any U ∈ U(N), the function

f(U) =

N∏
j=1

f(eiθj ), (2.4)
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where the eiθj are the eigenvalues of U . Using Weyl’s integral formula [195, 103], one can reduce

integrals over U(N) with respect to Haar measure to integrals over the subset of diagonal

matrices, as these form a maximal torus in the group, which coincide precisely with the right

hand side of (2.3). This leads to the expression

DN (f) =

∫
U(N)

f(U)dU,

where dU denotes the normalized Haar measure on U(N). That is, given a function f on the

unit circle, the Toeplitz determinant of size N generated by this function coincides with the

integral over the group of unitary matrices of size N of the function f(U). In particular, the

study of the matrix model (2.3) and its large N behaviour for different choices of f can be

utilized to investigate the statistical properties of random unitary matrices, see for instance [75].

A Toeplitz minor is a minor of a Toeplitz matrix, obtained by striking a finite number of

rows and columns from a Toeplitz matrix of finite size. Any particular striking can be encoded

in a pair of integer partitions λ and µ (see section 2.1.2 for more details and some basic facts on

partitions), and thus one can see that any Toeplitz minor can be realized as the determinant of

a matrix of the form

T λ,µN (f) = (dj−λj−k+µk)Nj,k=1. (2.5)

We denote the minor itself by

Dλ,µ
N (f) = detT λ,µN (f).

Choosing λ and µ to be empty partitions above we recover a Toeplitz determinant of size N .

Setting hj(z) = zN−j+λj and gk(z) = z−(N−k+µk) in Andreiéf’s identity and using (2.10), we see

that Toeplitz minors also have an integral representation [50]

Dλ,µ
N (f) =

∫
U(N)

sλ(U−1)sµ(U)f(U)dU = (2.6)

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0
sλ(e−iθ1 , ..., e−iθN )sµ(eiθ1 , ..., eiθN )

N∏
j=1

f(eiθj )
∏

1≤j<k≤N
|eiθj − eiθk |2dθ1...dθN ,

where sλ, sµ are Schur polynomials8. We see that symmetric functions are present already in

the elementary procedure of choosing a minor from a Toeplitz matrix. Let us review some basic

facts about such functions before delving into this relationship.

2.1.2 Symmetric functions

We recall some basic results involving symmetric functions that can be found in [147, 178], for

example. We denote z = eiθ in the following, and treat z as a formal variable. A partition

λ = (λ1, . . . , λl) is a finite and non-increasing sequence of positive integers. The number of

nonzero entries is called the length of the partition and is denoted by l(λ), and the sum |λ| =

λ1 + · · · + λl(λ) is called the weight of the partition. The entry λj is understood to be zero

whenever the index j is greater than the length of the partition. The notation (ab) stands for

8We abuse notation here; we assume it is clear when the expression f(U) should be read as
∏
j f(eiθj ) (i.e.

when f is a function on the unit circle) and when it should be read as f(eiθ1 , . . . , eiθN ) (i.e. when f is a symmetric

function in several variables). See the next section for definitions and basic facts concerning Schur polynomials.
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the partition with exactly b nonzero entries, all equal to a. A partition can be represented as a

Young diagram, by placing λj left-justified boxes in the j-th row of the diagram. The conjugate

partition λ′ is then obtained as the partition which diagram has as rows the columns of the

diagram of λ (see figure 2.1.2 for an example).

Figure 2.1: The partition (3, 2, 2) and its conjugate (3, 3, 1).

Lemma (See 1.7 in [147], for instance). Let λ be a partition satisfying l(λ) ≤ N and λ1 ≤ K

(that is, such that its Young diagram is contained in the rectangular shape (KN )). Then, the

N +K numbers

{K + j − λj}Nj=1 ∪ {λ′j +K + 1− j}Kj=1 (2.7)

are a permutation of {1, 2, . . . , N +K}.

Some inspection shows that increasing sequences of N integers are in correspondence with

arrays of the form (j−λj)Nj=1, where λ is a partition of length not greater than N . Therefore, any

particular choice of rows and columns from a Toeplitz matrix to form a minor can be encoded

in a pair of partitions, by means of equation (2.5). The following procedure describes how to

obtain this minor from the underlying Toeplitz matrix T (f). We assume in the following that

the length of the partitions λ and µ is less than or equal to N , the size of the minor under

consideration.

• Strike the first |λ1−µ1| columns or rows of TN+max {λ1,µ1}(f), depending on whether λ1−µ1

is greater or smaller than zero, respectively.

• Keep the first row of the matrix, and strike the next λ1 − λ2 rows. Keep the next row,

and strike the next λ2 − λ3 rows. Continue until striking λl(λ) − λl(λ)+1 = λl(λ) rows.

• Repeat the previous step on the columns of the matrix with µ in place of λ. The resulting

matrix is precisely T λ,µN (f), as defined in (2.5).

Let x = (x1, x2, ...) be a set of variables. Let us identify several distinguished families of

generators of the ring of symmetric functions in the variables x, which will be useful in the

following. The power-sum symmetric polynomials pk are given by pk(x) = xk1 + xk2 + . . . for

every k ≥ 1, and p0(x) = 1. The elementary symmetric polynomials ek(x) and the complete

homogeneous polynomials hk(x) are

hk(x) =
∑

i1≤···≤ik

xi1 . . . xik , ek(x) =
∑

i1<···<ik

xi1 . . . xik . (2.8)

We also set pk(x) = hk(x) = ek(x) = 0 for negative k, and we set empty sums to 1. These

families of functions are related by the identities

H(x; z) =

∞∑
k=0

hk(x)zk = exp

( ∞∑
k=1

pk(x)

k
zk

)
=

∞∏
j=1

1

1− xjz
,

E(x; z) =

∞∑
k=0

ek(x)zk = exp

( ∞∑
k=1

(−1)k+1 pk(x)

k
zk

)
=

∞∏
j=1

(1 + xjz).

(2.9)
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The families (hk(x)) and (ek(x)), where k ≥ 0, consist of algebraically independent functions.

Moreover, each of the families form a complete set of generators of the ring of symmetric functions

in x. Hence, we will see H and E as arbitrary functions on the unit circle depending on the

parameters x, and we will use indistinctly their infinite product expression. Note that these two

functions satisfy H(x; z)E(x;−z) = 1.

Another distinguished family of symmetric functions is that of Schur polynomials. These

form a basis for the ring of symmetric functions, as a vector space, and are indexed by partitions.

Among their several equivalent definitions, the classical Jacobi-Trudi identities express Schur

polynomials as Toeplitz minors generated by the functions H and E

sµ(x) = det (hj−k+µk(x))Nj,k=1 = D∅,µ
N (H(x; z)) ,

sµ′(x) = det (ej−k+µk(x))Nj,k=1 = D∅,µ
N (E(x; z)) ,

where µ verifies l(µ) ≤ N (resp. l(µ′) ≤ N) in the first (resp. second) identity, and ∅ denotes

the empty partition. If the set of variables is finite, say x = (x1, . . . , xN ), one can also define

the Schur polynomial indexed by µ as

sµ(x1, . . . , xN ) =
det (xN−k+µk

j )Nj,k=1

det (xN−kj )Nj,k=1

, (2.10)

where we set sµ(x1, . . . , xN ) = 0 if l(µ) > N . Note that the denominator in the above formula

is actually the Vandermonde determinant on the variables x, while the determinant in the

numerator is a minor of the Vandermonde matrix. In particular, the integral formula (2.6) can

be deduced from this fact and Andréief’s identity. Using L’Hôpital’s rule in (2.10) one can

deduce the identity

sµ(1N ) =
1

G(N + 1)

∏
1≤j<k≤N

(µj − µk + k − j), (2.11)

which holds for any N ≥ l(µ), where G is the Barnes function.

Given two partitions λ and µ, the symmetric function sλ(x)sµ(x) can be expanded in the

basis of Schur polynomials; we write this decomposition as

sλ(x)sµ(x) =
∑
ν

cνλµsν(x). (2.12)

The coefficients cνλµ are known as Littlewood-Richardson coefficients. Skew Schur polynomials

are defined by the expansion

sµ/λ(x) =
∑
ν

cµλνsν(x). (2.13)

Skew Schur polynomials can also be expressed as Toeplitz minors generated by the functions H

and E

sµ/λ(x) = Dλ,µ
N (H(x; z)), s(µ/λ)′(x) = Dλ,µ

N (E(x; z)), (2.14)

where l(µ), l(µ′) ≤ N respectively. A skew Schur polynomial vanishes if λ * µ; this can be seen

as a consequence of its Toeplitz minor representation and the fact that the Toeplitz matrices

generated by H and E are triangular. A central result in the theory of symmetric functions is

the Cauchy identity, and its dual form∑
ν

sν(x)sν(y) =

∞∏
j=1

∞∏
k=1

1

1− xjyk
,

∑
ν

sν(x)sν′(y) =

∞∏
j=1

∞∏
k=1

(1 + xjyk),
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where y = (y1, y2, . . . ) is another set of variables and the sums run over all partitions ν.

Gessel [107] obtained the following expression for the Toeplitz determinant generated by the

function f(z) = H(y; z−1)H(x; z)

DN

 ∞∏
k=1

1

1− ykz−1

∞∏
j=1

1

1− xjz

 =
∑

l(ν)≤N

sν(y)sν(x), (2.15)

where the sum runs over all partitions ν of length l(ν) ≤ N . If one of the sets of variables x or

y is finite, say y = (y1, . . . , yd), comparing the right hand side above with the sum in Cauchy

identity and recalling that the Schur polynomial sν(y1, ..., yd) vanishes if l(ν) > d one obtains a

well known identity of Baxter [27]

DN

 d∏
k=1

1

1− ykz−1

∞∏
j=1

1

1− xjz

 =

d∏
k=1

∞∏
j=1

1

1− xjyk
, (2.16)

valid when N ≥ d. Note that the right hand side above is independent of N . An analogous

identity follows if the factor H(x; z) is replaced by E(x; z), using the dual Cauchy identity

instead. However, no such identity is available for Toeplitz determinants generated by functions

of the type E(y; z−1)E(x; z); this will be relevant later.

All the above identities should be regarded as formal identities in the ring of symmetric

functions. In the following, we will sometimes specialize the variables x (or any set of generators

in this ring) to obtain actual identities for particular functions, or, equivalently, for particular

matrix models.

Given a partition λ satisfying l(λ) ≤ N and λ1 ≤ K (that is, λ ⊂ (KN )), we define a new

partition by

LK,N (λ) = (K − λN , . . . ,K − λ1) = (KN )− λr, (2.17)

where λr denotes the “reversed” array (λN , . . . , λ1). That is, LK,N (λ) is the partition that

results from rotating 180o the complement of λ in the rectangular shape (KN ); see figure 2.1.2

for an example. We see that the following relation holds

LK,N (λ) =
(
LN,K(λ′)

)′
.

y

Figure 2.2: The partition λ = (4, 4, 1) and the partition L6,4(λ) = (6, 5, 2, 2).

Lemma. Let λ be a partition verifying λ ⊂ (KN ) (that is, l(λ) ≤ N and λ1 ≤ K). We have

sλ(x−1
1 , . . . , x−1

N ) = sLK,N (λ)(x1, . . . , xN )

N∏
j=1

x−Kj . (2.18)
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A proof follows from direct manipulations in (2.10), for instance. In sight of the integral

representation (2.6), we obtain as a consequence the identity

Dλ,µ
N (f) = D

LK,N (µ),LK,N (λ)
N , (2.19)

which holds for any K satisfying max (λ1, µ1) ≤ K.

2.1.3 Asymptotic behaviour of Toeplitz determinants and minors generated

by smooth functions.

We record now precise statements of the strong Szegő limit theorem and of its generalization to

Toeplitz minors due to Bump and Diaconis.

Theorem (Szegő). Let f(eiθ) =
∑

k∈Z dke
ikθ be a function on the unit circle, and suppose it

can be expressed as f(eiθ) = exp(
∑

k∈Z cke
ikθ), where the coefficients ck verify∑

k∈Z
|ck| <∞,

∑
k∈Z
|k||ck|2 <∞. (2.20)

Let us assume, moreover, that c0 = 0, without loss of generality. Then,

lim
N→∞

DN (f) = exp

( ∞∑
k=1

kckc−k

)
.

Note that, after dividing the Toeplitz determinant DN (f) by eNc0 (that is, multiplying the

function f by a constant), one can always assume that the coefficient c0 vanishes. We will

therefore assume in the following that c0 = 0 for all the functions involved, unless specified

otherwise.

A function f satisfying the hypotheses of this theorem is continuous, nonzero, and has

winding number zero [41]. Under these same conditions, the following theorem holds [50].

Theorem (Bump, Diaconis). Let f verify the hypotheses in the previous theorem, and suppose

λ and µ are partitions of weights n and m respectively. Then, as N →∞

lim
N→∞

Dλ,µ
N (f) =

(
lim
N→∞

DN (f)

)∑
φ`n

∑
ψ`m

χλφ χ
µ
ψ z
−1
φ z−1

ψ ∆(f, φ, ψ), (2.21)

where the sum runs over all the partitions φ of n and ψ of m, the terms zφ, zψ are the orders

of the centralizers of the equivalence classes of the symmetric groups Sn, Sm indexed by φ and ψ

respectively, the functions χλ, χµ are the characters associated to the irreducible representations

of Sn and Sm indexed by λ and µ respectively, and

∆(f, φ, ψ) =

∞∏
k=1

{
knkcnk−mk−k mk!L

(nk−mk)
mk

(−kckc−k), if nk ≥ mk

kmkcmk−nkk nk!L
(mk−nk)
nk

(−kckc−k), if nk ≤ mk

.

Above, the coefficients nk,mk correspond to the partitions φ = (1n12n2 . . . ) and ψ = (1m12m2 . . . )

in their frequency notation, and the L
(α)
n are Laguerre polynomials [181].

Note that the product in the factor ∆(f, φ, ψ) is actually finite, since only a finite number

of nk’s and mk’s are distinct from zero for each pair φ, ψ. We see that in the N →∞ limit the

Toeplitz minor generated by a regular symbol factors as the corresponding Toeplitz determinant
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λ µ limN→∞D
λ,µ
N (f)/DN (f) λ µ limN→∞D

λ,µ
N (f)/DN (f)

∅ c1 ∅ 1
2c

2
1 + c2

∅ 1
2c

2
1 − c2 ∅ 1

6c
3
1 + c1c2 + c3

∅ 1
6c

3
1 − c1c2 + c3 ∅ 1

12c
4
1 − c1c3 + c2

2

λ µ limN→∞D
λ,µ
N (f)/DN (f)

1
4c

2
−1c

2
1 + c−1c1 − 1

2c−2c
2
1 − 1

2c
2
−1c2 + c−2c2 + 1

1
6c−1c

3
1 + 1

2c
2
1 + c−1c1c2 + c2 + c−1c3

Table 2.1: Some values of the formula (2.21).

times a sum depending only on f and the partitions λ, µ (and not on N). The formula (2.21)

can be implemented easily in a computer algebra system, leading to efficient evaluations for

partitions of small weights. Table 2.1 shows some of these values for particular choices of λ and

µ.

An equivalent expression for the sum in the right hand side of (2.21) was obtained by Tracy

and Widom [186], and these were later compared by Dehaye in [65] in terms of symmetric

functions. Further generalizations of this formula were given in [64, 146] by Dehaye and Lyons,

respectively.

2.2 Toeplitz minors generated by symmetric functions

We turn to the computation of an equivalent formulation of the asymptotic formula (2.21). We

start by proving a general result for the case of Toeplitz minors generated by formal power series,

and then show how it implies an analogous result for minors generated by functions satisfying

the hypotheses in Szegő’s theorem.

Theorem 1. Let x, y be some sets of variables, and consider the function

f(z) = H(x; z)H(y; z−1),

where H is given by (2.9). Then, for any two fixed partitions λ and µ we have

lim
N→∞

Dλ,µ
N (f) =

(
lim
N→∞

DN (f)

)∑
ν

sλ/ν(y)sµ/ν(x). (2.22)

Note that we understand f as a formal Laurent power series whose coefficients are symmetric

functions on x and y, and thus the convergence above is in the algebra of formal power series.

Proof. First, we note that the limit limN→∞DN (f) in the right hand side of (2.22) is well

defined as a formal expression, since by the identities of Gessel and Cauchy we have

lim
N→∞

DN (f) = lim
N→∞

∑
l(ν)≤N

sν(x)sν(y) =

∞∏
j=1

∞∏
k=1

1

1− xjyk
. (2.23)
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If R,S are two strictly increasing sequences of natural numbers, we denote by detR,SM the

minor of the matrix M obtained by taking the rows and columns of M indexed by R and S,

respectively. Now, we start from identity (2.19), for notational convenience, and obtain

Dλ,µ
N (f) = D

LK,N (µ),LK,N (λ)
N = det

R,S
T (f),

where the sequences R,S are given by R = (rj)
N
j=1 = (j + µN+1−j)

N
j=1 and S = (sk)

N
k=1 =

(k + λN+1−k)
N
k=1. Since the Toeplitz matrices generated by each of the factors of f verify

T (f(z)) = T (H(y; z−1))T (H(x; z)), the use of Cauchy-Binet formula gives

det
R,S

T (f(z)) =
∑
T

det
R,T

T (H(y; z−1)) det
T,S

T (H(x; z)), (2.24)

where the summation is over all the strictly increasing sequences T = (t1, . . . , tN ) of length N of

positive integers9. There is a correspondence between such sequences and partitions ν of length

l(ν) ≤ N , given by νN+1−j = tj − j, for j = 1, ..., N . Thus, for each T we have

det
T,S

T (H(x; z)) = det(htj−sk(x))Nj,k=1 = det(hj+νN+1−j−k−λN+1−k)(x))Nj,k=1.

Reversing the order of its rows and columns, we see that the last determinant above is

Dλ,ν
N (H(x; z)). According to (2.14) this is precisely the skew Schur polynomial sν/λ(x), and an

analogous derivation yields detR,T T (H(y; z−1)) = sν/µ(y). We thus obtain10

Dλ,µ
N (f) =

∑
l(ν)≤N

sν/µ(y)sν/λ(x). (2.25)

Combining this with the following identity between Schur and skew Schur polynomials (see e.g.

Ex. I.5.26 in [147]) ∑
ν

sν/µ(y)sν/λ(x) =
∑
κ

sκ(y)sκ(x)
∑
ν

sλ/ν(y)sµ/ν(x), (2.26)

where the sums run over all partitions, we arrive at the desired conclusion, upon identification

of the first sum in the right hand side above with the large N limit of the Toeplitz determinant

generated by f .

An analogous reasoning shows that identity (2.22) holds also for functions of the form

f(z) = E(x; z)E(y; z−1),

after taking the conjugate of all the partitions indexing the skew Schur polynomials in the right

hand side of (2.22).

Let us emphasize that the theorem is to be understood as an identity among symmetric

functions. However, as usual in this context, one can specialize an algebraically independent

family of symmetric functions to any given sequence of, say, real or complex numbers, and

extend (2.22) to an identity involving more general Toeplitz matrices, as long as the formal

manipulations are justified after this specialization (see [178, 185, 18] for examples of this).

9We are actually using an infinite dimensional generalization of the Cauchy-Binet formula, as the one that

appears in [185]. This is allowed since the sum in the right hand side is well defined as a formal expression.
10This type of formula also appears in the transition weights of the Schur process [163].



18 Schur Averages in Random Matrix Ensembles

Let us consider, for instance, a function f that satisfies the regularity conditions in Szegő’s

theorem. That is, assume f(eiθ) = exp (
∑

k cke
ikθ), where the coefficients ck satisfy the decay

conditions (2.20). Then, assuming that c0 = 0 without loss of generality, we can write f(eiθ) =

f+(eiθ)f−(eiθ), where

f+(eiθ) = exp

(∑
k>0

cke
ikθ

)
= 1+

∑
k≥1

d+
k e

ikθ, f−(eiθ) = exp

(∑
k<0

cke
ikθ

)
= 1+

∑
k≥1

d−k e
−ikθ.

(2.27)

Now, recall that the complete homogeneous symmetric polynomials are a complete set of

algebraically independent generators of the ring of symmetric functions. Thus, we can consider

the specializations

hk(x) 7→ d+
k , hk(y) 7→ d−k (k ≥ 0),

on theorem 1 to recover the function f from the formal power series H(x; z)H(y; z−1). Note also

that the specialization of the skew Schur polynomials in the theorem can be defined in terms of

the Fourier coefficients d+
k , d

−
k by means of the Jacobi-Trudi identities, so that the right hand

side in (2.22) is well defined (the sum is actually finite for any fixed pair of partitions λ and µ).

Therefore, we can rephrase theorem 1 as follows.

Corollary 1. Let f(eiθ) = exp (
∑

k cke
ikθ), where the ck satisfy the conditions (2.20), and

assume moreover that c0 = 0, without loss of generality. Define f+ and f− as in (2.27), and

assume that these functions are square integrable. Then,

lim
N→∞

Dλ,µ
N (f) = exp

( ∞∑
k=1

kckc−k

)∑
ν

sλ/ν(d−)sµ/ν(d+), (2.28)

where the convergence is now the usual convergence in C, and we have denoted by sλ/ν(d±) the

determinants

sλ/ν(d±) = det
(
d±j−νj−k+λk

)max (l(λ),l(ν))

j,k=1
, (2.29)

in terms of the Fourier coefficients of f±.

Similar examples where an algebraic result concerning Toeplitz determinants generated by

formal Laurent series is seen to be equivalent to an analytic one for functions satisfying the

hypothesis in Szegő’s theorem11 can be found in [185, 37], for instance. As in theorem (1), an

analogous result holds if one considers the specializations ek(x) 7→ d+
k and ek(y) 7→ d−k instead,

transposing the partitions in (2.28).

We have assumed in the above discussion that f verifies the hypotheses in Szegő’s theorem.

This was necessary in order for the limit limN→∞DN (f) to be finite, so that the formal

manipulations in theorem 1 are justified. Numerical experiments suggest however that theorem

1 holds for more general functions for which this limit is not finite, such as functions with

Fisher-Hartwig singularities. It follows from a result of Lyons, see theorem 3.1 in [146], that

this is indeed true for the case of Toeplitz matrices generated by positive valued functions (as

is the case, for instance, of pure Fisher-Hartwig singularities with zeros or poles, see section

11We have assumed in addition that the functions f± are square integrable, so that the use of the infinite

dimensional generalization of the Cauchy-Binet formula [185] is still valid.
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2.3.2). However, we have been unable to extend this result to the most general case of arbitrary

functions with Fisher-Hartwig singularities.

We conclude this section showing that exact formulas are available whenever the function

f can be obtained as a specialization with a finite number of nonzero variables. There are two

possibilities:

• Case 1: There is a factor of the type H specialized to a finite set of variables. Suppose

that f is of the form f(z) = H(y1, . . . , yd; z
−1)H(x; z). Then, in the same fashion as in

Baxter’s identity (2.16), the corresponding Toeplitz minor (2.25) stabilizes and we obtain

the formula

Dλ,µ
N

 d∏
k=1

1

1− ykz−1

∞∏
j=1

1

1− xjz

 =

d∏
k=1

∞∏
j=1

1

1− xjyk

∑
ν

sλ/ν(y)sµ/ν(x), (2.30)

which holds for every N ≥ d. An analogous result holds for symbols of the type f(z) =

H(y1, . . . , yd; z
−1)E(x; z).

• Case 2: There is a factor of the type E specialized to a finite set of variables. We assume,

without loss of generality, that f is of the form f(z) = E(y1, . . . , yd; z
−1)E(x; z). As

mentioned above, no N -independent formula is available for these symbols. However, the

Fourier coefficients of this function are (2.9)

f(z) =

d∏
j=1

(1 + yjz
−1)

∞∏
j=1

(1 + xjz) =

∞∑
k=−d

 d∏
j=1

yj

 ed+k(y
−1
1 , . . . , y−1

d , x)zk, (2.31)

and therefore it follows from (2.14) that

Dλ,µ
N (E(y1, . . . , yd; z

−1)E(x; z)) =

(
d∏

k=1

yNk

)
s((dN )+µ/λ)′(y

−1
1 , . . . , y−1

d , x). (2.32)

We see that in this case the Toeplitz minor can be expressed essentially as the specialization

of a single skew Schur polynomial12, indexed by shapes of the type depicted in figure 2.2.

This fact will have several consequences, and we will use the function (2.31) as a running

example in the following. The case λ = µ = ∅ of (2.32) was first obtained in [58], see also

theorem 7 and the subsequent discussion. An analogous identity has also been obtained [8]

for the case f(z) = E(y1, . . . , yd; z
−1). Comparing with the analogous of equation (2.25)

for this symbol we see that (2.32) coincides with∑
ν⊂(Nd)

sν/µ′(y1, ..., yd)sν/λ′(x),

where the (finite) sum runs over all partitions ν satisfying l(ν) ≤ N and ν1 ≤ d.

12Of course, in sight of identities (2.14), any Toeplitz minor can be expressed as the specialization of a single

skew Schur polynomial, with an adequate specialization and partitions λ and µ. The main feature of identity

(2.32) is that the only dependance on N of the skew Schur polynomial is via the rectangular shape (dN ).
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µ′

d

N

λ′

Figure 2.3: The shape ((dN ) + µ/λ)′, for N = 6, d = 4, µ = (3, 2, 1, 1) and λ = (2, 2, 2, 1).

Corollary 2. Let λ be a partition of length l(λ) ≤ d, and let µ be any partition. The following

identities hold

lim
N→∞

s(Nd)/λ(x) =

(
lim
N→∞

s(Nd)(x)

)
sλ(x−1

1 , . . . , x−1
d ),

lim
N→∞

s(N,...,N︸ ︷︷ ︸
d

,µ1,...,µl(µ))(x) =

(
lim
N→∞

s(Nd)(x)

)
sµ(xd+1, xd+2, . . . ).

Note that due to the well known fact that the skew Schur polynomial indexed by a partition

coincides with that indexed by the partition rotated 180o [168], the polynomial in the left hand

side of the first identity in the corollary coincides with sLN,d(λ)(x).

Proof. First of all, observe that due to the condition on λ and the fact that µ is a fixed partition

that does not depend on N , the skew Schur and Schur polynomials in the left hand sides above

are well defined for large enough N .

Now, let x = (x1, x2, . . . ) be a set of variables, and consider the function

f(z) = E(x−1
1 , . . . , x−1

d ; z−1)E(xd+1, xd+2, . . . ; z).

The first and second identities result then from combining the case µ = ∅ and λ = ∅ respectively

of theorem 1 to the Toeplitz determinants and minors generated by f , in sight of their equivalent

representation as Schur and skew Schur polynomials (2.32).

An analogous result is available for the general case of theorem 1, where both of the partitions

λ and µ are nonempty in (2.32).

2.3 Inverses of Toeplitz matrices and skew Schur polynomials

In the remaining of this chapter, we adapt classical results from linear algebra to the case of

Toeplitz matrices, and exploit the formulation in terms of symmetric functions to obtain some

new results and explicit evaluations of the objects under study.

The usual formula for the inversion of a matrix in terms of its cofactors reads as follows for

the case of Toeplitz matrices

(
T−1
N (f)

)
j,k

= (−1)j+k
D

(1k−1),(1j−1)
N−1 (f)

DN (f)
. (2.33)
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Hence, whenever the inverse of a Toeplitz matrix is known explicitly, formula (2.33) gives explicit

evaluations of the formulas appearing in section 2.2. For instance, if the function f is of the

form f(z) = H(y1, ..., yd; z
−1)H(x; z), then it follows from (2.30) that for N − 1 ≥ d we have

T−1
N (H(y1, ..., yd;z

−1)H(x; z)) =
1 −e1(y) e2(y) . . .

−e1(x) 1 + e1(x)e1(y) −(e1(y) + e1(x)e2(y)) . . .

e2(x) −(e1(x) + e2(x)e1(y)) 1 + e1(x)e1(y) + e2(x)e2(y) . . .
...

...
...

 .

We focus on functions of the form f(z) = E(y1, ..., yd; z
−1)E(x; z), and exploit the fact that

the Toeplitz minor in the right hand side of (2.33) has several expressions: in terms of the

inverse of the corresponding Toeplitz matrix

D
(1k),(1j)
N (f) = (−1)j+kDN+1(f)(T−1

N+1(f))j+1,k+1, (2.34)

as a specialization of a skew Schur polynomial (2.32)

D
(1k),(1j)
N (f) = s(N,...,N︸ ︷︷ ︸

d

,j)/(k)(y
−1
1 , . . . , y−1

d , x)
d∏
r=1

yNr , (2.35)

and as the multiple integral

D
(1k),(1j)
N (f) = (2.36)

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0
ek(e

−iθ1 , ..., e−iθN )ej(e
iθ1 , ..., eiθN )

N∏
j=1

f(eiθj )
∏

1≤j<k≤N
|eiθj − eiθk |2dθ1...dθN ,

where ej , ek are elementary symmetric polynomials (2.9) (we assume in the three last identities

that N ≥ 1 and 0 ≤ j, k ≤ N). Moreover, theorem 1 gives the asymptotic behaviour

lim
N→∞

D
(1k),(1j)
N (f) =

(
lim
N→∞

DN (f)

)min (j,k)∑
r=0

hk−r(y)hj−r(x). (2.37)

Note that the partitions indexing the sum in (2.22) are now conjugated13.

Comparing (2.34) and (2.35) we obtain

T−1
N (E(y1, . . . , yd; z

−1)E(x; z)) = (2.39)

1

DN (f)
×



s (y−1, x) −s (y−1, x) s (y−1, x) . . . ±s (y−1, x)

−s (y−1, x) s (y−1, x) −s (y−1, x) . . . ∓s (y−1, x)

...
...

...
...

