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Abstract

We study the finite-temperature deformation of the dis-
crete Bessel point process. We show that its largest
particle distribution satisfies a reduction of the 2D Toda
equation, as well as a discrete version of the integro-
differential Painlevé II equation of Amir-Corwin-
Quastel, and we compute initial conditions for the Pois-
sonization parameter equal to 0. As proved by Betea and
Bouttier, in a suitable continuum limit the last particle
distribution converges to that of the finite-temperature
Airy point process. We show that the reduction of the
2D Toda equation reduces to the Korteweg-de Vries
equation, as well as the discrete integro-differential
Painlevé II equation reduces to its continuous version.
Our approach is based on the discrete analogue of Its—
Izergin—Korepin-Slavnov theory of integrable operators
developed by Borodin and Deift.
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1 | INTRODUCTION AND RESULTS

1.1 | Finite-temperature discrete Bessel point process and the 2D Toda
equation

In this paper we study the finite-temperature discrete Bessel point process, which is the
determinantal point process on Z’ :=Z + % with correlation kernel

K%(a,b) = Y oD, L), (L),  abeZ, (11)
lez’

where L > 0 is a parameter, J,(-) is the Bessel function of first kind of order k, and ¢ : 7/ —
[0,1] is a function such that ¢ € #'(Z’ N (=0, 0)). The fact that the kernel (1.1) actually induces a
determinantal point process on Z’ and the role of the decay conditions on o at —oo will be clarified
in Section 2.

The specialization o = 1y, of (1.1), where 7/ :=27'n(0,+c), yields the standard dis-
crete Bessel point process [11, 23], namely, the determinantal point process with correlation
kernel

K®(a,b) = )| J,1,L),,,(2L)

!
leZ’,

Ja—% (ZL)Jb+% (aL) - Ja+%(2L)Jb—%(2L)

=L , a,beZ. (1.2)

a—-b>b

(The last equality easily follows from a property of the Bessel functions and will be proved
for the reader’s convenience in Lemma 2.2.) The discrete Bessel point process has the fol-
lowing combinatorial interpretation. Let Y be the set of integer partitions (or, equivalently,
Young diagrams). Namely, elements 1 = (4,,4,,..) € Y are half-infinite sequences of non-
negative integers A;, for i > 1, satisfying A; > 4;,; and with finitely many non-zero 4;’s. In
particular, for 1 €'V, the weight |4| := Y., 4; is a finite number. The Poissonized Plancherel
measure Pp,, is the probability measure on Y, depending on a parameter L > 0, defined
by

. 2
P (1)) 1= e 121 (%) . Aev. (13)
Here, dim 4 is the dimension of the irreducible representation of the symmetric group S, corre-
sponding to 4, or, equivalently, dim A is the number of standard Young tableaux of shape A. If we
associate to each 1 € Y asubset of Z’ through themap A — {4, —i + %}izl’ it was proven in [11, 29]
that the push-forward of Pp,, is the determinantal point process on Z’ whose correlation kernel
is precisely (1.2).
The kernel (1.1) has a similar interpretation when

o) =1 +ud)™, leZ, (1.4)
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for a parameter u € [0,1). Namely, introduce a probability measure P.p,, on Y (cylindric
Plancherel distribution [8]), depending on parameters L > 0 and u € [0, 1), by

[A]1=lul 5. 2
o L (La=w) d1m(x1/,u)>
IFbcPlan({/l}) .= Z(u,L) ‘%u K < (Mrl — |,u|)' , A€Y,

eLZ(l—u)

Z(u,L) := m,

(1.5)

where the sum runs over partitions u € Y such that y; < 4; for all i > 1, and dim(1/u) is the
number of standard Young tableaux of shape A/u. Consider also the probability measure P on Z
defined by

c2/2

Pe(ic}) = m cez. (1.6)

It is proven in [5, 8] that, under the map (4,C) = {4; —i +1/2 + C};,,, the push-forward
of Pppan ® P is the determinantal point process on Z’ whose correlation kernel is (1.1) with o
asin (1.4).

Going back to the kernel (1.1) for general o, we shall see in Lemma 2.4 that the induced deter-
minantal point process has almost surely a largest particle a,,,,. We shall study its cumulative
distribution function

Q,(L,s) :=P(an, <), seZ. 1.7)

By the general theory of determinantal point processes [9, 24, 31], this distribution can be
expressed as

Q,(L,s) = det(1 — PLEP,), sez. (1.8)

Here, KB is the operator on #(Z’) induced’ by the kernel (1.1), and P; is the orthogonal pro-
jector onto £2({s + 1,s + 2,...}), namely, P, is induced by the kernel Py(a,b) = 1,.,6(a,b), for
s € Z'. The determinant in (1.8) is a Fredholm determinant, as the operator P;KC2¢ P is trace class
on ¢%(7') for all s € 7’ (Lemma 2.4).

It is also worth noting that Q,(L, s) can be equivalently described as the following expectation
with respect to the Poissonized Plancherel measure (1.3) (see Lemma 3.1):

+00
Q,(L,s) = Ep,, lH(l —o(A —i— s))] : (1.9)

i=1

Finally, let us remark that 0 < Q,(L,s) <1 is a non-decreasing function of s € Z’ such that
Q,(L,s) » 1 as s > +oo. In particular, there exists s, € Z' U {—oo} (depending on o) such that
Q.(L,s) =0if s < 5y and Q,(L, s) > 0 otherwise. In particular, since for any 4 € Y the set {4, —

i+ %}i>1 has largest particle a,,,, = 4; — % > —%, we deduce by the discussion above of the

max

T Throughout this paper, we agree that a kernel X : 7z’ x 7/ — C induces an operator X on £2(Z') by (X¥)(a) =
Yper X(a,b)p(b), forp € £3(Z')anda € Z'.

8519017 SUOWIWOD A1) 3|qedt|dde ayy Aq peusenob ae sspnte YO ‘8sn Jo S9N Joy Arig1T8uljuUQ /8|1 UO (SUonIpUoD-pUR-SWBILI0D A8 | 1M Ae.q 1 pulUO//:SdNy) SUONIPUOD pUe Wi | 8U1 89S [7202/80/0T] U0 ARliqi 8UlUO AB|IM ‘Si7/2T SW(ZTTT 0T/I0p/W00 A8 1M AReIq 1 Ul UO™D0SYRWPUO |//:Sdny WOy pepeoumod ‘T ‘€202 ‘0S.L69VT



276 | CAFASSO and RUZZA

Poissonized Plancherel measure that, when o = 1z’+ , we have s, = —1/2. On the other hand,

when o(l) = (1 4+ u!)~! as in (1.4), corresponding to the cylindric Plancherel measure, we have
sy = —0o0, because

Qo(L,8) = P(@ryax < 8) 2 PApay = 8) > Pepipn () Pcds + 3D >0, forallse z'.  (110)

Our first result is the following.

Theorem 1. Forall s € 7' such that Q,(L, s) > 0, we have

62 10 _ QU(L’S + I)QG(L’ Nl 1)
— logQ(L,s) + T3L logQ,(L,s)+4=4 0L, 5)?

e (L.11)

The proof is given in Section 4.
The Equation (1.11) is, essentially, a reduction of the 2D Toda equation. Indeed, it implies that

7,(6,,6_) := %%~ Q,(1/6,6_,s) (1.12)

is a 2D Toda tau function, that is, 7,(6, , 6_) satisfies the bilinear form of the 2D Toda equation [20,
34]

TS+1(6+ > 6—)Ts—1 (9+’ 6—)
74(64,0_)?

& ogz,6,.6
ae+ae_ OgTS( =+ —)_

(113)
Equation (1.11), or rather the corresponding equation for the variables {eLZQU(L, S)}ezr» 1s also
known as cylindrical Toda equation. Another class of solutions of (1.11) written in terms of
Fredholm determinants is studied in [33, 35]. More recently, using a Fredholm determinant rep-
resentation, Matetski, Quastel, and Remenik proved that multi-point distributions associated
to the polynuclear growth model with arbitrary initial data satisfy the non-commutative Toda
equation [28].

It is appropriate to remark that, in the case o = 1y, with X a subset of Z’ bounded below," the
connection to the 2D Toda equation is not new. Indeed, in this case, our result follows from [29,
Theorem 3], which relates more generally the Schur measure on partitions with the Toda hierar-
chy. A particular case studied in even more detail is the one in which X = 7', . In this situation,
by the combinatorial interpretation of the discrete Bessel point process explained above, we
have Q (L, s) = 0 for s —% and Q_(L,s) > 0 for s > —%. Moreover, by the Borodin-Okounkov-
Geronimo-Case formula [10, 19], the Fredholm determinant Q. (L, s), for s € Z’ , is related to a

Toeplitz determinant of size [s] = s + % as

Q,(L.s) = e det[I,_;2L)]. ._ I,(2L) = res X+ Dy ~k=1qy  (114)
Lj=1 u=0

..... [s1°

TIf X is not bounded below, by (1.9) we have Q,(L,s) = 0 identically.
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Once this connection with Toeplitz determinants is established, the 2D Toda equation can be
obtained in several different ways, essentially exploiting the relation with orthogonal polynomials
on the unit circle, as for instance in [1, 4, 21].

Therefore, Theorem I states that the connection of the discrete Bessel kernel to the 2D Toda
equation extends to the deformation (1.1) of the kernel. We complement this result by computing
small L asymptotics for Q. (L, s).

