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Abstract
Graduate-level physics curricula in many countries around the world, as well
as senior-level undergraduate ones in some major institutions, include classical
mechanics courses, mostly based on Goldstein’s textbook masterpiece. During
the discussion of central force motion, however, the Kepler problem is vir-
tually the only serious application presented. In this paper, we present another
problem that is also soluble, namely the interaction of Schwinger’s dual-
charged (dyon) particles. While the electromagnetic interaction of magnetic
monopoles and electric charges was studied in detail some 40 years ago, we
consider that a pedagogical discussion of it from an essentially classical
mechanics point of view is a useful contribution for students. Following a path
that generalizes Kepler’s problem and Rutherford scattering, we show that
they exhibit remarkable properties such as stable non-planar orbits, as well as
rainbow and glory scattering, which are not present in the ordinary scattering
of two singly charged particles. Moreover, it can be extended further to the
relativistic case and to a semi-classical quantization, which can also be
included in the class discussion.

Keywords: physics teaching, classical mechanics, Lagrangian mechanics,
electromagnetism, Dirac magnetic monopoles, dyons

1. Introduction

In classical mechanics courses, the so-called Kepler problem [1, chapter 3, section 3.7] is
virtually the only serious completely integrable application of central forces discussed besides
the harmonic oscillator. As Sivardiere already pointed out in this journal [2], the motion of a
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charged particle in the field of a magnetic monopole [3], which is another example of
completely integrable problem, is, unfortunately, not discussed.

Here, we extend and deepen Sivardiere’s study to a more general case, namely the
interaction between Schwinger’s dyons (dual charged particles) [4]. As it has formal simi-
larity with the Kepler problem and the Rutherford scattering, we believe that it may be
presented right after these ones in classical mechanics courses. Furthermore, it exhibits
unusual features such as non-planar stable orbits and rainbow and glory scattering, results that
may arouse students’ and teachers’ interest.

2. A brief historical review of magnetic monopoles and dyons

The similarity between the electric and magnetic fields is visible in Maxwell’s equations.
When deducing them in 1873, Maxwell himself pointed out that it would be necessary to
assert that there are no net magnetic charged bodies and no ‘magnetic currents’
[5, art. 380, p 6].

However, this symmetry would be restored if we were to assume the existence of a
magnetic field density g, and a ‘magnetic current’ j,,, obtaining (in SI units and with magnetic
charges measured in ampere-metres)

V- E = /€05
VXE = —p,j, — OB/at, n
V-B = H0Pn>

VXB = pyj, + py€ooE /ot

In 1896, Poincaré applied the concept of magnetic matter to explain Birkeland’s mag-
netic deflection of cathode rays experiment. In it, he considered that the beam passes so close
to one pole of the magnet that the other can be neglected [6]. This can be interpreted as a
magnetic monopole approximation.

Nevertheless, the idea of a magnetic monopole as a particle having a single magnetic pole
was introduced only in 1931 by Dirac, in his famous work [3].

As a matter of fact, Dirac was not looking for something like the monopole, but
investigating the why of the quantization of electric charge. In other words, why the electric
charge always appears in Nature as a multiple of the electron charge e and why this charge
has a value such that (in the same units as in (1))

2€0hc/e2 =~ 137. 2)
In that work, however, instead of the relation (2), he obtained
eglechc* =n  (n=+1, £2, £3, ...), (3)

which is known as the Dirac quantization condition. It does not set a value for e, but only for
its product by the magnetic charge g of a hypothetical particle in its vicinity. On the other
hand, Caruso [7] arrived at the same result (3) through a semi-classical derivation that gives it
a new interpretation.

Despite that, in a way, (3) offers a solution to Dirac’s initial problem: if there were a
single magnetic monopole in the entire Universe, then all electric charges would be quantized
according to (3). Therefore, in view of the observed quantization of electric charge and in the
absence of another explanation for this fact at the time, the condition (3) was considered a
serious arguement for the existence of at least one magnetic monopole in the Universe.
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Generalizing Dirac quantization condition, Schwinger [4], in 1969, introduced the dyons,
which were suggested at the time as candidates for the quark model. Pinfold ez al [8] discuss
the tremendous implications that the discovery of magnetic monopoles or dyons would have
for our fundamental understanding of nature at the deepest levels and describe the search for
these particles, from Dirac’s proposal in 1931 to the current MoEDAL experiment at
CERN’s LHC.

