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/ ABSTRACT \

Here, we introduce Linac_Gen, a tool developed at Fermilab, which combines machine learning algorithms with Particle-in-Cell
methods to advance beam dynamics in linacs. Linac_Gen employs techniques such as Random Forest, Genetic Algorithms,
Support Vector Machines, and Neural Networks, achieving a tenfold increase in speed for phase-space matching in Linacs over
traditional methods, through the use of genetic algorithms. Crucially, Linac_Gen's adept handling of 3D field maps elevates the
precision and realism in simulating beam instabilities and resonances, marking a key advancement in the field. Benchmarked
against established codes, Linac_Gen demonstrates not only improved efficiency and precision in beam dynamics studies but also

in the design and optimization of Linac systems, as evidenced in its application to Fermilab's PIP-Il Linac project. This work
represents a notable advancement in accelerator physics, marrying ML with PIC methods to set new standards for efficiency and
\\accuracy in accelerator design and research. Linac_Gen exemplifies a novel approach in accelerator technology, offering/
\

substantial improvements in both theoretical and practical aspects of beam dynamics.

/ DESIRED CAPABILITIES FOR COMPUTATIONAL TOOLS ML ALGORITHM IMPLEMENTATION

1. Longitudinal lattice design: Capability to optimize the longitudinal lattice for achieving
precise energy targets within cavity performance limits. Algorithm Type Application in Linac Design | Technical Advantage

2. Transverse dynamics: Computation of solenoid and quadrupole focusing fields with high Convolutional Neural Networks Analyzing phase space images for 'r";gggﬁfiﬂ;acgslneﬁﬂgfi?;rp;::;"
accuracy to ensure the avoidance of resonances in alignment with longitudinal phase (CNNs) beam profile optimization shaping
advances and within magnet performance imits. Long Short-Term Memory Networks Modeling time-dependent beam Captures long-term dependencies in
3. Beam matching: Fast and reliable tool for calculating and matching Twiss parameters in 6D (LSTMs) dynamics and predicting future temporal data, crucial for dynamic
beam states stability analysis

phase-space across the linac.

Predicting linac operational Handles high-dimensional spaces

4. Beam dynamics calculations: Capability to perform advanced three-dimensional Particle- Random Forests S effectively, important for parameter
. . . : : : C . parameters from historical data i
In-Cell particle tracking simulations, incorporating both relativistic beam dynamics and the tuning
effects of 3D RF and static fields. Efficiently identifies distinct

Unsupervised categorization of

SSEEIBD TR i beam states for anomaly detection

operational regimes, beneficial for

5. Adaptability for innovation: The tool must be adaptable, allowing for the seamless diagnostics
integration of novel concepts and custom algorithms to push the boundaries of existing Optimizing the configuration of linac Searches through complex
codes. Genetic Algorithms components for improved beam parameter spaces, mimicking
quality natural evolutionary processes

LINAC_GEN: THE EVOLUTION IN LINAC DESIGN & SIMULATION DATA FOR TRAINING

« Confronted with the limitations of current simulation tools, | developed my own simulation _ o o _ _ _
code employing a staged approach.  Visualizations showcase the predictive model's results, illustrating changes in transverse and

. . - , , , longitudinal emittance and beam transmission correlated to adjustments in cavity field
« STAGE 1: Implementation of algorithms for longitudinal and transverse lattice design while

following the pre-defined design strategies to avoid emittance growth, halo formation and strength and phase. H )
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— Despite the significant difference in computational speed, Linac_Gen's results closely align with those from TraceWin, showing less Position (m) Position (m) .
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/ DIGITAL TWIN PREDICTIVE TRAINING \ C
- Electromagnetic field interactions: O N C L U S I 0 N

— Predicts beam behavior in response to cavity field and phase variations, and solenoid field adjustments.

. Structural Alignments: . | | __ 1 Developed 'Linac_Gen', a custom code for advanced longitudinal and transverse lattice
- Beam Parameter Variation: ’ | " i d@Slgn and beam dynamICS Wlth PIC algOrItth.
d Integrated machine learning to enhance beam physics calculations, elevating analysis to
new heights.

d Trained ML models with PIP-Il data to create a predictive digital twin for real-time
operational insights.
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