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Abstract
We study the finite-temperature deformation of the dis-
crete Bessel point process. We show that its largest
particle distribution satisfies a reduction of the 2D Toda
equation, as well as a discrete version of the integro-
differential Painlevé II equation of Amir–Corwin–
Quastel, and we compute initial conditions for the Pois-
sonization parameter equal to 0. As proved by Betea and
Bouttier, in a suitable continuum limit the last particle
distribution converges to that of the finite-temperature
Airy point process. We show that the reduction of the
2D Toda equation reduces to the Korteweg–de Vries
equation, as well as the discrete integro-differential
Painlevé II equation reduces to its continuous version.
Our approach is based on the discrete analogue of Its–
Izergin–Korepin–Slavnov theory of integrable operators
developed by Borodin and Deift.
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274 CAFASSO and RUZZA

1 INTRODUCTION AND RESULTS

1.1 Finite-temperature discrete Bessel point process and the 2D Toda
equation

In this paper we study the finite-temperature discrete Bessel point process, which is the
determinantal point process on ℤ′ ∶= ℤ + 1

2
with correlation kernel

𝐾𝖡𝖾
𝜎 (𝑎, 𝑏) =

∑
𝑙∈ℤ′

𝜎(𝑙)J𝑎+𝑙(2𝐿)J𝑏+𝑙(2𝐿), 𝑎, 𝑏 ∈ ℤ′, (1.1)

where 𝐿 > 0 is a parameter, J𝑘(⋅) is the Bessel function of first kind of order 𝑘, and 𝜎 ∶ ℤ′ →
[0, 1] is a function such that 𝜎 ∈ 𝓁1(ℤ′ ∩ (−∞, 0)). The fact that the kernel (1.1) actually induces a
determinantal point process onℤ′ and the role of the decay conditions on 𝜎 at−∞will be clarified
in Section 2.
The specialization 𝜎 = 1ℤ′+

of (1.1), where ℤ′+ ∶= ℤ′ ∩ (0, +∞), yields the standard dis-
crete Bessel point process [11, 23], namely, the determinantal point process with correlation
kernel

𝐾𝖡𝖾(𝑎, 𝑏) =
∑
𝑙∈ℤ′+

J𝑎+𝑙(2𝐿)J𝑏+𝑙(2𝐿)

= 𝐿
J
𝑎− 1

2
(2𝐿)J

𝑏+ 1
2
(2𝐿) − J

𝑎+ 1
2
(2𝐿)J

𝑏− 1
2
(2𝐿)

𝑎 − 𝑏
, 𝑎, 𝑏 ∈ ℤ′. (1.2)

(The last equality easily follows from a property of the Bessel functions and will be proved
for the reader’s convenience in Lemma 2.2.) The discrete Bessel point process has the fol-
lowing combinatorial interpretation. Let 𝕐 be the set of integer partitions (or, equivalently,
Young diagrams). Namely, elements 𝜆 = (𝜆1, 𝜆2, … ) ∈ 𝕐 are half-infinite sequences of non-
negative integers 𝜆𝑖 , for 𝑖 ⩾ 1, satisfying 𝜆𝑖 ⩾ 𝜆𝑖+1 and with finitely many non-zero 𝜆𝑖 ’s. In
particular, for 𝜆 ∈ 𝕐, the weight |𝜆| ∶= ∑

𝑖⩾1 𝜆𝑖 is a finite number. The Poissonized Plancherel
measure ℙ𝖯𝗅𝖺𝗇 is the probability measure on 𝕐, depending on a parameter 𝐿 > 0, defined
by

ℙ𝖯𝗅𝖺𝗇({𝜆}) ∶= e−𝐿
2
𝐿2|𝜆|(dim𝜆|𝜆|!

