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Abstract

The main focus of this PhD thesis is the study of minors of Toeplitz, Hankel and Toeplitz4+-Hankel
matrices. These can be expressed as matrix models over the classical Lie groups G(N) =
U(N),Sp(2N),O(2N),O(2N + 1), with the insertion of irreducible characters associated to
each of the groups. In order to approach this topic, we consider matrices generated by formal
power series in terms of symmetric functions.

We exploit these connections to obtain several relations between the models over the different
groups G(N), and to investigate some of their structural properties. We compute explicitly
several objects of interest, including a variety of matrix models, evaluations of certain skew
Schur polynomials, partition functions and Wilson loops of G(N) Chern-Simons theory on S3,
and fermion quantum models with matrix degrees of freedom. We also explore the connection
with orthogonal polynomials, and study the large N behaviour of the average of a characteristic
polynomial in the Laguerre Unitary Ensemble by means of the associated Riemann-Hilbert
problem.

We gratefully acknowledge the support of the Fundagao para a Ciéncia e a Tecnologia through
its LisMath scholarship PD/BD/113627/2015, which made this work possible.

Keywords: Random matrix theory; Toeplitz determinant; Schur polynomial; Chern-Simons
theory; Riemann-Hilbert problem.






Resumo

A teoria das matrizes aleatorias, e das propriedades dos seus autovalores, ¢ um ambito de estudo
com grande atividade desde os trabalhos de Wigner e Dyson dos anos 1950 e 1960. De certa
maneira, a area deve a sua existéncia as aplicagoes, e a quantidade de conexdes com véarios
ambitos da matemadtica e da fisica é ainda uma das suas qualidades mais importantes.

As matrizes estruturadas, como as matrizes de Toeplitz ou Hankel, tém um papel
fundamental no estudo das matrizes aleatérias. Por exemplo, modelos unitdrios com suporte
no circulo unidade ou na reta real podem ser expressados como determinantes de Toeplitz ou
Hankel. Entre outras aplicagoes, esta relagao é relevante na area da combinatéria, pois permitiu
a resolucdo de problemas abertos de importancia. Assim, resultados da teoria das funcoes
simétricas foram essenciais no problema da maior subsequéncia crescente numa permutacao
aleatoria, estudado por Baik, Deift e Johansson.

Desenvolvimentos deste tipo mostram o alcance da teoria das matrizes aleatérias, onde a
aparicao de técnicas de areas diversas da matemaética é a norma, e nao uma exegao.

O principal objetivo desta tese é o estudo dos menores das matrizes de Toeplitz, Hankel, e
Toeplitz=Hankel. Parte do nosso interesse neste tépico deve-se ao fato de que estos menores
podem ser expressados como as integrais

onde dU ¢ a medida de Haar num dos grupos de Lie classicos
G(N) =U(N),Sp(2N),O(2N),0(2N +1),

e os Xé( N)(U ) sdo os caracteres associados as representacoes irredutiveis destes grupos. Estas
integrais supoem uma generalizacao natural dos ensembles classicos de matrizes aleatodrias, pois
envolvem o uso de técnicas algébricas e analiticas no seu estudo. Além disso, estes modelos tém
também expressoes em termos de funcgoes simétricas. Outras motivagoes para o nosso estudo
incluem

e O estudo de insergoes generalizadas em modelos de matrizes aleatérias, em particular por
meio de expansdes em caracteres,

e A obtencdo de propriedades estruturais de ensembles de matrizes nos grupos de Lie
classicos, mediante o uso de técnicas da teoria das representacoes, assim como o calculo
de varios objetos de interesse no campo da combinatoria,

e A computacao das funcoes de particao e de observaveis de teorias gauge com grupo de
simetria G(NN), no contexto finito e infinito,



e A exploracao das aplicactes da formulacao en termos de fungoes simétricas e modelos de
matrizes na teoria de polinémios ortogonais.

Na primeira parte da tese, focalizamo-nos no desenvolvimento do formalismo de menores
de Toeplitz, e explicamos a sua relacdo com as integrais unitarias. Depois de revisar alguns
resultados da teoria das fungoes simétricas, expressamos estes menores em termos de polinémios
de Schur e obtemos o seu comportamento assintético em termos dos determinantes de Toeplitz
associados. Depois, calculamos as inversas de varias matrizes de Toeplitz, utilizando polinémios
de Chebyshev, a férmula de Duduchava-Roch e o kernel associado a duas sequéncias de
polinémios biortogonais no circulo unidade. Comparando as nossas férmulas para menores de
Toeplitz com estas inversas, obtemos evaluagoes explicitas de uma integral de Selberg-Morris e
de certos polinémios skew Schur. Utilizamos também a férmula de Laplace num determinante
de Toeplitz geral para deduzir un conjunto de relagoes verificadas por polindomios skew Schur.

A continuagdo, estudamos integrais de matrizes nos grupos de Lie cldssicos G(N) =
U(N),Sp(2N),O(2N) e O(2N + 1), por meio de fungoes simétricas e a formulagao equivalente
em termos de determinantes e menores de matrizes Toeplitz+-Hankel. Isto permite-nos obter
relagoes entre estas integrais, incluindo

1. Fatoracoes de integrais unitarias como produtos e somas de produtos de integrais
simpléticas e ortogonais,

2. A expressao de uma classe de modelos como a especializacdo de um unico caracter associado
ao grupo de simetria correspondente,

3. Expansoes de integrais simpléticas e ortogonais como somas ponderadas de integrais
unitarias com caracteres ou, equivalentemente, expansoes de determinantes de matrizes
Toeplitz+ Hankel como somas ponderadas de menores de matrizes de Toeplitz,

4. Generalizacoes da identidade de Gessel, expressando as integrais em estudo como séries de
funcoes de Schur,

5. O comportamento assintético das médias de caracteres irredutiveis sobre os modelos de
matrizes mencionados.

Consideramos entao o modelo associado a terceira fungao teta de Jacobi, que modeliza a
teoria de Chern-Simons em S3. Calculamos as funcoes de particio, os Wilson loops e os
Hopf links das teorias com grupos de simetria G(IN), e mostramos que os modelos sdo
Giambelli-compativeis. Neste contexto, as relagoes gerais antes encontradas traduzem-se em
identidades entre observaveis das teorias com diferentes grupos de simetria. Finalmente, usamos
expansoes em caracteres e o comportamento assintético dos determinantes associados para
estudar insergoes particulares no modelo de Chern-Simons, descrevendo espectros de modelos
fermionicos com graus de liberdade matriciais.

Finalmente, tratamos os menores de matrizes de Hankel, e estabelecemos algumas
conexoes com a teoria de polindémios ortogonais. FEm particular, expressamos o kernel de
Christoffel-Darboux associado a um conjunto de polindémios ortogonais em forma de soma
ponderada sobre polinémios de Chebyshev, cujos coeficientes sao menores da matriz de Hankel



associada. Depois, estudamos como exemplo a insercao de um polinémio caracteristico no
Laguerre Unitary Ensemble. Analisamos o modelo correspondente, tanto no contexto finito,
utilizando expansoes em polinémios de Schur, como no contexto infinito, resolvendo o problema
de Riemann-Hilbert associado.

Agradecemos o apoio da Fundacédo para a Ciéncia e a Tecnologia através da bolsa LisMath
PD/BD/113627/2015, que possibilitou o presente trabalho.

Palavras-chave: Teoria das matrizes aleatorias; determinante de Toeplitz; polinémio de
Schur; teoria de Chern-Simons; problema de Riemann-Hilbert.
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Chapter 1

Context and general overview

1.1 Introduction

The study of random matrices, and in particular the properties of their eigenvalues, has been an
active field of research since the seminal works of Wigner and Dyson in the 1950s and 196041
In a sense, the area owes its existence to applications, and one of its main appeals is the large
number of connections it possesses with different branches of mathematics and physics.

As the field continues to evolve, the statistical properties of a surprising number of
mathematical objects and physical systems are found to be modeled by the eigenvalues of
matrices belonging to random ensembles. Moreover, diverse techniques are naturally involved
in the study of these ensembles, including tools from linear algebra, functional analysis,
combinatorics, classical analysis and representation theory, among others.

Specially structured matrices play a central role in random matrix theory. Indeed, unitary
models supported on the unit circle or the real line can be expressed as Toeplitz or Hankel
determinants, respectively. Also the determinants of matrices that are the sum or difference of
a Toeplitz and a Hankel matrix arise in this context, as they express integrals over the classical
Lie groups with respect to Haar measure.

Numerous properties of these matrices have been studied over the yearsﬂ A fundamental
result is the strong Szegd limit theorem, which describes the asymptotic behaviour of Toeplitz
determinants generated by a sufficiently smooth function. While being a less investigated topic,
several developments concerning Toeplitz+-Hankel determinants have also been accomplished,
including generalizations of Szegd’s theorem.

Combinatorics is one of the areas that has benefited from the appearance of random matrix
theory. Several problems in the field, some of which were long standing, have been solved after
recognizing that a matrix model formulation is available for them. The application of techniques
from the theory of random matrices has then sometimes lead to a solution for these problemg?|

'We do not attempt to provide a comprehensive historical review of the vast field of random matrix theory
here, but refer to [93] for an excellent survey on the topic.

2Once again, since reviewing in detail the history and advances in the area would be an unfeasible task, we
rather point to the outstanding survey [68] and references therein.

3 A detailed exposition of two such examples can be found in [I7], including the longest increasing subsequence
problem outlined below.
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Reciprocally, tools from combinatorics have also been found to be useful for studying matrix
ensembles.

A key example of this premise is due to Baik, Deift and Johansson [I5]. These authors found
that the distribution of the longest increasing subsequence of a random permutation (properly
centered and re-scaled) converges, as the size of the permutation grows to infinity, to the famous
Tracy-Widom distribution, which also models the behaviour of the largest eigenvalue of a random
Gaussian Hermitian matrix. To prove this, they used the well known RSK correspondence
to express the relevant probability as a Toeplitz determinant, by means of an identity of
Gessel involving Schur polynomials. The analysis was concluded using the Riemann-Hilbert
methodology, that exploits the connection of Toeplitz determinants with orthogonal polynomials
on the unit circle.

Developments like this showcase the full extent of random matrix theory, where the
appearance of techniques from diverse branches of mathematics is rather the norm than
an exception. While the tools employed in these studies may sometimes be technical, they
often reveal fundamental information about such universal objects as random and structured
matrices.

One of the aims of our work is to investigate further the relationship between random
matrices, Toeplitz and Hankel determinants and symmetric functions.

The main focus of this thesis is the study of minors of Toeplitz, Hankel and Toeplitz+Hankel
matrices. The aforementioned relationship extends naturally to this setting, as these minors can
also be expressed as random matrix models, and in terms of symmetric functions. In particular,
their matrix model expression includes the insertion of Schur polynomials in the integrand.

We draw inspiration from the work of Bump and Diaconis [50] concerning Toeplitz minors. In
particular, they expressed these as unitary matrix models, and proved a generalization of Szegd’s
theorem, describing their asymptotic behaviour. It turns out that, as long as the generating
function is sufficiently smooth, Toeplitz minors behave asymptotically as the corresponding
Toeplitz determinant times a combinatorial factor, independent of the size of the minor.

We will generalize these observations, make some new ones, and use the results of our
investigations to study related mathematical structures and physical theories.

1.2 Background

One motivation to study the minors of Toeplitz and ToeplitztHankel matrices, besides their
own mathematical interest, arises from the fact that these can be expressed as the “twisted”
integrals

| o Y (U Wy O (1.1)

where dU denotes Haar measure on one of the classical Lie groups
G(N) =U(N),Sp(2N),0(2N),O(2N + 1),

and the Xlé( N) (U) are the characters associated to the irreducible representations of these groups.
Minors of Toeplitz matrices have appeared explicitly in the literature before, often in relation
with symmetric functions and Schur polynomials; articles devoted to their study include [141]
186, 146, [64], 65, [8, 153]. However, besides the already mentioned work of Bump and Diaconis
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[50], none of them exploits the equivalent formulation of Toeplitz minors as matrix models given
by . These integrals represent a logical step forward in the study of matrix models other
than the more classical ensembles. Let us explain this in more detail.

First, recall the fact that integrals of the type , without the insertion of irreducible
characters, can be computed as determinants of Toeplitz and Toeplitz+Hankel matrices. Due
to the ubiquity of these matrices and the amount of applications in numerous branches of
mathematics and physicsEl7 many of their properties have been investigated and much is known
about their determinants. In particular, their asymptotic behaviour is now well understood,
thanks to the work of Szegé [181], Johansson [127] and Deift, Its and Krasovsky [67], among
many other authors. While the properties and formulas concerning these determinants are often
algebraic in nature, whenever the size of the matrix is finite (see for instance [62, B7], among
many others), the study of their asymptotic features relies heavily on analytical tools. Moreover,
qualitative differences in their behaviour arise depending on the analyticity of the function f in
(1.1). For instance, the results of [I27] make use of fine probabilistic estimations, and the work
[67] features an impressively thorough application of the Riemann-Hilbert methodology.

On the other hand, if the function f is chosen to be the identity in , then the integral
simplifies drastically. Due to the orthonormality of the characters, it vanishes unless the
partitions indexing the two characters coincide, in which case it evalues to 1. This fundamental
fact regarding characters associated to irreducible representations has been used extensively in
the study of random matrices, along the lines of the pioneering work of Diaconis and Shahshahani
[76]. As a consequence, the computation of correlations of algebraic functions on random
matrices over the classical groups can be reduced to sums over the trivial correlations of their
irreducible characters. In particular, the results in [50] are based on this fact, among other
Worksﬂ including [74), [49, 89]. This purely algebraic procedure is usually known as character
expansion.

The presence of both an arbitrary integrable function and character insertions in these
integrals, as in , leads naturally to the combination of both analytic and algebraic tools
in their study. This entails both a challenge and an opportunity, as a richer approach to more
complicated matrix models becomes available if the structure and properties of these integrals
are well understood.

In addition to the already mentioned works [76], 50], we are also inspired by the studies of
Baik and Rains [I8] and Bump and Gamburd [49], who perform a systematic analysis of integrals
over the classical groups with the aid of representation theoretical tools, in a spirit we adopt
and generalize in the present thesis. We find further motivation in the works of Borodin and
Okounkov [37] and Tracy and Widom [185], which discuss the interplay between the symmetric
function formulation of Toeplitz determinants and their realization as determinants generated
by actual functions, a central topic in this thesis. We also adopt partly the philosophy of Luque,
Vivo and coauthors [I45] 51] in their study of related matrix models, using symmetric function
expansions to provide a computational alternative to the analysis of matrix integrals.

We find worth mentioning the work of Ishikawa and collaborators, who have also studied
minors and minor summation formulas in relation to Schur polynomials and symmetric functions
in a series of articles [I18]-[123], also finding applications in random matrix theory (see for

“4See for instance the references in section 2 of [I98] for a sample of these, and [41] for an introductory monograph
on Toeplitz and Hankel matrices.
This feature is also rooted in the approach of Weingarten calculus to group integrals developed in [56].
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instance [I87]). Another topic intimately related to our work, which we feel deserves deeper
inspection, is the use of symmetric functions in the study of orthogonal polynomials. See [142]
111, 35}, 34] for some examples of this approach, among others.

Explicit expressions for the averages of Schur polynomials have been computed over several
random matrix ensembles, even if their realization as Toeplitz or Hankel minors was not explicitly
identified. These include averages over the Gaussian Unitary Ensemble [73], the Jacobi Unitary
Ensemble [130], the Stieltjes-Wigert ensemble [78] and the real [I77], complex and quaternionic
[92] Ginibre ensembles.

1.3 Motivations

Further reasons to study the minors of Toeplitz, Hankel and ToeplitztHankel matrices include
the following.

e Generalized matrix models. Schur polynomials form a basis in the ring of symmetric
functions and, unlike other distinguished basis in this ring, they do as a vector space.
Therefore, assuming it is possible to characterize the average of a Schur polynomial over
a given ensemble, one can then in principle compute general insertions in the model by
expressing these as sums over such averages. The same holds true for the irreducible
characters of the symplectic and orthogonal groups and the spaces of class functions over
these groups, which in particular are also symmetricﬁ

Although the above reasoning holds from a theoretical point of view, sometimes this
approach is not satisfactory at the practical level. Often matrix models of interest,
which can be identified with insertions in well understood ensembles, cannot be computed
explicitly. This may be because the insertion itself is complicated, because it poses
structural challenges, or simply because there is not an exact formula available for such
integral. Even in these cases, expanding the insertions in terms of symmetric functions
may be a useful tool, as the natural grading associated to Schur polynomials (by means
of the weight of the associated partition) often provides a simple way to identify the
higher order contributions to the sum on some of the parameters associated to the model,
see [84] for instance. Such expansions also offer the possibility to perform a computer
assisted analysis of the models, providing efficient implementations whenever the size of
the ensemble is small.

e Symmetric functions and combinatorics. The techniques of random matrix theory
can also be employed to investigate symmetric functions and to obtain explicit results
concerning these objects. This is due to the deeper relationship between matrices chosen at
random from the groups G(NN) with respect to Haar measure and the universal characters
associated to them in the ring of symmetric functions, a connection rooted in the common
framework of representation theory.

In addition to this, and in a more direct fashion, several quantities of combinatorial interest
have expressions in terms of Toeplitz or Toeplitz+-Hankel determinants and minors [I57].
For instance, the number of standard and semi-standard Young tableaux (respectively

50One might of course forget about the group theoretical origin of the ensembles considered and investigate
non-symmetric insertions. Also in this case, usually the symmetry of the density of Haar measure on the groups
G(N) allows an easy expression of such integrals in terms of the symmetrized insertions.
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symplectic and orthogonal tableaux) of some shape is given by a specialization of the
Schur polynomial (respectively symplectic and orthogonal Schur polynomial) indexed by
the corresponding partition [I58]. A richer example is given by the already reviewed
longest increasing subsequence problem, where the exponential specialization in the ring
of symmetric functions plays a central role. Further examples include nonintersecting
random walks [I10, 4] and Brownian motions [109], and enumeration of plane partitions
and rhombus tilings [54], among others.

Toeplitz minors also play a central role in the rich Schur process [163], which is a source
of applications to the study of probabilistic properties of random partitions and other
combinatorial objects.

e Gauge theory. Averages of Schur polynomials over random matrix ensembles also appear
in contemporary physical theories. In gauge theories with a matrix model description, these
correspond to non-local observables such as Wilson loops. The approach of symmetric
functions at the structural level is still underdeveloped in this context (see [156] [12]
nevertheless), but it is of particular interest. This is due to the fact that symmetric
functions provide a unified tool to study theories with any symmetry group G(N), while
the classical techniques are usually best suited for the unitary setting. Particularly relevant
for us is the case of Chern-Simons theory on S3, for which both the partition function
and Wilson loops are known and have been studied in detail for the unitary theory
[148] 78], while only the partition function in the large N regime has been computed
for the symplectic and orthogonal theories [176].

It is worth mentioning that the determinants of Toeplitz+Hankel matrices have many
applications in statistical mechanics problems and describe several physical properties of
a number of strongly correlated systems [33], starting with their appearance in the Ising
model [6§]. In such applications, the Toeplitz+Hankel case corresponds to open boundary
conditions, whereas Toeplitz determinants correspond to periodic boundary conditions
[60]. Although the study of minors is less developed, they appear in the same context as
the determinants, allowing the treatment of more general interaction patterns [32, [174].

e Orthogonal polynomials. Minors of Toeplitz and Hankel matrices also appear in the
well known connection between the determinants of these matrices and the theory of
orthogonal polynomials. Indeed, many quantities of interest for the orthogonal polynomials
with respect to a given weight function in the unit circle or the real line can be expressed
in terms of minors of the Toeplitz or Hankel matrix generated by this function, including
the coeflicients of the polynomials themselves, the coefficients in the three-term recurrence
relations or the Christoffel-Darboux kernel, for instance.

e Relations between unitary, orthogonal and symplectic matrix ensembles.
Matrix integrals over the unitary group have attracted much more attention in the
literature than their symplectic and orthogonal counterparts. Despite some recent
advances on the topic, where some classical results known for Toeplitz matrices have been
generalized to the Toeplitz+Hankel case (see for instance [127, [67, 82, 90, B30]), much
fewer works are concerned with the relation between ensembles with different symmetries,
as in [91], 54]. Finding examples of such connections is a topic of interest, particularly for
the reviewed applications in gauge theory and combinatorics, as they provide relations
between objects with different underlying symmetries.
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e Representation theory. While we have not adopted this perspective in the present
work, we feel that the study of integrals of the type may be valuable from the point
of view of representation theory. Indeed, these integrals may be understood as deformed
inner products in the space of class functions on the groups G(IN). This provides a natural
generalization of a basic tool in character theory, which we believe is worth investigating.
Furthermore, the equivalent expressions of the integrals in terms of symmetric functions
may also yield information concerning the irreducible representations of the groups G(N).

Another topic which could benefit from this connection is the representation theory of
the infinite symmetric group and the infinite dimensional versions of the classical groups
G(N). Relevant objects for these groups, such as extreme characters, can be approximated
by their finite dimensional analogues, see for instance [38, [59]. It is then natural to wonder
if the well developed study of the asymptotic behaviour of random matrix ensembles can
be exploited in this context, by means of the equivalent expressions of the matrix models
in terms of symmetric functions. It is also worth noting that this kind of advances
have numerous applications in related topics [108] [48].

1.4 Plan for the thesis

We outline now the structure of the remainder of the thesis. We adopt here a general point of
view and refer the reader to the short summaries included at the beginning of each chapter for
more detailed descriptions of their contents.

Chapter 2 is concerned with the study of Toeplitz minors, which correspond to the unitary
case of the integral , and serves as a demonstration of the approach we later adopt for the
rest of the groups G(N). In particular, we introduce a key notion, which is that of matrices
generated by formal expressions in terms of symmetric functions. Exploiting this idea at the
structural level, rather than using symmetric functions as a tool in the study of matrix models,
we obtain a deeper understanding of the objects involved in this connection.

Our main application involves semi-banded Toeplitz matrices, which are especially suited to
this approach. This, in addition to the richer structure present in the unitary case, allows a
fruitful investigation of some properties of skew Schur polynomials.

In chapter 3 we develop the analogous formalism for the case of Toeplitzt+Hankel matrices,
which correspond to the symplectic and orthogonal groups. A second key concept is displayed
here, which is the fact that the use of symmetric functions allows a unified approach in the study
of the matrix integrals for any of the groups G(N). This allows investigation of analogous
features of four families of objects, those associated to each of the groups G(N), in the same
conceptual framework.

Once the results from chapter 2 have been established, their analogues in this setting follow
using similar reasonings. We therefore turn to examining relations between matrix models with
different underlying symmetries. We have found this to be an attractive but underdeveloped
topic. A third key idea results of particular interest here, which is the fact that the equivalence
between matrix models, symmetric functions and minors of structured matrices is also profitable
at a practical level, and not just a piece of isolated theory. Indeed, once a feature concerning
one of the objects in this connection has been established, usually using the properties intrinsic
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to that object, it may be translated into a statement regarding the rest of the items in the
connection, which may not have been obvious in their separate contexts.

We then concentrate into the study of the exactly solvable ensemble corresponding to Jacobi’s
third theta function, which models Chern-Simons theory on the three-sphere. This serves as an
opportunity to exploit the results and showcase the philosophy of the thesis. We use the various
techniques developed and equivalent formulations of the model to analyze it in various regimes.
We also approach fermion quantum models with matrix degrees of freedom by reducing their
study to the Chern-Simons model, demonstrating how the ideas and features developed in the
thesis might be of use at a practical level.

Lastly, we address the case of Hankel minors in chapter 4. We explore their relation with the
theory of orthogonal polynomials, a topic we believe deserves further investigation. We focus
on a particular example: the insertion of a characteristic polynomial in the Laguerre Unitary
Ensemble. After providing tools for the study of the model in the finite regime, we pose and
solve the associated Riemann-Hilbert problem to obtain its large N behaviour. While analogous
problems have been considered in the literature from this perspective, we choose to employ
this approach due to the prominence and reach of the Riemann-Hilbert methodology in modern
random matrix theory, and in particular in some of the topics covered in this thesis.

We have chosen to prioritize clarity in the exposition and attempt to deliver a fluent
presentation of our results. For ease of reading, let us briefly remark the main original
contributions of our work. All the numbered theorems and corollaries in the text are new
to the best of our knowledge, and comparisons with the existing literature are provided
where appropriate. In addition to these, we obtain novel expressions for Toeplitz minors
,, inverses of Toeplitz matrices , and the biorthogonal polynomials with
respect to a given function on the unit circle in terms of symmetric functions. We also
provide explicit expressions of some specializations of certain skew Schur polynomials (as well
as their asymptotic behaviour) (2.43),(2.44),(2.48)),(2.52)),(2.64)),(2.65)),(2.67),(2.68) and of the
biorthogonal polynomials with respect to truncated theta functions ,, which we have
not been able to find in the literature. Moreover, we compute the Hopf links of Chern-Simons

theory on S% with G(N) symmetry (3.62)-(3.65)).







Chapter 2

Toeplitz minors and specializations
of skew Schur polynomials

Chapter summary

We introduce the formalism of Toeplitz minors and explain their relation with unitary integrals.
After reviewing some results on symmetric functions, we express such minors in terms of
skew Schur polynomials, and obtain their asymptotic behaviour in terms of the associated
Toeplitz determinants. We then characterize a class of Toeplitz minors for which an exact
asymptotic expression can be obtained, and a class of Toeplitz minors that can be realized
as the specialization of a single skew Schur polynomial. We compute the inverses of several
Toeplitz matrices, using Chebyshev polynomials, the Duduchava-Roch formula and the kernel
associated to two sets of biorthogonal polynomials on the unit circle. Comparing our formulas on
Toeplitz minors with these inverses, we obtain explicit evaluations of a Selberg-Morris integral
and for specializations of certain skew Schur polynomials. Finally, we use Laplace expansion on
a Toeplitz determinant to obtain a set of relations satisfied by skew Schur poynomialsﬂ

2.1 Preliminaries

2.1.1 Toeplitz minors

Let f(e?) = Y okez die’*® be an integrable function on the unit circle. The Toeplitz matrix
generated by f is the matrix

do d_i d_o
dy do d_,

T(f) = (dj—k)jr>1 =
IR dy dy dy

"The content of this chapter is based on the preprint [I05]. Some results that can be found here but not in
[105] include corollary [2] the computations involving the pentadiagonal Toeplitz matrix in section [2.3.1] identity

and theorems [2| and
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That is, T'(f) is an infinite matrix, constant along its diagonals, which entries are the Fourier
coefficients of the function f, given by

1 21

d — — —ik6 i6 d6. 2.1
A f(e”) (2.1)

We denote by T (f) its principal submatrix of order N, and its determinant by

Dy(f) = det Tn(f).

We record the statement and a proof of the classical Andréief’s identity, a central result in
random matrix theory, as it will play a significant role in the following.

Lemma (Andréief, [9]). Let g1,...,9n and hi,...,hx be integrable functions on a measure
space (X,0). Then,

N N
1
i /X | det (95(2k)) Nomy det (R(2)) 1oy T dor(zr) = det < /X gj(z)hk(z)da(z)) . (22
k=1 Jk=1
Proof. Expanding the second determinant in the left hand side above we see that
N
N N
[ det g5y det (s () [[arte
N
= Z sgn(w)/ det (g;(z1))™ k= 1Hh7r(k) 2, H
TESN XN — k=1
fiGz0)gr) (1) f1(22)dr2)(22)  --o f1(an)gn(v)(TN)
N
21)9x(1) (2 29)Gr(2) (2 ZN)Ge(N) (T
_y Sgn(ﬂ)/ dot fa( 1)9. @(z1)  faol 2)9. 2)(22) fa( N)g.(N)( N) 11
XN . . .
TeESN . . . _
IN(21)9r)(21) [N (22)gr2)(22) - fn(2N)grv)(zN)
N N
= Z sgn () det </ fi(2)gr i) (z)da(z)) = Nldet (/ gj(z)hk(z)da(z)> ,
TESN X Jk=1 X jk=1
which is precisely the desired conclusion. O

Choosing as measure do () = 5= f(e??)df on [0,27) in this identity, where df is the usual
Lebesgue measure on this interval, and setting g;(z) = h;j(z~ Y =2N=Jfor j=1,..., N, where

z = €' one obtains the following integral representation for the Toeplitz determinant of size N

2 27
ox =iy [ [ II " "’kIQHf ) (23)

1<j<k<N

Note that the first product in the integral above is the square modulus of the usual Vandermonde
determinant on the points €. This is known as Heine, or Heine-Szegd identity.