±s (y−1, x) ∓s (y−1, x) ±s (y−1, x) . . . s (y−1, x)


,

13Direct comparison between formulas (2.33) and (2.37) yields the identity

lim
N→∞

(T−1
N (f))j+1,k+1 = (−1)j+k

min (j,k)∑
r=0

hk−r(y)hj−r(x). (2.38)

This follows also from the fact that the Toeplitz matrix generated by f satisfies TN (f) =

TN×∞(E(y; z−1))T∞×N (E(x; z)). Therefore, as N → ∞, we have T−1(f) = T−1(E(x; z))T−1(E(y; z−1)), and

the (j + 1, k + 1)-th entry of this matrix is precisely the right hand side of (2.38).
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where the diagram indexing the Schur polynomial in the first entry of the matrix is indexed by

the partition (N − 1)d, and we remove a box from its first row or add a box to the last (empty)

row as we move to the right or downwards along the entries of the matrix, respectively. The

signs of the last row and column should be read as ± = (−1)N+1 and ∓ = (−1)N , and the

notation (y−1, x) stands for the specialization (y−1
1 , . . . , y−1

d , x).

Let us remark that, as shown by these examples, the symmetric function approach may

uncover hidden structure behind the Toeplitz determinants and minors generated by a given

function. This allows investigation of some properties of Toeplitz matrices, providing new results

(see for instance [76, 18, 74]) and new proofs of already known ones (as in [50, 49], for example).

For example, Day’s well known formula on Toeplitz determinants [62] can be deduced from

basic properties of symmetric functions and the Toeplitz determinant and minor formulation,

as shown in [49], as is also the case with the classical formulas of Baxter and Schmidt [28].

In the following, we recall some known explicit inverses of Toeplitz matrices and compute

another two in order to obtain evaluations for the Toeplitz minor (2.34). Comparing these with

equations (2.35) and (2.36) we will obtain explicit formulas for the corresponding skew Schur

polynomials and multiple integrals, as well as their asymptotics. We assume in the following

invertibility of all the matrices involved.

2.3.1 Tridiagonal and pentadiagonal Toeplitz matrices

A simple example is given by the Toeplitz matrix generated by the function f(z) =

E(y; z−1)E(x; z), where x and y are single (nonzero) variables

TN (E(y; z−1)E(x; z)) =


1 + xy y

x 1 + xy
. . .

. . .
. . .

 . (2.40)

The inverse of a tridiagonal Toeplitz matrix has an expression in terms of Chebyshev polynomials

of the second kind [181]. These are defined by the recurrence relation{
Uj+1(z) = 2zUj(z)− Uj−1(z) (j ≥ 1),

U0(z) = 1, U1(z) = 2z.

The determinant of the matrix (2.40) is then given by [88]

DN (E(y; z−1)E(x; z)) =
(xy)N+1 − 1

xy − 1
= (xy)N/2UN (c)

(
c =

1 + xy

2
√
xy

)
, (2.41)

and its inverse by

(T−1
N (E(y; z−1)E(x; z)))j,k =


(−1)j+k

yk−j

(xy)(k−j+1)/2

Uj−1(c)UN−k(c)

UN (c)
(j ≤ k),

(−1)j+k
xj−k

(xy)(j−k+1)/2

Uk−1(c)UN−j(c)

UN (c)
(j > k).

(2.42)
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Inserting these expressions in equation (2.35) we obtain the following expression for an arbitrary

skew Schur polynomial indexed by a shape of at most two rows and specialized to two variables

s(N,j)/(k)(x, y
−1) = (xy−1)(N+j−k)/2Umin (j,k)(c)UN−max (j,k)(c) =

=
1

xkyN+j−k

min (j,k)∑
r=0

(xy)r
N∑

r=max (j,k)

(xy)r,
(2.43)

for j, k = 0, ..., N and N ≥ 1. Taking k = 0 above we recover the known expression for a Schur

polynomial specialized to two variables in terms of a Chebyshev polynomial [129]. We emphasize

that the above formula also coincides with the integral (2.36), with f(z) = (1 + xz)(1 + yz−1).

We also obtain from formula (2.37) that

lim
N→∞

s(N,j)/(k)(x, y
−1)yN = xjyk

(xy)−min (j,k)−1 − 1

(xy)−1 − 1
, (2.44)

where the convergence is in the ring of symmetric functions or the usual convergence in C, if

|x|, |y| < 1.

We can also use this to study the case of a pentadiagonal Toeplitz matrix. Let x1, x2, y1, y2

be some variables, and consider the function

f(z) = (1 + x1z)(1 + x2z)(1 + y1z
−1)(1 + y2z

−1). (2.45)

As proposed in [194], the inverse of this matrix can be computed by means of the Sherman –

Morrison – Woodbury formula (SMW formula in the following), as follows. If we denote

f1(z) = (1 + x1z)(1 + y1z
−1), f2(z) = (1 + x2z)(1 + y2z

−1),

the Toeplitz matrices generated by these functions verify

TN (f1)TN (f2) = TN (f)−

x1y2

x2y1


N×N

(2.46)

The SMW formula reads

(C +XY t)−1 = C−1 − C−1X(I + Y tC−1X)−1Y tC−1, (2.47)

where C is an N × N invertible matrix and X,Y are N ×M matrices with M ≤ N . Noting

that the last matrix in (2.46) verifiesx1y2

x2y1

 = XY t =

x1y2

1


N×2

1

x2y1


t

N×2

,

we see that the inverse T−1
N (f) can be expressed in terms of the matrix

C−1 = (aj,k) = T−1
N (f2)T−1

N (f1)
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Let us consider the symmetric case x1 = y1 and x2 = y2 in (2.45), for simplicity. Using (2.42)

we find that, whenever j ≤ k

aj,k =
1

x1x2

(−1)j+k

UN (c1)UN (c2)

[ j∑
l=1

Ul−1(c1)Ul−1(c2)UN−k(c1)UN−j(c2)+

k∑
l=j+1

Ul−1(c1)Uj−1(c2)UN−k(c1)UN−l(c2)+

N∑
l=k+1

Uk−1(c1)Uj−1(c2)UN−l(c1)UN−l(c2)

]
,

where cj = (1 + x2
j )/2xj and the Uk are Chebyshev polynomials of the second kind. Similarly,

if j > k we have

aj,k =
1

x1x2

(−1)j+k

UN (c1)UN (c2)

[ k∑
l=1

Ul−1(c1)Ul−1(c2)UN−k(c1)UN−j(c2)+

j∑
l=k+1

Uk−1(c1)Ul−1(c2)UN−l(c1)UN−j(c2)+

N∑
l=j+1

Uk−1(c1)Uj−1(c2)UN−l(c1)UN−l(c2)

]
.

Using (2.47) we then obtain the following expression for the (j, k)-th entry of the matrix T−1
N (f),

where f is given by (2.45)

aj,k−
1

D

[
x1x2aj1a1k+x1x2ajNaNk+x2

1x
2
2

(
aNNaj1a1k−aN1ajNa1k−a1Naj1aNk+a11ajNaNk

)]
,

(2.48)

where aj,k is given by the above expressions and

D = 1 + x1x2(a11 + aNN ) + x2
1x

2
2(a11aNN − a1NaN1).

This can be combined with the known formulas for the determinant of the Toeplitz matrix

generated by f (see for instance [81]) to obtain an evaluation of the Toeplitz minor (2.34), which

coincides with the skew Schur polynomial

s(N,N,j)/(k)(x1, x2, x
−1
1 , x−1

2 )xN1 x
N
2

and the matrix model

1

N !

1

(2π)N

∫
[0,2π]N

|V (eiθ)|2ek(e−iθ)ej(eiθ)
N∏
j=1

(1 +x1e
iθj )(1 +x2e

iθj )(1 +x1e
−iθj )(1 +x2e

−iθj )dθj .

Analogous expressions can be obtained whenever x1 6= y1 and/or x2 6= y2, following the same

reasoning as above.
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2.3.2 The pure Fisher-Hartwig singularity

The asymptotics of Toeplitz determinants generated by symbols that do not verify the regularity

conditions in Szegő’s theorem have been long studied. In the seminal work [85], Fisher and

Hartwig conjectured the asymptotic behaviour of Toeplitz determinants generated by a class of

(integrable) functions that violate these conditions. The functions in this class are products of

a function which is smooth, in the sense of Szegő’s theorem, and a finite number of so-called

pure Fisher-Hartwig singularities. Their conjecture was later refined in [22] and [26], and only

recently a complete description of the asymptotics of these determinants was achieved by Deift,

Its and Krasovsky [67]. See [68] for a detailed historical account of the subject.

A pure Fisher-Hartwig singularity is a function of the form [41]

|1− eiθ|2αeiβ(θ−π) (0 < θ < 2π), (2.49)

where the parameters α, β satisfy Re(α) > −1/2 and β ∈ C. The factor |1 − eiθ|2α may have

a zero, a pole, or an oscillatory singularity at the point z = 1, while the factor eiβ(θ−π) has a

jump if β is not an integer. Thus, depending on the different values of the parameters α and

β, the symbol above may violate the regularity conditions in Szegő’s theorem. It will be more

convenient to work with the equivalent factorization [41]

(1− eiθ)γ(1− e−iθ)δ.

This function coincides with (2.49) if γ = α+ β and δ = α− β; we will assume in the following

that the parameters γ and δ are positive integers. We can then express this function as the

specialization

f(z) = ϕγ,δ(z) = E(1, ..., 1︸ ︷︷ ︸
δ

; z−1)E(1, ..., 1︸ ︷︷ ︸
γ

; z). (2.50)

Functions with general Fisher-Hartwig singularities are obtained as the product of a function

verifying the regularity conditions in Szegő’s theorem times a finite number of translated pure

singularities of the form ϕγr,δr(e
i(θ−θr)). Each of these factors has a singularity with parameters

γr, δr at the point eiθr .

The inverse of the Toeplitz matrix generated by the pure FH singularity can be computed

by means of the Duduchava-Roch formula [79, 169, 40]

T ((1− z)γ)Mγ+δT ((1− z−1)δ) =
Γ(γ + 1)Γ(δ + 1)

Γ(γ + δ + 1)
MδT (ϕγ,δ)Mγ ,

where Ma is the diagonal matrix with entries (Ma)k,k =
(
a+k−1
k−1

)
, for k ≥ 1. Böttcher and

Silbermann [42] used this formula to give an explicit expression for the determinant of the

Toeplitz matrix generated by the pure FH singularity

DN (ϕγ,δ) = G(N + 1)
G(γ + δ +N + 1)

G(γ + δ + 1)

G(γ + 1)

G(γ +N + 1)

G(δ + 1)

G(δ +N + 1)
, (2.51)

where G is the Barnes function [21]. Also the inverse of the corresponding Toeplitz matrix can

be computed explicitly by means of this formula [40]

(T−1
N (ϕγ,δ))j,k = (−1)j+k

Γ(γ + j)Γ(δ + k)

Γ(j)Γ(k)

N∑
r=max (j,k)

Γ(r)

Γ(γ + δ + r)

(
γ + r − k − 1

r − k

)(
δ + r − j − 1

r − j

)
.
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Inserting these expressions in equation (2.35) we obtain

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1
M ) = G(N + 2)

G(M +N + 2)

G(M + 1)

G(M − d+ 1)

G(M − d+N + 2)

G(d+ 1)

G(d+N + 2)
× (2.52)

Γ(M − d+ j + 1)

Γ(j + 1)

Γ(d+ k + 1)

Γ(k + 1)

N∑
r=max (j,k)

Γ(r + 1)

Γ(M + r + 1)

(
M − d+ r − k − 1

r − k

)(
d+ r − j − 1

r − j

)
,

for j, k ≤ N and M > d (or M ≥ d, if j = 0). The above formula recovers known evaluations

whenever k = 0 and thus the function in the left hand side above is a Schur polynomial (these

can be computed by means of the hook-content formula [178], for instance). Explicit expressions

for such specialization of skew Schur polynomials indexed by partitions of certain shapes have

been obtained recently in [158], and coincide with the above formula when the shapes are the

same.

Using expression (2.49), we see that the integral form of a Toeplitz minor generated by the

pure Fisher-Hartwig generality

Dλ,µ
N (ϕγ,δ) = s((δN )+µ/λ)′(1

γ+δ) = (2.53)

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0
sλ(e−iθ)sµ(eiθ)

N∏
j=1

e
1
2
iθj(γ−δ)|1 + eiθj |γ+δ

∏
1≤j<k≤N

|eiθj − eiθk |2dθ1...dθN ,

is the β = 2 case of the unit circle version of Selberg’s integral known as Morris integral, with

the insertion of two Schur polynomials. Its representation as a Toeplitz minor allows a direct

computation for the case of a single polynomial.

Lemma. Let µ be a partition of length l(µ) ≤ N . We have

D∅,µ
N (ϕγ,δ) = DN (ϕγ,δ)sµ(1N )

l(µ)∏
k=1

Γ(γ + k)

Γ(γ + k − µk)
Γ(δ +N − k + 1)

Γ(δ +N − k + µk + 1)
. (2.54)

Proof. We follow the second of the two proofs given in [44] for the Toeplitz determinant

DN (ϕγ,δ). We include this computation to showcase how the Toeplitz minor structure can

be exploited to obtain evaluations of the more complicated objects considered (i.e. multiple

integrals, skew Schur polynomials), rather than for its conceptual insight.

The Fourier coefficients of ϕγ,δ are [41]

dk =
Γ(γ + δ + 1)

Γ(γ − k + 1)Γ(δ + k + 1)
.

After extracting the factors

N∏
j=1

Γ(γ + δ + 1)

Γ(γ − µN +N − j + 1)
,

N∏
k=1

1

Γ(δ + µk +N − k + 1)
,

coming from the rows and columns of D∅,µ
N (ϕγ,δ) respectively, we obtain the determinant∣∣∣∣∣∣∣∣∣∣∣

Γ(γ−µN+N)
Γ(γ−µ1+1)

Γ(δ+µ1+N)
Γ(δ+µ1+1)

Γ(γ−µN+N)
Γ(γ−µ2+2)

Γ(δ+µ2+N−1)
Γ(δ+µ2) . . . Γ(δ+µN+1)

Γ(δ+µN−N+2)
Γ(γ−µN+N−1)

Γ(γ−µ1)
Γ(δ+µ1+N)
Γ(δ+µ1+2)

Γ(γ−µN+N−1)
Γ(γ−µ2+1)

Γ(δ+µ2+N−1)
Γ(δ+µ2+1) . . . Γ(δ+µN+1)

Γ(δ+µN−N+3)
...

...
...

Γ(γ−µN+1)
Γ(γ−µ1−N+2)

Γ(γ−µN+1)
Γ(γ−µ1−N+3) . . . 1

∣∣∣∣∣∣∣∣∣∣∣
. (2.55)
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Subtracting (δ+µN−N+1+j) times the (j+1)-th row from the j-th row, for j = 1, ..., N−1, we

can make the last column vanish except for the 1 at the bottom, thus obtaining a determinant

of order N − 1. After extracting the factor

N−1∏
k=1

(γ + δ + 1)(µk − µN +N − k)

from the columns of the matrix, and the factor

N−1∏
j=1

Γ(γ − µN + j)

Γ(γ − µN−1 + j)

from its rows, we obtain a determinant with the same structure as (2.55), but with the following

changes: N is replaced by N − 1, δ is replaced by δ + 1 and µ is replaced by the partition

(µ1, . . . , µN−1), that results from discarding the last part of µ. Making use of this recursive

structure and identity (2.11) one arrives at the desired expression.

This recovers a known formula [94] for the evaluation of the case λ = ∅ of the integral

(2.53), although its expression as the specialization of a skew Schur polynomial appears to

be new. Substituting M − d by γ and d by δ, formula (2.52) gives an explicit evaluation of

this integral valid for general values14 of γ and δ whenever the Schur polynomials reduce to

elementary symmetric polynomials sλ = ek, sµ = ej .

2.3.3 Principal specializations

In order to study the principal specialization xj = qj−1 in the above formulas, we recall the

well known method of Borodin for obtaining the inverse of the moment matrix of a biorthogonal

ensemble. We follow the presentation in [36], where details and proofs can be found. The

starting point is a random matrix ensemble of the form∫
· · ·
∫

det (ξj(zk))
N
j,k=1 det (ηj(zk))

N
j,k=1

N∏
j=1

f(zj)dzj

(up to a constant), for a weight function f supported on some domain and two families of

functions (ξj) and (ηj). If one is able to find two new families (ζj) and (ψj) that biorthogonalize15

the former with respect to the weight f , that is

ζj ∈ Span{ξ1, . . . , ξj}, ψj ∈ Span{η1, . . . , ηj},∫
ζj(z)ψk(z)f(z)dz = δj,k,

(2.56)

then the matrix of coefficients of the kernel

KN (z, ω) =
N∑
r=1

ζr(z)ψr(ω) =
N∑

j,k=1

cj,kξj(z)ηk(ω) (2.57)

14We have only proved the validity of the formula for integer values of γ and δ. However, by Carlson’s theorem,

the formula holds for any positive γ and δ.
15Note that we are actually considering biorthonormal functions; we stick to the original terminology of [36]

here and below and speak of biorthogonal functions in the following.
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satisfies [
(cj,k)

N
j,k=1

]−1
=

(∫
ξk(z)ηj(z)f(z)dz

)N
j,k=1

. (2.58)

If the ensemble is an orthogonal polynomial ensemble, then the moment matrix on the right

hand side above is a Hankel matrix, the functions ξj and ηj are the monomials zj−1, and we

have that ζj = ψj = pj , the orthogonal polynomials with respect to the weight function f , that

is supported on the real line. The case where the moment matrix on the right hand side above

is the Toeplitz matrix generated by a function f supported on the unit circle corresponds to the

biorthogonal ensemble with functions ξj(z) = z−(j−1), ηj(z) = zj−1. Thus, the biorthogonality

condition (2.56) amounts to finding two families of polynomials pj and qj such that

1

2π

∫ 2π

0
pj(e

−iθ)qk(e
iθ)f(eiθ)dθ = δj,k. (2.59)

Let us remark that only when the Toeplitz matrix is Hermitian (that is, when the function f is

real valued), these polynomials verify pj(e
−iθ) = qj(eiθ), the qj are the orthogonal polynomials

with respect to f , and the kernel above is the usual Christoffel-Darboux kernel (see [27, 131] for

more details). In general, one needs to consider a biorthogonal ensemble as above. Nevertheless,

one can compute the polynomials (pj) and (qj) in a similar fashion to the orthogonal case.

Lemma. Suppose the determinants DN (f) are nonzero for every N . Then, the polynomials pj
and qj in (2.59) are given by

pj(z) =
1

(Dj(f)Dj+1(f))1/2

∣∣∣∣∣∣∣∣∣∣∣∣

d0 d−1 . . . d−j
d1 d0 . . . d−(j−1)
...

...
...

dj−1 dj−2 d−1

1 z . . . zj

∣∣∣∣∣∣∣∣∣∣∣∣
,

qj(z) =
1

(Dj(f)Dj+1(f))1/2

∣∣∣∣∣∣∣∣∣∣
d0 d−1 . . . d−(j−1) 1

d1 d0 . . . d−(j−2) z
...

...
...

...

dj dj−1 . . . d1 zj

∣∣∣∣∣∣∣∣∣∣
.

Proof. The condition on the determinants implies the existence of the polynomials themselves

(see proposition 2.9 in [36], for instance), and they are uniquely determined up to multiplicative

constants. Hence, it suffices to verify the biorthogonality condition (2.59). We denote

pj(z) =

j∑
r=0

a(j)
r zr, qk(z) =

k∑
r=0

b(k)
r zr. (2.60)

Now, if j ≥ k in (2.59) we can rewrite this integral as the sum

1

2π

∫ 2π

0
pj(e

−iθ)qk(e
iθ)f(eiθ)dθ =

1

(Dk(f)Dk+1(f)Dj(f)Dj+1(f))1/2
×

k∑
r=0

b(k)
r

∣∣∣∣∣∣∣∣∣∣∣∣

d0 d−1 . . . d−j
d1 d0 . . . d−(j−1)
...

...
...

dj−1 dj−2 d−1
1

2π

∫ 2π
0 eirθf(eiθ)dθ 1

2π

∫ 2π
0 ei(r−1)θf(eiθ)dθ . . . 1

2π

∫ 2π
0 ei(r−j)θf(eiθ)dθ

∣∣∣∣∣∣∣∣∣∣∣∣
,
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which vanishes if j > k and equals 1 if j = k, since the last row in the above determinants is

precisely (dr, dr−1, . . . , dr−j). Analogously, if j < k in (2.59) the integral equals

1

(Dk(f)Dk+1(f)Dj(f)Dj+1(f))1/2

j∑
r=0

a(j)
r

∣∣∣∣∣∣∣∣∣∣
d0 d−1 . . . d−(k−1)

1
2π

∫ 2π
0 e−irθf(eiθ)dθ

d1 d0 . . . d−(k−2)
1

2π

∫ 2π
0 e−i(r−1)θf(eiθ)dθ

...
...

...
...

dk dk−1 . . . d1
1

2π

∫ 2π
0 e−i(r−k)θf(eiθ)dθ

∣∣∣∣∣∣∣∣∣∣
,

and again all the determinants in the sum vanish.

In sight of such determinantal expressions, we see that the coefficients of the biorthogonal

polynomials can be expressed essentially as Toeplitz minors. From this remark we also obtain

the following equivalent integral formulas for the polynomials (known as Heine’s identities)

(DN (f)DN+1(f))1/2pN (z) =

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0

∏
1≤j<k≤N

|eiθj − eiθk |2
N∏
j=1

(z − eiθj )f(eiθj )dθj =

N∑
k=0

(−1)kzN−k
1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0
ek(e

iθ1 , . . . , eiθN )
∏

1≤j<k≤N
|eiθj − eiθk |2

N∏
j=1

f(eiθj )dθj ,

as well as

(DN (f)DN+1(f))1/2qN (z) =

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0

∏
1≤j<k≤N

|eiθj − eiθk |2
N∏
j=1

(z − e−iθj )f(eiθj )dθj =

N∑
k=0

(−1)kzN−k
1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0
ek(e

−iθ1 , . . . , e−iθN )
∏

1≤j<k≤N
|eiθj − eiθk |2

N∏
j=1

f(eiθj )dθj .

In particular, if the function in the integrals above is of the form (2.31), it follows from

(2.32) that the coefficients of the biorthogonal polynomials can be expressed as skew Schur

polynomials. For instance, we have

(DN (f)DN+1(f))1/2pN (z) =
d∏
j=1

yNj

s (y−1
1 , . . . , y−1

d , x)zN − s (y−1
1 , . . . , y−1

d , x)zN−1+

· · ·+ (−1)N−1s (y−1
1 , . . . , y−1

d , x)z + (−1)Ns (y−1
1 , . . . , y−1

d , x)

 ,

(2.61)

where the first shape in the sum above is (Nd) and the last one is (Nd+1), and we add a box to

the last row of the diagram as the degree of the monomial zj decreases. An analogous expression

holds for the polynomials qj . This fact can be combined with the asymptotic expression (2.37)

to obtain the asymptotic behaviour of the coefficients of the biorthogonal polynomials associated

to a given function, as long as it verifies the hypotheses in Szegő’s theorem, for example.

These expressions serve also as further motivation to study the Toeplitz minors (2.34), as both

the coefficients of orthogonal polynomials and their asymptotic behaviour are topics of interest.
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Let us also emphasize the close relation between the orthogonal or biorthogonal polynomials

associated to a given function and the inverse of the moment matrix defined by this same function

[131]. We have already reviewed how this inverse coincides with the matrix of coefficients of the

Christoffel-Darboux kernel (2.58), which is built precisely from the biorthogonal polynomials.

We see now from the above formulas that also the polynomials themselves can be read off the

first row and column of the inverse of the moment matrix.

We now use (2.58) to study the finite and infinite principal specializations of the skew Schur

polynomials indexed by the shapes considered earlier. We assume in the following that q is a

new (real) variable verifying |q| < 1. We will denote by Γq and Gq the q-Gamma and q-Barnes

functions [162], that in particular verify

Γq(k + 1) =

∏k
j=1(1− qj)
(1− q)k

=
(q; q)k

(1− q)k
, Gq(k + 1) =

k−1∏
j=1

Γq(j + 1), (2.62)

whenever k is a natural number (we assume that an empty product takes the value 1). The

q-binomial coefficient is then given by[
ω

z

]
q

=
Γq(ω + 1)

Γq(z + 1)Γq(ω − z + 1)
(Re(ω) ≥ Re(z) > 0) .

These functions coincide with their classical counterparts in the q → 1 limit, that is

lim
q→1

Γq(z) = Γ(z), lim
q→1

Gq(z) = G(z), lim
q→1

[
ω

z

]
q

=

(
ω

z

)
,

for all the ω and z such that the right hand sides above make sense. We consider the following

specialization [86]

f(z) = Θγ,δ(z) = E(1, q, . . . , qδ−1; z−1)E(q, q2, . . . , qγ ; z) =

γ∑
k=−δ

[
δ + γ

δ + k

]
q

qk(k+1)/2zk,

for some positive integers γ and δ. The Toeplitz determinant generated by this function equals

DN (Θγ,δ) = Gq(N + 1)
Gq(δ + γ +N + 1)

Gq(δ + γ + 1)

Gq(δ + 1)

Gq(δ +N + 1)

Gq(γ + 1)

Gq(γ +N + 1)
,

and the biorthogonal polynomials pj , qj are given by

pj(z) =

(
(q; q)δ+j(q; q)γ+j

(q; q)j(q; q)δ+γ+j

)1/2 j∑
r=0

(−1)j+r
[
j

r

]
q

(q; q)γ+r

(q; q)γ+j

(q; q)δ+j−r−1

(q; q)δ−1
zr,

qj(z) =

(
(q; q)δ+j(q; q)γ+j

(q; q)j(q; q)δ+γ+j

)1/2 j∑
r=0

(−1)j+r
[
j

r

]
q

(q; q)γ+j−r−1

(q; q)γ−1

(q; q)δ+r
(q; q)δ+j

qrzr,

(2.63)

where (q; q)k is as defined in (2.62). The last three identities can be proved directly from their

determinantal expressions. We do not include the computations here but point to the second

method of proof in [44], followed also in the derivation of (2.54), that can be generalized to the

present setting. Recalling the notation (2.60), we have that the kernel (2.57) is then given by

KN+1(z, ω) =

N∑
r=0

pr(z)qr(ω
−1) =

N∑
j,k=0

 N∑
r=max (j,k)

a
(r)
j b

(r)
k

 zjω−k =
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N∑
j,k=0

 N∑
r=max j,k

(−1)j+kqj
Γq(δ + j + 1)Γq(γ + k + 1)Γq(r + 1)

Γq(j + 1)Γq(k + 1)Γq(δ + γ + r + 1)

[
γ + r − k − 1

r − k

]
q

[
δ + r − j − 1

r − j

]
q

 zjω−k.

Moreover, the coefficient of zjω−k in the above sum is the (j + 1, k + 1)-th entry of the inverse

of the matrix TN+1(Θγ,δ). Inserting this into expression (2.35) we obtain

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1, q, . . . , q
M−1) = (2.64)

qdj−(d−1)k+d(d−1)N/2Gq(N + 2)
Gq(M +N + 2)

Gq(M + 1)

Gq(M − d+ 1)

Gq(M − d+N + 2)

Gq(d+ 1)

Gq(d+N + 2)
×

N∑
r=max (j,k)

Γq(M − d+ j + 1)Γq(d+ k + 1)Γq(r + 1)

Γq(j + 1)Γq(k + 1)Γq(M + r + 1)

[
M − d+ r − k − 1

r − k

]
q

[
d+ r − j − 1

r − j

]
q

,

for j, k ≤ N and M > d (or M ≥ d, if j = 0). As expected, this expression coincides with (2.52)

in the q → 1 limit. Also, as above, the formula recovers known expressions whenever k = 0

(and thus we have a Schur polynomial, comparing again with the hook-content formula [178],

for instance). Finally, it follows from (2.37) and the Cauchy identity that

lim
N→∞

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1, q, . . . , q
M−1)q−Nd(d−1)/2 = (2.65)

qdj−(d−1)k

(1− q)d(M−d)

Gq(d+ 1)Gq(M − d+ 1)

Gq(M + 1)

min (j,k)∑
r=0

q−r
[
M − d+ j − r − 1

j − r

]
q

[
d+ k − r − 1

k − r

]
q

.

Note that the inversion of a Toeplitz matrix by means of the kernel (2.57) is a general procedure

that can be used to obtain explicit evaluations of other specializations of the skew Schur

polynomials of the shapes considered above, as long as the biorthogonal polynomials (2.59) are

available. In particular, the results in subsection 2.3.2 for the pure Fisher-Hartwig singularity

can be obtained in such a way. The biorthogonal polynomials can be obtained16 as the q → 1

limit of the polynomials (2.63), leading to the same formula (2.52).

Finally, taking into account that only one set of variables in the specialization of f needs to

be finite in equations (2.34)-(2.37), we can study the principal specialization of the above skew

Schur polynomials with an infinite number of variables. To do so, we consider the function

f(z) = Θδ(z) = E(1, q−1, . . . , q−(δ−1); z−1)E(qδ, qδ+1, . . . ; z) =

∞∑
k=−δ

qkδ+k(k−1)/2

(q; q)δ+k
zk,

for some positive integer δ. The corresponding Toeplitz determinant is given by

DN (Θδ) =
1

(1− q)δN
Gq(δ + 1)Gq(N + 1)

Gq(δ +N + 1)
,

and the biorthogonal polynomials on the unit circle with respect to the function Θδ are given

16In the Hermitian case γ = δ, where the polynomials are a single family of orthogonal polynomials, one recovers

the family S an (z) introduced in [11] after substituting q by q1/2, z by q−1/2z and a by qγ .
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by

pj(z) =

(
(q; q)δ+j
(q; q)j

)1/2 j∑
r=0

(−1)j+r
[
j

r

]
q

(q; q)δ+j−r−1

(q; q)δ−1
q−(δ−1)(j−r)zr,

qj(z) =

(
1

(q; q)j(q; q)δ+j

)1/2 j∑
r=0

(−1)j+r
[
j

r

]
q

(q; q)δ+rq
δ(j−r)zr.