After this short historical account, we proceed to study the interaction of two dyons from
a classical mechanics point of view.

3. The classical mechanics of two dyons

To formulate the Lagrangian for the electromagnetic interaction of two dyons, we need to
circumvent the problem of what became known as the Dirac string [3]. It is a singularity line
in the space starting from the monopole, over which the magnetic vector potential A does not
satisfy the condition that the wave function is a univalent function.

Later on, Schwinger [9], Yang [10], and Wu and Yang [11] considered that the Dirac
string has no physical meaning or real existence, being only an effect of the coordinate
system, analogous to the problem of terrestrial geographic poles when trying to map the
Earth’s surface with a single chart. These authors stated that this problem can be solved by
dividing the space around the monopole in two regions a and b and defining two potential
vectors A, and A, which describe the monopole field in each of these regions and have
singularities in the other b and a ones, respectively.

Bollini and Giambiagi [12], in their turn, proposed a multivalued distribution (general-
ized function) potential instead of a singular function. This approach, however, demands the
use of the mathematical theory of distributions to the evaluation of its curls and divergences.

On the other hand, Sokolov [13] showed that the singularity of the magnetic monopole
potential is of a purely kinematic origin, caused by the uncertainty of the azimuthal ¢ angle
along the z axis. As a consequence, for a charge in the field of a ‘Coulombian’ magnetic
monopole

p=13s, &)
4z 3

we can obtain the equation of motion, by using the Lorentz force
F=evXB ®)

and the expression (4) for the magnetic field, as
U— = —egv X I (6)
T

without the appearance of strings or fictitious fields as long as vector potentials and curls are
written and evaluated in spherical coordinates in

dv
/’la = ey X (V X A)spherical' (7)

Sokolov’s procedure can be as well generalized to the dyon—dyon case [14, p 13] for any
vector potential A whose curl evaluated in spherical coordinates furnishes the correct mag-
netic potential (4) such that (7) leads to (6). As a result, it is possible to obtain a classical
string-free Lagrangian for the dyon—dyon case.
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Figure 1. Position vector (r) in the spherical coordinate system used in this paper.

That being said, we will here build the dyon—dyon Lagrangian through a different
procedure, by means of the fields instead of a potential. This procedure will lead, however, to
a Lagrangian that matches Sokolov’s one.

We start by noticing that Maxwell’s equations (1) are invariant under the duality
transformation £ — ¢B,cB — —E,p — p,/c, and j, — j,, /c. That allows us to generalize
Lorentz force to the dyon—dyon interaction and write the equation of motion as

,4ﬂ:e1(E+v><B)+g1 B-yvxE
dt c?

—ele+ﬂi+e@—Llev><L
147[60 : gl4n'82 r3 14n'g2 81C2 4rey : r3

1 1 r Ho r
= eep + _28182 ) + —(Elgz - glez)v X )
C r r-

7€ 4
1
=gl B (®)
drey 3 4An r
where
q=eer +gg/c’
K=eg — e 9

being ey, e,, g1, and g, the electric and magnetic charges of the two dyons, corresponding the
index ; to the dyon that remains at the origin of the relative coordinate system, c the speed of
light in a vacuum, and p, naturally, the system reduced mass, given by
mymy
H=—— (10)

my + mg.
To evaluate the cross product in (8), we need to express r and v in spherical coordinates
as (see figure 1)

r=rr

v =it + r00 + r sin 0. (11)
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Now, we can write the force on the right-hand side of (8) as

F=_l 9;_ @(5 sin 040 + 59};3)
dmeg r? 4m\r r
q .
= —F + Z, 12
Arep 12 (12)

where & includes the non-central terms of F (those that not depend only on the distance r
and are not directed along the # direction).
From (11) and (12), we can write the Lagrangian

L=T-V
151 0 1 5, 5,0 1 g
=—uwi? + —ur?0” + —wr?sin? 0p° — —— =, 13
2” 2” 2” 4 4rey r (13)

which we call ‘incomplete’ because it contains only the term in (12) that is derivable from a
scalar (Coulombian) potential.

