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Abstract: We show under what conditions an accelerated detector (e.g., an atom/ion/molecule)
thermalizes while interacting with the vacuum state of a quantum field in a setup where the de-
tector’s acceleration alternates sign across multiple optical cavities. We show (non-perturbatively)
in what regimes the probe ‘forgets’ that it is traversing cavities and thermalizes to a temperature
proportional to its acceleration, the same as it would in free space. Then we analyze in detail how
this thermalization relates to the renowned Unruh effect. Finally, we use these results to propose an
experimental testbed for the direct detection of the Unruh effect at relatively low probe speeds and
accelerations, potentially orders of magnitude below previous proposals.

Keywords: Unruh effect; experimental proposal; Collision Models; Gaussian quantum mechanics;
non-perturbative calculation

1. Introduction

The Unruh effect [1–3], one of the fundamental and yet still untested predictions of
quantum field theory, tells us that uniformly accelerated observers of the Minkowski vac-
uum of a quantum field will actually experience a finite temperature proportional to their
acceleration [4,5]. Direct detection of the Unruh effect would be a feat that resonates across
many fields, ranging from astrophysics [6,7], cosmology [8,9], black-hole physics [10],
particle physics [11], and quantum gravity [12–14] to the very foundations of QFT. Un-
surprisingly, much effort has been made towards finding evidence of the Unruh (and the
closely related Hawking) effect, both through direct and indirect observations [15–17] as
well as in analog systems such as fluids [18], Bose-Einstein condensates [19–21], optical
fibers [22], slow light [23], superconducting circuits [24] and trapped ions [25,26], to name
a few. Despite its fundamental relevance, an uncontroversial direct confirmation of the
Unruh effect remains elusive.

In recent times, it has been shown that the Unruh effect is present even when the
field state is not KMS (i.e., thermal, see [4,27]) with respect to accelerated observers [27].
This is related to the fact that the only physical Lorentz invariant state of a free field in
flat-spacetime is the vacuum, and that any deviations from the vacuum would eventually
be red/blue-shifted out of the response window of any physical detector. Moreover, one
can see this effect in settings (like optical cavities) where Lorentz invariance is explicitly
broken [28]. Indeed, the Unruh effect understood in terms of thermalization of particle
detectors is a robust phenomenon.

One commonality of all presently known scenarios exhibiting the (linearly acceler-
ated) Unruh effect is that the probe system becomes ultrarelativistic and therefore travels
astronomical distances . This may seem unavoidable since the probe must accelerate for a
long time (i.e., long enough to thermalize).
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However, as we will demonstrate, ultrarelativistic velocities (from the probe’s initial
rest frame) are not necessary in cavity setups to see the Unruh effect. Furthermore, we
will show that it can be seen with accelerations orders of magnitude smaller than the best
current proposals known to the authors.

2. Motivation

We discussed in the introduction that ultrarelativistic speeds and astronomical dis-
tances may be needed to detect the Unruh effect with linear acceleration. Let us expand
upon this argument with some scale analysis. It is well known that even very small Unruh
temperatures require huge accelerations. For instance, an acceleration of a = 3× 1019 g
where g = 9.8 m/s2 is needed to achieve TUnruh = 1 K. A second issue that often re-
ceives less comment is that thermalization is a relatively slow process, at least compared
to the high accelerations discussed above. In particular, the proper time for a probe to
thermalize with its environment, τthermal, is lower bounded by the probe’s Heisenberg
time τH = 2π/Ω as τthermal � τH = 2π/Ω where h̄Ω is the typical energy scale of
the probe. Think for example of the energy gap between two levels of an atomic transi-
tion used as a detector. If, for instance, Ω is set by the 21-cm Hydrogen transition then
τthermal � τH = 4 ns.

The Lorentz factor (with respect to its initial rest frame) of a probe accelerating at a
rate a for a proper time, τ, is γ = cosh(aτ/c). The lab distance covered in this time is

∆x = (c2/a) (γ− 1). (1)

If the probe becomes ultrarelativistic, γ � 1, then lab time is ∆t ≈ ∆x/c. Please
note that each of ∆x and ∆t are exponential in the quantity aτ/c. For the Hydrogen probe
discussed above we have

a τthermal/c� a τH/c = 4000 (2)

such that in Equation (1), the factor

(γthermal − 1)� exp(4000) ≈ 101737. (3)

In this case, the distances and times required for the probe to thermalize are so
astronomical that they dwarf cosmological lengthscales.

The above discussion suggests that any feasible direct detection proposal will have
a τthermal/c . 1. Proposals with these sorts of scales are also problematic. In particular, we
then have,

1 &
a τthermal

c
� a τH

c
= (2π)2 kBTUnruh

h̄Ω
(4)

That is, proposals with a τthermal/c . 1 must also have kBTUnruh/h̄Ω � 1; There
must be very few excitations in the post-thermalization probe. Thus, it appears we have
a dilemma: either our experiment requires astronomical distances and lab times, or the
thermalized probe must be only very weakly excited. However, as we will discuss in this
paper, this dilemma can be avoided.

In the above argument that ultrarelativistic motion is unavoidable for the Unruh effect
there is a hidden assumption: that the thermalization time is the same as the time that the
acceleration is sustained in a single direction. We can circumvent this by separating the
two timescales. For instance, we can take the probe to alternate the sign of its acceleration
at some regular interval τmax with τmax � τthermal. In this way, the probe maintains a
constant magnitude of acceleration, |a|, but does not accumulate much speed.

In this regard, our approach has some similarities to several circular Unruh effect
proposals [29–36] in which the probe follows a circular trajectory. In these proposals, as in
ours, the probe’s acceleration has a constant magnitude but a changing direction. In both
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cases this prevents the probe from becoming ultrarelativistic. However, our linear setup
can overcome some of the limitations of the circular proposals as we will note later. The
key difference between such circular proposals and our proposal is that circular trajectories
yield final probe temperatures which depend not just on the circular acceleration but
also on the probe’s speed and energy gap [36]. In our proposal, as we will see, this does
not happen.

Now, the question becomes: will the probe still thermalize to the Unruh temperature
when following our alternately accelerated/decelerated trajectory? One may have the intu-
ition that it will since the probe would “see a thermal bath of temperature TU = h̄|a|/2πckB”
between each acceleration sign-change event. If the probe does not thermalize it must be
due to the sudden jerks felt by the probe at each acceleration sign-change event (or due to
radiation produced at these events). Contrast this with the circular Unruh effect proposals
in which the probe undergoes a slow continuous jerk.

In our proposal, the effect of these jerks can be completely removed by the following
alternative setting: we set up a series of adjacent Dirichlet cavities containing quantum
fields in their respective vacuums. The walls of each cavity have small (say atom-sized)
holes that the probe travels through. We take the probe to switch the sign of its acceleration
exactly as it crosses each cavity wall. We note that one can reroute the probe back through
old cavities, so long as they have had time to relax back to the ground state before the
probe reenters.

The benefits of introducing these cavity walls are two-fold. First, since the probe’s
interaction with the field is identical in each two-cavity-cell, we need only simulate the
field-probe interaction for a relatively short duration, δτ = 2τmax � τthermal. Indeed, the
cavity walls shield the probe from any radiation produced in previous cavities. As we
will discuss in detail later, this makes the probe’s dynamics Markovian which allows for
efficient non-perturbative calculations.

Secondly, the field’s boundary conditions enforce that the field amplitude vanishes
at the cavity walls such that the probe is effectively decoupled from the field at each
acceleration sign-change event. This completely eliminates the sudden jerks’ effects on the
probe’s dynamics.

One may be concerned that these cavity walls will spoil the Unruh effect, for two main
reasons: First, the probe creates disturbances in the field that will bounce off the cavity
walls and affect the probe in turn. We will see that if the probe spends short times in each
cavity, the probe will not have enough time to resolve the backreaction of the probe on the
field, becoming blind to those disturbances.

Second, the vacuum in the cavity is not Lorentz invariant: there is a discrete set of
field modes, and the probe can notice this difference. Indeed, in the classic Unruh effect, it
is relevant that the vacuum state of the field is invariant under Lorentz transformations
as well as that the probe accelerates for asymptotically long times for it to thermalize
to a temperature proportional to its acceleration [4]. In a cavity setting we do not have
Lorentz invariance and one may not expect that an accelerated probe would thermalize if
it interacted with the cavity vacuum state. However, it was observed in the past that there
is a phenomenon akin to the Unruh effect (thermalization of detectors to a temperature
proportional to their acceleration) in cavity setups [28]. We will discuss here that there
are indeed regimes where the probe is deprived of the information about the fact that it
is flying through a cavity. We will show that the regimes where one finds Unruh effect
in cavities (defined as thermalization of the probe to a temperature proportional to its
acceleration when interacting with the vacuum) are precisely those regimes where the
probe cannot resolve information about the effect of the cavity walls.