(2.66)

Again, these expressions can be verified from their determinantal and minor formulas. The

kernel in this case is then

KN+1(z, ω) =
N∑

j,k=0

 N∑
r=max j,k

(−1)j+kqr+(δ−1)j−δk (q; q)δ+k
(q; q)j

[
r

r − k

]
q

[
δ + r − j − 1

r − j

]
q

 zjω−k.

Inserting this in equation (2.35) we arrive at

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1, q, . . . ) = (2.67)

q(d−1)j−dk+d(d−1)N/2

(1− q)d(N+1)

Gq(N + 2)Gq(d+ 1)

Gq(d+N + 2)

(q; q)d+k

(q; q)j

N∑
r=max (j,k)

qr
[

r

r − k

]
q

[
d+ r − j − 1

r − j

]
q

.

Once again, this identity coincides with the one given by the hook-content formula for k = 0. It

follows from (2.37) and the Cauchy identity that

lim
N→∞

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1, q, . . . )q
−Nd(d−1)/2 = (2.68)

qdj−(d−1)k (1− q)d(d−1)/2Gq(d+ 1)

(q; q)d∞

min (j,k)∑
r=0

q−r
1

(q; q)j−r

[
d+ k − r − 1

k − r

]
q

,

where (q; q)∞ =
∏∞
k=1(1− qk) denotes the Euler function.

We have focused throughout this section on the simplest example of a single row and single

column Toeplitz minor D
(1j),(1k)
N (f), which can be expressed essentially as an element of the

corresponding Toeplitz inverse. As we have seen, several nontrivial results follow already from

this representation. However, more complicated minors can be expressed in terms of the inverse

of the associated Toeplitz matrix, thus allowing generalizations of the formulas presented here.

At the level of matrix integrals, this means obtaining explicit expressions for integrals with

arbitrary Schur polynomials on the integrand (not only elementary symmetric polynomials). At

the level of specializations of skew Schur polynomials, this means allowing λ and µ to be general

partitions in formula (2.32), so that more general shapes can be added to or skewed from the

rectangle (Nd) in (2.35) (as opposed to the single rows (j) and (k)). We need to introduce some

notation before showing this; given a matrix A of size N ×N , we write

[A]

(
j1 . . . jK
k1 . . . kK

)
to denote the minor of A formed by the intersection of rows j1 < · · · < jK and columns

k1 < · · · < kK . Then, given two partitions λ and µ, we have

Dλ,µ
N (f) = (−1)|λ|+|µ|DN+K(f)

[
T−1
N+K(f)

](1 + µ′K 2 + µ′K−1 . . . K + µ′1
1 + λ′K 2 + λ′K−1 . . . K + λ′1

)
, (2.69)
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where K = max {λ1, µ1} As noted above, the case K = 1 corresponds to the one row and one

column case considered in this section. For greater values of K the formula expresses arbitrary

minorsDλ,µ
N (f) in terms of a Toeplitz determinant and a minor of the inverse of the corresponding

Toeplitz matrix17.

2.4 Laplace expansion of Toeplitz determinants and skew Schur

polynomials

The single row and single column minors of a matrix also play a role in the procedure of

computing its determinant by means of Laplace expansion. For the case of Toeplitz matrices,

this reads

DN (f) =
N∑
j=1

(−1)j+kdj−kD
(1j−1)(1k−1)
N−1 (f) =

N∑
k=1

(−1)j+kdj−kD
(1j−1)(1k−1)
N−1 (f) (2.70)

where the k-th column, for k ∈ {1, . . . , N} (resp. j-th row, for j ∈ {1, . . . , N}) is fixed

in the first (resp. second) identity. Once again, we choose f to be of the form f(z) =

E(y1, . . . , yd; z
−1)E(x; d). Substituting the explicit expressions for the coefficients dk (2.31)

and for the minors (2.35) in this identity we obtain the following result, after a relabeling of the

variables.

Theorem 2. We have

s(Nd)(x) =
N∑
j=1

(−1)j+ked+j−k(x)s(dN−1)+(1k−1)/(1j−1)(x)

=

N∑
k=1

(−1)j+ked+j−k(x)s(dN−1)+(1k−1)/(1j−1)(x),

(2.71)

where k ∈ {1, . . . , N} (resp. j-th row, for j ∈ {1, . . . , N}) is fixed in the first (resp. second)

identity.

Some particular cases of the above identities are already known relations between symmetric

functions. For instance, choosing j = 1 and d = 1 in the second identity, one obtains the well

known relation between the elementary and complete homogeneous symmetric polynomials

N∑
j=0

(−1)jej(x)hN−j(x) = 0.

However, note that for every N , equation (2.71) actually contains 2N different expansions of

the Schur polynomial s(Nd). For instance, choosing N = 3 and d = 4 in the theorem, and fixing

k = 1 in the first identity and j = 2 in the second identity we obtain

s = s s − s s + s s = −s s + s s − s s ,

17The proof of identity (2.69) is essentially a translation of Jacobi’s identity on the minors of a matrix [191, 43]

to the case of Toeplitz matrices, in combination with (2.7).
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which can be easily checked using the Jacobi-Trudi dual identity and the Pieri formulas.

As was the case with the formula for the inverse of a matrix, Laplace’s expansion formula

can be generalized to an identity involving more general minors than the single row and single

column case, as well as their complementary minors (see [191], for instance). For the Toeplitz

case this reads

DN+µ1(f) =
∑

λ⊂(µN1 )

(−1)|λ|+|µ|Dλ,µ
N (f)D

LN,µ1 (λ′),LN,µ1 (µ′)
µ1 (f)

=
∑

µ⊂(λN1 )

(−1)|λ|+|µ|Dλ,µ
N (f)D

LN,λ1 (λ′),LN,λ1 (µ′)

λ1
(f).

(2.72)

where µ (resp. λ) is a fixed partition of length smaller than or equal to N that determines

the columns (resp. rows) with respect which we perform Laplace expansion in the first (resp.

second) identity. Indeed, the only nontrivial step when translating the general formula to the

Toeplitz case is showing that the complementary minor to that indexed by partitions λ and µ

is the one indexed by the partitions LK,N (λ) and LK,N (µ), where K = max{λ1, µ1} (recall the

definition (2.17)). Some inspection shows that this can be deduced from (2.7), for instance.

Writing the equivalent expression of the minors in (2.72) in terms of skew Schur polynomials

(2.32) as above, we arrive at the following result.

Theorem 3. Let d be a positive integer. We have

s(N+µ1)d(x) =
∑

λ⊂(µN1 )

(−1)|λ|+|µ|s(((dN )+µ)/λ)′(x)s(((dµ1 )+LN,µ1 (µ′))/LN,µ1 (λ′))
′(x)

s(N+λ1)d(x) =
∑

µ⊂(λN1 )

(−1)|λ|+|µ|s(((dN )+µ)/λ)′(x)s(((dλ1 )+LN,λ1 (µ′))/LN,λ1 (λ′))
′(x),

where µ (resp. λ) is fixed in the first (resp. second) identity.



Chapter 3

Matrix models for classical groups

and Toeplitz±Hankel minors with

applications to Chern-Simons theory

and fermionic models

Chapter summary

We study matrix integration over the classical Lie groups G(N) = U(N), Sp(2N), O(2N)

and O(2N + 1), using symmetric function theory and the equivalent formulation in terms of

determinants and minors of Toeplitz±Hankel matrices, allowing the insertion of irreducible

characters in the integrands (“twisted” integrals). After reviewing some facts from the theory

of symmetric functions, we establish a number of relations between such integrals, including

1. Factorizations of unitary integrals as products and sums of products of symplectic and

orthogonal integrals,

2. The expression of a class of models as the specialization of a single character associated

to the corresponding symmetry group,

3. Expansions of symplectic and orthogonal integrals as weighted sums of twisted unitary

integrals, or, equivalently, expansions of Toeplitz±Hankel determinants as weighted sums

of Toeplitz minors,

4. Gessel type identities, expressing the G(N) integrals under study as Schur function series,

including the twisted case,

5. The asymptotic behaviour of the averages of irreducible characters over the aforementioned

matrix models.

We then turn to an exactly solvable model, associated to Jacobi’s third theta function. This

allows us to compute both at finite and large N the partition functions, Wilson loops and

Hopf links of Chern-Simons theory on S3 with symmetry group G(N), and we show that these

models are Giambelli compatible. In this context, the general relations found before translate to

identities between observables of the theories with different symmetry groups. Finally, we use

character expansions and the asymptotic behaviour of the associated determinants to evaluate

35
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averages in random matrix ensembles of Chern-Simons type, describing the spectra of solvable

fermionic models with matrix degrees of freedom18.

3.1 Preliminaries

3.1.1 Toeplitz±Hankel minors

Consider the groups of symplectic matrices of order 2N , denoted by Sp(2N), and of orthogonal

matrices of orders 2N and 2N + 1, denoted by O(2N) and O(2N + 1) respectively. We will also

write G(N) to refer to any of the groups U(N), Sp(2N), O(2N) or O(2N +1). In particular, the

parameter N stands for the number of nontrivial eigenvalues of the matrices belonging to each

of the groups, which are complex numbers of modulus 1. Given a square integrable function on

the unit circle f , we define

f(U) =

N∏
k=1

f(eiθk)f(e−iθk), (3.1)

for any matrix U belonging to one of the groups G(N), where the eiθk are the nontrivial

eigenvalues of U . Note the difference with the definition (2.4) in the previous chapter; considering

(3.1) instead amounts to considering symmetric Toeplitz matrices in the results of chapter 2 or,

equivalently, functions that satisfy f(z) = f(z−1). We will use definition (3.1) throughout the

remainder of this chapter. Using Weyl’s integral formula [195, 57], one can see that the integral

of a function of the form (3.1) over one of the groups G(N) with respect to Haar measure can

be expressed as∫
G(N)

f(U)dU = CG(N)
1

N !

∫
[0,2π]N

det(MG(N)(e
−iθ)) det(MG(N)(e

iθ))
N∏
k=1

f(eiθk)f(e−iθk)
dθk
2π

,

(3.2)

where dU denotes Haar measure, the constants CG(N) are

CU(N) = 1, CSp(2N) =
1

2N
= CO(2N+1), CO(2N) =

1

2N+1

and MG(N)(e
iθ) is the matrix appearing in Weyl’s denominator formula for the root system

associated to each of the groups G(N). In the unitary case, this is the Vandermonde matrix,

while for the rest of the groups we have [137]

detMU(N)(z) = det
(
zN−kj

)N
j,k=1

=
∏

1≤j<k≤N
(zj − zk), (3.3)

detMSp(2N)(z) = det
(
zN−k+1
j − z−(N−k+1)

j

)N
j,k=1

=
∏

1≤j<k≤N
(zj − zk)(1− zjzk)

N∏
j=1

(z2
j − 1)z−Nj ,

(3.4)

detMO(2N)(z) = det

(
z
N−k+ 1

2
j − z−(N−k+ 1

2
)

j

)N
j,k=1

= 2
∏

1≤j<k≤N
(zj − zk)(1− zjzk)

N∏
j=1

z−N+1
j ,

(3.5)

18The content of this chapter is based on the preprint [106]. Some results displayed here and not in [106] include

theorem 7 and corollaries 5 and 6.
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detMO(2N+1)(z) = det
(
zN−kj + z

−(N−k)
j

)N
j,k=1

=
∏

1≤j<k≤N
(zj − zk)(1− zjzk)

N∏
j=1

(zj − 1)z
−N+1/2
j ,

(3.6)

where we denote zj = eiθj . Choosing σ(θ) = 1
2πf(eiθ)f(e−iθ)dθ on [0, 2π) as measure and

suitable functions gj and hj for each of the groups G(N) in Andréief’s identity (2.2) we obtain

from (3.2) the determinantal expressions∫
U(N)

f(U)dU = det (dj−k)
N
j,k=1, (3.7)∫

Sp(2N)
f(U)dU = det (dj−k − dj+k)Nj,k=1, (3.8)∫

O(2N)
f(U)dU =

1

2
det (dj−k + dj+k−2)Nj,k=1, (3.9)∫

O(2N+1)
f(U)dU = det (dj−k − dj+k−1)Nj,k=1, (3.10)

where dk denotes the Fourier coefficient

dk =
1

2π

∫ 2π

0
e−ikθf(eiθ)f(e−iθ)dθ (3.11)

for each k ∈ Z. Note that this definition also differs from the one given in the previous chapter

(2.1). As remarked above, we now have dk = d−k for all k. Recall that a matrix which

(j, k)-th coefficient depends only on j + k is called a Hankel matrix, and is constant along its

anti-diagonals. Expressions for group integrals as determinants of Toeplitz±Hankel matrices

have been obtained previously, see for instance [18]. Besides their own intrinsic interest, matrix

integrals over the groups G(N) enjoy connections with combinatorics [18], number theory [133]

and integrable systems [3], among many other topics.

Note that while
∫
G(N) f(U)dU =

∫
G(N) f(−U)dU for G(N) = U(N), Sp(2N), O(2N) (as

follows from the above determinantal expressions, for instance), we have∫
O(2N+1)

f(−U)dU = det (dj−k + dj+k−1)Nj,k=1. (3.12)

It turns out that the minors of the above Toeplitz±Hankel matrices (which will be referred

to as Toeplitz±Hankel minors in the following) also have equivalent integral representations, as

in the unitary case. Indeed, one can also express the characters associated to the irreducible

representations of the groups G(N) as the quotient of a minor of the matrix MG(N), indexed by

a partition λ, and the determinant of the matrix itself. See (3.13)-(3.16) for such expressions.

Hence, the insertion of one or two characters of the group G(N) in the integrand in (3.2) cancels

one or two of the determinants. Therefore, denoting by χλG(N) the character of the group G(N)

indexed by the partition λ, we obtain the following result from Andreiéf’s identity (2.2).

Theorem 4. Let N be a positive integer, and let λ and µ be two partitions of lengths l(λ), l(µ) ≤
N . Consider the “reversed” arrays

λr = (λN−j+1)j = (λN , λN−1, . . . , λ2, λ1), µr = (µN−j+1)j = (µN , . . . , µ1).
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We then have∫
U(N)

χλU(N)(U
−1)χµU(N)(U)f(U)dU = det

(
dj−λj−k+µk

)N
j,k=1

= det
(
dj+λrj−k−µrk

)N
j,k=1

,∫
Sp(2N)

χλSp(2N)(U)χµSp(N)(U)f(U)dU = det
(
dj+λrj−k−µrk − dj+λrj+k+µrk

)N
j,k=1

,∫
O(2N)

χλO(2N)(U)χµO(2N)(U)f(U)dU =
1

2
det
(
dj+λrj−k−µrk + dj+λrj+k+µrk−2

)N
j,k=1

,∫
O(2N+1)

χλO(2N+1)(U)χµO(2N+1)(U)f(U)dU = det
(
dj+λrj−k−µrk − dj+λrj+k+µrk−1

)N
j,k=1

,

where the dk are given by (3.11).

We have used above the fact that χλG(N)(U) = χλG(N)(U
−1) forG(N) = Sp(2N), O(2N), O(2N+

1). The resulting determinants are now minors of the Toeplitz and Toeplitz±Hankel matrices

appearing in the right hand sides of formulas (3.7)-(3.10), obtained by striking some of their

rows and columns. The procedure to obtain these minors from the corresponding partitions

is the same as the one described in section 2.1.2 for the case of Toeplitz minors, with the

exception that the order of rows and columns should now be inverted from first to last. Let us

record here this procedure, for convenience.

• Start with one of the Toeplitz or Toeplitz±Hankel matrices in the right hand sides of

(3.7)-(3.10), of size N + max {λ1, µ1}. Strike the last |λ1 − µ1| columns or rows of the

matrix, depending on whether λ1 − µ1 is greater or smaller than zero, respectively.

• Keep the last row of the resulting matrix, and strike the λ1−λ2 next-to-last rows. Keep the

next row, and strike the next λ2 − λ3 rows. Continue until striking λl(λ) − λl(λ)+1 = λl(λ)

rows.

• Repeat the previous step on the columns of the matrix with µ in place of λ. The resulting

matrix is precisely the minor indexed by the partitions λ and µ, as defined in theorem 4.

In particular, the striking of rows and columns performed on the underlying matrix only depends

on the partitions λ and µ, and is the same for any of the matrices (3.7)-(3.10). Note also that

in the Toeplitz case, the above procedure coincides with the one described in section 2.1.2, as

the matrices are now symmetric.

3.1.2 Characters of G(N) and symmetric functions

We summarize below some basic facts about the characters of the classical groups and their

relation to symmetric functions. See [147, 102, 135] for more details.

Recall that Schur polynomials, which correspond to the irreducible characters of the unitary

group U(N), can be defined as the quotient of a minor of the Vandermonde matrix (indexed

by a partition λ) over the determinant of the matrix itself (2.10). The irreducible characters

associated to the other groups G(N) can be defined analogously, replacing the Vandermonde

matrix by the corresponding matrix MG(N), recall (3.3)-(3.6). More precisely, let λ be a partition
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of length l(λ) ≤ N ; we have19

χλU(N)(U) =
detMλ

U(N)(z)

detMU(N)(z)
=

det
(
zN−k+λk
j

)N
j,k=1

det
(
zN−kj

)N
j,k=1

, (3.13)

χλSp(2N)(U) =
detMλ

Sp(2N)(z)

detMSp(2N)(z)
=

det
(
zN−k+λk+1
j − z−(N−k+λk+1)

j

)N
j,k=1

det
(
zN−k+1
j − z−(N−k+1)

j

)N
j,k=1

, (3.14)

χλO(2N)(U) =
detMλ

O(2N)(z)

detMO(2N)(z)
=

det
(
zN−k+λk
j + z

−(N−k+λk)
j

)N
j,k=1

det
(
zN−kj + z

−(N−k)
j

)N
j,k=1

, (3.15)

χλO(2N+1)(U) =
detMλ

O(2N+1)(z)

detMO(2N+1)(z)
=

det

(
z
N−k+λk+ 1

2
j − z−(N−k+λk+ 1

2
)

j

)N
j,k=1

det

(
z
N−k+ 1

2
j − z−(N−k+ 1

2
)

j

)N
j,k=1

, (3.16)

Of course, this is nothing but Weyl’s character formula, specialized to each of the groups

G(N).

The characters χλG(N) can be lifted to the so called “universal characters” in the ring of

symmetric functions in countably many variables [135]. In this fashion, the lifting of the

characters of U(N), Sp(2N), O(2N) and O(2N + 1) gives rise to the Schur sλ, symplectic

Schur spλ, even orthogonal Schur oevenλ and odd orthogonal Schur ooddλ functions, respectively.

When the length of the partition λ is less than or equal to the number of nontrivial eigenvalues

of a matrix U , these functions coincide with the irreducible characters of the corresponding

group, after specializing the corresponding variables back to the nontrivial eigenvalues zj of

U . For instance, we have χλSp(2N)(U) = spλ(z1, . . . , zN ) for any partition satisfying l(λ) ≤ N .

We emphasize that while this condition is necessary in order for the characters χλG(N)(U) to be

defined, the corresponding symmetric functions need not satisfy such restriction, and are defined

for more general partitions. Indeed, given a (possibly infinite) set of variables x = (x1, x2, . . . ),

one can define the Schur, symplectic Schur, and even/odd orthogonal Schur functions by means

of the Jacobi-Trudi identities

sλ(x) = det (hj−k+λk(x))
l(λ)
j,k=1 = det

(
ej−k+λ′k

(x)
)λ1
j,k=1

, (3.17)

spλ(x) =
1

2
det
(
hλj−j+k(x, x

−1) + hλj−j−k+2(x, x−1)
)l(λ)

j,k=1
(3.18)

= det
(
eλ′j−j+k(x, x

−1)− eλ′j−j−k(x, x
−1)
)λ1
j,k=1

(3.19)

oevenλ (x) = det
(
hλj−j+k(x, x

−1)− hλj−j−k(x, x
−1)
)l(λ)

j,k=1
(3.20)

=
1

2
det
(
eλ′j−j+k(x, x

−1) + eλ′j−j−k+2(x, x−1)
)λ1
j,k=1

, (3.21)

ooddλ (x) = det
(
hλj−j+k(x, x

−1, 1)− hλj−j−k(x, x
−1, 1)

)l(λ)

j,k=1
(3.22)

19Recall that the character (3.15) does not correspond to an irreducible representation of O(2N) if λN 6= 0.

This fact is not relevant for our purposes so we ignore it in the following and work with the algebraic expression

(3.15); minor modifications to the subsequent reasoning allow a treatment of the general case.
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=
1

2
det
(
eλ′j−j+k(x, x

−1, 1) + eλ′j−j−k+2(x, x−1, 1)
)λ1
j,k=1

, (3.23)

where the hk and the ek are the complete homogeneous and elementary symmetric polynomials

respectively (2.8). These functions satisfy the Cauchy identities

∑
ν

sν(x)sν(y) =

∞∏
i,j=1

1

1− xiyj
, (3.24)

∑
ν

spν(x)sν(y) =
∏
i<j

(1− yiyj)
∞∏

i,j=1

1

1− xiyj
1

1− x−1
i yj

, (3.25)

∑
ν

oevenν (x)sν(y) =
∏
i≤j

(1− yiyj)
∞∏

i,j=1

1

1− xiyj
1

1− x−1
i yj

, (3.26)

∑
ν

ooddν (x)sν(y) =
∏
i≤j

(1− yiyj)
∞∏

i,j=1

1

1− xiyj
1

1− x−1
i yj

∞∏
j=1

1

1− yj
, (3.27)

and dual Cauchy identities

∑
ν

sν(x)sν′(y) =
∞∏

i,j=1

(1 + xiyj), (3.28)

∑
ν

spν(x)sν′(y) =
∏
i≤j

(1− yiyj)
∞∏

i,j=1

(1 + xiyj)(1 + x−1
i yj), (3.29)

∑
ν

oevenν (x)sν′(y) =
∏
i<j

(1− yiyj)
∞∏

i,j=1

(1 + xiyj)(1 + x−1
i yj). (3.30)

∑
ν

ooddν (x)sν′(y) =
∏
i<j

(1− yiyj)
∞∏

i,j=1

(1 + xiyj)(1 + x−1
i yj)

∞∏
j=1

(1 + yj). (3.31)

Since the groups Sp(2N), O(2N), O(2N + 1) can be embedded on the unitary group

U(2N) or U(2N + 1), the irreducible characters on each of these groups can be expressed

in terms of the others, after applying the specialization homomorphisms (z1, . . . , z2N ) 7→
(z1, . . . , zN , z

−1
1 , . . . , z−1

N ) for Sp(2N), O(2N) or (z1, . . . , z2N+1) 7→ (z1, . . . , zN , z
−1
1 , . . . , z−1

N , 1)

for O(2N + 1). When seen as symmetric functions, they have the following expansions [135]

sλ(x, x−1) =
∑
α

∑
β′ even

cλαβspα(x), (3.32)

sλ(x, x−1) =
∑
α

∑
β even

cλαβo
even
α (x), (3.33)

sλ(x, x−1, 1) =
∑
α

∑
β even

cλαβo
odd
α (x), (3.34)

where cλαβ are Littlewood-Richardson coefficients (2.12), and we say that a partition is even

if it has only even parts. Reciprocally, Schur polynomials evaluated at a set of variables and

their inverses can be expressed in terms of symplectic and orthogonal characters. To state

this relation precisely, we first recall the Frobenius notation for partitions. We write λ =

(a1, . . . , ap|b1, . . . , bp), for some positive integers a1 > · · · > ap and b1 > · · · > bp, if there are

p boxes on the main diagonal of the Young diagram of λ, with the k-th box having ak boxes
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immediately to the right and bk boxes immediately below. Given a partition λ, we denote by

p(λ) the number of boxes on the main diagonal of its diagram. We can then introduce the sets

R(N), S(N) and T (N) of partitions of shapes (a1+1, . . . , ap+1|a1, . . . , ap), (a1, . . . , ap|a1, . . . , ap)

and (a1 − 1, . . . , ap − 1|a1, . . . , ap) respectively in Frobenius notation, with a1 ≤ N − 1. For

instance, the set R(3) consists of the partitions{
∅, , , , , , ,

}
, (3.35)

the set S(3) is the set of self-conjugate partitions of length at most 3 and the set T (3) is obtained

as the set of partitions conjugated to those of R(2). Note that there are exactly 2N partitions

in each of the sets R(N) and S(N), and 2N−1 in the set T (N), all of them of length less than

or equal to N . We can now state Littlewood’s classical identities [135]

spλ(x) =
∑
α

∑
β∈T (N)

(−1)|β|/2cλαβsα(x, x−1) =
∑

β∈T (N)

(−1)|β|/2sλ/β(x, x−1),

oevenλ (x) =
∑
α

∑
β∈R(N)

(−1)|β|/2cλαβsα(x, x−1) =
∑

β∈R(N)

(−1)|β|/2sλ/β(x, x−1),

ooddλ (x) =
∑
α

∑
β∈R(N)

(−1)|β|/2cλαβsα(x, x−1, 1) =
∑

β∈R(N)

(−1)|β|/2sλ/β(x, x−1, 1).

(3.36)

A distinctive feature of symmetric functions is that different Young diagrams may actually

determine the same skew Schur polynomial. For instance, we have already used the fact that

the skew Schur polynomial indexed by any given skew diagram coincides with the skew Schur

polynomial indexed by a 180o rotation of the very same diagram in the previous chapter, but

many other conditions under which this holds are known [168]. An example of different Young

diagrams determining the same symplectic or orthogonal characters (and thus, symplectic or

orthogonal Schur functions) is given in proposition 2.4.1 of [135]. Let us provide another example

of this, which will be useful in the following. We will use the easily checked property

ek(x1, . . . , xN , x
−1
1 , . . . , x−1

N ) = e2N−k(x1, . . . , xN , x
−1
1 , . . . , x−1

N ). (3.37)

Theorem 5. Let λ be a partition. We have

spλ(x1, . . . , xN ) = (−1)λ1(λ1+1)/2spLλ1,2N+λ1+1(λ)(x1, . . . , xN ), (3.38)

oevenλ (x1, . . . , xN ) = (−1)λ1(λ1−1)/2oevenLλ1,2N+λ1−1(λ)(x1, . . . , xN ), (3.39)

ooddλ (x1, . . . , xN ) = (−1)λ1(λ1−1)/2ooddLλ1,2N+λ1
(λ)(x1, . . . , xN ), (3.40)

where LK,N (λ) is as defined in (2.17).

That is, the characters of Sp(2N), O(2N) and O(2N + 1) indexed by a partition λ coincide

(up to a sign) with the characters indexed by the partition obtained from rotating 180o the

complement of λ in the rectangular diagrams (λ2N+λ1+1
1 ), (λ2N+λ1−1

1 ) and (λ2N+λ1
1 ) respectively.

Proof. It is instructive to start with two simple examples. For the case of partitions with a

single column, it follows from (3.19) and (3.37) that

sp(1k)(x) = ek(x, x
−1)− ek−2(x, x−1) = e2N−k(x, x

−1)− e2N+2−k(x, x
−1) = −sp(12N+2−k)(x).

(3.41)
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For the case of partitions with two columns, we obtain from (3.19) and (3.41) that

sp(2k1j)(x) =

∣∣∣∣∣ej+k − ej+k−2 ej+k+1 − ej+k−3

ek−1 − ek−3 ek − ek−4

∣∣∣∣∣ =

∣∣∣∣∣sp(1j+k) sp(1j+k+1) + sp(1j+k−1)

sp(1k−1) sp(1k) + sp(1k−2)

∣∣∣∣∣ =∣∣∣∣∣−sp(12N+2−j−k) −sp(12N+1−j−k) − sp(12N+3−j−k)

−sp(12N+3−k) −sp(12N+2−k) − sp(12N+4−k)

∣∣∣∣∣ =

−

∣∣∣∣∣ sp(12N+3−k) sp(12N+4−k) + sp(12N+2−k)

sp(12N+2−j−k) sp(12N+3−j−k) + sp(12N+1−j−k)

∣∣∣∣∣ = −sp(22N+3−j−k1j)(x),

where the fourth identity above results from exchanging the first and second rows of the

determinant (we have omitted the dependence on x in the determinants for ease of notation).

The proof for the general case is a straightforward generalization of the above reasoning. Let

now λ = (1a12a2 . . .MaM ) be a general partition, written in frequency notation. That is, λ is

the partition with exactly aM parts equal to M , aM−1 parts equal to M − 1, and so on. Then,

we have

λ′ = (aM + aM−1 + · · ·+ a1, aM + aM−1 + · · ·+ a2, . . . , aM + aM−1, aM ),

using the standard notation for partitions. Let us denote the j-th entry of λ′ by bj , for ease

of notation. It follows from the Jacobi-Trudi identity (3.19) and (3.37) that (−1)Mspλ can be

expressed as (we omit again the dependence on x)

(−1)M

∣∣∣∣∣∣∣∣∣∣∣∣

eb1 − eb1−2 eb1+1 − eb1−3 . . . eb1+M−1 − eb1−M−1

eb2−1 − eb2−3 eb2 − eb2−4 . . . eb2+M−2 − eb2−M−2
...

...
...

ebM−1−M+2 − ebM−1−M ebM−1−M+3 − ebM−1−M−1 . . . ebM−1+1 − ebM−1−2M+1

ebM−M+1 − ebM−M−1 ebM−M+2 − ebM−M−2 . . . ebM − ebM−2M

∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)M

∣∣∣∣∣∣∣∣∣∣∣∣

sp(1b1 ) sp(1b1+1) + sp(1b1−1) . . . sp(1b1+M−1) + · · ·+ sp(1b1−M+1)

sp(1b2−1) sp(1b2 ) + sp(1b2−2) . . . sp(1b2+M−2) + · · ·+ sp(1b2−M )
...

...
...

sp
(1bM−1−M+2)

sp
(1bM−1−M+3)

+ sp
(1bM−1−M+1)

. . . sp
(1bM−1+1)

+ · · ·+ sp
(1bM−1−2M+3)

sp(1bM−M+1) sp(1bM−M+2) + sp(1bM−M ) . . . sp(1bM ) + · · ·+ sp(1bM−2M+2)

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

sp(12N+2−b1 ) sp(12N+1−b1 ) + sp(12N+3−b1 ) . . . sp(12N+3−M−b1 ) + · · ·+ sp(12N+1+M−b1 )

sp(12N+3−b2 ) sp(12N+2−b2 ) + sp(12N+4−b2 ) . . . sp(12N+4−M−b2 ) + · · ·+ sp(12N+2+M−b2 )
...