Theorem II. For any s € 7/, let Q%(s) := [, (1 — o(—i —s)). For all s € Z' such that
Qg(s) > 0, there exists L, = L, (s) > 0 such that Q,(L,s) > 0for0 < L < L,, and

o(—=s)—a(—-s—1)

2 4 R
l—o(—1—s) L7+ O(L"), L—0. (1.15)

logQ,(L,s) =1logQ2(s) —

We note that when Qg(s) > 0, the denominator in the term of order L? of (1.15) does not vanish.
The proof is given in Section 5.

1.2 | Continuum limit to the Korteweg-de Vries equation

The finite-temperature discrete Bessel kernels (1.1) have continuum limits to the finite-
temperature Airy kernels [5]. These are kernels of the form

K?i(g“,n; ) = / c(t7*r)Ai(€ + r)Ai(n + r)dr, £, ER, (1.16)
R

with Ai and Ai’ the Airy function and its derivative, respectively, ¢ > 0 a positive real parameter,
and¢ : R — [0,1] a function which is smooth and satisfies ¢(r) € L* ((—c0,0), VIrl dr).In [5], the
authors proved this limit for o as in (1.4), but their result extends easily to more general functions,
aslongaso = o, depends on an additional parameter ¢ in such away that o.({/¢) — ¢({) for some
function ¢ as € — 0. More precisely, when o is given by (1.4), one has to identify the parameter ¢
with 1 — u. Then, we have the convergence

r r 1 3
J<t2/3(1 —_u)> - §<t27> = —1 PP=TL asu— 17, 1.17)

which is the scaling limit used in [5] to study the edge behavior of the cylindrical Plancherel mea-
sure.

These types of kernels (and related Fredholm determinants) attracted a great deal of interest
in the last 15 years. They first appeared in the field of random matrices [25], in the theory of the
Kardar-Parisi-Zhang equation [2], and in relation with one-dimensional systems of fermions at
finite temperature [17]. Riemann-Hilbert (RH) techniques for the study of related Fredholm deter-
minants have been developed and used in [12-16]. In particular, Fredholm determinants on L?(R)
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of the form
F(x,t) = det(1 =113 4 ) KN o1/ 4 o) (1.18)

have been shown to satisfy’ [15]

o’ log F.(x, t)+ x o logF.(x,t) + a—zlogF (x,t) 2+ la—logF (x,t) =0 (1.19)
dtdx t ox2 o dx2 o 6 dx* ’

that is, the function

U.(x,0) := a 2 logF,(r0)+ = (1.20)

satisfies the Korteweg—de Vries equation

3
Zu o+ 20,02 U 0+ 2 U =0 a.21)
Itis instructive to look at how Equation (1.19) (closely related to the bilinear form of the Korteweg-
de Vries equation) emerges in such continuum limit from Equation (1.11) (which is in turn related
to the 2D Toda equation). Let the variables L,s be given in terms of variables x,¢ and of an
additional parameter € > 0 as

2 X

s(x,t;e)= — — —, L(x,t;e) = —.
( ) e3t2 et ( ) €312

(1.22)
Under this transformation, we have

S _axd  Wa_ 1 ey 0 ol
3L " aLax T oLar z€t<(€ xt 4)ax+”at> (1.23)

Moreover, let us introduce
F(x,t;€) 1= Qu(L(x, t;€),s(x, t;€)). (1.24)

As shown in [5], F(x,t;€) converges, as € — 0, to Fg(x, t), and we shall now explain how the
equation for Q, of Theorem I reduces to (1.19). Expanding at € = 0 as

log F(x,t;€) = fo(x,t) +ef1(x,t) + €2 f,(x, 1) + O(e?), (1.25)

the left-hand side of (1.11) is
2 2 2
o 19 log F(x,t;€) +4 =4+ 4€2t26—f0(x, )+ 4e3tza—f1(x, t)
dx2 dx2

et (2 e+ 2 f - 292 en)) + 06 (1.26)
tax”’ O t 9x2” O 2 ’

t262

" Only Equation (1.21) appears explicitly in [15, Theorem 1.3]. However, (1.19) can be obtained by substituting U;(x, t) =
82log F(x,t) + x/(2t) in (1.21) and integrating once in x thanks to the asymptotics proved in [15, Section 5].
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and, similarly, the right-hand side of (1.11) is

F(x —et,t;e)F(x + €t, t;¢)
F(x,t;¢)?

—4+4€2t26—2f (x t)+4e3t2£f (x,t)
B ax2’ 0 ax2’ 1

3 > 16 4 3
+ e4t4<2(a? folx, t)) +350 folx, )+ ) fr(x, t)) + 0(e). (1.27)

Terms of order up to €3 match identically, while at order ¢* we obtain precisely (1.19) (whose
relation to the Korteweg-de Vries equation has been explained above) for the function F(x,t) =

exp(fo(x,1)).

Remark1.1. After submission, we learned that this scaling limit of the cylindrical Toda equation to
the cylindrical KdV equation had already appeared in [27].

1.3 | A discrete version of the integro-differential Painlevé II equation
For the Korteweg-de Vries solutions U(x, t) associated with Fredholm determinants (1.18) of the
finite-temperature Airy kernel (1.16) there is an identity between the potential and the wave func-

tion.” Namely, provided exponential decay of ¢ at —oo, it is shown in [15] that the solution to the
boundary value problem

%Mé’;x, D= —2U0CPp&x, 0, p&x, ) ~ VORI —xt73), x - —oo,
(1.28)
satisfies

U0 = 2 = 3 [ 0x, 0% (pan, (1.29)

Plugging (1.29) into (1.28) one obtains the so-called integro-differential Painlevé IT equation of Amir,
Corwin, and Quastel [2]

2
o= (e T4 2 [y o Jucixn, 130

whose solution (subject to the boundary value condition in (1.28)) characterizes the distribution
F, since, by (1.20) and (1.29),

92 1
—— logF.(x,1) = —= / »(n; x, )%’ (n)dn. (1.31)
dx2 t Jr

It is worth recalling that in the limit ¢ — 1(y ), the kernel (1.16) reduces to the classical Airy
kernel, the integro-differential Painlevé IT equation (1.30) reduces to the standard Painlevé II equa-

TWe thank Percy Deift for pointing out that such relation is the analogue of the Trace Formula of [18] for potentials Uc(x,1)
which, unlike the classical setting of op. cit., do not vanish as x — +oo but rather behave as x/(2t).
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280 | CAFASSO and RUZZA

tion, and its solution selected by the boundary behavior in (1.28) is the Hastings—McLeod solution
(in agreement with the celebrated result by Tracy and Widom [32]).
The next result is an analogous property for the finite-temperature discrete Bessel kernels.

Theorem III. LetL > Oands, :=min{s € Z’ : Q,(L,s) > 0} € Z' U{—oo}. Foralls € 7’
with s 2 s,, we introduce

\/QU(L s+ 1)Q,(L,s—1) B Q,(L,s+1)
o Ls) , b(L,s+1) := —log———.

a(L,s) : T AL BT Q.

(1.32)

Then, foralls € 7', s > s,
a Y(L,s) —a(L,s) = % Z (O'(l +1)— a(l))go(l +1;L,s—De(l;L,s), (1.33)
lez

B(L,s+1) = % 3 (o + 1) - o) e(l + ;L 8)o(; L, ), (1.34)

lez’

where ¢(l; L, s) are defined for | € Z' and fors € Z' with s > s, — 1 and satisfy the recursion

l+s+1+b(L,s+1)
L 2

a(L,s+ De(;L,s+ 1)+ a(L,s)p(; L,s — 1) = < >go(l;L, s). (1.35)

Moreover, for alll € 7' we have

oL, s) ~ VLI L), s — +co. (1.36)

The proof is given in Section 6 and is based on a Lax pair argument. In particular, when o =
lz’ we obtain a Lax pair which, although different from the one used by Borodin [7], can be
equlvalently used to prove the connection to the discrete Painlevé II equation established in op. cit.
(and independently proved by other methods in [1, 3]); see Section 6.1 for more details.

It is worth observing that in the scaling limit (1.22) as € — 0, the equations of Theorem III for-
mally reduce to above mentioned equations for Fredholm determinants of the finite-temperature
Airy kernel. More precisely, with the notations of (1.22), (1.24), and (1.25), we have, as € — 0,

a(L(x, t;6),5(x,£;6)) = 1+ ;ezﬂ% Folx,0) + O(e), (1.37)
THL(x, t5€),8(x, 1;€)) — a(L(x, t;€), s(x, t;€)) ~ —€’t —fo(x 1), (1.38)
b(L(x,t;€),s(x,t;€) + 1) ~ —Zeztzaa—;fo(x, t). (1.39)

Introducing ¢ and ¢ by the ¢ — 0 expansions

(eDY20(¢ [e; L(x, t;€), 5(x, £5€)) = Y(¢; x, £) + OCe), a(¢/e) = ¢($) + O(e), (1.40)
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we also have (by approximating a Riemann-Stieltjes sum with the corresponding integral)

2 Y (U4 D= o)pll+ 1L s = Dl L,5)|
lez!

~ €%t / ' p(n; x, 1)*dn,
R

(1.41)

L=L(x,t;¢), s=s(x,t;€)

% Y (60 +1) o)l + 1L,5)p( L, 5)

L=L(x,t:), s=s(x,t;e
= (x.t:€), s=s(x.tie)

~ 28 /R ¢ ()p(n; x, 1),

(1.42)

By (1.33) we have equality of (1.38) and (1.41), and looking at the leading order terms gives (1.31).
Similarly, by (1.34) we have equality of (1.39) and (1.42), and looking at the leading order terms
gives again (1.31). Moreover, using (1.37) and (1.39), Equation (1.35) reduces to (1.28). Finally, also
the asymptotic relation in (1.36) for ¢ formally matches with the one for 3 in (1.28) using [11,
Lemma 4.4]

LY, e s QL) ~ AN(E), L — +oo. (1.43)

1.4 | Organization of the rest of the paper

In Section 2 we gather some properties of the discrete Bessel point process and its finite-
temperature deformation. In Section 3 we prove a discrete RH characterization of Q. (L,s),
following a general strategy developed by Borodin and Deift [6] which parallels the theory of
integrable operators of Its-Izergin-Korepin-Slavnov [22] in a discrete setting. Next, we prove The-
orem I, II, and III in Sections 4, 5, and 6, respectively. We briefly discuss the connection of our
approach to the results of Borodin [7] relative to the special case o = lz; in Section 6.1. An ele-
mentary technical lemma which is helpful in the discussion of discrete RH problems is deferred
to the Appendix.