In summary, we will show that there are regimes where the probe is blind to the fact
that it is in a cavity and so experiences thermalization according to Unruh’s law.
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3. Our Setup

Consider a probe which is initially co-moving with the cavity wall at x = 0 and then
begins to accelerate at a constant rate a > 0 towards the far end of the cavity at x = L > 0.
In terms of the probe’s proper time, τ, this portion of the trajectory is given by

x(τ) =
c2

a
(cosh(aτ/c)− 1), t(τ) =

c
a

sinh(aτ/c), (5)

for 0 ≤ τ < τmax = c
a cosh−1(1 + aL/c2). The cavity-crossing time in the lab frame is

tmax = L
c

√
1 + 2c2/aL. The probe exits the first cavity at some speed, vmax, relative to

the cavity walls with maximum Lorentz factor γmax = cosh(aτmax/c) = 1 + aL/c2.
At τ = τmax the probe enters the second cavity of the two-cavity cell and begins

decelerating with proper acceleration a. The probe reaches the far end of the second cavity,
x = 2L, just as it comes to rest at τ = 2τmax.

Although a full light–matter interaction description would require a 3 + 1D setup [37],
as proof of principle we will assume that each cavity contains a 1+ 1D massless scalar field,
φ̂(t, x), with a free Hamiltonian

Ĥφ =
1
2

∫ L

0
dx c2π̂(t, x)2 + (∂xφ̂(t, x))2, (6)

satisfying [φ̂(t, x), π̂(t, x′)] = ih̄δ(x− x′) ˆ

3
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(cosh(aτ/c)− 1), t(τ) =

c

a
sinh(aτ/c), (5)

for 0 ≤ τ < τmax = c
acosh−1(1 + aL/c2). The cavity-

crossing time in the lab frame is tmax = L
c

√
1 + 2c2/aL.

The probe exits the first cavity at some speed, vmax, rela-
tive to the the cavity walls with maximum Lorentz factor
γmax = cosh(aτmax/c) = 1 + aL/c2.

At τ = τmax the probe enters the second cavity of the
two-cavity cell and begins decelerating with proper ac-
celeration a. The probe reaches the far end of the second
cavity, x = 2L, just as it comes to rest at τ = 2τmax.

While a full light-matter interaction description would
require a 3 + 1D setup [? ], as proof of principle we will
assume that each cavity contains a 1+1D massless scalar

field, φ̂(t, x), with a free Hamiltonian

Ĥφ =
1

2

∫ L

0

dx c2π̂(t, x)2 + (∂xφ̂(t, x))2, (6)

satisfying [φ̂(t, x), π̂(t, x′)] = i~δ(x− x′)1̂1, where π̂(t, x)
is the field’s canonical conjugate momentum. The field
obeys Dirichlet boundary conditions at x = 0 and x = L
such that we have the mode decomposition,

φ̂(t, x)=

∞∑

n=1

√
2~c2
ωnL

sin(knx)
(
â†ne

iωnt + âne
−iωnt

)
, (7)

where mode frequencies and wavenumbers satisfy
ckn = ωn = ncπ/L, and â†n, ân are the nth-mode’s cre-
ation/annihilation operators.

Let the probe’s internal degree of freedom be a quan-
tum harmonic oscillator with some energy gap, ~Ωp. The
probe is characterized by dimensionless quadrature oper-
ators q̂p and p̂p obeying [q̂p, p̂p] = i1̂1. In these terms the

probe’s free Hamiltonian is Ĥp = ~Ωp(q̂2p + p̂2p − 1)/2. In
the interaction picture q̂p(τ) evolves with respect to τ as
q̂p(τ) = q̂p(0) cos(Ωpτ) + p̂p(0) sin(Ωpτ).

We take the probe to couple to the field via the Unruh-
DeWitt interaction Hamiltonian [? ? ? ],

ĤI(τ) = λ q̂p(τ) φ̂(t(τ), x(τ)) , (8)

where λ is the coupling strength. This Hamiltonian cap-
tures the fundamental features of the light-matter inter-
action when exchange of angular momentum is not rel-
evant [? ? ? ? ]. Note that x(τ) and t(τ) are given
by Eq. (5) while the probe accelerates through the first
cavity. The trajectory in the second cavity of the cell is
a straightforward reversed-translation of this trajectory.

IV. NON-PERTURBATIVE TIME-EVOLUTION

We next compute the probe’s dynamics in the first cell.
In the interaction picture the time-evolution operator for
the probe-field system in the nth cavity is,

Û I
n = T exp

(
−i

~

∫ nτmax

(n−1)τmax

dτĤI(τ)

)
. (9)

The probe’s reduced dynamics is given by,

ΦI
n[ρ̂p] = Trφ(Û I

n(ρ̂p ⊗ |0〉〈0|)Û I
n
†). (10)

Composing the cases n = 1 and n = 2 (where the
probe accelerates and decelerates respectively) we can
build the interaction picture update map for the first
cell, ΦI

1,2 = ΦI
2 ◦ ΦI

1.
Analogously, one can find the update map for the

second cell, ΦI
3,4 = ΦI

4 ◦ ΦI
3, but unfortunately this

map is different for every cell (ΦI
3,4 6= ΦI

1,2). How-
ever in the Schrödinger picture the update map is in
fact the same for each cell, ΦS

cell = ΦS
1,2 = ΦS

3,4 = . . . .

We can build ΦS
cell from the above discussed update

maps as ΦS
cell = U2

0 ◦ ΦI
2 ◦ ΦI

1 where U0[ρ̂p] = U0ρ̂pU
†
0 and

U0 = exp(−iτmaxĤp/~) (see Appendix A for auxiliary
technical details).

In summary, as the probe travels through many cells it
is repeatedly updated by ΦS

cell. Noting that ΦS
cell depends

on the cell-crossing time, δτ = 2τmax, we have,

ρ̂p(n δτ) =
(
ΦS

cell(δτ)
)n

[ρ̂p(0)]. (11)

This dynamics is Markovian and time-independent: the
same update map is applied each time-step.

There are powerful tools to analyze the dynamics of
such repeated update systems. One such tool is the Inter-
polated Collision Model formalism, ICM [? ? ? ], which
allows us to rewrite the discrete update equation (11) as
a differential equation with no approximation and with-
out needing to take δτ → 0 unlike in other common ap-
proaches [? ? ? ? ? ? ? ? ? ? ? ? ? ? ].
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Û I
n = T exp

(
−i

~

∫ nτmax

(n−1)τmax
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1,2 = ΦI
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3, but unfortunately this

map is different for every cell (ΦI
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such repeated update systems. One such tool is the Inter-
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allows us to rewrite the discrete update equation (11) as
a differential equation with no approximation and with-
out needing to take δτ → 0 unlike in other common ap-
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. In these terms the probe’s free Hamiltonian is
ĤP = h̄ΩP(q̂2

P + p̂2
P − 1)/2. In the interaction picture q̂P(τ) evolves with respect to τ as

q̂P(τ) = q̂P(0) cos(ΩPτ) + p̂P(0) sin(ΩPτ).
We take the probe to couple to the field via the Unruh-DeWitt interaction Hamilto-

nian [4,5,38],

ĤI(τ) = λ q̂P(τ) φ̂(t(τ), x(τ)), (8)

where λ is the coupling strength. This Hamiltonian captures the fundamental features of
the light–matter interaction when exchange of angular momentum is not relevant [39–42].
Please note that x(τ) and t(τ) are given by Equation (5) while the probe accelerates through
the first cavity. The trajectory in the second cavity of the cell is a straightforward reversed-
translation of this trajectory.

4. Non-Perturbative Time-Evolution

We next compute the probe’s dynamics in the first cell. In the interaction picture the
time-evolution operator for the probe-field system in the nth cavity is,

ÛI
n = T exp

(−i
h̄

∫ nτmax

(n−1)τmax
dτĤI(τ)

)
. (9)
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The probe’s reduced dynamics is given by,

ΦI
n[ρ̂P] = Trφ(ÛI

n(|0〉〈0|)ÛI
n

†). (10)

Composing the cases n = 1 and n = 2 (where the probe accelerates and decelerates re-
spectively) we can build the interaction picture update map for the first cell, ΦI

1,2 = ΦI
2 ◦ΦI

1.
Analogously, one can find the update map for the second cell, ΦI

3,4 = ΦI
4 ◦ΦI

3, but un-
fortunately this map is different for every cell (ΦI

3,4 6= ΦI
1,2). However in the Schrödinger pic-

ture the update map is in fact the same for each cell, ΦS
cell = ΦS

1,2 = ΦS
3,4 = . . . . We can build

ΦS
cell from the above discussed update maps as ΦS

cell = U 2
0 ◦ΦI

2 ◦ΦI
1 where U0[ρ̂P] = U0ρ̂PU†

0
and U0 = exp(−iτmaxĤP/h̄) (see Appendix A for auxiliary technical details).