...
...

sp
(12N+M−bM−1 )

sp
(12N−1+M−bM−1 )

+ sp
(12N+1+M−bM−1 )

. . . sp
(12N+1−bM−1 )

+ · · ·+ sp
(12N−1+2M−bM−1 )

sp(12N+1+M−bM ) sp(12N+M−bM ) + sp(12N+2+M−bM ) . . . sp(12N+2−bM ) + · · ·+ sp(12N+2M−bM )

∣∣∣∣∣∣∣∣∣∣∣∣
.

Reversing the order of the rows of the last determinant above, we see that it corresponds to

another symplectic Schur function indexed by some partition µ, satisfying

µ′1 = 2N +M + 1− bM = 2N +M + 1− aM ,
µ′2 = 2N +M + 1− bM−1 = 2N +M + 1− aM − aM−1,

...
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µ′M = 2N +M + 1− b1 = 2N +M + 1− aM − aM − aM−1 − · · · − a1,

which corresponds precisely to Lλ1,2N+λ1+1(λ), thus yielding the desired conclusion. The proof

of identities (3.39) and (3.40) follows analogously from the corresponding Jacobi-Trudi identities

(3.21) and (3.23).

3.1.3 Large N limit of Toeplitz and Toeplitz±Hankel determinants

We record now a generalization of Szegő’s theorem to symplectic and orthogonal integrals

(equivalently, determinants of Toeplitz±Hankel matrices) due to Johansson [127].

Theorem (Johansson). Let f be a function in the unit circle, and assume that it can be expressed

as f(eiθ) = exp(
∑∞

k=1 cke
ikθ), with

∑
k |ck| <∞ and

∑
k k|ck|2 <∞, and define f(U) by formula

(3.1). We have

lim
N→∞

∫
Sp(2N)

f(U)dU = exp

(
1

2

∞∑
k=1

kc2
k −

∞∑
k=1

c2k

)
, (3.42)

lim
N→∞

∫
O(2N)

f(U)dU = exp

(
1

2

∞∑
k=1

kc2
k +

∞∑
k=1

c2k

)
, (3.43)

lim
N→∞

∫
O(2N+1)

f(U)dU = exp

(
1

2

∞∑
k=1

kc2k −
∞∑
k=1

c2k−1

)
. (3.44)

We have stated the theorem for slightly different integrals that those appearing in [127]. The

result, as stated here, follows after using the mapping cos θj 7→ xj in the integrals20 (3.2) and

using the general version of Johansson’s result. This allows to express the integrals in terms of

the orthogonal polynomials with respect to a modified weight on [−1, 1], which relation with the

orthogonal polynomials with respect to the original weight is well known [181] (see also [18]).

This result has been rederived in several different contexts, see for instance [23, 24, 67, 25].

The asymptotic behaviour of Toeplitz±Hankel determinants generated by functions with

Fisher-Hartwig singularities has also attracted interest over the years [68]. For our purposes,

we will only need to consider determinants generated by functions with a single Fisher-Hartwig

singularity. This fact, together with the definition (3.1) allows us to consider only particular

examples of the very general results known for this kind of asymptotics. Starting with the

Toeplitz case, what follows is a particular case of a theorem of Widom [196] adapted for this

setting. See [80, 67] for more general results on the topic.

Theorem (Widom). Let f be given by

f(eiθ) = eV (eiθ)(1− ei(θ−θ0))α, (3.45)

where Re(α) > −1/2, 0 < θ0 < 2π, and the potential V (eiθ) =
∑∞

k=1 cke
ikθ satisfies

∑
k |ck| <∞

and
∑

k k|ck|2 <∞, as in Szegő’s theorem. Define f(U) by (3.1) for any U ∈ U(N). Then, as

N →∞, we have∫
U(N)

f(U)dU = exp

( ∞∑
k=1

kc2
k

)
Nα2

e−2αV (eiθ0 )G
2(α+ 1)

G(2α+ 1)
(1 + o(1)), (3.46)

where G is Barnes’ G function

20The relation is more apparent working directly with the trigonometric expression of Haar measure on G(N),

see for instance equations (3.3)-(3.5) in [60].
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We also quote a particular case of a theorem of Deift, Its and Krasovsky [67] for

Toeplitz±Hankel determinants generated by functions with a single singularity at the point

z = −1, which will be enough for our purposes. See [67] for more general results.

Theorem (Deift, Its, Krasovsky). Let f be given by (3.45), with θ0 = π, and define f(U) by

(3.1) for any U ∈ Sp(2N), O(2N), O(2N + 1). Then, as N →∞, we have∫
G(N)

f(U)dU =

(∫
G(N)

eV (U)dU

)
e−αV (−1)Nα2/2+αt2−α

2/2−α(s+t−1/2)π
α/2G(t+ 1)

G(α+ t+ 1)
(1 + o(1)),

(3.47)

where s and t depend on the group G(N) and are given by

Sp(2N) : s = t =
1

2
, O(2N) : s = t = −1

2
, O(2N + 1) : s = −t =

1

2
.

Note that the asymptotic behaviours of the integrals
∫
G(N) e

V (U)dU in equations (3.46) and

(3.47) are given by Szegő’s and Johansson’s theorems, respectively.

3.2 Relations between Toeplitz±Hankel determinants and

minors

We now turn to some computations exploiting the determinant and minor expressions for the

group integrals introduced in section 3.1.1, as well as their symmetric function formulation.

3.2.1 Factorizations and group integrals as rectangular characters

Theorem 6. We have∫
U(2N−1)

f(U)dU =

∫
Sp(2N−2)

f(U)dU

∫
O(2N)

f(U)dU

=
1

2

∫
O(2N−1)

f(U)dU

∫
O(2N+1)

f(−U)dU +
1

2

∫
O(2N+1)

f(U)

∫
O(2N−1)

f(−U)dU,∫
U(2N)

f(U)dU =

∫
O(2N+1)

f(U)dU

∫
O(2N+1)

f(−U)dU

=
1

2

∫
Sp(2N)

f(U)dU

∫
O(2N)

f(U)dU +
1

2

∫
Sp(2N−2)

f(U)

∫
O(2N+2)

f(U)dU.

Proof. The theorem follows immediately after expressing the above integrals as the Toeplitz and

Toeplitz±Hankel determinants (3.7)-(3.10),(3.12) and noticing that these determinants satisfy

the corresponding identities, see e.g. [191].

Theorem 7. Let x = (x1, . . . , xK) be some variables, and let λ be a partition satisfying l(λ) ≤ N
and λ1 ≤ K. We have

∫
Sp(2N)

χλSp(2N)(M)E(x1, . . . , xK ;M)dM =

 K∏
j=1

xNj

 spLN,K(λ′)(x1, . . . , xK) (3.48)
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∫
O(2N)

χλO(2N)(M)E(x1, . . . , xK ;M)dM =

 K∏
j=1

xNj

 oevenLN,K(λ′)(x1, . . . , xK) (3.49)

∫
O(2N+1)

χλO(2N+1)(M)E(x1, . . . , xK ;M)dM = (−1)|λ|+KN

 K∏
j=1

xNj

 ooddLN,K(λ′)(−x1, . . . ,−xK),

(3.50)

where LN,K(λ′) is the partition given by (2.17).

Proof. Let us proceed with the symplectic case. We start from the case µ = ∅ of the symplectic

integral in theorem 4, which in sight of the Fourier coefficients of the function E(x1, . . . , xK ; z)

(2.31) equals∫
Sp(2N)

χλSp(2N)(M)E(x1, . . . , xK ;M)dM

= det

 K∏
j=1

xj

(
eK+j+λrj−k(x, x

−1)− eK+j+λrj+k
(x, x−1)

)N

j,k=1

,

where we have denoted x−1 = (x−1
1 , . . . , x−1

K ). Using (3.37) we see that this determinant can

also be expressed as

det

 K∏
j=1

xj
(
eK−λN+1−j−j+k(x, x

−1)− eK−λN+1−j−j−k(x, x
−1)
)N

j,k=1

,

which, due to the Jacobi-Trudi identity (3.19), coincides with the right hand side of (3.48).

Identity (3.49) follows analogously. Let us turn however, to identity (3.50), as it requires

some more computation. As in the symplectic case, using the Jacobi-Trudi identity (3.23), the

fact that ek(x, 1) = ek(x) + ek−1(x), and identity (3.37) we obtain K∏
j=1

xNj

ooddLN,K(λ′)(−x)

=
1

2
det

 K∏
j=1

xj

(
eK−λrj−j+k(−x,−x

−1, 1) + eK−λrj−j−k+2(−x,−x−1, 1)
)N

j,k=1

=
1

2
det

 N∏
j=1

xj

(
eK−λrj−j+k(−x,−x

−1) + eK−λrj−j+k−1(−x,−x−1)

+ eK−λrj−j−k+2(−x,−x−1) + eK−λrj−j−k+1(−x,−x−1)
))N

j,k=1

=
1

2
det

 N∏
j=1

xj

(
eK+j+λrj−k(−x,−x

−1) + eK+j+λrj−k+1(−x,−x−1)

+ eK+j+λrj+k−2(−x,−x−1) + eK+j+λrj+k−1(−x,−x−1)
))N

j,k=1
.
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Adding (−1)j+k times the k-th column of the last matrix above, for each k = 1, ..., j − 1, to the

j-th column, for each j = 2, ..., N , we obtain K∏
j=1

xNj

 ooddLN,K(λ′)(−x) = det

 K∏
j=1

xj

(
eK+j+λrj−k(−x,−x

−1) + eK+λrj+j+k−1(−x,−x−1)
)N

j,k=1

.

Using the case µ = ∅ of the odd orthogonal integral of theorem 4 and extracting the minus

sign from the elementary symmetric polynomials in the last determinant above we arrive at

(3.50).

In particular, theorem 7 implies that the determinants of the corresponding Toeplitz±Hankel

matrices in the left hand sides of the theorem can be expressed as the specialization of a single

character associated to the irreducible representation of the corresponding group, indexed by a

rectangular partition. This was first observed in [58] and has been generalized to integrals over

other ensembles, see for instance [150, 151]. Combining this fact with theorem 6 we obtain the

following result.

Corollary 3. The following relations hold between the symmetric functions associated to the

characters of the groups G(N)

s((2N−1)K)(x1, . . . , xK , x
−1
1 , . . . , x−1

K ) = sp((N−1)K)(x1, . . . , xK)oeven(NK)(x1, . . . , xK)

=
(−1)NK

2
oodd((N−1)K)(x1, . . . , xK)oodd(NK)(−x1, . . . ,−xK)

+
(−1)NK

2
oodd(NK)(x1, . . . , xK)oodd((N−1)K)(−x1, . . . ,−xK),

s((2N)K)(x1, . . . , xK , x
−1
1 , . . . , x−1

K ) = (−1)NKoodd(NK)(x1, . . . , xK)oodd(NK)(−x1, . . . ,−xK)

=
1

2
sp(NK)(x1, . . . , xK)oeven(NK)(x1, . . . , xK) +

1

2
sp((N−1)K)(x1, . . . , xK)oeven((N+1)K)(x1, . . . , xK).

The first and third identities in the corollary appeared before in [54]. There exist also

identities expressing the sum of two Schur polynomials indexed by partitions of rectangular

shapes in terms of orthogonal and symplectic Schur functions, as well as some other

generalizations of these identities, see [54, 13, 14], but the second and fourth identities in the

corollary are new to our knowledge.

3.2.2 Expansions in terms of Toeplitz minors

Theorem 8. The integrals (3.2) verify∫
Sp(2N)

f(U)dU =
1

2N

∑
ρ1,ρ2∈R(N)

(−1)(|ρ1|+|ρ2|)/2
∫
U(N)

χρ1U(N)(U
−1)χρ2U(N)(U)f(U)dU,

∫
O(2N)

f(U)dU =
1

2N−1

∑
τ1,τ2∈T (N)

(−1)(|τ1|+|τ2|)/2
∫
U(N)

χτ1U(N)(U
−1)χτ2U(N)(U)f(U)dU,

∫
O(2N+1)

f(U)dU =
1

2N

∑
σ1,σ2∈S(N)

(−1)(|σ1|+|σ2|+p(σ1)+p(σ2))/2

∫
U(N)

χσ1U(N)(U
−1)χσ2U(N)(U)f(U)dU.

Proof. The main idea in the proof is that the determinants detMG(N), whenever G(N) is one of

the groups Sp(2N), O(2N) or O(2N + 1), contain as a factor the determinant detMU(N), as can
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be seen in formulas (3.3)-(3.6). Hence, as a consequence of the definition (3.1), one can see the

integrals over the groups G(N) as integrals over U(N) with an additional term in the integrand.

Moreover, these additional terms can be expressed as Schur functions series as follows [147]

detMSp(2N)(z)

detMU(N)(z)
=

N∏
j=1

z−Nj
∏
j<k

(1− zjzk)
N∏
j=1

(1− z2
j ) =

N∏
j=1

z−Nj
∑

ρ∈R(N)

(−1)|ρ|/2sρ(z1, . . . , zN ),

detMO(2N)(z)

detMU(N)(z)
= 2

N∏
j=1

z−N+1
j

∏
j<k

(1− zjzk)
N∏
j=1

= 2
N∏
j=1

z−N+1
j

∑
τ∈T (N)

(−1)|τ |/2sτ (z1, . . . , zN ),

detMO(2N+1)(z)

detMU(N)(z)
=

N∏
j=1

z
−N+1/2
j

∏
j<k

(1− zjzk)
N∏
j=1

(1− zj)

=
N∏
j=1

z
−N+1/2
j

∑
σ∈S(N)

(−1)(|σ|+p(σ))/2sσ(z1, . . . , zN ),

where R(N), S(N) and T (N) are defined in (3.35). Substituting these formulas into (3.2), for

each of the groups G(N) = Sp(2N), O(2N), O(2N + 1), one obtains the desired result.

Thus, we see that the integral of a function over one of the groups G(N) can be expressed

as a certain sum of integrals of the same function over U(N) with Schur polynomials on the

integrand. Note that the integrals in the right hand sides above are symmetric upon exchange

of the partitions indexing the Schur polynomials. Since there are exactly 2N partitions in the

sets R(N) and S(N), and 2N−1 in T (N), this21 implies that there are at most 22N−1 different

terms in each of the sums.

According to identities (3.7)-(3.10), the integrals and twisted integrals over the groups G(N)

can be expressed as determinants and minors, respectively, of certain Toeplitz±Hankel matrices.

Therefore, theorem 8 translates to the following result involving only the aforementioned

matrices.

Corollary 4. Let f be a function on the unit circle which Fourier coefficients verify dk = d−k.

Given two partitions λ and µ, we denote the Toeplitz minor generated by f and indexed by λ

and µ by

Dλ,µ
N (f) = det

(
dj−λj−k+µk

)N
j,k=1

,

as in [50]. We have

det (dj−k − dj+k)Nj,k=1 =
1

2N

∑
ρ1,ρ2∈R(N)

(−1)(|ρ1|+|ρ2|)/2Dρ1,ρ2
N (f),

det (dj−k + dj+k−2)Nj,k=1 =
1

2N−2

∑
τ1,τ2∈T (N)

(−1)(|τ1|+|τ2|)/2Dτ1τ2
N (f),

det (dj−k − dj+k−1)Nj,k=1 =
1

2N

∑
σ1,σ2∈S(N)

(−1)(|σ1|+|σ2|+p(σ1)+p(σ2))/2Dσ1σ2
N (f).

21Together with further symmetries of the integral; for instance,
∫
U(N)

s(aN )(U
−1)s(aN )(U)f(U)dU =∫

U(N)
f(U)dU for every a > 0.
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The minors appearing in the right hand sides above fit in the Toeplitz matrix generated by f of

order 2N + 1, 2N and 2N − 1, respectively, and the sums have 22N−1 different terms, as in

theorem 8.

For example, taking N = 2 in the first identity above we obtain the expansion

2

∣∣∣∣∣d0 − d2 d1 − d3

d1 − d3 d0 − d4

∣∣∣∣∣ =

∣∣∣∣∣d0 d1

d1 d0

∣∣∣∣∣−
∣∣∣∣∣d2 d1

d3 d0

∣∣∣∣∣+

∣∣∣∣∣d3 d0

d4 d1

∣∣∣∣∣−
∣∣∣∣∣d1 d2

d4 d1

∣∣∣∣∣
+

∣∣∣∣∣d1 d0

d4 d3

∣∣∣∣∣−
∣∣∣∣∣d0 d1

d3 d2

∣∣∣∣∣+

∣∣∣∣∣d0 d3

d3 d0

∣∣∣∣∣−
∣∣∣∣∣d3 d2

d4 d3

∣∣∣∣∣ ,
where all the determinants in the right hand side above are minors of the Toeplitz matrix

(dj−k)
5
j,k=1. Analogous computations lead to expansions of minors of Toeplitz±Hankel matrices

as sums of minors of Toeplitz matrices (equivalently, expansions of twisted integrals over

Sp(2N), O(2N) or O(2N + 1) in terms of twisted integrals over U(N)), weighted with

Littlewood-Richardson coefficients. However, the resulting expressions are rather cumbersome

and we do not pursue this road further.

Setting f(z) = E(x1, . . . , xK ; z) in theorem 8 and making use of theorem 7 we also obtain

the following result.

Corollary 5. The characters of G(N) indexed by rectangular shapes can be expanded in terms

of skew Schur polynomials as follows

sp(NK)(x1, . . . , xK) =
1

2N

∑
ρ1,ρ2∈R(N)

(−1)(|ρ1|+|ρ2|)/2s((KN )+ρ2/ρ1)′(x1, . . . , xK , x
−1
1 , . . . , x−1

K ),

oeven(NK)(x1, . . . , xK) =
1

2N−1

∑
τ1,τ2∈T (N)

(−1)(|τ1|+|τ2|)/2s((KN )+τ2/τ1)′(x1, . . . , xK , x
−1
1 , . . . , x−1

K ),

oodd(NK)(x1, . . . , xK) =

1

2N

∑
σ1,σ2∈S(N)

(−1)(3|σ1|+3|σ2|+p(σ1)+p(σ2))/2s((KN )+σ2/σ1)′(x1, . . . , xK , x
−1
1 , . . . , x−1

K ),

Note that these expressions are different from the classical identities (3.36).

3.2.3 Gessel-type identities

Another possibility for expressing integrals and twisted integrals over the classical groups in

terms of symmetric functions is available in the form of Schur function series, as the classical

identity of Gessel for Toeplitz determinants (2.15). Let us denote by sνG(N)(x) the Schur,

symplectic Schur or even/odd orthogonal Schur symmetric function indexed by the partition

ν for G(N) = U(N), Sp(2N), O(2N), O(2N + 1) respectively, for this theorem only.

Theorem 9. Let x = (x1, x2, . . . ) be a set of variables. Recall the definition

H(x; z) =

∞∏
j=1

1

1− xjz
.

The following Schur function series expansions hold∫
G(N)

H(x;U)dU =
∑

l(ν)≤N

sν(x)sνG(N)(x), (3.51)
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∫
G(N)

χµG(N)(U)H(x;U)dU =
∑

l(ν)≤N

sν/µ(x)sνG(N)(x), (3.52)

∫
G(N)

χλG(N)(U
−1)χµG(N)(U)H(x;U)dU =


∑

l(ν)≤N

sν/λ(x)sν/µ(x), G(N) = U(N),

∑
l(ν)≤N

∑
κ

bκλµsν/κ(x)sνG(N)(x), rest of G(N),

(3.53)

where the coefficients bκλµ can be expressed in terms of Littlewood-Richardson coefficients cλστ
(2.12) by the following formula

bκλµ =
∑
σ,ρ,τ

cλστ c
µ
ρτ c

κ
σρ.

The same expansions hold for the function E(x; z) =
∏∞
j=1(1 + xjz) (2.9), after transposing the

partitions indexing all the symmetric functions in the above identities.

We remark the fact that the choice of functions above is without loss of generality. Indeed,

recall that the Fourier coefficients of the functions H(x; z) and E(x; z) are the complete

homogeneous symmetric functions hk(x) and the elementary symmetric functions ek(x)

respectively (2.8). Both of these families are sets of algebraically independent generators in the

ring of symmetric functions, and thus one can specialize them to any given values to recover any

function with arbitrary Fourier coefficients from H(x; z) or E(x; z), as discussed after theorem

1.

A similar proof of identity (3.51) for G(N) = Sp(2N), O(2N) can be found in [30]. See also

[121, 19, 20] for earlier related results. Different Schur and symmetric function series for some

of these integrals can also be found in [18, 143].

Proof. The expansion (3.51) for G(N) = U(N) is the aforementioned result of Gessel [107],

which extends easily to the other groups. We sketch the proof for convenience of the reader.

Denote the Toeplitz matrix of order N generated by a function f by TN (f). It is well known

that if two functions a, b satisfy

a(z) =
∑
k≤0

akz
k, b(z) =

∑
k≥0

bkz
k, (3.54)

where z = eiθ, then the Toeplitz matrix generated by the function ab satisfies TN (ab) =

TN (a)TN (b). It follows from the Cauchy-Binet formula that detTN (ab) is then a sum over

minors of the Toeplitz matrices of sizes N ×∞ and ∞×N generated by a and b, respectively.

The proof is completed upon noting that if a(z−1) = b(z) = H(x; z) then by the Jacobi-Trudi

identity (3.17) the minors appearing in the sum are precisely the Schur polynomials appearing

in (3.51), since the Fourier coefficients of the function H(x; z) are the complete homogeneous

symmetric polynomials hk(x). The proof for the other groups is analogous: now the factorization

THN (ab) = TN (a)THN (b)

holds for each of the Toeplitz±Hankel matrices THN (b) appearing in (3.8)-(3.10) and functions

a, b satisfying (3.54). The result then follows from the Jacobi-Trudi identities (3.18)-(3.22)

(although some additional computations are needed in the odd orthogonal case, as in corollary

3).
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Identities (3.52), and (3.53) for U(N), follow analogously from the generalization of

Jacobi-Trudi formula for skew Schur polynomials. Identity (3.53) for the rest of the groups

follows from (3.52) and the fact that the characters χλG(N) follow the multiplication rule [144]

χλG(N)(U)χµG(N)(U) =
∑
ν

bνλµχ
ν
G(N)(U) (3.55)

for G(N) = Sp(2N), O(2N) and O(2N + 1) (recall that χλG(N)(U) = χλG(N)(U
−1) for such

groups).

The corresponding identities involving the function E follow analogously, using the dual

Jacobi-Trudi identities instead (or, equivalently, using the involution hk 7→ ek) in (3.51)-(3.53)).

Observe that if we replace the left hand sides of (3.51) and (3.52) by their expression as

a single character of G(N), given by (2.32) and theorem 7, the above theorem gives Schur

function series expansions for such characters, which are different to those obtained in corollary

5. Yet another expansion for symplectic and even and odd orthogonal functions indexed by

rectangular shapes can be obtained by Laplace expansion of the corresponding Toeplitz±Hankel

determinants, as done in theorem 2 for the Toeplitz case.

3.2.4 Large N limit

We will be interested in the following in computing the N → ∞ limit of integrals of the

type
∫
G(N) f(U)dU . This can be achieved by means of the strong Szegő limit theorem and

its generalization to the rest of the groups G(N) due to Johansson (3.42)-(3.44), or equivalently,

by means of theorem 9 and the Cauchy identities (3.24)-(3.27) (see section 3.3.1 below for such

explicit computations). It turns out that the twisted integrals share a common asymptotic

behavior.

Theorem 10. Let λ and µ be two partitions. We have

lim
N→∞

∫
G(N) χ

λ
G(N)(U

−1)χµG(N)(U)H(x;U)dU∫
G(N)H(x;U)dU

=
∑
ν

sλ/ν(x)sµ/ν(x), (3.56)

for any of the groups G(N) = U(N), Sp(2N), O(2N), O(2N + 1).

Note that if there is only one character in the integrand above the right hand side simplifies

to a single Schur polynomial. As before, the theorem also holds for the function E(x; eiθ) =∏∞
j=1(1 + xje

iθ), after transposing the partitions indexing the skew Schur polynomials above.

Proof. If G(N) = U(N), the result is the content of theorem 1. A proof for the rest of the groups

G(N) goes as follows. Start by considering a single character in the integral (3.56). Then, using

the Cauchy identity (3.24) and the restriction rules (3.32)-(3.34) we obtain∫
G(N)

χµG(N)(U)H(x;U)dU =
∑

l(ν)≤N

∑
α

∼∑
β

cναβsν(x)

∫
G(N)

χµG(N)(U)χαG(N)(U)dU,

where
∼∑

denotes that the sum on β runs over all even partitions for G(N) = O(2N), O(2N+1),

and over all partitions whose conjugate is even, for G(N) = Sp(2N) (we say that a partition is
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even if it has only even parts), and the sum on α runs over all partitions. Taking N →∞ in the

above expression and using the orthogonality of the characters with respect to Haar measure we

obtain

lim
N→∞

∫
G(N)

χµG(N)(U)H(x;U)dU = sµ(x)
∼∑
β

sβ(x). (3.57)

This gives the desired result upon noting that the sum on the right hand side is precisely the

N →∞ limit of the integral
∫
G(N)H(x;U)dU . The result for the integral (3.56) twisted by two

characters then follows from (3.57) and the multiplication rules (2.12) and (3.55).

In particular, we see that the N → ∞ limit of the average is independent of the particular

group G(N) considered. This was noted in [64] for a single character, which automatically

implies the same for two characters for G(N) = Sp(2N), O(2N), O(2N + 1). Indeed, since

χλG(N)(U
−1) = χλG(N)(U) for these groups, one can expand the product of two characters in the

integrand using the multiplication rule (3.55), use theorem 10 on the resulting averages and then

use (3.55) again to recover (3.56). However, this is not immediate for G(N) = U(N), as the

characters in the integrand are not evaluated at the same variables.

We remark that the convergence above is in the ring of symmetric functions, as in theorem

1. Likewise, specializing the variables x (or any family of generators in the ring of symmetric

functions on these variables) to a particular function such that the limit limN→∞
∫
G(N) f(U)dU

is finite we obtain the asymptotic behaviour in (3.56) for the corresponding specialization of the

right hand side, where the skew Schur polynomials are replaced by their specializations (2.29).

We also have an analogous result to corollary 2 for symplectic and orthogonal Schur functions.

Corollary 6. Let λ be a partition with l(λ) ≤ K. We have

lim
N→∞

spLN,K(λ)(x1, . . . , xK) =

(
lim
N→∞

sp(NK)(x1, . . . .xK)

)
sλ(x1, . . . , xK),

lim
N→∞

oevenLN,K(λ)(x1, . . . , xK) =

(
lim
N→∞

oeven(NK)(x1, . . . .xK)

)
sλ(x1, . . . , xK),

lim
N→∞

ooddLN,K(λ)(x1, . . . , xK) = (−1)|λ|
(

lim
N→∞

oodd(NK)(x1, . . . .xK)

)
sλ(x1, . . . , xK).

The proof follows after combining the case µ = ∅ of theorem 10 with theorem 7, as in the

proof of corollary 2. Alternatively, it can be seen as a consequence of corollary 2 and the fact

that the highest degree term in the Schur polynomial expansion of symplectic and orthogonal

Schur functions is precisely the Schur polynomial indexed by the same partition, as can be seen

from (3.36), for instance.

3.3 An exactly solvable model: Jacobi’s third theta function

We particularize the previous results to the case of a completely solvable model, for both finite

and large N . The objects under study appear in several contexts, such as G(N) Chern-Simons

theory on S3, the skein of the annulus [160] and Fourier and sine/cosine transforms [104].

Let q be a parameter satisfying |q| < 1, and consider Jacobi’s third theta function

∑
k∈Z

qk
2/2zk = (q; q)∞

∞∏
j=1

(1 + qj−1/2z)(1 + qj−1/2z−1), (3.58)
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where (q; q)∞ =
∏∞
j=1(1− qj). We then define f(U) for U ∈ G(N) as in (3.1), with

f(z) = Θ(z) = E(q1/2, q3/2, . . . ; z−1), (3.59)

where E is given by (2.9). For this choice of function, the integral

ZG(N) = (q; q)N∞

∫
G(N)

Θ(U)dU (3.60)

recovers the partition function of Chern-Simons theory on S3 with symmetry group G(N), and

the coefficients in the corresponding Toeplitz and Toeplitz±Hankel matrices are dk = qk
2/2,

according to (3.58). After a matrix model description was obtained for Chern-Simons theory on

manifolds such as S3 or lens spaces [148], the solvability of the theory has been well known, and

a number of equivalent representations have been obtained [182, 170]. Moreover, the averages

〈Wµ〉G(N) =
1

ZG(N)

∫
G(N)

χµG(N)(U)Θ(U)dU

and

〈Wλµ〉G(N) =
1

ZG(N)

∫
G(N)

χλG(N)(U
−1)χµG(N)(U)Θ(U)dU,

where l(λ), l(µ) ≤ N , are, respectively, the Wilson loop and Hopf link of the theory. As we will

see below, the formalism of Toeplitz and Toeplitz±Hankel determinants and minors provides

an elementary mean for computing these objects. Moreover, as will be clear throughout the

rest of the chapter, the symmetric function structure behind these models allows a unified

approach in their study, since properties or explicit results for the different groups G(N) will

follow from completely analogous reasonings. This is particularly useful in sight of the lack

of results concerning the partition function and observables of the symplectic and orthogonal

theories [176].

3.3.1 Partition functions of G(N) Chern-Simons theory on S3

Unitary group

We start by reviewing the simplest and best known case. We obtain from the determinant

expression (3.7)

ZU(N) = det (q(j−k)2/2)Nj,k=1 = q
∑N
j=1 j

2

det (q−jk)Nj,k=1 =
∏
j<k

(1− qk−j) =
N−1∏
j=1

(1− qj)N−j ,

where the third identity follows from the fact that the second determinant above is essentially

the determinant of the matrix MU(N)(z) (3.3), with zj = qj−1.