As not all the forces acting on the system are derivable from a scalar potential, then
Lagrange’s equations can be written in the inhomogeneous form [1, section 1.5]

Q)12 _0ZL . i=1.23, ), (14)
dr| og; 9q;
where Q; are the generalized forces defined by
0=7 L (15)
g,
Substituting (13), (12) and (15) into (14), we obtain the equations of motion as
yi‘—ﬂr@z — ur sin29(j§2 __1a =0
4meg r?
ur?0 + 2urif — ur? sin @ cos 0¢* = —%K sin O¢
T
ur? sin? 0 + 2ur? sin 0 cos 00¢ + 2uri sin? 0 = %K’ sin 66). (16)
T

It is worthy of note, however, that the equations of motion (16) could also have been

obtained from a Lagrangian of the form
L= i+ L6+ Ly s ot - L2 4 Koy cos0p (17)
2 2 2 dreg r 4

which we call the ‘minimal’ Lagrangian as it is the simpler one that furnishes the
equations (16) that describe the classical interaction of two dyons without the appearance of
Dirac strings, according to our generalization of Sokolov’s procedure.

Now, it is important to note that, since the interaction force (12) is not central, we should
not expect the vector mechanical angular momentum L to be conserved. As a matter of fact,
from its expression in spherical coordinates, using (11) again

L=urxv
= ur? sin 00 + ur’og, (18)



Eur. J. Phys. 36 (2015) 035022 R P dos Santos

we can evaluate its temporal derivative by remembering that

A

@ 00 + sin O
dr

a9 = —0F + cos 4945(]3

dr

;ﬂ = —sin OgF — cos O, (19)
t

obtaining traightforwardly

(5]
dr ).

(%) = —ur? sin O — 2ur? cos 00¢ — 2uri sin 6¢°, and
0

(%) = ur? + 2uri® — ur? sin 0 cos 0¢”. (20)
¢

Comparing these results with the left-hand sides of the two last equations of motion (16)
above, we conclude that

(%) :—ﬁké and
0

dr 4
(%) = —ﬂk‘ sin O¢h
dt ® 471'
or
aL _ o dF Q1)
dr 4 dt
and that the vector
J=L + @Kf’ (22)
4

is conserved.

The vector J, defined by (22), is known as the Poincaré integral of motion, as it was first
found by Poincaré in his previously mentioned work [6]. It can be interpreted as the ‘total’
angular momentum of the system because the second term in the right-hand side of (22) is the
angular momentum of the electromagnetic field, as demonstrated by Thomson [15, p 532].

On the other hand, from the definition (22) and the fact that L is perpendicular to 7, we
also obtain

2
=1+ (@) K2 (23)
4z

and, since J is conserved and « is a constant, we conclude that the module L of the angular
momentum is conserved even though the vector L is not.

We can now use the remaining equation of motion (16) to obtain the conservation of the
total energy of the system. To do so, it can be rewritten, in terms of L given by (18), as

6
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12 1
P
/”3 4req 12

Now, to proceed further, we may do the trick [1, p 74] of rewriting its right-hand side as a
derivative in r and multiplying both sides by 7 as

d( L? 1 q].
U = —— + ol L)
dr 2/4r2 drey r

from what, remembering that df(r)/dt = (dr/dt)df (r)/dr = 7df (r)/dr and that
di2/dt = 2#r, it follows that

2
i(ﬁr-z)z_i L, 14
dr\ 2 dr 2/,¢r2 drey r

which expresses the conservation of the total energy of the system

2
E=bpy L 14 (24)
2 2ur?  A4meyr

Notice, now, that the definitions (22) of the J vector and (18) of the angular momentum
L lead to the result

J.f=(ﬂrxv+@xf)-f
4

Ho
=, (25)
4r
where we used the fact that r X v - 7 = 0.
If we interpret J - 7 as the projection of J on the direction of #, we can define « as the

angle formed by 7 and J given by

A

J-r

cos a =

which, as we see from (25) and (22), is constant, with value
a = arc cos (,uOK/4ﬂJ) (26)
or, by using the trigonometric identity

1 — x?
tan (arccosx) = ———,
X

we get from (26) and (23)

1 - (,uOK/47rJ)2
a = arctan
Mok /Am]
4rJ,1 — (ﬂOK/4ﬂJ)2
= arctan
HoK
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Figure 2. The orbit of the dyon confined to the surface of the Poincaré cone with half-
aperture angle a, according to (71).

Ar,J? — (ﬂ0/47t)21<2

HoK

= arctan (411@ / ,uOK)

= arctan (4L /ux). (27)

= arctan

Now, being J a vector fixed in the space and the angle it forms with 7 constant, it implies
that the motion is limited to the surface of a cone (the Poincaré cone) (figure 2) of constant
half-aperture angle @ given by

a= arccos(/,to‘lc|/47r]), (28)

with J being coincident with the interior axis if « is positive and with its exterior axis if « is
negative. A similar conclusion was obtained by Poincaré [6] for the movement of an electric
charge in the field of a pole of a magnet (equivalent to a Dirac’s monopole) and Appel [16]
for the movement of a electric charge in the field of a magnetic and electric pole
simultaneously (equivalent to a Schwinger’s dyon).