)2

, 𝜆 ∈ 𝕐. (1.3)

Here, dim𝜆 is the dimension of the irreducible representation of the symmetric group 𝑆|𝜆| corre-
sponding to 𝜆, or, equivalently, dim𝜆 is the number of standard Young tableaux of shape 𝜆. If we
associate to each 𝜆 ∈ 𝕐 a subset ofℤ′ through themap 𝜆 ↦ {𝜆𝑖 − 𝑖 + 1

2
}𝑖⩾1, it was proven in [11, 29]

that the push-forward of ℙ𝖯𝗅𝖺𝗇 is the determinantal point process on ℤ′ whose correlation kernel
is precisely (1.2).
The kernel (1.1) has a similar interpretation when

𝜎(𝑙) = (1 + 𝑢𝑙)−1, 𝑙 ∈ ℤ′, (1.4)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 275

for a parameter 𝑢 ∈ [0, 1). Namely, introduce a probability measure ℙ𝖼𝖯𝗅𝖺𝗇 on 𝕐 (cylindric
Plancherel distribution [8]), depending on parameters 𝐿 > 0 and 𝑢 ∈ [0, 1), by

ℙ𝖼𝖯𝗅𝖺𝗇({𝜆}) ∶=
1

𝑍(𝑢, 𝐿)

∑
𝜇⊂𝜆

𝑢|𝜇|((
𝐿(1 − 𝑢)

)|𝜆|−|𝜇|
dim(𝜆∕𝜇)

(|𝜆| − |𝜇|)!
)2

, 𝜆 ∈ 𝕐,

𝑍(𝑢, 𝐿) ∶=
e𝐿

2(1−𝑢)∏
𝑛⩾1(1 − 𝑢𝑛)

, (1.5)

where the sum runs over partitions 𝜇 ∈ 𝕐 such that 𝜇𝑖 ⩽ 𝜆𝑖 for all 𝑖 ⩾ 1, and dim(𝜆∕𝜇) is the
number of standard Young tableaux of shape 𝜆∕𝜇. Consider also the probability measure ℙ𝖢 on ℤ
defined by

ℙ𝖢({𝑐}) =
𝑢𝑐

2∕2∑
𝑛∈ℤ 𝑢

𝑛2∕2
, 𝑐 ∈ ℤ. (1.6)

It is proven in [5, 8] that, under the map (𝜆, 𝐶) ↦ {𝜆𝑖 − 𝑖 + 1∕2 + 𝐶}𝑖⩾1, the push-forward
of ℙ𝖼𝖯𝗅𝖺𝗇 ⊗ ℙ𝖢 is the determinantal point process on ℤ′ whose correlation kernel is (1.1) with 𝜎
as in (1.4).
Going back to the kernel (1.1) for general 𝜎, we shall see in Lemma 2.4 that the induced deter-

minantal point process has almost surely a largest particle 𝑎𝗆𝖺𝗑. We shall study its cumulative
distribution function

𝑄𝜎(𝐿, 𝑠) ∶= ℙ(𝑎𝗆𝖺𝗑 ⩽ 𝑠), 𝑠 ∈ ℤ′. (1.7)

By the general theory of determinantal point processes [9, 24, 31], this distribution can be
expressed as

𝑄𝜎(𝐿, 𝑠) = det(1 − 𝑠𝖡𝖾
𝜎 𝑠), 𝑠 ∈ ℤ′. (1.8)

Here, 𝖡𝖾
𝜎 is the operator on 𝓁2(ℤ′) induced† by the kernel (1.1), and 𝑠 is the orthogonal pro-

jector onto 𝓁2({𝑠 + 1, 𝑠 + 2,…}), namely, 𝑠 is induced by the kernel 𝑃𝑠(𝑎, 𝑏) = 1𝑎>𝑠 𝛿(𝑎, 𝑏), for
𝑠 ∈ ℤ′. The determinant in (1.8) is a Fredholm determinant, as the operator 𝑠𝖡𝖾

𝜎 𝑠 is trace class
on 𝓁2(ℤ′) for all 𝑠 ∈ ℤ′ (Lemma 2.4).
It is also worth noting that 𝑄𝜎(𝐿, 𝑠) can be equivalently described as the following expectation

with respect to the Poissonized Plancherel measure (1.3) (see Lemma 3.1):