2 | PRELIMINARIES ON THE DISCRETE BESSEL KERNEL

The Bessel functions satisfy [30, Equation (10.6.1)]
L(Ji41(2L) + 3,1 (2L)) = kI, (2L), k ec, .1
and [30, Equation (10.4.1)]

J_.2L) = (-1)*1,2L), kez. (22)

Lemma 2.1. Ask — +oo, we have

1 (eL\F 9 _ log(L/k) (el \*
1,(2L) 2ﬂk< : ) , 5| —= ( 3 ) , (2.3)
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and, as k — +oo through integer values, we have

(=1 reL\k 3 e 27 (k"
J_,(2L) ~ zﬂk<?> , 50|~ D \/ ?(E) RGN

Proof. For real k > —1/2, we can represent the Bessel function by the Poisson integral [30,
Equation (10.9.4)]

J,2L) = cos(2L cos 0)e2k10gin®)qg (2.5)

Lk / g
VaTle+3) Jo
Since 6 — log(sin 0) has a unique non-degenerate maximum at 8 = 7 /2 for 6 € (0, 7), it suffices
to use Laplace’s method to obtain the large k asymptotics of the integral. Combining with Stirling’s

asymptotics, we obtain the first relation in (2.3). The first relation in (2.4) then follows from (2.2).
Next, by (2.5), for real k > —1/2,

aa—ka(2L) - % <log %)Jk(zm
VT +3)
k L .
+L—1 / 2log(sin 8) cos(2L cos 0)e2kloglsin®)qg. (2.6)
/7 Tk + ) Jo

Using the asymptotics for the digamma function I’ /T, as well as the already established first
relation in (2.3) for the first term, and again Laplace’s method for the second term, we obtain
(after some computations) the second relation in (2.3). Finally, for the last relation we use that,
for k € 7, we have [30, 10.2.4],

(—1)“;—KJK(2L) = 7Y, (2L) — ;—KJK(zL) , (2.7)

x=—k x=k

where Y, (-) is the Bessel function of second kind of order k, and it suffices to use the sec-
ond relation in (2.3) along with the asymptotics Y, (2L) ~ —y/2/(zk) (eL/ k)% as k - +o0 [30,
Equation (10.19.2)]. O

Let us recall the discrete Bessel kernel K¢(a, b) = Yiez’ Jar1(2L) . (2L),asin (1.2). Itis worth
+
observing that only Bessel functions of integer order appear in this expression.

Lemma 2.2. We have
Ja_% (2L)Jb+%(2L) - Ja+%(2L)Jb_% (2L)
a->b ’

31 _1(2L) 37,,1(2L)
K®(a,a) =L <Ja+%(zL)T = Ja_%(ZL);> :

KB(a,b) =L a,beZ,a#b, (2.8)

aeZ. (2.9)
da

In particular, K®(a, a) is a decreasing function of a € 7' satisfying

KB(a,a) - 1, a——o0,ae”. (2.10)
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Proof. Fix M € Z'_. Using (2.1) we compute, for any real a # b, omitting the argument 2L of the
Bessel functions,

(a—b) Z JariIp41 = 2 ((a+DIardprs = b +DIgyTps)
17,03 M] &7, 03 M]

=L Y (asreaTpsr +arToit = JarTosior = JartTpaisn)
leZﬁrn[%,M]

= L(Ja_%Jb+% +Jasm+Tbem — Ja+%Jb_% _Ja+MJb+M+1)’ 211)

where in the last step we telescope the sum. Sending M — +co0 and using the first asymptotics
in (2.3) and (2.4), we obtain (2.8). Sending instead a — b first and then sending M — +o0o we
obtain (2.9). Finally, it suffices to insert (2.4) in (2.9) to obtain (2.10). O

Lemma 2.3. Foralla,b € Z' we have ;. J,/(2L)]}/(2L) = &,

Proof. Let M,N € 7' with N < 0 < M. Using a similar argument as in (2.11), we obtain, for real
a#b,

@=b) Y TarIpur = Larn—1Ipan = JasnTbin—1 + JarmrriTosnt = JarmTpinen):
leZ'N[N,M]
(2.12)

andsosending M — +o00, N — —oo and using (2.3) we obtain the thesis for a # b. Sending instead
a — b first, and then sending M — +0c0, N — —o0 using (2.4) and (2.10) we obtain the thesis
fora = b. O

Lemma2.4. Wehave0 < K5° < 1. Moreover, ifo € £'(Z' N (—c0,0)), the operator P{KE° P is trace
class, where P is the orthogonal projector onto £*({s + 1,5 + 2, ...}), foralls € 7'

Proof. It follows from Lemma 2.3 that the operator .J induced by the kernel J,,;(2L) is an uni-
tary involution of #2(Z’), thatis, J = J ' = J 1. By a slight abuse of notation, denote with o the
operator of multiplication by o, that is, the operator on #2(Z’) induced by the kernel o(a)d(a, b).
Then, by definition, ICEe = JoJ. Let {-,-) be the scalar product on £%(Z"): since 0 < o < 1, we
have

(Y, ) = (T, TY) < (0T, Tp) = (K9, 9),  forally € £4(Z). (213)

Therefore, KB > (X°B)% > 0, which also implies 1 — B¢ > (1 — kB¢)% > 0.
For the second statement, observe that P 5P, = HSH: where H, is induced by kernel

Hy(a,b) = 1,2 J,,,L)\o(b), abeZ. (2.14)
For a fixed s € 7/, the operator H, is Hilbert-Schmidt on #2(Z’) if and only if

Y H@ b= Y Y 1, pQLe(b) =L Y o(l—s = DKP(1,1) < +co.  (215)

a,bez’ aez! bez’ lez!
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The convergence of the latter series at I — +oo follows from (2.9) and the first asymptotic rela-
tions in (2.3) and (2.4), along with 0 < o < 1. The convergence at I — —oo follows instead by (2.9)
and the second asymptotic relations in (2.3) and (2.4), along with the summability assumption
ono. O

It follows from this lemma and the Macchi-Soshnikov criterion [31, Theorem 3] that there exists
a unique determinantal point process on Z’ whose correlation kernel is ng. It also follows from
the general theory of determinantal point processes, for example, from [31, Theorem 4], that this
process has almost surely a largest particle a,,,,, whose distribution is given by the Fredholm
determinant as in (1.8).

3 | DISCRETE RIEMANN-HILBERT CHARACTERIZATION OF Q,

Let us introduce the operator M on # 2(z", for s € 7', induced by the kernel
M(a,b) = Vo(a—s—3)K*(a,b)yo(b-s-3), abeZ, (3.D)

where KB is as in (1.2). The operator M is of discrete integrable form [6, 7], namely, using (2.8)
the off-diagonal entries of the kernel can be expressed as

f7(a)g(b)

— a,b,e 7', a+b, (3.2)

M(a,b) =

where

J,_12L) LI, 1(2L)
f(a) := Vola-s-3) (LJ d (2L)>’ gb) := Volb—s-2) <—JZ+21 (2L)> . (33)
ats ~3

Using (2.9) we can express the diagonal entries as

M(a,a) =c(a—s— %)KBe(a, a)

aJ,_1(2L) aJ,,1(2L)
— 1 2 2
=Lo(a—s— 5) (Ja+%(2L)T —Ja_%(zL)T> (3.4)
Lemma 3.1.
(i) The operator M is trace class and we have
Q,(L,s) = det(1 — M,). (3.5)
(ii) The identity (1.9) holds true.
(iii Foralls € 7' such that Q,(L,s) > 0, we have
QO'(L7 N 1) -1
—_— -1 =tr((1- Ny), 3.6
L) r((1=M)™'W) (3.6)
where N is the rank one operator on £(Z") induced by the kernel
Ny(a,b) = Vola—s—)J,_1QL)ob—s—2)T, 1(2L). (3.7)
2 2
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Proof.
(i) We have
B 4 %
Q. (L, s) = det(1 — P °Pg) = det(1 — H H ) = det(1 — HH), (3.8)

(i)

(iii)

where H is induced by the kernel (2.14). Let 7 be the shift operator on #2(Z’), induced by
1 1

the kernel T(a, b) = &, ;1. It is straightforward to verify that 1, H, = T 2 M7 72 This
identity implies that M is trace class, and, by combining it with (3.8), we obtain (3.5).
‘We have, by the previous point,

Qo(L,s) = det(1 — o(- — s — )K), (3.9)

where o(- — 5 — %) denotes the multiplication operator induced by the kernel o(a — s —

%)5&1,. Then (1.9) follows from a general property of determinantal point processes (for
example, see [9, Equation (11.2.4)]).