Toeplitz determinants can also be expressed as integrals over the group of unitary matrices
U(N), a fact of particular interest from the point of view of random matrix theory. Given a
function f on the unit circle, we define, for any U € U(N), the function

N .
=T 1), (2.4)

j=1
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where the €% are the eigenvalues of U. Using Weyl’s integral formula [195], 103], one can reduce
integrals over U(NN) with respect to Haar measure to integrals over the subset of diagonal
matrices, as these form a maximal torus in the group, which coincide precisely with the right
hand side of . This leads to the expression

where dU denotes the normalized Haar measure on U(N). That is, given a function f on the
unit circle, the Toeplitz determinant of size N generated by this function coincides with the
integral over the group of unitary matrices of size N of the function f(U). In particular, the
study of the matrix model and its large N behaviour for different choices of f can be
utilized to investigate the statistical properties of random unitary matrices, see for instance [75].

A Toeplitz minor is a minor of a Toeplitz matrix, obtained by striking a finite number of
rows and columns from a Toeplitz matrix of finite size. Any particular striking can be encoded
in a pair of integer partitions A\ and p (see section for more details and some basic facts on
partitions), and thus one can see that any Toeplitz minor can be realized as the determinant of
a matrix of the form

TN () = (dj-x; ) N (2.5)

We denote the minor itself by
DYM(f) = det TR™(f).

Choosing A and p to be empty partitions above we recover a Toeplitz determinant of size N.
Setting h;(2) = 2N 77N and g (2) = 2~V F+e) in Andreiéf’s identity and using (2.10)), we see
that Toeplitz minors also have an integral representation [50]

DNM(f) :/ s\(U™1)s,(U) f(U)dU = (2.6)
U(N)
11 /27r /27T —i0 —if 0 i0 s 0, 0, il 2
— sx(e7™ e N s (e L e L f(eT) |e — ek |*db;...dOy,
N' (27T)N 0 0 " Jl;[l 1<j1<—£<N

where sy, s, are Schur polynomialsﬂ We see that symmetric functions are present already in
the elementary procedure of choosing a minor from a Toeplitz matrix. Let us review some basic
facts about such functions before delving into this relationship.

2.1.2 Symmetric functions

We recall some basic results involving symmetric functions that can be found in [147, [I7§], for
example. We denote z = ¢ in the following, and treat z as a formal variable. A partition
A = (A1,..., ;) is a finite and non-increasing sequence of positive integers. The number of
nonzero entries is called the length of the partition and is denoted by I(\), and the sum |\| =
A1+ -+ Ny is called the weight of the partition. The entry A; is understood to be zero
whenever the index j is greater than the length of the partition. The notation (a’) stands for

8We abuse notation here; we assume it is clear when the expression f(U) should be read as [] i f (€' (i.e.

when f is a function on the unit circle) and when it should be read as f(e**,...,e" ™) (i.e. when f is a symmetric

function in several variables). See the next section for definitions and basic facts concerning Schur polynomials.
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the partition with exactly b nonzero entries, all equal to a. A partition can be represented as a
Young diagram, by placing A; left-justified boxes in the j-th row of the diagram. The conjugate
partition )\ is then obtained as the partition which diagram has as rows the columns of the
diagram of X\ (see figure for an example).

|

Figure 2.1: The partition (3,2,2) and its conjugate (3,3, 1).

Lemma (See 1.7 in [I47], for instance). Let X be a partition satisfying l(A\) < N and \; < K
(that is, such that its Young diagram is contained in the rectangular shape (K™)). Then, the
N + K numbers

{K+j—)\j}_§y=1U{)\_/]'+K+1_j}§(=1 (2.7)
are a permutation of {1,2,...,N + K}.

Some inspection shows that increasing sequences of N integers are in correspondence with

arrays of the form (j—\;)¥_;, where A is a partition of length not greater than N. Therefore, any

A
particular choice of rows Jand columns from a Toeplitz matrix to form a minor can be encoded
in a pair of partitions, by means of equation . The following procedure describes how to
obtain this minor from the underlying Toeplitz matrix T'(f). We assume in the following that
the length of the partitions A and p is less than or equal to IV, the size of the minor under

consideration.

e Strike the first [\; — 1] columns or rows of Ty max (A, 11} (f), depending on whether A1 — iy
is greater or smaller than zero, respectively.

e Keep the first row of the matrix, and strike the next Ay — Ao rows. Keep the next row,
and strike the next Ay — A3 rows. Continue until striking Ajx) — Aa)41 = Aj(n) TOWS.

e Repeat the previous step on the columns of the matrix with u in place of A\. The resulting
matrix is precisely Ta(f), as defined in (2.5).

Let x = (z1,x9,...) be a set of variables. Let us identify several distinguished families of
generators of the ring of symmetric functions in the variables x, which will be useful in the
following. The power-sum symmetric polynomials p;, are given by pp(z) = o¥ + 25 + ... for
every k > 1, and po(z) = 1. The elementary symmetric polynomials ei(z) and the complete
homogeneous polynomials hi(x) are

hi(z) = Z Tiy « o Tiys ex(x) = Z Tiy .. Ty (2.8)
i1 <<, 1< <,
We also set pi(z) = hi(x) = ex(z) = 0 for negative k, and we set empty sums to 1. These
families of functions are related by the identities

H(z;z) = ihk(m)zk = exp <i pk]ix)zk> = ﬁ . ! ,
k=0 k=1 T

=1

E(z;2) =Y exp(z)zF =exp (Z(—l)kﬂpklix)zk> = H(l +z;2).

k=1

(2.9)

j=1
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The families (hg(z)) and (eg(z)), where k > 0, consist of algebraically independent functions.
Moreover, each of the families form a complete set of generators of the ring of symmetric functions
in . Hence, we will see H and F as arbitrary functions on the unit circle depending on the
parameters x, and we will use indistinctly their infinite product expression. Note that these two
functions satisfy H(x;z)E(x;—z) = 1.

Another distinguished family of symmetric functions is that of Schur polynomials. These
form a basis for the ring of symmetric functions, as a vector space, and are indexed by partitions.
Among their several equivalent definitions, the classical Jacobi-Trudi identities express Schur
polynomials as Toeplitz minors generated by the functions H and F

(1) = det (i (1) Ny = DI (H(32)),
(@) = det (e gy (1)) Ny = DI (B(w52))
where p verifies [(1) < N (resp. I(¢') < N) in the first (resp. second) identity, and & denotes

the empty partition. If the set of variables is finite, say = (x1,...,2x), one can also define
the Schur polynomial indexed by p as

N k+
det () TFHHN |

su(x1,...,oN) = s , (2.10)
det( z; )é.\fk:l
where we set s,(z1,...,2n5) = 0if [(x) > N. Note that the denominator in the above formula

is actually the Vandermonde determinant on the variables x, while the determinant in the
numerator is a minor of the Vandermonde matrix. In particular, the integral formula can
be deduced from this fact and Andréief’s identity. Using L’Hopital’s rule in one can
deduce the identity
W™ = g I Gw—msk=i) (2.11)
1<j<k<N

which holds for any N > [(u), where G is the Barnes function.

Given two partitions A and p, the symmetric function sy(z)s,(z) can be expanded in the
basis of Schur polynomials; we write this decomposition as

x) = ZCKuSV(x)' (2.12)

The coefficients cKM are known as Littlewood-Richardson coefficients. Skew Schur polynomials
are defined by the expansion
Sua(@) =)\ su(x). (2.13)
14

Skew Schur polynomials can also be expressed as Toeplitz minors generated by the functions H
and F

sua(@) = DY (H(w:2)), sy (@) = DY'(B(x;2)), (2.14)
where (@), (i) < N respectively. A skew Schur polynomial vanishes if A € p; this can be seen
as a consequence of its Toeplitz minor representation and the fact that the Toeplitz matrices
generated by H and F are triangular. A central result in the theory of symmetric functions is
the Cauchy identity, and its dual form

; su()sy ]Hl H

1—xz; yk

> su(@)se(y) = [T 1T+ zjme).

j=1k=1
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where y = (y1,y2,...) is another set of variables and the sums run over all partitions v.

Gessel [107] obtained the following expression for the Toeplitz determinant generated by the
function f(z) = H(y; 2z 1) H(z; 2)

k=t i=1 IW)<N

where the sum runs over all partitions v of length [(v) < N. If one of the sets of variables z or
y is finite, say y = (y1,...,yq), comparing the right hand side above with the sum in Cauchy
identity and recalling that the Schur polynomial s, (yi, ..., yq) vanishes if I(v) > d one obtains a
well known identity of Baxter [27]

d

1 < d oo
Dy Hl_ykz_lgl_w = 1111 (2.16)

L1 =y
k=1 k=1 j=1

valid when N > d. Note that the right hand side above is independent of N. An analogous
identity follows if the factor H(x;z) is replaced by FE(z;z), using the dual Cauchy identity
instead. However, no such identity is available for Toeplitz determinants generated by functions
of the type E(y; 2~ 1) E(z; 2); this will be relevant later.

All the above identities should be regarded as formal identities in the ring of symmetric
functions. In the following, we will sometimes specialize the variables = (or any set of generators
in this ring) to obtain actual identities for particular functions, or, equivalently, for particular
matrix models.

Given a partition A satisfying [(A\) < N and A\; < K (that is, A € (K")), we define a new
partition by
LgnA\) = (K = Ay, ..., K — X)) = (KV) =\, (2.17)

where A" denotes the “reversed” array (An,...,A1). That is, Lg y(A) is the partition that
results from rotating 180° the complement of ) in the rectangular shape (K%); see figure
for an example. We see that the following relation holds

LienO\) = (Lyg (V)

Figure 2.2: The partition A = (4,4, 1) and the partition Lg¢4(\) = (6,5, 2, 2).

Lemma. Let \ be a partition verifying X\ C (K™V) (that is, I(\) < N and \y < K ). We have
N
ENC TR g = SLin()(@15- -, TN) H :cj_K. (2.18)
j=1
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A proof follows from direct manipulations in (2.10), for instance. In sight of the integral
representation (2.6)), we obtain as a consequence the identity

L L n(
Dx#(f) _ DNK,N(#) KN ( )’ (2.19)

which holds for any K satisfying max (A1, p1) < K.

2.1.3 Asymptotic behaviour of Toeplitz determinants and minors generated
by smooth functions.

We record now precise statements of the strong Szegd limit theorem and of its generalization to
Toeplitz minors due to Bump and Diaconis.

Theorem (Szegd). Let f(e) = 3,7 die™™® be a function on the unit circle, and suppose it
can be expressed as f(e') = exp(3 oy cke™), where the coefficients ¢y verify

D el <00, ) |k[lex]? < o (2.20)

kEeZ keZ

Let us assume, moreover, that co = 0, without loss of generality. Then,

A}gnoo Dn(f) = exp <; kckck> :

Note that, after dividing the Toeplitz determinant Dy (f) by eV (that is, multiplying the
function f by a constant), one can always assume that the coefficient ¢y vanishes. We will
therefore assume in the following that ¢y = 0 for all the functions involved, unless specified
otherwise.

A function f satisfying the hypotheses of this theorem is continuous, nonzero, and has
winding number zero [41]. Under these same conditions, the following theorem holds [50].

Theorem (Bump, Diaconis). Let f verify the hypotheses in the previous theorem, and suppose
A and p are partitions of weights n and m respectively. Then, as N — oo

Jim DY(f) = (ngnoo DN<f>) ST A A 6 ), (2.21)

dFn YEm

where the sum runs over all the partitions ¢ of n and ¢ of m, the terms 24,2y are the orders
of the centralizers of the equivalence classes of the symmetric groups Sn, Sm indexed by ¢ and i
respectively, the functions x», x* are the characters associated to the irreducible representations
of S and Sy, indexed by A and p respectively, and

AlF. 6) ﬁ e ¢ A L) (—kee_y), if g > my,
e i) kmkczﬁbk—nknk!l}%jkfnk)(—k:ckc_k), if mp < my '

Above, the coefficients ny, my correspond to the partitions ¢ = (1™12"2...) and ¢ = (1™2™2 )
(@)

in their frequency notation, and the Ly’ are Laguerre polynomials [187).

Note that the product in the factor A(f, ¢,v) is actually finite, since only a finite number
of ng’s and my’s are distinct from zero for each pair ¢,1. We see that in the N — oo limit the
Toeplitz minor generated by a regular symbol factors as the corresponding Toeplitz determinant
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. pY . A
M u [limyoe DY (/DnG) [ X[ 5 [limyse DN'(F)/Dn(f)
(%) Od cl o | %C% + 2
7| g 32 —co @ | oo %c? +cieo +c3
6] ﬂ %c‘% —cic2 +c3 6] EH %c‘f —ci1c3 + c%

. A
A p | limyoe DY(S)/Dn(S)
B %02_10% +c_1c1 — %c_gc% — %02_102 +c_9co +1

1 1
11 66*16:{) + 56% +c_1c1c0 + 9+ c_1c3

O M

Table 2.1: Some values of the formula (2.21]).

times a sum depending only on f and the partitions A, 4 (and not on N). The formula
can be implemented easily in a computer algebra system, leading to efficient evaluations for
partitions of small weights. Table shows some of these values for particular choices of A\ and
1h.

An equivalent expression for the sum in the right hand side of was obtained by Tracy
and Widom [I86], and these were later compared by Dehaye in [65] in terms of symmetric
functions. Further generalizations of this formula were given in [64], [146] by Dehaye and Lyons,
respectively.

2.2 Toeplitz minors generated by symmetric functions

We turn to the computation of an equivalent formulation of the asymptotic formula . We
start by proving a general result for the case of Toeplitz minors generated by formal power series,
and then show how it implies an analogous result for minors generated by functions satisfying
the hypotheses in Szegd’s theorem.

Theorem 1. Let x,y be some sets of variables, and consider the function
f(z) = H(x;2)H(y; 27 1),

where H is given by (2.9). Then, for any two fized partitions A and p we have

Jim DY) = (i () S sl (2.22)

Note that we understand f as a formal Laurent power series whose coefficients are symmetric
functions on x and y, and thus the convergence above is in the algebra of formal power series.

Proof. First, we note that the limit limy_,oo Dn(f) in the right hand side of (2.22)) is well
defined as a formal expression, since by the identities of Gessel and Cauchy we have

lim Dy(f)= lim 3 su(@)s,(y) = HHl (2.23)

N— N— 1— 2y,
> <N =1 k=1 7Yk
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If R, S are two strictly increasing sequences of natural numbers, we denote by detg s M the
minor of the matrix M obtained by taking the rows and columns of M indexed by R and S,
respectively. Now, we start from identity (2.19)), for notational convenience, and obtain

D]){,’“(f) _ D][\/[K,N(N)vLK,N(A) _ %e;g T(f),

where the sequences R, S are given by R = (rj)é-vzl =(j+ /LN_H_j)é-V:l and S = (sp) | =
(k + )\Nﬂ,k)]kvzl. Since the Toeplitz matrices generated by each of the factors of f verify
T(f(2)) = T(H(y;2~1))T(H(z;2)), the use of Cauchy-Binet formula gives

detT ZdetT y: 27 ) det T'(H (x; 2)), (2.24)

where the summation is over all the strictly increasing sequences T = (t1,...,tx) of length N of
positive integersﬂ There is a correspondence between such sequences and partitions v of length
I(v) < N, given by vn41-j =t; — j, for j =1,..., N. Thus, for each T" we have

(%est T(H(.’E, Z)) = det(h’tj_sk (1‘))5\7[]{:1 = det(hj+VN+1_j—k—)\N+1_k)(x))j'\,[IC:l‘

Reversing the order of its rows and columns, we see that the last determinant above is
DJ){,’V(H (75 2)). According to (2.14)) this is precisely the skew Schur polynomial s, /5(7), and an
analogous derivation yields detgpp T(H(y; 27 1)) = s,/,(y). We thus obtainm

DN'(f)= Y s,uW)su(@). (2.25)

I(v)<N

Combining this with the following identity between Schur and skew Schur polynomials (see e.g.
Ex. 1.5.26 in [147])

ZSV/M( V/)\ ZSH ZS)\/V M/V ) (226)

where the sums run over all partitions, we arrive at the desired conclusion, upon identification
of the first sum in the right hand side above with the large N limit of the Toeplitz determinant
generated by f. O

An analogous reasoning shows that identity (2.22]) holds also for functions of the form

f(z) = B(x;2)E(y; 27,

after taking the conjugate of all the partitions indexing the skew Schur polynomials in the right
hand side of .

Let us emphasize that the theorem is to be understood as an identity among symmetric
functions. However, as usual in this context, one can specialize an algebraically independent
family of symmetric functions to any given sequence of, say, real or complex numbers, and
extend to an identity involving more general Toeplitz matrices, as long as the formal
manipulations are justified after this specialization (see [178| [I85] 18] for examples of this).

9We are actually using an infinite dimensional generalization of the Cauchy-Binet formula, as the one that
appears in [I85]. This is allowed since the sum in the right hand side is well defined as a formal expression.
'0This type of formula also appears in the transition weights of the Schur process [163].
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Let us consider, for instance, a function f that satisfies the regularity conditions in Szegd’s
theorem. That is, assume f(e?) = exp (3, cxe™?), where the coefficients ¢ satisfy the decay
conditions . Then, assuming that cy = 0 without loss of generality, we can write f(e¥) =
() f~(e"?), where

(") = exp <Z ckei’w) = 1+ZdZeik9, (") = exp (Z ckeik9> = 1+Zd;e*ik9.

k>0 k>1 k<0 k>1
(2.27)

Now, recall that the complete homogeneous symmetric polynomials are a complete set of
algebraically independent generators of the ring of symmetric functions. Thus, we can consider
the specializations

hi(e) = df,  hly) = dy  (k>0),

on theorem [1|to recover the function f from the formal power series H(x;2)H (y; 2~'). Note also
that the specialization of the skew Schur polynomials in the theorem can be defined in terms of
the Fourier coefficients d,‘f, d, by means of the Jacobi-Trudi identities, so that the right hand
side in is well defined (the sum is actually finite for any fixed pair of partitions A and pu).
Therefore, we can rephrase theorem 1 as follows.

Corollary 1. Let f(e") = exp (Y., cxe™™®), where the ¢ satisfy the conditions ([2.20)), and
assume moreover that co = 0, without loss of generality. Define f* and f~ as in (2.27), and
assume that these functions are square integrable. Then,

lim D])Q;’u(f) = exp (Z k0k0k> ZSA/V(d_)SM/V(dJ'_), (2.28)
k=1 v

N—o0

where the convergence is now the usual convergence in C, and we have denoted by 8/\/V(di) the
determinants
)max (I(N),l(v))

53/ (dE) = det (d?—“

. : (2:29)

jk=1

in terms of the Fourier coefficients of f*.

Similar examples where an algebraic result concerning Toeplitz determinants generated by
formal Laurent series is seen to be equivalent to an analytic one for functions satisfying the
hypothesis in Szeg6’s theorelﬂ can be found in [I85] B7], for instance. As in theorem , an
analogous result holds if one considers the specializations ey (z) — d; and ey(y) — d,, instead,

transposing the partitions in (2.28]).

We have assumed in the above discussion that f verifies the hypotheses in Szeg6’s theorem.
This was necessary in order for the limit limy_,oo Dn(f) to be finite, so that the formal
manipulations in theorem [I| are justified. Numerical experiments suggest however that theorem
holds for more general functions for which this limit is not finite, such as functions with
Fisher-Hartwig singularities. It follows from a result of Lyons, see theorem 3.1 in [146], that
this is indeed true for the case of Toeplitz matrices generated by positive valued functions (as
is the case, for instance, of pure Fisher-Hartwig singularities with zeros or poles, see section

1We have assumed in addition that the functions f* are square integrable, so that the use of the infinite
dimensional generalization of the Cauchy-Binet formula [I8F] is still valid.
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2.3.2)). However, we have been unable to extend this result to the most general case of arbitrary
functions with Fisher-Hartwig singularities.

We conclude this section showing that exact formulas are available whenever the function
f can be obtained as a specialization with a finite number of nonzero variables. There are two
possibilities:

e Case 1: There is a factor of the type H specialized to a finite set of variables. Suppose
that f is of the form f(z) = H(y1,...,yq; 2 ')H(x;2). Then, in the same fashion as in
Baxter’s identity ([2.16)), the corresponding Toeplitz minor (2.25)) stabilizes and we obtain
the formula

d

1
D]);;H H 1 _ykz_l H 1—xjz H H 1 — 2jyk ZS/\/V Sufv(2), (2.30)

k=1 k=1j=1

which holds for every N > d. An analogous result holds for symbols of the type f(z) =
H(yy, .- ya; 2 1) E(x; 2).

e Case 2: There is a factor of the type E specialized to a finite set of variables. We assume,
without loss of generality, that f is of the form f(z) = E(y1,...,y4;2 ) E(x;2). As
mentioned above, no N-independent formula is available for these symbols. However, the
Fourier coeflicients of this function are

f(z) = H(l +yz7 ) H(l + zjz) = Z Hyj eark(yr - yg )2, (2.31)
J=1 Jj=1 k=—d \j=1
and therefore it follows from (2.14) that
A — —_
DN (E(yy, - ya; 2~ ) E( (H yk) @)y W g ). (2.32)

We see that in this case the Toeplitz minor can be expressed essentially as the specialization
of a single skew Schur polymomiallE7 indexed by shapes of the type depicted in figure
This fact will have several consequences, and we will use the function as a running
example in the following. The case A = y = @ of was first obtained in [58], see also
theorem and the subsequent discussion. An analogous identity has also been obtained [§]
for the case f(z) = E(y1,...,yq;2 ). Comparing with the analogous of equation
for this symbol we see that coincides with

Z su/u’(yh ety yd)sy/)\’ ($),

vC(N%)

where the (finite) sum runs over all partitions v satisfying [(v) < N and v; < d.

120f course, in sight of identities (2.14), any Toeplitz minor can be expressed as the specialization of a single
skew Schur polynomial, with an adequate specialization and partitions A and p. The main feature of identity
([2-32) is that the only dependance on N of the skew Schur polynomial is via the rectangular shape (d").
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Figure 2.3: The shape ((d"V) + u/)\), for N = 6,d =4, u = (3,2,1,1) and X = (2,2,2,1).

Corollary 2. Let X be a partition of length () < d, and let p be any partition. The following
tdentities hold

A sovay () = (A}i_f)noos(zvd)(fﬂ)> sx(zy! . xg ),

Am S(N oo N i) () = (A}gnoo S(Nd)(ﬂ?)> Su(Tdr1, T2, - - )-

Note that due to the well known fact that the skew Schur polynomial indexed by a partition
coincides with that indexed by the partition rotated 180° [168], the polynomial in the left hand
side of the first identity in the corollary coincides with sz, (z)-

Proof. First of all, observe that due to the condition on A and the fact that p is a fixed partition
that does not depend on N, the skew Schur and Schur polynomials in the left hand sides above
are well defined for large enough V.

Now, let x = (z1,x9,...) be a set of variables, and consider the function

f(z) = E(:I}l_l, Ty ;z_l)E(wd+1,xd+2, c2).

The first and second identities result then from combining the case 4 = @ and A = & respectively
of theorem [I] to the Toeplitz determinants and minors generated by f, in sight of their equivalent
representation as Schur and skew Schur polynomials (2.32]). O

An analogous result is available for the general case of theorem 1}, where both of the partitions
A and g are nonempty in (2.32]).

2.3 Inverses of Toeplitz matrices and skew Schur polynomials

In the remaining of this chapter, we adapt classical results from linear algebra to the case of
Toeplitz matrices, and exploit the formulation in terms of symmetric functions to obtain some
new results and explicit evaluations of the objects under study.

The usual formula for the inversion of a matrix in terms of its cofactors reads as follows for
the case of Toeplitz matrices

(2.33)
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Hence, whenever the inverse of a Toeplitz matrix is known explicitly, formula (2.33)) gives explicit
evaluations of the formulas appearing in section For instance, if the function f is of the
form f(z) = H(y1,...,yq; 2~ 1) H(x; 2), then it follows from (2.30)) that for N — 1 > d we have

TN (H Wy o yaiz DH(z52)) =

1 —e1(y) e2(y)
—e1(v) L+ ei(z)er(y) —(e1(y) + e1(w)ea(y))
ea(r) —(e1(z) +e2(w)er(y)) 1+ er(w)er(y) + ea(w)ea(y)

We focus on functions of the form f(z) = E(y1,...,yq; 2 1) E(z; 2), and exploit the fact that
the Toeplitz minor in the right hand side of (2.33) has several expressions: in terms of the
inverse of the corresponding Toeplitz matrix

DY (f) = (1 Dy (N (T () (2:34)

as a specialization of a skew Schur polynomial ([2.32])

d
o
DE& M () = SN N )WL Y T) Hy,{\a (2.35)
Y r—1
and as the multiple integral
Dy () = (2.36)
2 2w N
N @n)¥ / / (7, e N)ej (e, ., e H II 1% — € |?db...dbn,
7T j=1 l<j<k§N

where e}, ej, are elementary symmetric polynomials (2.9)) (we assume in the three last identities
that N > 1 and 0 < j,k < N). Moreover, theorem || ! gives the asymptotic behaviour

min (j,k)

lim Dy )<f)=(ngnooDN ) Z hi—r (9 (). (2.37)

N—o0

Note that the partitions indexing the sum in (2.22)) are now conjugatedﬂ

Comparing (2.34]) and - we obtain

T (EW, - ya; Z_l)E(w; 2)) = (2.39)

—hx) —s@(y_,x) sﬁ(y ,XT) .. :I:SE (y~ 1, x)

Dn(f) : :
L) s oy ha) ... s (y= 1 2)

[ [
L LT

13Direct comparison between formulas (2.33)) and (2.37) yields the identity

min (j,k)

ngnoo(TN (Nt = (073" hier(@)hy—r (@) (2.38)

This follows also from the fact that the Toeplitz matrix generated by [ satisfies Tn(f) =
Tnsoo(B(y; 27 ) Toox v (E(z; 2)). Therefore, as N — oo, we have T~ (f) = T (E(z;2))T *(E(y; 2~ ), and
the (j 4+ 1,k + 1)-th entry of this matrix is precisely the right hand side of (2.38).
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where the diagram indexing the Schur polynomial in the first entry of the matrix is indexed by
the partition (N —1)?, and we remove a box from its first row or add a box to the last (empty)
row as we move to the right or downwards along the entries of the matrix, respectively. The
signs of the last row and column should be read as + = (—=1)V*! and ¥ = (—1)%, and the
notation (y~!, x) stands for the specialization (yl_l, ... ,y;l, x).

Let us remark that, as shown by these examples, the symmetric function approach may
uncover hidden structure behind the Toeplitz determinants and minors generated by a given
function. This allows investigation of some properties of Toeplitz matrices, providing new results
(see for instance [76] [18, [74]) and new proofs of already known ones (as in [50, [49], for example).
For example, Day’s well known formula on Toeplitz determinants [62] can be deduced from
basic properties of symmetric functions and the Toeplitz determinant and minor formulation,
as shown in [49], as is also the case with the classical formulas of Baxter and Schmidt [28§].

In the following, we recall some known explicit inverses of Toeplitz matrices and compute
another two in order to obtain evaluations for the Toeplitz minor . Comparing these with
equations and we will obtain explicit formulas for the corresponding skew Schur
polynomials and multiple integrals, as well as their asymptotics. We assume in the following
invertibility of all the matrices involved.

2.3.1 Tridiagonal and pentadiagonal Toeplitz matrices

A simple example is given by the Toeplitz matrix generated by the function f(z) =
E(y;2~Y)E(x; 2), where 2 and y are single (nonzero) variables

1+a2y ]
Tn(E(y; 2 V) E(x;2)) = x l+zy . ]. (2.40)

The inverse of a tridiagonal Toeplitz matrix has an expression in terms of Chebyshev polynomials
of the second kind [I81]. These are defined by the recurrence relation

{Um(z) = 2:Uj(2) = Uja(2) (> 1),
U(](Z) = 1, Ul(Z) = 2z.

The determinant of the matrix (2.40)) is then given by [88]

xy)NHL — x
DN ) B) = Pt @) (=) e
and its inverse by
. k—j U;_ (C)UN,]C(C) .
(—1)th s (j < k).
(T (Ely; 2 VE(2;2))) 4 = (xy)(k._k+l)/2 Unle) (2.42)
A Ur-1(c)Un—j(c) (> k)

(zy)U=F02 Un(c)
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Inserting these expressions in equation (2.35|) we obtain the following expression for an arbitrary
skew Schur polynomial indexed by a shape of at most two rows and specialized to two variables

svy ) (@ y ™) = ey HYVFR2T G0 (OUN max () (€) =

min (5,k) N
1 . . (2.43)
= whyN ik E (zy) E (zy)",
r=0 r=max (j,k)

for j,k=0,..., N and N > 1. Taking k = 0 above we recover the known expression for a Schur
polynomial specialized to two variables in terms of a Chebyshev polynomial [129]. We emphasize
that the above formula also coincides with the integral (2.36), with f(z) = (1 + z2)(1 4+ yz1).
We also obtain from formula that

ik (ajy)—min (J,k)—1 _ 1
=Ty — )
(zy)~t =1

where the convergence is in the ring of symmetric functions or the usual convergence in C, if
|z, [y < 1.