The large N limit of this expression is given by Szegő’s theorem, which shows that as N →∞

ZU(N) ∼ exp

(
−N

∞∑
k=1

1

k

qk

1− qk
+

∞∑
k=1

1

k

qk

(1− qk)2

)
.

The same formula can be obtained using Cauchy’s identity (3.24) in formula (3.51), as explained

in [185].



Toeplitz±Hankel minors and Chern-Simons theory 53

Symplectic group

We can proceed analogously for the rest of the groups. The determinants will now be

specializations of the corresponding matrix MG(N)(z) with zj = qj , which can be computed

explicitly by means of the formulas (3.3)-(3.6). For the symplectic group we obtain

ZSp(2N) = det
(
q(j−k)2/2 − q(j+k)2/2

)N
j,k=1

= q
∑N
j=1 j

2

det(q−jk − qjk)Nj,k=1

=

N−j∏
j=1

(1− qj)N−j
N∏
j=3

(1− qj)[ j−1
2

]
2N−1∏
j=N+1

(1− qj)[ 2N+1−j
2

]
N∏
j=1

(1− q2j) =
2N∏
j=1

(1− qj)ε(j),

where

ε(j) =



N − j

2
− 1

2
, j odd 1 ≤ j ≤ N,

N − j

2
, j even, 1 ≤ j ≤ N,

N − j

2
+

1

2
, j odd, N + 1 ≤ j ≤ 2N,

N − j

2
+ 1, j even, N + 1 ≤ j ≤ 2N.

As with the unitary model, this result is exact and holds for every N , and coincides with the

expression obtained in [176] for the large N regime. We see that the partition function of the

symplectic model is obtained as the product of the partition function of the unitary model and

extra factors.

For the large N limit, we obtain from Johansson’s generalization of Szegő’s theorem (3.42)

that as N →∞

ZSp(2N) ∼ exp

(
−N

∞∑
k=1

1

k

qk

1− qk
+

1

2

∞∑
k=1

1

k

qk

(1− qk)2
+

∞∑
k=1

1

2k

qk

1− q2k

)
.

Again, the same result is obtained using Cauchy’s identity for symplectic characters (3.25) in

equation (3.51). Notice that in the large N limit, the partition function for the Sp(2N) model

is a factor of the partition function of the U(N) model, while precisely the opposite occurred at

finite N .

Orthogonal groups

Proceeding analogously, we see that by identity (3.6)

ZO(2N) =
1

2
det
(
q(j−k)2/2 + q(j+k−2)2/2

)N
j,k=1

=

N−1∏
j=1

(1− qj)N−j
N−1∏
j=1

(1− qj)[ j+1
2

]
2N−3∏
j=N

(1− qj)[ 2N−j−1
2

] =
2N−3∏
j=1

(1− qj)ε(j),

where

ε(j) =



N − j

2
+

1

2
, j odd, 1 ≤ j ≤ N − 1,

N − j

2
, j even, 1 ≤ N − 1,

N − j

2
− 1

2
, j odd, N ≤ j ≤ 2N − 3,

N − j

2
− 1, j even, N ≤ j ≤ 2N − 3,
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in agreement with [176]. Again, the partition function contains as a factor the partition function

of the unitary model. For O(2N + 1) we have

ZO(2N+1) = det
(
q(j−k)2/2 − q(j+k−1)2/2

)N
j,k=1

=

N−1∏
j=1

(1− qj)N−j
N∏
j=2

(1− qj)[ j
2

]
2N−2∏
j=N+1

(1− qj)[ 2N−j
2

]
N∏
j=1

(1− qj−1/2)

=
2N−2∏
j=1

(1− qj)ε(j)
N∏
j=1

(1− qj−1/2),

where

ε(j) =


N − j

2
− 1

2
, j odd, 1 ≤ j ≤ 2N − 2,

N − j

2
, j even, 1 ≤ j ≤ 2N − 2,

in agreement with [176]. We see once again that the partition function can be seen as the

partition function of the unitary model times an extra factor. In this case, also factors with

half-integer exponents (1− qj/2) are present.

Let us also record here the value of the closely related integral (3.12) for this choice of

function, for completeness. We have

(q; q)N∞

∫
O(2N+1)

Θ(−U)dU =

2N−3∏
j=1

(1− qj)ε(j)
N∏
j=1

(1 + qj−1/2) = ZO(2N+1)

N∏
j=1

(1 + qj−1/2)

(1− qj−1/2)
,

where ε(j) is as in ZO(2N+1).

For the large-N limit, we obtain from Johansson’s theorem (3.43),(3.44) that as N →∞,

ZO(2N) ∼ exp

(
−N

∞∑
k=1

1

k

qk

1− qk
+

1

2

∞∑
k=1

1

k

qk

(1− qk)2
−
∞∑
k=1

1

2k

qk

1− q2k

)
,

ZO(2N+1) ∼ exp

(
−N

∞∑
k=1

1

k

qk

1− qk
+

1

2

∞∑
k=1

1

k

qk

(1− qk)2
−
∞∑
k=1

1

2k − 1

qk−1/2

1− q2k−1

)
.

One can verify directly from the expressions obtained that in the large N limit we recover

the partition function of U(N) as the product of the partition functions of Sp(2N) and O(2N),

consistently with corollary 6.

3.3.2 Gross-Witten-Wadia model

The factorization properties obtained in theorem 6 hold for any choice of function, and

thus are applicable to gauge theories with other matrix model descriptions, such as the

Gross-Witten-Wadia model [112, 193]. This is of particular interest in sight of the renewed

interest in this topic [164, 5, 6, 125].

The partition function of this model with G(N) symmetry is given by

ZGWW
G(N) (β) =

∫
G(N)

fGWW (U)dU,
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where

fGWW (z) = e−β(z+z
−1).

Its large N behaviour follows from the strong Szegő limit theorem and its generalization to the

rest of the groups G(N), for instance

lim
N→∞

ZGWW
U(N) (β) = eβ

2
.

A similar analysis as in the Chern-Simons case can be performed for this choice of function.

Moreover, since all but two of the Fourier coefficients of the potential in the function fGWW

vanish, often simpler relationships follow from the results in the previous sections. For instance,

we see from theorem 6 that

ZGWW
U(2N) (β) = ZGWW

O(2N+1) (β)ZGWW
O(2N+1) (−β) ,

and, using also the asymptotic expressions (3.42) and (3.43), we find that

ZGWW
U(2N−1)(β), ZGWW

U(2N)(β) ∼ ZGWW
Sp(2N)(β)ZGWW

O(2N)(β) = (ZGWW
O(2N) (β))2 = (ZGWW

Sp(2N) (β))2,

as N → ∞. This relationship also has a XX spin chain interpretation [192], but is however

modified in the usual double scaling limit [161, 95]. At any rate, it seems that large N results

for the unitary Gross-Witten-Wadia model can be translated to the O(2N) and Sp(2N) models.

It would also be interesting to exploit the factorizations in theorem 6 in other contexts, taking

into account the known connections of the group integrals ZGWW
G(N) with Painlevé equations

[96, 99, 125] or increasing subsequence problems [18].

3.4 Wilson loops and Hopf links of G(N) Chern-Simons theory

on S3

We now turn to computing Wilson loops and Hopf links of Chern-Simons theory on S3 with

symmetry group G(N), for each of the classical groups. Let us fix two partitions λ and µ of

lengths l(λ), l(µ) ≤ N throughout the rest of the section.

3.4.1 Unitary group

The insertion of a Schur polynomial on the unitary model gives

(q; q)N∞

∫
U(N)

sµ(U)Θ(U)dU = det(q(j−k−µrk)2/2)Nj,k=1

= q
∑N
j=1(µ2j/2+(N−j+1)µj+j

2) det
(
q−j(k+µrk)

)N
j,k=1

.

We see that the determinant in the right hand side above is now essentially the minor Mµ
U(N)(z)

in (3.13) after setting zj = q−j . This yields

〈Wµ〉U(N) = q
∑N
j=1 µj(µj/2−j+1)sµ(1, q, . . . , qN−1), (3.61)

which, up to a prefactor of a power of q, recovers the original result in [78]. We recall that

the above specialization of the Schur polynomial is a polynomial on q with positive and integer

coefficients [147].
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Inserting two Schur polynomials in the integral we obtain

(q; q)N∞

∫
U(N)

sλ(U−1)sµ(U)Θ(U)dU = det(q(j+λrj−k−µrk)2/2)Nj,k=1

= q
∑N
j=1(λ2j/2+µ2j/2+(N−j)(λj+µj)+(j−1)2) det(q−(N−j+λj)(N−k+µk))Nj,k=1.

The determinant is now a minor of Mλ
U(N)(z), obtained by striking some of its rows. That is, a

minor obtained by striking rows and columns of the Vandermonde matrix MU(N)(1, q, . . . , q
N−1),

as noted in [160]. One can express this in terms of Schur polynomials by setting zj = qN−j+µj

in this matrix, which yields

〈Wλµ〉U(N) = q
∑N
j=1(λ2j/2+µ2j/2−(j−1)(λj+µj))sµ(1, q, . . . , qN−1)sλ(q−µ1 , q1−µ2 , . . . , qN−1−µN ).

The above expression can also be written in terms of the quadratic Casimir element of U(N),

which we denote by C
U(N)
2 (λ) =

∑
j λj(λj +N − 2j + 1), as follows

q

(
−(N−1)(|λ|+|µ|)+CU(N)

2 (λ)+C
U(N)
2 (µ)

)
/2
sµ(1, q, . . . , qN−1)sλ(q−µ1 , q1−µ2 , . . . , qN−1−µN ). (3.62)

Further interest in the minors of the Vandermonde matrix MU(N)(1, q, . . . , q
N−1) and the rest

of the matrices MG(N) arises from their relation with Chebotarëv’s theorem22 and the recent

related advances in the topic [104].

We also see that a phenomenon already present when computing the partition functions

takes place when computing averages of Schur polynomials. For the theta function, integrating

the determinant detMG(N)(z) in (3.2) amounts essentially to computing the determinant of

the matrix MG(N)(z) itself, after a certain specialization of the variables z. We also see that

the average of one or two Schur polynomials is expressed precisely as the corresponding Schur

polynomials, after some specialization to the same number of nonzero variables as the size of

the model.

This property has been noted in [156, 159] for models of Hermitian Gaussian matrices. It is

argued in [159] that “the main feature of Gaussian matrix measures is that they preserve Schur

functions”. Indeed, we shall see that the same property holds when changing the symmetry of

the ensemble from unitary to symplectic or orthogonal, by simply replacing Schur polynomials

by symplectic or orthogonal Schur functions.

3.4.2 Symplectic group

Performing analogous computations to the unitary case, we see that

(q; q)N∞

∫
Sp(2N)

spλ(U)spµ(U)Θ(U)dU = det (q(j+λrj−k−µrk)2/2 − q(j+λrj+k+µrk)2/2)Nj,k=1

= q
∑N
j=1(λ2j/2+µ2j/2+(N−j+1)(λj+µj)+j

2) det (q−(j+λrj )(k+µrk) − q(j+λrj )(k+µrk))Nj,k=1,

which leads to

〈Wλµ〉Sp(2N) = q

(
N(|λ|+|µ|)+CSp(2N)

2 (λ)+C
Sp(2N)
2 (µ)

)
/2
spµ(q, q2, . . . , qN )spλ(q1+µN , . . . , qN+µ1),

(3.63)

22The matrix MU(N)(1, q, . . . , q
N−1), for q a p-th root of unity, is the matrix associated to the discrete Fourier

transform (DFT), and Chebotarëv’s classical theorem [179] states that every minor of this matrix is nonzero if p is

prime. An analogue of this theorem for the matrices of the discrete sine and cosine transforms, which correspond

to MSp(2N)(q, . . . , q
N ) and MO(2N)(1, . . . , q

N−1) respectively, has been proved recently [104].
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where we have identified C
Sp(2N)
2 (λ) =

∑
j λj(λj +N − 2j + 2), the quadratic Casimir element

of Sp(2N). As before, the second identity in (3.63) follows from the fact that integrating the

function Θ we recover a (row and column-wise) minor of the matrix MSp(2N)(z) itself, specialized

to zj = qj . We note that λ and µ are interchangeable in the above formula, and also that setting

one of the partitions to be empty we obtain a formula for the average of a single character

〈Wµ〉Sp(2N).

3.4.3 Orthogonal groups

For the orthogonal models we have

(q; q)N∞

∫
O(2N)

oevenλ (U)oevenµ (U)Θ(U)dU =
1

2
det
(
q(j+λrj−k−µrk)2/2 + q(j+λrj+k+µrk−2)2/2

)N
j,k=1

=
1

2
q
∑N
j=1(λ2j/2+µ2j/2+(N−j)(λj+µj)+(j−1)2) det

(
q−(N−j+λj)(N−k+µk) + q(N−j+λj)(N−k+µk)

)N
j,k=1

,

which can be rewritten as

〈Wλµ〉O(2N) = q

(
N(|λ|+|µ|)+CO(2N)

2 (λ)+C
O(2N)
2 (µ)

)
/2
oevenµ (1, q, . . . , qN−1)oevenλ (qµN , . . . , qN−1+µ1),

(3.64)

where C
O(2N)
2 (λ) =

∑N
j=1 λj(λj +N −2j) is the quadratic Casimir of O(2N). As before, setting

one partition to be empty we obtain a formula for the Wilson loop 〈Wµ〉O(2N). For the odd

orthogonal group O(2N + 1) we obtain

(q; q)N∞

∫
O(2N+1)

ooddλ (U)ooddµ (U)Θ(U)dU = det
(
q(j+λrj−k−µrk)2/2 − q(j+λrj+k+µrk−1)2/2

)N
j,k=1

= q
∑N
j=1(λ2j/2+µ2j/2+(N−j+1/2)(λj+µj)+(j−1/2)2)

× det
(
q−(N−j+λj+1/2)(N−k+µk+1/2) − q(N−j+λj+1/2)(N−k+µk+1/2)

)N
j,k=1

,

which yields

〈Wλµ〉O(2N+1) =q

(
(N+1/2)(|λ|+|µ|)+CO(2N+1)

2 (λ)+C
O(2N+1)
2 (µ)

)
/2

× ooddµ (q1/2, q3/2, . . . , qN−1/2)ooddλ (q1/2+µN , q3/2+µN−1 , . . . , qN−1/2+µ1),
(3.65)

with C
O(2N+1)
2 (λ) =

∑N
j=1 λj(λj +N − 2j + 1/2) the quadratic Casimir of O(2N + 1).

3.4.4 Giambelli compatible processes

The classical Giambelli identity expresses a Schur polynomial indexed by a general partition λ as

the determinant of a matrix whose entries are Schur polynomials indexed only by “hook-shaped”

partitions. More precisely

s(a1,...,ap|b1,...,bp)(x) = det (s(aj |bk)(x))pj,k=1,

where we have used the Frobenius notations for the partitions in the above identity (see

the beginning of section 3.2.2). In [39], the notion of “Giambelli compatible” processes was
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introduced to refer to probability measures on point configurations that preserve the Giambelli

identity above, in the sense that

〈s(a1,...,ap|b1,...,bp)〉 = det (〈s(aj |bk)〉)
p
j,k=1,

where the bracket notation 〈sλ〉 denotes the average of the Schur polynomial λ with respect the

corresponding probability measure. Since then, several matrix models and gauge theories have

been proved to be Giambelli compatible, including biorthogonal ensembles [183], ABJM theory

[113], and supersymmetric Chern-Simons theory [83, 152].

Using the formulas obtained in the previous sections, one can easily prove that the

matrix models corresponding to the theta function (3.59) with G(N) symmetry are Giambelli

compatible in a slightly generalized sense. Indeed, we have seen that the average of a

character over these ensembles can be evaluated as the precise same character, with a certain

specialization, times a prefactor in the parameter q (equations (3.61),(3.63),(3.64),(3.65)). This

fact, together with the Giambelli identity for the characters of the groups G(N) [2, 101]

χ
(a1,...,ap|b1,...,bp)
G(N) (U) = det

(
χ

(aj |bk)

G(N) (U)
)p
j,k=1

,

and some straightforward computations to take care of the prefactors in q, let us obtain the

following conclusion.

Theorem 11. The Wilson loops of Chern-Simons theory on S3 verify the following Giambelli

identity

〈W(a1,...,ap|b1,....bp)〉G(N) = det
(
〈W(aj |bk)〉G(N)

)N
j,k=1

.

That is, the Giambelli identity is preserved, after replacing the Schur polynomials in both

sides of the identity with the corresponding character χλG(N). For G(N) = U(N) this is a

known result, as we are considering an orthogonal polynomial ensemble (which were proven to

be Giambelli compatible in [39]). However, for the rest of the groups G(N) this provides an

example of an ensemble with non unitary symmetry that is Giambelli compatible.

3.4.5 Large N limit and Hopf link expansions

The expansions found in theorem 8 have particular consequences when considering the

Chern-Simons model. Considering the function Θ in this theorem and taking into account the

results in section 3.3.1, we see that at finite N the partition functions of Sp(2N), O(2N) and

O(2N + 1) Chern-Simons theories can be expressed as sums of unnormalized Hopf links of the

unitary theory. On the other hand, theorem 10 implies that

lim
N→∞

〈Wλµ〉G(N) =
∑
ν

s(λ/ν)′(q
1/2, q3/2, . . . )s(µ/ν)′(q

1/2, q3/2, . . . ) (3.66)

for each of the groups23 G(N). Note that if there is only one character in the average the above

formula simplifies to

lim
N→∞

〈Wµ〉G(N) = sµ′(q
1/2, q3/2, . . . ). (3.67)

23The partitions in (3.56) appear now conjugated, since the function is Θ is expressed as a specialization of

E(x; eiθ).
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Putting these two facts together we arrive at the following expansions

ZSp(2N)

ZU(N)
∼ 1

2N

∑
ρ1,ρ2∈R(∞)

(−1)(|ρ1|+|ρ2|)/2〈Wρ1ρ2〉G(N),

ZO(2N)

ZU(N)
∼ 1

2N−1

∑
τ1,τ2∈T (∞)

(−1)(|τ1|+|τ2|)/2〈Wτ1τ2〉G(N)

ZO(2N+1)

ZU(N)
∼ 1

2N

∑
σ1,σ2∈S(∞)

(−1)(|σ1|+|σ2|+p(σ1)+p(σ2))/2〈Wσ1σ2〉G(N)

as N → ∞, where the sets R(∞), S(∞) and T (∞) are defined as the sets R(N), S(N) and

T (N) respectively (see theorem 8) without the restriction α1 ≤ N − 1. That is, at large N

the partition functions of the symplectic or orthogonal theories can be expressed as that of the

unitary theory with an infinite number of corrections, which correspond to Wilson loops and

Hopf links, indexed by partitions of increasing complexity24 (and which are the same in this

limit for each of the groups G(N)). Previous examples of partition functions of Chern-Simons

theory expressed as sums of averages of characters can be found in [116, 117, 45, 149].

3.5 Fermion quantum models with matrix degrees of freedom

Some interest has arised recently in the study of fermionic quantum mechanical models with

matrix degrees of freedom [10, 184, 134]. These models appear as specific instances of tensor

quantum mechanical models [134] and have distinctive spectrums of harmonic oscillator type,

but with exponentially degenerated energy levels, which suggests connections with other solvable

models and to integrability.

These spectra can be computed analytically, see for instance [184, 61], based on the matrix

model description obtained in [10], and also [134], where their identification of the Hamiltonian

with quartic interactions in terms of Casimirs was used. We compute here averages of insertions

of characteristic polynomial type in the G(N) Chern-Simons matrix model. This is in analogy

with the model in [10], which described U(N) × U(L) fermion models in terms of the average

of the L-th moment of a determinant insertion in U(N) Chern-Simons matrix models. One

motivation for this is that more complex models than the one in [10, 184], with symmetries such

as SO(N) × SO(L), are given in [134] with qualitatively the same spectra, after numerically

diagonalizing the Hamiltonian.

The models we study correspond to the average of the function

Θ(L,m)(eiθ) =

(
2 cos

θ + im

2

)L
Θ(eiθ)

over the groups G(N), where L is a positive integer and m is a real parameter. In sight of (3.1)

and the identity 2 cos θ2 = |1 + eiθ|, we see that for U belonging to any of the groups G(N) we

have

Θ(L,m)(U) = Θ(U)eLm
N∏
j=1

(1 + e−meiθj )L(1 + e−me−iθj )L, (3.68)

24Note that the empty partition belongs to each of the sets R(∞), S(∞) and T (∞), and thus the first term in

the sums is always a 1.
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where the eiθj are the nontrivial eigenvalues of U . We will denote this average by

Z
(L,m)
G(N) =

1

ZG(N)

∫
G(N)

Θ(L,m)(U)dU,

where ZG(N) is as defined in (3.60). Taking the limit m → 0 of the unitary model Z
(L,m)
U(N) we

recover the compactly supported analogue of the model considered25 in [184]. In the unitary

case, this corresponds to the average of a characteristic polynomial over the Chern-Simons model.

Averages of characteristic polynomials over the classical groups have attracted interest over the

years, in particular for their applications in number theory, since the appearance of the seminal

works [132, 133], and in the study of many physical systems, see for instance [47] and references

therein.

3.5.1 Unitary group

Using the dual Cauchy identity (3.28) twice to expand the product in (3.68) and identity (3.62)

we obtain

Z
(L,m)
U(N) = eLm

∑
λ,µ

sλ′(e
−m, . . . , e−m︸ ︷︷ ︸

L

)sµ′(e
−m, . . . , e−m︸ ︷︷ ︸

L

)〈Wλµ〉U(N)

= eLm
∑
λ,µ

e−m(|λ|+|µ|)sλ′(1
L)sµ′(1

L)q(C
U(N)
2 (λ)+C

U(N)
2 (µ))/2

× sµ(1, q−1, . . . , q−(N−1))sλ(q−µN , q−(µN−1+1), . . . , q−(µ1+N−1)),

(3.69)

where 1L denotes the specialization x1 = · · · = xL = 1. Recall that an explicit formula for

sµ(1L) is available (2.11). Now, since sν(x1, . . . , xN ) = 0 if l(ν) > N , we see that the above

sum is actually over all partitions λ, µ contained in the rectangular diagram26 (LN ). Several

nontrivial features of the model can be deduced from this fact.

First of all, we see that Z
(L,m)
U(N) is a polynomial on q1/2 and e−m. The high number of

terms in this polynomial compared to its relatively low degree on q implies the high number

of degeneracies in the spectrum mentioned above. Figure 3.1 shows some examples where this

phenomenon is apparent. Secondly, using the dual Cauchy identity again we see that in the

limit q → 1 we have

lim
q→1

Z
(L,m)
U(N) = eLm(1 + e−m)2NL.

Up to the prefactor eLm, this shows the duality between the parameters (N,L) in this limit

[184]. Finally, the expression (3.69) allows direct computation of the model for low values of N

and L and implementation in a computer algebra system. For instance, for L = 1 we have

〈Θ(L=1,m)〉U(N) = em
N∑

r,s=0

e−m(r+s)qs−s
2/2+r/2

[
N

r

]
q

es(q
−1, 1, q, . . . , qr−2, qr, qr+1, . . . , qN−1),

where ek denotes the k-th elementary symmetric polynomial (2.8).

25 This model is also related with the Ewens measure on the symmetric group, see [165] for instance.
26See [155] for recent results on asymptotics on the number of such partitions as L and N grow to infinity.
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Figure 3.1: For each n in the x axis, the y axis shows the coefficient of the monomial qn/2 in

Z
(L=1,m=0)
U(16) (left) and Z

(L=2,m=0)
U(6) (right).

Large N limit

The large N limit of the model can be computed by two different means, depending on the value

of m. If m is nonzero, it follows from (3.69) and the identity (3.66) that

lim
N→∞

Z
(L,m)
U(N) = eLm

∑
λ,µ

sλ′(e
−m, . . . , e−m︸ ︷︷ ︸

L

)sµ′(e
−m, . . . , e−m︸ ︷︷ ︸

L

)

×
∑
ν

s(λ/ν)′(q
1/2, q3/2, . . . )s(µ/ν)′(q

1/2, q3/2, . . . )

= eLm(1−e−2m)−L
2
∞∏
k=1

1

(1− e−mqk−1/2)2L
,

where the second identity above follows from standard manipulations of Schur and skew Schur

polynomials27.

The above expression is no longer valid in the massless case, m = 0. Nevertheless, the

large N limit of the model can still be computed, using the fact that Z
(L,m)
U(N) can be seen as the

determinant of the Toeplitz matrix generated by the function Θ(L,m) (recall identity (3.7)). For

m = 0, this function does not verify the hypotheses in Szegő’s theorem, but it can be written as

the product of a function that does verify these hypotheses (the function Θ, as in section 3.3.1)

and a Fisher-Hartwig singularity, recall sections 2.3.2 and 3.1.3.

According to (2.49), we see that the function Θ(L,m=0) corresponds to the product of the

smooth function Θ (in the sense of Szegő’s theorem) and a single singularity at the point z = −1,

with parameters α = L and β = 0. This implies that as N →∞ we have (3.46)

Z
(L,m=0)
G(N) = NL2 G(L+ 1)2

G(2L+ 1)

∞∏
k=1

1

(1− qk−1/2)2L
(1 + o(1)), (3.70)

27More precisely, we have used the expansion sλ/ν =
∑
α c

λ
ναsα, the multiplication rule

∑
λ c

λ
ναsλ = sνsα and

the Cauchy identity (3.24), where the cλνα are Littlewood-Richardson coefficients.
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Model N = 4 N = 6 N = 8 Value of q

U(N) 1.0018 1.0005 1.0003 q = 0.1

Sp(2N) 0.9559 0.9692 0.9768 q = 0.25

O(2N) 0.9726 0.9970 0.9997 q = 0.33

O(2N + 1) 0.8616 0.9631 0.9906 q = 0.5

Table 3.1: The table shows the quotient between the numerical value of the spectrums

Z
(L=1,m=0)
G(N) , computed directly by means of the formulas (3.69),(3.73),(3.75),(3.76), and the

predicted value given by formulas (3.70),(3.74),(3.77). The high rate of convergence is apparent

already at low values of N . The rightmost column shows the value of q at which the spectrum

is computed.

where G is Barnes’ G function. Using its well known asymptotic expansion28 we see that as

L→∞ the free energy of the model satisfies

lim
L→∞

logZ
(L,m)
U(N→∞) ∼ L

2 log

(
N

L

)
− L2 (2 log 2− 3/2)− logL

12
− 2L log (

√
q, q)∞ ,

where we have written the last term as a q−Pochhammer symbol29. We have considered the

large L limit after the large N limit; this is non-rigorous but standard in estimating free energies

in the regime where one defines a Veneziano parameter30 ζ = L/N and the double scaling is

ζ = cte for N → ∞ and L → ∞. As we see, the leading term of the free energy vanishes for

ζ = 1, and changes sign with ζ → 1/ζ otherwise.

Table 3.5.1 shows some numerical tests of the accuracy of formula (3.70) (as well as the

analogous formulas for the rest of the models, see the following subsections) for several values

of q and N .

Let us emphasize that both the symmetric function approach and the Toeplitz determinant

realization of the matrix model prove to be useful for computing its large N limit. Indeed, in

the massive case, the character expansion is immediate and gives a manageable expression of

the model, while the massless case is also readily handled with the aid of a particular example

of Fisher-Hartwig asymptotics.

3.5.2 Symplectic group

We can proceed analogously for the rest of the groups G(N). The expression resulting from

the character expansion is actually simpler in this case, although some extra care needs to be

taken before integrating. Let us start with the symplectic group. First, we use the dual Cauchy

28For any z in a sector not containing the negative real axis it holds that

logG(z + 1) =
1

12
− logA+

z

2
log 2π +

(
z2

2
− 1

12

)
log z − 3z2

4
+

N∑
k=1

B2k+2

4k(k + 1)z2k
+O

(
1

z2N+2

)
, (3.71)

where A is the Glaisher–Kinkelin constant and the Bk are the Bernouilli numbers.
29This type of piece also appears in the free energy of some 4d supersymmetric gauge theories [172].
30In analogy with localization, L could be interpreted as number of flavours, but with hypermultiplets describing

fermionic matter, and hence in the numerator in the matrix model. For example, in [31] we see this type of

insertions in the context of matrix quantum mechanics.
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identity (3.29) to expand the product in (3.68), obtaining

Z
(L,m)
Sp(2N) = eLm(1− e−2m)−L(L+1)/2

∑
µ

e−|µ|msµ′(1
L)

∫
Sp(2N)

spµ(U)Θ(U)dU. (3.72)

Since spµ(x1, . . . , xN ) = 0 if l(µ) − µ1 − 1 > 2N (as can be seen from (3.18), for instance), we

see that the sum above actually runs over all partitions contained in the rectangular diagram

(L2N+L+1), and therefore is finite. However, we can only use formula (3.63) and substitute

the integral in (3.72) by the Wilson loop 〈Wµ〉Sp(2N) for those partitions satisfying l(µ) ≤ N .

One can bypass this constraint in the following way. It is proven in [135] (see proposition

2.4.1) that any spµ(U) (seen as a symmetric function, specialized to the nontrivial eigenvalues

of U) indexed by a partition of length l(µ) > N either vanishes or coincides with an irreducible

character χλSp(2N)(U), with l(λ) ≤ N , up to a sign. One can then substitute those spµ(U) in

(3.72) by the corresponding χλSp(2N)(U), use formula (3.63) to write the integrals as the Wilson

loops 〈Wλ〉Sp(2N), and then undo the change to recover the 〈Wµ〉Sp(2N) indexed by the original

partition µ (recall that these coincide themselves with a symplectic Schur function, up to a

prefactor). This yields the formula

Z
(L,m)
Sp(2N) = eLm(1− e−2m)−L(L+1)/2

∑
µ

e−|µ|msµ′(1
L)〈Wµ〉Sp(2N), (3.73)

where the sum runs over all partitions contained in the rectangular shape (L2N+L+1). An

analogous analysis to the unitary case can be performed now. In particular, in the q → 1 limit

we obtain

lim
q→1

Z
(L,m)
Sp(2N) = eLm(1 + e−m)2NL

using the dual Cauchy identity (3.29). Thus, not only does the (N,L) duality hold for the

symplectic group, up to the prefactor eLm, but the model is actually the same as the unitary

one in the q → 1 limit.