Let S, be the operator on #2(Z’) induced by the kernel Sy(a, b) = \/E(a —5— %)5(1’,3. Then,
M, = S, KBS where kB¢ is the operator induced by the discrete Bessel kernel K¢, defined
in (1.2). Recalling the shift operator 7, induced by the kernel T'(a,b) = §, .1, We observe
that S,_; = 7 15,7 so that

Q,(L,s—1) =det (1 - S,TKPT71S)) = det (1 — M, + S (K% — TKPT71)S,). (3.10)

From (1.2), we note that N := S,(XB — T BT ~1)S_ is the rank one operator induced by
the kernel (3.7). As long as Q,(L, s) # 0, we have

Qy(L,s — 1) = det(1 — M + N)) = det(1 — M) det(1 + (1 — My NY)

= Q,(L, s)(l +tr (- MS)_lNS)>, (3.11)

using a standard formula for the determinant of a rank one perturbation of the identity.

g

The next key step is to apply the discrete version of Its-Izergin—Korepin-Slavnov procedure
[22], as developed for instance by Borodin [7]. This approach provides us with an effective way of
computing the resolvent operator R := (1 — M,)~! — 1 that proves useful to investigate (3.6).
Indeed, the main result of this theory (Theorem 3.4 below, following from general results of
Borodin) is that the resolvent operator R is also induced by a kernel of integrable form expressed
through a meromorphic 2 X 2 matrix-valued function Y(-) (parametrically dependingon o, s, L as
well) which is uniquely characterized by the following RH conditions.

Discrete RH problem for Y

(a) Y(2)is a2 x 2 matrix-valued meromorphic function of z with simple poles at Z' only.
(b) Foralla € 7', the function

(3.12)

YI%5(2) 1= Y(2) <1 - WY(a)>
zZ—a
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has a removable singularity at z = a, where

f(a)g(a)

_ aeZ. 3.13
1-M(a,a) (313)

Wy(a) =

Here, f(a), g(a), and My(a, a) are given explicitly in (3.3) and (3.4).
(c) We have lim,,_, , , Sup,, =, |Y(2) — I| = 0, where the limit is taken over integer values of n, I
denotes the 2 X 2 identity matrix and | - | denotes any matrix norm.

Before describing how Y allows us to express the resolvent operator R, we make a few
observations.

Remark 3.2.

(i) The usual formulation of condition (b) in the discrete RH problem is the slightly different
but completely equivalent requirement that, foralla € 7/, the limitlim,_, , Y(z)Wy(a) exists
and that

;1_{1(11 Y(z2)Wy(a) = res Y(z)dz. (3.14)

(ii) Since 0 < o(a) < 1and K®(a,a) < 1forall a € Z’ (see Lemma 2.2), we get 1 — M (a,a) > 0
for all a € Z'. In particular, (3.13) is well defined.

(iii) For any solution Y to the above discrete RH problem, we have det Y(z) = 1 identically in
z. Indeed, f"(a)g(a) = 0 implies W%(a) = 0, hence detY(z) = det Y{fg(z) forall a € 7’ and
so det Y(z) extends to an entire function of z. By condition (c) together with the maximum
modulus theorem we conclude that det Y(z) = 1 identically in z.

(iv) The solution Y to the above discrete RH problem is unique, if any exists. Indeed, for any two
solutions Y(z) and Y(z), the matrix T(z) := Y(z)Y ~!(z) has removable singularities at 7’
by condition (b), because T(z) = Y, 5(z)(Y, 2)~!(z) for all a € Z’, hence T(z) extends to an
entire matrix function of z. By condition (c) together with the maximum modulus theorem,
we infer that T(z) = I identically in z.

(v) Condition (b) in the discrete RH problem for Y implies that Y(z) has the following Laurent
expansionnearz = a € 7’:

Wy(a)
z—a

Y(z) = CY(a)< +I+Y(a)z—a)+0((z— a)2)>, (3.15)

where Cy (a) is an invertible matrix. In particular, although Y(z) hasapoleasz — a € 7/, the
limits lim,_, , Y(2)f(a) and lim,_, , Y~ T(z)g(a) for a € Z’ exist and are finite. In the interest
of lighter notations, we suppress the limit notation in such expressions, namely for a € 7’
we define

Y()f(a) := lim Y(2)f(a), Y~ T(a)g(a) := lim Y~ T(2)g(a). (3.16)

Similarly, for a € Z’ we also define

dy(z)
dz

Y'(a)f(a) := ll_r)l’tll f(a) = Cy(a)Y (a)f(a). (3.17)
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Similarly, the inverse matrix Y ! has the Laurent expansion

Wy(a)

zZ—a

Y~ iz) = <— +I1+Y,(a)z—-a)+ O((z - a)2)>5Y(a), (3.18)

where 5Y(a) is an invertible matrix, which does not necessarily coincide with C;l (a).
(vi) In what follows we shall need also the subleading terms in the expansion at z — oo:

Y(2) =T+ <;‘ _‘i{) 27+ 0@z, (319)

for functions o = a(L,s), g = B(L,s) and y = y(L,s). This matrix is traceless because
detY(z) = 1identically in z. Here, as in condition (c) of the discrete RH problem, |z| - +o0
through integer values.

Lemma 3.3. Fixa € Z'. Let Cy(a) and Y,(a) be as in (3.15), and let cy(a) : = det Cy(a). We have

g’ (@Y, (@f(@) _ ey(@)—1

= 3.20
1-M(a,a) cy(a) (3:20)
and, for some dy(a) € C,
Cy(a@)Cy(a) = cy(a) + dy(a)Wy(a). (3.21)
Proof. Since f(a), g(a) are orthogonal and non-zero, the 2 X 2 matrix
f(a) | 8l >
U:= (3.22)
< [f(a)l | |gla)l
is an orthogonal matrix, UU" = I. Here, we denote |v| := V/vTv for a column vector v € C.
Introducing
f .
Lo @l lg@) 23
1-M,(a,a)
we have
- 0 =\ 7
Wy(a)=U (0 0) U'. (3.24)
Using that det Y(z) = 1 identically in z (Remark 3.2) and (3.15),
1 detY(z) 1 0 x T 5
= = det U U +1+Y — o((z -
cy(a)  detCy(a) © <z -a <O O) +I1+Yy(@)z - a)+0((z - ay’)
1 0 x T 2
= det| —— +I1+U'Y (@)U(z—a)+O((z —a)*)
z—a \0 O
=1-x(U'Y,(@)U),, +0z—a) =1-x(U'Y,(@U),,.  (3.25)
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Finally, using (3.22) and (3.23) we get

T Y f
x(U'Y, (a)U)Z,l = %

(3.26)
and (3.20) follows.

By multiplying the Laurent expansion of Y1, given in (3.18), on the right by that of Y, given
in (3.15), vanishing of terms of order (z — a)~! implies WY(a)GY(a)CY(a) = Gy(a)Cy(a)WY(a).
In turn, this means that 5Y(a)CY(a) = ey(a)l + dy(a)Wy(a) for some constants dy(a),ey(a).
Next, the fact that the constant term is the identity gives

Cy(a)Cy(a) + Y,(a)Cy(a)Cy(a)Wy(a) — Wy(a)Cy(a)Cy(a)Y, =1
= (ey(a) — DI + (dy(a)I + ey ()Y (a))Wy(a) = ey(@Wy(a)Y,(a). (3.27)

Multiplying the last relation by f'(a) on the left and by f(a) on the right, and combining
with (3.20), we obtain ey-(a) = cy(a), and so also (3.21) is proved. O

Using [7, Theorem 1.1], we immediately obtain the following result.
Theorem 3.4. Let s € 7' be such that Q,(L,s) > 0, so that 1 — M is invertible. Then, the discrete

RH problem for Y has a unique solution and the resolvent operator R := (1 — M,)~! — lisinduced
by the kernel

fT (@)Y (@)Y~ T(b)g(h) My(a,a)  _ _ .
Ry(a,b) = g , Ry(a,a) = m +8 (@Y (@)Y (@f(a), (3.28)
fora,b € 7', a #+ b, where
- f(a) - g(a)
f(a) i= ———, = 3.29
(@) 1-M(a,a) g(a) 1-My(a,a) (329)
Thanks to this result we can prove the following variational formulas for Q.
Theorem 3.5. Forall L > 0and all s € Z' such that Q (L, s) > 0, we have
Q,(L,s—1) 3 2a(L, s)
—— —1=p,s), —1 L,s)=——"—7, 3.30
QU(L, S) IB( S) aL OgQO'( S) L ( )

where a(L, s) and S(L, s) are defined in (3.19).