N

SN ) (k) (z,y ")y (2.44)

We can also use this to study the case of a pentadiagonal Toeplitz matrix. Let z1, 2, y1, Yo
be some variables, and consider the function

F(2) = (L4 212) (1 + 202) (L4 yaz (L + gz ). (2.45)

As proposed in [194], the inverse of this matrix can be computed by means of the Sherman —
Morrison — Woodbury formula (SMW formula in the following), as follows. If we denote

filz) = L+ z12) (1 +y127 1), fo(z) = (L4 z22) (1 + g2 1),

the Toeplitz matrices generated by these functions verify

T1Y2
In(fU)IN(f2) =TN(f) - (2.46)
T2Y1) o N
The SMW formula reads
C+XxXyHt=ct-c ' x(I+YiCcTix)"lytet, (2.47)

where C' is an N x N invertible matrix and X,Y are N x M matrices with M < N. Noting
that the last matrix in (2.46) verifies

t
T1Y2 T1Y2 1
= XYt = ,

T2Y1 1 21

Nx2 Nx2

we see that the inverse T (f) can be expressed in terms of the matrix

C™' = (ajp) =T (f)Ty"(f)
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Let us consider the symmetric case 1 = y; and x9 = y9 in (2.45)), for simplicity. Using ([2.42))
we find that, whenever j < k

Ui—1(c1)Ui—1(e2)Un—k(c1)Un—;(c2)+

a]7k

1 J+k
122 UN (c1) UN (c2)

Mm

=1

Uj—1(c2)Un—k(c1)Un—i(c2)+

> ”M?V

Z Uk—1(c1)Uj—1(c2)Un—i(c1)Un—i(c2) |,
I=k+1

where ¢; = (1 + a:?) /2z; and the Uy, are Chebyshev polynomials of the second kind. Similarly,
if j > k we have

! (=17 k U U U
Gk = 122 Un(c1)Un(c2) [Z 1(e)Ui-1(e2)Un-r(e)Un—j(c2)+

Z 1(c1)Ui—1(c2)Un—i(c1)Un—;(c2)+
N

Z Uk—l(cl)Uj1(02)UN—Z(01)UN—l(C2):|-

I=j+1

Using ([2.47)) we then obtain the following expression for the (7, k)-th entry of the matrix Tﬁl( )
where f is given by (2.45))

1

2 2
aj,k_ﬁ 12205101, +21220;NANE + 21T (GNNajlalk_aNlajNalk_alNajlaNk+allajNaNk ],

(2.48)

where a;y is given by the above expressions and
2.2
D =1+ z1x9(an + ann) + wir3(anany — ainan).

This can be combined with the known formulas for the determinant of the Toeplitz matrix
generated by f (see for instance [81]) to obtain an evaluation of the Toeplitz minor (2.34)), which
coincides with the skew Schur polynomial

—1 —1\.N_N
S(N,N )/ (k) (T1, T2, 7 5 g )27 T

and the matrix model

N
L1 N2, (B, (0 0, 0, —i0; 0,
N!W/[O%]N [V(e™)[Fex(e™)e; (e’ )j];[1(1+x1e’ 7)1+ z2e™)(1+z1e" ) (1 +z0e " )db);.
Analogous expressions can be obtained whenever x1 # y; and/or xy # ys, following the same

reasoning as above.
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2.3.2 The pure Fisher-Hartwig singularity

The asymptotics of Toeplitz determinants generated by symbols that do not verify the regularity
conditions in Szegd’s theorem have been long studied. In the seminal work [85], Fisher and
Hartwig conjectured the asymptotic behaviour of Toeplitz determinants generated by a class of
(integrable) functions that violate these conditions. The functions in this class are products of
a function which is smooth, in the sense of Szeg6’s theorem, and a finite number of so-called
pure Fisher-Hartwig singularities. Their conjecture was later refined in [22] and [26], and only
recently a complete description of the asymptotics of these determinants was achieved by Deift,
Its and Krasovsky [67]. See [68] for a detailed historical account of the subject.
A pure Fisher-Hartwig singularity is a function of the form [41]

11— P20 (0 <6< 2n), (2.49)

where the parameters o, 8 satisfy Re(a) > —1/2 and 8 € C. The factor |1 — €??|?® may have
a zero, a pole, or an oscillatory singularity at the point z = 1, while the factor e”?®=7™) has a
jump if B is not an integer. Thus, depending on the different values of the parameters a and
B, the symbol above may violate the regularity conditions in Szeg6’s theorem. It will be more
convenient to work with the equivalent factorization [41]

(1 _ ei@)w(l _ e—iﬂ)é'

This function coincides with ify=a+ 8 and § = a — 3; we will assume in the following
that the parameters v and § are positive integers. We can then express this function as the
specialization
f(2) = py5(2) = E(1, ..., 1,27 HE(1, ..., 1; 2). (2.50)
~—— ——
é Y

Functions with general Fisher-Hartwig singularities are obtained as the product of a function
verifying the regularity conditions in Szeg6’s theorem times a finite number of translated pure
singularities of the form go%(;r(ei(e_ef)). Each of these factors has a singularity with parameters
Y, 0 at the point e,

The inverse of the Toeplitz matrix generated by the pure FH singularity can be computed
by means of the Duduchava-Roch formula [79, 169] 40]

T(y+ 1) +1)
F(y+d+1)

T((1 = 2) )My sT((1 - 271)°) = M5T (¢y,6) My,

where M, is the diagonal matrix with entries (My)rr = (a”]:ﬁf), for £ > 1. Bottcher and
Silbermann [42] used this formula to give an explicit expression for the determinant of the
Toeplitz matrix generated by the pure FH singularity

Gy+d+N+1) Gv+1) G(o+1)

Dy (¢y6) = G(N +1) Gy+d+1) G+N+1)GOE+N+1)

(2.51)

where G is the Barnes function [2I]. Also the inverse of the corresponding Toeplitz matrix can
be computed explicitly by means of this formula [40]

W+ ATE+R) < T(r)  (yrr—k—1\(6+r—j—1
L'(j)L(k) Z I‘(7+5—|—r)< r—k )< r—3j >

(Tﬁl(Wv,é))ng = (_1)j+kr

r=max (j,k)
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Inserting these expressions in equation (2.35]) we obtain

GIM+N+2) GM—d+1)  Gd+1)

Vo (M) = G(N +2 2.52
8<\N~;’N;J)/(’“)( )= G ) GM+1) GM-d+N+2)G(d+N +2) (2:52)
T(M—d+j+1)T(d+k+1) ZN: T(r+1) (M—d+r—k—1><d+r—j—1>

r'(j+1) I'(k+1) 7n:max(jk)I‘(]W—I—?"—i—l) r—k r—j ’

for j,k < N and M >d (or M > d, if j = 0). The above formula recovers known evaluations
whenever £ = 0 and thus the function in the left hand side above is a Schur polynomial (these
can be computed by means of the hook-content formula [I7§], for instance). Explicit expressions
for such specialization of skew Schur polynomials indexed by partitions of certain shapes have
been obtained recently in [158], and coincide with the above formula when the shapes are the
same.

Using expression ([2.49)), we see that the integral form of a Toeplitz minor generated by the
pure Fisher-Hartwig generality

>\7
D ”(%,5) = 55y (17F0) = (2.53)

2T 2T N 1 ) )
—19 su 19 H 50 7—5)’1 + 0 ”y—i—& H ’6293- _
j=1 1<j<k<N

% 2d6, ...d0,

is the 8 = 2 case of the unit circle version of Selberg’s integral known as Morris integral, with
the insertion of two Schur polynomials. Its representation as a Toeplitz minor allows a direct
computation for the case of a single polynomial.

Lemma. Let p be a partition of length () < N. We have

Up)
D(pr )5, (1) ]

k=1

I'(y+k)
Ly +k — )

L6+ N—Fk+1)
F'0+N—k+p+1)

D" (y5) = (2.54)

Proof. We follow the second of the two proofs given in [44] for the Toeplitz determinant

Dy (‘;07,5 )
be exploited to obtain evaluations of the more complicated objects considered (i.e.

We include this computation to showcase how the Toeplitz minor structure can
multiple
integrals, skew Schur polynomials), rather than for its conceptual insight.

The Fourier coefficients of ¢, 5 are [41]

I'(y+0+1)

dy = .
" T —k+ )T+ k+1)

After extracting the factors
H T(y+6+41) N

1
o T v+ N —j+1)° ,HF(5+uk+N—k+1)’

coming from the rows and columns of Df,’“ (¢+,5) respectively, we obtain the determinant

P(y=pn+N) D(6+p1+N) Py=pn+N) D(6+p2+N—-1) L(6+pun+1)
Ply—p1+1) I'(6+p1+1) P(y—p2+2)  I(6+p2) L(0+un—N+2)
P(y—pun+N-1) D(6+m+N)  T(y—pn+N—1) D(6+pup+N—1) D(6+un+1)
P(y—p1) L(0+p1+2) L (y—p2+1) L(04p2+1) T(0+un—N+3) (2.55)
Py—pn+1) Py—pn+1) 1
P(y—p1—N+2) L(y—p1—N+3)
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Subtracting (0+uny —N+1+7) times the (j+1)-th row from the j-th row, for j =1,..., N—1, we
can make the last column vanish except for the 1 at the bottom, thus obtaining a determinant
of order N — 1. After extracting the factor

N—-1
[T G +6+ 1) — v+ N — k)
k=1

from the columns of the matrix, and the factor

N—-1

[I

J=1

L(y—pn +7)
I(y—pn—1+7)

from its rows, we obtain a determinant with the same structure as (2.55]), but with the following
changes: N is replaced by N — 1, ¢ is replaced by § + 1 and p is replaced by the partition

(t1y .-y un—1), that results from discarding the last part of p. Making use of this recursive
structure and identity (2.11]) one arrives at the desired expression. O

This recovers a known formula [94] for the evaluation of the case A = @ of the integral
, although its expression as the specialization of a skew Schur polynomial appears to
be new. Substituting M — d by v and d by §, formula gives an explicit evaluation of
this integral valid for general Valueﬁ of v and ¢ whenever the Schur polynomials reduce to
elementary symmetric polynomials sy = ey, s, = e;.

2.3.3 Principal specializations

In order to study the principal specialization z; = ¢’~! in the above formulas, we recall the
well known method of Borodin for obtaining the inverse of the moment matrix of a biorthogonal
ensemble. We follow the presentation in [36], where details and proofs can be found. The
starting point is a random matrix ensemble of the form

N
/. .. / det (gj(zk));\szl det (nj(zk»j'\,[k:l H f(Zj)de

(up to a constant), for a weight function f supported on some domain and two families of
functions (§;) and (n;). If one is able to find two new families ((;) and (1);) that biorthogonalizﬂ
the former with respect to the weight f, that is

Cj € Span{fb o 7§j}7 ¢] € Span{nlv cee 777j}a

(2.56)
[ arnare: =5,
then the matrix of coefficients of the kernel
N N
Kn(z,w) =Y Ga)tr(w) = Y cju&(2)m(w) (2.57)
r=1 G k=1

1We have only proved the validity of the formula for integer values of v and §. However, by Carlson’s theorem,
the formula holds for any positive v and §.

5Note that we are actually considering biorthonormal functions; we stick to the original terminology of [36]
here and below and speak of biorthogonal functions in the following.
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satisfies
N

(i)™ = ([@Gmee@as) (2.58)

k=1
If the ensemble is an orthogonal polynomial ensemble, then the moment matrix on the right
hand side above is a Hankel matrix, the functions £; and 7; are the monomials 2771 and we
have that (; = 1); = pj;, the orthogonal polynomials with respect to the weight function f, that
is supported on the real line. The case where the moment matrix on the right hand side above
is the Toeplitz matrix generated by a function f supported on the unit circle corresponds to the
biorthogonal ensemble with functions &;(z) = =0~ 5;(2) = 27~'. Thus, the biorthogonality
condition amounts to finding two families of polynomials p; and g¢; such that

1 2m ) . )
27r/0 pj(e*w)qk(ela)f(ew)dG =0 k- (2.59)

Let us remark that only when the Toeplitz matrix is Hermitian (that is, when the function f is
real valued), these polynomials verify p; (e7) = q;(e"), the g; are the orthogonal polynomials
with respect to f, and the kernel above is the usual Christoffel-Darboux kernel (see [27, [131] for
more details). In general, one needs to consider a biorthogonal ensemble as above. Nevertheless,

one can compute the polynomials (p;) and (g;) in a similar fashion to the orthogonal case.

Lemma. Suppose the determinants Dy(f) are nonzero for every N. Then, the polynomials p;

and g; in (2.59) are given by

do dy ... dj
1 dl d() “e. d*(j*].)
D D. 1/2
( j(f) ]-‘rl(f)) dj—l dj72 d_y
1 z e 2
d(] d_l . e d—(j—].)
1 dy do NN d,(j,g) z
qj(z) = - ] /2| - . . .
(Dj(f)DJJrl(f)) : : : :
dj djfl e d1 Zj

Proof. The condition on the determinants implies the existence of the polynomials themselves
(see proposition 2.9 in [36], for instance), and they are uniquely determined up to multiplicative
constants. Hence, it suffices to verify the biorthogonality condition (2.59). We denote

J k
pi(z) = Za,(!)zr, qr(z) = Z bk or, (2.60)
r=0 r=0
Now, if j > k in (2.59) we can rewrite this integral as the sum
L e ) au(e) () o ! ><
— pi(e™ (e e =
2r Jo 7 (Dw(f) Dy () D (f)Djya ()2
do d_, . d_j
k dl d() B d*(jfl)
> bk : : ,
=0 dj_1 dj_2 d_q
27 ir i 21 i(r— i 21 i(r—j i
% Jo"e O f(e)an % Jo e r=D0f(eYdp ... % Jo"e (=20 £ (") dp
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which vanishes if j > k and equals 1 if j = k, since the last row in the above determinants is
precisely (dr,dy—1,...,dr—;). Analogously, if j < k in (2.59)) the integral equals

; Za do oo dogy % 010 (0
(Dr(f)Dryr (F)D;(f)Djsa ()2 ' : : : ,
I Y
and again all the determinants in the sum vanish. ]

In sight of such determinantal expressions, we see that the coefficients of the biorthogonal
polynomials can be expressed essentially as Toeplitz minors. From this remark we also obtain
the following equivalent integral formulas for the polynomials (known as Heine’s identities)

(DN(f)DN+1(f))1/2pN(Z) =

27T /27r /277 H ‘629 z@k ‘2 H i0; )dgj —

1<j<k<N
N
Z( 1)kzN k 1 201 ...,6i€N) H 20 20k|2Hf 10
k=0

1§j<k§N
as well as

(DN(f)DNJrl(f))l/QQN(Z) =

27r /27r /27r H ‘610 ng ‘2 H j)dgj —

1<j<k<N
N
Z( 1)kZN k 1 —101 ...,672’9]\’) H 19 sz’2Hf 19
k=0

1§j<k§N
In particular, if the function in the integrals above is of the form (2.31)), it follows from
(2.32)) that the coefficients of the biorthogonal polynomials can be expressed as skew Schur
polynomials. For instance, we have

27 21

2 2

(DN(f)DN-H(f)) / (yl_lw"?yglvx)ZN_l"i_

Il Q
@g
—
<
=
<
a

ITT]
1111
ITTT1

”+(_1)N713 {(yl_lw'wy;lvx)z—’—(_l)Ns (yl_lv"’ayglvx) ’
1

(2.61)

where the first shape in the sum above is (N?) and the last one is (N9t1), and we add a box to
the last row of the diagram as the degree of the monomial 2/ decreases. An analogous expression
holds for the polynomials g;. This fact can be combined with the asymptotic expression (2.37)
to obtain the asymptotic behaviour of the coefficients of the biorthogonal polynomials associated
to a given function, as long as it verifies the hypotheses in Szegé’s theorem, for example.
These expressions serve also as further motivation to study the Toeplitz minors , as both
the coefficients of orthogonal polynomials and their asymptotic behaviour are topics of interest.
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Let us also emphasize the close relation between the orthogonal or biorthogonal polynomials
associated to a given function and the inverse of the moment matrix defined by this same function
[131]. We have already reviewed how this inverse coincides with the matrix of coefficients of the
Christoffel-Darboux kernel , which is built precisely from the biorthogonal polynomials.
We see now from the above formulas that also the polynomials themselves can be read off the
first row and column of the inverse of the moment matrix.

We now use to study the finite and infinite principal specializations of the skew Schur
polynomials indexed by the shapes considered earlier. We assume in the following that ¢ is a
new (real) variable verifying |¢| < 1. We will denote by I'; and G4 the ¢-Gamma and ¢-Barnes
functions [162], that in particular verify

ki1 g . k—1
T (k+1) = Hj(zll(_ q)kq ) _ (iqy_q;])ek’ Gk +1) = jl;[qu(j +1), (2.62)

whenever k is a natural number (we assume that an empty product takes the value 1). The
g-binomial coefficient is then given by

wl Fgw+1)
H , Tt Tw-2+1) (Re(w) 2 Re(z) > 0).

These functions coincide with their classical counterparts in the ¢ — 1 limit, that is

ImT,(2) =[(2),  limGy(z) = G(z), lim ﬂ = (“’)

q—1 q—1 qg—1 |z q z

for all the w and z such that the right hand sides above make sense. We consider the following

specialization [86]

.
1 o+

= —E(l.a.... ¢ Y 2"NE 2. :Z k(k+1)/2 k

f(Z) (“)%5<2) ( ) 4, 4 3% ) (Q7q ) yd 7Z> . S+ k qq z",

for some positive integers v and d. The Toeplitz determinant generated by this function equals

Gy(d+y+N+1) Gy(d+1) Gy(y+1)
Gy(6+7+1) Gy(6§+N+1)Gy(y+N+1)

DN(©y,5) = Go(N +1)
and the biorthogonal polynomials p;, ¢; are given by

1/2 J
5+ (@ Q)'y+j> /

_qyir || (@ Dy (@ Dovjor-t
=) Hq(Q%Q)vﬂ‘ (4;9)5-1

(¢:9)

(4:9);(¢; @)s4++j 1/2T?0 r (2.63)
oy = (@ D554 Dy it ] @Dy (G Dser
4(2) ((q;q)j(q;Q)stH) T:()( D Mq @01 (@5

where (q;q)x is as defined in . The last three identities can be proved directly from their
determinantal expressions. We do not include the computations here but point to the second
method of proof in [44], followed also in the derivation of ([2.54)), that can be generalized to the
present setting. Recalling the notation , we have that the kernel is then given by

N N N

Kyii(z,w) = Zpr(z)qr(wfl) = Z Z agr)bl(:) HAw k=

r=0 J,k=0 \r=max (j,k)
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N N . .
itk a0+ d + DTg(y +k+ DP(r 4+ 1) [y 7=k = 1] [+~ 1
>z, s,

Lo+ )Tk + 1D)Ty(6+ 7 +r+1) r—k r—j

7,k=0 \r=max jk

Moreover, the coefficient of 27w in the above sum is the (j + 1, k 4 1)-th entry of the inverse
of the matrix Tn11(©5). Inserting this into expression ([2.35) we obtain

sov.o Ny (L g g = (2.64)
——
Ge(M+N+2) Gg(M—-d+1) Gq(d+1)
GoM+1) Gy(M—d+N+2) Gyd+N+2)
N

Z Py(M—d+j+1)Ty(d+k+1)Ty(r+1) M—d—H"—k:—l} [d—i—r—j—l]
T,(j + DTk +1)Ty(M +r+1) r—k . r—j J

gli—@=Dk+d@-DN/2y (N 1 9)

r=max (j,k)

for j,k < N and M > d (or M > d, if j =0). As expected, this expression coincides with
in the ¢ — 1 limit. Also, as above, the formula recovers known expressions whenever & = 0
(and thus we have a Schur polynomial, comparing again with the hook-content formula [I7§],
for instance). Finally, it follows from and the Cauchy identity that

Jm SNy ) (L, @ g g N2 = (2.65)

d
gi=@ D Go(d+1)Gy(M —d+ 1) mlg)q—r[M_d”—”l} [dw_r_l} :
q q

(1 — q)d(M=d) Gq(M +1) j—r k—r

r=0

Note that the inversion of a Toeplitz matrix by means of the kernel is a general procedure
that can be used to obtain explicit evaluations of other specializations of the skew Schur
polynomials of the shapes considered above, as long as the biorthogonal polynomials are
available. In particular, the results in subsection for the pure Fisher-Hartwig singularity
can be obtained in such a way. The biorthogonal polynomials can be obtainedm as the ¢ — 1

limit of the polynomials (2.63]), leading to the same formula ([2.52]).

Finally, taking into account that only one set of variables in the specialization of f needs to
be finite in equations ([2.34)-(2.37)), we can study the principal specialization of the above skew
Schur polynomials with an infinite number of variables. To do so, we consider the function

0 kd+k(k—1)/2
f(2) = 05(2) = E(Lg ™, VB g ) = Y Tk,
s (G @)sek

for some positive integer §. The corresponding Toeplitz determinant is given by

1 Gy(6+1)Gy(N +1)

Dn(B5) = 11—V G,6+N+1)

and the biorthogonal polynomials on the unit circle with respect to the function G5 are given

18T the Hermitian case v = §, where the polynomials are a single family of orthogonal polynomials, one recovers

the family S,2(z) introduced in [IT] after substituting q by ¢'/2, z by ¢~/2z and a by ¢”.
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by
) _ (q;Q)5+j 2 d 1\j+r il (¢ Q)6+j—r—1 —(6=1)(G—r)
pj(z)_< (49); ) TZ:%( U Hq (G Qs s
1 1/2 J . (2.66)
(2) = 1yt | . 5(]'77")2,7‘.
q]( ) ((Q,Q)](q, Q)6+]> ;( 1) I:T:|q(Q7q)5+Tq

Again, these expressions can be verified from their determinantal and minor formulas. The
kernel in this case is then

N N

O Dl B D vt IR B R B P
7,k=0 \r=maxj,k (q; q)j r—k q r=J q
Inserting this in equation ([2.35)) we arrive at
SN, Nj) (k) (L, g5 ) = (2.67)

d

gl Di—dk+d@-DN/2 G (N 1 2)Gy(d + 1) (g @)ask i\f: r[ r ] [d+ r—j— 1]
(1 — g)dN+1) Go(d+N+2)  (4:9); r—=kl,l r—3 |,

r=max (j,k)

Once again, this identity coincides with the one given by the hook-content formula for £ = 0. It
follows from (2.37)) and the Cauchy identity that

i SNy ) (1, g g N2 = (2.68)
d

ok (L= 0G4 ) mz(:’“) 1 {d +h—r— 1]
(¢ 0)d, — (45 9)j—r k—r .

where (¢; q)oo = [[52; (1 — ¢*) denotes the Euler function.

We have focused throughout this section on the simplest example of a single row and single
column Toeplitz minor D](\}J)’(lk)( f), which can be expressed essentially as an element of the
corresponding Toeplitz inverse. As we have seen, several nontrivial results follow already from
this representation. However, more complicated minors can be expressed in terms of the inverse
of the associated Toeplitz matrix, thus allowing generalizations of the formulas presented here.
At the level of matrix integrals, this means obtaining explicit expressions for integrals with
arbitrary Schur polynomials on the integrand (not only elementary symmetric polynomials). At
the level of specializations of skew Schur polynomials, this means allowing A and p to be general
partitions in formula , so that more general shapes can be added to or skewed from the
rectangle (N?) in (as opposed to the single rows (j) and (k)). We need to introduce some

notation before showing this; given a matrix A of size N x N, we write

TR
e

to denote the minor of A formed by the intersection of rows j; < --- < jx and columns
k1 < -+ < kg. Then, given two partitions A and u, we have

A, _ 1+ phe 2+ phe o ... K+
DNH(f):(_1)\AI+|M|DN+K(f) [TN}FK(f)] <1+le§ 2+A§1 K+/\,1 , (2.69)
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where K = max {\1, 1} As noted above, the case K = 1 corresponds to the one row and one
column case considered in this section. For greater values of K the formula expresses arbitrary
minors D%“ (f) in terms of a Toeplitz determinant and a minor of the inverse of the corresponding
Toeplitz matri

2.4 Laplace expansion of Toeplitz determinants and skew Schur
polynomials
The single row and single column minors of a matrix also play a role in the procedure of

computing its determinant by means of Laplace expansion. For the case of Toeplitz matrices,
this reads

=

—1ytEd; L D D () (2.70)

Mz

=Y (-1t

j=1 k:l

where the k-th column, for & € {1,...,N} (resp. j-th row, for j € {1,...,N}) is fixed
in the first (resp. second) identity. Once again, we choose f to be of the form f(z) =
E(y1,...,yq; 2 ) E(x;d). Substituting the explicit expressions for the coefficients dy
and for the minors in this identity we obtain the following result, after a relabeling of the
variables.

Theorem 2. We have

M=

sivey(@) = (=17 ey (@)s@v -1y a1 i1 (@)

<.
I
—

(2.71)

[
] =

(1) eqrjk(@)s@an-1)4 15-1) -1 (),

b
Il
—

where k € {1,...,N} (resp. j-th row, for j € {1,...,N}) is fized in the first (resp. second)
identity.

Some particular cases of the above identities are already known relations between symmetric
functions. For instance, choosing 7 = 1 and d = 1 in the second identity, one obtains the well
known relation between the elementary and complete homogeneous symmetric polynomials

N
> (1ej(@)hn—j(x) = 0.
Jj=0

However, note that for every N, equation (2.71) actually contains 2N different expansions of
the Schur polynomial s(nd)- For instance, choosing N = 3 and d = 4 in the theorem, and fixing
k =1 in the first identity and j = 2 in the second identity we obtain

s@ = SESE - Sasﬁ + sEsﬁ = —sgsﬁ + SE.E - SES@

Y"The proof of identity (2.69) is essentially a translation of Jacobi’s identity on the minors of a matrix [191] [43]

to the case of Toeplitz matrices, in combination with (2.7)).
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which can be easily checked using the Jacobi-Trudi dual identity and the Pieri formulas.

As was the case with the formula for the inverse of a matrix, Laplace’s expansion formula
can be generalized to an identity involving more general minors than the single row and single
column case, as well as their complementary minors (see [191], for instance). For the Toeplitz
case this reads

L N),L !
Dy () = Y (F)PFHDR (D O )
AC(pf)

= 3 ()R DY Dy OO
nC(AY)

(2.72)

where 1 (resp. A) is a fixed partition of length smaller than or equal to N that determines
the columns (resp. rows) with respect which we perform Laplace expansion in the first (resp.
second) identity. Indeed, the only nontrivial step when translating the general formula to the
Toeplitz case is showing that the complementary minor to that indexed by partitions A and u
is the one indexed by the partitions Lx y(X) and Lg y(p), where K = max{A1, 1} (recall the
definition ) Some inspection shows that this can be deduced from , for instance.
Writing the equivalent expression of the minors in in terms of skew Schur polynomials
as above, we arrive at the following result.

Theorem 3. Let d be a positive integer. We have

_ Al , ,
SN () = E(:N)( DS (@) a8 (@) L, (1)) Ly ) (F)
AC (g

_ A
SN () = ;Nf DS (@) ) (B3 (@114 Lo, (1) Lovny 0) ()
HC (A7

where p (resp. ) is fixed in the first (resp. second) identity.