The fact that the motion is limited to the surface of a cone of constant half-aperture
angle a allows us to choose a new spherical coordinate system (7, a, /), in which the vector J
coincides with the polar axis, so as to have only the two degrees of freedom radial distance (r)
and azimuthal angle (5).

With this coordinate system, & = 0, while the Lagrangian (17) reduces to

1 g

1 . 1 . 0 Ho .
L = —uit+ —ur?sinf af” — —= + —k cos ¢ 29
2# 2” b drey r  4rm b 9)
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and the equations of motion (16) result

. ; 1
uit — pr sin® af® — & —
471'6‘0 }"2

ur? sin a cos aff” = Ho, sin ap,
4n
Qurt sin? aff® + pr? sin? aff = 0. (30)
In the same way, the angular momentum (18) is now expressed by

L = —ur? sin afa, (31)
the conserved module of the angular momentum as

L = pur? sin af, (32)
and the conserved energy (24) results

22 2
L S | 33)

2 2ur?  dmegr’

Now, to arrive at the equation of the orbit, we will follow Goldstein’s procedure [1,
section 3.7].
To start with, we can solve (33) for 7 and get

2
p= Ao La_ L (34)
U dmeg r  2ur?
or, being 7 = dr/dt,
5 \-122
a=|2£__4a4 _ L dr. (35)
u  2meour  ucr?

For the equation of the orbit, we need the dependence of r upon € eliminating the
parameter ¢. This elimination can be done by seeing (32) as a relation between df and dr, in
the same way as we did for 7:

Ldt = yrz sin adp (36)
or

dg = #dt. (37)

ur? sin
The substitution of (35) into (37) yields
5 \-172

dp=—L [(2__a _ L dr. (38)

ur?sinal u 2meour  pPr?

Now, integrating (38) after slight rearrangements, we obtain

-172
2
p=— f[LE—L—%] s (39)

where ' is a constant of integration determined by the initial conditions and not necessarily
being the same as the initial angle f, at time ¢t = 0.

9
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Finally, changing the variable of integration to u = 1/r, we obtains
: SuE -172
p=p - / 2 A | du (40)
sin a L? 2megL?
This indefinite integral is of the standard form [1, p 93]
/ dr - arccos(—w), (41)
Va + bu + cu? v—¢ Ja
where
A = b* — dac, (42)
where we identify
a= 2/,tE/L2,
b= —uq/2re, L%, and
c=—1. (43)
Applying (43) to (42), we obtain
A=0*(1 - dac/b?)
_ Hq ’ 1+ QuE ( 2meqL? i
2rmegL? L? Hq
2 272
2(4rey) EL
. 1+ 2d4aeo) EL (44)
27egL? uq?
while applying (43) to b + 2cx results
b + 2¢cx = b(1 + 2¢/bx)
2meoL?
| || - 22, (45)
2megL? Uq
Now inserting these results into (40), we obtains
1 4menL? 2(4nmey ) EL2
p = p' — ——arccos M—1 1+¢ (46)
sin a uq ug?
which we can solve for u = 1/r, obtaining the equation of the orbit as
1 32n%G EL? .
i __ M 14 |14 22828 cos[sina(f — )] ¢» 47
r 4megL? uq?

where we now identify ' as one of the turning angles of the orbit.

One sees that, except for the sin a term, (47) is very similar to the equation for the Kepler
problem of the planetary orbits [1, p 93]. As a matter of fact, if the cone has been degenerated
to a plane (¢ = #/2), the equation of the orbit (47) results

10
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1 ___H4 [1 + ecos(B — p)], %)

r 4dreg L?

which represents a conic curve with eccentricity

e = 1 + 3222 EI%/ug?. (49)

Now, remembering that the distance between two points that are differentially separated
on the surface of a cone with a half angle « is

(ds)? = (dr)* + r2(sin adp)?, (50)
while the distance between two points on the plane is given by
(ds)* = (dr)* + r*(de)*, (51

we interpret (47) as representing a conic-shaped orbit confined to the surface of the Poincaré
cone, as shown in figure 2.