𝑄𝜎(𝐿, 𝑠) = 𝔼𝖯𝗅𝖺𝗇

[
+∞∏
𝑖=1

(
1 − 𝜎(𝜆𝑖 − 𝑖 − 𝑠)

)]
. (1.9)

Finally, let us remark that 0 ⩽ 𝑄𝜎(𝐿, 𝑠) ⩽ 1 is a non-decreasing function of 𝑠 ∈ ℤ′ such that
𝑄𝜎(𝐿, 𝑠) → 1 as 𝑠 → +∞. In particular, there exists 𝑠0 ∈ ℤ′ ∪ {−∞} (depending on 𝜎) such that
𝑄𝜎(𝐿, 𝑠) = 0 if 𝑠 < 𝑠0 and 𝑄𝜎(𝐿, 𝑠) > 0 otherwise. In particular, since for any 𝜆 ∈ 𝕐 the set {𝜆𝑖 −
𝑖 + 1

2
}𝑖⩾1 has largest particle 𝑎𝗆𝖺𝗑 = 𝜆1 −

1

2
⩾ −1

2
, we deduce by the discussion above of the

† Throughout this paper, we agree that a kernel 𝑋 ∶ ℤ′ × ℤ′ → ℂ induces an operator  on 𝓁2(ℤ′) by (𝜓)(𝑎) =∑
𝑏∈ℤ′ 𝑋(𝑎, 𝑏)𝜓(𝑏), for 𝜓 ∈ 𝓁2(ℤ′) and 𝑎 ∈ ℤ′.
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276 CAFASSO and RUZZA

Poissonized Plancherel measure that, when 𝜎 = 𝟏ℤ′+
, we have 𝑠0 = −1∕2. On the other hand,

when 𝜎(𝑙) = (1 + 𝑢𝑙)−1 as in (1.4), corresponding to the cylindric Plancherel measure, we have
𝑠0 = −∞, because

𝑄𝜎(𝐿, 𝑠) = ℙ(𝑎𝗆𝖺𝗑 ⩽ 𝑠) ⩾ ℙ(𝑎𝗆𝖺𝗑 = 𝑠) ⩾ ℙ𝖼𝖯𝗅𝖺𝗇
(
{∅}

)
ℙ𝖢({𝑠 +

1

2
}) > 0, for all 𝑠 ∈ ℤ′. (1.10)

Our first result is the following.

Theorem I. For all 𝑠 ∈ ℤ′ such that 𝑄𝜎(𝐿, 𝑠) > 0, we have

𝜕2

𝜕𝐿2
log𝑄𝜎(𝐿, 𝑠) +

1

𝐿

𝜕

𝜕𝐿
log𝑄𝜎(𝐿, 𝑠) + 4 = 4

𝑄𝜎(𝐿, 𝑠 + 1)𝑄𝜎(𝐿, 𝑠 − 1)

𝑄𝜎(𝐿, 𝑠)
2

. (1.11)

The proof is given in Section 4.
The Equation (1.11) is, essentially, a reduction of the 2D Toda equation. Indeed, it implies that

𝜏𝑠(𝜃+, 𝜃−) ∶= e𝜃+𝜃− 𝑄𝜎(
√
𝜃+𝜃−, 𝑠) (1.12)

is a 2D Toda tau function, that is, 𝜏𝑠(𝜃+, 𝜃−) satisfies the bilinear form of the 2D Toda equation [20,
34]

𝜕2

𝜕𝜃+𝜕𝜃−
log 𝜏𝑠(𝜃+, 𝜃−) =

𝜏𝑠+1(𝜃+, 𝜃−)𝜏𝑠−1(𝜃+, 𝜃−)

𝜏𝑠(𝜃+, 𝜃−)
2

. (1.13)