Chapter 3

Matrix models for classical groups
and ToeplitzHankel minors with
applications to Chern-Simons theory
and fermionic models

Chapter summary

We study matrix integration over the classical Lie groups G(N) = U(N),Sp(2N),O(2N)
and O(2N + 1), using symmetric function theory and the equivalent formulation in terms of
determinants and minors of Toeplitz+Hankel matrices, allowing the insertion of irreducible
characters in the integrands (“twisted” integrals). After reviewing some facts from the theory
of symmetric functions, we establish a number of relations between such integrals, including

1. Factorizations of unitary integrals as products and sums of products of symplectic and
orthogonal integrals,

2. The expression of a class of models as the specialization of a single character associated
to the corresponding symmetry group,

3. Expansions of symplectic and orthogonal integrals as weighted sums of twisted unitary
integrals, or, equivalently, expansions of ToeplitztHankel determinants as weighted sums
of Toeplitz minors,

4. Gessel type identities, expressing the G(N) integrals under study as Schur function series,
including the twisted case,

5. The asymptotic behaviour of the averages of irreducible characters over the aforementioned
matrix models.

We then turn to an exactly solvable model, associated to Jacobi’s third theta function. This
allows us to compute both at finite and large N the partition functions, Wilson loops and
Hopf links of Chern-Simons theory on S with symmetry group G(N), and we show that these
models are Giambelli compatible. In this context, the general relations found before translate to
identities between observables of the theories with different symmetry groups. Finally, we use
character expansions and the asymptotic behaviour of the associated determinants to evaluate

35
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averages in random matrix ensembles of Chern-Simons type, describing the spectra of solvable
fermionic models with matrix degrees of freedom[™]

3.1 Preliminaries

3.1.1 ToeplitztHankel minors

Consider the groups of symplectic matrices of order 2N, denoted by Sp(2NN), and of orthogonal
matrices of orders 2N and 2N + 1, denoted by O(2N) and O(2N + 1) respectively. We will also
write G(N) to refer to any of the groups U(N), Sp(2N),O(2N) or O(2N +1). In particular, the
parameter N stands for the number of nontrivial eigenvalues of the matrices belonging to each
of the groups, which are complex numbers of modulus 1. Given a square integrable function on
the unit circle f, we define

H Fei®) fle= %), (3.1)

for any matrix U belonging to one of the groups G(N), where the e are the nontrivial
eigenvalues of U. Note the difference with the definition in the previous chapter; considering
instead amounts to considering symmetric Toeplitz matrices in the results of chapter 2| or,
equivalently, functions that satisfy f(z) = f(z7!). We will use definition throughout the
remainder of this chapter. Using Weyl’s integral formula [195, [57], one can see that the integral
of a function of the form over one of the groups G(N) with respect to Haar measure can
be expressed as

1 . 4 . o dO
F0)dU = C, / det(M, e"%)) det (M, e F () F(e™0k) =2
o POV = Corny [ et () det(Mgio DLt
(3.2)
where dU denotes Haar measure, the constants Cg(y) are
1 1
Cuwny =1, Cspen) = oN = Co@n+1) Coen) = SNTT

and Mgy (¢%) is the matrix appearing in Weyl’s denominator formula for the root system
associated to each of the groups G(N). In the unitary case, this is the Vandermonde matrix,
while for the rest of the groups we have [137]

N
det My (2) = det ( N- ’f) = I G- (3.3)
Jk=1 A
1<j<k<N
—(N—k+1) O
_ N—k+1 +1 _
det Mgpan)(2) = det (zj — 2 )jk . H (25 — 21)(1 — 2zj21) H z; — 1)z
1<j<k<N j=1
(3.4)
N—k+1 —(N—k+1) N N
det Mpan)(z) = det (zj 2 -z 2 ) ' =2 H (zj —z1) (1 — zj2) Hz] N+l
Jk=1 1<j<k<N j=1
(3.5)

'8 The content of this chapter is based on the preprint [I06]. Some results displayed here and not in [I06] include
theorem |Z| and corollaries [b[ and @
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N
- —(N=k\ Y N
det Mo(an+1)(2) = det (zJN ky z; ( )) L= H (zj — 1) (1 — zj2k) H(ZJ' ~1)z; +1/2
PR=E ok Jaie
(3.6)
where we denote z; = et Choosing o(f) = % (6i9)f(e_i9)d9 on [0,27) as measure and

suitable functions g; and h; for each of the groups G(NN) in Andréief’s identity (2.2]) we obtain
from (3.2 the determinantal expressions

| rwaw = de(d; 0, (3.7

U(N)

[ HOU = det (@i = dy) s, (3.5)
Sp(2N)

1

[ 1) = G et (o + )y (3.9
O(2N)

[ i = det (@i~ dypa) i, (3.10)
O(2N+1)

where dj. denotes the Fourier coefficient

1

" or

2m
di= o [ MR e o (3.11)
0

for each k € Z. Note that this definition also differs from the one given in the previous chapter
. As remarked above, we now have d, = d_; for all k. Recall that a matrix which
(J, k)-th coefficient depends only on j + k is called a Hankel matrix, and is constant along its
anti-diagonals. Expressions for group integrals as determinants of Toeplitz+-Hankel matrices
have been obtained previously, see for instance [18]. Besides their own intrinsic interest, matrix
integrals over the groups G(INV) enjoy connections with combinatorics [I8], number theory [133]
and integrable systems [3], among many other topics.

Note that while gy f(U)dU = [qn) f(=U)dU for G(N) = U(N),Sp(2N),O(2N) (as

follows from the above determinantal expressions, for instance), we have
/ f(—U)dU = det (dj,k + dj+]f71)§vk:1. (3.12)
O(2N+1) ’

It turns out that the minors of the above Toeplitz+-Hankel matrices (which will be referred
to as ToeplitztHankel minors in the following) also have equivalent integral representations, as
in the unitary case. Indeed, one can also express the characters associated to the irreducible
representations of the groups G(IN) as the quotient of a minor of the matrix Mgy, indexed by
a partition A, and the determinant of the matrix itself. See — for such expressions.
Hence, the insertion of one or two characters of the group G(V) in the integrand in cancels
one or two of the determinants. Therefore, denoting by X)C\:( N) the character of the group G(N)
indexed by the partition A, we obtain the following result from Andreiéf’s identity .

Theorem 4. Let N be a positive integer, and let X and p be two partitions of lengths l(X),1(p) <
N. Consider the “reversed” arrays

A = (AN—jt1)j = AN, AN=1, -+ A2, A1), p = (pN—jr1)j = (UNy -5 p1)-
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We then have

N

N
/ XU(N)(U )XU( )(U)f(U)dU = det (dj—AJ-—k—i—uk)j’k:l = det (dj+>\§—k—u;)j o1’

N
/ Xsp(gN U)Xy (U)(U)dU = det (dj+A§—k—u; - j+,\§+k+u;)j7k:1,
/ )XM (U)f(U)dUzldet (d N —k 7‘+d A k4l Q)N
O(2N 2N) O(2N) 9 JHA;—k—py, JHA Rty — j7k:1’
N
H fr . — ; T T
/O AN +1) 2N+1)(U)XO(QN+1)(U)f(U)dU = det (dj-i-/\;—k—u; ]+>\j+k+llk—1)j7k:1’

where the dj, are given by (3.11)).

We have used above the fact that Xg(N)(U) = Xg(N)(Ufl) for G(N) = Sp(2N),O(2N),O(2N+
1). The resulting determinants are now minors of the Toeplitz and Toeplitz+-Hankel matrices
appearing in the right hand sides of formulas —, obtained by striking some of their
rows and columns. The procedure to obtain these minors from the corresponding partitions
is the same as the one described in section [2.1.2] for the case of Toeplitz minors, with the
exception that the order of rows and columns should now be inverted from first to last. Let us
record here this procedure, for convenience.

e Start with one of the Toeplitz or ToeplitztHankel matrices in the right hand sides of
(3-7)-(3.10]), of size N 4+ max{A1,u1}. Strike the last |A\; — pi| columns or rows of the
matrix, depending on whether A\; — u; is greater or smaller than zero, respectively.

e Keep the last row of the resulting matrix, and strike the A\; — Ao next-to-last rows. Keep the
next row, and strike the next A2 — A3 rows. Continue until striking Aj(x) — Aiony+1 = A
rows.

e Repeat the previous step on the columns of the matrix with g in place of A. The resulting
matrix is precisely the minor indexed by the partitions A and g, as defined in theorem [4

In particular, the striking of rows and columns performed on the underlying matrix only depends
on the partitions A and p, and is the same for any of the matrices (3.7))-(3.10). Note also that
in the Toeplitz case, the above procedure coincides with the one described in section [2.1.2] as

the matrices are now symmetric.

3.1.2 Characters of G(N) and symmetric functions

We summarize below some basic facts about the characters of the classical groups and their
relation to symmetric functions. See [147, [102, [135] for more details.

Recall that Schur polynomials, which correspond to the irreducible characters of the unitary
group U(N), can be defined as the quotient of a minor of the Vandermonde matrix (indexed
by a partition A) over the determinant of the matrix itself . The irreducible characters
associated to the other groups G(IN) can be defined analogously, replacing the Vandermonde
matrix by the corresponding matrix Mg (), recall —. More precisely, let A be a partition



Toeplitz+ Hankel minors and Chern-Simons theory 39

of length I(\) < N; we havd"|

N
N—k+Xg
& oy 2 St M) ) (3.13)
U(N) det MU(N) (2) det <Z§V7k)N )
k=1
Nektaptl —(N—kxe+1)\ N
o () = Mm@ _ 1 (= & )i (3.14)
PeN det Mgp(an)(2) det <Zka+1 _ zf(N7k+1)>N ’ '
J J k=1
N
det M2, (z)  det (ZN7k+Ak + z-_(N_k+)"“)> '
Xo@en (U) = 0EN) "L = ’ ’ 2A=1 (3.15)
O(2N) det MO(ZN) (z) det (Z;Vik n Z,_(N_k)>N ’
7, k=1
det <ZN—k+Ak,+; Z—(N—k—l—)\k-i-é))N
A : -z,
X/\ (U _ det MO(2N+1)(2) _ J J k=1 (3 16)
O(2N+1) det MO(2N+1) (Z) dot <ZN_I€+; —(N—k‘—l—%)) N ’
J T
k=1

Of course, this is nothing but Weyl’s character formula, specialized to each of the groups
G(N).

The characters Xé;( Ny can be lifted to the so called “universal characters” in the ring of
symmetric functions in countably many variables [135]. In this fashion, the lifting of the
characters of U(N), Sp(2N), O(2N) and O(2N + 1) gives rise to the Schur sy, symplectic

Schur spy, even orthogonal Schur o§""

and odd orthogonal Schur oidd functions, respectively.
When the length of the partition A is less than or equal to the number of nontrivial eigenvalues
of a matrix U, these functions coincide with the irreducible characters of the corresponding
group, after specializing the corresponding variables back to the nontrivial eigenvalues z; of
U. For instance, we have Xgp(ZN)(U) = spa(z1,...,2n) for any partition satisfying I(\) < N.
We emphasize that while this condition is necessary in order for the characters X)c\:( N)(U) to be
defined, the corresponding symmetric functions need not satisfy such restriction, and are defined
for more general partitions. Indeed, given a (possibly infinite) set of variables x = (1, z2,...),
one can define the Schur, symplectic Schur, and even/odd orthogonal Schur functions by means
of the Jacobi-Trudi identities

sal) =det (1o, (211 = det (e eng (@) (3.17)
spa(x) :% det (ha,—jar(z, a7 ") + by, —jk+2(z, xil))i(l;\)zl (3.18)
=det <e>\9_j+k(a:, 1) — eA;_j_k(x, m1)>j;:1 (3.19)

o5 () =det (hx, i, 27Y) = () ) (3.20)
:% det (e/\;__jyg(x,x*l) + eA;_j_k+2(x,m1));;1 , (3.21)

0% () = det (h,\j,ﬂk(m,x_l, 1) — h)\j,j,k(x,x_l, 1))2(2):1 (3.22)

YRecall that the character (3.15) does not correspond to an irreducible representation of O(2N) if Ay # 0.
This fact is not relevant for our purposes so we ignore it in the following and work with the algebraic expression
(3.15)); minor modifications to the subsequent reasoning allow a treatment of the general case.
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A1

1
= det 6/\/__j+k($,£6_1,1) +6)\f.—j—k+2(x7x_171) ) > (3'23)
2 J 7 7,k=1

where the hj and the e are the complete homogeneous and elementary symmetric polynomials
respectively (2.8). These functions satisfy the Cauchy identities

[e.e]

Z su@)suly) = [ —— (3.24)

1—zy;
=1 iYj

o0

ZSPV su(y) = [J(0 = wiwy) [ 1, : 1,1 : (3.25)

1_351y]1—l‘i Y

i<j ij=1
o
1 1
o @) = 10— wi) T[ 7= i (3.26)
v i<j R

oo oo

> ot @)s(y) = [T —viyy) [ L L I1 L (3.27)

i<j o LT A L=y e Ly

and dual Cauchy identities

Y su(@)suy) = ﬁl(l + ZiY5), (3.28)
p i

> spu(@)s(y) = H(l — Yi5) 'ﬁl(l +agy) (1 + 2 yy), (3.29)
v 1<j 4,Jj=

; 0" ()8, (y) = l;[(l — Yilj) 'ﬁl(l + 2y5) (1 + xi_lyj). (3.30)
zy: o0 (), (y) = 1:[(1 — Yiyj) ’ﬁl(l +aiy) (1 + 2 y;) ﬁl(l + ;) (3.31)

Since the groups Sp(2N),O(2N),O(2N + 1) can be embedded on the unitary group
U(2N) or U(2N + 1), the irreducible characters on each of these groups can be expressed
in terms of the others, after applying the specialization homomorphisms (z1,...,zo5) +—
(z1,...,2nN, zl_l, . ,z;,l) for Sp(2N), O(2N) or (z1,...,2on+1) = (21,..., 2N, zl_l, e ,z;,l, 1)
for O(2N + 1). When seen as symmetric functions, they have the following expansions [135]

:Z Z céﬁspa(x), (3.32)

a B’ even

=3 > eagoen( (3.33)

a  Beven

sy(z, 271 1) Z Z caﬁoodd (3.34)

a  Beven

where 036 are Littlewood-Richardson coefficients , and we say that a partition is even
if it has only even parts. Reciprocally, Schur polynomials evaluated at a set of variables and
their inverses can be expressed in terms of symplectic and orthogonal characters. To state
this relation precisely, we first recall the Frobenius notation for partitions. We write A =
(a1,...,aplby,...,bp), for some positive integers a; > --- > a, and by > --- > by, if there are
p boxes on the main diagonal of the Young diagram of A, with the k-th box having a; boxes
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immediately to the right and b, boxes immediately below. Given a partition A, we denote by
p(A) the number of boxes on the main diagonal of its diagram. We can then introduce the sets
R(N),S(N) and T(N) of partitions of shapes (a1+1,...,ap+1la1,...,ap), (a1,...,apla1, ..., ap)
and (a1 — 1,...,a, — 1]a1,...,a,) respectively in Frobenius notation, with a; < N — 1. For
instance, the set R(3) consists of the partitions

{@,ED,B:D,EEH,: [T 1,_ H i }, (3.35)

the set S(3) is the set of self-conjugate partitions of length at most 3 and the set 7'(3) is obtained

as the set of partitions conjugated to those of R(2). Note that there are exactly 2V partitions
in each of the sets R(N) and S(N), and 2V~ in the set T(N), all of them of length less than
or equal to N. We can now state Littlewood’s classical identities [135]

spa(@) =) Z D2 g0z, a7t) = > (—1)12sy (2, 271,

@ BET(N BET(N)
even Z Z |B|/ (.’E,.CCil) — Z (—1)|ﬁ|/28,\/5(:c,x*1), (336)
a BER(N BER(N)
Ogdd Z Z |/3|/ CAﬁs (z, x_l,l)z Z (—1)%'/23)\/5(;1:,30_1,1).
a BER(N BER(N)

A distinctive feature of symmetric functions is that different Young diagrams may actually
determine the same skew Schur polynomial. For instance, we have already used the fact that
the skew Schur polynomial indexed by any given skew diagram coincides with the skew Schur
polynomial indexed by a 180° rotation of the very same diagram in the previous chapter, but
many other conditions under which this holds are known [I68]. An example of different Young
diagrams determining the same symplectic or orthogonal characters (and thus, symplectic or
orthogonal Schur functions) is given in proposition 2.4.1 of [I35]. Let us provide another example
of this, which will be useful in the following. We will use the easily checked property

ep(z1,... ,xN,xl_l, ... ,:c&l) = eon—_k(z1,... ,xN,xl_l, .. a;Nl) (3.37)

Theorem 5. Let A be a partition. We have

Sp)\(.%'l, Ceey xN) = (_1))\1()\1+1)/28pL>\172N+>\1+1()\) (1’1, N ,.%'N), (338)
oY (1, ..., xN) = (—1)A1“1‘1)/20?161"2M1,1(A) (T1,...,ZN), (3.39)
OKdd(UCL s aN) = (= )/\I(Al WQO%%? 2N+, (V) (z1,...,7N), (3.40)

where L n(X) is as defined in (2.17]).

That is, the characters of Sp(2/N), O(2N) and O(2N + 1) indexed by a partition A coincide
(up to a sign) with the characters indexed by the partition obtained from rotating 180° the
)\%N+/\1+l)’ ()\%N+/\1—1) and ()\%N‘f‘)\l)

complement of X in the rectangular diagrams ( respectively.

Proof. 1t is instructive to start with two simple examples. For the case of partitions with a
single column, it follows from and - that

sp(iry(x) = ex(z,27t) — ek,Q(a:,afl) = eon_p(z,27Y) — eanpop(z, 7)) = —sp(12n+2-ky ().
(3.41)
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For the case of partitions with two columns, we obtain from (3.19)) and (3.41) that

€jt+k — €j+k—2
€k—1 — €k—3

€jtk+1 — €j4+k—3
€k — Ck—4

SP(2k14) (z) =

—Sp(12N+2—j—k)

—Sp(12N+3—k)

Sp(12N+3—k)

Sp(12N+2—j—k)

—S5D(12N+2-k) — SP(12N+4-k)

SP(12N+a—k) Tt SP(12N+2-k)
SP(12N+3—j—k) + SP(12N+1-j—k)

Sp(1j+k) Sp(1j+k+1) +Sp(1j+k—1) _
Sp(lkfl)

Sp(lk) + Sp(lk—z)

_Sp(12N+1—j—k) - Sp(12N+3—j_k) .

= —SP(22N+3-j—k1j) ($),

where the fourth identity above results from exchanging the first and second rows of the

determinant (we have omitted the dependence on z in the determinants for ease of notation).

The proof for the general case is a straightforward generalization of the above reasoning. Let

now A = (19129 .. M%M) be a general partition, written in frequency notation. That is, A is

the partition with exactly ays parts equal to M, ap;—q parts equal to M — 1, and so on. Then,

we have

N=(ay+apya+--+a,apn+ay 1+ +ay,..

ey +ayv—1,anm),

using the standard notation for partitions. Let us denote the j-th entry of X' by b;, for ease
of notation. It follows from the Jacobi-Trudi identity (3.19) and (3.37) that (—1)spy can be

expressed as (we omit again the dependence on )

€py — €ph;—2
€phy—1 — €Epy—3

€b1+1 — €p;—3
€y — €hy—14

€bpr_1—M+2 — €y —M  Cbp_1—M+43 T €bp1—M-—1
Eby—M+1 — €hpy—M—1 Ebyr—M+2 — €bpy—M—2
SP(101)
Sp(le—l)

SP(1b1+1) + SP(1b1-1)
Sp(le) + Sp(1b2—2)

SP(1ba—1-M+2y  SP(1bar_1-M+3y + SP(1ba—1-M+1

SP(1ba—M+1) SP(1bm—M+2) + SP(16m—M)

SP(12N+2-b1) SP(12N+1-b1) + SP(12N+3-b1)
SP(12N+3-ba) SP(12N+2-b) + SP(12N+4-ba)

Sp(12N+M7b]V[_1) Sp(12N71+beM_1) + Sp(12N+1+M—bM_1)

SP(12N+1+M—bpr) SP(12N+M—byr) + SP(12N+2+M—bpr)

€bi+M—-1 — €Ep—M—1
Eoyg+M—2 — Epy—M—2

Chpr—1+1 ~ Cbpr 1 —2M+1

€bps — Cbp —2M
SP(1b1+M-1y +---+ SP(1b1-M+1)
SP(1b2+M~2) + -+ SP(1b2-M)

SP(1ba-1+1) + -+ SP(1ba1-1-2M+3)

Sp(le) + -4 Sp(le—2M+2)

SP(12N+3-M—by ) + -+ SP(12N+1+M—by )

SP(12N+4—M—b) +-+ SP(12N+2+M by

SP(12N+1-bar—1) + -+ Sp(12N71+2beM_1)

SP(12N+2-bar) + -+ SP(12N+2M~bpr)

Reversing the order of the rows of the last determinant above, we see that it corresponds to

another symplectic Schur function indexed by some partition pu, satisfying

Py =2N+M+1—by =2N +M +1—ayy,

ph=2N+M+1—by1=2N+M+1—ap —ap-_1,
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M/]\/[=2N+M+1—bl:2N+M+1—GM—QM—CLM_1—-~~—a1,

which corresponds precisely to Ly, an+x,+1(A), thus yielding the desired conclusion. The proof

of identities (3.39)) and (3.40)) follows analogously from the corresponding Jacobi-Trudi identities

and (329, 0

3.1.3 Large N limit of Toeplitz and Toeplitz+-Hankel determinants

We record now a generalization of Szegd’s theorem to symplectic and orthogonal integrals
(equivalently, determinants of ToeplitztHankel matrices) due to Johansson [127].

Theorem (Johansson). Let f be a function in the unit circle, and assume that it can be expressed
as f(e") = exp(3_32, cre®™), with 3", |ck| < 00 and Y, klek|? < oo, and define f(U) by formula
(3.1). We have

Sp(2N)

) 1 o ) o
A}gnoo f(U)dU = exp (2 ]; ke — ; 02k> , (3.42)

) 1 oo ) oo
A}gnoo f(U)dU = exp <2 ; ke, + ; c%) , (3.43)

O(2N)

: I, 2+
A}gnoo A f(U)dU = exp (2 ;k‘ck - kZ:lch_1> . (3.44)

We have stated the theorem for slightly different integrals that those appearing in [127]. The
result, as stated here, follows after using the mapping cosf; — x; in the integralsiﬂ and
using the general version of Johansson’s result. This allows to express the integrals in terms of
the orthogonal polynomials with respect to a modified weight on [—1, 1], which relation with the
orthogonal polynomials with respect to the original weight is well known [I81] (see also [18]).
This result has been rederived in several different contexts, see for instance [23| 24], 67, 25].

The asymptotic behaviour of Toeplitz+Hankel determinants generated by functions with
Fisher-Hartwig singularities has also attracted interest over the years [68]. For our purposes,
we will only need to consider determinants generated by functions with a single Fisher-Hartwig
singularity. This fact, together with the definition allows us to consider only particular
examples of the very general results known for this kind of asymptotics. Starting with the
Toeplitz case, what follows is a particular case of a theorem of Widom [196] adapted for this
setting. See [80, [67] for more general results on the topic.

Theorem (Widom). Let f be given by
F(e?) = eV E (1 — ¢i0-t0)ye (3.45)

where Re(a) > —1/2, 0 < 0y < 27, and the potential V (e) = 3702 | e’ satisfies >, |cx| < 0o
and Y, klcg|* < oo, as in Szegd’s theorem. Define f(U) by (B3.1) for any U € U(N). Then, as
N — 00, we have

— o 12 | ol 20V ety GAla+ 1)
/U(N) f(U)dU = exp (;:1 kck> N%e ot D) (1+0(1)), (3.46)

where G is Barnes’ G function

20The relation is more apparent working directly with the trigonometric expression of Haar measure on G(N),
see for instance equations (3.3)-(3.5) in [60].



44 Schur Averages in Random Matriz Ensembles

We also quote a particular case of a theorem of Deift, Its and Krasovsky [67] for
Toeplitz+Hankel determinants generated by functions with a single singularity at the point
z = —1, which will be enough for our purposes. See [67] for more general results.

Theorem (Deift, Its, Krasovsky). Let f be given by (3.45), with 0y = 7, and define f(U) by
(3.1) for any U € Sp(2N),O(2N),O(2N + 1). Then, as N — oo, we have

Gt + 1)
dU = V(U)g —aV(=1) pra?/2+atg—a?/2—a(s+t-1/2) T 1 1
/G(N) AUy </G(N)e v)e Gla+t+ 1)( +olb),

(3.47)
where s and t depend on the group G(N) and are given by

Sp(QN):s:t:%, O(2N):s:t:—%, O(2N+1):s:—t:%.

Note that the asymptotic behaviours of the integrals fG( N) eV W)U in equations (3.46) and
(3.47) are given by Szegé’s and Johansson’s theorems, respectively.

3.2 Relations between ToeplitztHankel determinants and

minors

We now turn to some computations exploiting the determinant and minor expressions for the
group integrals introduced in section as well as their symmetric function formulation.
3.2.1 Factorizations and group integrals as rectangular characters

Theorem 6. We have
/ FU)U = / FUYAU / FU)AU
U@N—1) Sp(2N—2) O(2N)

1 1
== U)dU -U)dU + - U =U)dU,
2 /0(21\/1) 1) /O(2N+1) f=U)U 2 /O(2N+1) A )/O(2N1) f=0)

/ FU)U = / FUdU / F(—U)dU
U(2N) O(2N+1) O(2N+1)
1 1

== U)dU U)dU + - U U)dU.
2/Sp(2N) 1) /O(2N) 1) +2/Sp(2N2)f( )/O(2N+2) 1)

Proof. The theorem follows immediately after expressing the above integrals as the Toeplitz and
ToeplitztHankel determinants (3.7)-(3.10)),(3.12) and noticing that these determinants satisfy
the corresponding identities, see e.g. [191]. O

Theorem 7. Letx = (x1,...,xx) be some variables, and let \ be a partition satisfying [(\) < N
and \1 < K. We have

K
/ Xgp(QN)(M)E(xl,...,xK;M)dM: Hxév SPLy (W) (1, TK) (3.48)
Sp(2N) j=1
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A . even
/0(2N) XO(QN)(M)E($17...,33K, Hx O nc /\,)(xl,...,xK) (3.49)
A : 1)AHEN B -
X M)E(z1,...,2Kk; zi' | o n—x1,...,—TK),
/0(2N+1) 0N+ (M)E (21 M)dM H o (-~ )
(3.50)

where L g (X') is the partition given by (2.17)).

Proof. Let us proceed with the symplectic case. We start from the case y = @ of the symplectic

integral in theorem |l which in sight of the Fourier coefficients of the function E(x1,...,zx;2)
equals
/Sp@N) Xgp(QN)(M)E(xl, ooz M)dM
K N
= det H T (€K+j+A;—k(JU, 7t — €K+j+>\§+k($,x71)) :
Jj=1 4, k=1

where we have denoted 2! = (:1:1_1, e :cl_(l) Using (3.37) we see that this determinant can
also be expressed as

N
K

H Lj (eK*ANHfj*jHC(x?xil) - eK*ANHfj*j*k(maxil)) )
Jj=1 g k=1

which, due to the Jacobi-Trudi identity , coincides with the right hand side of .

Identity follows analogously. Let us turn however, to identity , as it requires
some more computation. As in the symplectic case, using the Jacobi-Trudi identity , the
fact that ex(x,1) = ex(x) + ex_1(x), and identity we obtain

H:E O%Cff]i}( X)( x)

1 K :
-1 -1
= 3 det H T, <€K—)\;—j+k(*xa —z 1)+ eK_)\;_j_k_A'_Q(*ZE, —x 7, 1))
Jj=1 g k=1
1 N
-1 -1
= 3 det 1_lej (GK_)\;_j+k(—fE, -z )+ eK—)\;—j—i-k—l(_x, —z )
‘]:
-1 -1 N
+exx—jk+2(—2, —27) + exxr—jp1(—x, — ))) .
J.k=1
1

N
—1 -1
= —det ij <CK+j+>\§fk(_$7 ) + expjanr -kt (T, —2T)
j=1
N

+ ek tjrar+h—2(—, —z7 1) + K +jxr+h—1(— 2, —x_1)>>j A



46 Schur Averages in Random Matriz Ensembles

Adding (—1)7** times the k-th column of the last matrix above, for each k = 1,...,5 — 1, to the
j-th column, for each j =2,..., N, we obtain

N
K

K
H xév ooLcﬁK(A,)(—a:) = det H T, <€K+j+/\;_k(—I, —x ) + EK+NT+j+k—1 (=, —x*1)>
j=1

J=1 k=1

Using the case p = @ of the odd orthogonal integral of theorem [] and extracting the minus
sign from the elementary symmetric polynomials in the last determinant above we arrive at
(13.50]). O

In particular, theorem [7]implies that the determinants of the corresponding Toeplitz+Hankel
matrices in the left hand sides of the theorem can be expressed as the specialization of a single
character associated to the irreducible representation of the corresponding group, indexed by a
rectangular partition. This was first observed in [58] and has been generalized to integrals over
other ensembles, see for instance [150, [151]. Combining this fact with theorem [6] we obtain the
following result.