Also as in the unitary case, the above sum gives rise to a highly degenerated spectrum. See

figure 3.2 for an example; explicit instances for lower values of N and L can also be computed

easily. For instance, using the fact that sp(1k)(x1, . . . , xN ) = −sp(12N+2−k)(x1, . . . , xN ) (which

follows from (3.18)), we obtain for L = 1 the expression

Z
(L=1,m)
Sp(2N) = em(1− e−2m)−1

2N+2∑
k=0

e−kmqNk+k−k2/2sp(1k)(q, . . . , q
N )

= em(1− e−2m)−1
N∑
k=0

e−km(1− e−(N−k+1)2m)qNk+k−k2/2sp(1k)(q, . . . , q
N )

= em
N∑
k=0

e−km(1 + e−2m + e−4m + · · ·+ e−(N+k)2m)qNk+k−k2/2sp(1k)(q, . . . , q
N ).

We see that the prefactor (1 − e−2m)−1 cancels due to the mentioned coincidence among

symplectic characters indexed by single row partitions. The prefactor also cancels for greater

values of L, due to the identity (3.38). In particular, this shows that the model is well defined

in the massless limit m→ 0, which was not immediate from (3.73).
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Figure 3.2: For each n in the x axis, the y axis shows the coefficient of the monomial qn/2 in

Z
(L=1,m=0)
Sp(20) (left) and Z

(L=1,m=0)
O(12) (right).

Large N limit

Using identity (3.67) and the dual Cauchy identity (3.24) we see that if m 6= 0 we have

lim
N→∞

Z
(L,m)
Sp(2N) = eLm(1− e−2m)−L(L+1)/2

∞∏
k=1

1

(1− e−mqk−1/2)L
.

For the massless case, we can proceed as in the unitary model, and use known results on

the asymptotics of Toeplitz±Hankel determinants generated by functions with Fisher-Hartwig

singularities. It follows from (3.47) that for a single singularity at −1 with parameters α = L

and β = 0 we have

Z
(L,m=0)
Sp(2N) =

(
N

2

)L(L+1)/2 πL/2G(3/2)

G(3/2 + L)

∞∏
k=1

1

(1− qk−1/2)L
(1 + o(1)) (3.74)

as N →∞. Table 3.5.1 shows some numerical tests of the accuracy of this formula.

3.5.3 Orthogonal groups

A similar reasoning applies to the orthogonal groups. For the even orthogonal group, it follows

from (3.30) that

Z
(L,m)
O(2N) = eLm(1− e−2m)−L(L−1)/2

∑
µ

e−|µ|msµ′(1
L)〈Wµ〉O(2N). (3.75)

The even orthogonal characters verify oevenµ (x1, . . . , xN ) = 0 if l(µ) − µ1 + 1 > 2N , and thus

the sum above is now over all the partitions µ contained in the rectangle (L2N+L−1) (a similar

reasoning to the symplectic case holds, and in the end one can replace every even orthogonal

Schur function oevenµ (U) in the sum by the corresponding Wilson loop 〈Wµ〉O(2N)). See figure

3.2 for an example of this spectrum. A direct computation shows also that for L = 1 the sum

simplifies to

Z
(L=1,m)
O(2N) = em

2N∑
k=0

e−kmqNk−k
2/2o(1k)(1, q, . . . , q

N−1) =
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= em
N−1∑
k=0

e−km(1 + e−(N−k)2m)qNk−k
2/2o(1k)(1, q, . . . , q

N−1) + e−(N−1)mqN
2/2o(1N )(1, q, . . . , q

N−1).

As in the symplectic model, the prefactor (1−e−2m)−L(L−1)/2 in (3.75) cancels for higher values

of L, due to the identity (3.39).

For the odd orthogonal group we have

Z
(L,m)
O(2N+1) = eLm(1 + e−m)−L(1− e−2m)−L(L−1)/2

∑
µ

e−|µ|msµ′(1
L)〈Wµ〉O(2N+1), (3.76)

using (3.31). Since ooddµ (x1, . . . , xN ) = 0 whenever l(µ) − µ1 > 2N , we see that the sum runs

now over all the partitions µ contained in the rectangular shape (L2N+L). The L = 1 model can

be computed explicitely, yielding

Z
(L=1,m)
O(2N+1) = em(1 + e−m)−1

2N+1∑
k=0

e−kmqNk+k/2−k2/2oodd(1k)(q
1/2, q3/2, . . . , qN−1/2) =

= em(1 + e−m)−1
N∑
k=0

e−km(1 + e−(N−k+1/2)2m)qNk+k/2−k2/2oodd(1k)(q
1/2, . . . , qN−1/2).

As above, the prefactor (1−e−2m)−L(L−1)/2 cancels for every L, this time because of the identity

(3.40).

Using the dual Cauchy identities (3.30),(3.31) and identities (3.64) and (3.65) we see that

also for the orthogonal models we have that

lim
q→1

Z
(L,m)
O(2N) = lim

q→1
Z

(L,m)
O(2N+1) = eLm(1 + e−m)2NL,

preserving the (N,L) duality and coincidence of the models in this limit.

Large N limit

As in the symplectic model, using (3.67) and the Cauchy identity (3.24) we see that if m 6= 0

then we have

lim
N→∞

Z
(L,m)
O(2N) = eLm(1− e−2m)−L(L−1)/2

∞∏
k=1

1

(1− e−mqk−1/2)L

and

lim
N→∞

Z
(L,m)
O(2N+1) = eLm(1 + e−m)−L(1− e−2m)−L(L−1)/2

∞∏
k=1

1

(1− e−mqk−1/2)L
.

If m = 0 we can use again the known results on Fisher-Hartwig asymptotics reviewed in the

appendix (3.47) to obtain that, as N →∞,

Z
(L,m=0)
O(2N) =

(
N

2

)L(L−1)/2 (4π)L/2G(1/2)

G(1/2 + L)

∞∏
k=1

1

(1− qk−1/2)L
(1 + o(1)),

Z
(L,m=0)
O(2N+1) =

(
N

2

)L(L−1)/2 (π/4)L/2G(1/2)

G(1/2 + L)

∞∏
k=1

1

(1− qk−1/2)L
(1 + o(1)).

(3.77)
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Product formula Schur function series∏
j(1− xj)−1

∏
j<k(1− xjxk)−1

∑
µ sµ, over all partitions∏

j(1− x2
j )
−1
∏
j<k(1− xjxk)−1

∑
µ sµ, over all even partitions (all parts even)∏

j(1− txj)−1
∏
j<k(1− xjxk)−1

∑
µ t

c(µ)sµ, over all partitions

(c(λ) = number of columns of odd length)∏
j

(1+txj)

(1−x2j )
∏
j<k(1− xjxk)−1

∑
µ t

r(µ)sµ, over all partitions

(r(λ) = number of rows of odd length)∏
j<k(1− xjxk)

∑
µ(−1)|µ|/2sµ(x1, . . . , xn) over partitions

µ = (α1 − 1, . . . , αp − 1|α1, . . . , αp) with α1 ≤ n− 1∏
j(1− x2

j )
∏
j<k(1− xjxk)

∑
µ(−1)|µ|/2sµ(x1, . . . , xn) over partitions

µ = (α1 + 1, . . . , αp + 1|α1, . . . , αp) with α1 ≤ n− 1∏
j(1− xj)

∏
j<k(1− xjxk)

∑
µ(−1)(|µ|+p(µ))/2sµ(x1, . . . , xn) over partitions

µ = (α1, . . . , αp|α1, . . . , αp) with α1 ≤ n− 1, where p(µ) = p
1−
∏N
j=1 xjyj

1−t
∏N
j=1 xjyj

∏N
j,k=1(1− xjyk)−1

∑
µ t

µN sµ(x1, . . . , xN )sµ(y1, . . . , yN )

over partitions of length l(µ) ≤ N

Table 3.2: Some examples of Schur function series.

Let us make some remarks, to end this section, concerning possible generalizations of the

above analysis. First of all, let us stress the fact that the explicit expressions found for

the averages of Schur and symplectic and orthogonal Schur functions over the matrix model

associated to the Θ function provide a useful tool in the study of more general ensembles. We

have already given an example of this, by reducing the analysis of the Θ(L,m) model to sums of

Schur averages over the simpler Θ model, but more complicated insertions can be considered.

Indeed, several Schur function series are known for closed factors that can be interpreted as

functions on the eigenvalues of the matrices in G(N), as we have done with the characteristic

polynomial and the dual Cauchy identity. Table 3.2 shows a few examples among the numerous

known cases, taken from [147, 119]. See [128, 122, 118, 123, 103, 175] for instance, for more

examples and some generalizations.

Secondly, even if one is interested in insertions that are too complicated for such a character

expansion to be useful in practice, or if these insertions pose analytical obstacles, one can still

approximate the model to a given order of the parameters of the theory, by truncating the sums

over characters up to a certain weight of the indexing partitions, see for instance [84]. This

type of approximation becomes particularly interesting in combination with computer-assisted

calculations of the models of interest. Indeed, the implementations of the corresponding

expressions should be straightforward in any computer algebra system, as long as a closed

expression for the average of a single Schur polynomial is available, and may provide a different

tool for investigating the statistical properties of random matrix ensembles by looking only at

the finite N models. This is particularly useful whenever the model is such that a large number

of cancellations occur in the sum over averages of Schur polynomials.



Chapter 4

Hankel minors and the Laguerre

Unitary Ensemble

Chapter summary

We introduce the formalism of Hankel minors, and establish some connections with the theory

of orthogonal polynomials. In particular, we express the Christoffel-Darboux kernel associated

to a set of orthogonal polynomials as a weighted sum over Chebyshev polynomials which

coefficients are minors of the associated Hankel matrix. After providing a brief overview of

the Riemann-Hilbert methodology, we turn our attention to the Laguerre Unitary Ensemble.

We study the insertion of a characteristic polynomial in the corresponding matrix model, both

in the finite N regime, by means of Schur polynomial expansions, and as the size of the model

grows to infinity, solving the associated Riemann-Hilbert problem31.

4.1 Preliminaries

4.1.1 Hankel minors

Let w be a function supported on the real line, with moments

wk =

∫
R
tkw(t)dt <∞,

for all k ≥ 0. We denote the Hankel matrix of size N generated by this function by

HN (w) = (wj+k−2)Nj,k=1 =


w0 w1 w2 . . . wN−1

w1 w2 w3 . . . wN
w2 w3 w4 . . . wN+1
...

...
...

...

wN−1 wN wN+1 . . . w2N−2

 (4.1)

31The contents of this chapter are based on joint work with Dr. Alfredo Deaño. We would like to express our

gratitude to Alfredo for his hospitality during a visit to University of Kent on September 2018 and for his valuable

help in the learning process of the Riemann-Hilbert methodology.
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The use of Andréief’s identity leads to the well known expression for the determinant of a Hankel

determinant as a matrix model

detHN (w) = det (wj+k−2)Nj,k=1 =
1

N !

∫
RN

∏
j<k

(tj − tk)2
N∏
j=1

w(tj)dtj . (4.2)

As in the Toeplitz and Toeplitz±Hankel case, one can also consider minors of Hankel

matrices, obtained by removing some of their rows and columns. We will refer to these as

Hankel minors. An analogous reasoning as in the Toeplitz case leads to their equivalent integral

representation in terms of Schur polynomials. Indeed, given two partitions λ and µ and a positive

integer N , we recall the definition of the “reversed” arrays

λr = (λrj)
N
j=1 = (λN+1−j)

N
j=1, µr = (µrj)

N
j=1 = (µN+1−j)

N
j=1. (4.3)

We then obtain from Andreiéf’s identity that a Hankel minor can be expressed as the integral

detHλ,µ
N (w) = det

(
wj+λrj+k+µrk−2

)N
j,k=1

=
1

N !

∫
RN

sλ(t)sµ(t)
∏
j<k

(tj − tk)2
N∏
j=1

w(tj)dtj , (4.4)

where the sλ(t) are Schur polynomials evaluated at the variables of integration t1, . . . , tN , and

the first identity above serves as a definition. We find a formally identical situation to the

Toeplitz case, where the moments of the function w play the role of the Fourier coefficients of

the function f . Moreover, the Hankel minor (4.4) can be obtained from the underlying Hankel

matrix and the partitions λ and µ following the procedure described in section 3.1.1 for the case

of Toeplitz±Hankel matrices.

4.1.2 Orthogonal polynomials

One of the standard approaches to the computation of matrix models is that of orthogonal

polynomials. Let us review some well known facts and basic properties of these objects, which

can be found in [181, 124] for instance.

We say that an infinite sequence of polynomials (pN )N≥0, where each pN has degree exactly

N , is orthonormal with respect to the weight w if∫
R
pj(t)pk(t)w(t)dt = δjk (4.5)

for each j, k ≥ 0. We denote the leading coefficient of the polynomial pN by γN , and by

πN (u) =
1

γN
pN (u) (4.6)

the monic polynomials of degree N associated to the sequence. The orthonormal polynomials

verify a three term recurrence relation

up0(u) = b0p1(u) + a0p0(u),

upj(u) = bjpj+1(u) + ajpj(u) + bj−1pj−1(u), j ≥ 1,
(4.7)



Hankel minors and the LUE 69

with p0 ≡ 1. As reviewed in section 2.3.3, these polynomials have both a determinantal and a

matrix model expression, usually known as Heine’s formula

πN (u) =
1

detHN (w)

∣∣∣∣∣∣∣∣∣∣
w0 w1 . . . wN−1 1

w1 w2 . . . wN u
...

...
...

...

wN wN+1 . . . w2N−2 uN

∣∣∣∣∣∣∣∣∣∣
=

1

detHN (w)

1

N !

∫
RN

∏
j<k

(tj − tk)2
N∏
j=1

(u− tj)w(tj)dtj .

(4.8)

Note that since the moment matrix of the ensemble is Hankel, the families pN and qN of section

2.3.3 actually coincide, and we have a single family of orthogonal polynomials instead of two

families of biorthogonal ones32. Also the Christoffel-Darboux kernel (2.57) can be expressed as

a matrix model

KN (u1, u2) =

N−1∑
k=0

pk(u1)pk(u2) = γ2
N−1

πN (u1)πN−1(u2)− πN−1(u1)πN (u2)

u1 − u2

= γ2
N−1

1

detHN (w)

1

N !

∫
RN

∏
j<k

(tj − tk)2
N∏
j=1

(u1 − tj)(u2 − tj)w(tj)dtj ,

(4.9)

where the second identity above follows from the Christoffel-Darboux formula. Equations (4.8)

and (4.9) can be seen as particular cases of the more general identity

det


πN (u1) πN+1(u1) . . . πN+m−1(u1)

πN (u2) πN+1(u2) . . . πN+m−1(u2)
...

...
...

πN (um) πN+1(um) . . . πN+m−1(um)


=
∏
j<k

(uj − uk)
1

detHN (w)

1

N !

∫
RN

∏
j<k

(tj − tk)2
N∏
j=1

m∏
k=1

(uk − tj)w(tj)dtj ,

(4.10)

due originally to Brézin and Hikami [46] (see also [188]). In its matrix model expression,

this corresponds to the average of m characteristic polynomials over the ensemble with weight

function w, evaluated at the points uk. This identity has been generalized in several directions

in subsequent works, see for instance [16, 47] and references therein. In particular, replacing the

characteristic polynomials in (4.10) by their inverses amounts to replacing the polynomials in the

corresponding row of the determinant in the left hand side of (4.10) by their Cauchy transforms.

Among other properties, one interesting feature about the averages of characteristic polynomials

and their ratios is universality. This concept is used in random matrix theory to describe the fact

that eigenvalues of large random matrices (or other quantities depending on their eigenvalues)

share a common statistical behaviour at the microscopical level, that depends only on the

symmetry class of the ensemble, rather than on its particular characteristics. Universality has

32In general, the existence of the polynomials themselves is not guaranteed. As shown by (4.8), a sufficient

condition for this is the nonvanishing of the Hankel determinants detHN (w), for every N ≥ 1. We will assume in

the following that the weight function w is such that this condition holds. Another sufficient condition for this is

the positive definiteness of the Hankel matrices HN (w).
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been proved for averages of the type (4.10) and more general ones in the bulk [180] and at the

edges of the spectrum [189, 29].

Some quantities of interest for the theory of orthogonal polynomials can be expressed in

terms of Hankel determinants and minors. Besides the obvious remark that the coefficients

of the polynomials are minors themselves, in sight of identity (4.8), this is also true for the

coefficients in the three term recurrence relation (4.7). Indeed, comparing the terms in uN+1

and uN in equation (4.7) and using (4.8), we find that

aN = 〈e1〉N − 〈e1〉N+1,

bN =
γN
γN+1

=
(detHN (w) detHN+2(w))1/2

detHN+1(w)
,

where e1 is the first elementary symmetric polynomial (2.8) and, given a symmetric function s,

the notation in the right hand side of the first identity above stands for the average of s over

the ensemble of size N

〈s〉N =
1

detHN (w)

1

N !

∫
RN

s(t1, . . . , tN )
∏
j<k

(tj − tk)2
N∏
j=1

w(tj)dtj . (4.11)

The averages 〈e1〉N appearing above coincide with the quotients detH
∅,(1)
N (w)/ detHN (w) of

the minor of the Hankel matrix of size N + 1 obtained by removing its next to last row and its

last column, and the Hankel determinant of size N .

More general quantities can also be studied in terms of Hankel minors. Indeed, using the

dual Cauchy identity (3.28) and the formula (2.18) we obtain the Schur function expansion

N∏
j=1

m∏
k=1

(uk − tj) =
∑

ν⊂(Nm)

(−1)mN+|ν|sν(u1, . . . , um)sLm,N (ν′)(t1, . . . , tN ), (4.12)

where Lm,N (ν ′) is defined in (2.17). Therefore, substituting the product in (4.10) by this

expression, we see that the average of a characteristic polynomial over a random matrix ensemble

can be computed equivalently as a finite sum over averages of Schur polynomials. See [171] for

a related result. This is particularly useful whenever the choice of weight function is such

that an explicit expression for the minors of the underlying moment matrix is available, as

in section 3.5. More general insertions can also be computed in a similar fashion, including

ratios of characteristic polynomials, using the Cauchy identity (3.24) or both the Cauchy and

dual Cauchy identity. These correspond to determinants of the form (4.10), involving also the

Cauchy transform of the orthogonal polynomials πN , as mentioned above, and give rise to infinite

Schur function series.

In particular, we obtain the following consequence of the expansion (4.12). Recall the fact,

derived in section 2.3, that a Schur polynomial indexed by a partition of length at most 2 can

be expressed as (2.43)

s(ν1,ν2)(u1, u2) = (u1u2)|ν|/2Uν1−ν2

(
1

2

(√
u1

u2
+

√
u2

u1

))
,

where Uk denotes the k-th Chebyshev polynomial of the second kind. Thus, noting that the

expansion for the Christoffel-Darboux kernel (4.9) involves only Schur polynomials indexed by

partitions with at most two parts, we arrive to the following result.
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Theorem 12. Let u1, u2 be nonzero. The Christoffel-Darboux kernel (4.9) associated to a family

of orthogonal polynomials can be expressed as the sum

KN (u1, u2) =
∑

0≤ν1≤ν2≤N
〈s(2N−ν1 ,1ν1−ν2 )〉N (−

√
u1u2)ν1+ν2Uν1−ν2

(
1

2

(√
u1

u2
+

√
u2

u1

))
,

where the bracket notation stands for the average (4.11) over the corresponding random matrix

ensemble.

That is, the kernel of order N built from the polynomials orthogonal with respect a weight

function w can be expressed as a sum over Chebyshev polynomials, where the coefficients in the

sum are given by minors of the Hankel matrix generated by w. Some inspection following the

procedure described in section 3.1.1 to obtain minors from the underlying partitions shows that

all these minors are obtained by striking two columns from the Hankel matrix of size N×(N+2)

generated by w. Examples of Schur function series involving Chebyshev polynomials of the

second kind have appeared previously in the literature, see for instance [122].

4.1.3 Riemann-Hilbert methodology

We now outline the main ideas behind the Riemann-Hilbert approach to the study of the

asymptotic behaviour of orthogonal polynomials. See for instance [66, 138], among others,

for more detailed introductory expositions.

In general, a Riemann-Hilbert problem consists of finding an analytic function on the complex

plane C minus a collection of oriented curves Σ, on which the boundary values of the function

from both of their sides are given, usually together with some normalization condition. We

follow the usual convention and define, for a given collection of oriented curves Σ,

Y+(z) = lim
z′→z

z′∈left side of Σ

Y (z′), Y−(z) = lim
z′→z

z′∈right side of Σ

Y (z′),

for any z ∈ Σ and any function Y analytic in C \ Σ. Such values are well defined except

for endpoints of curves or points of intersection of curves, where one needs to impose extra

conditions when addressing the Riemann-Hilbert problem.

The connection with orthogonal polynomials33 is due to Fokas, Its and Kitaev [87], who

noticed that these can be expressed in terms of a Riemann-Hilbert problem for a matrix-valued

function. More precisely, given some weight function w(x) supported on the real line, they

considered a function Y : C 7→ C2x2 solving the following problem.

Riemann-Hilbert problem for Y

1. Y is analytic in C \ supp w.

2. For x ∈ supp w, the matrix Y verifies the jump condition

Y+(x) = Y−(x)

(
1 w(x)

0 1

)
.

33We describe here the case of orthogonal polynomials with respect to a weight function supported on the real

line; analogous premises hold in more general settings. For instance, the case of functions supported on the unit

circle, which corresponds to Toeplitz determinants, was formulated in [15].
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3. As z →∞, we have

Y (z) =
(
I +O(z−1)

)
zNσ3 . (4.13)

We denote in (3) above and in the following by σ3 =

(
1 0

0 −1

)
the third Pauli matrix. We also

omit the dependance on N of the matrix Y in the notation, for ease of presentation.

The authors of [87] proved that, under suitable conditions on w, the solution to this problem

is given by

Y (z) =

(
πN (z) C(πNw)(z)

−2πiγ2
N−1πN−1(z) −2πiγ2

N−1C(πN−1w)(z)

)
, (4.14)

where πN is the N -th monic orthogonal polynomial with respect to the weight function w, the

constant γN is the leading coefficient of the N -th orthonormal polynomial (4.6), and the operator

C(f)(z) =
1

2πi

∫ ∞
0

f(t)dt

t− z
, z ∈ C \ [0,∞),

is the usual Cauchy transform. Furthermore, several quantities of interest related to the

orthogonal polynomials can be expressed in terms of the entries of the matrix Y . For instance,

we see from (4.14) that

γ2
N−1 = − 1

2πi
lim
z→∞

Y21(z)

zN−1
, γ−2

N = −2πi lim
z→∞

Y12(z)zN+1, ηN = lim
z→∞

Y11(z)− zN

zN−1
,

(4.15)

where ηN is the subleading coefficient of the monic orthogonal polynomial πN . Similar identities

hold for the coefficients in the three term recurrence relation.

Hence, explicit expressions for the matrix Y and its asymptotic behaviour can be used in

particular to describe the behaviour of the orthogonal polynomials with respect to the weight

w. In order to obtain these expressions, one usually considers a series of transformations for

the matrix Y , that allow to reduce the Riemann-Hilbert problem for this matrix to several

problems that can be explicitly solved, following the strategy pioneered in [69]-[71] by Deift and

collaborators. Each of these problems is defined in a different domain of the complex plane, in

such a way that the union of these regions covers the whole plane and the matchings between

the different domains are smooth. An outline of the transformations is as follows

Y 7→ T 7→ S 7→ R, (4.16)

where the last matrix R is asymptotically close to the identity as N →∞. Moreover, this matrix

is constructed in terms of known explicit solutions to different Riemann-Hilbert problems, so

called local and global parametrices. Reversing the series of transformations, this provides

explicit expressions for the matrix Y and its asymptotic behaviour in the various domains of the

plane.

We end this section posing three standard model Riemann-Hilbert problems and record

their solutions, which will be used in section 4.3. We give more details about the purpose of the

transformations (4.16) in the following section. Unless specified otherwise, we will consider the

main branches of all the functions used in the following.



Hankel minors and the LUE 73

0

2π/3

Figure 4.1: Jump contour for ΦAi.

Airy model Riemann-Hilbert problem

1. ΨAi : C \ ΣAi → C2×2 is analytic, where ΣAi consists of the real axis and the two rays

e2πi/3R+ and e−2πi/3R+, as shown in figure 4.1.

2. The matrix ΨAi has the following jump relations

ΨAi(z)+ = ΨAi(z)−



(
0 1

−1 0

)
, z ∈ R−,(

1 1

0 1

)
, z ∈ R+,(

1 0

1 1

)
, z ∈

(
e2πi/3R+ ∪ e−2πi/3R+

)
,

3. As z →∞, z /∈ ΣAi, we have

ΨAi(z) = z−
σ3
4

1√
2

(
1 i

i 1

)(
I +

∞∑
k=1

ΨAi,k

z3k/2

)
e−

2
3
z3/2σ3 , (4.17)

where ΨAi,k are constant matrices that can be computed explicitly.

4. As z → 0, we have ΨAi(z) = O(1).

This problem was posed and solved in [71], where also explicit solutions of the constant matrices

ΨAi,k can be found. Its solution is given by

ΨAi(z) =
√

2πeiπ/6

(
1 0

0 −i

)



(
Ai(z) Ai(ω2z)

Ai′(z) ω2Ai′(ω2z)

)
e−

iπ
6
σ3 , 0 < arg z < 2π

3 ,(
Ai(z) Ai(ω2z)

Ai′(z) ω2Ai′(ω2z)

)
e−

iπ
6
σ3

(
1 0

−1 1

)
, 2π

3 < arg z < π,(
Ai(z) −ω2Ai(ωz)

Ai′(z) −Ai′(ωz)

)
e−

iπ
6
σ3

(
1 0

1 1

)
, −π < arg z < −2π

3 ,(
Ai(z) −ω2Ai(ωz)

Ai′(z) −Ai′(ωz)

)
e−

iπ
6
σ3 , −2π

3 < arg z < 0,

(4.18)

where ω = e
2πi
3 and Ai(z) is the Airy function [1].
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2π/6

Figure 4.2: Jump contour for ΦBe.

Bessel model Riemann-Hilbert problem

1. ΨBe : C \ΣBe → C2×2 is analytic, where ΣBe consists of the negative real axis and the two

rays e2πi/3R+ and e−2πi/3R+, as shown in figure 4.2

2. The matrix ΨBe has the following jump relations

ΨBe(z)+ = ΨBe(z)−



(
0 1

−1 0

)
, z ∈ R−,(

1 0

eiπα 1

)
, z ∈ e2πi/3R+,(

1 0

e−iπα 1

)
, z ∈ e−2πi/3R+,

where α is some complex number.

3. As z →∞, z /∈ ΣBe, we have

ΨBe(z) = (2πz1/2)−
σ3
2

1√
2

(
1 i

i 1

)(
I +

∞∑
k=1

ΨBe,k

zk/2

)
e2z1/2σ3 , (4.19)

where ΨBe,k are constant matrices that can be computed explicitly.

4. As z → 0, we have

ΨBe(z) =



(
O(1) O(1)

O(1) O(1)

)
z
α
2
σ3 , | arg z| < 2π

3 ,(
O(z−

α
2 ) O(z−

α
2 )

O(z−
α
2 ) O(z−

α
2 )

)
, 2π

3 < | arg z| < π,

if Re α > 0,

ΨBe(z) =



(
O(1) O(log z)

O(1) O(log z)

)
, | arg z| < 2π

3 ,(
O(log z) O(log z)

O(log z) O(log z)

)
, 2π

3 < | arg z| < π,

if Re α = 0,

ΨBe(z) =

(
O(z

α
2 ) O(z

α
2 )

O(z
α
2 ) O(z

α
2 )

)
, if Re α < 0.
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Figure 4.3: Jump contour for ΦHG.

This problem was introduced and solved in [140]. Its solution is given explicitely by

ΨBe(z) =



(
Iα(2z

1
2 ) i

πKα(2z
1
2 )

2πiz
1
2 I ′α(2z

1
2 ) −2z

1
2K ′α(2z

1
2 )

)
, | arg z| < 2π

3 , 1
2H

(1)
α (2(−z)

1
2 ) 1

2H
(2)
α (2(−z)

1
2 )

πz
1
2

(
H

(1)
α

)′
(2(−z)

1
2 ) πz

1
2

(
H

(2)
α

)′
(2(−z)

1
2 )

 e
iπα
2
σ3 , 2π

3 < arg z < π, 1
2H

(2)
α (2(−z)

1
2 ) −1

2H
(1)
α (2(−z)

1
2 )

−πz
1
2

(
H

(2)
α

)′
(2(−z)

1
2 ) πz

1
2

(
H

(1)
α

)′
(2(−z)

1
2 )

 e−
iπα
2
σ3 , −π < arg z < −2π

3 ,

where H
(1)
α and H

(2)
α are the Hankel functions of the first and second kind, and Iα and Kα are

the modified Bessel functions of the first and second kind.

Confluent hypergeometric model Riemann-Hilbert problem

1. ΨHG : C \ΣHG → C2×2 is analytic, where ΣHG consists of the real and imaginary axis, as

well as the two rays eπi/4R and e−πi/4R, as shown in figure 4.3.