Proof. We start with the first equation in (3.30). By (3.6) and (1 — M,)™! = 1 + R, we have

% —1=tr (- My)'W,) = a’bze“z I, 1 _%\/E(a)\/g(b)(éa,b +Ry(a,b)), (331

where 6(a) :=o(a—s— %) and Ry(a, b) is explicitly given in (3.28), and, throughout this proof,
we omit the argument 2L of the Bessel functions. We start by computing the part of the sum that
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comes from a # b; denoting A = {(a,a) : a € 7'}, this is

L1 VOO FyT@yTign) b VO o e,
abeTNA 1-M,(a,a) a—b 1— M(b,b) apeTnaZAw=h  Z = b ’
(3.32)
where we introduce the meromorphic vector functions
) 0 e T -1
pl2) ==Y _, ), $w:=Y"W{ ) (3.33)
Indeed, condition (b) in the discrete RH problem for Y implies that
Y(a)f(a)g"
res Y(z)dz = M, (3.39)
z=a 1-M(a,a)
yielding
J,_1V&(@ J,_1VE(b)
res p(z)dz = Y(a)f (a)— res ¢(w)dw Y™ T(b)g(b)— (3.35)

—My(a,a)’ M(b,b)

Using condition (c) in the discrete RH problem for Y, we can represent 4 by its (infinite) partial
fraction expansion (see Lemma A.1), namely

W(2) = <_01> + ) “"ZT. (3.36)

Hence we can rewrite (3.32) as

1) 5 plwidw
Z res ?'(2) lgb(z) + < > _—] dz

an’ z—a
o7
Z res ¢T(z)< >dz - Z res res (Z)¢(w)dwdz, (3.37)
an’ anZ aw=a z—a

where we use that ¢ ' (z)$(z) = 0. For the first term in (3.37) we appeal to Cauchy theorem to write
the sum as a formal residue at z = oo

Z res qu(z)( >dz = lim L - goT(z)dz <(1)> = B(L,s), (3.38)

n—+oo 27T1
an’

where (L, s) is introduced in (3.19). Using the Laurent expansion (3.15) and (3.21), we compute
the second part in (3.37) as

ey(@P , &(a)

(3.39)

-
— res res dedz =— 2
z=a w=a Z—a

—’
aez’ aez’ 1- Ms(a’ Cl)
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where cy(a) := detCy(a). We now compute the terms in (3.31) coming from the diagonal A C
7' x 7', this contribution is, using (3.28) and Lemma 3.3,

2T a(a)<1 + 1%& + ET(a)Y_l(a)Y’(a)f(a)>

ac?’ 2 M(a,a)
- 32501 B @G @O @Y (F@)
aez! 2
_ 2 cy(@)  gl(@)Y(a)f(a)
_aé,J 1 0(@) < (a a) 1-Mya,a) 1-Ma,a) >
— 2 Cy(a) -1
- aezz, Tot U(a)< M (@a) " 1-M(a, a))
ey(@?_, 5(a)
= aé, T (3.40)

The proof of the first equation in (3.30) is obtained by combining (3.32), (3.37)-(3.40).
The proof of the second equation in (3.30) is similar. We have

9
3L

_ B _1OM;
log Q,(L,s) = —tr <(1 M) 3L >

=- <Ja_1Jb+1 + Ja+lJb_l>\/§(a)\/§(b)(5a,b +Ry(a,b))
a.bez! 2 2 2 2

=-2 Y 1,11, 1VE@VEb) (8, +Rya.b), (3.41)

a,bez’

where we use the identity (1 — M,)™! =1+ R, the symmetry R(b,a) = Ry(a,b), and we
compute 0M, /0L using

1
J 1(2L 3 2 J 1(2L
3, a3 1) |7 L s} 1) . (3.42)
LJa_%(ZL) a1 _‘1;_5 LJa_%(2L)

As before, we start by computing the part of the sum that comes from a # b; denoting A = {(a, a) :
a € 7'}, this contribution to (3.41) is

Tort V@ T )y @)y T (b)g(b) P2 VE®)

-2
abeInA 1-M(a,a) a—>b 1—M(b,b)
T
=-2 Z res res dedz, (3.43)
z=aw=b z—Db
a,bez’\A
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where we introduce the meromorphic vector functions %, as in (3.33), and

V& (a)

w(z) := Y(2) <1/ L) res (z)dz = Y(a)f(a)W ac?, (3.44)

the last equality stemming from (3.34). Thanks to (3.36), we rewrite (3.43) as

res P(w)dw
-2 Z res w'(z) llp(z) + <1> w=a_] dz

an’ z—-a
T
=-2 Z res w'(z) < ) dz +2 Z res res @ @)pw) —— “dwdz, (3.45)
o z= zZ=a w=a Z—a

where we use that w' (z)1(z) is regular at Z'. Again, the first term is a formal residue at z = oo

T I O T 1 __Zoc(L,s)
-2 2 res (z)< )dz— 2 lim - |z|:nw (z)dz <0> =—-—" (3.46)

n—+oo 2771 L
aez’ T

where a(L, s) is introduced in (3.19). Using the Laurent expansion (3.15) and (3.21), we compute
the second part in (3.45) as

cy(a), 13, 16(a)
2 res res M =2 Z ’ 2 T3 , (3.47)

z=a w=a z — -
a7’ aez’ 1 Ms(a’ a)

where, as before, cy(a) := detCy(a). With a computation completely analogous to (3.40) we
compute the terms in (3.41) coming from the diagonal A Cc 7' x 7' as

M(a,a) _ _ =
-2 J 1J 1cr(a)<1 + ——— 48 (a)Y 1(a)Y’(a)f(a)>
aé, 1-M(a,a)

cy(a)Ja_%JaJr%&’(a)

=2 Z . (3.48)
=, 1-M(a,a)
The proof of the second equation in (3.30) is complete by combining (3.43), (3.45)—(3.48). O

4 | PROOF OF THEOREM I

Throughout this section we shall assume that s € Z’ is such that Q,(L,s) > 0. In particular
(Theorem 3.4), the matrix Y(z) introduced in the last section exists and is unique.

4.1 | Dressing

We proceed to a dressing of the discrete RH problem for Y, mimicking a common technique
for continuous RH problems, see, for example, [26]. Introduce the following entire matrix
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function of z:

z

J_a(2L) izHY (2L)
2 z—3

D(z) := 4.1

2
(1) ,
13,,10L) 17rLHz+%(2L)

where H(kl)(2L) is the Hankel function of the first kind of order k and argument 2L [30]. The
vectors f and g in (3.3) can be expressed as

£(a) = Vola - s — D@ (;) s@=Vea-s-he @ (0). @)

Moreover, we have det ®(z) = 1 identically in z [30, Equation (10.5.3)]; thus ®~(z) is also entire
in z. For later convenience, we also note that ® satisfies

-1 -
oz+1)=1 (_22 Js ;) oz, S =7 (Zsz . 1) o2, @3
2

2

as it follows from the identities [30, Equation (10.6.1)]
k )
By i1 (2L) +B,_;(2L) = sz(2L), a—LBk(ZL) =B,_,(2L) - B i1 (2L), (4.4)

where By () is either of the functions J;(-), HE{D(-).
In the interest of clarity, let us momentarily restore the dependence Y(z) = Y,(z;L,s) and
d(z) = ®(z; L). We introduce the matrix ¥(z) = ¥, (z; L, s) by

Y. (z;L,8) =Y (z+s+ %;L, $)P(z + s+ %;L). (4.5)
As we shall now prove, ¥(z) is uniquely characterized by the following conditions.

Discrete RH problem for ¥

(a) ¥(2) is a 2 X 2 matrix-valued meromorphic function of z with simple poles at Z' only.
(b) Foralla € 7', the function

"4
U%8(z) 1= W(z) <1 - ﬂ) (4.6)
z—a
has a removable singularity at z = a, where
Wy(a) := (g “’O(")>, ae?. (4.7)

(c) We have lim,,_, , ., Sup,|=, [P(2)® (z + s+ %) —I| = 0, where the limit is taken over integer
values of n, I denotes the identity 2 X 2 matrix and | - | denotes any matrix norm.

Proof. The only condition that does not directly follow from the analogous conditions of the dis-
crete RH problem for Y, thus deserving a proof, is (b). For, we need to show that with Wy(a) as
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given, for all a € 7’

(4.8)

T;eg(z) — lP(Z) <I _ W‘I’(a)>

zZ—a

isregular at z = a. Using that Wf,(a) = 0 and the definition (4.5) of ¥, this condition is equivalent
to regularity at z = a of

Wy(a+5s Wy(a
Y™ (z + §)<1 + LA)>q>(z + 3‘)(1 _ Wl )>, (4.9)
a+s z—a z—a
where we denote§ := s + % € Z.Since Y::i(z + %) isregularat z = a, we only need to prove that
Wy(a+s Wy(a
<I + LA))d)(z +7%) <I - ol > isregular at z = a. (4.10)
z—a z—a

To this end we consider the Laurent expansion at z = a of the previous expression, which is
Wy(a +5)®(a +5Wy(a)
(z—a)

N Wy(a+38)®(a+75) — d(a+5)Wy(a) — Wy(a + )P (a + HWy(a)
z—a

+0(1). (411)

Vanishing of the coefficient of (z — a)~! implies

Wy(a) = @ Ha + HWy(a +P(a +5)
-1
X (I + 0 Ha+9P'(a+ NP a+HWy(a+8P(a+ §)> ) (4.12)

Since W% = 0, this also implies that the coefficient of (z — a)~2 vanishes and that the series is
regular. It remains to show that (4.12) simplifies to (4.7). To this end we deduce from (4.2) that

o(a)

, (413
1-MJ(a+5,a+5) (413)

Wy(a +75) = p(a,s)®(a +5) <g (1)> o a+73), ola,s) ;= —

such that

-1
0 1> <I + o(a, )@ (a +9P'(a +3) <O 1>> . (4.14)

Wat@ =p@9) ({ ¢ -

We now observe by a direct computation that

0 1 1 *
I+ p(a,)® '(a+8d'(a+7) < > = (0 1 ) , (4.15)

0 0 1-M,(a+5,a+5)

where * denotes a term whose explicit expression is inconsequential in this computation. The
right-hand side of (4.15) is invertible and so we finally get
0 1) <1 -1-M(a+Sa+ §))*) _ <o —o(a)>

(4.16)

W“’(a)=p(a’s)<00 0 1-M(a+5a+5) 0 o0

as claimed in (4.7). O
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4.2 | Lax pair
The main result achieved by the dressing procedure is that Wy(a) is independent of s, L. This
enables us to obtain the following equations. It is convenient here to restore the full dependence

¥(z) = ¥(z; L, s) (omitting anyway the dependence on ¢ to have lighter notations).