Corollary 3. The following relations hold between the symmetric functions associated to the
characters of the groups G(N)

8((2N_1)K)($1, ce ,xK,:pl_l, .. ,.CL‘I_{I) = Sp((N_l)K)(IEh ce ,.TUK)Of})Ve;T(L)(wl, cee ,xK)
(EDNE ( odd _
= 5 (N—1)K)\ L1, >xK)0(NK)( xy, > -rK)
(GROREr odd
+ 9 O(NK)(J:lu-"vxK)O((N 1)K)( Z1, 7_$K)7
5((2]\])1()(1‘1, Yy LK,y ,$;(1) = (_1)NK0(()jd\[dK)(xla .. .,ZL‘K)O€?\[dK)(—$1,. ) —I‘K)
1 even 1 even
:isp(NK)(:nl,...,xK)o(NK)(:Bl,...,a:K)+§sp((N,1)K)(1:1,...,:UK)O((NH)K)(xl,...,xK).

The first and third identities in the corollary appeared before in [54]. There exist also
identities expressing the sum of two Schur polynomials indexed by partitions of rectangular
shapes in terms of orthogonal and symplectic Schur functions, as well as some other
generalizations of these identities, see [54] [13] [14], but the second and fourth identities in the
corollary are new to our knowledge.

3.2.2 Expansions in terms of Toeplitz minors

Theorem 8. The integrals (3.2)) verify

/SP(QN) fU)dU = 2LN Z (_1)(|p1|+|pzl)/2/ XPUI(N)(Uil)Xl[)JQ(N)(U)f(U)dU7

p1,p2€R(N) U(N)
1
[ g =gy S ol [ g G, )V,
O(2N) 2 ST (N) U(N)
1
S _1)o1[+lo2]+p(a1)+p(o2))/2 o1 —1\. 02
/| e O = 5 EEZS(N)< 1) / o ¥ OO O O
01,02

Proof. The main idea in the proof is that the determinants det Mgy, whenever G(N) is one of
the groups Sp(2N), O(2N) or O(2N + 1), contain as a factor the determinant det My, as can
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be seen in formulas (3.3))-(3.6)). Hence, as a consequence of the definition (3.1]), one can see the
integrals over the groups G(IV) as integrals over U(N) with an additional term in the integrand.
Moreover, these additional terms can be expressed as Schur functions series as follows [147]

e osan) [T Tl s T[0-41= [T 3 CoMPian o
det Mywvy(2) j Jk 117 PRy e AN

o,
i
Il
.
A
ol
T
o
i
Il
=)
m
&
2

det MO(QN)(Z) al N+1 Al . —N+1 Ir1/2
Tt 2 0 s T =205 50 (0ot o),
U(N) j=1 j<k j=1 j=1 TET(N)
det M0(2N+1)(2’) _ ﬂz N+1/2 H(l oy )ﬂ(l _ )
det MU(N)(Z) - J N Ik !

<
Il
—
<
A
ol
<
Il
-

N+1/2 Z (=) Uol+POD/2g (21 . 2y),
ceS(N)

I
=
Ql\z

<.
I
—

where R(N),S(N) and T'(N) are defined in (3.35)). Substituting these formulas into (3.2)), for
each of the groups G(N) = Sp(2N),O(2N),O(2N + 1), one obtains the desired result. O

Thus, we see that the integral of a function over one of the groups G(N) can be expressed
as a certain sum of integrals of the same function over U(XN) with Schur polynomials on the
integrand. Note that the integrals in the right hand sides above are symmetric upon exchange
of the partitions indexing the Schur polynomials. Since there are exactly 2V partitions in the
sets R(N) and S(N), and 2¥~1 in T(N), thiﬂ implies that there are at most 22V~ different
terms in each of the sums.

According to identities —, the integrals and twisted integrals over the groups G(IV)
can be expressed as determinants and minors, respectively, of certain Toeplitz+-Hankel matrices.
Therefore, theorem |8 translates to the following result involving only the aforementioned
matrices.

Corollary 4. Let f be a function on the unit circle which Fourier coefficients verify di = d_y.
Given two partitions X\ and p, we denote the Toeplitz minor generated by f and indexed by A

and p by

A, N
‘DN#(f) = det (dj—)\j—k+ﬂk)j7k:15

as in [50]. We have

det (d;— — djx) 3y = ot N (my)lelteb2prie ),
p1,p2€R(N)
1 T1T:
det (dj + djx—2) )y = N2 S (cnmimb2pm p),
71,m2€T(N)
1 g10
det (dj—x — dj—&-k—l);\,[k:l =N Z (_1)(|01|+\02\+p(01)+P(02))/2DN1 2(f).
01,02€S(N)

2'Together with further symmetries of the integral; for instance, Jown 5@y (U™ N)sony(U)f(U)AU =
fU(N) f(U)dU for every a > 0.
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The minors appearing in the right hand sides above fit in the Toeplitz matrix generated by f of
order 2N + 1, 2N and 2N — 1, respectively, and the sums have 22N~1 different terms, as in
theorem [8.

For example, taking N = 2 in the first identity above we obtain the expansion

Sllo—do di—ds| _|do a| |d ai|, |as do| |4 do
di —ds dop—dy - di do ds dy dy dy dy dy
Lddo| |do ] [do ds| |ds d

dy d3 d3 do ds dy dy d3|’

where all the determinants in the right hand side above are minors of the Toeplitz matrix
(dj—k)?, w—1- Analogous computations lead to expansions of minors of ToeplitztHankel matrices
as sums of minors of Toeplitz matrices (equivalently, expansions of twisted integrals over
Sp(2N), O(2N) or O(2N + 1) in terms of twisted integrals over U(N)), weighted with
Littlewood-Richardson coefficients. However, the resulting expressions are rather cumbersome
and we do not pursue this road further.

Setting f(z) = E(x1,...,Tk;2) in theorem [8] and making use of theorem [7| we also obtain
the following result.

Corollary 5. The characters of G(N) indexed by rectangular shapes can be expanded in terms
of skew Schur polynomials as follows

1 _ _
sp(NKy (150 TK) = oN Z (—1)“"1|+|p2|)/2s((KN)+p2/p1)/(:1:1, TR, T T,
p1,p2€R(N)
even 1 T T _ _
O(NK)(iL‘l,...,l'K):W Z (—1)(| 1H—| 2‘)/28((KN)+7.2/7.1)/(5E1,...,$K,3§'11,...,$K1),
71,m2€T(N)

Ot()jdvdK)Crlv oo 7xK) -

1 g (o} g a — —

i Z (_1)(3| 1]+3lo2]+p(o1)+p( 2))/23(([(1\/)_,_02/01)/(:&, TR Lo 7xK1)7

01,02€S(N)

Note that these expressions are different from the classical identities (3.36]).

3.2.3 Gessel-type identities

Another possibility for expressing integrals and twisted integrals over the classical groups in
terms of symmetric functions is available in the form of Schur function series, as the classical
identity of Gessel for Toeplitz determinants (2.15). Let us denote by 5”G(N) (z) the Schur,
symplectic Schur or even/odd orthogonal Schur symmetric function indexed by the partition
v for G(N) =U(N),Sp(2N),O(2N),O(2N + 1) respectively, for this theorem only.

Theorem 9. Let x = (x1,%2,...) be a set of variables. Recall the definition

o0

H(w:2) = [[ —

1—zi2
j=1 J

The following Schur function series expansions hold

H(z;U)dU = ) sy(2)sn (@), (3.51)

G(N) I)<N
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| X O @O0 = 3 spula)stion o), (3.52)
G(N) (V) <N
Z V/)\( ) V/M( ) G(N) = U(N)7
2 1 ()N
(Ul ) () H s D) =
/G(N) ) GN) Z wasy/,{ 5G(N)( x), rest of G(N),
(V) SN K

(3.53)

where the coefficients biu can be expressed in terms of Littlewood-Richardson coefficients ¢

(2.12) by the following formula
= D CorChrCap:

a,p,T

The same expansions hold for the function E(x;z) = H;‘il(l +x;52) (2.9), after transposing the
partitions indexing all the symmetric functions in the above identities.

We remark the fact that the choice of functions above is without loss of generality. Indeed,
recall that the Fourier coefficients of the functions H(z;z) and E(z;z) are the complete
homogeneous symmetric functions hg(x) and the elementary symmetric functions eg(x)
respectively . Both of these families are sets of algebraically independent generators in the
ring of symmetric functions, and thus one can specialize them to any given values to recover any
function with arbitrary Fourier coefficients from H(z;z) or E(x;z), as discussed after theorem
m

A similar proof of identity for G(N) = Sp(2N), O(2N) can be found in [30]. See also
[1211, [19], 20] for earlier related results. Different Schur and symmetric function series for some
of these integrals can also be found in [I8] [143].

Proof. The expansion for G(N) = U(N) is the aforementioned result of Gessel [107],
which extends easily to the other groups. We sketch the proof for convenience of the reader.
Denote the Toeplitz matrix of order N generated by a function f by Tn(f). It is well known
that if two functions a, b satisfy

=Y art, b)) =Y beeh (3.54)

k<0 k>0

where z = €, then the Toeplitz matrix generated by the function ab satisfies Ty (ab) =
Tn(a)Tn(b). It follows from the Cauchy-Binet formula that det T (ab) is then a sum over
minors of the Toeplitz matrices of sizes N x oo and co X N generated by a and b, respectively.
The proof is completed upon noting that if a(z=1) = b(z) = H(z;2) then by the Jacobi-Trudi
identity the minors appearing in the sum are precisely the Schur polynomials appearing
in , since the Fourier coefficients of the function H(xz;z) are the complete homogeneous
symmetric polynomials hy(z). The proof for the other groups is analogous: now the factorization

THy (ab) = Ty (a)THy (b)

holds for each of the Toeplitz+Hankel matrices T'H n (b) appearing in (3.8)-(3.10) and functions
a,b satisfying (3.54). The result then follows from the Jacobi-Trudi identities (3.18))-(3.22])
(although some additional computations are needed in the odd orthogonal case, as in corollary

3).
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Identities , and - for U(N), follow analogously from the generalization of
Jacobi-Trudi formula for skew Schur polynomials. Identity (3.53) for the rest of the groups
follows from ([3.52)) and the fact that the characters Xé;( N) follow the multiplication rule [144]

Xé‘( )( Xg(N) ZbAuXG (3.55)

for G(N) = Sp(2N),O(2N) and O(2N + 1) (recall that Xg(N

groups).
The corresponding identities involving the function E follow analogously, using the dual
Jacobi-Trudi identities instead (or, equivalently, using the involution hy — eg) in (3.51)-(3.53)).
O

)(U) = X)(‘;(N)(U_l) for such

Observe that if we replace the left hand sides of and by their expression as
a single character of G(N), given by and theorem [7] the above theorem gives Schur
function series expansions for such characters, which are different to those obtained in corollary
Yet another expansion for symplectic and even and odd orthogonal functions indexed by
rectangular shapes can be obtained by Laplace expansion of the corresponding Toeplitz+Hankel
determinants, as done in theorem [2| for the Toeplitz case.

3.2.4 Large N limit

We will be interested in the following in computing the N — oo limit of integrals of the
type fG( N) f(U)dU. This can be achieved by means of the strong Szegé limit theorem and
its generalization to the rest of the groups G(N) due to Johansson —, or equivalently,
by means of theorem |§| and the Cauchy identities — (see section below for such
explicit computations). It turns out that the twisted integrals share a common asymptotic
behavior.

Theorem 10. Let \ and u be two partitions. We have

— Joon xeony U DxGpn O H
lim = E s)\/,, u/V
N—o00 fG(N) H(CE,U)dU

z), (3.56)

for any of the groups G(N) = U(N),Sp(2N),O(2N),O(2N + 1).

Note that if there is only one character in the integrand above the right hand side simplifies
to a single Schur polynomial. As before, the theorem also holds for the function E(z;e) =

H;‘;l(l + xjeie), after transposing the partitions indexing the skew Schur polynomials above.

Proof. If G(N) = U(N), the result is the content of theorem |1} A proof for the rest of the groups
G(N) goes as follows. Start by considering a single character in the integral (3.56]). Then, using
the Cauchy identity (3.24]) and the restriction rules (3.32))-(3.34) we obtain

B B a
Voo (O H chsnla) [ i UG (00,
L X - 3 S dtusta) [ xeoo©m

V) <N «

where ) denotes that the sum on /3 runs over all even partitions for G(N) = O(2N),O(2N +1),
and over all partitions whose conjugate is even, for G(N) = Sp(2N) (we say that a partition is
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even if it has only even parts), and the sum on « runs over all partitions. Taking N — oo in the
above expression and using the orthogonality of the characters with respect to Haar measure we
obtain
: H

Jim o Xy (U H (w;U)dU = s, (x 235 (3.57)
This gives the desired result upon noting that the sum on the rlght hand side is precisely the
N — oo limit of the integral f (x;U)dU. The result for the mtegral - ) twisted by two

“

57)) and the multiplication rules and . ]

In particular, we see that the N — oo limit of the average is independent of the particular

characters then follows from (3.

group G(N) considered. This was noted in [64] for a single character, which automatically
implies the same for two characters for G(N) = Sp(2N),O(2N),O(2N + 1). Indeed, since
Xé‘;( N)(U_l) = Xé;( N)(U ) for these groups, one can expand the product of two characters in the
integrand using the multiplication rule , use theorem [10{on the resulting averages and then
use again to recover (3.56). However, this is not immediate for G(N) = U(N), as the
characters in the integrand are not evaluated at the same variables.

We remark that the convergence above is in the ring of symmetric functions, as in theorem
Likewise, specializing the variables z (or any family of generators in the ring of symmetric
functions on these variables) to a particular function such that the limit limy_, fG( n (U)dU
is finite we obtain the asymptotic behaviour in for the corresponding specialization of the
right hand side, where the skew Schur polynomials are replaced by their specializations .

We also have an analogous result to corollary [2] for symplectic and orthogonal Schur functions.

Corollary 6. Let A be a partition with [(\) < K. We have

]\;E)noo SpLN’K()\)(xla s 7xK) = <]\}1~I>noo Sp(NK)(xh s xK)) S)\(‘Tla cee ,ZL'K),
]\}i_r)rloooivj\c;fi((x\)(xlv v ,.I'K) = <]\;i_r>nooo((i]1<feg)(xlv oo .’IIK)) S/\(.’El, v 7mK)7

: odd — (_ 1\ : odd
J\}glloooLN,K(A)($1""’$K) = ( 1) <A}E>HOOO(NK)(SL'1,....$K)> Sk(l‘l,...,{L‘K).

The proof follows after combining the case p = & of theorem [I0] with theorem [7] as in the
proof of corollary 2 Alternatively, it can be seen as a consequence of corollary [2] and the fact
that the highest degree term in the Schur polynomial expansion of symplectic and orthogonal
Schur functions is precisely the Schur polynomial indexed by the same partition, as can be seen
from , for instance.

3.3 An exactly solvable model: Jacobi’s third theta function

We particularize the previous results to the case of a completely solvable model, for both finite
and large N. The objects under study appear in several contexts, such as G(N) Chern-Simons
theory on S3, the skein of the annulus [I60] and Fourier and sine/cosine transforms [104].

Let ¢ be a parameter satisfying |¢| < 1, and consider Jacobi’s third theta function

SR = (giq OOH (L4 22) (1 + g2, (3.58)
keZ Jj=1
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where (¢;q)oc = [[72;(1 — ¢’). We then define f(U) for U € G(N) as in (3.1]), with
f(z) =0(2) = E(¢"?,¢**, .. 127, (3.59)

where FE is given by (12.9)). For this choice of function, the integral
Zow) = @) [ Oy (3.60)
G(N)

recovers the partition function of Chern-Simons theory on S? with symmetry group G(N), and
the coefficients in the corresponding Toeplitz and Toeplitzt+Hankel matrices are di = qk2/ 2,
according to . After a matrix model description was obtained for Chern-Simons theory on
manifolds such as S or lens spaces [148], the solvability of the theory has been well known, and

a number of equivalent representations have been obtained [182] [I70]. Moreover, the averages

1
_ 7
W = 7o | oo @RI

and

Wawawy = Z(;l(N) /G(N) Xg(N)(U—l)Xé(N)(U)@(U)dU,
where [(N),l(n) < N, are, respectively, the Wilson loop and Hopf link of the theory. As we will
see below, the formalism of Toeplitz and Toeplitzt=Hankel determinants and minors provides
an elementary mean for computing these objects. Moreover, as will be clear throughout the
rest of the chapter, the symmetric function structure behind these models allows a unified
approach in their study, since properties or explicit results for the different groups G(N) will
follow from completely analogous reasonings. This is particularly useful in sight of the lack
of results concerning the partition function and observables of the symplectic and orthogonal
theories [176].

3.3.1 Partition functions of G(N) Chern-Simons theory on S3

Unitary group

We start by reviewing the simplest and best known case. We obtain from the determinant

expression (i3.7))

N—
N . .
Zy(wy = det (VPN = g==17 det ()N, = [ ¢~ H (1-¢)
i<k j=1

where the third identity follows from the fact that the second determinant above is essentially
the determinant of the matrix My (ny(2) (3.3), with z; = ¢/~ 1.
The large N limit of this expression is given by Szeg6’s theorem, which shows that as N — oo

oo 1 qk
Zkl—q)

The same formula can be obtained using Cauchy’s identity (3.24)) in formula (3.51)), as explained
n [I85].
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Symplectic group

We can proceed analogously for the rest of the groups. The determinants will now be
specializations of the corresponding matrix Mg (n)(z) with z; = ¢’, which can be computed
explicitly by means of the formulas (3.3))-(3.6]). For the symplectic group we obtain

. . N
Zsp(en) = det (q(j_k)2/2 - q(]+k)2/2) = =17 det(g " — ")

7,k=1
N—j . . N L =1 2N-1 . [2N41—j N i 2N . .
=[Ja-HVIJJa-H=T I a-H = IJJa-¢¥) =] - ¢V,
j=1 j=3 j=N+1 Jj=1 Jj=1
where . 1
N-%-2, joddl<j<N
N_%a jevenalgjgNa
=1 2
N—§+§, ]Odd,N—FlSJSQN,
N—%Jrl, jeven, N+1<j<2N.

As with the unitary model, this result is exact and holds for every N, and coincides with the
expression obtained in [176] for the large N regime. We see that the partition function of the
symplectic model is obtained as the product of the partition function of the unitary model and
extra factors.

For the large N limit, we obtain from Johansson’s generalization of Szeg6’s theorem
that as N — oo

>~ k
ZSp(2N)NeXp< Nzk‘l—q Zk‘ 1_q kal_qq2k>.

Again, the same result is obtained using Cauchy’s identity for symplectic characters (3.25)) in
equation (3.51]). Notice that in the large N limit, the partition function for the Sp(2N) model
is a factor of the partition function of the U (V) model, while precisely the opposite occurred at
finite N

Orthogonal groups

Proceeding analogously, we see that by identity

1

7,k=1
N—-1 N-1 L, 2N-3 Nt 2N-3
I [La-) = [T a7 = [T a-g) 0,
j=1 j=1 J=N =1
where ) -
N—%+? jodd, 1<j<N-1,
N—l, jeven, 1 <N —1,
, 2
€(j) = i
N-2-, jodd, N <j<2N -3,
N—%—l, jeven, N < j<2N —3,
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in agreement with [176]. Again, the partition function contains as a factor the partition function
of the unitary model. For O(2N + 1) we have

A . N
Zo@N+1) = det (Q(J—k)2/2 _ q(y+k—1)2/2>

Jik=1
_2N2 N
:Hl_q NJHl_q H l—q g1/2
7j=1 j=N+1 7=1
2N -2 N
:H e(JH J1/2
j=1 j=1
where
J 1 . .
T 5 9o ]Odd51§]§2N_27
N 2 2
N—i, jeven,1 < j<2N —2,

in agreement with [I76]. We see once again that the partition function can be seen as the
partition function of the unitary model times an extra factor. In this case, also factors with
half-integer exponents (1 — ¢7/2) are present.

Let us also record here the value of the closely related integral for this choice of
function, for completeness. We have

2N-3 ) N / N 1+q] 1/2)
N iNe(i -1/2)

q;qoo/ O(-U)dU = 1—¢)V 1+ ¢’ = Zo(

(%9) O(@2N+1) =0 H( ) H( OQN“]H_; —g12)’

J=1 Jj=1

where €(j) is as in Zpon41)-
For the large-N limit, we obtain from Johansson’s theorem (3.43),(3.44) that as N — oo,

~ ex — — — B —— [ S
O(2N) ™ &P Lkl —qF 24 k(T -gf)? A2kl )
& 1 qk;—l/2
sy ~ o9 (N34 T+ Y - Y g )

One can verify directly from the expressions obtained that in the large N limit we recover
the partition function of U(N) as the product of the partition functions of Sp(2N) and O(2N),
consistently with corollary [6]

3.3.2 Gross-Witten-Wadia model

The factorization properties obtained in theorem [6] hold for any choice of function, and
thus are applicable to gauge theories with other matrix model descriptions, such as the
Gross-Witten-Wadia model [I12), 193]. This is of particular interest in sight of the renewed
interest in this topic [164] [5, 6], 125].

The partition function of this model with G(N) symmetry is given by

ZEWW (8) = /G o fomnw @)U
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where

Jaww (z) = P+,

Its large N behaviour follows from the strong Szegé limit theorem and its generalization to the
rest of the groups G(NN), for instance

. CWW a\ _ B2
ngnoo Zyny (B) =e
A similar analysis as in the Chern-Simons case can be performed for this choice of function.
Moreover, since all but two of the Fourier coefficients of the potential in the function foww
vanish, often simpler relationships follow from the results in the previous sections. For instance,

we see from theorem [6] that

ZG i (B) = Z& a1y (B) Z8(an 11y (=)

and, using also the asymptotic expressions (3.42) and (3.43)), we find that

Ziion 1) (B): ZG tah (B) ~ ZSy(any (B) 26 3xh (B) = (Z6 3y (B))? = (Zgpiany (B))*,

as N — oo. This relationship also has a XX spin chain interpretation [192], but is however
modified in the usual double scaling limit [I61), 95]. At any rate, it seems that large N results
for the unitary Gross-Witten-Wadia model can be translated to the O(2N) and Sp(2N) models.
It would also be interesting to exploit the factorizations in theorem [6] in other contexts, taking
into account the known connections of the group integrals Zg(I/JVV‘)/V with Painlevé equations

[96, [99] 125] or increasing subsequence problems [I8].

3.4 Wilson loops and Hopf links of G(N) Chern-Simons theory
on S°

We now turn to computing Wilson loops and Hopf links of Chern-Simons theory on S% with
symmetry group G(N), for each of the classical groups. Let us fix two partitions A and p of
lengths [(A), (1) < N throughout the rest of the section.

3.4.1 Unitary group

The insertion of a Schur polynomial on the unitary model gives

)

(@) /U IO = der(qsF I

N

= T (B2 (N =4 D +5%) gy (qu(k:+,u2))N

jk=1"

We see that the determinant in the right hand side above is now essentially the minor M(’j( N)(z)
in (3.13) after setting 2; = ¢~7. This yields

SN g (pg /2—5+1)

(Wulvwy =4 su(lq, .., qV ), (3.61)

which, up to a prefactor of a power of g, recovers the original result in [78]. We recall that
the above specialization of the Schur polynomial is a polynomial on ¢ with positive and integer
coefficients [147].
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Inserting two Schur polynomials in the integral we obtain

J.k=1

(@:0)Y /U o U0 = det(qUH—R-H*/2)N,

S (A3/2403 /24 (N —=5) (N 1) +(=1)?) det(q~ VI HX)(N=ktur) )N

=9 Jik=1"

The determinant is now a minor of Mé( ) (z), obtained by striking some of its rows. That is, a

minor obtained by striking rows and columns of the Vandermonde matrix My (n) (1,4, .-, gv 1,
as noted in [I60]. One can express this in terms of Schur polynomials by setting z; = gV It

in this matrix, which yields

S (A /2403 2= (G- 1) (A1)

Wwuwy = ¢+ N=tzmwy,

Su(l, q,--- 7qN_1)S>\(q_H1’q1_M27 < q

The above expression can also be written in terms of the quadratic Casimir element of U(N),
which we denote by C3 () = 320 Aj(A; + N — 2j + 1), as follows

(FE=DOAHD 0 )+ ) /2

su(l,q, ... g Dsalg g F2, gV TN (3.62)

N=1) and the rest

Further interest in the minors of the Vandermonde matrix M) (1,4, --.,q
of the matrices Mgy arises from their relation with Chebotarév’s theoren@ and the recent
related advances in the topic [104].

We also see that a phenomenon already present when computing the partition functions
takes place when computing averages of Schur polynomials. For the theta function, integrating
the determinant det Mg(n)(z) in amounts essentially to computing the determinant of
the matrix Mg(n)(z) itself, after a certain specialization of the variables z. We also see that
the average of one or two Schur polynomials is expressed precisely as the corresponding Schur
polynomials, after some specialization to the same number of nonzero variables as the size of
the model.

This property has been noted in [156} [159] for models of Hermitian Gaussian matrices. It is
argued in [I59] that “the main feature of Gaussian matrix measures is that they preserve Schur
functions”. Indeed, we shall see that the same property holds when changing the symmetry of
the ensemble from unitary to symplectic or orthogonal, by simply replacing Schur polynomials
by symplectic or orthogonal Schur functions.

3.4.2 Symplectic group

Performing analogous computations to the unitary case, we see that

(q’ q)&/g o) SpA(U)SpM(U)@(U)dU = det (q(j+)\§—k—/$2)2/2 . q(j+>\§+k+ll£)2/2)§\’[k:1
(2

—q ;-\/:1 (A?/Q+u§/2+(1\7—j+1)(>\j+uj)+j2) det (q—(j'*‘)\}')(kﬂl;;) _ q(j+>\§)(k+%))§\fk:1’

which leads to

(NOAHHD+CEPEN )+C5PEN (1)) /2

— 2 N 14+ N
(Wan) spen) = 4 spu(@, 0%, -, g™ )spalg YL g Y,
(3.63)
22The matrix Myn(1,q,. .., qul), for ¢ a p-th root of unity, is the matrix associated to the discrete Fourier

transform (DFT), and Chebotarév’s classical theorem [I79] states that every minor of this matrix is nonzero if p is
prime. An analogue of this theorem for the matrices of the discrete sine and cosine transforms, which correspond
to Mspany(q,---,q") and Mo@ny(1,...,¢" ") respectively, has been proved recently [104].
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where we have identified CQSp(zN)()\) =i Aj(Aj + N —2j + 2), the quadratic Casimir element

of Sp(2N). As before, the second identity in follows from the fact that integrating the
function © we recover a (row and column-wise) minor of the matrix Mg, oy (2) itself, specialized
to z; = ¢/. We note that A and p are interchangeable in the above formula, and also that setting
one of the partitions to be empty we obtain a formula for the average of a single character

(W) span)-

3.4.3 Orthogonal groups

For the orthogonal models we have

N

1 S r ST r
(q; q)]ovo/ Oiven(U)Ozven(U)@(U)dU — ~det <q(j+)\j—k—,uk)2/2 + q(J+)\j+k+uk—2)2/2)
O(2N) 2

7,k=1

) , 4 ' N
- %qzﬁil(Ai/““?/“(’\’*ﬁ)(/\j+#j)+(kl)2) det (Q*(N*H/\j)(kawk) + q(N*J+)\j)(N*k+/U€)>j k=1’
which can be rewritten as
O(2N) O(2N)
<W>\M>O(2N) _ q(N(|)\|+WD+CQ (M)+Cq (M))/Qozven(L q,.. ’qN—l)Oc/a\ven(q,uN’ o ’qN—l-‘r#l),
(3.64)

where CQO(QN)()\) = Z;VZI Aj(Aj + N —2j) is the quadratic Casimir of O(2N). As before, setting
one partition to be empty we obtain a formula for the Wilson loop (W#>O(2N). For the odd
orthogonal group O(2N + 1) we obtain

N

oo I3

(@) / 08T 0% (17O (U7) T = det (q(jJr)\;fkf,LZ)?/Q _ q(j+)\§+k+u};f1)2/2> |
O(2N+1) Jk=1

— e (/20 2 (N =G4 1/2) Ay ) +(1/2)%)

x det (qf(N*j“j“/2)(N*k+uk+1/2) _ q(N*jJr/\j+1/2)(N*k+ﬂk+1/2))].Vk .
‘77 =

which yields
_ (V12D +CS CY T )40 BN Y (1)) /2

> Ozdd(ql/Z, q3/2’ o ’qul/Z)Og\dd(ql/QJruN’ q3/2+,uN71’ o ,qN71/2+,LL1)’

with O @Y V() = 27 Aj(A; + N — 2+ 1/2) the quadratic Casimir of O(2N + 1).