In summary, as the probe travels through many cells it is repeatedly updated by ΦS
cell.

Noting that ΦS
cell depends on the cell-crossing time, δτ = 2τmax, we have,

ρ̂P(n δτ) =
(
ΦS

cell(δτ)
)n
[ρ̂P(0)]. (11)

This dynamics is Markovian and time-independent: the same update map is applied
each time-step.

There are powerful tools to analyze the dynamics of such repeated-update systems.
One such tool is the Interpolated Collision Model formalism, ICM [43–45], which allows us to
rewrite the discrete update Equation (11) as a differential equation with no approximation
and without needing to take δτ → 0 unlike in other common approaches [46–57].

Additionally, we take advantage of the fact that our setup is Gaussian: all the states in-
volved have Gaussian Wigner functions and interact through quadratic Hamiltonians. This
enables us to simplify our description of the probe’s state from an infinite-dimensional den-
sity matrix, ρ̂P(n δτ), to just a 2× 2 covariance matrix, σP(n δτ), for the probe’s quadrature
operators; see [58–61].

Using recent results on Gaussian ICM [43,62] we can efficiently calculate the fixed
points and convergence rates of repeated application of ΦS

cell. This is achieved by straight-
forward application of the formalism developed in [62]. For the convenience of the reader,
we provide a quick summary particularized to our setup in Appendix B.

5. Results

As we have discussed above, we can efficiently compute the probe’s final covariance
matrix, σP(∞), after it has traveled through many cells. σP(∞) is the unique fixed point of
ΦS

cell. To characterize this state, we write it in standard form,

σP(∞) = R(θ)
(

ν exp(r) 0
0 ν exp(−r)

)
R(θ)ᵀ, (12)

for some symplectic eigenvalue ν ≥ 1, squeezing parameter r ≥ 0 and angle θ ∈
[−π/2, π/2] where R(θ) is the 2 × 2 rotation matrix. The questions that we will an-
swer next are: (a) is the probe’s final state thermal? and if so, (b) how does the probe’s final
temperature depend on the parameters of our setup?

The free parameters are: (1)—the cavity length, L, (2)—the probe’s proper acceler-
ation, a, (3)—the probe’s proper frequency ΩP, and (4)—the coupling strength, λ. The
relevant dimensionless variables are a0 = aL/c2, Ω0 = ΩP L/c, and λ0 = λL/

√
h̄c. We fix

λ0 = 0.01 to be in the ultrastrong coupling regime [63], but our results are independent of
the coupling strength provided λ0 . 1.

We next investigate for what values of a0 and Ω0 the final probe state is approximately
thermal. From (12), if the probe state is not squeezed (i.e., r = 0) then it is in a thermal state
with temperature kBT = h̄ΩP/2arccoth(ν). It is intuitive that if r is “small enough” then
we can say the state is approximately thermal. The question is then “how small is small
enough?” For the interested reader, we consider several different temperature estimates
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and measures of thermality in Appendix C. Over the parameter range considered in this
manuscript these measures of thermality all indicate that the probe’s final state is effectively
indistinguishable from thermal. Thus, as we show in Appendix C, our various temperature
estimates all take on essentially the same values.

Since the probe is indistinguishable from thermal, we next ask how its (dimensionless)
final temperature, T0 = kBTL/h̄c, depends on a0 and Ω0. A clear signature of the Unruh
effect would be finding T ∝ a. We thus search for regimes where dT0/da0 is constant
(i.e., independent of both a0 and Ω0). Figure 1a shows dT0/da0 for a wide range of
accelerations and probe gaps. Please note that we approach a constant value of dT0/da0 in
the bottom-right of the figure.

-2

0

2

4

Ω0 = π/32.
Ω0 = π/16.

Ω0 = π/8.
Ω0 = π/4.

-1.0 -0.5 0.5 1.0 1.5 2.0

-5

5

b)

Log10(a0)

dT0/da0

Figure 1. (a) Derivative of the probe’s final temperature T0 = kBTL/h̄c with respect to the acceleration
a0 = aL/c2 as a function of a0 and the probe gap Ω0 = ΩP L/c on log-scale. The dimensionless
coupling strength is fixed at λ0 = λL/

√
h̄c = 0.01. The Unruh effect (dT/da ≈ constant) is

found in the lower-right portion of the figure. Black lines highlight relevant physical scales (see
main text). (b) Cross-sections of dT0/da0 as a function of a0 for several detector gaps: Ω0 =

π/32, π/16, π/8, π/4 (from top to bottom at Log10(a0) = −1) showing independence of Ω0 in the
Unruh effect regime. The black-dashed line is at dT0/da0 = 1/2.

The upward sloping lines in Figure 1a indicate the parameters for which the probe’s
free Hamiltonian rotates through a phase of Θ = ΩPτmax = nπ/2 inside each cavity.
The Θ = π/2 line is dashed. There are fundamental limits to the energy resolution that
detectors can achieve coming from energy-time uncertainty principles [64]. To resolve the
cavity into discrete energy levels any detector would need to interact for a time long enough
to allow its internal energy uncertainty to decrease to a point where it can confidently
distinguish between two different discrete levels. For our detector this means Θ � 2π.
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Please note that the regime where dT0/da0 ≈ constant is located below the Θ = π/2 line
such that in this regime the probe cannot fully resolve the cavity into discrete levels, i.e., if
the probe does not spend much time in each cavity, the energy levels as seen by the probe
are ‘blurred’ and hence some information about the cavity is obscured.

Resolving the cavity’s discrete spectrum is not the only way that the probe could
learn that it is in a cavity. Indeed, the probe may learn of the cavity walls by bouncing
a signal off them. Consider the disturbances that the detector is effecting on the field
as it goes along its trajectory. If initially right-moving (left-moving), these disturbances
cross paths with the probe an odd (even) number of times. In each case the minimum
number of crossings is achieved for M ≤ 3 where M = ctmax/L is the ratio of the probe’s
cavity-crossing time, tmax, to the cavity’s light-crossing time, L/c. The vertical lines in
Figure 1a correspond to M = 3 (dashed) and M = 4, 5, 6, . . . . Please note that the regime
where dT0/da0 ≈ constant is located to the right of the M = 3 line (i.e., for a0 > 1/4). In
this region the probe does not spend long in each cavity (less than three light-crossing
times) and therefore interacts minimally with any reflected signals.

Summarizing, Figure 1a,b show that above a0 = 1/4 and below Θ = π/2 we have
dT0/da0 ≈ 1/2. The detector thermalizes to a temperature which is proportional to its
acceleration and independent of Ω0, (and λ0 and L) the hallmark of the Unruh effect. Please
note that unlike the circular Unruh effect (where the probe’s temperature depends on the
probe gap and its orbit speed/radius [36]), in our proposal the temperature only depends
on the probe’s acceleration. The only difference between our proposal and the continuum
Unruh effect is the factor of π.

6. The Missing Pie

Undoubtedly this mismatch of slopes (1/2 vs. 1/2π) is a glaring difference between
this Unruh effect in many cavities and the canonical one in the continuum. We account
for this difference by noting that there is no limit in which our setup returns the canonical
Unruh effect scenario. It is critical in our setup that the probe does not have time to resolve
the cavity into discrete energy levels, i.e., that Θ = ΩPτmax . 2π. This precludes the
probe from thermalizing within a single cavity, since τmax . 2π/ΩP is less than the probe’s
Heisenberg time. Thus, in our setup the probe’s thermalization is necessarily a multi-cavity
phenomenon, making it unachievable in the L→ ∞ limit and hence difficult to compare
with the continuum.

The exact magnitude of the slope may be capturing geometric factors (that are dimen-
sion dependent, yielding missing π’s) and/or the scales we have fixed e.g., the probe’s
initial velocity. However, we will still argue along the lines of [27,65] that the most funda-
mental part of the Unruh effect is that an accelerated detector interacting with the ground
state of a quantum field thermalizes in the long time limit to a temperature proportional to
its acceleration regardless of its internal energy-gap and the coupling strength.