2. The matrix ΨHG verifies the jump relations

ΨHG(z)+ = ΨHG(z)−Jk, z ∈ Σj ,

where the curves Σj are depicted in figure 4.3 and

J1 =

(
0 e−iπβ

−eiπβ 0

)
, J5 =

(
0 eiπβ

−e−iπβ 0

)
, J3 = J7 =

(
eiπα/2 0

0 e−iπα/2

)
,

J2 =

(
1 0

e−iπαeiπβ 1

)
, J4 =

(
1 0

eiπαe−iπβ 1

)
, J6 =

(
1 0

e−iπαe−iπβ 1

)
, J8 =

(
1 0

eiπαeiπβ 1

)
,

where α and β are complex parameters.

3. As z →∞, z /∈ ΣHG, we have

ΨHG(z) =

(
I +

∞∑
k=1

ΨHG,k

zk

)
z−βσ3e−

z
2
σ3L−1(z), (4.20)



76 Schur Averages in Random Matrix Ensembles

where z−β has a cut along iR−, so that z−β ∈ R for z ∈ R+, ΨHG,k are constant matrices

that can be computed explicitly, and

L(z) =



e
iπα
4
σ3e−iπβσ3 ,

π

2
< arg z < π,

e−
iπα
4
σ3e−iπβσ3 , π < arg z <

3π

2
,

e
iπα
4
σ3

(
0 1

−1 0

)
, −π

2
< arg z < 0,

e−
iπα
4
σ3

(
0 1

−1 0

)
, 0 < arg z <

π

2
.

(4.21)

4. As z → 0, we have

ΨHG(z) =



(
O(z

Re α
2 ) O(z−

Re α
2 )

O(z
Re α

2 ) O(z−
Re α

2 )

)
, z ∈ II ∪ III ∪ V I ∪ V II,(

O(z−
Re α

2 ) O(z−
Re α

2 )

O(z−
Re α

2 ) O(z−
Re α

2 )

)
, z ∈ I ∪ IV ∪ V ∪ V III,

if Re α > 0,

ΨHG(z) =



(
O(1) O(log z)

O(1) O(log z)

)
, z ∈ II ∪ III ∪ V I ∪ V II(

O(log z) O(log z)

O(log z) O(log z)

)
, z ∈ I ∪ IV ∪ V ∪ V III,

if Re α = 0,

ΨHG(z) =

(
O(z

Re α
2 ) O(z

Re α
2 )

O(z
Re α

2 ) O(z
Re α

2 )

)
, if Re α < 0,

where the regions I to V III are displayed in figure 4.3.

This problem was introduced and solved in [126] for the case α = 0, and then in [100, 67]

for the general case. Defining

Ψ̂HG(z) =

(
Γ(1+α/2−β)

Γ(1+α) G(α/2 + β, α; z)e−iπα/2 −Γ(1+α/2−β)
Γ(α/2+β) H(1 + α/2− β, α; ze−iπ)

Γ(1+α/2+β)
Γ(1+α) G(1 + α/2 + β, α; z)e−iπα/2 H(α/2− β, α; ze−iπ)

)
e−

iπα
4
σ3 ,

where G and H are related to the Whittaker functions [1] by the following identities

G(a, α; z) =
Mκ,µ(z)√

z
, H(a, α; z) =

Wκ,µ(z)√
z

(
µ =

α

2
, κ =

1

2
+
α

2
− a
)
, (4.22)

we have that the solution of the confluent hypergeometric model Riemann-Hilbert problem is

given by

ΨHG(z) =



Ψ̂HG(z)J−1
2 , z ∈ I,

Ψ̂HG(z), z ∈ II,

Ψ̂HG(z)J3, z ∈ III,

Ψ̂HG(z)J3J
−1
4 , z ∈ IV,

Ψ̂HG(z)J−1
2 J−1

1 J−1
8 J−1

7 J6, z ∈ V,

Ψ̂HG(z)J−1
2 J−1

1 J−1
8 J−1

7 , z ∈ V I,

Ψ̂HG(z)J−1
2 J−1

1 J−1
8 , z ∈ V II,

Ψ̂HG(z)J−1
2 J−1

1 , z ∈ V III.
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4.2 The Laguerre Unitary Ensemble

Consider the orthogonal polynomial ensemble with weight function

w(t) = tαe−t, t ∈ [0,∞),

where α > −1 is a fixed parameter. The polynomials orthogonal with respect to this function

are the classical Laguerre polynomials, which have been the subject of many studies and whose

properties are well understood (see [181, 139, 63] for instance, among many others). In particular,

the following features will be relevant for our purposes.

Lemma. Let L
(α)
N be the classical Laguerre polynomials, given by

L
(α)
N (u) =

N∑
k=0

(
N + α

N − k

)
(−u)k

k!
, (4.23)

for every N ≥ 0. They verify the orthogonality relation∫ ∞
0

L
(α)
j (t)L

(α)
k (t)tαe−tdt =

Γ(α+ k + 1)

Γ(k + 1)
δjk

and the second order differential equation

u(L
(α)
N (u))′′ + (α+ 1− u)(L

(α)
N (u))′ +NL

(α)
N (u) = 0. (4.24)

Moreover, the largest zero zN of the polynomial L
(α)
N verifies

zN = 4N(1 +O(N−1)), as N →∞. (4.25)

We will focus instead on a deformation of the Laguerre weight, given by

wu,m(t) = (t− u)2mtαe−t, (4.26)

where m is a positive integer34 and α > 0. In its matrix model expression, this corresponds to

the insertion of the 2m-th power of the characteristic polynomial of the ensemble evaluated at

the point u. We denote

Zu,mLUE(N) = det

(∫ ∞
0

tj+k−2wu,m(t)dt

)N
j,k=1

=
1

N !

∫ ∞
0
· · ·
∫ ∞

0

∏
j<k

(tj−tk)2
N∏
j=1

(tj−u)2mtαj e
−tjdtj .

In section 4.3, we will study this model in the double scaling regime

N →∞, u→∞, u

4N
= const ∈ (0, 1). (4.27)

The double scaling in u means in particular that the rescaled parameter u/4N lies in the bulk

of the spectrum of the Laguerre Unitary Ensemble, which gives rise to a richer analysis of the

model, as we will see in the following.

34We have chosen the power of the factor (t− u) in the weight wu,m to be an even integer in order to avoid a

more technical development of the problem. In the language of Fisher-Hartwig singularities for weight functions

supported on the real line (see [52, 53]), the weight (4.26) corresponds to the product of a root type singularity

with the weight of the Laguerre Unitary Ensemble, without any jump type singularities. The choice of α (instead

of the usual, more general condition α > −1) simplifies slightly the analysis as well, see in particular the proof of

equation (4.46).
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As reviewed in section 4.1.1, there is a number of equivalent interpretations for this object.

For m = 1, it coincides with the diagonal of the Christoffel-Darboux kernel of degree N built

from the monic Laguerre polynomials, in sight of identity (4.9). For general m, it can also be

realized as the Wronskian of 2m consecutive polynomials

Zu,mLUE(N)

ZLUE(N)
=

(−1)m(2m−1)

G(m+ 1)
det


πN (u) πN+1(u) . . . πN+2m−1(u)

π′N (u) π′N+1(u) . . . π′N+2m−1(u)
...

...
...

π
(2m−1)
N (u) π

(2m−1)
N+1 (u) . . . π

(2m−1)
N+2m−1(u)

,

as shown by (4.10), where

πN (u) = (−1)NN !
N∑
k=0

(−1)k

(
N + α

N + k

)
uk

k!
(4.28)

is the monic Laguerre polynomial of degree N , and the partition function of the Laguerre Unitary

Ensemble is given by

ZLUE(N) =
1

N !

∫ ∞
0
· · ·
∫ ∞

0

∏
j<k

(tj − tk)2
N∏
j=1

tαj e
−tjdtj =

G(N + 1)G(α+N + 1)

G(α+ 1)
. (4.29)

Similar and more general insertions in the Laguerre Unitary Ensemble have been studied before,

in particular showing their relation with the τ functions of the Painlevé III and V systems and

the smallest and largest eigenvalues of this ensemble [96]-[98]. The case of general insertions of

Fisher-Hartwig type in the bulk of the spectrum was addressed recently in [53], as well as the

case of a single insertion approaching the soft edge of the spectrum [197] (see also [199] for a

similar setting over the Jacobi Unitary Ensemble).

When addressing the large N analysis, it will be convenient to consider the re-scaled matrix

model

Ẑv,mLUE(N) =
1

N !

∫ ∞
0
· · ·
∫ ∞

0

∏
j<k

(tj − tk)2
N∏
j=1

(tj − v)2mtαj e
−4Ntjdtj = (4N)−(N+2m+α)NZu,mLUE(N),

(4.30)

where 4Nv = u, (so that, in particular, v ∈ (0, 1), recall (4.27)). We will denote the weight

function of this model by

ŵv,m(t) = (t− v)2mtαe−4Nt. (4.31)

4.2.1 Equilibrium measure

A central object in the study of random matrix ensembles, and in particular in the

Riemann-Hilbert methodology, is the equilibrium measure associated to the potential of the

weight function of the ensemble. This measure, which we denote by dµV , has several equivalent

characterizations, see [66, 173] for instance. Its relevance from the point of view of orthogonal

polynomials and random matrix theory is due to the fact that it coincides with the weak limit

of the zero-counting measures of the monic orthogonal polynomials with respect to the weight

e−NV (t). Therefore, it describes the distribution of the eigenvalues of the matrices belonging to
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the ensemble with weight function e−NV (t) as the size of the ensemble grows to infinity. It can

also be defined as the unique minimizer of the functional∫
R

∫
R

log |t− s|−1dµ(t)dµ(s) +

∫
R
V (t)dµ(t)

among all Borel probability measures µ on R. At the same time, it is uniquely determined by

the following Euler-Lagrange variational conditions: there exists ` ∈ R such that

2

∫
log |t− s|dµV (s)− V (t)− ` = 0, for t ∈ suppµV ,

2

∫
log |t− s|dµV (s)− V (t)− ` < 0, for t ∈ R \ suppµV .

(4.32)

Lemma. The equilibrium measure associated to the potential V (t) = 4t is given by

dµV (t) =
2

π

√
1− t
t

dt, t ∈ (0, 1). (4.33)

Proof. We outline the proof in [166], which is itself based on the methods proposed in [173],

where more details can be found. The monic orthogonal polynomials with respect to the re-scaled

Laguerre weight tαe−NV (t) are

π̂N (u) =
1

(4N)N
πN (4Nu),

where the πN are the monic Laguerre polynomials, given by (4.28). It follows from (4.25)

that if we denote the zeros of the polynomial π̂N (u) by 0 < xN,1 < · · · < xN,N , we have

that limN→∞ xN,N = 1. We denote the normalized zero-counting measure associated to these

polynomials by

dµN (t) =
1

N

N∑
k=1

δ(t− xN,k)dt.

As mentioned above, these measures converge weakly to the sought equilibrium measure dµV ,

so in particular we have

1

N
log π̂N (u) =

∫ ∞
0

log (u− t)dµN (t)→
∫ 1

0
log (u− t)dµV (t)

as N →∞. Therefore, after differentiating in both sides above we obtain

hN (u) =
1

N

π̂′N (u)

π̂N (u)
→
∫ 1

0

dµV (t)

u− t
= h(u), (4.34)

where the identities in the last equation serve as definitions. Now, it follows from (4.24) that

the polynomials π̂N verify

uπ̂N (u)′′ + (α+ 1− 4Nu)π̂N (u)′ + 4N2π̂N (u) = 0.

Substituting in (4.34) we see that the function hN verifies itself a differential equation

uh′N (u) + (α+ 1− 4Nu)hN (u) + 4N + uNh2
N (u) = 0.
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Dividing by 4N in the above equation, letting N →∞ and comparing with the right hand side

of (4.34) we find that the function h(u) satisfies the following equation

u

4
h2(u)− uh(u) + 1 = 0,

from which we obtain

h(u) = 2− 2

(
u− 1

u

)1/2

.

Using the Plemelj formula and comparing with the right hand side of (4.34) we arrive at the

claimed expression for the equilibrium measure dµV .

Note that as a consequence of the re-scaling (4.30) and the behaviour of the zeros of the

Laguerre polynomials, the equilibrium measure dµV is compactly supported. This is the main

reason for introducing the rescaled model Ẑv,mLUE(N), as it will simplify the subsequent analysis.

We also define some auxiliary functions, which properties will be key in the large N study

of the model. First, we consider the g function

g(z) =

∫ 1

0
log(z − t)dµV (t). (4.35)

Secondly, we extend the density of the measure µV to a meromorphic function on the complex

plane r(z) = 2
π

(
z−1
z

)1/2
, with a branch cut on [0, 1]. Lastly, we define

ξ(z) = 2πi

∫ 1

z
r(t)dt. (4.36)

The following lemma follows from the definitions of the functions g and ξ, equation (4.32), and

the jump properties of the logarithm and square root functions (see [190, 166] for instance, for

more details).

Lemma. The functions g and ξ verify the following properties.

1. The function g is analytic in C \ (−∞, 1], and satisfies

g+(x)− g−(x) =


2πi, x < 0,

2πi

∫ 1

x
dµV (t), 0 < x < 1,

0, x > 1,

(4.37)

as well as the variational conditions

g+(x) + g−(x)− V (x)− ` = 0, x ∈ suppµV ,

2g(x)− V (x)− ` < 0, x ∈ R \ suppµV ,
(4.38)

2. The function ξ is analytic in C \ (−∞, 1] and verifies

ξ+(x) = −ξ−(x) = g+(x)− g−(x), x ∈ (0, 1),

ξ+(x)− ξ−(x) = 4πi, x ∈ (−∞, 0),
(4.39)



Hankel minors and the LUE 81

4.2.2 Schur polynomial expansions

Following the same strategy as in section 3.5, we can study the model Zu,mLUE(N) in terms of

averages of Schur polynomials over the Laguerre Unitary Ensemble. These can be computed

using their Hankel minor representation, as follows.

Theorem 13. Let λ be a partition of length l(λ) ≤ N . We have

〈sλ〉LUE(N) = sλ(1N )

l(λ)∏
j=1

Γ(α+N − j + λj + 1)

Γ(α+N − j + 1)
, (4.40)

where the notation 〈s〉LUE(N) stands for the average of a symmetric function s over the Laguerre

Unitary Ensemble.

Proof. According to (4.4), the insertion of the Schur polynomial indexed by a partition λ can

be expressed as the Hankel minor

det


mλN mλN+1 . . . mλN+N−1

mλN−1+1 mλN−1+2 . . . mλN−1+N
...

...
...

mλ1+N−1 mλ1+N . . . mλ1+2N−2

,
where

mk =

∫ ∞
0

tk+αe−tdt = Γ(α+ k + 1).

After extracting the factor Γ(α + λj + N − j + 1) from the j-th row of this determinant, for

j = 1, . . . , N , we are left with the determinant

det


1 α+ λN + 1 (α+ λN + 1)(α+ λN + 2) . . . (α+ λN + 1) . . . (α+ λN +N − 1)

1 α+ λN−1 + 2 (α+ λN−1 + 2)(α+ λN−1 + 3) . . . (α+ λN−1 + 2) . . . (α+ λN +N)
...

...
...

...

1 α+ λ1 +N (α+ λ1 +N)(α+ λ1 +N + 1) . . . (α+ λ1 +N) . . . (α+ λ1 + 2N − 2)

.
Performing elementary column operations, the above determinant can be reduced to a

Vandermonde determinant on the points α+ λj +N + 1− j, for j = 1, . . . , N . Combining this

fact with identity (2.11) we obtain

1

N !

∫ ∞
0
· · ·
∫ ∞

0
sλ(t)

∏
j<k

(tj − tk)2
N∏
j=1

tαj e
−tjdtj = G(N + 1)sλ(1N )

N∏
j=1

Γ(α+ λj +N − j + 1).

The proof is concluded after considering the quotient over the partition function of the Laguerre

Unitary Ensemble ZLUE(N), which is given by (4.29).

Note that a particular consequence of formula (4.40) is that the average 〈sλ〉LUE(N) is a

polynomial in α with integer coefficients, as well as a polynomial in N .

We can combine this result with equation (4.12) to expand the insertion of the characteristic

polynomial in Zu,mLUE(N) in terms of Schur polynomials. This leads to the formula

Zu,mLUE(N)

ZLUE(N)
=

∑
ν⊂((2m)N )

(−u)|ν|sLN,2m(ν′)(1
2m)〈sν〉LUE(N), (4.41)
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Figure 4.4: The re-scaled densities of states ρ̃N of the Laguerre Unitary ensemble (4.43), for

N = 6 and N = 15 and α = 1 and α = 0.33, respectively (in blue), and the density of the

equilibrium measure dµV (4.33) (in red).

where ZLUE(N) is given by (4.29) and LN,m(ν ′) is the partition defined in (2.17). The above

formula can be implemented in a computer algebra system, providing quick evaluations of the

model as long as its size N is not too big. As an example and consistency check, this formula

can be used to computed the density of states of the Laguerre Unitary Ensemble. Recall that

the normalized density of states is given by [154]

ρN (t) =
1

N
tαe−t

N−1∑
k=0

p2
k(t) =

1

N
tαe−tγ2

N−1Z
u,m=1
LUE(N), (4.42)

where the pk are the orthonormal Laguerre polynomials, the γN are defined in (4.6), and the

second identity follows from equation (4.9). Integrating this function over a subset of the real

line one recovers the normalized expected number of eigenvalues of the ensemble of size N to be

found on this subset. In particular, the density of states converges as N →∞ to the density of

the equilibrium measure dµV , after the re-scaling

ρ̂N (t) = 4NρN (4Nt), (4.43)

in order to make the limit function limN→∞ ρ̂N compactly supported as well. Figure 4.4 shows

two instances of the re-scaled densities, computed by means of formulas (4.42) and (4.41), for

several values of N and α, together with the density of the equilibrium measure dµV . The

convergence is apparent already at low values of N , whenever the size of the parameter α is not

too big compared to N .

4.3 Large N analysis

We are now ready to solve the Riemann-Hilbert problem for the orthogonal polynomials with

respect to the modified weight ŵv,m, given by (4.31). To be precise, we consider the following

restatement of the problem introduced in section 4.1.3: we seek Y : C \ [0,∞)→ C2×2 verifying

the following conditions.
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Riemann-Hilbert problem for Y

1. Y is analytic in C \ [0,∞).

2. For x ∈ (0,∞), the matrix Y verifies the jump condition

Y+(x) = Y−(x)

(
1 (x− v)2mxαe−4Nx

0 1

)

3. As z →∞, we have

Y (z) =
(
I +O(z−1)

)
zNσ3 . (4.44)

4. As z → 0, we have

Y (z) =



(
O(1) O(1)

O(1) O(1)

)
, α > 0,(

O(1) O(log z)

O(1) O(log z)

)
, α = 0,(

O(1) O(zα)

O(1) O(zα)

)
, α < 0.

This normalizing condition follows from equation (4.14), in sight of the particular form of

the weight ŵv,m, and is chosen to ensure uniqueness of the solution of the Riemann-Hilbert

problem. Note that there is no need to impose any conditions at the point v, as the fact that m

is a positive integer implies that Y (z) is bounded around this point.

Before proceeding, let us remark that, besides the orthogonal polynomials with respect to

the weight ŵv,m, also the matrix model Ẑv,mLUE(N) can be expressed in terms of the entries of

the matrix Y . In order to show this, we need to introduce some notation for the subleading

coefficient of the orthonormal polynomials with respect to ŵv,m, say

pN (u) = γN (uN + ηNu
N−1 + . . . ). (4.45)

Lemma. The Hankel determinant Ẑv.mLUE(N) satisfies

d

dm
log Ẑv,mLUE(N) =− (N + α+ 2m)

d

dm
log (γN−1γN ) + 4N

d

dm
ηN

+ α

(
(Y −1 d

dm
Y )11(0) + Y11(0)Y22(0)

d

dm
log (γN−1γN )

)
+ 2m

(
(Y −1 d

dm
Y )11(v) + Y11(v)Y22(v)

d

dm
log (γN−1γN )

)
.

(4.46)

Proof. The proof is analogous to the one35 in [136]. Performing column operations in the

Vandermonde determinants in (4.2) and using Andreiéf’s identity one obtains the well known

relation

Ẑv,mLUE(N) =
N−1∏
j=0

γ−2
j , (4.47)

35Note, however, that we do not need to consider the regularized integrals of [136], due to our assumptions on

the parameters α and m.
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where the γj are given by (4.45). Using the orthogonality relation (4.5) we obtain

d

dm
log Ẑv,mLUE(N) = −2

N−1∑
j=0

d
dmγj

γj
= −2

N−1∑
j=0

∫ ∞
0

pj(t)

(
d

dm
pj(t)

)
ŵv,m(t)dt

= −γN−1

γN

∫ ∞
0

d

dm

(
pN−1(t)p′N (t)− pN (t)p′N−1(t)

)
ŵv,m(t)dt,

where the last identity above follows from the Christoffel-Darboux formula. We use prime and

dot notations for the derivatives with respect to t and m, respectively, for the remainder of

the proof. Using the orthogonality condition (4.5), we see that the last integral above can be

computed as follows

d

dm
log Ẑv,mLUE(N) = −N ˙γN−1

γN−1
+
γN−1

γN

∫ ∞
0

(
ṗN (t)p′N−1(t)− p′N (t)ṗN−1(t)

)
ŵv,m(t)dx

= −N
(

˙γN−1

γN−1
+

˙γN
γN

)
+
γN−1

γN

∫ ∞
0

(pN (t)ṗN−1(t)− ṗN (t)pN−1(t)) ŵ′v,m(t)dt,

where the last identity above follows from integration by parts. We see that the resulting integral

can be split as the sum of three integrals. In each of these integrals the term between parentheses

in the last integral above multiplies the factors

α
ŵv,m(t)

t
, 2m

ŵv,m(t)

t− v
, −4Nŵv,m(x).

Note that all these integrals are convergent, due to the assumptions on the parameters α and

m. In order to compute the first one, we replace the term between parentheses by

pN (t)ṗN−1(t)− pN (t)ṗN−1(0) + pN (t)ṗN−1(0)− ṗN (t)pN−1(t) + ṗN (0)pN−1(t)− ṗN (0)pN−1(t),

without changing its value. Using the orthogonality properties of the polynomials pN , we see

that this integral evaluates to

α
γN−1

γN

(
− γ̇N
γN−1

+ 2πiṗN−1(0)C(pN ŵv,m)(0)− 2πiṗN (0)C(pN−1ŵv,m)(0)

)
.

The second of the integrals can be computed following the same procedure, while the third one

can be evaluated directly with aid of the orthogonality condition (4.5). Using (4.14) and the

fact that 1 = detY (z) = Y11(z)Y22(z)− Y12(z)Y21(z) we arrive at the desired conclusion.

Due to its technical nature, providing an accessible and at the same time fully rigorous

account of the Riemann-Hilbert methodology represents a task that lies outside the scope of

this thesis. We choose to prioritize clarity in the following, and develop in detail the parts of the

analysis that we believe to be more enlightening. We point to [190, 136, 166, 52, 53] for works

concerned with the study of similar models, where more details can be found.

4.3.1 Transformations of the problem and global parametrix

We can now start with the series of transformations for the matrix Y described in section 4.1.3.

For the first transformation, we recall the definition of the g function given in (4.35), as well as

the variational conditions (4.32). With this, we define

T (z) = e−
N`
2 σ3Y (z)e−N(g(z)− `2 )σ3 ,

Using the definition of g and equations (4.37) and (4.38), we see that T solves the following

problem.
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0 v 1

Σ1 Σ2

Σ3 Σ4

Figure 4.5: Lenses for the jumps of the matrix S(z).

Riemann-Hilbert problem for T

1. T is analytic in C \ [0,∞).

2. For x ∈ (0,∞) we have

T+(x) = T−(x)



(
e−N(g+(x)−g−(x)) (x− v)2mxα

0 eN(g+(x)−g−(x))

)
, 0 < x < 1,(

1 (x− v)2mxαe−N(−2g(x)+V (x)+`)

0 1

)
, 1 < x.

3. As z →∞, we have

T (z) = I +O(z−1).

4. As z → 0, the matrix T (z) has the same behaviour as U(z).

The purpose of this transformation is to normalize the problem at infinity. Note that T is now

asymptotically close to the identity matrix as z → ∞, and more importantly, this is achieved

without creating new singularities at other points of the plane. This is due to the fact that as

z →∞
eNg(z) = zN

(
1− N

4z
+O(z−2)

)
. (4.48)

For the next transformation, known as nonlinear steepest descent [72], we choose four

oriented contours on the complex plane joining the points 0, v and 1 of the form depicted in figure

4.5. By means of this transformation, we factorize the jump matrix for T into a product of three

matrices, each of them having jumps on one of the chosen contours, or on the interval [0, 1].

The advantage of this factorization is that the jumps on the contours will be asymptotically

close to the identity (outside some small neighbourhoods around the points 0 and 1), and the

remaining problem on the interval [0, 1] will have a solution that can be constructed explicitly.

This process is known as opening lenses; we will call the contours, which are denoted by Σj in

figure 4.5, the lips of the lenses.

We define

S(z) = T (z)



I, z outside the lenses,(
1 0

−z−α(z − v)−2me−Nξ(z) 1

)
, z in the upper part of the lenses,(

1 0

z−α(z − v)−2me−Nξ(z) 1

)
, z in the lower part of the lenses.
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Note that we are not making a particular choice for the lips Σj . The precise contours depend

on the local parametrices at the points 0, v and 1 and will be specified later, see section 4.3.2.

We see that S solves the following problem.

Riemann-Hilbert problem for S

1. S in analytic in C \ ([0,∞) ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4).

2. The matrix S has the following jumps

S+(z) = S−(z)



(
0 xα(x− v)2m

−x−α(x− v)−2m 0

)
, 0 < x < 1,(

1 xα(x− v)2me−N(−2g(x)+V (x)+`)

0 1

)
, 1 < x,(

1 0

z−α(z − v)−2me−Nξ(z) 1

)
, z ∈ Σj .

3. The function S(z) has the same behaviour as T (z) as z →∞.

4. The function S(z) has the same behaviour as T (z) as z → 0 from outside the lenses. As

z → 0 from inside the lenses, we have

S(z) =



(
O(z−α) O(1)

O(z−α) O(1)

)
, α > 0,(

O(log z) O(log z)

O(log z) O(log z)

)
, α = 0,(

O(1) O(zα)

O(1) O(zα)

)
, α < 0.

Note that the product of the jump matrices of S on the upper contours, the interval (0, 1) and

the lower contours recovers the jump matrix of T on (0, 1), as mentioned above.

As we will see below, the properties of the functions g and ξ imply that the jumps of S

on the interval (1,∞) and on the contours Σj converge to the identity as N → ∞. We can

thus approximate the solution of the Riemann-Hilbert problem for S outside these disks by the

solution to the following problem, usually called the global parametrix.

Riemann-Hilbert problem for P (∞)

1. P (∞) is analytic in C \ [0, 1].

2. For x ∈ (0, 1), we have

P
(∞)
+ (x) = P

(∞)
− (x)

(
0 (x− v)2mxα

−(x− v)−2mx−α 0

)
.

3. As z →∞, we have P (∞)(z) = I +O(z−1).
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The standard procedure to build the solution to the Riemann-Hilbert problem for P (∞) is

to consider the Szegő function associated to the function (x− v)2mxα on the interval [0, 1]. This

is a function D(z), analytic and non-zero on C \ [0, 1], such that

D+(x)D−(x) = (x− v)2mxα, for t ∈ (0, 1), (4.49)

and such that the limit limz→∞D(z) exists and is a positive real number.

Lemma. The Szegő function associated to (x− v)2mxα on the interval [0, 1] is

D(z) =
(z − v)mz

α
2

ϕ(z)(m+α
2

)
(4.50)

where ϕ is a conformal map from C \ [0, 1] onto the exterior of the unit circle, which is given by

ϕ(z) = 2z − 1 + 2(z(z − 1))1/2.

Proof. It follows from the definition of ϕ that this function takes negative values on the negative

real axis. Therefore, we see that D is analytic (and non-zero) on C \ [0, 1]. The jump condition

(4.49) follows from the fact that ϕ+(x)ϕ−(x) = 1 on (0, 1). Lastly, we have

D∞ = lim
z→∞

D(z) = 4−(m+α
2 ) > 0. (4.51)

We can now provide an explicit expression for P (∞). The Riemann-Hilbert problem on the

interval [0, 1] with jump matrix

(
0 1

−1 0

)
has a well known explicit solution [66], which is given

by

M(z) =
1

2

(
γ(z) + γ(z)−1 −i(γ(z)− γ(z)−1)

i(γ(z)− γ(z)−1) γ(z) + γ(z)−1

)
, where γ(z) =

(
z − 1

z

)1/4

. (4.52)

Therefore, it follows from the properties of the Szegő function that the unique solution of the

Riemann-Hilbert problem for P (∞) is given by

P (∞)(z) = Dσ3
∞M(z)D(z)−σ3 . (4.53)

However, we need to take into account the following consideration. Even if the power of

the characteristic polynomial insertion in ŵv,m is only allowed to be an even integer, we do

need an asymptotic expansion for Y that is valid for more general values of m. This is due

to the fact that we need to integrate this function over a whole range of the parameter m in

order to recover the model Ẑv.mLUE(N), as shown by the differential identity (4.46). Allowing m

to be a general parameter introduces also a jump type singularity in the weight function (see

footnote 34), which would require a more involved analysis. We can bypass this obstacle by

noting that the Szegő function associated to the function |x−v|2mxα on the interval [0, 1] is also

given by (4.50), for any (positive) value of m. Since the model corresponding to this function

coincides with Ẑv,mLUE(N) for integer values of m, we can proceed with the Szegő funcion (4.50),

thus avoiding the need to consider jump type singularities. Some inspection shows that the

analysis for both of the models is identical for the moment; we will introduce and comment the

required modifications in the following.
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4.3.2 Local parametrices

As mentioned above, the matrix P (∞) provides a good approximation to the solution of the

Riemann-Hilbert problem for S, in the sense that the matrix S(z)
(
P (∞)(z)

)−1
converges to the

identity as N → ∞. This holds everywhere, except in a neighbourhood of the points 0, v and

1, due to the singularities of P (∞) at these points, in sight of (4.53). We thus need to consider

additional problems around each of these points, known as local parametrices. These will be

built in terms of the model Riemann-Hilbert problems reviewed in section 4.1.3. It is at this

point of the construction that we will fix the specific choice of contours Σj .