3.4.4 Giambelli compatible processes

The classical Giambelli identity expresses a Schur polynomial indexed by a general partition A as
the determinant of a matrix whose entries are Schur polynomials indexed only by “hook-shaped”
partitions. More precisely

S(al,...,ap|b1,...,bp)(x) = det (S(Qj\bk)(x))?k:p

where we have used the Frobenius notations for the partitions in the above identity (see
the beginning of section [3.2.2). In [39], the notion of “Giambelli compatible” processes was
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introduced to refer to probability measures on point configurations that preserve the Giambelli
identity above, in the sense that

(S(a,mraplbrbp)) = A€t ({S(ab))) 5 k=1

where the bracket notation (s)) denotes the average of the Schur polynomial A with respect the
corresponding probability measure. Since then, several matrix models and gauge theories have
been proved to be Giambelli compatible, including biorthogonal ensembles [I83], ABJM theory
[113], and supersymmetric Chern-Simons theory [83] [152].

Using the formulas obtained in the previous sections, one can easily prove that the
matrix models corresponding to the theta function with G(N) symmetry are Giambelli
compatible in a slightly generalized sense. Indeed, we have seen that the average of a
character over these ensembles can be evaluated as the precise same character, with a certain

specialization, times a prefactor in the parameter ¢ (equations (3.61)),(3.63)),(3.64)),(3.65)). This
fact, together with the Giambelli identity for the characters of the groups G(NV) [2, [101]

p

ai,...,ap|bi,...,b a;lb
Xy ) = det (xéiny )

and some straightforward computations to take care of the prefactors in ¢, let us obtain the
following conclusion.

Theorem 11. The Wilson loops of Chern-Simons theory on S3 wverify the following Giambelli

identity
N

Wiar,.aplbr,...bp)) vy = det ((W(ajwk))c(m)jk:l.

That is, the Giambelli identity is preserved, after replacing the Schur polynomials in both
sides of the identity with the corresponding character Xé:(N)' For G(N) = U(N) this is a
known result, as we are considering an orthogonal polynomial ensemble (which were proven to
be Giambelli compatible in [39]). However, for the rest of the groups G(N) this provides an
example of an ensemble with non unitary symmetry that is Giambelli compatible.

3.4.5 Large N limit and Hopf link expansions

The expansions found in theorem [§] have particular consequences when considering the
Chern-Simons model. Considering the function © in this theorem and taking into account the
results in section we see that at finite N the partition functions of Sp(2N),O(2N) and
O(2N + 1) Chern-Simons theories can be expressed as sums of unnormalized Hopf links of the
unitary theory. On the other hand, theorem [10| implies that

din (Waaen = > sour @262, sy (677,62, (3.66)

v

for each of the groupﬁ G(N). Note that if there is only one character in the average the above
formula simplifies to

lim (W)am = sw(d/?,¢%2,...). (3.67)

N—o0

23The partitions in (3.56) appear now conjugated, since the function is © is expressed as a specialization of
E(x;e').
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Putting these two facts together we arrive at the following expansions

Zsp(2N 1
L ~ o Z (—1)(|p1|+‘p2‘)/2<Wp1p2>G(N)a
Zy(N 2
() p1,p2E€R(c0)
Zo(2N) 1 (J71 4|2l /2
~ N_1 Z (—1) 1 2 <WT1T2>G(N)
ZU(N) 2 71,m2€T(00)
Zo(2N+1 1 o1|+|oal+p(c o
B Y (B sy gy
U(N) 01,02€5(c0)

as N — oo, where the sets R(c0),S(0c0) and T'(oo) are defined as the sets R(N),S(N) and
T(N) respectively (see theorem [§)) without the restriction oy < N — 1. That is, at large N
the partition functions of the symplectic or orthogonal theories can be expressed as that of the
unitary theory with an infinite number of corrections, which correspond to Wilson loops and
Hopf links, indexed by partitions of increasing complexityFE] (and which are the same in this
limit for each of the groups G(N)). Previous examples of partition functions of Chern-Simons
theory expressed as sums of averages of characters can be found in [116] 117, 45 [149].

3.5 Fermion quantum models with matrix degrees of freedom

Some interest has arised recently in the study of fermionic quantum mechanical models with
matrix degrees of freedom [I0), 184], [I34]. These models appear as specific instances of tensor
quantum mechanical models [I34] and have distinctive spectrums of harmonic oscillator type,
but with exponentially degenerated energy levels, which suggests connections with other solvable
models and to integrability.

These spectra can be computed analytically, see for instance [I184] [61], based on the matrix
model description obtained in [I0], and also [134], where their identification of the Hamiltonian
with quartic interactions in terms of Casimirs was used. We compute here averages of insertions
of characteristic polynomial type in the G(N) Chern-Simons matrix model. This is in analogy
with the model in [10], which described U(N) x U(L) fermion models in terms of the average
of the L-th moment of a determinant insertion in U(N) Chern-Simons matrix models. One
motivation for this is that more complex models than the one in [10} [184], with symmetries such
as SO(N) x SO(L), are given in [134] with qualitatively the same spectra, after numerically
diagonalizing the Hamiltonian.

The models we study correspond to the average of the function

. L
@(L,m)(eie) _ (2 cos 0 —l—;m) @(ew)

over the groups G(N), where L is a positive integer and m is a real parameter. In sight of (3.1))
and the identity 2 cos 2 g =1+ ¢€"|, we see that for U belonging to any of the groups G(N) we
have

N
oELm () = H (14 e ™) (1 + e me10)E, (3.68)

24Note that the empty partition belongs to each of the sets R(c0), S(c0) and T'(co), and thus the first term in
the sums is always a 1.
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where the e are the nontrivial eigenvalues of U. We will denote this average by

(Lom) _ 1
6™ = Zom

/ oLm) (1) du,
G(N)

where Zg(yy is as defined in (3.60). Taking the limit m — 0 of the unitary model Z[(]L(’;;;) we

recover the compactly supported analogue of the model considered@ in [I84]. In the unitary
case, this corresponds to the average of a characteristic polynomial over the Chern-Simons model.
Averages of characteristic polynomials over the classical groups have attracted interest over the
years, in particular for their applications in number theory, since the appearance of the seminal
works [I32) [133], and in the study of many physical systems, see for instance [47] and references
therein.

3.5.1 Unitary group

Using the dual Cauchy identity (3.28]) twice to expand the product in (3.68) and identity ((3.62)

we obtain

L, _ _ _ _
Zé,(]?)) = eLst,\/(e T e M) s (e e ) (W o)
Aop L L
— el 3 e g (155, (17)q(C2 G )2 (3.69)
A
X 5“(1’(]_1"“7q_(N_l))S)\(q_NN’q_(ﬂN—l"Fl),“"q—(/ﬁl-i-N—l))’
where 1% denotes the specialization z; = --- = z;, = 1. Recall that an explicit formula for

su(1F) is available ([2:1T). Now, since s,(z1,...,zx5) = 0 if [(v) > N, we see that the above
sum is actually over all partitions A, 4 contained in the rectangular diagram@ (LN). Several
nontrivial features of the model can be deduced from this fact.

First of all, we see that Z[(]L(’]Qr;)
terms in this polynomial compared to its relatively low degree on ¢ implies the high number

is a polynomial on ¢'/2 and e ™. The high number of

of degeneracies in the spectrum mentioned above. Figure [3.1] shows some examples where this
phenomenon is apparent. Secondly, using the dual Cauchy identity again we see that in the
limit ¢ — 1 we have

;l_% Z((]L('}G"b)) — eLm(l + efm)QNL'

Up to the prefactor e, this shows the duality between the parameters (N, L) in this limit
[184]. Finally, the expression (3.69)) allows direct computation of the model for low values of N
and L and implementation in a computer algebra system. For instance, for L = 1 we have

N
_ _ 2 N _ _ _
(@) ) = e Y e Mg /2+T/2[r] es( g, ¢ 2 g g YT,
q

r,s=0

where ej denotes the k-th elementary symmetric polynomial ({2.8]).

25 This model is also related with the Ewens measure on the symmetric group, see [I65] for instance.
26See [I55] for recent results on asymptotics on the number of such partitions as L and N grow to infinity.
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Figure 3.1: For each n in the z axis, the y axis shows the coefficient of the monomial ¢"/2 in

ZZ(JL(lzﬁl)’mzo) (left) and Z(L(6)2m =0 (right).

Large N limit

The large N limit of the model can be computed by two different means, depending on the value
of m. If m is nonzero, it follows from (3.69)) and the identity (3.66) that

A}gnoo ZU(N) = elm Zs,\/ mo. ,e_m)sux (e™ ...,e™)
L
XZ 3/2,...)S(H/V)/(ql/z,q3/2,...)
Lm —2m\—L? - 1
=eM(1—e ™) )
k:I:[1 (1 — e—mgh-1/2)2L

where the second identity above follows from standard manipulations of Schur and skew Schur
polynomialﬂ
The above expression is no longer valid in the massless case, m = 0. Nevertheless, the

large N limit of the model can still be computed, using the fact that Z((]IE’]:?)) can be seen as the

determinant of the Toeplitz matrix generated by the function ©£m) (recall identity ) For
m = 0, this function does not verify the hypotheses in Szegd’s theorem, but it can be written as
the product of a function that does verify these hypotheses (the function O, as in section
and a Fisher-Hartwig singularity, recall sections and

According to , we see that the function ©L"=9 corresponds to the product of the
smooth function © (in the sense of Szegd’s theorem) and a single singularity at the point z = —1,
with parameters a = L and § = 0. This implies that as N — oo we have (3.46))

(Lim=0) _ 2 G(L+1)? 1
Zaony =N G H = 1/2)2L(1+0(1)) (3.70)

2"More precisely, we have used the expansion NI C)oSa, the multiplication rule > DoSx = SuSa and
the Cauchy identity (3.24), where the ¢}, are Littlewood-Richardson coefficients.
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Model N=4| N=6| N=28 | Value of ¢
U(N) 1.0018 | 1.0005 | 1.0003 | ¢ =0.1
Sp(2N) 0.9559 | 0.9692 | 0.9768 | ¢ =0.25
O(2N) 0.9726 | 0.9970 | 0.9997 | ¢ =0.33
O(2N +1) | 0.8616 | 0.9631 | 0.9906 | ¢ =10.5

Table 3.1: The table shows the quotient between the numerical value of the spectrums

Z((;L(;#mzo), computed directly by means of the formulas (3.69)),(3.73)),(3.75),(3.76), and the

predicted value given by formulas (3.70]),(3.74),(3.77)). The high rate of convergence is apparent
already at low values of N. The rightmost column shows the value of ¢ at which the spectrum

is computed.

where G is Barnes’ G function. Using its well known asymptotic expansion@ we see that as
L — oo the free energy of the model satisfies

log L
12

U(N—oo —2Llog(\/§, q)oo’

lim log zEm) )~ L log <N> —L?(2log?2 —3/2) —
L—oo L
where we have written the last term as a g—Pochhammer symbo]@ We have considered the
large L limit after the large IV limit; this is non-rigorous but standard in estimating free energies
in the regime where one defines a Veneziano parameteﬂ ¢ = L/N and the double scaling is
¢ = cte for N — oo and L — oco. As we see, the leading term of the free energy vanishes for
¢ =1, and changes sign with ( — 1/¢ otherwise.

Table shows some numerical tests of the accuracy of formula (as well as the
analogous formulas for the rest of the models, see the following subsections) for several values
of g and N.

Let us emphasize that both the symmetric function approach and the Toeplitz determinant
realization of the matrix model prove to be useful for computing its large N limit. Indeed, in
the massive case, the character expansion is immediate and gives a manageable expression of
the model, while the massless case is also readily handled with the aid of a particular example
of Fisher-Hartwig asymptotics.

3.5.2 Symplectic group

We can proceed analogously for the rest of the groups G(N). The expression resulting from
the character expansion is actually simpler in this case, although some extra care needs to be
taken before integrating. Let us start with the symplectic group. First, we use the dual Cauchy

28For any z in a sector not containing the negative real axis it holds that

lo G(z+1)—iflo A+ Zlogom + iji lo 27g+i Batis +0 L (3.71)
& Tp o BAT 2 " 12) 7T 4 T A ak(k + )22 2Nz ) '

where A is the Glaisher—Kinkelin constant and the By are the Bernouilli numbers.

29This type of piece also appears in the free energy of some 4d supersymmetric gauge theories [172).

30Tn analogy with localization, L could be interpreted as number of flavours, but with hypermultiplets describing
fermionic matter, and hence in the numerator in the matrix model. For example, in [3I] we see this type of
insertions in the context of matrix quantum mechanics.
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identity (3.29) to expand the product in (3.68)), obtaining

Zéi’(gn]i,) = elm(1 — e 2m)~LIAD/2 Z e“"msu/(lL)/S o) spu(U)O(U)dU. (3.72)
u p

Since spy(z1,...,2n5) = 0if {(1) — g1 —1 > 2N (as can be seen from (3.18), for instance), we
see that the sum above actually runs over all partitions contained in the rectangular diagram
(L2N+L41) " and therefore is finite. However, we can only use formula and substitute
the integral in by the Wilson loop (W) gsp2n) for those partitions satisfying I(u) < N.
One can bypass this constraint in the following way. It is proven in [I35] (see proposition
2.4.1) that any sp,(U) (seen as a symmetric function, specialized to the nontrivial eigenvalues
of U) indexed by a partition of length {(x) > N either vanishes or coincides with an irreducible
character Xgp@N)(U), with [(A\) < N, up to a sign. One can then substitute those sp,(U) in
by the corresponding xgp@ N)(U ), use formula to write the integrals as the Wilson
loops (W) sp(2n), and then undo the change to recover the (W) gp,2n) indexed by the original
partition p (recall that these coincide themselves with a symplectic Schur function, up to a
prefactor). This yields the formula

Lm m — m

where the sum runs over all partitions contained in the rectangular shape (L2V+L+1). An
analogous analysis to the unitary case can be performed now. In particular, in the ¢ — 1 limit
we obtain

ég% Zéﬁ’(;n]z[) — 6Lm(l + e—m)ZNL

using the dual Cauchy identity . Thus, not only does the (N, L) duality hold for the
symplectic group, up to the prefactor e/, but the model is actually the same as the unitary
one in the ¢ — 1 limit.

Also as in the unitary case, the above sum gives rise to a highly degenerated spectrum. See
figure for an example; explicit instances for lower values of N and L can also be computed
easily. For instance, using the fact that spqr)(21,...,2N) = —spaanvt2—ky(21,...,2N) (which
follows from (3.18))), we obtain for L = 1 the expression

2N+2

2
Zéi(ziv?) —em™(1—c 2m Z ¢~ km g Nk+h—k /zsp( )(q “’qN)
k=0
N
=e™(1 —2m -1 Ze k+1)2m)qu+k—k2/28p(1k)(q7 o qN)
k=0

N
— M Z e—km(l + e~ 2m + e—4m 4ot e—(N—i—k)Qm)qu+k—k2/2$p(1k)(q’ o ’qN).
k=0

We see that the prefactor (1 — e™2™)~! cancels due to the mentioned coincidence among
symplectic characters indexed by single row partitions. The prefactor also cancels for greater
values of L, due to the identity . In particular, this shows that the model is well defined
in the massless limit m — 0, which was not immediate from .
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Symplectic model. N =10, L =1

Even orthogonal model. N =6, L =1
5,000 — ‘ 120 ‘
i
4,500 - p ‘MW"“M 1 |
il |
L L |
4,000 | ! VV\M | iy
o Nt
3,500 ! I 1 M
! {/ 0r RN 1
3,000 | i I : NYTET
2500 i (! T
el f g 60 | |
| N
I |
2,000 | / ’ww‘ |
r I L N
1,500 |- Ji "J\",‘ ] 40
1,000 |- / W, e N
/ 'v‘% 20+ / 8
500 |- / M, | /
/ " /
0 e | | | | | | | ,\‘V\M\ww | | 0l== /_/\ | | | | | \/Mv‘
0 20 40 60 80 100 120 140 160 180 200 220 240 0 10 20 30 40 50 60 70

Figure 3.2: For each n in the x axis, the y axis shows the coefficient of the monomial ¢"/? in
ZE=Lm=0) (ett) and 2L (right)
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Large N limit
Using identity (3.67)) and the dual Cauchy identity (3.24)) we see that if m # 0 we have

lim 2}
N—oo *P

o0
m)  _ Lmygq _ —2my—L(L+1)/2 1
=eM1—-e™) .
2N) kl_Il (1 — e—mgh=1/2)L
For the massless case, we can proceed as in the unitary model, and use known results on

the asymptotics of Toeplitz+Hankel determinants generated by functions with Fisher-Hartwig

singularities. It follows from (3.47)) that for a single singularity at —1 with parameters o = L
and 8 = 0 we have

L(L+1)/2 _L/2 00
(Lym=0) _ (N T /=G(3/2) 1
ZSp(QN) = ( ) GGR+ D) 1= g—172)t (1+0(1)) (3.74)

2

k=1
as N — oo. Table shows some numerical tests of the accuracy of this formula.

3.5.3 Orthogonal groups

A similar reasoning applies to the orthogonal groups. For the even orthogonal group, it follows

from ({3.30)) that

Zoiony = €1 = e THEDR Y T emliim, (1) (W) oen). (3.75)
I

The even orthogonal characters verify 02”6”(:61,. San) = 0if I(u) — 1 +1 > 2N, and thus

the sum above is now over all the partitions y contained in the rectangle (L*N+L~1) (a similar

reasoning to the symplectic case holds, and in the end one can replace every even orthogonal

Schur function of?*"(U) in the sum by the corresponding Wilson loop (Wy)o(2n))- See figure

for an example of this spectrum. A direct computation shows also that for L = 1 the sum
simplifies to

2N

L=1, _ _k2 _
Z(()@N)m) _ emze m  Nl—k /20(1k)(1’q’m’q1v 1) =
k=0
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N-1
_ 12 _ N 2 B
m§ :6 km 1+€ k:)2m)qu: k/20(1k)(1,q,...,qN 1)+6 (N l)qu /20(1N)(1,q,...,qN 1).
k=0

As in the symplectic model, the prefactor (1 —e~2™)~L(E=1)/2 iy (3.75) cancels for higher values
of L, due to the identity (3.39).
For the odd orthogonal group we have

Z(L(znzlv)ﬂ) (1 eT )T (L e THETDR Y el L (1) (W) oo 1), (3.76)
I

using (3.31]). Since ozdd(ml, ...,xn) = 0 whenever I(u) — g1 > 2N, we see that the sum runs

now over all the partitions y contained in the rectangular shape (L2V*+1). The L = 1 model can
be computed explicitely, yielding

2N+1
L=1, . - i i
R =1 S gl 8 o
k=0
N
2 —
m(L4e™) 1;6 (1 4+ e (V=he1/202m) Nheek/ 242 2000 (112 qN=1/2),
0

Qm)fL(Lfl)

As above, the prefactor (1—e™ /2 cancels for every L, this time because of the identity

(13.40)).
Using the dual Cauchy identities (3.30),(3.31) and identities (3.64) and (3.65) we see that

also for the orthogonal models we have that

preserving the (N, L) duality and coincidence of the models in this limit.

Large N limit

As in the symplectic model, using (3.67) and the Cauchy identity (3.24) we see that if m # 0
then we have

Jm 20 = b=t

g"—1/72)L

and

. (Lym)  _ Lm —my\—L oy L(L-1)/2 T 1
A}gnooZ OCN+1) = (I+e ™) "1 —e™) (L=1/ H 1 — emgh—1/2)L"

If m = 0 we can use again the known results on Fisher-Hartwig asymptotics reviewed in the
appendix (3.47)) to obtain that, as N — oo,

L(L-1)/2 L/2 00
(Lym=0) _ (N (4m)~/2G(1/2)
%" =(3) Gupety g grmme o,
= (3.77)
L(L-1)/2 L/2 [e's)
(Lym=0) _ (N (m /4) G(1/2)
ZO(2N+1) - < 2) 1/2+L H 1 —qk 1/2 (1 +0(1))

k:l
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’ Product formula ‘ Schur function series
[ —2z;)" 1 [1;..(1 — xjzg) >, Su, over all partitions
[;Q- ) H3<k(1 zjzy) ! >, Sus over all even partitions (all parts even)
[1;(1 - tac]) ! [ — xjxg) > t s, over all partitions
(¢(\) = number of columns of odd length)
I ((11+t;]) [l (1 — zjz) ! o "W, over all partitions
(r(\) = number of rows of odd length)
[Tk (X —2jz) Z“<_1)‘M/23M($17 ...,Tp) Over partitions
p=_(q—1,...,0p —1lo,...,0p) with ¢y <n—1
[[;(1— a:?) [Tk (X —2jzp) ZH(—I)‘“‘/2SM(.T1, ..., Zp) over partitions
p=(oq+1,...,0p+1ay,...,0p) with ¢y <n—1
[L;Q—2) [Tcp (1 — ) Z#(—l)(‘“‘ﬂ(“))ﬂsu(ml, ..., @Tp) over partitions
p=(a1,...,aplaq,...,ap) with oy <n — 1, where p(p) =p
(1 - ) SR EACHIRNE R ENCTN Y

over partitions of length I(u) < N

Table 3.2: Some examples of Schur function series.

Let us make some remarks, to end this section, concerning possible generalizations of the
above analysis. First of all, let us stress the fact that the explicit expressions found for
the averages of Schur and symplectic and orthogonal Schur functions over the matrix model
associated to the © function provide a useful tool in the study of more general ensembles. We
have already given an example of this, by reducing the analysis of the ©“™) model to sums of
Schur averages over the simpler ® model, but more complicated insertions can be considered.
Indeed, several Schur function series are known for closed factors that can be interpreted as
functions on the eigenvalues of the matrices in G(IV), as we have done with the characteristic
polynomial and the dual Cauchy identity. Table shows a few examples among the numerous
known cases, taken from [147, 119]. See [128| 122, 118, 123, [103] 175] for instance, for more
examples and some generalizations.

Secondly, even if one is interested in insertions that are too complicated for such a character
expansion to be useful in practice, or if these insertions pose analytical obstacles, one can still
approximate the model to a given order of the parameters of the theory, by truncating the sums
over characters up to a certain weight of the indexing partitions, see for instance [84]. This
type of approximation becomes particularly interesting in combination with computer-assisted
calculations of the models of interest. Indeed, the implementations of the corresponding
expressions should be straightforward in any computer algebra system, as long as a closed
expression for the average of a single Schur polynomial is available, and may provide a different
tool for investigating the statistical properties of random matrix ensembles by looking only at
the finite N models. This is particularly useful whenever the model is such that a large number
of cancellations occur in the sum over averages of Schur polynomials.



Chapter 4

Hankel minors and the Laguerre
Unitary Ensemble

Chapter summary

We introduce the formalism of Hankel minors, and establish some connections with the theory
of orthogonal polynomials. In particular, we express the Christoffel-Darboux kernel associated
to a set of orthogonal polynomials as a weighted sum over Chebyshev polynomials which
coefficients are minors of the associated Hankel matrix. After providing a brief overview of
the Riemann-Hilbert methodology, we turn our attention to the Laguerre Unitary Ensemble.
We study the insertion of a characteristic polynomial in the corresponding matrix model, both
in the finite N regime, by means of Schur polynomial expansions, and as the size of the model
grows to infinity, solving the associated Riemann-Hilbert problem[ﬂ

4.1 Preliminaries

4.1.1 Hankel minors

Let w be a function supported on the real line, with moments

wg = / tRw(t)dt < oo,
R

for all kK > 0. We denote the Hankel matrix of size N generated by this function by

wo w1 w9 PN WN -1
w1 w9 ws e WN
— N —
Hy(w) = (Wjpp—2)jper = | W2 W3 W4 ... WN41 (4.1)
WN-1 WN WN41 ... W2N-2

31The contents of this chapter are based on joint work with Dr. Alfredo Deafio. We would like to express our
gratitude to Alfredo for his hospitality during a visit to University of Kent on September 2018 and for his valuable
help in the learning process of the Riemann-Hilbert methodology.
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The use of Andréief’s identity leads to the well known expression for the determinant of a Hankel
determinant as a matrix model

N
1
det Hy(w) = det (w52, = 1 /R L6 - 602 TL it (4.2)
’ i<k j=1

As in the Toeplitz and Toeplitz=Hankel case, one can also consider minors of Hankel
matrices, obtained by removing some of their rows and columns. We will refer to these as
Hankel minors. An analogous reasoning as in the Toeplitz case leads to their equivalent integral
representation in terms of Schur polynomials. Indeed, given two partitions A and u and a positive
integer N, we recall the definition of the “reversed” arrays

A= (N = O, 0= W) = (uvra—g) (4.3)

We then obtain from Andreiéf’s identity that a Hankel minor can be expressed as the integral

N
N 1
A, _ _ 2
det HNM(’UJ) = det (wj+/\;+k+'u272>j,k:1 = ﬁ /RN S)\(t)Su(t) H(t]‘ — tk) H w(tj)dtj, (4.4)
<k j=1
where the s)(t) are Schur polynomials evaluated at the variables of integration t1,...,ty, and

the first identity above serves as a definition. We find a formally identical situation to the
Toeplitz case, where the moments of the function w play the role of the Fourier coefficients of
the function f. Moreover, the Hankel minor can be obtained from the underlying Hankel
matrix and the partitions A and u following the procedure described in section for the case
of ToeplitztHankel matrices.

4.1.2 Orthogonal polynomials

One of the standard approaches to the computation of matrix models is that of orthogonal
polynomials. Let us review some well known facts and basic properties of these objects, which
can be found in [I81] [124] for instance.

We say that an infinite sequence of polynomials (py)n>0, where each py has degree exactly
N, is orthonormal with respect to the weight w if

/R pi (Opr(Bw(t)dt = o (4.5)

for each j, k > 0. We denote the leading coefficient of the polynomial py by vy, and by

T () = ;pr) (4.6)

the monic polynomials of degree N associated to the sequence. The orthonormal polynomials
verify a three term recurrence relation

upo(u) = bop1(u) + aopo(u),

_ (4.7)
up;(u) = bjpjr1(u) + ajp;(u) +bj_1pj—1(u), Jj>1,
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with pg = 1. As reviewed in section these polynomials have both a determinantal and a
matrix model expression, usually known as Heine’s formula

wo w1 WN—-1 1
( )_ 1 w1 w2 WN u
vt = det Hy (w) :
wWN WN+1 .- WIN -2 uN (48)
t —tx) —t dt-.
detHN N'/RNE ) 1;[“ /

Note that since the moment matrix of the ensemble is Hankel, the families py and gy of section
2.3.3] actually coincide, and we have a single family of orthogonal polynomials instead of two
families of biorthogonal oneﬁ Also the Christoffel-Darboux kernel (2.57)) can be expressed as

a matrix model

() my—1(u2) — Tn—1(u1) Ty (uz)
Ulp — U2

N—1
2
u1,u2 E Pk u1 pk u2 =TYN-1
k=0

N (4.9)
’YN 1detH Nl /]RN H - tk)gjl;[l(ul —t)(ug — tj)w(t;)dt;,

i<k

where the second identity above follows from the Christoffel-Darboux formula. Equations (4.8)
and (4.9) can be seen as particular cases of the more general identity

an(u1)  wAngi(wr) oo TNgm—1(ur)
an(u2)  mngi(u2) ... TNgpm—1(u2)
det ) . )
wn(tm) TN (Um) e TNt (Um) (4.10)
N m

_ ) wi(t;)dt,

o 1 detHN N'/RNH 2 HH (5)dt;,

.]<k _]<k : k=1

due originally to Brézin and Hikami [46] (see also [I8§]). In its matrix model expression,
this corresponds to the average of m characteristic polynomials over the ensemble with weight
function w, evaluated at the points ug. This identity has been generalized in several directions
in subsequent works, see for instance [16], 47| and references therein. In particular, replacing the
characteristic polynomials in by their inverses amounts to replacing the polynomials in the
corresponding row of the determinant in the left hand side of by their Cauchy transforms.
Among other properties, one interesting feature about the averages of characteristic polynomials
and their ratios is universality. This concept is used in random matrix theory to describe the fact
that eigenvalues of large random matrices (or other quantities depending on their eigenvalues)
share a common statistical behaviour at the microscopical level, that depends only on the
symmetry class of the ensemble, rather than on its particular characteristics. Universality has

32In general, the existence of the polynomials themselves is not guaranteed. As shown by 7 a sufficient
condition for this is the nonvanishing of the Hankel determinants det Hy (w), for every N > 1. We will assume in
the following that the weight function w is such that this condition holds. Another sufficient condition for this is
the positive definiteness of the Hankel matrices Hy (w).
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been proved for averages of the type (4.10) and more general ones in the bulk [I80] and at the
edges of the spectrum [189, 29].