7. Towards Experimental Detection

Our proposed setting can achieve the Unruh effect for dimensionless accelerations
as small as a0 = aL/c2 = 1/4 where L is the cavity length (maximum Lorentz factor
of γmax = 1 + a0 = 5/4). For a tabletop setup with L = 1 m this is an acceleration of
a = 2.3× 1015 g. This matches the lowest-acceleration experimental proposals for direct
detection known to the authors [15–17]. For the largest cavity on Earth (LIGO, L = 4 km)
we can lower the required acceleration way below any previous proposal to a = 5.7× 1011 g.
Example parameters for experimental realizations at these scales are shown in Table 1, as
realized at two different scales: L = 1 m (tabletop) and L = 4 km (LIGO-sized). It is worth
noting that at either of these scales the lab-time needed for the probe to thermalize, tthermal,
are not unreasonably large. One may argue that the number of cavities is too large to be
considered realistic. However, it is worth noting that as discussed in Section 2, a much
smaller number of cavities would be required in practice if we let the cavities rethermalize
with the environment after the probe crosses them (a process that is much faster than the
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time it takes to do the experiment) and reverse the polarity of the accelerating force so that
the probe may revisit old cells assuming they have had enough time to relax back to their
ground state. As such the number of cavities actually needed may be much less than Ncells.

Table 1. Our proposed setup with a0 = 1/4, Ω0 = π/16 and λ0 = 0.01 realized at two different
scales, L = 1 m (tabletop) and L = 4 km (LIGO-sized). tthermal estimates the lab-time needed for the
probe to thermalize. Ncells is the number of cells crossed in this time. Note these can be substantially
decreased by increasing λ0. See Appendix B for details on tthermal and Ncells.

Tabletop LIGO-Sized

L 1 m 4 km
a 2.3× 1015 g 5.7× 1011 g

ΩP 60 MHz 15 kHz
tmax 10 ns 40 µs

λ
√

h̄c/h̄ΩP 0.051 0.051
T 280 µK 71 nK

kBT/h̄ΩP 0.64 0.64
tthermal 14 ms 56 s
Ncells 7× 105 7× 105

The theoretical setting proposed in this manuscript is general and independent of
any particular implementation, paving the way for future experimental proposals. In
particular, there is freedom in picking the mechanism which accelerates the probe. Two
possibilities are laser pulses and voltage differences (see Figure 2). In either case, we can
estimate the kinetic energy that the probe needs to gain/lose across each cavity. For an
electron this is 128 keV; for a hydrogen atom this is 235 MeV. The laser technology needed
to provide the sustained accelerations needed are already available [66,67]. The voltages
needed are also not outside of the realm of possibility: the largest voltages produced in a
lab are ∼102 MV [68]. Although not exempt from technical difficulties, the experimental
challenges involved in the proposed setups are expected to be solvable with near-future
technology.

Figure 2. A schematic drawing of one possible implementation of our experimental proposal.
Voltages at the cavity walls accelerate and decelerate the probe.

8. Conclusions

We have presented a setup which displays the Unruh effect (thermalization of a parti-
cle detector to a temperature proportional to its acceleration) without the detector becoming
ultrarelativistic. Moreover, this setup has the potential to provide an experimental testbed
for the Unruh effect orders of magnitude lower than previous proposals. We achieved this
by having the probe alternate between accelerating and decelerating at regular intervals.
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Despite the departures from the canonical Unruh effect scenario (the vacuum of a
free field in a cavity is not Lorentz invariant) we still see the Unruh effect (as in [28]) and
further discuss that when the Unruh effect is present it is because the probe does not have
enough time to learn that it is in cavity (either by resolving the cavity’s discrete energy
levels or by bouncing a signal off the walls). In this regime, the probe thermalizes to an
Unruh temperature with the cavities collectively despite not having time to thermalize
with each one individually.

Finally, we provided two possible concrete examples of experimental implementation
of our proposal and discussed whether the scales of such implementations are in principle
experimentally feasible.
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Appendix A. Single-Cell Dynamics in the Interaction and Schrödinger Pictures

As we discussed in the main text the update map for the probe crossing one cell is
best viewed in the Schrödinger picture whereas the dynamics is easiest to compute in the
interaction picture. In this section, we will lay out the details of how these pictures relate
to each other for our setup.

In the Schrödinger picture the time-evolution operator from the start of the nth cavity
(at τ = (n− 1)τmax) to the end of the nth cavity (at τ = nτmax) is given by,

ÛS
n = T exp

(−i
h̄

∫ nτmax

(n−1)τmax
dτ Ĥ0(τ) + HS

I (τ)

)
, (A1)

where Ĥ0(τ) = ĤP +
dt
dτ Ĥφ is the sum of the probe and field’s free Hamiltonians and

ĤS
I (τ) = λ q̂P ⊗ φ̂(x(τ)) is the probe-field interaction Hamiltonian in the Schrödinger pic-

ture. Please note that since the field’s free Hamiltonian generates evolution with respect to
the lab time, t, it is modified by the time dilation factor dt/dτ in the above expression [41].

We note that the above unitary only depends on whether n is even or odd; that is,
whether the probe is accelerating or decelerating. For example, the probe-field interaction
in the third cavity is identical to the interaction in the first cavity, just shifted in space and
time. Thus, we only need to calculate,

ÛS
+ := ÛS

1 = ÛS
3 = ÛS

5 = . . . and ÛS
− := ÛS

2 = ÛS
4 = ÛS

6 = . . . , (A2)

to fully specify the dynamics. The subindices + and − correspond to cavities where the
probe is accelerating and decelerating, respectively. Once we have computed ÛS

+ and ÛS
−

we can then compute the reduced maps for the probe in the Schrödinger picture as,

ΦS
+[ρ̂P] = Trφ(ÛS

+(ρ̂P ⊗ |0〉〈0|)ÛS
+

†), and ΦS
−[ρ̂P] = Trφ(ÛS

−(ρ̂P ⊗ |0〉〈0|)ÛS
−

†). (A3)

www.sharcnet.ca
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The update map for every cell is then ΦS
cell = ΦS

− ◦ΦS
+ in the Schrödinger picture. As

such, the probe’s state when it exits the nth cell (at proper time τ = nδτ where δτ = 2 τmax)
is given by,

ρ̂S
P(n δτ) = (ΦS

cell)
n[ρ̂P(0)], (A4)

as claimed in the main text.
Although the above update map is straightforwardly defined it is not the easiest to

compute. It is much easier to compute the analogous unitaries in the interaction picture,

ÛI
n = T exp

(−i
h̄

∫ nτmax

(n−1)τmax
dτĤI

I(τ)

)
, (A5)

where ĤI
I(τ) = λ q̂P(τ) ⊗ φ̂(t(τ), x(τ)) is the probe-field interaction Hamiltonian in the

interaction picture. From this we can construct the update map for the nth cavity in the
interaction picture,

ΦI
n[ρ̂P] = Trφ(ÛI

n(ρ̂P ⊗ |0〉〈0|)ÛI
n

†). (A6)

We can then convert these to the Schrödinger picture using the free evolution operator.
The free evolution unitary operator for the nth cavity is,

V̂0,n = T exp
(−i

h̄

∫ nτmax

(n−1)τmax
dτĤ0(τ)

)
(A7)

= T exp
(−i

h̄

∫ nτmax

(n−1)τmax
dτĤP

)
⊗ T exp

(−i
h̄

∫ n tmax

(n−1)tmax
dt Ĥφ

)
(A8)

= exp
(
−i τmax ĤP/h̄

)
⊗ exp

(
−i tmax Ĥφ/h̄

)
(A9)

= Û0 ⊗ Ŵ0, (A10)

where Û0 = exp(−i τmax ĤP/h̄) and Ŵ0 = exp(−i tmax Ĥφ/h̄). Thus, the free evolution
operator for each cavity is independent of n and is a tensor product, so we may write
V̂0 := Û0 ⊗ Ŵ0. For later convenience we will also define the maps V0[ρ̂] = V̂0 ρ̂ V̂†

0 and
U0[ρ̂P] = Û0 ρ̂P Û†

0 .
Now that we have computed the free evolution operator, we can use it to write the

interaction picture unitaries, ÛI
n, in terms of their Schrödinger picture counterparts, ÛS

n, as,

ÛI
n = (V̂†

0 )
n ÛS

n (V̂0)
n−1. (A11)

Please note that ÛI
n depends on n in two ways, through ÛS

n and through the number
of free rotations, V̂0, to be applied. The first kind of dependence is the same as in the
Schrödinger picture case (i.e., dependence on whether the probe is accelerating or decel-
erating through the nth cavity). The second kind of dependence is new: it is due to the
time-dependence brought about by V̂0 in the interaction picture. The dictionary between
the Schrödinger and interaction pictures is itself time-dependent. This dependence can be
seen in (A5) by noting that the probe’s quadrature operators are different at the beginning
of each interaction,

q̂I
P(0) 6= q̂I

P(τmax) 6= q̂I
P(2 τmax) 6= . . . 6= q̂I

P(N τmax). (A12)
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This second kind of dependence on n ultimately prevents us from writing an update
map of the form (A4) in the interaction picture since the update map for each cell will be
different. Thus, if we would like to make use of the ICM formalism discussed in the main
text, we need to work in the Schrödinger picture.