Proposition 4.1. The matrix ¥(z; L, s) satisfies

W(z;L,s+1) = A(z; L, s)¥(z; L, s), aiL‘P(z;L, s) = B(z; L, s)¥(z; L, s), (4.17)
where
— _1 0 1+B(L,s+1)
Az L) = L <—L2 —y(@L,s) z+s+1+a(l,s)—a(l,s+ 1)) ’ (4.18)
1 z4s —2(1+6Ls)
Bz L,s) = L <2(L2 +y(L,5)) —z—5 ) ’ (4.19)

with a(L, s), B(L, s), y(L, s) as in (3.19).

Proof. The fact that Wy(a) is independent of s allows us to write
A(z;L,s) :=¥(z;L,s + V¥ (z;L,s) = lIf:f'g(z;L, s+ 1)(11‘Leg)_1(z;L, s) (4.20)

for all a € Z'. Hence A(z;L,s) has removable singularities at z € Z’ by condition (b) in the
discrete RH problem for W, and so is an entire function of z. Further, due to (4.5) we can write

A(z;L,s)=Y(z+s+ %;L,s + 1Pz +s+ %;L)(D_l(z + s+ %;L)Y‘l(z +s5+ %;L,s)

1

0
=Y(Z+s+ %;L,s+1)< . Z+§+1>Y‘1(z+s+ %;L,s), (4.21)
L

where we use (4.3). This identity, together with condition (c) in the RH problem for Y, shows
that K(z; L, s) grows linearly as z — oo; Liouville theorem then implies that ﬁ(z; L,s) is a linear
function of z, explicitly obtained by the asymptotic relation (3.19) plugged in (4.21), which gives
the claimed formula for A(z; L, s).

Similarly, B(z; L, s) := (8, %(z; L, s))¥~!(z; L, s) is an entire function of z because B(z;L, s) =
(6L1P;eg(z;L, s))(lP;eg)‘l(z;L, s) for all a € Z’ hence the singularities at Z’ are removable. (Here
we use again that W¢(a) does not depend on L, s.) Moreover, using (4.5) and (4.3), we obtain

B(z;L,s) = (8,Y(z + s+ %;L,s))Yfl(z +s+ %;L,s) +Y(z+s+ %;L,s)
z+s 2
X ( 2LL _é) Y~ Nz +s;L,s). (4.22)
i3

Finally, condition (c) in the RH problem for Y shows that E(z; L, s) grows linearly as z — o0, and
by Liouville theorem it coincides with the linear function of z explicitly obtained by the asymptotic
relation (3.19) plugged in (4.22), and this gives the claimed formula for B(z; L, s). O
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Remark 4.2. Since det ¥(z) = 1 identically in z, we must have det A(z) = 1 identically in z as well.
Looking at (4.18), this implies the relation

(1+ BT, s+ 1) (L* +y(L,s) =L (4.23)

Proof of Theorem 1. By Proposition 4.1 and Equations (4.5) and (4.3), we have

1

0Y(z;L,s)
a1’ 2+ 2

(. 1
3L Y ' (z;L,s) = Y(z L, s)<

) Y~ Yz;L,s)+B(z—s— %;L, 5). (4.24)

Consider the asymptotic expansion of this identity as z — o0. Looking at the entry (1,1) of the
coefficient of z~! we obtain, also using (4.23),

5 (. 14+Bs)
ﬁcx(L, 5) = 2L<1 T2 80stD BTt 1)). (4.25)

The proof is completed using (3.30). O

5 | PROOF OF THEOREM II

The discrete RH problem for Y can be described equivalently as a linear equation on #2(Z’) ® C?,
as we now explain following the classical operator theory for continuous RH problems and the
works of Borodin [6, 7].

By conditions (a) and (c) in the discrete RH problem for Y and Lemma A.1, we can write the
solution in the form

Y(z)=1 1
@) =1+ Z, s (5.1)
bez
The matrices R, must satisfy, by condition (b) or, equivalently, (3.14),
R,Wy(a
R, = Wy(a) + b—Yl()) aez. (5.2)
bezNa} 47
By (3.13) we can write
W@ =fag’ @, @ 1y (Tt
@ =f@g@.  f@i=e@-s=D{y7qp )
LI 1(2L)
~ 1 ats
=— , 53
8@ 1-M(a,a) (—Ja_l(2L)> (.3)
2
and so Equation (5.2) implies that R, is a rank one matrix of the form
o =r(@g"(a) (54)
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for some r(a) € C? (column vector). Since g(a) # 0 for all a € 7/, (5.2) implies that

r(b)g’ (O @

r@)=f+ ) -—

bez'\{a}

(5.5)

Introduce the operator D : #%(Z') ® C? — £%(Z') ® C? by

y r(b)g (0)E(a)

,aeZ. 5.6
Py a (5.6)

D: (r(@),., ~ (OD@),,,  (Or)a):=

bez/\{a}

It is a well-defined operator on #%(Z') ® C* by (2.3) and the fact that M (b,b) = o(b —s —
%)K Be(b, b) is at a bounded distance from 1 for all b € Z’ by the assumptions on o.

If 1 — D is invertible, the discrete RH problem admits a solution, constructed via (5.1) and (5.4)
with

r:=(1-D)'f. (5.7)
The convenience of this approach to the discrete RH problem is evident when the operator D is
small. This is the case when L — 0. For precision’s sake, let us fix the norm on #%(Z’) ® C? to be

the one induced by the standard norm on #%(Z’) and the Euclidean norm on C2.

Proposition 5.1. Let s € Z' be such that Q%(s) := [[;- (1 — o(—i —5)) > 0. There exists L, =
L.(s),c = c(s) > Osuch that ||D|| < cL for 0 < L < L,, where ||D|| is the operator norm of D.

Proof. For k >0, we have the Taylor series J;(2L) = Lk > 0 % = (—1)ka(2L) which

implies

5, + 5,
JQL) =60+ L(6, — 6 1)+ L? <% - 5k,o>

83— 0k _ Sk 1— Op
L3 k,3 k,—3 _ k,1 k,—1 + O(L4), (58)
6 2
as L — 0, with remainder uniform in k € Z because |J,(2L)| = [J_,(2L)| < L*/k! for k > 0 inte-
ger [30, Equation (10.14.4)]. In particular, we have the following estimate for L — 0, uniform in
aeZ,

K%(a,a)= ) T, QLY =1, + L5, 1 =5, )+ o(LH. (5.9)

lez!,
(The explicit term of order L? will be needed later.) Therefore, for all a € Z’, we have
P

1+ 0(?), >0,
1-Mya,a)=1-o(a—s— HK®a,a) = L “ (5.10)
2 l—o(a—s—5)+O(L2), a <0,
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with remainders uniform in a € Z’. As long as we assume Qg(s) # Owe have o(a — s — %) # 1 for
all a € 7' with a < 0, and so we can estimate, for L sufficiently small,

< ¢y (9), (5.11)

for a constant c,(s) depending on s only. Finally, we can estimate the square of the Hilbert-
Schmidt norm of D (which is an upper bound of the square of the operator norm of D)
as

2

<L(s) Y

a,bez’

g ()f(a)

2
P— Jb+%(2L)Ja_%(2L) - Jb_%(ZL)JaJr%(ZL) < 2L%e*ley(s)

a,bez’, a#b

(5.12)

(where we use again |J,(2L)| = [J_x(2L)| < L*/k! for k > 0 integer in the last step) and the proof
is complete. O

Corollary 5.2. Lets € Z' be such that Q%(s) := [[,/ (1 — o(—i —s)) > 0. There exists L, = L,(s)
such that the discrete RH problem for Y is solvable for 0 < L < L,, and moreover we have

Y(z;L,s) = Y%z 5) + LY (z;5) + L2YPl(z;5) + LY Pl(z;9) + OLY), L -0, (513)
where Yli(z; 5) are 2 x 2 matrix-valued meromorphic functions of z independent of L.

Proof. By the discussion above, if the operator 1 — D is invertible, the discrete RH problem for Y
admits a solution. By Theorem 3.4, if 1 — D is invertible, then Q (L, s) > 0. It is then enough to
use Proposition 5.1 as well as the formula

(a-D) )" ®)

— , (5.14)

Y@) =1+ )

bez’

stemming from (5.1), (5.4), and (5.7), along with the Neumann series (1 — D)~! = Y0 Dk. O

Proof of Theorem 1I. The proof follows from the above Corollary 5.2 and the following compu-
tations. In the limit L — 0, the Poissonized Plancherel probability measure converges to a delta
measure supported on the empty partition. From (1.9), we obtain

QL9 =[J(1-0(-i-9) =:QUs), seZ. (5.15)

i>0
Next, by (5.9) and (5.8), we have that, denoting &,(a) :=o(a — s — %),

a,s(a)
1-35y(a)(1aeo + L2(6,1 =8, 1)+ o(LY)

0 -6 -5 1+6 1 -6 1426 1-96
% a’% +L2 a,=3 a3 a,—3 a3 a + O(L4) (516)
0 0 8,1 04-170,1
> ) ’2

Wy(a) =

[N
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or, equivalently,

Wy(a) = W@ + LW @) + o), (5.17)
where
ol .y — 0 1 ey —
Wy (a) = —U(—S)5a’% <0 0) , w5 (a) = 5a,—%V—% + 5a,%V% + 5a’%V%,
o(—=s—1) (-1 -1 1 2—o0(=s)?