Some quantities of interest for the theory of orthogonal polynomials can be expressed in
terms of Hankel determinants and minors. Besides the obvious remark that the coefficients
of the polynomials are minors themselves, in sight of identity (4.8]), this is also true for the

coefficients in the three term recurrence relation (4.7). Indeed, comparing the terms in u/¥*!

and vV in equation (4.7) and using (4.8)), we find that

ay = (e1)n — (1) N+1,

b _ N _ (det Hy/(w) det Hy yo(w))*/?
N N det Hy 41 (w) ’

where ey is the first elementary symmetric polynomial (2.8) and, given a symmetric function s,
the notation in the right hand side of the first identity above stands for the average of s over
the ensemble of size N

N

(s)y = det;N(mJ\lﬂ /RN (- o tw) T4 — te)? T wits)dty. (4.11)

j<k j=1

The averages (e1)n appearing above coincide with the quotients det Hﬁ’(l)(w) / det Hy(w) of
the minor of the Hankel matrix of size N + 1 obtained by removing its next to last row and its
last column, and the Hankel determinant of size V.

More general quantities can also be studied in terms of Hankel minors. Indeed, using the
dual Cauchy identity and the formula we obtain the Schur function expansion

N m
I TTw—t)= > 0™ Msy(ur, .. um)sr,, ot t), (4.12)
j=1k=1 VC(N™)

where Ly, n(v/) is defined in (2.17). Therefore, substituting the product in by this
expression, we see that the average of a characteristic polynomial over a random matrix ensemble
can be computed equivalently as a finite sum over averages of Schur polynomials. See [I71] for
a related result. This is particularly useful whenever the choice of weight function is such
that an explicit expression for the minors of the underlying moment matrix is available, as
in section [3.5] More general insertions can also be computed in a similar fashion, including
ratios of characteristic polynomials, using the Cauchy identity or both the Cauchy and
dual Cauchy identity. These correspond to determinants of the form , involving also the
Cauchy transform of the orthogonal polynomials 7, as mentioned above, and give rise to infinite
Schur function series.

In particular, we obtain the following consequence of the expansion . Recall the fact,
derived in section that a Schur polynomial indexed by a partition of length at most 2 can

be expressed as ([2.43))

v 1 (75} (%)
(o) (U1, 12) = (uru) V20, (2 (\/; + \/Z1 )) :

where Uy denotes the k-th Chebyshev polynomial of the second kind. Thus, noting that the
expansion for the Christoffel-Darboux kernel (4.9)) involves only Schur polynomials indexed by
partitions with at most two parts, we arrive to the following result.
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Theorem 12. Let uy, us be nonzero. The Christoffel-Darboux kernel (4.9)) associated to a family
of orthogonal polynomials can be expressed as the sum

1 U U
Ky(unu) = D (sev-u eV (—Vurm) 72U, o, <2 (\/TJr \/72>) ’
u9 (75}
0<v1<ve<N

where the bracket notation stands for the average (4.11)) over the corresponding random matriz
ensemble.

That is, the kernel of order N built from the polynomials orthogonal with respect a weight
function w can be expressed as a sum over Chebyshev polynomials, where the coefficients in the
sum are given by minors of the Hankel matrix generated by w. Some inspection following the
procedure described in section to obtain minors from the underlying partitions shows that
all these minors are obtained by striking two columns from the Hankel matrix of size N x (N +2)
generated by w. Examples of Schur function series involving Chebyshev polynomials of the
second kind have appeared previously in the literature, see for instance [122].

4.1.3 Riemann-Hilbert methodology

We now outline the main ideas behind the Riemann-Hilbert approach to the study of the
asymptotic behaviour of orthogonal polynomials. See for instance [66, [138], among others,
for more detailed introductory expositions.

In general, a Riemann-Hilbert problem consists of finding an analytic function on the complex
plane C minus a collection of oriented curves ¥, on which the boundary values of the function
from both of their sides are given, usually together with some normalization condition. We
follow the usual convention and define, for a given collection of oriented curves 3,

Yi(z) = lim Y (2'), Y_(2) = lim Y (2),

2=z 2=z
2/ €left side of 2/ €right side of ¥

for any z € ¥ and any function Y analytic in C \ X. Such values are well defined except
for endpoints of curves or points of intersection of curves, where one needs to impose extra
conditions when addressing the Riemann-Hilbert problem.

The connection with orthogonal polynomialﬁ is due to Fokas, Its and Kitaev [87], who
noticed that these can be expressed in terms of a Riemann-Hilbert problem for a matrix-valued
function. More precisely, given some weight function w(x) supported on the real line, they
considered a function Y : C — C?*2 solving the following problem.

Riemann-Hilbert problem for Y

1. Y is analytic in C \ supp w.
2. For = € supp w, the matrix Y verifies the jump condition

Yo (2) = Y (2) ((1) w(f)) .

33We describe here the case of orthogonal polynomials with respect to a weight function supported on the real
line; analogous premises hold in more general settings. For instance, the case of functions supported on the unit
circle, which corresponds to Toeplitz determinants, was formulated in [15].
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3. As z — oo, we have
V(z)= (I+0(z")) 2N, (4.13)

We denote in (3) above and in the following by o3 = ((1) 01> the third Pauli matrix. We also

omit the dependance on NN of the matrix Y in the notation, for ease of presentation.
The authors of [87] proved that, under suitable conditions on w, the solution to this problem
is given by
N (2) C(ryw)(z)
Y(Z) - . 92 . 9 ’
—2miyR_mN—1(2) —2mivy_C(mN_1w)(2)

where 7 is the N-th monic orthogonal polynomial with respect to the weight function w, the
constant vy is the leading coefficient of the N-th orthonormal polynomial (4.6)), and the operator

(4.14)

) = = [ LD

_ C
omi )y a0 € \ [0, 00),

is the usual Cauchy transform. Furthermore, several quantities of interest related to the
orthogonal polynomials can be expressed in terms of the entries of the matrix Y. For instance,

we see from (4.14]) that
2

= —— lim Yo (2)
IN-1 T 27 z—o0 ZN-17

N

_ . Yi(z) -

2 _ . N+1 _ 1 11

R = 2 i Via() =t MR
(4.15)

where 1y is the subleading coefficient of the monic orthogonal polynomial 7. Similar identities

hold for the coefficients in the three term recurrence relation.

Hence, explicit expressions for the matrix Y and its asymptotic behaviour can be used in
particular to describe the behaviour of the orthogonal polynomials with respect to the weight
w. In order to obtain these expressions, one usually considers a series of transformations for
the matrix Y, that allow to reduce the Riemann-Hilbert problem for this matrix to several
problems that can be explicitly solved, following the strategy pioneered in [69]-[71] by Deift and
collaborators. Each of these problems is defined in a different domain of the complex plane, in
such a way that the union of these regions covers the whole plane and the matchings between
the different domains are smooth. An outline of the transformations is as follows

Y—=T—S— R, (4.16)

where the last matrix R is asymptotically close to the identity as N — co. Moreover, this matrix
is constructed in terms of known explicit solutions to different Riemann-Hilbert problems, so
called local and global parametrices. Reversing the series of transformations, this provides
explicit expressions for the matrix Y and its asymptotic behaviour in the various domains of the
plane.

We end this section posing three standard model Riemann-Hilbert problems and record
their solutions, which will be used in section We give more details about the purpose of the
transformations in the following section. Unless specified otherwise, we will consider the
main branches of all the functions used in the following.
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27/3

Y
Y

Figure 4.1: Jump contour for ®,;.

Airy model Riemann-Hilbert problem

1. Wa;: C\ Xa; — C2%2 is analytic, where Y5; consists of the real axis and the two rays
e2m/3RT and e~2™/3R*, as shown in figure
2. The matrix Wa; has the following jump relations

([0 1
, z€R™,

1 1
Wai(2)+ = Wail(2)- (0 1) ,  z€RT,

(1 0) ’ = (ezm/3R+ U €—2m/3R+) 7
11

3. As z — 00, z ¢ Xa;, we have

_os 1 (1 4 — Uaik | 2,52,
Uai(z) =2 VAR I+ w2 | €7 , (4.17)
k=1

where W, j are constant matrices that can be computed explicitly.
4. As z — 0, we have ¥x;i(z) = O(1).

This problem was posed and solved in [71], where also explicit solutions of the constant matrices
Wik can be found. Its solution is given by

<Ai(z> M) e 673 0<argz < 2
) ) 3 )

fi—"cr;; 1 0 2T
e 6 ( ) 1), 3 <argz <m,

o i)
(Ai(z) —w2Ai(wz)> ooy (1 0) r<argz< —2T
!/ 7 3

BCREN —%ﬁ <argz < 0,

| (4.18)
where w = e and Ai(z) is the Airy function [1J.



74 Schur Averages in Random Matriz Ensembles

27 /6

Y

Figure 4.2: Jump contour for ®pe.

Bessel model Riemann-Hilbert problem

1. U : C\ Ype — C?*? is analytic, where Y, consists of the negative real axis and the two
rays e2™/3Rt and e~2™/3R* | as shown in figure
2. The matrix Up, has the following jump relations

0 1
, z€R™,

1 0 .
\IIBe(Z)-‘r = lIjBe(z)— ( . ) ) S 627”/3R+7
(&

1T 1

1 0 = e—27ri/3R+
e*iﬂ'a 1 ’ ’

where « is some complex number.
3. As z — 00, z ¢ ¥pe, we have

= 1/2 _QL 1 Z - ‘IIBevk 221/20’3
Upe(z) = (2mz/)" 2 7 (Z 1) <I+Z o | © , (4.19)

k=1

where Vg, j; are constant matrices that can be computed explicitly.
4. As z — 0, we have

)> 259, Jargsl < %,
Upe(z) = ) if Re o > 0,

), I < argz| <,

(0(1) O(log z)) args| < 22
’ 3
Upe(z) = if Re . =0,

2 < argz| <,

(
;), if Re a < 0.
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75

117

Figure 4.3: Jump contour for ®pg.

This problem was introduced and solved in [140]. Its solution is given explicitely by

( 1 1
Ia 222 L o222
( ); el )1 ’ ’al"gz‘<2§7r7
2miz21),(222) —222K)(222)
10 (2(—2)7) S (2(=2)7) ) ey
Upe(z) = / / ez 93, L <argz <,
5= et (1) (=2)h) 7t (82) @-2)h) T <o
1 1
SHE (2(—2)3) —3H(2(-2)%)
2

' ' e_mTa”’, T <argz < —2&,
2t (BD) @(-2h) wat (D) (2-2)) & 3

where H,gl) and H(g?) are the Hankel functions of the first and second kind, and I, and K, are
the modified Bessel functions of the first and second kind.

Confluent hypergeometric model Riemann-Hilbert problem

1. U : C\ Bug — C?*2 is analytic, where Yy consists of the real and imaginary axis, as

well as the two rays e™/*R and e~ ™/*R, as shown in figure
2. The matrix Wyg verifies the jump relations

\I/Hg(z)+ = \I’Hg(z)_Jk, z € Ej,

where the curves X; are depicted in figure and

0 e*iﬂ'ﬂ 0 eiﬂ’ﬁ eiwa/Q 0
J = . Js = , J3=J; =
1 <—€“T’B 0 > ; 5 <—6”T5 0 ) ) 3 7 < ’

0 e*iﬂ‘a/2

J2 = <ei7raei7rﬁ 1) 1= <€maei7"ﬁ 1) o= <ei7raei7r5 1) ;o Js= ( ) )

emaemﬁ 1
where a and 3 are complex parameters.

3. As z — o0, z ¢ Ypq, we have

o
)\ 2
Una(z) = (I + Z T) 2z P3em393 7L (2), (4.20)
k=1
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where 27 has a cut along ¢{R~, so that 2B eRforze RT, Uyq,k are constant matrices
that can be computed explicitly, and

ima — ™
e 1 T3eTimAO3 5 <argz < m,

imo . 3
e~ 1 73gTimBos T<argz < ?ﬂ,
= 1T O 1 .
L(z) LR (_1 0) ’ _g <argz <0, (4.21)

imo 0 1 ™
- o3 _
e 4 (_1 O)’ 0<argz<2.

Uyg(z) = if Re a > 0,

I

Una(z) = if Re a = 0,

O
where the regions I to VIII are displayed in figure

Uyg(z) = <OEZRSQ) O(zaja)> , if Re o < 0,

This problem was introduced and solved in [126] for the case a = 0, and then in [100] [67]
for the general case. Defining

Lta/2-5 . ) e—iTa L(1+a/2-5 R
Frc(e) = F(IJ(F%{;%)))G(O&/Q—F@(LZ)G ‘/2 _WH(l—Fa/Q—@,a,ze ) 20
WGG"‘Q/Q"‘@@; Z)e_ma/z H(a/2 — B,a;ze™'T)

where G and H are related to the Whittaker functions [I] by the following identities

G(a,a;z)zjwi?z(z), H(a,a;z)zw (M:C;7 /ﬁ:;—l—g—a>, (4.22)

we have that the solution of the confluent hypergeometric model Riemann-Hilbert problem is

given by R

(\IJHG(Z)J_l) zel,
Tya(2), zell,
Vg (2)Js, zelll,
\/I}H(;<Z)J3J4_1, zelV,

Tha(2) = 9§ & —1 -1 ;-1 ;-1

g (2)Jy gt s, 2 €V,
Una(z)Jy gty ze v,
Una(2)Jy It Ig Y, z e VII,
(Unc(2)Jy L, ze VIII.
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4.2 The Laguerre Unitary Ensemble

Consider the orthogonal polynomial ensemble with weight function
w(t) = t% ™, t €0,00),

where « > —1 is a fixed parameter. The polynomials orthogonal with respect to this function
are the classical Laguerre polynomials, which have been the subject of many studies and whose
properties are well understood (see [I81], 139, 63] for instance, among many others). In particular,
the following features will be relevant for our purposes.

Lemma. Let Lg\o,‘) be the classical Laguerre polynomials, given by

N (6% —U k
LPw=3 (%t k) ( k!) , (4.23)
k=0

for every N > 0. They verify the orthogonality relation

@) (@) et gy Dla+k+1) o
/0 O O )
and the second order differential equation
w(L (W) + (a+ 1 — u)(L () + NL (u) = 0. (4.24)

Moreover, the largest zero zn of the polynomial Lg\?) verifies

eN =4AN(1+O(N7Y)), as N — occ. (4.25)
We will focus instead on a deformation of the Laguerre weight, given by
Wy (t) = (t —u)*™ %", (4.26)

where m is a positive integer@ and o > 0. In its matrix model expression, this corresponds to
the insertion of the 2m-th power of the characteristic polynomial of the ensemble evaluated at
the point u. We denote

N N
ZLbE(N) = det </0 e 2wu,m(t)dt> = N|/0 /0 H(tj—tk;)Q H(tj—u)2 tie tfdtj.

j,kzl ]<k j:1

In section [4.3, we will study this model in the double scaling regime

N — oo, U — 00, % = const € (0,1). (4.27)

The double scaling in « means in particular that the rescaled parameter /4N lies in the bulk
of the spectrum of the Laguerre Unitary Ensemble, which gives rise to a richer analysis of the
model, as we will see in the following.

34We have chosen the power of the factor (t — u) in the weight w., m to be an even integer in order to avoid a
more technical development of the problem. In the language of Fisher-Hartwig singularities for weight functions
supported on the real line (see [52], [53]), the weight corresponds to the product of a root type singularity
with the weight of the Laguerre Unitary Ensemble, without any jump type singularities. The choice of « (instead
of the usual, more general condition o > —1) simplifies slightly the analysis as well, see in particular the proof of

equation ({4.46).
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As reviewed in section there is a number of equivalent interpretations for this object.
For m = 1, it coincides with the diagonal of the Christoffel-Darboux kernel of degree N built
from the monic Laguerre polynomials, in sight of identity . For general m, it can also be
realized as the Wronskian of 2m consecutive polynomials

WN(U) TN+1 (u) oo TN42m-—1 (’U,)
ZZ{]nE N (—l)m@mfl) Ty (u) T (W) o o, (u)
W) _ det . . . ,
ZLuE(N) G(m+1) : : :
S (B R (B s Y )

as shown by (4.10]), where

N N +a\ uF
an(u) = (-1D)VN! kz_o(—nk (N N k) o (4.28)

is the monic Laguerre polynomial of degree IV, and the partition function of the Laguerre Unitary
Ensemble is given by

N
1 [ o0 9 o —t. G(N+1)Gla+ N +1)
ZLUE(N) = N'/o /0 H@(ty’ — tk) l_Iltje Ydt; = Glo+ 1) - (429
i< i=

Similar and more general insertions in the Laguerre Unitary Ensemble have been studied before,
in particular showing their relation with the 7 functions of the Painlevé III and V systems and
the smallest and largest eigenvalues of this ensemble [96]-[98]. The case of general insertions of
Fisher-Hartwig type in the bulk of the spectrum was addressed recently in [53], as well as the
case of a single insertion approaching the soft edge of the spectrum [197] (see also [199] for a
similar setting over the Jacobi Unitary Ensemble).
When addressing the large N analysis, it will be convenient to consider the re-scaled matrix
model
_ 1 [ = N
Ziloon = [ | TI =P TL = opmige™oan, = any- ez,
i<k j=1
(4.30)
where 4Nv = wu, (so that, in particular, v € (0,1), recall ) We will denote the weight

function of this model by
Wym(t) = (t — v)?Mte 4N, (4.31)

4.2.1 Equilibrium measure

A central object in the study of random matrix ensembles, and in particular in the
Riemann-Hilbert methodology, is the equilibrium measure associated to the potential of the
weight function of the ensemble. This measure, which we denote by duy , has several equivalent
characterizations, see [66] [I73] for instance. Its relevance from the point of view of orthogonal
polynomials and random matrix theory is due to the fact that it coincides with the weak limit
of the zero-counting measures of the monic orthogonal polynomials with respect to the weight

e~ NV Therefore, it describes the distribution of the eigenvalues of the matrices belonging to



Hankel minors and the LUE 79

NV(t)

the ensemble with weight function e~ as the size of the ensemble grows to infinity. It can

also be defined as the unique minimizer of the functional

//log\t—s| Yau(t)du(s /V )du(t)

among all Borel probability measures g on R. At the same time, it is uniquely determined by
the following Euler-Lagrange variational conditions: there exists ¢ € R such that

2/10g |t — sldpy (s) —V(t) — £ =0, for t € supp py,
(4.32)

2/log [t — s|duy(s) —V(t)— £ <0, for t € R\ supp py.

Lemma. The equilibrium measure associated to the potential V(t) = 4t is given by

du (1) = %,/?&, te(0,1). (4.33)

Proof. We outline the proof in [166], which is itself based on the methods proposed in [173],
where more details can be found. The monic orthogonal polynomials with respect to the re-scaled

Laguerre weight t®e~ V() are

1

WWN(ZLNU),

~n(u) =
where the 7y are the monic Laguerre polynomials, given by (4.28). It follows from (4.25))
that if we denote the zeros of the polynomial 7x(u) by 0 < zy1 < -+ < an,n, We have
that limy_c v,y = 1. We denote the normalized zero-counting measure associated to these

polynomials by
N

dun(t) Z (t—zni)d
k:

As mentioned above, these measures converge weakly to the sought equilibrium measure duy,

so in particular we have

1

[e’s) 1
logFy(u) = /0 log (1 — t)djun (£) — /0 log (u — t)duy (¢)

as N — oo. Therefore, after differentiating in both sides above we obtain

7 (u 1

where the identities in the last equation serve as definitions. Now, it follows from (4.24)) that
the polynomials 7y verify

unty (u)” + (a + 1 — 4Nu)an (u) + 4N*7n(u) = 0.
Substituting in (4.34) we see that the function hy verifies itself a differential equation

uhly (1) + (a + 1 — 4ANu)hy (u) + 4N + uNh3 (u) = 0.
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Dividing by 4N in the above equation, letting N — oo and comparing with the right hand side
of (4.34) we find that the function h(u) satisfies the following equation

%h2(u) —uh(u) +1=0,

from which we obtain

h(u):2—2<u_1)1/2.

u

Using the Plemelj formula and comparing with the right hand side of (4.34]) we arrive at the
claimed expression for the equilibrium measure duy . ]

Note that as a consequence of the re-scaling and the behaviour of the zeros of the
Laguerre polynomials, the equilibrium measure duy is compactly supported. This is the main
reason for introducing the rescaled model Z\Z&nE( Ny» 88 it will simplify the subsequent analysis.

We also define some auxiliary functions, which properties will be key in the large N study

of the model. First, we consider the g function

1
o) = [ ozlz =ty (0 (4.35)

Secondly, we extend the density of the measure uy to a meromorphic function on the complex
plane r(z) = 2 (Z—;l)l/Q, with a branch cut on [0, 1]. Lastly, we define

1
&(z) = 2m’/ r(t)dt. (4.36)

The following lemma follows from the definitions of the functions g and &, equation (4.32]), and
the jump properties of the logarithm and square root functions (see [190} [166] for instance, for
more details).

Lemma. The functions g and & verify the following properties.

1. The function g is analytic in C\ (—o0,1], and satisfies

271, z <0,
1
9+(x) — g-(z) = { 2mi / duy(t), O<z<l, (4.37)
0, x>1,

as well as the variational conditions

g+(x) +g-(z) = V(z) —£=0,  x€ suppuy,

(4.38)
2g(x) = V(x) - <0, x € R\ supp py,
2. The function £ is analytic in C\ (—oo, 1] and verifies
er(l‘) = _57(‘%) = g+§l‘) - *(l‘)a T e (07 1)) (439)
Ei(x) — & (x) = 4mi, x € (—00,0),
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4.2.2 Schur polynomial expansions

Following the same strategy as in section we can study the model Z ) in terms of

LUE(
averages of Schur polynomials over the Laguerre Unitary Ensemble. These can be computed

using their Hankel minor representation, as follows.

Theorem 13. Let A be a partition of length [(A\) < N. We have

T(a+N—j+X\+1)
'Na+N-j+1)

I(\)
(sx)uE(v) = sx(1 H ; (4.40)

where the notation (s) Ly g(n) stands for the average of a symmetric function s over the Laguerre
Unitary Ensemble.

Proof. According to (4.4]), the insertion of the Schur polynomial indexed by a partition A can
be expressed as the Hankel minor

miy mixy+1 cee MAN+N-1
MAy_1+1 Miy_14+2 -+ TMAy_1+N

det . : . ;
mx,+N-1 My +N cee My 42N-2

where ~
my, = / thrae=tdt = T(a + k4 1).
0

After extracting the factor I'(a + Aj + N — j + 1) from the j-th row of this determinant, for
j=1,...,N, we are left with the determinant

1 a+Ay+1 (a+Av+ D(a+ Ax +2) oo (a+AN+1) . (a+ AN+ N =1)
dot 1 a+Ay-1+2 (a+Av-1+2)(a+An-1+3) ... (a+An-1+2)...(a+ AN+ N)
e . . . .
1 a+M+N (Oz+/\1+N)(Oz+)\1+N+1) (a+)\1+N>...(Oz+)\1+2N—2)

Performing elementary column operations, the above determinant can be reduced to a
Vandermonde determinant on the points a + A\; + N +1 —j, for j = 1,..., N. Combining this
fact with identity (2.11)) we obtain

2

N'/ / —thHt"‘ _tﬂdt]:G(N—l—lsA H (a+ X +N—-j+1).

J<k Jj=1 Jj=1

The proof is concluded after considering the quotient over the partition function of the Laguerre
Unitary Ensemble Zp; g (), which is given by (4.29). O

Note that a particular consequence of formula (4.40)) is that the average (sx)rupov) is &
polynomial in « with integer coefficients, as well as a polynomial in NN.
We can combine this result with equation (4.12) to expand the insertion of the characteristic

polynomial in Z7; in terms of Schur polynomials. This leads to the formula

LUE(N)
Zum
LUE(N 5 .
. ) Z (—u) |3LN,2m(u')(12 Hsv) LuB(N)» (4.41)
FUBND e (am)v)
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Figure 4.4: The re-scaled densities of states py of the Laguerre Unitary ensemble (4.43), for
N =6 and N = 15 and a = 1 and a = 0.33, respectively (in blue), and the density of the
equilibrium measure duy (4.33) (in red).

where Zrg(n) is given by and Ly, (V') is the partition defined in (2.17). The above
formula can be implemented in a computer algebra system, providing quick evaluations of the
model as long as its size N is not too big. As an example and consistency check, this formula
can be used to computed the density of states of the Laguerre Unitary Ensemble. Recall that
the normalized density of states is given by [154]

N-1
1 . _ 1., - =1
pn (D) = 77" > ph(t) = e R 2y (4.42)
k=0

where the p; are the orthonormal Laguerre polynomials, the vy are defined in , and the
second identity follows from equation . Integrating this function over a subset of the real
line one recovers the normalized expected number of eigenvalues of the ensemble of size N to be
found on this subset. In particular, the density of states converges as N — oo to the density of
the equilibrium measure duy, after the re-scaling

pn(t) = 4N pn (4N1), (4.43)

in order to make the limit function limy_~ pn compactly supported as well. Figure shows
two instances of the re-scaled densities, computed by means of formulas and , for
several values of N and «, together with the density of the equilibrium measure duy. The
convergence is apparent already at low values of NV, whenever the size of the parameter « is not
too big compared to N.

4.3 Large N analysis

We are now ready to solve the Riemann-Hilbert problem for the orthogonal polynomials with
respect to the modified weight @, ,,, given by . To be precise, we consider the following
restatement of the problem introduced in section we seek Y : C\ [0, 00) — C?*2 verifying
the following conditions.
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Riemann-Hilbert problem for Y

1. Y is analytic in C\ [0, 00).
2. For z € (0,00), the matrix Y verifies the jump condition

Tr—v 2m$a€74N1
Vilr) = Y- (a) (; oo )

3. As z — oo, we have
Y(z)=(I+0(z1")) 2N, (4.44)

4. As z — 0, we have

((0(1) O0(1) oo
o) o)) ’
y(z) = O(1) O(log =) o0
O(1) O(logz) 7 ’
) O
{ ) O

o(1
o(1
This normalizing condition follows from equation (4.14]), in sight of the particular form of
the weight @, ,,, and is chosen to ensure uniqueness of the solution of the Riemann-Hilbert
problem. Note that there is no need to impose any conditions at the point v, as the fact that m
is a positive integer implies that Y'(z) is bounded around this point.
Before proceeding, let us remark that, besides the orthogonal polynomials with respect to
the weight @, ,, also the matrix model ZZ’;]”E( Ny can be expressed in terms of the entries of
the matrix Y. In order to show this, we need to introduce some notation for the subleading

coefficient of the orthonormal polynomials with respect to W, p,, say
pv(u) = v +pyuN 400, (4.45)

Lemma. The Hankel determinant Z\zﬁE(N) satisfies

d Zv,m - d d
am log ey =~ (N+a+ 2m)% log (Yyn—17YN) + 4N%17N

+a <(Y1;ny)11(0) + 1/11(0)3/22(0)% log (’YNWN)) (4.46)

+2m <(Y_1dilny)11(ﬂ) + Y11(’U)Y22(71)% log (’YN—l’YN)) :

Proof. The proof is analogous to the oneFE] in [I36]. Performing column operations in the
Vandermonde determinants in (4.2)) and using Andreiéf’s identity one obtains the well known

relation

N-—1

So, B L

ZZITE(N) = H V5 (4.47)
=0

35Note, however, that we do not need to consider the regularized integrals of [I36], due to our assumptions on
the parameters o and m.
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where the 7; are given by (4.45). Using the orthogonality relation (4.5) we obtain

d N N—-1 LP},. N—-1 00 d
T 108 Z ) ZO . ZO i ( gpi®) ) Dom(®)
_ _ON-1 > d / / ~
== | g Py @ () = P (1 () Do (D)

where the last identity above follows from the Christoffel-Darboux formula. We use prime and
dot notations for the derivatives with respect to ¢ and m, respectively, for the remainder of
the proof. Using the orthogonality condition , we see that the last integral above can be
computed as follows

d Zv,m . ’VN'—l YN-1 < ’ ’ . —~
am log ZLUE(N) = —NE + 71\//0 (pN(t)PN—l(t) - pN(t)prl(t)) Wy, (t)da

_ N GZ + g) 42 /0 " on (Opn-1 () — P (Opn1 (1) @, (1),

where the last identity above follows from integration by parts. We see that the resulting integral
can be split as the sum of three integrals. In each of these integrals the term between parentheses
in the last integral above multiplies the factors
G )
t t—wv

Note that all these integrals are convergent, due to the assumptions on the parameters o and

, —AN Wy ().

m. In order to compute the first one, we replace the term between parentheses by

pN(t)pN-1(t) — PN (t)PN-1(0) + pn(t)PN-1(0) — DN (t)pN—1(t) + PN (0)pN—1(t) — PN (0)pN—1(1),

without changing its value. Using the orthogonality properties of the polynomials py, we see
that this integral evaluates to

«

YN-1 <_ N

YN TN-1
The second of the integrals can be computed following the same procedure, while the third one
can be evaluated directly with aid of the orthogonality condition . Using and the
fact that 1 = det Y (2) = Y11(2)Ya2(2) — Yi2(2)Y21(2) we arrive at the desired conclusion. O

T 2mip1 (0)C(pv o) (0) — 2mpN<o>c<pN@v,m><o>) |

Due to its technical nature, providing an accessible and at the same time fully rigorous
account of the Riemann-Hilbert methodology represents a task that lies outside the scope of
this thesis. We choose to prioritize clarity in the following, and develop in detail the parts of the
analysis that we believe to be more enlightening. We point to [190], 136, 166}, 52, 53] for works
concerned with the study of similar models, where more details can be found.