This does not mean however that computations done in the interaction picture are
useless. Indeed, we can construct the Schrödinger picture update map from ΦI

1 and ΦI
2 and

U0 as follows. We first note that ÛS
+ and ÛS

− can be written in terms of ÛI
1, ÛI

2, and V̂0 as,

ÛS
+ = ÛS

1 = V̂0 ÛI
1, and ÛS

− = ÛS
2 = V̂2

0 ÛI
2 V̂†

0 , (A13)

where we have used (A11) with n = 1 and n = 2, respectively. Recalling that V̂0 = Û0⊗ Ŵ0
and noting that the field’s initial state, |0〉〈0|, is fixed under its free dynamics we then have,

ΦS
+[ρ̂P] = (U0 ◦ΦI

1)[ρ̂P], (A14)

ΦS
−[ρ̂P] = (U 2

0 ◦ΦI
2 ◦ U †

0 )[ρ̂P]. (A15)

Composing these two maps we find ΦS
cell[ρ̂P] = (ΦS

− ◦ΦS
+)[ρ̂P] = (U 2

0 ◦ΦI
2 ◦ΦI

1)[ρ̂P]
as claimed in the main text.

Appendix B. Gaussian Interpolated Collision Model Formalism

As discussed in the main text, our ability to efficiently calculate the fixed points and
convergence rates of repeated application of ΦS

cell is aided by two facts: our setup is both
Gaussian and Markovian. This allows us to use Gaussian Quantum Mechanics (GQM) and
more specifically the Gaussian Interpolated Collision Model formalism (Gaussian ICM) for
our calculations. This section will briefly review those well-known techniques and show
how they are applied to our setup. More details on GQM and Gaussian ICM can be found
in [58–61] and [43,62], respectively.

Appendix B.1. Gaussian Quantum Mechanics

GQM is a restriction of quantum mechanics in which we restrict ourselves to Gaussian
states (states with Gaussian Wigner functions) and quadratic Hamiltonians. In GQM:

(1) density matrices, ρ̂, are replaced with covariance matrices, σ, and displacement vectors,
x, which fully characterize a Gaussian state in phase space;

(2) quadratic Hamiltonians, Ĥ, are replaced with a quadratic form, F, and a vector, α, such
that Ĥ = 1

2 X̂ᵀFX̂ + X̂ᵀα, where X̂ᵀ = (q̂0, p̂0, q̂1, p̂1, . . . ) is the vector of the system’s
quadrature operators;

(3) unitary evolution, ρ̂→ Û ρ̂ Û†, is explicitly implemented as symplectic(-affine) evolu-
tion σ→ S σ Sᵀ and x→ Sx + d, where S is a symplectic transformation; that is, S is a
transformation which preserves the symplectic form, Ω, (defined via [X̂i, X̂j] = iΩij ˆ

3

effect (thermalization of detectors to a temperature pro-
portional to their acceleration) in cavity setups [? ]. We
will discuss here that there are indeed regimes where the
probe is deprived of the information about the fact that it
is flying through a cavity. We will show that the regimes
where one finds Unruh effect in cavities (defined as ther-
malization of the probe to a temperature proportional to
its acceleration when interacting with the vacuum) are
precisely those regimes where the probe cannot resolve
information about the effect of the cavity walls.

In summary, we will show that there are regimes where
the probe is blind to the fact that it is in a cavity and so
experiences thermalization according to Unruh’s law.

III. OUR SETUP

Consider a probe which is initially co-moving with the
cavity wall at x = 0 and then begins to accelerate at a
constant rate a > 0 towards the far end of the cavity at
x = L > 0. In terms of the probe’s proper time, τ , this
portion of the trajectory is given by

x(τ) =
c2

a
(cosh(aτ/c)− 1), t(τ) =

c

a
sinh(aτ/c), (5)

for 0 ≤ τ < τmax = c
acosh−1(1 + aL/c2). The cavity-

crossing time in the lab frame is tmax = L
c

√
1 + 2c2/aL.

The probe exits the first cavity at some speed, vmax, rela-
tive to the the cavity walls with maximum Lorentz factor
γmax = cosh(aτmax/c) = 1 + aL/c2.

At τ = τmax the probe enters the second cavity of the
two-cavity cell and begins decelerating with proper ac-
celeration a. The probe reaches the far end of the second
cavity, x = 2L, just as it comes to rest at τ = 2τmax.

While a full light-matter interaction description would
require a 3 + 1D setup [? ], as proof of principle we will
assume that each cavity contains a 1+1D massless scalar

field, φ̂(t, x), with a free Hamiltonian

Ĥφ =
1

2

∫ L

0

dx c2π̂(t, x)2 + (∂xφ̂(t, x))2, (6)

satisfying [φ̂(t, x), π̂(t, x′)] = i~δ(x− x′)1̂1, where π̂(t, x)
is the field’s canonical conjugate momentum. The field
obeys Dirichlet boundary conditions at x = 0 and x = L
such that we have the mode decomposition,

φ̂(t, x)=

∞∑

n=1

√
2~c2
ωnL

sin(knx)
(
â†ne

iωnt + âne
−iωnt

)
, (7)

where mode frequencies and wavenumbers satisfy
ckn = ωn = ncπ/L, and â†n, ân are the nth-mode’s cre-
ation/annihilation operators.

Let the probe’s internal degree of freedom be a quan-
tum harmonic oscillator with some energy gap, ~Ωp. The
probe is characterized by dimensionless quadrature oper-
ators q̂p and p̂p obeying [q̂p, p̂p] = i1̂1. In these terms the

probe’s free Hamiltonian is Ĥp = ~Ωp(q̂2p + p̂2p − 1)/2. In
the interaction picture q̂p(τ) evolves with respect to τ as
q̂p(τ) = q̂p(0) cos(Ωpτ) + p̂p(0) sin(Ωpτ).

We take the probe to couple to the field via the Unruh-
DeWitt interaction Hamiltonian [? ? ? ],

ĤI(τ) = λ q̂p(τ) φ̂(t(τ), x(τ)) , (8)

where λ is the coupling strength. This Hamiltonian cap-
tures the fundamental features of the light-matter inter-
action when exchange of angular momentum is not rel-
evant [? ? ? ? ]. Note that x(τ) and t(τ) are given
by Eq. (5) while the probe accelerates through the first
cavity. The trajectory in the second cavity of the cell is
a straightforward reversed-translation of this trajectory.

IV. NON-PERTURBATIVE TIME-EVOLUTION

We next compute the probe’s dynamics in the first cell.
In the interaction picture the time-evolution operator for
the probe-field system in the nth cavity is,

Û I
n = T exp

(
−i

~

∫ nτmax

(n−1)τmax

dτĤI(τ)

)
. (9)

The probe’s reduced dynamics is given by,

ΦI
n[ρ̂p] = Trφ(Û I

n(ρ̂p ⊗ |0〉〈0|)Û I
n
†). (10)

Composing the cases n = 1 and n = 2 (where the
probe accelerates and decelerates respectively) we can
build the interaction picture update map for the first
cell, ΦI

1,2 = ΦI
2 ◦ ΦI

1.
Analogously, one can find the update map for the

second cell, ΦI
3,4 = ΦI

4 ◦ ΦI
3, but unfortunately this

map is different for every cell (ΦI
3,4 6= ΦI

1,2). How-
ever in the Schrödinger picture the update map is in
fact the same for each cell, ΦS

cell = ΦS
1,2 = ΦS

3,4 = . . . .

We can build ΦS
cell from the above discussed update

maps as ΦS
cell = U2

0 ◦ ΦI
2 ◦ ΦI

1 where U0[ρ̂p] = U0ρ̂pU
†
0 and

U0 = exp(−iτmaxĤp/~) (see Appendix A for auxiliary
technical details).

In summary, as the probe travels through many cells it
is repeatedly updated by ΦS

cell. Noting that ΦS
cell depends

on the cell-crossing time, δτ = 2τmax, we have,

ρ̂p(n δτ) =
(
ΦS

cell(δτ)
)n

[ρ̂p(0)]. (11)

This dynamics is Markovian and time-independent: the
same update map is applied each time-step.

There are powerful tools to analyze the dynamics of
such repeated update systems. One such tool is the Inter-
polated Collision Model formalism, ICM [? ? ? ], which
allows us to rewrite the discrete update equation (11) as
a differential equation with no approximation and with-
out needing to take δτ → 0 unlike in other common ap-
proaches [? ? ? ? ? ? ? ? ? ? ? ? ? ? ].