Equation (1.11), or rather the corresponding equation for the variables {e𝐿2𝑄𝜎(𝐿, 𝑠)}𝑠∈ℤ′ , is also
known as cylindrical Toda equation. Another class of solutions of (1.11) written in terms of
Fredholm determinants is studied in [33, 35]. More recently, using a Fredholm determinant rep-
resentation, Matetski, Quastel, and Remenik proved that multi-point distributions associated
to the polynuclear growth model with arbitrary initial data satisfy the non-commutative Toda
equation [28].
It is appropriate to remark that, in the case 𝜎 = 𝟏𝑋 , with 𝑋 a subset of ℤ′ bounded below,† the

connection to the 2D Toda equation is not new. Indeed, in this case, our result follows from [29,
Theorem 3], which relates more generally the Schur measure on partitions with the Toda hierar-
chy. A particular case studied in even more detail is the one in which 𝑋 = ℤ′+. In this situation,
by the combinatorial interpretation of the discrete Bessel point process explained above, we
have 𝑄𝜎(𝐿, 𝑠) = 0 for 𝑠 ⩽ −3

2
and 𝑄𝜎(𝐿, 𝑠) > 0 for 𝑠 ⩾ −1

2
. Moreover, by the Borodin–Okounkov–

Geronimo–Case formula [10, 19], the Fredholm determinant 𝑄𝜎(𝐿, 𝑠), for 𝑠 ∈ ℤ′+, is related to a
Toeplitz determinant of size ⌈𝑠⌉ = 𝑠 + 1

2
as

𝑄𝜎(𝐿, 𝑠) = e−𝐿
2
det

[
I𝑖−𝑗(2𝐿)

]
𝑖,𝑗=1,…,⌈𝑠⌉ , I𝑘(2𝐿) = res

𝑢=0
e𝐿(𝑢+𝑢

−1)𝑢−𝑘−1d𝑢. (1.14)

† If 𝑋 is not bounded below, by (1.9) we have 𝑄𝜎(𝐿, 𝑠) = 0 identically.

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12745, W

iley O
nline L

ibrary on [10/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 277

Once this connection with Toeplitz determinants is established, the 2D Toda equation can be
obtained in several different ways, essentially exploiting the relationwith orthogonal polynomials
on the unit circle, as for instance in [1, 4, 21].
Therefore, Theorem I states that the connection of the discrete Bessel kernel to the 2D Toda

equation extends to the deformation (1.1) of the kernel. We complement this result by computing
small 𝐿 asymptotics for 𝑄𝜎(𝐿, 𝑠).

Theorem II. For any 𝑠 ∈ ℤ′, let 𝑄0𝜎(𝑠) ∶=
∏+∞

𝑖=1

(
1 − 𝜎(−𝑖 − 𝑠)

)
. For all 𝑠 ∈ ℤ′ such that

𝑄0𝜎(𝑠) > 0, there exists 𝐿∗ = 𝐿∗(𝑠) > 0 such that 𝑄𝜎(𝐿, 𝑠) > 0 for 0 ⩽ 𝐿 < 𝐿∗, and

log𝑄𝜎(𝐿, 𝑠) = log𝑄0𝜎(𝑠) −
𝜎(−𝑠) − 𝜎(−𝑠 − 1)

1 − 𝜎(−1 − 𝑠)
𝐿2 + O(𝐿4), 𝐿 → 0. (1.15)

We note that when𝑄0𝜎(𝑠) > 0, the denominator in the term of order 𝐿2 of (1.15) does not vanish.
The proof is given in Section 5.

1.2 Continuum limit to the Korteweg–de Vries equation

The finite-temperature discrete Bessel kernels (1.1) have continuum limits to the finite-
temperature Airy kernels [5]. These are kernels of the form

𝐾𝖠𝗂
𝜍 (𝜉, 𝜂; 𝑡) = ∫ℝ 𝜍(𝑡

−2∕3𝑟)Ai(𝜉 + 𝑟)Ai(𝜂 + 𝑟)d𝑟, 𝜉, 𝜂 ∈ ℝ, (1.16)

with Ai and Ai′ the Airy function and its derivative, respectively, 𝑡 > 0 a positive real parameter,
and 𝜍 ∶ ℝ → [0, 1] a functionwhich is smooth and satisfies 𝜍(𝑟) ∈ 𝐿1