We start with the local parametrix at the point 1. We consider a disk D(1, δ1) for some

small fixed δ1, which will be specified later. We consider the following problem in this disk.

Riemann-Hilbert problem for P (1)

1. P (1)(z) is analytic in D(1, δ1) \ ((1− δ1, 1 + δ1) ∪ Σ2 ∪ Σ4).

2. P (1)(z) has the same jumps inside D(1, δ1) as S(z).

3. Uniformly for z ∈ ∂D(1, δ1) we have

P (1)(z) = (I +O(N−1))P (∞)(z).

The strategy now is to transform this problem into one with constant jump matrices. We

will then identify these jumps with those of a Riemann-Hilbert problem with a known solution.

The composition of this solution with a conformal mapping gives a solution for the problem for

P (1) on the disk D(1, δ1), apart from a suitable modification to take account of the matching

condition (3). We start by defining the matrix P̂ (1) as follows

P (1)(z) = P̂ (1)(z)e−
Nξ(z)

2
σ3(z − v)−mσ3z−

α
2
σ3 . (4.54)

Using the properties of the function ξ (4.39), we find that P̂ (1) solves the following problem.

Riemann-Hilbert problem for P̂ (1)

1. P̂ (1)(z) is analytic in D(1, δ1) \ ((1− δ1, 1 + δ1) ∪ Σ2 ∪ Σ4).

2. P̂ (1)(z) verifies:

P̂ (1)(z)+ = P̂ (1)(z)−



(
0 1

−1 0

)
, 1− δ1 < z < 1,(

1 1

0 1

)
, 1 < z < 1 + δ1,(

1 0

1 1

)
, z ∈ (Σ2 ∪ Σ4) ∩D(1, δ1).

(4.55)

3. Uniformly for z ∈ ∂D(1, δ1) we have

P̂ (1)(z) = (I +O(N−1))P (∞)(z)z
α
2
σ3(z − v)mσ3e

Nξ(z)
2

σ3 . (4.56)

We see that the jumps of the matrix P̂ (1) coincide with those of the Airy model

Riemann-Hilbert problem described in section 4.1.3. The idea now is to compose the solution
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of this problem, which has an explicit expression, with a locally conformal map from a

neighbourhood of 1 onto a neighbourhood of 0, so that the contours of the jumps of this model

problem are mapped to the disk D(1, δ1). More precisely, we seek a solution for this problem of

the form

P̂ (1)(z) = E1(z)ΨAi(ζ1(z)), (4.57)

where E1 is a function analytic in a neighbourhood of 1 that will be specified later, ΨAi is the

solution of the Airy model problem, and ζ1 is the aforementioned locally conformal map. In

order to construct this map, we compare the asymptotic behaviour of ΨAi as z →∞, given by

(4.17), with the definition of P̂ (1), and choose ζ1 to compensate for the exponential factor in

(4.54). That is, we set

ζ1(z) =

(
−3N

4
ξ(z)

) 2
3

, z ∈ D(1, δ1) \ (1− δ1, 1]. (4.58)

It follows from (4.36) that ζ1 is indeed a locally conformal map from a neighbourhood of 1 onto

a neighbourhood of 0, as desired. Therefore, we can now choose δ1 small enough so that ζ1 is

conformal in the whole disk D(1, δ1). We also set now the lips of the right lens Σ2 and Σ4 to be

the preimages of the rays e2πi/3R+ and e2πi/3R− under the map ζ1 (more precisely, we set the

parts of the lips that lie inside the disk D(1, δ1) to be the preimages of the pieces of the rays

that lie inside ζ1(D(1, δ1))). It follows from this construction that the matrix ΨAi(ζ1(z)) has the

jumps specified in (4.55).

We still need to take care of the matching condition (4.56). To this end, note that we have

not specified the choice of the analytic function E1 introduced in (4.54). Another effect of

composing the solution of the Airy problem with ζ1 is that as N →∞ the asymptotic behaviour

(4.17) is attained at the boundary of the disk D(1, δ1). Comparing this behaviour with the

matching (4.56), we see that the appropriate choice is

E1(z) = P (∞)(z)z
α
2
σ3(z − v)mσ3

1√
2

(
1 −i
−i 1

)
ζ1(z)σ3/4.

As desired, this matrix is analytic in a neighbourhood of 1. Indeed, it follows from the jump

condition for P (∞) and the fact that ζ1(x)
1/4
+ = ζ1(x)

1/4
− eiπ/2 for x ∈ (1− δ1, 1) that E1 has no

jumps on D(1, δ1). Moreover, the singularity of E1 at the point 1 is at most of square-root type

(recall the explicit construction of P (∞), given by (4.53)), and therefore removable.

Hence, we arrive at the conclusion that the solution to the Riemann-Hilbert problem for P (1)

is given by

P (1)(z) = E1(z)ΨAi(ζ1(z))e−
Nξ(z)

2
σ3(z − v)mσ3z−

α
2
σ3 .

Let us now construct a local parametrix in a neighbourhood of 0, following an analogous

procedure to the one done for the parametrix around 1. We consider a small disk D(0, δ0), for

some δ0 that will be fixed later.

Riemann-Hilbert problem for P (0)

1. P (0)(z) is analytic in D(0, δ0) \ ([0, δ0) ∪ Σ1 ∪ Σ3).

2. P (0)(z) has the same jumps inside D(0, δ0) as S(z).
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3. Uniformly for z ∈ ∂D(0, δ0) we have

P (0)(z) = (I +O(N−1))P (∞)(z).

4. P (0) has the same behaviour at 0 as S.

As before, we can transform this problem into one with constant jump matrices by means

of the following transformation

P (0)(z) = P̂ (0)(z)e−
Nξ(z)

2
σ3(v − z)−mσ3(−z)−

α
2
σ3 . (4.59)

Note that the exponential factor does not introduce new jumps on (−δ0, 0), in sight of (4.39). It

thus follows from the properties of the function ξ that P̂ (0) solves the following Riemann-Hilbert

problem.

Riemann-Hilbert problem for P̂ (0)

1. P̂ (0)(z) is analytic in D(0, δ0) \ ([0, δ0) ∪ Σ1 ∪ Σ3).

2. P̂ (0)(z) has the following jumps

P̂ (0)(z)+ = P̂ (0)(z)−



(
0 1

−1 0

)
, 0 < z < δ0,(

1 0

e−iπα 1

)
, z ∈ Σ1 ∩D(0, δ0),(

1 0

eiπα 1

)
, z ∈ Σ3 ∩D(0, δ0).

3. Uniformly for z ∈ ∂D(0, δ0) we have

P̂ (0)(z) = (I +O(N−1))P (∞)(z)(−z)
α
2
σ3(v − z)mσ3e

Nξ(z)
2

σ3 . (4.60)

4. As z → 0, the matrix P̂ (0) has the following behaviour

P̂ (0)(z) =



(
O(1) O(1)

O(1) O(1)

)
z
α
2
σ3 , z outside the lens,(

O(z−
α
2 ) O(z−

α
2 )

O(z−
α
2 ) O(z−

α
2 )

)
, z inside the lens,

if Re α > 0,

P̂ (0)(z) =



(
O(1) O(log z)

O(1) O(log z)

)
, z outside the lens,(

O(log z) O(log z)

O(log z) O(log z)

)
, z inside the lens,

if Re α = 0,

P̂ (0)(z) =

(
O(z

α
2 ) O(z

α
2 )

O(z
α
2 ) O(z

α
2 )

)
, if Re α < 0.

Note that both the jumps of the matrix P̂ (0) and its behaviour at 0 coincide with those of

the Bessel model Riemann-Hilbert problem. As before, we compose the explicit solution of this
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problem ΨBe with a locally conformal map that sends the jump contours of P̂ (0) to those of ΨBe.

That is, we seek a solution of the form

P̂ (0)(z) = E0(z)ΨBe(ζ0(z)), (4.61)

where ζ0 denotes the desired conformal map and E0 is an analytic prefactor, to be determined

later. In sight of the exponential factor in (4.59) and the asymptotic behaviour (4.19), we see

that a suitable choice for this mapping could be the function
(
N
4 ξ(z)

)2
. However, while being

conformal, it follows from (4.36) that small neighbourhoods of 0 are mapped to neighbourhoods

of 1 under the action of this map. We can nevertheless remedy this situation as follows. Consider

the function

ξ̃(z) = 2πi

∫ 0

z
r(s)ds, (4.62)

where r is the analytic extension of the density of the equilibrium measure, see (4.36). It follows

from the fact that dµV is a probability measure that ξ(z) = ξ̃(z)±2πi on C\(−∞, 1]. Therefore,

we see that if we set

ζ0(z) =

(
N

4
ξ̃(z)

)2

,

we obtain

e2ζ
1/2
0 (z) = (−1)Ne

Nξ̃(z)
2 .

Now we have that the map ζ0 is locally conformal, and maps neighbourhoods of 0 onto

neighbourhoods of 0, as follows from (4.62). Moreover, the exponential factors in the

asymptotic behaviour of the functions under interest are still compensated, up to the prefactor

(−1)N . However, this term can be included in the analytic function E0, which has not been

fixed yet. Indeed, it follows from the asymptotic behaviour (4.19) and (4.60) that choosing

E0(z) = (−1)NP (∞)(z)(−z)
α
2
σ3(v − z)mσ3 1√

2

(
1 −i
−i 1

)
(2πζ

1/2
0 (z))

1
2
σ3 , (4.63)

the matching condition is verified. As above, one can also check that the matrix E0 is analytic

in a neighbourhood of 0. We can also fix now the choice of δ0 and of the lips Σ1 and Σ3: we

choose them so that ζ0 is conformal in the whole disk D(0, δ0), and such that the parts of the

lips that lie inside this disk coincide with the preimages of the rays e2πi/3R± under ζ0. Some

inspection confirms that the resulting matrix

P (0)(z) = E0(z)ΨBe(ζ0(z))e−
Nξ(z)

2
σ3(v − z)−mσ3(−z)−

α
2
σ3 (4.64)

solves indeed the Riemann-Hilbert problem for P (0).

Lastly, we construct the local parametrix at the point v. The procedure is analogous to the

previous cases, and the solution will be expressed now in terms of the confluent hypergeometric

model Riemann-Hilbert problem. We consider a small disk D(v, δv) for some δv to be determined

later.

Riemann-Hilbert problem for P (v)

1. P (v)(z) is analytic in D(v, δv) \ ((v − δv, v + δv) ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4).

2. P (v)(z) has the same jumps as S(z) inside D(v, δv).
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0 v 1

QR+

QR−

QL+

QL−

Σ5

Σ6

Figure 4.6: The contours and quadrants introduced in the definition of W (z) (4.65).

3. Uniformly for z ∈ ∂D(v, δv) we have

P (v)(z) = (I +O(N−1))P (∞)(z).

We follow the same approach as in the previous two cases. Nevertheless, a more subtle

situation arises, as in the construction of the global parametrix. Recall that we are interested

in obtaining an asymptotic expression valid for a whole range of the parameter m, due to the

differential identity (4.46). When constructing the global parametrix, this situation was solved

by noticing that the analysis for the model with weight function |t− v|2mtαe−4Nt was identical

to that of the model Ẑv,mLUE(N). While this is still true for the local parametrices at 0 and 1, as

can be seen from the explicit expressions of P (0) and P (1), the local parametrix at v needs to be

constructed taking into account this modification. We use the same strategy as before, and think

of the local parametrix as that associated to the model with weight function |t − v|2mtαe−4Nt

instead, where m need not be an integer anymore. Following [100, 52], we consider another

contour on the complex plane, which will be fixed later, intersecting the real axis at the point v,

and denote by Σ5 and Σ6 the parts of it that lie in the upper or lower half plane, respectively.

We orient these contours away from the point v, and label the resulting four quadrants in the

complex plane by QL± and QR±, as depicted in figure 4.6. With this, we define the following

extension of the function (z − v)m to the complex plane

W (z) =


(z − v)me−iπm, z ∈ QR+,
(z − v)meiπm, z ∈ QR−,
(v − z)meiπm, z ∈ QL+,
(v − z)me−iπm, z ∈ QL−,

(4.65)

where m is a general positive parameter.

We can now proceed as in the previous parametrices. First, we transform the problem into

one with constant jump matrices by setting

P (v)(z) = P̂ (v)(z)e−
Nξ(z)

2
σ3W (z)−σ3z−

α
2
σ3 . (4.66)

We find that P̂ (v) solves the following Riemann-Hilbert problem.

Riemann-Hilbert problem for P̂ (v)

1. P̂ (v)(z) is analytic in D(v, δv) \ ((v − δv, v + δv) ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4 ∪ Σ5 ∪ Σ6).



Hankel minors and the LUE 93

2. P̂ (v)(z) has the following jumps

P̂ (v)(z)+ = P̂ (v)(z)−



(
0 1

−1 0

)
, v − δv < z < v + δv,(

1 0

e2πim 1

)
, z ∈ (Σ1 ∪ Σ4) ∩D(v, δv),(

1 0

e−2πim 1

)
, z ∈ (Σ2 ∪ Σ3) ∩D(v, δv),(

eiπm 0

0 e−iπm

)
, z ∈ (Σ5 ∪ Σ6) ∩D(v, δv),

3. Uniformly for z ∈ ∂D(v, δv) we have

P̂ (v)(z) = (I +O(N−1))P (∞)(z)z
α
2
σ3W (z)σ3e

Nξ(z)
2

σ3 . (4.67)

We see that the jumps of P̂ (v) coincide with those of the hypergeometric model

Riemann-Hilbert problem with parameters α = 2m,β = 0, after rotating the contours of

this problem. Using (4.66), we see that the behaviour of the function P̂ (v) also coincides with

that of ΨHG at the point 0. We are therefore interested in a solution of the type

P̂ (v)(z) = Ev(z)ΨHG(ζv(z)),

where, as in the previous cases, Ev is an analytic prefactor to be determined, and ζv is a locally

conformal map from a neighbourhood of v onto a neighbourhood of 0. Comparing (4.66) and

the asymptotic behaviour (4.20), we see that a map of the form ζv = Nξ(z) would compensate

the exponential factors in these equations. As for the local parametrix at 0, we define instead

the function ˜̃
ξ(z) = 2πi

∫ v

z
r(s)ds,

and choose as map

ζv = N
˜̃
ξ(z),

which is indeed locally conformal from a neighbourhood of v onto a neighbourhood of 0. With

this, we can set now the analytic prefactor36

Ev(z) = P (∞)(z)z
α
2
σ3W (z)σ3



eiπ
m
2
σ3 , z ∈ QR+

e−iπ
m
2
σ3 , z ∈ QL+

eiπ
m
2
σ3

(
0 1

−1 0

)
, z ∈ QL−

e−iπ
m
2
σ3

(
0 1

−1 0

)
, z ∈ QR−


eiπN

∫ v
1 r∓(s)dsσ3 , (4.68)

36We choose eiπN
∫ v
1 r∓(s)ds in equation (4.68) for Im z > 0 and Im z < 0, respectively. This constant now plays

the role of the factor (−1)N in the local parametrix at 0. It follows from the jump conditions of the functions

P (∞) and W that Ev is indeed analytic in a neighbourhood of v.
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D(0, δ)

D(v, δ)

D(1, δ)

Σ′1 Σ′2

Σ′3 Σ′4

Figure 4.7: Final contour ΣR.

as well as the lips Σj near the point v. Following the previous reasonings, we set the parts of

them that lie inside the disk D(v, δv) to be the preimages of the rays e±iπ/4R±, e±iπ/2R+ under

the map ζv. With this, we conclude that the matrix

P (v)(z) = Ev(z)ΨHG(ζv(z))e
−Nξ(z)

2
σ3W (z)−σ3z−

α
2
σ3 (4.69)

solves the Riemann-Hilbert problem stated above. We recall that the parameters of the matrix

ΨHG are set to α = 2m,β = 0.

4.3.3 Final transformation and conclusion of the analysis

We can introduce the final transformation of the Riemann-Hilbert problem, which will allow us

to obtain the sought asymptotic behaviour of the matrix Y . We consider the contour ΣR, formed

by the boundaries of three disks centered at the points 0, v and 1 of radius δ = min {δ0, δv, δ1},
the interval (1 + δ,∞), and four curves Σ′j , for j = 1, . . . , 4. These curves are chosen as follows:

they provide analytic continuations of the parts of the contours Σj that lie inside the disks,

which have been fixed in the previous section. The resulting contour is depicted in figure 4.7.

Now, we define

R(z) = S(z)



(
P (1)(z)

)−1
, for z ∈ D(1, δ),(

P (v)(z)
)−1

, for z ∈ D(v, δ),(
P (0)(z)

)−1
, for z ∈ D(0, δ),(

P (∞)(z)
)−1

, for z elsewhere.

(4.70)

Some inspection shows that the behaviour at the points 0, v and 1 of the local parametrices at

each of these points implies in particular that the possible singularities of the matrix R at these

points are removable. Therefore, we find that R solves the following problem.

Riemann-Hilbert problem for R.

1. R(z) is analytic in C \ ΣR, where the contour ΣR is shown in figure 4.7.



Hankel minors and the LUE 95

2. R(z) has the following jumps

R(z)+ = R(z)−



P (1)(z)
(
P (∞)

)−1
, z ∈ ∂D(1, δ),

P (v)(z)
(
P (∞)

)−1
, z ∈ ∂D(v, δ),

P (0)(z)
(
P (∞)

)−1
, z ∈ ∂D(0, δ),

P (∞)(z)

(
1 0

z−α(z − v)−me−Nξ(z) 1

)(
P (∞)

)−1
, z ∈ Σ′j ,

P (∞)(z)

(
1 xα(x− v)meN(2g(x)−V (x)−`)

0 1

)(
P (∞)

)−1
, 1 < x.

3. As z →∞, we have

R(z) = I +O(z−1).

According to the third condition in the Riemann-Hilbert problems for P (0), P (v) and P (1), the

jumps of the matrix R on the boundary of the disks tend to the identity matrix as N → ∞.

Due to equations (4.39) and(4.37), we see that the function ξ is purely imaginary on the interval

(0, 1), and its imaginary part strictly decreases from 2π to 0. Therefore, as a consequence of

the Cauchy-Riemann equations, there exists a neighbourhood of the interval (0, 1) on which ξ

has positive real part away from the real axis. Hence, after possibly replacing δ with a smaller

radius for the disks above, so that the curves Σ′j lie inside this neighbourhood, we conclude that

the jumps of R converge to the identity as N →∞ on the parts of the lips of the lenses that lie

above the real axis. Using (4.36), we see that the same conclusion holds for the parts of the lips

that lie below the real axis. Moreover, it follows from (4.38) that the jump of R on the interval

(1,∞) also tends to the identity as N →∞.

Thus, we see that the matrix R is asymptotically close to the identity as N →∞, as claimed

above, in the sense that37

R(z) = I +O(N−1).

We can now reverse the series of transformations leading to R to recover an asymptotic

approximation to the matrix Y . Inserting this into the differential identity (4.46), we arrive at

the desired large N expression for the model Ẑv,mLUE(N). This is precisely the content of the next

theorem.

Theorem 14. Let α > 0 , v ∈ (0, 1) and m be a positive integer. As N →∞, we have

Ẑv,mLUE(N)

Ẑv,0LUE(N)

=

(ev
2

)4Nm
(
N

e

√
1− v
v

)m2

G(m+ 1)2

G(2m+ 1)
(4v)−mα

 (1 +O(N−1)), (4.71)

where G is Barnes’ G-function.

Proof. Recalling the differential identity (4.46), we see that we need approximations for the

functions (Y −1 d
dmY )11 and Y11Y22 at the points 0 and v, as well as for the coefficients γN , γN−1

and ηN .

37More detailed estimations on the norm of the matrix R on the contours of the Riemann-Hilbert problem can

be obtained by means of contour integration; see [53] for instance, among many others.
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We start with the coefficients γN , γN−1 and ηN . We can obtain the asymptotic behaviour of

these constants by means of equations (4.15) and the expression

Y (z) = e
N`
2
σ3R(z)P (∞)(z)eN(g(z)− `

2
)σ3 ,

which holds for points z lying outside the disks D(ε, δ), for ε ∈ {0, v, 1} and outside the lenses,

as follows after reversing the transformations of the Riemann-Hilbert problem. Combining this

remark with equation (4.48), the fact that ` = −2 − 4 log 2 (see [197], for instance), and the

asymptotic behaviour D(z) = D∞(1− vm
z +O(z−2)), as z →∞, we find that as N →∞

γ2
N−1 =

1

π
e2N24N+4m+2α−3(1 +O(N−1)),

γ−2
N = πe−2N2−(4N+4m+2α+1)(1 +O(N−1)),

ηN = −N
4

+ vm− 1

2
+O(N−1).

We next consider the behaviour of the functions (Y −1 d
dmY )11 and Y11Y22. We approach

the points 0 and v taking points z on the disks D(0, δ) and D(v, δ) respectively and outside

of the lenses (and also lying in the intersection of the preimage of the region II under the

map ζv, depicted in figure 4.3, with the quadrant QR+ (4.65), in the case of v). Reversing the

transformations of the Riemann-Hilbert problem for Y we see that for such points the matrix

Y can be expressed as

Y (z) = e
N`
2
σ3R(z)P (ε)(z)eN(g(z)− `

2
)σ3 , (4.72)

where ε ∈ {0, v}.
Let us start with the point v. Substituting the explicit expression of the local parametrix

P (v), given in (4.69), and using the fact that g+(v) − `/2 − ξ+(v)/2 = V (v)/2 (which follows

from (4.38) and (4.39)), we obtain

Y (v) = e
N`
2
σ3(I +O(N−1))Ev(v)

(
Ψv −1

2Ψ−1
v

Ψv
1
2Ψ−1

v

)
v−

α
2
σ3e2Nvσ3 , (4.73)

where

Ψv =
Γ(m+ 1)

Γ(2m+ 1)

(
4N

√
1− v
v

)m
,

and

Ev(v) = Dσ3
∞M(v)ei((m+α

2
) arccos (2v−1)−mπ

2
+πN

∫ v
1 r−(s)ds)σ3 ,

where D∞ and M(z) are given by (4.51) and (4.52), respectively. We have used in the derivation

of equation (4.73) above the asymptotic behaviour [1]

G(a, b; z) = z
b
2 (1 +O(z)), H(a, b; z) =

Γ(b)

Γ(a)
z−

b
2 +O(z1− 1

2
Re b) +O(zRe b),

as z → 0, for the functions G and H introduced in the explicit solution of the model

hypergeometric Riemann-Hilbert problem (4.22), together with the approximation

ζv(z) = −2πiNr(v)(z − v)(1 +O(z − v))

as z → v, where r is the extension (4.36) of the density of the equilibrium measure dµV .
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We now consider the behaviour of Y at 0. Following an analogous reasoning as before, we

find that

Y (0) = e
N`
2
σ3(I +O(N−1))E0(0)

(
Ψ0 − 1

2πiαΨ−1
0

iπαΨ0
1
2Ψ−1

0

)
v−mσ3 ,

where

Ψ0 =
1

Γ(α+ 1)
(2N)α

and

E0(0) = (−1)NDσ3
∞

1√
2

(
1 i(2m+ α+ 1)

i −2m− α+ 1

)
(4πN)

σ3
2 ,

after substituting the explicit expression for the local parametrix P (0), given by (4.64), in (4.72).

We have used the approximations [1]

Iα(z) =
1

Γ(α+ 1)

(z
2

)α
(1 +O(z2)), Kα(z) =

Γ(α)

2

(z
2

)−α
+O(z1−Reα) +O(zReα),

as z → 0, together with the fact that as z → 0

ζ
1/2
0 (z) = −4Nz1/2(1 +O(z)).

Substituting the obtained expressions in the differential identity (4.46) and performing some

computations we arrive at

d

dm
log Ẑv,mLUE(N) = 4N(v − log 2) + 2m log

(
4N

√
1− v
v

)

− (2m+ α) log 4− α log v + 2m
d

dm
log

(
Γ(m+ 1)

Γ(2m+ 1)

)
+O(N−1).

Integrating this identity from m = 0 to an arbitrary integer and using the formula (see [53], for

instance) ∫ z

0
x
d

dx
log

Γ
(
x
2 + 1

)
Γ(x+ 1)

dx = −z
2

4
+ log

G
(
z
2 + 1

)2
G(z + 1)

we arrive at the desired conclusion.

We can use the result given in theorem 14 to obtain the large behaviour of the matrix model

Zu,mLUE(N) introduced in section 4.2. Indeed, combining equations (4.30) and (4.71) we find that

as N →∞ and u→∞, with u/4N = cte ∈ (0, 1), we have

Zu,mLUE(N)

ZLUE(N)
= N2mN+m2+mαeum−m

2
u−mα

(
4N − u

u

)m2/2 G(m+ 1)2

G(2m+ 1)
(1 +O(N−1)).

Note that the large N behaviour of the partition function of the Laguerre Unitary Ensemble

ZLUE(N) can be obtained by means of equations (4.29) and (3.71).

Let us make some comments to end this section. We have focused only on the leading terms of

the model Ẑv,mLUE(N), but several generalizations are possible with some additional considerations.

First of all, we note that the asymptotic behaviour of the orthogonal polynomials with respect

to the weight ŵv,m in the various regions of the complex plane determined by the contour ΣR is

readily available from the asymptotic expressions for the matrix Y , in sight of equations (4.14)
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and (4.15). Moreover, as usual when solving Riemann-Hilbert problems, we observe that more

terms in the asymptotic expression for Y can be obtained, with increased effort. This involves

the analysis of the function R, besides more detailed approximations of the functions appearing

in the explicit construction of Y used in the proof of theorem 14.

Finally, let us also remark that during the preparation of the current work, the article [53]

appeared, which addresses much more general cases of insertions of Fisher-Hartwig singularities

in the Laguerre and Jacobi Unitary Ensembles. Our results are consistent with those in

[53], although the different choices of potentials and supports of the weights make the direct

comparison slightly involved.
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[106] D. Garćıa-Garćıa and M. Tierz, “Matrix models for classical groups and Toeplitz±Hankel

minors with applications to Chern-Simons theory and fermionic models”, arXiv:1901.08922

(2019).

[107] I. M. Gessel, “Symmetric functions and P-recursiveness”, J. Comb. Th. A 53 (1990).

[108] V. Gorin and G. Panova, “Asymptotics of symmetric polynomials with applications to

statistical mechanics and representation theory”, Annals of Probability 43(6) (2015).

[109] D. J. Grabiner, “Brownian motion in a Weyl chamber, non-colliding particles and random

matrices”, Ann. Inst. H. Poincaré 35 (1999).

[110] D. J. Grabiner and P. Magyar, “Random walks in Weyl chambers and the decomposition

of tensor powers”, J. Alg. Combinatorics 2 (1993).

[111] Y. Grandati, “Exceptional orthogonal polynomials and generalized Schur polynomials”,

J. Math. Phys. 55 (8) (2014).

[112] D. J. Gross and E. Witten, “Possible third order phase transition in the large N lattice

gauge theory”, Phys. Rev. D 21 (1980).

[113] Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, “ABJM Wilson Loops in Arbitrary

Representations”, JHEP 1310 (2013).

[114] G. Heinig and K. Rost, “On the inverses of Toeplitz-plus-Hankel matrices”, Linear Algebra

Appl. 106 (1988).

[115] S. M. Iguri, “On a Selberg-Schur integral”, Lett. Math. Phys. 89(2) (2009).

https://arxiv.org/abs/math-ph/0203049
https://arxiv.org/abs/math-ph/0203049
https://doi.org/10.1016/j.jat.2009.08.006
https://doi.org/10.1016/j.jat.2009.08.006
https://doi.org/10.1016/j.jat.2009.08.006
https://doi.org/10.1006/jcta.1996.2711
https://doi.org/10.1006/jcta.1996.2711
https://arxiv.org/abs/1807.07648
https://arxiv.org/abs/1807.07648
https://arxiv.org/abs/1706.02574
https://arxiv.org/abs/1706.02574
https://arxiv.org/abs/1901.08922
https://arxiv.org/abs/1901.08922
https://doi.org/10.1016/0097-3165(90)90060-A
https://doi.org/10.1214/14-AOP955
https://doi.org/10.1214/14-AOP955
https://arxiv.org/abs/math/9708207
https://arxiv.org/abs/math/9708207
https://doi.org/10.1023/A:1022499531492
https://doi.org/10.1023/A:1022499531492
https://arxiv.org/pdf/1311.4530.pdf
https://arxiv.org/abs/1306.4297
https://arxiv.org/abs/1306.4297
https://doi.org/10.1016/0024-3795(88)90021-3
https://doi.org/10.1007/s11005-009-0330-7


106 Schur Averages in Random Matrix Ensembles

[116] A. Iqbal and A. K. Kashani-Poor, “Instanton counting and Chern-Simons theory”, Adv.

Theor. Math. Phys. 7(3) (2003).

[117] A. Iqbal and A. K. Kashani-Poor, “SU(N) geometries and topological string amplitudes”,

Adv. Theor. Math. Phys. 10(1) (2006).

[118] M. Ishikawa, S. Okada and M. Wakayama, “Applications of minor summation formulas I.

Littlewood’s formulas”, J. Algebr. 208 (1998).

[119] M. Ishikawa and H. Tagawa, “Schur function identities and hook length posets”,

Proceedings of the 19th International Conference on Formal Power Series and Algebraic

Combinatorics (2007).

[120] M. Ishikawa, H. Tagawa, S. Okada, and J. Zeng, “Generalizations of Cauchy’s determinant

and Schur’s Pfaffian”, Adv. Appl. Math. 36 (2006).

[121] M. Ishikawa and M. Wakayama, “Minor summation formula of Pfaffians”, Linear and

Multilinear Algebra 39 (1995).

[122] M. Ishikawa and M. Wakayama, “New Schur function series”, J. Algebra 208 (1998).

[123] M. Ishikawa and M. Wakayama, “Applications of minor summation formula III, Plücker
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