VvV = — Vi = —

-3 1—0'(—s—1)<1 1)’ 1 =0l S)<0 1)

0 -1
V% =o(—s+1) (0 0 > . (5.18)

By Corollary 5.2, we can solve the discrete RH problem order by order in L, that is, we can plug
the expansion (5.13) into the conditions of the discrete RH problem for Y(z). Due to the parity of
the series (5.17) it is easy to check that the terms Y!* and Y!3! in (5.13) vanish. In particular, the
leading term Y1°l(z) is characterized by the fact that it is analytic in C \ {%}, with a simple pole
at 1/2, and satisfies

res Y%(z)dz = lim Ylzywi’l(D), (5.19)
z=1/2 z—1/2 2

as well as sup|, -, lYll(z)—I| > 0asn - + through integer values. It follows that

[0] 1
YO(z) =1+ —2 (5.20)
T2
Similarly, Y12/(z) is characterized by the fact that it is analytic in C \ {—%, %, %}, with simple poles

at+1/2,3/2, and satisfies

res YP2(z)dz= lim Y@V ., res YPl(z)dz = lim Yl%(z)vs;, (5.21)
z=-1/2 z—>—1/2 2 z=3/2 z—3/2 2
and
res Y2l(z)dz = lim (Y[O](z)vl +Y[2](Z)W£?](l)>, (5.22)
z=1/2 z—1/2 2 2

as well as sup,_, lYRl(z)| - 0asn - +o0 through integer values. The solution is found in the
form

1
YPlz)=—2 4 2 42 (5.23)

The residues N_:1 and N3 are found from (5.21) as
2 2

N = =WV = (ZEE D (9T A9 s
Ns = (1+ WD) = (8 _G(_OS * D). (5.25)
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For the residue N1, we use (5.22) to get
2

[0] -1 [0] 1
Wy (E)V% +N%WY (E)

Ny = zlirlr}z _— VLN - N%)Wg’]@). (5.26)
Existence of the limit implies
W&”(%)V% +N1 will =0 (5.27)
which can be used to show that
N = <U(;S) :) . (5.28)

The remaining entries, denoted with %, of N1 can be found then by (5.26) but are not needed for

2
the present argument’. Indeed, we have shown that

_Lo logQ,(L,s) = a(L,s) = L* (N_l +N: + N;) + O(L%), L—o0,, (5.29)
20L 2 2 2711

where we use (3.30), hence the proof is completed by the explicit computation

= —o(c1—s) (5.30)

(N_l +Ni+Ns
2

2 2

) o(—=s)—o(—-s—1)
L1

6 | PROOF OF THEOREM III

Throughout this section we assume s € Z’ is large enough such that Q,(L,s — 1) > 0. Introduce,

as in (1.32),
Qs +1Q,(L,s—1) 1+ B(L,s)
a(L,s) = Q.(L,s) Vi@ s+ €D

._ 0 Q,(L,s) 2
I)(L,S).—G—Llogm_—Z

(a(L,s) - a(L,s — 1)), (6.2)
where we use (3.30), and
T
O(z;L,s) := <1+5(§Lss) 1) Y(z;L,s). (6.3)

The following proposition is a consequence of (4.18) and (4.19) whose proof is a simple
computation that we omit.

1t is however important to note that (5.26) is compatible with the structure (5.28) of N1, so that we can really solve for
2

these entries and thus fully determine Y121(z).
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Proposition 6.1. We have

O(z;L,s+1) = A(z;L,s)0(z; L, s), aiLG(z;L, s) = B(z;L,s)0(z;L,s) (6.4)
where
0 1 25l 4 p(L,s) -2
A(Z;Ls S) = <—a2(L, S) Z+z+1 + b(L,;-I—l)) 5 B(Z7L’ S) = ( L2(12(L, S) _ZT-I—S . (65)
In particular,
. _(x(@zLs=1) X(z;L,s—1)
O(z;L,s) = ( 4(z:L.5) (2 L.s) (6.6)
where f(s) = x(z;L,s) or f(s) = ¥(z; L, s) are both solutions to
L 1
Fs+1)+aLs)f(s—1) = (“;* 1, X ’Sz+ )>f(s). 6.7)
Remark 6.2. 1t is worth noting that the compatibility of (6.4) is expressed by the identity
B(z;L,s + 1)A(z;L,s) — A(z;L,s)B(z;L,s) = %A(Z;L, s). (6.8)
Spelling out this equation gives the two relations
da(L,s) a(L,s) ob(L,s) ) 2 b(L,s)
AR (b(L,s + 1) — b(L,s)), T 4(a*(L,s) — a*(L,s — 1)) T
(6.9)

The first identity is manifest already by comparing (6.1) and (6.2). Combining it with the second
one immediately implies the 2D Toda equation

50 0,(6,,6.) = 90000 _ 000000 (6.10)
+ [

for g,(6,.6_) := log(QU(\/9+6_, 5)/Q,(1/6,6_,5— 1)), which is a consequence of Theorem I.

The matrix Wy(a) is not constant in a, and so we shall now obtain a difference equation in z
which, in general, has a meromorphic non-rational matrix coefficient. To this end, it is convenient
to work with the gauge transformed matrix ©(z; L, s) introduced in (6.3) and with the functions

¢(z;L,s) := \/ @){(zw, s). (6.11)

In particular, from (6.7) we have

z+s+1+B(L,s+1)
L 2

a(L,s + De(z;L,s + 1)+ a(L,s)p(z;L,s — 1) = < >cp(z;L, 5).  (6.12)
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Proposition 6.3. We have
O(z +1;L,s) = C(z;L,s)0(z; L, s), (6.13)

where

OF (_azﬁL 5 ;>
> L

+ Z Ao() (a(L,s)p(l+1;L,s — De(;L,s) —e(l+1;L,s—1)e(;L,s—1)
z—1 a’(L,s)p(l+ 1;L, s)p(l; L, s) —a(L,s)p(l+ 1;L,s)p(l; L,s — 1)

lez’

(6.14)
where Ac(l) :=o(l+ 1) — o(l), a(L, s) is defined in (6.1), and ¢(z; L, s) is defined in (6.11).

Proof. Define C(z;L,s) := O(z + 1;L,s)® (z; L, s). Using (4.5), (6.3), and (4.3), we obtain

L 0 ; 0 1 . LS
C(z;L,s) = | 1+BLs) Y(z+s+2;L,s Lo )Y Y z+s+=:L,s L )
( ) 0 1 ( 2 ) —L z+z+1 ( ) ) 0 1

(6.15)
Using this relation, it is straightforward to see that
0 1

C_(z;L,5) :=C(z;L,s) — | _ (L.5) z+z+1 =0(1/z) (6.16)

as z — oo, in the sense of Lemma A.1, and applying this lemma we get

res C_(w)dw resl C(w)dw
C_(zL et =) — :
_(zLs)= ) = — (6.17)
lez lez

We are left with the task of computing these residues. For all | € Z’, using (6.3) we have

C(z) =0(z +1)07!(2)

— ®reg(z+1)<1+ WIIJ(I‘}' 1)> <I Z/‘-P(l)>(®reg) 1( )

I+1 z—1

=02+ 1)0,%)(2) + —®§ig1(z +D(Wyl+1) - Wy(D)(©,5)7'(2), (618)

where

L L
—L 9 —L WD)
"8(z) 1= 1+BLs) Pe(z) = | 1+AL.S) -7
0, (z): < 0 1) | (2) < o 1)‘1’(2)(1 e l>’ (6.19)
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which is regular at z = . Hence, using (4.7), (6.6), and the fact that det®(z; L, s) = m we

compute res2 C(w)dw as
w=

O +D (8 o D) ()" ®

1+ B(L,s) —x(U+1;L,s—1)y(;L,s) x(I+1;L,s—1)y(;L,s—1)
N L (U(l) ol + 1)) < —x(+ 1L, s)x(; L, s) x(U+1;L,s)y(;L,s—1)
(6.20)
and the proof is complete using the definition (6.11). O

Proof of Theorem T11. We first prove (1.33) and (1.34). To this end, let C_, be the coefficient of z~*
in the asymptotic series for C(z; L, s) at z = 0. On the one hand, using (6.14), we have

(€11 =aL,s) ) Aol + 1;L,s — (5 L, ). (6.21)
lez!
On the other hand, using (6.15) and (3.19) instead,
1+ B(L,s) )
() =L{l1—-—F— ) =L(1-a*“(L,s)), 6.22
( —1)1,1 ( 1+B(L,s + 1)> ( a”( S)) ( )

where we use (6.1) in the last equality. Hence, (6.21) and (6.22) are equal and we get (1.33). Similarly,
using (6.14), we have

trC_; = a(L,s) )\ Ac(l)(p( + 1;L,s — D L, s) — ¢(l + 1; L, )e(l L, s — 1)), (6.23)
lez’

while using (6.15) and (3.19) we have tr C_; = a(L, s)/L, and so

a(L,s) = La(L, s) Z Aa(l)(go(l +1;L,s—1De(l;L,s)— e+ 1;L,s)p(l; L, s — 1)). (6.24)
lez!

Using this expression and (6.12) we finally simplify

a(L,s +1) —a(L,s)
L

=) Ao(l){a(L,s +D[p + ;L) L,s +1) — ol + 1; L, s + Dg(L; L, 5)|

lez!