As in Kepler problem, such conic-shaped orbits divide themselves into bound states with
elliptic-like orbits (¢ < 1) and scatterings with hyperbolic-like orbits (¢ > 1) [1, p94]. We
will explore both cases in the next two sections.

4. Bound dyon-dyon states

Let us consider first the bound states (¢ < 1) of the dyon—dyon system.
From (49), this corresponds to

J1 + 322%QEL ug? < 1
or

1 + 327%EL*/ug? < 1,

32723 EL/ug® < 0
which, being everything else positive, implies

E <0, (52)
as expected.

Now, from (33), (52) implies
2 L? 1
ur Ly q

2 2ur?  Ameyr

1 ) 2
9 L
4rey 1 2 2ur?

which again, being everything else positive, implies
q <0, (53)
i.e., an attractive interaction with

1 22 L2
lal w7 |

dney r 2 2ur?’

Being elliptic-like orbits, we can calculate, from (47), its two turning points (points of
least or greatest distance of one dyon from the other), 7, and rpyax, as

11
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4zenL?
Fmin = &(1 + €)s
ulql
4rmeyL?
i = 2= (1 — ¢), (54)
ulql

from which we can obtain the semi-major axis a and semi-minor axis b as

__ Tmin * Tmax
2
b= a2(1 - 82).

However, it is more useful to have a and b expressions in terms of the energy of the system.
To start with, we make use of the fact that the radial velocity 7 is zero at those turning points.
Therefore, from (33), the conserved energy at those points becomes

2
E=t_ 1.4

2ur?  A4meyr

which can be rewritten in the form of a quadratic equation as

2
r? — ! qr——L =
dreg E 2uE

having the turning points r,;, and ry,x as its roots. Now, it is well known that the sum of the
roots of a quadratic equation equals the negative of the coefficient of its linear term. Therefore

q

Tmin + Fmax =
47[60 E

and we obtain the semi-major axis a as

a= Tmin + Tmax — 1 i (55)
2 871’6'0 E

and the semi-minor axis b as

=.a? 1—82

=( 1) _(1 +32_EL]
E Hq

B 3277:2602EL2
647T2€()2E2 ug>

—_— 56
v2uIE | 0

Notice that the existence of ry,;, and ry.x does not necessarily mean that the orbit is
closed but only that it is ‘bounded’ by those limiting distances.

To analyse the closedness of the orbits, we have to see that the term cos[sin a (8 — )]
in (47) implies that the ratio between the periodicities of the radial coordinate (r) and the
azimuthal angle () is given by sin a. Consequently, it is this parameter that will determine if
the orbit is closed or not.
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To understand that, we have to consider that, at each revolution, the dyon describes a
portion sin a of the ellipse. Now, the orbit will be closed if, say, after n revolutions, it will
have completed exactly m ellipses, that is, if and only if sin « is rational

sina = =, (57)
n
with m and n relatively prime numbers and m < n [1, p91].

Furthermore, the numbers m and n define the topology of the orbits in terms of number of

double points [14, p 28], classifying them into families of the same topology.

5. Dyon—dyon scattering

After the dyon—dyon bound states, seen in the previous section, let us now study the classical
scattering (¢ > 1) of one dyon by another.
For this study, we need to obtain the so-called cross-section for scattering in a given
direction ¢ (£2) and to arrive at it we will follow Goldstein’s procedure [1, section 3.10].
From (49) and a reasoning similar to the one that leaded to (52), this corresponds to

E >0, (58)
which, from (33), analogously to (53), implies a repulsive interaction, i.e.
q > 0. (59)

To start with, let us define v, as the velocity of the dyon when it is at an infinite distance
(r — o0) from the other. Then, from (33), the conserved energy reduces to the kinetic energy
at that point:
1
E = —wg. (60)
2
We can now define d as the distance of closest approach (periapsis) and impose the
following condition on f’

p=pr=d=0 1)
into the general equation of the orbit (47), obtaining

1 Hq .

— = - 1 4+ £ cos(f sina (62)

r 47T€0L2 [ (ﬂ )]

with € now given by substituting (60) into (49) as
€= \/l + 327[2602(;1\/02/2)L2/,uq2

= 1+ (4meo L2/, (63)

a result similar to that obtained by Schwinger [17].
We can now study the dyon—dyon scattering by defining the scattering angle @, the angle
between incidence #; and scattering 7, directions at an infinite distance from the origin, as

cos @ = —F; - Fy. (64)