),
in the sense that SΩSᵀ = Ω;

(4) as a consequence of the formalism, tensor products, ρ̂AB = ρ̂A ⊗ ρ̂B, are replaced with
(simpler) direct sums, σAB = σA ⊕ σB. Correspondingly, partial traces are replaced
with an analogous reduction map, M, such that MB(σA ⊕ σB) = σA.

Concretely, the unitary transformation for the nth cavity in the interaction picture
(Equation (A5)),

ÛI
n = T exp

(−i
h̄

∫ nτmax

(n−1)τmax
dτĤI

I(τ)

)
, (A16)

gives rise to the symplectic transformation,

ŜI
n = T exp

(
1
h̄

∫ nτmax

(n−1)τmax
dτ ΩFI

I (τ)

)
, (A17)
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where ĤI
I(τ) = 1

2 X̂ᵀFI
I (τ)X̂. This symplectic transformation is computationally more

accessible than the corresponding unitary transformation. Recall that in the Hilbert space
treatment each cavity mode corresponds to an infinite-dimensional factor in the full Hilbert
space. Contrast this with the Gaussian treatment where each cavity mode corresponds to
a two-dimensional subspace of the full phase space. Thus, if we can accurately simulate
our setup using only a (possibly large but) finite number of cavity modes, N, then FI

I (τ)
is a finite-dimensional matrix (of dimension 2(N + 1)). If it were possible to address this
scenario by considering enough cavity modes to have convergence this would make a
non-perturbative calculation of the dynamics feasible. We will discuss the number of cavity
modes needed for convergence in Appendix D.

The update map for the nth cavity in the interaction picture (Equation (A6)),

ΦI
n : ρ̂P → Trφ(ÛI

n(ρ̂P ⊗ ρ̂φ)ÛI
n

†), (A18)

can be understood to act on the probe’s covariance matrix, σP, as,

ΦI
n : σP → Mφ(SI

n(σP ⊕ σφ)SI
n
ᵀ). (A19)

That is, the probe’s covariance matrix is embedded into a larger phase space, evolved
symplectically, and finally projected back into its original phase space. Please note that
since the probe and field initially have no displacement, XP(0) = 0 and Xφ(0) = 0, and
there are no linear terms in the Hamiltonian, α = 0, we have that XP(t) = 0 and Xφ(t) = 0
for all t. Thus, we can restrict our attention to just the probe and field’s covariance matrices.

It is worth noting that while ΦI
n acts linearly on ρ̂P it acts in a linear-affine way on σP.

In fact, it is straightforward to rewrite (A19) in the form,

ΦI
n : σP → TI

n σP TI
n
ᵀ + RI

n, (A20)

for some real 2× 2 matrices TI
n and RI

n which can be calculated directly from SI
n and σφ.

As we discussed in the previous section, we only need to calculate ΦI
n for n = 1 and

n = 2 to fully specify the dynamics, i.e., we only need to calculate TI
1, RI

1, TI
2, and RI

2 and
then convert these to the Schrödinger picture in order to easily concatenate the different
cell maps.

To convert these to the Schrödinger picture we need the Gaussian version of the
probe’s free evolution map, U0. This is given by,

U0 : σP → R(ΩP τmax) σP R(ΩP τmax)
ᵀ, (A21)

where R(θ) is the 2× 2 rotation matrix, i.e., in phase space, the probe’s free evolution is
just rotation about the origin at a rate ΩP. Combining these all together we have that the
Gaussian version of the update map ΦS

cell = U 2
0 ◦ΦI

2 ◦ΦI
1 is,

ΦS
cell : σP → σ′′′P = TS

cell σP TS
cell

ᵀ + RS
cell, (A22)

where

ΦI
1 : σP → σ′P = TI

1 σP TI
1
ᵀ + RI

1, (A23)

ΦI
2 : σ′P → σ′′P = TI

2 σ′P TI
2
ᵀ + RI

2, (A24)

U 2
0 : σ′′P → σ′′′P = R(2 ΩP τmax) σ′′P R(2 ΩP τmax)

ᵀ. (A25)

Appendix B.2. Gaussian Interpolated Collision Model Formalism

Now that we have discussed how ΦS
cell can be efficiently computed we need a way to

analyze the effect of repeated application of this map. Our immediate thought may be to
find the eigendecomposition for ΦS

cell to figure out its fixed points and convergence rates.
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This approach is complicated by the fact that our update map (1) acts on a matrix and (2) is
linear-affine not linear.

These difficulties can be overcome by the following two isomorphisms. The first
isomorphism is the vectorization map, vec, which maps outer products to tensor products
as vec(uvᵀ) = u⊗ v. By linearity this defines the map’s action on all matrices. Please note
that this map has the property that vec(A B Cᵀ) = A⊗ C vec(B). Applying this map to our
Gaussian update Equation (A22) we find,

ΦS
cell : vec(σP)→ TS

cell ⊗ TS
cell vec(σP) + vec(RS

cell). (A26)

The second isomorphism we apply is embedding the vec operation into an affine
space as, vec(σP)↔ (1, vec(σP)). Using this we can rewrite (A26) as,

ΦS
cell :

(
1

vec(σP)

)
→
(

1 0
vec(RS

cell) TS
cell ⊗ TS

cell

)(
1

vec(σP)

)
= MS

cell

(
1

vec(σP)

)
. (A27)

We can now analyze the dynamics generated by repeated application of ΦS
cell by

studying MS
cell. In particular, we will study MS

cell in two ways, (1) by computing its
eigenvectors and eigenvalues and (2) by computing its logarithm. Please note that MS

cell is
a 5× 5 real matrix and so both tasks can be done easily.

If MS
cell has a unique eigenvector, vλ=1, with eigenvalue λ = 1 then MS

cell has a one-
dimensional fixed-point space. Moreover, if all other λ < 1 then this fixed-point space
is attractive. Our simulations show that for all parameters under consideration both
conditions hold.

This in turn implies that repeated applications of ΦS
cell to any σP(0) will drive the state

to a unique attractive fixed point, σP(∞). To see this, note that our states lie on an affine
subspace, i.e., v = (1, vec(σP)). This affine subspace will intersect the 1D fixed-point space
of MS

cell exactly once. Concretely, normalizing vλ=1 to lie in the affine subspace (i.e., such
that its first component is one) we have vλ=1 = (1, vec(σP(∞))).

We can analyze the other eigenvectors and eigenvalues to obtain an idea of how this
fixed point is approached (i.e., from which directions at which rates). That is, we can study
the decoherence modes and decoherence rates. However, direct examination of the eigen-
vectors proves unilluminating. To more clearly identify the dynamics’ decoherence modes,
we can make use of the ICM formalism [43–45], particularly in its Gaussian form [62].

Roughly speaking, the ICM formalism takes a given discrete-time repeated-update
dynamics and constructs the unique Markovian and time-independent differential equation
which interpolates between the discrete time points, with no approximation at the points
between which we interpolate. In our case we have the discrete dynamics,

(
1

vec(σP(n δt))

)
=
(

MS
cell
)n
(

1
vec(σP(0))

)
. (A28)

Please note that we are here marking the probe states by their lab time t = n δt where
δt = 2 M L/c is the lab-time that the probe takes to cross one cell (i.e., two cavities). These
dynamics can be interpolated by the differential equation,

d
dt

(
1

vec(σP(t))

)
= L

(
1

vec(σP(t))

)
, (A29)

where L = 1
δt Log(MS

cell). Note One can easily check that this interpolation exactly matches
the discrete update at every t = n δt. From this interpolation scheme we can isolate the
dynamics of the covariance matrix, σP(t). After some work [62] one finds a master equation
for σP(t) of the form,

d
dt

σP(t) = (ΩA) σP(t) + σP(t) (ΩA)ᵀ + C, (A30)
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where

ΩA =
1
δt

Log(TS
cell), (A31)

C =
1
δt

Log(TS
cell ⊗ TS

cell)

TS
cell −

3

effect (thermalization of detectors to a temperature pro-
portional to their acceleration) in cavity setups [? ]. We
will discuss here that there are indeed regimes where the
probe is deprived of the information about the fact that it
is flying through a cavity. We will show that the regimes
where one finds Unruh effect in cavities (defined as ther-
malization of the probe to a temperature proportional to
its acceleration when interacting with the vacuum) are
precisely those regimes where the probe cannot resolve
information about the effect of the cavity walls.

In summary, we will show that there are regimes where
the probe is blind to the fact that it is in a cavity and so
experiences thermalization according to Unruh’s law.