—a(L,9)|e(+1;L,s — De(l;L,s) — ol + 1; L, )p(; L, s — 1)) }

=) Aa(l){go(l + 1L, s)[a(L,s + Dp(; L, s + 1) + a(L, $)p(l; L, s — 1)]

lez!

—o(;L,s)|aL,s + Dol + L;L,s + 1) + a(L,9)e(l + 1;L,s — 1)] }

- —% Y Ao L, $)p(1 + 1;L,s). (6.25)

lez’
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Next, (1.35) is exactly (6.12), and it remains only to show the asymptotic relation (1.36). To this end,
we first observe that as s - +oo we have Q_(L, s) — 1 and so, by (3.30),

Qo’(La S — 1)
B(s)=—————-1-0, ass— +oo, (6.26)
Q.(L,s)
implying, by (6.11), (6.3), and (6.6), that
p(z;L,s) ~ %){(Z;L, s), s = +00. (6.27)
L

It is therefore enough to show that for all z € Z’ we have
x(z;L,s) ~ L, 1 (2L), s — +o0. (6.28)

To this end we first write, using (4.5), (6.3), (6.6), and (5.14),

x(z;L,s) _ 1 1 1
Lo CD 1’ T | mmeD (w5 h-note+s+ 5)>2,1
8T (b)® 1
< ¥ [o.n(a -0 ) — ( 3 SRR <1> . (629)
bez! (z+5+35=b)LI L) \O

where we recall that the operator D is defined in (5.6). We need to show that (6.29) vanishes as
s = +o00. To this end, we first estimate it as follows

x(z;L,s)

AR A |
LJZ+S+1(2L)

<eel Y |0, D(a-D)H)®)| (6.30)

bez’'

because we claim that there exists ¢ > 0 such that for s sufficiently large (depending on L, z only,
not on b) we have, forallb € 7/,

AT 1
g b)o(z+s+3)
- 2 <(1)) < cel. (6.31)
(z+s+ 3= b)L], .1 (2L)
To prove this last assertion, we rewrite
gDz +5+3) <1>
(z+s+ 3 —b)LI, L) \0
K®*(z +5+ 3,b) Lase1a@D g L) (6.32)
(1 —My(b,b))LI, .1 (2L) ) i1 (L) 1—=M,(b,b)’ .
Observe that
sup o(l), ifb <s/2,
1norBe lez!, 1<—s/2
M b,b)y=0b—s— E)K (b,b) < (6.33)

KB+ 1|2+ D), ifb>s/2,
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which implies

#s(b,b) =0(1), ass— +oo,uniformlyinb € Z'. (6.34)
Next, for k real and sufficiently large, J; (2L) is positive and monotonically decreasing in k, as it
follows, for instance, by (2.3). Therefore, we can bound (6.32), provided s is sufficiently large,

<c Y pu@DI<ce Y 3L < 2cet, (6.35)

lez!, kez

gT(b)cp(z +5+3)
(z+s + = —b)L],,1(2L) < >

for some ¢ > 0, where in the last step we use again the inequality J,,(2L) < < LK/k! for all
integers k > 0. (In (6.30) we rename ¢ — c¢/2.) Next, we claim that

1
IDx|| o171y < §||1‘||f1(zf) (6.36)

provided s is sufficiently large. Postponing for a while the proof of this claim, let us show how to
complete the estimate of (6.30): note that D commutes with multiplying on the left by the vector
(0,1), and therefore so does (1 — D)1, to write, using (6.36),

> |(0 1)((1 - D) ') (b)‘ = ”(0 )1 -D)'f

bez’

L”l(zf)

< 2”(0, Df

Ay

=2L ) ola—s— %)|Ja+%(2L)|

acz’!
=2L ) ola-s- —)|Ja+1(2L)| +2L ) ola-s- —)|Ja+1(2L)|
ae?, aez,
a<s/2 a>s/2
La+1
<| sup oD 1D+ D — =o(1), (6.37)
lez’, I<—3 kez ae?, (a 5)

a>s/2

as s —» +oo. Finally, it remains to prove the claim (6.36). To this end, we have

r(b)ﬁT(b)f (a)

< ) Ied) Y, 18T, (6.38)

bez’! aez’

a,bez’, a#b

We can bound this quantity, using |J, ! (2L)| < efand (1 — M(b, b))~! < c for s sufficiently large
and for all b € Z’, as we proved in (6. 34) as

(638) < cL )l 1) Y, ola—s= (1,1 QDI +13,_1 (D)) (6.39)

aez’
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and we can bound the last sum over a exactly as in (6.37) by splitting it for a < s/2 and a > s/2,
to obtain

Y ola—s- %)(|Ja+l(2L)| + |Ja_1(2L)|) —o(1), §— 4o, (6.40)
2 2
aez’!
such that, indeed, for s sufficiently large we have (6.36). O
6.1 | Connection with the discrete Painlevé II equation

Let us now consider, more specifically, the case o = lz;’ studied in depth by Borodin [7]. In this
case, (6.14) reduces to

0 1
C(Z) = <_a2(L S) Z+S+1>
’ L

1 <a(L, )¢ (L,s—Dp_(L,s) —¢,(L,s—Dp_(L,s—1)

. T\ 0L 9)p,(L.9)p (Ls)  —all.9p,(L.9)g (Lis—1)

) , (641

where we denoted, for sake of brevity, ¢, (L, s) = ¢(£1/2; L, s). In this case, the compatibility con-
ditions between the Lax equations (6.4) and (6.13) greatly simplify, and we recover the well-known
relations between the discrete Bessel kernel, the discrete Painlevé II and the modified Volterra
equation (see [7] and also [1, 21]).

Let us start by noting that the identities (1.33) and (1.34) reduce to

b(L,s+1) = %¢+(L, )e_(L,s), L(a™'L,s)—a(L,s)) = ¢, (L,s—Dp_(L,s). (6.42)

Taking the ratio of these gives

a(L,s)b(L,s+1)

¢+(L7 S) = 2(1 _ (IZ(S))

e (L, s —1). (6.43)

We then expand the determinant of C(z;L, s), which we know to be equal to 1, around z = co.
Using (6.43), the term of order z~! yields

La®(L,s)(b(L,s + 1) + b(L, s)) = (2s + 1)1 — a*(L, s)). (6.44)
Next, let us consider the compatibility condition between the first equation in (6.4) and (6.13)
A(z+1;,L,s)C(z;L,s)—C(z;L,s + 1)A(z;L,z) = 0. (6.45)

Inspecting the entry (2,2) of this condition, once written in terms of b%(L,s + 1), a(L, s + 1) and
a(L, s) (using the equations obtained before), yields

b2(L,s +1) = 41 — a*(L,s))(1 — a*(L,s + 1)). (6.46)

Equations (6.44) and (6.46) are the same (up to a change of variable) as [7, Equations (3.9), (3.10)]
and lead to an expression of the Fredholm determinants le, (L, s) in terms of a discrete recur-

L
sion known as the discrete Painlevé II equation, Equation (6.47). For the reader’s convenience,
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we explain here how to derive it, closely following [7]. Note, however, that the Lax pair used to
obtain (6.44) and (6.46) is not the same as the one in op. cit.

Proposition 6.4 (cf. Borodin, [7]). Let v(L, s), for s € Z' with s > —%, be the sequence of functions
defined by the second-order recursion
(s + 3)u(L,5)

vL,s+1)+v(l,s—1)= m

(6.47)
with initial conditions v(L,—3) = 1, v(L, 3) = =1, (2L)/1y(2L), where T, (2L) is defined in (1.14).
Then, for all s € 7' satisfying s > —%,

QIZ’ (L,S + 1)QIZ’ (L,S - 1)

G, L3

=1-0%(L,s). (6.48)

Moreover, the functions v(L, s) satisfy the modified Volterra equation

%U(L, $) = (1= 2L, 8)O@L:s +1) = (L5 — 1)). (6.49)

Proof. We start by defining v?(L, —%) = 1 (which satisfies (6.48)) and then recursively
v(L,s+1) :=—b(L,s+ v (L,s). (6.50)

Using (6.46), we have v?(L,s) = 1 — a?(L, s) for all s > —%. We can now write (6.44) just in terms

of the functions v(L, s), and in this way we obtain (6.47). As for (6.48), it comes from the equal-

ity v?(L,s) = 1 — a*(L, s) combined with (6.1). Finally, the initial condition for v(L,1/2) can be

deduced from the recursive definition v(L, s + 1) = —b(L, s)v~1(L, s) combined with (6.2) and the

fact that Q, , (-1 /2) =e L%, Q, (1 /2) = e7L’1,(2L), see (1.14). Finally, the modified Volterra
+ +

equation (6.49) is merely a rewriting of (6.9) in terms of the functions v(s, L). O

APPENDIX: PARTIAL FRACTION EXPANSION

Lemma A.1. Let f(-) be a meromorphic function with simple polesat 7' := 7 + % such that

|mlax |f(z)] = 0, asn — +oo through integer values. (A1)
Z|=n

Then, forall z € C \ 7' we have

res f(w)dw
f2)= = (A2)

a7’ z-a
Proof. Fixz € C \ Z': for all integers n > |z|, Cauchy theorem implies that

1 fw) res f(w)dw

- dw = — — f(2). (A.3)
271 Jjwj=n Z— W anZlakn z—a
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As n — +oc0, the left-hand side tends to O because

75 CI
lwl=n £~ W

as n — +oo by assumption, and the proof is complete. [l

|dw|

—_— 0, (A.4)
lwj=1 |w —z/n]

< max |f (W)l
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