Expressing 7 in the coordinate system (r, a, ) by

P =sinacosfi + sinasinf + cos ak (65)
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with a constant and given by (28), we obtain, from (64)
cos O = —[ sin? a(cos B; cos B, + sin f; sin ﬁf) + cos? a],
where f; and f, are the azimuthal angles of the directions of incidence and scattering at an

infinite dlstance from the origin, respectively, and, by making use of a few trigonometric
identities such as

cos20 =1 —sin? @, (66a)
cos () — 6) = cos 6; cos 0, + sin 6, cos 6, (66b)
sin2(6/2) = %, (66¢)

cos (0/2) = +,/(1 + cos 0)/2, (66d)

we obtain

cos @ = —[ sin® a cos (B, = p;) + (1 = sin? a)] by (66a) and (66b)

= sin a[l ~ cos (4, /af)] -
=sin2a{2sin2[(ﬂi —ﬂf)/2]} —1 by (66¢)
=2{sinasin[(ﬂi—ﬁf)/2]}2 —1,

and, finally, by (66d)

cos (O/2) = sin a

sin[ (5 - ﬁf)/z]‘. 67)

To proceed further, we need to calculate f§; and j I the azimuthal angles of the directions
of incidence and scattering at an infinite distance from the origin. Notice that (1/r),,, = 0
and, therefore, from (62), we get

( 4 [1 + & cos(f sin a)]] =0

4meyL

r—0o0
and we can evaluate cos (ff sin ),— as

cos (B sina), = —1/e
[1+ (47 L2 /q]
- —[1 + (4eo) (pok tan ajdx) v2/ q2]
= (1 + (g/c'?) an2a) (68)

where we used (63), (27), and pyeq = l/cz.
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Now, by making use of the trigonometric identity

1

Ji+22

cos (arctan x) =

into (68), we obtain

(B sina),_, = arctan [(KV0/62 |q|) tan a]
= arctan (k tan a), (69)

where we introduced the parameter k defined as
k= K'VO/C2 lql- (70)
Therefore, from (67), we finally obtain the scattering angle @ as
cos (@/2) = sin a | sin (@/sin a) |, (71)
where, for compactness, we introduced the parameter @ defined by

® = (fsina),_, , = arctan (k tan a),

from the result (69).

We present in figure 3 graphics of the functional dependence of @ upon a for various
values of the parameter k. In this figure, it is also displayed a graph for monopole—electron
scattering, obtained by makinge, = g = 0 (which, from (9), results in ¢ =0 and
Kk = —eg/c) in (69).

As the scattering orbit is asymptotic to #; and 7, which define a plane, we can calculate
the elastic differential cross-section [1, p 108] for the dyon—dyon scattering, in terms of the
impact parameter s (the perpendicular distance between the centre of force and the incident
velocity) [1, p 107], by the equation
-1

(72)

aQ

do sds
ds

- d(cos @)

=28‘M

s

since, as seen from the graphs in figure 3, in general, a is a multivalued function of &
[1, p111].

As vy is the incident velocity and perpendicular to the impact parameter s, we can express
the angular momentum L, from (18), as L = usvy and also substitute (27), resulting

s=L/(puvp)
= (,uok/4ﬂ,uv0) tan a, (73)
Now, using df(a)/ds = (da/ds)df(a)/da = (ds/da)”'df (@)/da  and
tan’@ = sec’> @ = cos™2 @, we can rewrite (73) as a relation between ds and da as
-1
K
ey B - (74)
ds 4auvy ) cos?a| da

and use this and (73) to evaluate the derivatives with respect to s in (72), obtaining the elastic
differential cross-section as
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Figure 3. Graphs of the functional dependence of the scattering angle @ upon the half-
aperture angle of the cone, a, according to (71), for the monopole-electron pair and for
various values of the parameter k = Kvo/ c%q.

[

Hok 1 ‘ d(cos @) [ Hok
tan a
dmuvy ) cos? a da druv
HoK : sina | d(cos @) [
dmuvg ) cos® a da
MoK 2 1 sin (2a) da (75)
drpvy ) 2cos*a | sin® dO|

where, in the last step, we used the trigonometric identity sin (2a) = 2 sin a cos a.