III. OUR SETUP

Consider a probe which is initially co-moving with the
cavity wall at x = 0 and then begins to accelerate at a
constant rate a > 0 towards the far end of the cavity at
x = L > 0. In terms of the probe’s proper time, τ , this
portion of the trajectory is given by

x(τ) =
c2

a
(cosh(aτ/c)− 1), t(τ) =

c

a
sinh(aτ/c), (5)

for 0 ≤ τ < τmax = c
acosh−1(1 + aL/c2). The cavity-

crossing time in the lab frame is tmax = L
c

√
1 + 2c2/aL.

The probe exits the first cavity at some speed, vmax, rela-
tive to the the cavity walls with maximum Lorentz factor
γmax = cosh(aτmax/c) = 1 + aL/c2.

At τ = τmax the probe enters the second cavity of the
two-cavity cell and begins decelerating with proper ac-
celeration a. The probe reaches the far end of the second
cavity, x = 2L, just as it comes to rest at τ = 2τmax.

While a full light-matter interaction description would
require a 3 + 1D setup [? ], as proof of principle we will
assume that each cavity contains a 1+1D massless scalar

field, φ̂(t, x), with a free Hamiltonian

Ĥφ =
1

2

∫ L

0

dx c2π̂(t, x)2 + (∂xφ̂(t, x))2, (6)

satisfying [φ̂(t, x), π̂(t, x′)] = i~δ(x− x′)1̂1, where π̂(t, x)
is the field’s canonical conjugate momentum. The field
obeys Dirichlet boundary conditions at x = 0 and x = L
such that we have the mode decomposition,

φ̂(t, x)=

∞∑

n=1

√
2~c2
ωnL

sin(knx)
(
â†ne

iωnt + âne
−iωnt

)
, (7)

where mode frequencies and wavenumbers satisfy
ckn = ωn = ncπ/L, and â†n, ân are the nth-mode’s cre-
ation/annihilation operators.

Let the probe’s internal degree of freedom be a quan-
tum harmonic oscillator with some energy gap, ~Ωp. The
probe is characterized by dimensionless quadrature oper-
ators q̂p and p̂p obeying [q̂p, p̂p] = i1̂1. In these terms the

probe’s free Hamiltonian is Ĥp = ~Ωp(q̂2p + p̂2p − 1)/2. In
the interaction picture q̂p(τ) evolves with respect to τ as
q̂p(τ) = q̂p(0) cos(Ωpτ) + p̂p(0) sin(Ωpτ).

We take the probe to couple to the field via the Unruh-
DeWitt interaction Hamiltonian [? ? ? ],

ĤI(τ) = λ q̂p(τ) φ̂(t(τ), x(τ)) , (8)

where λ is the coupling strength. This Hamiltonian cap-
tures the fundamental features of the light-matter inter-
action when exchange of angular momentum is not rel-
evant [? ? ? ? ]. Note that x(τ) and t(τ) are given
by Eq. (5) while the probe accelerates through the first
cavity. The trajectory in the second cavity of the cell is
a straightforward reversed-translation of this trajectory.

IV. NON-PERTURBATIVE TIME-EVOLUTION

We next compute the probe’s dynamics in the first cell.
In the interaction picture the time-evolution operator for
the probe-field system in the nth cavity is,

Û I
n = T exp

(
−i

~

∫ nτmax

(n−1)τmax

dτĤI(τ)

)
. (9)

The probe’s reduced dynamics is given by,

ΦI
n[ρ̂p] = Trφ(Û I

n(ρ̂p ⊗ |0〉〈0|)Û I
n
†). (10)

Composing the cases n = 1 and n = 2 (where the
probe accelerates and decelerates respectively) we can
build the interaction picture update map for the first
cell, ΦI

1,2 = ΦI
2 ◦ ΦI

1.
Analogously, one can find the update map for the

second cell, ΦI
3,4 = ΦI

4 ◦ ΦI
3, but unfortunately this

map is different for every cell (ΦI
3,4 6= ΦI

1,2). How-
ever in the Schrödinger picture the update map is in
fact the same for each cell, ΦS

cell = ΦS
1,2 = ΦS

3,4 = . . . .

We can build ΦS
cell from the above discussed update

maps as ΦS
cell = U2

0 ◦ ΦI
2 ◦ ΦI

1 where U0[ρ̂p] = U0ρ̂pU
†
0 and

U0 = exp(−iτmaxĤp/~) (see Appendix A for auxiliary
technical details).

In summary, as the probe travels through many cells it
is repeatedly updated by ΦS

cell. Noting that ΦS
cell depends

on the cell-crossing time, δτ = 2τmax, we have,

ρ̂p(n δτ) =
(
ΦS

cell(δτ)
)n

[ρ̂p(0)]. (11)

This dynamics is Markovian and time-independent: the
same update map is applied each time-step.

There are powerful tools to analyze the dynamics of
such repeated update systems. One such tool is the Inter-
polated Collision Model formalism, ICM [? ? ? ], which
allows us to rewrite the discrete update equation (11) as
a differential equation with no approximation and with-
out needing to take δτ → 0 unlike in other common ap-
proaches [? ? ? ? ? ? ? ? ? ? ? ? ? ? ].

vec(RS
cell). (A32)

This Gaussian master equation can then be analyzed in terms of its decoherence rates
and decoherence modes in a standard way [61]. For instance, C can be understood as a
noise term and A can be broken down into rotation, squeezing and relaxation effects.

Of particular interest is the rate at which the probe approaches its final state. This is
controlled by the relaxation rate which is given by the antisymmetric part of A, namely
γrelax = Tr(ΩA)/2. The thermalization time is given by tthermal = 1/γrelax and the number
of cells is given by Ncells = 1/(δt γrelax). These quantities are shown in Figure A1 for a
wide range of accelerations, a0, and probe gaps, Ω0 with λ0 = 0.01.
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8

9

Figure A1. The number of cells needed for convergence, Ncells, and the thermalization time tthermal

are shown in (A,B) respectively. Please note that the axes are all on a logarithmic scale and we have
fixed λ0 = 0.01.

Of note is that at a0 = 1/4 and Ω0 = π/16 the number of cells needed for thermaliza-
tion is Ncells = 7× 105 and the thermalization time is tthermal = 4.2× 106 L/c. For L = 1 m
this is tthermal = 14 ms. For L = 4 km this is tthermal = 56 s. It is worth noting how Ncells
(and consequently tthermal) depend on λ0. At a0 = 1/4 and Ω0 = π/16 we have the data
shown in Figure A2, i.e., Ncells ≈ 70/λ2

0. By increasing the interaction strength, we can
substantially decrease the thermalization time.

-3 -2 -1 0 1

2

4

6

8

Log10(λ0)

Log10(Ncells)

Figure A2. The number of cells needed for convergence Ncells is plotted against the dimensionless
coupling strength λ0 = 0.01. We have fixed here a0 = 1/4 and Ω0 = π/16. The line of best fit is
Log10(Ncells) ≈ 1.85452− 1.99596× Log10(λ0) or equivalently Ncells ≈ 70/λ2

0.
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Appendix C. Characterizing Temperature and Thermality of the Final Detector State

As we have discussed in the main text, we can efficiently compute the final covariance
matrix of the detector, σP(∞), after it has traveled through many cells. To characterize this
state, we can write it in the standard form,

σP(∞) = R(θ)
(

ν exp(r) 0
0 ν exp(−r)

)
R(θ)ᵀ (A33)

for some symplectic eigenvalue ν ≥ 1, squeezing parameter r > 0 and angle θ ∈
[−π/2, π/2] whereR(θ) is the 2× 2 rotation matrix. The values of ν and r are shown in
Figure A3 as functions of a0 = aL/c2 and Ω0 = ΩP L/c. Please note that r . 10−3 whereas
ν− 1 . 102. Thus, it appears that for the range of parameters we consider the final state of
the detector is not very squeezed and is therefore approximately thermal. However, how
can we quantify the degree to which the state is thermal?

-4

-2

0

2

-9

-8

-7

-6

-5

-4

-3

Figure A3. The symplectic eigenvalue ν and the squeezing parameter, r, of the final probe state σP(∞)

are shown in (A,B) respectively. Please note that the axes are all on a logarithmic scale and we have
fixed λ0 = 0.01.

In this section, we will establish that this state is in fact approximately thermal by
showing that r is “small” in several different ways. Moreover, we will also explain the
interesting band-like structure which appears in the plot of the squeezing parameter.