(
(−∞, 0),

√|𝑟|d𝑟). In [5], the
authors proved this limit for 𝜎 as in (1.4), but their result extends easily to more general functions,
as long as 𝜎 = 𝜎𝜖 depends on an additional parameter 𝜖 in such away that 𝜎𝜖(𝜁∕𝜖) → 𝜍(𝜁) for some
function 𝜍 as 𝜖 → 0. More precisely, when 𝜎 is given by (1.4), one has to identify the parameter 𝜖
with 1 − 𝑢. Then, we have the convergence

𝜎

(
𝑟

𝑡2∕3(1 − 𝑢)

)
→ 𝜍

(
𝑟

𝑡2∕3

)
=

1

1 + e−𝑟𝑡−2∕3
, as 𝑢 → 1−, (1.17)

which is the scaling limit used in [5] to study the edge behavior of the cylindrical Plancherel mea-
sure.
These types of kernels (and related Fredholm determinants) attracted a great deal of interest

in the last 15 years. They first appeared in the field of random matrices [25], in the theory of the
Kardar–Parisi–Zhang equation [2], and in relation with one-dimensional systems of fermions at
finite temperature [17]. Riemann–Hilbert (RH) techniques for the study of related Fredholmdeter-
minants have been developed and used in [12–16]. In particular, Fredholm determinants on 𝐿2(ℝ)
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278 CAFASSO and RUZZA

of the form

𝐹𝜍(𝑥, 𝑡) = det
(
1 − 𝟏(−𝑥𝑡−1∕3,+∞)𝖠𝗂

𝜍 𝟏(−𝑥𝑡−1∕3,+∞)

)
(1.18)

have been shown to satisfy† [15]

𝜕2

𝜕𝑡𝜕𝑥
log 𝐹𝜍(𝑥, 𝑡) +

𝑥

𝑡

𝜕2

𝜕𝑥2
log 𝐹𝜍(𝑥, 𝑡) +

(
𝜕2

𝜕𝑥2
log 𝐹𝜍(𝑥, 𝑡)

)2

+
1

6

𝜕4

𝜕𝑥4
log 𝐹𝜍(𝑥, 𝑡) = 0, (1.19)

that is, the function

𝑈𝜍(𝑥, 𝑡) ∶=
𝜕2

𝜕𝑥2
log 𝐹𝜍(𝑥, 𝑡) +

𝑥

2𝑡
(1.20)

satisfies the Korteweg–de Vries equation

𝜕

𝜕𝑡
𝑈𝜍(𝑥, 𝑡) + 2𝑈𝜍(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑈𝜍(𝑥, 𝑡) +

1

6

𝜕3

𝜕𝑥3
𝑈𝜍(𝑥, 𝑡) = 0. (1.21)

It is instructive to look at howEquation (1.19) (closely related to the bilinear form of theKorteweg–
de Vries equation) emerges in such continuum limit from Equation (1.11) (which is in turn related
to the 2D Toda equation). Let the variables 𝐿, 𝑠 be given in terms of variables 𝑥, 𝑡 and of an
additional parameter 𝜖 > 0 as

𝑠(𝑥, 𝑡; 𝜖) =
2

𝜖3𝑡2
−
𝑥

𝜖𝑡
, 𝐿(𝑥, 𝑡; 𝜖) =

1

𝜖3𝑡2
. (1.22)

Under this transformation, we have

𝜕

𝜕𝐿
=
𝜕𝑥

𝜕𝐿

𝜕

𝜕𝑥
+
𝜕𝑡

𝜕𝐿

𝜕

𝜕𝑡
= −

1

2
𝜖𝑡

(
(𝜖2𝑥𝑡 − 4)

𝜕

𝜕𝑥
+ 𝜖2𝑡2

𝜕

𝜕𝑡

)
. (1.23)

Moreover, let us introduce

𝐹(𝑥, 𝑡; 𝜖) ∶= 𝑄𝜎(𝐿(𝑥, 𝑡; 𝜖), 𝑠(𝑥, 𝑡; 𝜖)). (1.24)