Particularly interesting are the cases where the parameter k defined in (70) is a multiple
of 7. One can see that by expanding (72) with (69) around @ = 0, using the approximations
tan 0 = sin @ and arctan 8 = 6, as

& = arctan [(KV0/C2 |q|) tan a]

o (KVO/C2 |q|) sin a,

(76)
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and using this result in (71), obtaining

sin {[(KVO/C2 |q|) sin a]/sin a}’
~q ‘sin(lcvo/c2 |q|)

from which, by means of the trigonometric identity cos (20) = 2 cos? @ — 1, we obtain

cos (0/2) = sin a

s

cos (0) = 2q2 sinz(lcvo/cz |q|) - 1. (77)

With these approximations and the usual sin @ = 6 and cos 8 = 1 ones, the cross-
section (75) results

do a:)O Z( Hok )2a d[2(12 Sin2(1<'vo/c2 |q|) - 1] !

E da

4ruvg

a

2

-0 HoK . -1

S > la ‘405 51n2(1<v0/c2 |q|)‘
~ \ 4muvy

a— K
0 ( Ho 1 (78)

877/“’0) sinz(lcvo/c2 |q|)
and, therefore, whena — 0, a second order pole occur in the cross-section whenever
k=nn n=1,2,3, ). (79)

To evaluate the differential cross-section (75), we found it convenient to introduce the
new variable

{ = 2d/sin a, (80)

where @ is given by (72) and (69).
Now, from (71) and again by means of the trigonometric identity
cos (20) = 2 cos? @ — 1, we have

cos (@) = 2 sin a? sin®(¢/2) — 1. (81)
From this result, we can evaluate the derivative on the right-hand side of (75) as

( 1 do:)_1 _ dcos®

sin @ d® da
= sin (Za)[ (1 —cos &) + sin ¢ tan ad(g/z)]. (82)
a
Then, from (80) and (72), we can evaluate the derivative of /2 as
2 .
d(/2) _ K.vo cos“[(£/2) sin a] —(£2) cota (83)
da g sin a cos? a
and obtain, from (75), the differential cross-section as
2
do MoK
— = , 84
10 (47[/”0) g(©) (84)
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Figure 4. Differential cross-section g(@) scattering, according to (85), for the
monopole—electron pair and for various values of the parameter k = kvg / 2 ql.

where

g =Y — ! (85)

cos*a | 2(1 — cos &) — ¢ sin & + (sin ¢/sin @) sin (¢ sina) |

with { given by (80).

In figure 4, we present graphs of the differential cross-section for various values of the
parameter k. In this figure, we also show a graph for the electron—-monopole scattering
obtained, again, by making ¢ = 0 and x = —eg in (85).

One observes from figure 4 that the cross-section becomes infinite for some values of &
and falls abruptly thereafter. From (75), we see that it happens, besides @ = 0, in one of the
following cases

{ de/da = 0, (86)

©® = butsin Qa) # 0.

This phenomenon is very similar to what occurs in the optical scattering of sunlight by
raindrops and, because of this similarity, these two conditions are referred to as rainbow
scattering [1, p 111] and glory scattering [1, p 114], respectively.
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Table 1. Rainbow angles a, (d®/da = 0) obtained from (87).

k ar

2z 0.230

3z 0.104
0.280

Table 2. Glory angles o, (@ = x) obtained from (89).

koooa
2 0.394
37 0.156

0.45

In the case of rainbow scattering, we have, from (71)

in (26
f - %, sn(24) (87)
sin a;, sina,  sin (2a;) cos a;

where the suffix, was appended to indicate that it refers to the rainbow scattering.
Equation (87) can be solved numerically. In table 1, we present rainbow «;, angles for two
values of the k parameter defined in (70).
For the glory scattering, we have, from (71)
@, /sin ag = nx n=1,2,3, ), (88)
and, from (72), the condition
tan (mr sin ag) = k tan a, n=1,2,3, ), (89)

which can be solved numerically for the desired value of the parameter k. In table 2, we
present glory a, angles for two values of the parameter k.
Let us now consider what happens at small-angle scattering (¢ — #/2). From (71) and
VI o+ x?

using the trigonometric identity sin arctan 8 = x = 1/ 1 + x72, we have

cos (©/2) = sin a | sin [arctan (k tan a)] |
sin a

= (90)

J+ (ktana)y?