4.3.1 Transformations of the problem and global parametrix

We can now start with the series of transformations for the matrix Y described in section [£.1.3]
For the first transformation, we recall the definition of the g function given in (4.35)), as well as
the variational conditions (4.32)). With this, we define

)os

NY
T(z) = e 2 Y (2)e N9E) )78

Using the definition of g and equations (4.37)) and (4.38), we see that T solves the following
problem.

Nl
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21 b))

Figure 4.5: Lenses for the jumps of the matrix S(z).

Riemann-Hilbert problem for T

1. T is analytic in C \ [0, c0).
2. For x € (0,00) we have

e~ Nar@)=9-@) (7 — p)2mge ; 1
0 N (@)—g-(2) |’ <z<l
T.(z) =T
e (z) 1 (2 = v)2mgoeN(-20@)+V (@) +0) L
9 xZ.
0 1

3. As z — oo, we have
T(z)=1+0(").

4. As z — 0, the matrix T'(z) has the same behaviour as U(z).

The purpose of this transformation is to normalize the problem at infinity. Note that 7" is now
asymptotically close to the identity matrix as z — oo, and more importantly, this is achieved
without creating new singularities at other points of the plane. This is due to the fact that as
Z — 00

eV9(2) = N <1 - % + (’)(z2)) : (4.48)

For the next transformation, known as nonlinear steepest descent [72], we choose four
oriented contours on the complex plane joining the points 0, v and 1 of the form depicted in figure
By means of this transformation, we factorize the jump matrix for T" into a product of three
matrices, each of them having jumps on one of the chosen contours, or on the interval [0, 1].
The advantage of this factorization is that the jumps on the contours will be asymptotically
close to the identity (outside some small neighbourhoods around the points 0 and 1), and the
remaining problem on the interval [0, 1] will have a solution that can be constructed explicitly.
This process is known as opening lenses; we will call the contours, which are denoted by X; in
figure the lips of the lenses.

We define

1, z outside the lenses,

1 0
, 2 in the upper part of the lenses,
S(z) =T(2) (—z‘a(z — v)"2meNEE) 1)

1 0

Z—a(z _ v)—?me—Né(z) 1

) , z in the lower part of the lenses.
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Note that we are not making a particular choice for the lips ¥;. The precise contours depend
on the local parametrices at the points 0,v and 1 and will be specified later, see section [4.3.2]
We see that S solves the following problem.

Riemann-Hilbert problem for §

1. S in analytic in C\ ([0,00) UX; UXo UX3U Xy).
2. The matrix S has the following jumps

0 x%(z — v)*™
, O<x<l,
—z7%(x —v)72m 0

1 z¢ (:E _ U)QmefN(fZg(x)+V(x)+Z)
, 1l<a,
0 1

1 0
, JAS Ej.
z27%z — v)_zme_Nf(z) 1

3. The function S(z) has the same behaviour as T'(z) as z — 00.
4. The function S(z) has the same behaviour as 7'(z) as z — 0 from outside the lenses. As
z — 0 from inside the lenses, we have

Note that the product of the jump matrices of S on the upper contours, the interval (0,1) and
the lower contours recovers the jump matrix of 7" on (0,1), as mentioned above.

As we will see below, the properties of the functions g and £ imply that the jumps of S
on the interval (1,00) and on the contours ¥; converge to the identity as N — oco. We can
thus approximate the solution of the Riemann-Hilbert problem for S outside these disks by the
solution to the following problem, usually called the global parametrix.

Riemann-Hilbert problem for P(*)

1. P(®) is analytic in C \ [0, 1].
2. For z € (0,1), we have

Pioo) (z) = Pl (z) ( 0 (x — U)mea> |

—(z — v)_me_a 0

3. As z — oo, we have P(®)(2) = T + O(z71).
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The standard procedure to build the solution to the Riemann-Hilbert problem for P(>) ig

to consider the Szegé function associated to the function (x —v)?™x® on the interval [0, 1]. This

is a function D(z), analytic and non-zero on C \ [0, 1], such that
D, (z)D_(z) = (z —v)*™2®,  fort e (0,1), (4.49)

and such that the limit lim,_,., D(z) exists and is a positive real number.

Lemma. The Szegd function associated to (xz — v)*™z on the interval [0, 1] is

(z—ov)™

D(z) = i
& p(z)m+e

(4.50)

where ¢ is a conformal map from C\ [0, 1] onto the exterior of the unit circle, which is given by
o(z) =22 — 14 2(2(2 — 1))V

Proof. 1t follows from the definition of ¢ that this function takes negative values on the negative
real axis. Therefore, we see that D is analytic (and non-zero) on C\ [0,1]. The jump condition
(4.49)) follows from the fact that ¢ (x)p_(x) =1 on (0,1). Lastly, we have

Do = lim D(z) = 4~ (m+%) > . (4.51)

Z—00
O
We can now provide an explicit expression for P(>). The Riemann-Hilbert problem on the

0 1
interval [0, 1] with jump matrix Lo has a well known explicit solution [66], which is given

by

1@+ i) 1) (1)
M= (i(v(Z)—v(z)‘l) 32) +4(2) > e 1= (S7) . 4

Therefore, it follows from the properties of the Szegd function that the unique solution of the

Riemann-Hilbert problem for P(°°) is given by
P(>®)(2) = DI M(2)D(z)"%. (4.53)

However, we need to take into account the following consideration. Even if the power of
the characteristic polynomial insertion in @, , is only allowed to be an even integer, we do
need an asymptotic expansion for Y that is valid for more general values of m. This is due
to the fact that we need to integrate this function over a whole range of the parameter m in
order to recover the model f}jg“E( Ny 88 shown by the differential identity . Allowing m
to be a general parameter introduces also a jump type singularity in the weight function (see
footnote , which would require a more involved analysis. We can bypass this obstacle by
noting that the Szegd function associated to the function |z —v|*™x® on the interval [0, 1] is also
given by , for any (positive) value of m. Since the model corresponding to this function
coincides with EZ;}LE( N) for integer values of m, we can proceed with the Szeg6 funcion ,
thus avoiding the need to consider jump type singularities. Some inspection shows that the
analysis for both of the models is identical for the moment; we will introduce and comment the

required modifications in the following.
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4.3.2 Local parametrices

As mentioned above, the matrix P(®) provides a good approximation to the solution of the
Riemann-Hilbert problem for S, in the sense that the matrix S(z) (P(OO)(z))i1 converges to the
identity as N — oo. This holds everywhere, except in a neighbourhood of the points 0,v and
1, due to the singularities of P() at these points, in sight of . We thus need to consider
additional problems around each of these points, known as local parametrices. These will be
built in terms of the model Riemann-Hilbert problems reviewed in section It is at this
point of the construction that we will fix the specific choice of contours X;.

We start with the local parametrix at the point 1. We consider a disk D(1,4;) for some
small fixed &1, which will be specified later. We consider the following problem in this disk.

Riemann-Hilbert problem for P()

1. P(l)(z) is analytic in D(1,61) \ (1 — 01,1+ 01) UXa U Xy).
2. PM(2) has the same jumps inside D(1,4;) as S(z).
3. Uniformly for z € dD(1, ;) we have

PW(2) = (I + O(N1)P>®)(2).

The strategy now is to transform this problem into one with constant jump matrices. We
will then identify these jumps with those of a Riemann-Hilbert problem with a known solution.
The composition of this solution with a conformal mapping gives a solution for the problem for
PM on the disk D(1,6;1), apart from a suitable modification to take account of the matching
condition (3). We start by defining the matrix P(®) as follows

P (2) = PO (2)e= 5703 (5 — y)~mos,~ 503, (4.54)
Using the properties of the function & (4.39)), we find that PO solves the following problem.
Riemann-Hilbert problem for PO
1. PU(2) is analytic in D(1,8;) \ (1 — 81,1+ 6) U U Sy).

2. PU)(2) verifies:
0 1
, 1—-01<2z<1,
-1 0

. ~ 11
PW(2); = PW(z)_ <0 1) . l<z<1+6, (4.55)

1 0
<1 1) , S (22 U 24) OD(1,51).

3. Uniformly for z € dD(1, ;) we have

PW(2) = (I + O(N"1) P (2)2595 (2 — v)mse 508, (4.56)

We see that the jumps of the matrix P®M coincide with those of the Airy model
Riemann-Hilbert problem described in section |4.1.3 The idea now is to compose the solution
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of this problem, which has an explicit expression, with a locally conformal map from a
neighbourhood of 1 onto a neighbourhood of 0, so that the contours of the jumps of this model
problem are mapped to the disk D(1,d;). More precisely, we seek a solution for this problem of
the form

PW(z) = B1(2)Ti(G1(2)), (4.57)

where Ej is a function analytic in a neighbourhood of 1 that will be specified later, ¥4; is the
solution of the Airy model problem, and (; is the aforementioned locally conformal map. In
order to construct this map, we compare the asymptotic behaviour of Wa; as z — oo, given by
, with the definition of ﬁ(l), and choose (7 to compensate for the exponential factor in
(4.54). That is, we set

at) = (-3e@) . cepua -l (4.59

It follows from that (1 is indeed a locally conformal map from a neighbourhood of 1 onto
a neighbourhood of 0, as desired. Therefore, we can now choose §; small enough so that (i is
conformal in the whole disk D(1,d;). We also set now the lips of the right lens ¥y and ¥4 to be
the preimages of the rays e2™/3R* and e2™/3R~ under the map (; (more precisely, we set the
parts of the lips that lie inside the disk D(1,d;) to be the preimages of the pieces of the rays
that lie inside (1(D(1,671))). It follows from this construction that the matrix W;(¢1(2)) has the
jumps specified in .

We still need to take care of the matching condition (4.56)). To this end, note that we have
not specified the choice of the analytic function F; introduced in . Another effect of
composing the solution of the Airy problem with (; is that as N — oo the asymptotic behaviour
is attained at the boundary of the disk D(1,01). Comparing this behaviour with the
matching , we see that the appropriate choice is

Ei(2) = P(m)(z)z%“(z — v)m"?’i ( 1_ _1Z> Cl(z)03/4.

—1

As desired, this matrix is analytic in a neighbourhood of 1. Indeed, it follows from the jump
condition for P(>) and the fact that ¢ (33)}!4 =G (x)1_/4e”/2 for x € (1 — d1,1) that E7 has no
jumps on D(1,d7). Moreover, the singularity of F; at the point 1 is at most of square-root type
(recall the explicit construction of P> given by ), and therefore removable.

Hence, we arrive at the conclusion that the solution to the Riemann-Hilbert problem for P(1)
is given by

P(l) (Z) = El (Z)\I/Ai(gl(z))gf N%(Z)Ug (Z _ v)mag,zfgog'

Let us now construct a local parametrix in a neighbourhood of 0, following an analogous
procedure to the one done for the parametrix around 1. We consider a small disk D(0, dy), for
some Jy that will be fixed later.

Riemann-Hilbert problem for P

1. PO)(2) is analytic in D(0,dg) \ ([0,80) U X1 U X3).
2. P)(2) has the same jumps inside D(0,dp) as S(z).
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3. Uniformly for z € 9D(0, dp) we have
PO (2) = (I +O(N~1)P>®)(2).
4. PO has the same behaviour at 0 as S.

As before, we can transform this problem into one with constant jump matrices by means
of the following transformation

3(v — 2) M3 (—z) 28, (4.59)

Note that the exponential factor does not introduce new jumps on (—do, 0), in sight of (4.39). It
thus follows from the properties of the function & that P(©) solves the following Riemann-Hilbert
problem.

Riemann-Hilbert problem for PO
1. PO)(2) is analytic in D(0,80) \ ([0,80) U X1 U s).
. PO

2. PO)(2) has the following jumps

0 1

, 0 < z < do,
-1 0

—iTQ 1

13(0)(2)+:]3(0)(z)_ < 1 0) , 2€X1ND0,0d),

) . 2 €X3nD(0,5).

3. Uniformly for z € 9D(0, dp) we have

POG) = (I + O(N"1)) PO (2)(=2)398 (0 — )98 508 (4.60)

4. As z — 0, the matrix PO has the following behaviour

;) 2593 2 outside the lens,

~ o1) o
pO)(z) - ( ) ( ) if Re o > 0,
O(z72) Oz 2)
. « |, =z inside the lens,
O(Zif) O(Zii)
O1) Ol
( (1) (log Z)> ’ z outside the lens,
PE ACDRCTS if Re o =0
O(l O(l |
(log z) (log 2) , z inside the lens,
O(logz) O(logz
~ 0(z3) 0(z?) i
©) (. _
P = (0(z3) 0(:%))" e

Note that both the jumps of the matrix PO and its behaviour at 0 coincide with those of
the Bessel model Riemann-Hilbert problem. As before, we compose the explicit solution of this
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problem ¥ with a locally conformal map that sends the jump contours of PO to those of PUpe.
That is, we seek a solution of the form

PO)(2) = Ey(2)¥pe(Go(2)). (4.61)

where (y denotes the desired conformal map and Ej is an analytic prefactor, to be determined

later. In sight of the exponential factor in (4.59)) and the asymptotic behaviour (4.19), we see

that a suitable choice for this mapping could be the function (%5 (z))2. However, while being

conformal, it follows from (4.36)) that small neighbourhoods of 0 are mapped to neighbourhoods
of 1 under the action of this map. We can nevertheless remedy this situation as follows. Consider

the function

0
&(z) = 27T2'/ r(s)ds, (4.62)

where r is the analytic extension of the density of the equilibrium measure, see (4.36)). It follows

from the fact that duy is a probability measure that {(z) = £(2) £2mi on C\ (—o0, 1]. Therefore,
we see that if we set
N~ 2
o) = (66)

26/() = (LN

we obtain

Now we have that the map (y is locally conformal, and maps neighbourhoods of 0 onto
neighbourhoods of 0, as follows from . Moreover, the exponential factors in the
asymptotic behaviour of the functions under interest are still compensated, up to the prefactor
(—=1)N. However, this term can be included in the analytic function Ep, which has not been
fixed yet. Indeed, it follows from the asymptotic behaviour and that choosing

(] 1 - )

Eo(2) = (~DVP ()(=2) 87 (0 = )" (_11. f) (2m Gy (2))2, (4.63)
the matching condition is verified. As above, one can also check that the matrix Fy is analytic
in a neighbourhood of 0. We can also fix now the choice of dy and of the lips X1 and X3: we
choose them so that ¢y is conformal in the whole disk D(0,dy), and such that the parts of the
2mi/3 R+

lips that lie inside this disk coincide with the preimages of the rays e under (p. Some

inspection confirms that the resulting matrix

PO (2) = By(2)Wpe(Go(2)e 27 (v — 2) 799 (—z) "5 (4.64)

solves indeed the Riemann-Hilbert problem for P(©).

Lastly, we construct the local parametrix at the point v. The procedure is analogous to the
previous cases, and the solution will be expressed now in terms of the confluent hypergeometric
model Riemann-Hilbert problem. We consider a small disk D(v, §,) for some ¢, to be determined
later.

Riemann-Hilbert problem for P(*)

1. P®(2) is analytic in D(v,8,) \ (v — 6y, v+ 6,) U1 U X UX3 UXy).
2. P (2) has the same jumps as S(z) inside D(v, ).
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Q s QF
0 | v R 1
QL 26 QE

Figure 4.6: The contours and quadrants introduced in the definition of W (z) (4.65]).

3. Uniformly for z € dD(v, d,)) we have
PW(2) = (I + O(N1)P)(2).

We follow the same approach as in the previous two cases. Nevertheless, a more subtle
situation arises, as in the construction of the global parametrix. Recall that we are interested
in obtaining an asymptotic expression valid for a whole range of the parameter m, due to the
differential identity . When constructing the global parametrix, this situation was solved
by noticing that the analysis for the model with weight function [t — v|>"t%e~*N! was identical
to that of the model ZZITE( N While this is still true for the local parametrices at 0 and 1, as
can be seen from the explicit expressions of P(©) and P, the local parametrix at v needs to be
constructed taking into account this modification. We use the same strategy as before, and think
of the local parametrix as that associated to the model with weight function |t — v|?Mt%e 4Nt
instead, where m need not be an integer anymore. Following [100, 52], we consider another
contour on the complex plane, which will be fixed later, intersecting the real axis at the point v,
and denote by Y5 and g the parts of it that lie in the upper or lower half plane, respectively.
We orient these contours away from the point v, and label the resulting four quadrants in the
complex plane by Q% and QF, as depicted in figure With this, we define the following

extension of the function (z — v)™ to the complex plane

(4.65)

where m is a general positive parameter.
We can now proceed as in the previous parametrices. First, we transform the problem into
one with constant jump matrices by setting

_ N&(2)

PW(2) = PM)(2)e~ "2 T8W () 782275, (4.66)

We find that P®) solves the following Riemann-Hilbert problem.

Riemann-Hilbert problem for P
1. P®)(2) is analytic in D(v,8,) \ (0 — 8y, v+ 8,) US; Uy U g U T, U5 U ).
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2. ]3(”)(,2) has the following jumps
0 1
, V— 0y <2<V 0y,
1
1 0
s S (21U24)QD(U,51,),

N . <e27rim 1
PO(z), = PO(2)_ (

1 0
) , S (22 U 23) ﬂD(U75U)7

) , 2 € (25 U26) ﬂD(U,5U),

3. Uniformly for z € dD(v, d,,) we have

Ne()

PO (2) = (I +O(N"Y))P®)(2)2273W ()% (4.67)

We see that the jumps of P® coincide with those of the hypergeometric model
Riemann-Hilbert problem with parameters a = 2m,3 = 0, after rotating the contours of
this problem. Using (4.66[), we see that the behaviour of the function P®) also coincides with
that of Uy at the point 0. We are therefore interested in a solution of the type

PW(2) = Ey(2)¥na(Co(2)),

where, as in the previous cases, F, is an analytic prefactor to be determined, and ¢, is a locally
conformal map from a neighbourhood of v onto a neighbourhood of 0. Comparing and
the asymptotic behaviour , we see that a map of the form {, = N¢(z) would compensate
the exponential factors in these equations. As for the local parametrix at 0, we define instead
the function

&(z) = 2mi /U r(s)ds,
and choose as map _
G = NE(2),

which is indeed locally conformal from a neighbourhood of v onto a neighbourhood of 0. With
this, we can set now the analytic prefacto@

6i7r%037 = Qf
e*’iﬂ'%ﬂ'g’ = QE/F
Ey(z) = P(OO)(Z)Z%U?’W(Z)UB eim5 o3 ( 01 (1)> ’ e QE emelv r:,:(s)dsag’ (4.68)
irm 0 1
—inrZos R
e "2 (_1 0) , z2€eQ”

\ 7

36We choose ¢'™N J©' r(=)ds i equation (4.68) for Im z > 0 and Im z < 0, respectively. This constant now plays
the role of the factor (—1)" in the local parametrix at 0. It follows from the jump conditions of the functions
P(*) and W that E, is indeed analytic in a neighbourhood of v.
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Figure 4.7: Final contour Xg.

as well as the lips 3; near the point v. Following the previous reasonings, we set the parts of
them that lie inside the disk D(v,d,) to be the preimages of the rays eFm/ARE o Fm/2RY ynder
the map (,. With this, we conclude that the matrix

PO (2) = By(2)Una(Col(2))e 308 W (z) 72~ 308 (4.69)

solves the Riemann-Hilbert problem stated above. We recall that the parameters of the matrix
WUy are set to a = 2m, B = 0.

4.3.3 Final transformation and conclusion of the analysis

We can introduce the final transformation of the Riemann-Hilbert problem, which will allow us
to obtain the sought asymptotic behaviour of the matrix Y. We consider the contour X g, formed
by the boundaries of three disks centered at the points 0,v and 1 of radius § = min {do, d,, 01},
the interval (1 + 6, 00), and four curves Z;, for j =1,...,4. These curves are chosen as follows:
they provide analytic continuations of the parts of the contours X, that lie inside the disks,
which have been fixed in the previous section. The resulting contour is depicted in figure
Now, we define

(P(l)(z)) , for z € D(1,9),

gl (PW(2))"",  for z € D(v,6),
Rlz) = 52) (P(O)(z))i1 , for z € D(0,9), (4.70)

(P(OO)(Z))_l , for z elsewhere.

Some inspection shows that the behaviour at the points 0,v and 1 of the local parametrices at
each of these points implies in particular that the possible singularities of the matrix R at these
points are removable. Therefore, we find that R solves the following problem.

Riemann-Hilbert problem for R.

1. R(z) is analytic in C\ X, where the contour Xp is shown in figure
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2. R(z) has the following jumps

P (z) (P) 7, z € 0D(1,96),
PO (z) (PN 2 € AD(v,4),
PO(z) (P) ™" 2 € dD(0,9),

1 0 —1
P (2 JCON z e,
(2) (z_o‘(z — v)_me_Nf(z) 1) ( ) J
o _ 2 \m N(2g(x)—V (z)—¢
P (2) ((1) 2% (x —v)me )
1

) (PCNT 1<

3. As z — 0o, we have
R(z)=T1+0(z).

According to the third condition in the Riemann-Hilbert problems for P9, P(*) and P the
jumps of the matrix R on the boundary of the disks tend to the identity matrix as N — oco.
Due to equations and, we see that the function £ is purely imaginary on the interval
(0,1), and its imaginary part strictly decreases from 27 to 0. Therefore, as a consequence of
the Cauchy-Riemann equations, there exists a neighbourhood of the interval (0,1) on which &
has positive real part away from the real axis. Hence, after possibly replacing § with a smaller
radius for the disks above, so that the curves E; lie inside this neighbourhood, we conclude that
the jumps of R converge to the identity as N — oo on the parts of the lips of the lenses that lie
above the real axis. Using , we see that the same conclusion holds for the parts of the lips
that lie below the real axis. Moreover, it follows from that the jump of R on the interval
(1,00) also tends to the identity as N — co.

Thus, we see that the matrix R is asymptotically close to the identity as N — oo, as claimed
above, in the sense that]

R(z)=T+O(NY).

We can now reverse the series of transformations leading to R to recover an asymptotic
approximation to the matrix Y. Inserting this into the differential identity (4.46[), we arrive at
the desired large N expression for the model ZZ’&”E( N This is precisely the content of the next
theorem.

Theorem 14. Let a >0, v € (0,1) and m be a positive integer. As N — oo, we have

~ 2

Z’U7m v\ 4Nm N 1— m 1 2

=20 (62) ( “) ?ZH i (4o) ™| 1+ O(NTY),  (471)
Z o) e v (2m +1)

where G is Barnes’ G-function.

Proof. Recalling the differential identity (4.46)), we see that we need approximations for the
functions (Y_lﬁY)n and Y71Yao at the points 0 and v, as well as for the coefficients vy, Yn—1
and ny.

3"More detailed estimations on the norm of the matrix R on the contours of the Riemann-Hilbert problem can
be obtained by means of contour integration; see [53] for instance, among many others.
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We start with the coefficients vy, vy—1 and ny. We can obtain the asymptotic behaviour of
these constants by means of equations (4.15) and the expression

Y(z) = ENTZUBR(Z)P(OO)(Z)eN(g(z)—g)o—:;’

which holds for points z lying outside the disks D(e, ), for € € {0,v,1} and outside the lenses,
as follows after reversing the transformations of the Riemann-Hilbert problem. Combining this
remark with equation (4.48), the fact that £ = —2 — 4log?2 (see [I97], for instance), and the
asymptotic behaviour D(z) = Doo(1 — 2% + O(272)), as z — oo, we find that as N — oo

1
7]2\[_1 — ;62N24N+4m+2a—3(1 + O(N_l)),
7]:[2 _ W€—2N2—(4N+4m+2a+1)(1 + O(N_l)),

NN = —g—i-vm—}—i-O(N_l).
4 2
We next consider the behaviour of the functions (Y_I%Y)n and Y71Y22. We approach
the points 0 and v taking points z on the disks D(0,0) and D(v,d) respectively and outside
of the lenses (and also lying in the intersection of the preimage of the region I1 under the
map (,, depicted in figure with the quadrant Qf , in the case of v). Reversing the
transformations of the Riemann-Hilbert problem for Y we see that for such points the matrix

Y can be expressed as
Y (2) = €3 3 R(2) P (2)eN @) =5)os, (4.72)

where € € {0,v}.

Let us start with the point v. Substituting the explicit expression of the local parametrix
P given in (£69), and using the fact that gi(v) — £/2 — &4(v)/2 = V(v)/2 (which follows
from and (4.39)), we obtain

g1\,
Y(v) = 6%03(1 + C’)(Nfl))Ev(v) <\IJU %\1’31> v 2932Nvo3 (4.73)
v, lug
where "
v, — I'(m+1) AN 1—w ’
r2m+1) v
and

EU(’U) _ DgogM(,U)ei((m—i-%)arccos (2v-1)—-2F4xN [} r,(s)ds)a3

)

where Do, and M (z) are given by (4.51)) and (4.52)), respectively. We have used in the derivation
of equation (4.73) above the asymptotic behaviour [1]

Glabin) =41+ 0()),  Hlawbiz) = tet+ 0GI M) 1 0GH)

as z — 0, for the functions G and H introduced in the explicit solution of the model
hypergeometric Riemann-Hilbert problem (4.22)), together with the approximation

Co(2) = =2miNr(v)(z —v)(1 + O(z — v))

as z — v, where r is the extension (4.36) of the density of the equilibrium measure duy .
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We now consider the behaviour of Y at 0. Following an analogous reasoning as before, we
find that

Y(0) = e¥os (1 oN-NE) [ Y0 @ lo | ,omes
0 ima¥ %\Ifal ’

where
1

Yo = T(o+1)

(2N)°

and

Eo(0) = (- )ND"?’\lf (1 lg";ti;ll)) (47N)7,

after substituting the explicit expression for the local parametrix P(9), given by (&.64)), in (£.72).
We have used the approximations []

In(2) = F(a1+ 3 (5) 0+0G2),  Kalz) = L(a) (3) "+ 0@ + o),

as z — 0, together with the fact that as z — 0
o2 (2) = —ANZ2(1+ O(2)).

Substituting the obtained expressions in the differential identity (4.46|) and performing some
computations we arrive at

d 1—wv
— log Z”UE(N) =4N(v — log2) 4+ 2mlog <4N ” )

dm
( I(m+1)

d
— (2m + a)log4 — alogv + 2m—— log T(2m 1 1)

o > +O(Nh.

Integrating this identity from m = 0 to an arbitrary integer and using the formula (see [53], for

instance)
4 T(2+1) 22 G(:+1)°
—1 27(1 =2 4log—2 T/
/xda: BT+ ™ T T TR GG
we arrive at the desired conclusion. O

We can use the result given in theorem [I4] to obtain the large behaviour of the matrix model
Z oy introduced in section Indeed, combining equations ([4.30)) and (4.71)) we find that

LUE(N)
as N — oo and u — oo, with u/4N = cte € (0,1), we have
u,m 2/2
ZLUE(N) — N2mN+m2+maeumfm2ufma (4N — u>m / G(m+ 1)2 (1 + O(Nfl))
ZLUE(N) u G(2m +1)

Note that the large N behaviour of the partition function of the Laguerre Unitary Ensemble
ZruE() can be obtained by means of equations (4.29) and ( -

Let us make some comments to end this section. We have focused only on the leading terms of

the model ZLUE

First of all, we note that the asymptotic behaviour of the orthogonal polynomials with respect

(N) but several generalizations are possible with some additional considerations.

to the weight @, y, in the various regions of the complex plane determined by the contour X is
readily available from the asymptotic expressions for the matrix Y, in sight of equations (4.14))
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and . Moreover, as usual when solving Riemann-Hilbert problems, we observe that more
terms in the asymptotic expression for Y can be obtained, with increased effort. This involves
the analysis of the function R, besides more detailed approximations of the functions appearing
in the explicit construction of ¥ used in the proof of theorem [14}

Finally, let us also remark that during the preparation of the current work, the article [53]
appeared, which addresses much more general cases of insertions of Fisher-Hartwig singularities
in the Laguerre and Jacobi Unitary Ensembles. Our results are consistent with those in
[53], although the different choices of potentials and supports of the weights make the direct
comparison slightly involved.
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