Appendix C.1. Thermality Criteria

Let us first consider the method of assessing thermality mentioned in the main text,
and originally introduced in [28]. Specifically, we quantify how the energy needed to build
the state from the vacuum is divided between the energy spent on squeezing and the
energy spent on heating it to the corresponding unsqueezed thermal state. Concretely, the
ratio of these energies is given by the following expression,

δ(ν, r) =
∣∣∣∣
E(ν, r)− E(ν, 0)

E(ν, 0)

∣∣∣∣ =
ν(cosh(r)− 1)

ν− 1
=

ν r2

ν− 1
+ O(r4), (A34)

where E(ν, r) = h̄ΩP(ν cosh(r)− 1) is the average energy of a generic squeezed thermal
state. Please note that the ground state (with ν = 1 and r = 0) has (by convention) zero
energy. We can use δ as a thermality criterion: if δ� 1 then the state’s squeezing energy is
much less than its thermal energy. Please note that the δ test is harder to pass the nearer we
are to the ground state, i.e., for fixed r > 0 we have δ diverging as ν→ 1.

Figure A4A shows that δ . 10−5 in the regime where we see the Unruh effect. Thus,
the state can be deemed very nearly thermal by this measure.
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Figure A4. The thermality measures δ and ε of the final probe state σP(∞) are shown in (A,B)
respectively. Please note that the axes are all on a logarithmic scale and we have fixed λ0 = 0.01.

Another approach to characterizing the thermality of a Gaussian state is to generate
a few different temperature estimates and demand their relative differences be small. A
series of temperature estimates can be found by considering the relative populations of
the detector’s energy levels. The probability of measuring a generic single-mode squeezed
thermal state, σP(ν, r), and finding n excitations is,

Pn=0(ν, r) =
2

[(1 + λ1)(1 + λ2)]1/2 , (A35)

Pn=1(ν, r) =
2(λ1λ2 − 1)

[(1 + λ1)(1 + λ2)]3/2 , (A36)

Pn=2(ν, r) =
2 + λ2

1 + λ2
2 − 6λ1λ2 + 2λ2

1λ2
2

[(1 + λ1)(1 + λ2)]5/2 , (A37)

where λ1 = ν exp(r) and λ2 = ν exp(−r) are the eigenvalues of σP(ν, r). These expressions
can be calculated straightforwardly by taking the overlap of a generic Gaussian Wigner
function with the Fock state Wigner functions. From these we can compute the excitation
de-excitation ratio (EDR) temperature estimates as,

kB TEDR
nm =

(m− n) h̄ΩP

ln(Pn/Pm)
. (A38)

We can declare that a state is reasonably thermal if many of its EDR temperature
estimates between different energy levels all agree. For instance, we may consider the
relative difference,

∣∣∣∣∣
TEDR

02 − TEDR
01

TEDR
01

∣∣∣∣∣� 1. (A39)

Expanding this relative difference for small r we find,
∣∣∣∣∣
TEDR

02 − TEDR
01

TEDR
01

∣∣∣∣∣ = ε(ν, r) + O(r4); ε(ν, r) =
ν2 r2

2(ν2 − 1)2arccoth(ν)
. (A40)

We can take ε� 1 to be an alternate thermality criterion to δ� 1. Contrasting δ and
ε we can see that ε is a harder test to pass, especially for near-ground states, i.e., for fixed
r > 0, we have that ε diverges faster than δ as ν→ 1.
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Figure A4B shows that ε over the range of parameters we consider. Despite ε being a
harder test, we still find that the final probe state is approximately thermal (with respect
to ε), at least in the regime where we see the Unruh effect. Specifically, in the lower-right
region of the plot we have ε . 10−5.

In addition to δ and ε we have considered several other thermality measures, including
comparing the EDR temperature estimates between different levels (e.g., TEDR

12 versus
TEDR

01 ) as well as more information-theoretic measures (e.g., Hellinger and total variation
distances). In each case these measures have indicated that the probe state is effectively
indistinguishable from thermal in the regime where we see the Unruh effect.

Appendix C.2. Explaining the Bands

Looking at Figure A3B one may notice that there are bands of increased squeezing
appearing in an ordered way. (The corresponding bands in Figure A4 are a consequence of
this increased squeezing). We will now explain why these appear and why they are where
they are.

The relevant quantity is the phase that the probe operators rotate through as the probe
crosses one cavity, Θ = ΩPτmax. Indeed, the bands lie on (or very near) the Θ = nπ/2 lines
shown in Figures A3 and A4. Please note that the Θ = π/2 line is dashed.

We can explain the occurrence of these bands as follows. Recall that the update map
which we repeatedly apply is ΦS

cell = U 2
0 ◦ΦI

2 ◦ΦI
1. Recall further that in the interaction

picture, the update map for crossing the first cell is ΦI
1,2 = ΦI

2 ◦ ΦI
1. Suppose that the

effect of ΦI
1,2 is to squeeze the state in some direction θsqu(a0, Ω0) and then rotate it by an

amount θrot(a0, Ω0). The effect of ΦS
cell would then be to squeeze the state in some direction

θsqu(a0, Ω0) and then rotate it by an amount θrot(a0, Ω0) + 2Θ.
First let us analyze the case where the effect of ΦS

cell is a quarter-turn, θrot(a0, Ω0) +

2Θ = π/2. In this case, the second application of ΦS
cell would immediately undo the

squeezing done by the first application of ΦS
cell. A similar phenomenon will happen for

most values of θrot(a0, Ω0) + 2Θ. Over many applications of ΦS
cell the state will have

been squeezed in every direction more-or-less equally. The result in this case would be a
minimally squeezed state.

The exception to this argument is when θrot(a0, Ω0) + 2Θ = nπ. In this case, the state
is left unchanged by the rotation (note that squeezed states have a π-rotational symmetry)
such that it is squeezed in the same direction every time. This squeezing does not become
infinite; however, as the dynamics also includes a relaxation rate. Thus, we expect a spike
in the squeezing of the final state when Θ = nπ/2− θrot(a0, Ω0)/2.

Finally, we note that we have reason to believe that θrot(a0, Ω0) is small for all a0
and Ω0. Recall that θrot(a0, Ω0) is the amount of rotation given by the interaction picture
map ΦI

1,2. The interaction picture is designed to remove the free evolution/rotation of the
system. Thus, θrot(a0, Ω0) only corresponds to the rotation induced in the probe by the
interaction Hamiltonian. Thus, we expect spikes in the squeezing at Θ ≈ nπ/2 which is
just what we see.

Appendix D. Details on Mode Convergence

As we discussed in the main text, we truncate the number of cavity modes considered
to make our computations tractable. In this section, we study the convergence of our results
with the number of cavity modes considered.

We expect our scenario to have better convergence behavior than other previous
studies on probes accelerating inside optical cavities (such as e.g., [28]) since in our setup
the probe does not reach ultrarelativistic speeds with respect to the cavity walls. As
such, the probe’s gap ΩP does not sweep across many cavity modes as it is blue/red-
shifted (ΩP ↔ γmaxΩP) with respect to the lab frame. For instance, with Ω0 = π/16 and
a0 = 10 we have γmax = 1 + a0 such that γmaxΩ0 = 11π/16. Please note that even when
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maximally blue-shifted, the probe frequency is still below the frequency of the first cavity
mode ω0 = π.

Another reason that one may worry that many cavity modes are required for conver-
gence is that the probe suddenly couples/decouples from each cavity. Indeed, one can
think of the probe having a top-hat switching function, χ(τ). In general, one would expect
that such a sudden change in the coupling would make high frequency cavity modes
relevant. However, a key design feature of our setup regulates the suddenness of this
switching. Specifically, the cavity’s Dirichlet boundary conditions enforce that the probe is
effectively decoupled from the field at the time of this switching.

Taken together, these suggest that not too many cavity modes will be needed for
convergence. Let us see how these expectations play out when we actually put them to
the test. Figure A5 shows the Ω0 = π/16 line of Figure 1b of the main text converging
as we increase the number of field modes, N, which we consider. Unsurprisingly, as the
acceleration increases, we require more cavity modes for convergence. Figure A5 suggests
that using N = 20 modes is sufficient when a0 . 6 and that using N = 200 is sufficient
when a0 . 100.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.2

0.4
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0.8

1.0

Log10(a0)

dT0/da0 N=10
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N=60

N=110

N=160

N=210

Figure A5. Derivative of the probe’s final dimensionless temperature T0 = kBTL/h̄c with respect
to the acceleration a0 = aL/c2 as a function of a0 on log-scale. The dimensionless probe gap,
Ω0 = ΩP L/c = π/16, and the dimensionless coupling strength, λ0 = λL/

√
h̄c = 0.01, are fixed. The

black-dashed line is at dT0/da0 = 1/2. The colored lines show the values of dT0/da0 which result
from considering only N cavity modes where N = 10, 20, 30, 60, 110, 160, and 210. These lines split
off from the rest one at a time in order from left to right.
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