Now, using (27) and expressing the parameter k in terms of the impact parameter s by
means of (73), we have

tan o = (471'/,[40K)L
= (477:/;401<)(,uv0s)
= (477:,14vo//401<)s, 91)
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and, by means of the trigonometric identity sin 6 = 1 / \J1 + cot? 9, we obtain

sina = 1 / \/ 1+ (Mox/zwvos)z_ (92)

On the other hand, from (70) and (91), we get

k tana = (K’VO/C2 |q|)(4ﬂ,uv0/y01<)s
= (4meouvis/lql). (93)

where we used pgep = 1 / ¢? once more, and, therefore
1 1

= . (94)
\/1 + (k tan o)™ \/1 + (q/47t€oﬂV()2s)2

Substituting (92) and (94) into (90), using the approximation 1/4/1 + x = 1 — x/2, and
keeping terms only up to first order, we obtain

1 1

2 2
\/ 1+ (g /4meouvds) \/ L+ (oK fAmuvos)
2 2
~ 1= f_a 1 — L[ _HoX
N 2 471'(-;0/41)025‘ 2\ 4muvys
1 ’ pox Y
1-= 1 +| -2
2|\ dreouvi s druvys

1 1 (4 ) 2
[P S (1) +(£) . (95)
2 (47r€0/w0)2s2 [ \vo c?

Now, considering the approximation cos (6/2) = 1 — (6/2)*/2 and comparing this
expression with (95), we have

2 2
©@np~_—_1 [i) + (i) (96)
(471'6()/4\/())2 s2 \vo c?

cos (0/2)

IR

IR

or

IR

FP 1 1]2 N (£)2 ©7)
(0/2) (4reouvy)’| \ Vo )|

Thus, from (72) and the approximation sin 6 = ¢, we can compute the differential cross-
section of the dyon—dyon scattering at small angles as

20
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d_a _ ds
do d(cos O)
| as || _a() || e[ @] ‘d(@/mH 4(0) ‘
d(2)|| a[ @27]|| d©2) || d©) || d(coso)
MEGIRECRE ‘d(@/Z)Hd(COS o' d()
ds d(6/2) d(O) d(@) d[ ©/2)?]
a(+*)
=5 |25]7' 2(0/2) | — |-sin@ || ————=
d[ (6/27]
et 2]t
" 4] sin O] (4zeoumo)? | \ vo ) || [ @27\ ©r2)°
Sl '(1)2+(£)2" =
_4(42760/41/0)2_ Vo c | (©/2)*
oo (e} (Y
x——— X +| =] |esc*(©72) (98)
4 (47760/41/0)2 _( VO) (02) ]

which is a generalization of the Rutherford formula for the scattering of a particles by atomic
nuclei [1, p 110].

A relativistic extension of the entire calculation previously done is possible, in a simple
way [ 14, chapter 4]. The importance of a relativistic extension for the treatment of dyon—dyon
system stems from the large value of the coupling constant for magnetic charges (see (3)). In
the same way as in the non-relativistic case, the relativistic dyon is confined to the surface of a
cone of half-aperture angle given by (27). The bound states correspond to conic-shaped orbits
confined to the surface of the Poincaré cone (figure 2), with a similar condition for the orbit
closing. For the relativistic scattering case, the orbits are hyperbolas confined to the surface of
the Poincaré cone and this system exhibits glory and rainbow scattering.

It is even possible to apply the well-known Sommerfeld (semi-classical) quantization rule
[18, p 283] to the dyon—dyon system. By doing it, we have shown the analogy between this
system and the hydrogen atom and that the former can be considered its generalization [14,
chapter 3]. Furthermore, we obtained, for both the non-relativistic and relativistic cases, an
energy spectrum that reasonably approximates the quantum spectrum obtained by Per-
eira [19].

6. Concluding remarks

In this work, thanks to a Lagrangian without Dirac strings, it was possible to make a classical
study of the dyon—dyon system, with the electron-monopole system as a particular case.

The orbit equations were interpreted as representing conic-shaped orbits confined to the
surface of the Poincaré cone. While the electron does not form bound states with the mag-
netic monopole, the dyon—dyon system exhibits non-planar stable elliptic-like orbits, and we
presented the conditions for them to be closed.

21
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Through the orbit equations, it was also possible to study the classical scattering for these
systems. We showed that the elastic differential cross-section shows divergences that are
usually denominated glory and rainbow scatterings by their similarities with optics. We also
showed that the differential cross-section of the dyon—dyon scattering at small angles is a
generalization of the Rutherford formula.

Finally, we want to stress that a relativistic extension of this study can be done in a
simple way, as well as a semi-classical quantization via Sommerfeld rule.

We hope that these results may arouse students’ and teachers’ interest and contribute to
classical mechanics courses.
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