As shown in [5], 𝐹(𝑥, 𝑡; 𝜖) converges, as 𝜖 → 0, to 𝐹𝜍(𝑥, 𝑡), and we shall now explain how the
equation for 𝑄𝜎 of Theorem I reduces to (1.19). Expanding at 𝜖 = 0 as

log 𝐹(𝑥, 𝑡; 𝜖) = 𝑓0(𝑥, 𝑡) + 𝜖𝑓1(𝑥, 𝑡) + 𝜖2𝑓2(𝑥, 𝑡) + O(𝜖3), (1.25)

the left-hand side of (1.11) is(
𝜕2

𝜕𝐿2
+
1

𝐿

𝜕

𝜕𝐿

)
log 𝐹(𝑥, 𝑡; 𝜖) + 4 = 4 + 4𝜖2𝑡2

𝜕2

𝜕𝑥2
𝑓0(𝑥, 𝑡) + 4𝜖3𝑡2

𝜕2

𝜕𝑥2
𝑓1(𝑥, 𝑡)

−2𝜖4𝑡4
(

𝜕2

𝜕𝑡𝜕𝑥
𝑓0(𝑥, 𝑡) +

𝑥

𝑡

𝜕2

𝜕𝑥2
𝑓0(𝑥, 𝑡) −

2

𝑡2
𝜕2

𝜕𝑥2
𝑓2(𝑥, 𝑡)

)
+ O(𝜖5) (1.26)

†Only Equation (1.21) appears explicitly in [15, Theorem 1.3]. However, (1.19) can be obtained by substituting 𝑈𝜍(𝑥, 𝑡) =

𝜕2𝑥 log 𝐹(𝑥, 𝑡) + 𝑥∕(2𝑡) in (1.21) and integrating once in 𝑥 thanks to the asymptotics proved in [15, Section 5].
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 279

and, similarly, the right-hand side of (1.11) is

4
𝐹(𝑥 − 𝜖𝑡, 𝑡; 𝜖)𝐹(𝑥 + 𝜖𝑡, 𝑡; 𝜖)

𝐹(𝑥, 𝑡; 𝜖)2
= 4 + 4𝜖2𝑡2

𝜕2

𝜕𝑥2
𝑓0(𝑥, 𝑡) + 4𝜖3𝑡2

𝜕2

𝜕𝑥2
𝑓1(𝑥, 𝑡)

+ 𝜖4𝑡4
(
2

(
𝜕2

𝜕𝑥2
𝑓0(𝑥, 𝑡)

)2

+
1

3

𝜕4

𝜕𝑥4
𝑓0(𝑥, 𝑡) +

4

𝑡2
𝜕2

𝜕𝑥2
𝑓2(𝑥, 𝑡)

)
+ O(𝜖5). (1.27)

Terms of order up to 𝜖3 match identically, while at order 𝜖4 we obtain precisely (1.19) (whose
relation to the Korteweg–de Vries equation has been explained above) for the function 𝐹𝜍(𝑥, 𝑡) =
exp

(
𝑓0(𝑥, 𝑡)

)
.

Remark 1.1. After submission, we learned that this scaling limit of the cylindrical Toda equation to
the cylindrical KdV equation had already appeared in [27].

1.3 A discrete version of the integro-differential Painlevé II equation

For the Korteweg–de Vries solutions𝑈𝜍(𝑥, 𝑡) associated with Fredholm determinants (1.18) of the
finite-temperature Airy kernel (1.16) there is an identity between the potential and the wave func-
tion.† Namely, provided exponential decay of 𝜍 at −∞, it is shown in [15] that the solution to the
boundary value problem

𝜕2

𝜕𝑥2
𝜓(𝜁; 𝑥, 𝑡) = (𝜁 − 2𝑈𝜍(𝑥, 𝑡))𝜓(𝜁; 𝑥, 𝑡), 𝜓(𝜁; 𝑥, 𝑡) ∼ 𝑡1∕6Ai(𝑡2∕3𝜁 − 𝑥𝑡−1∕3), 𝑥 → −∞,

(1.28)
satisfies

𝑈𝜍(𝑥, 𝑡) =
𝑥

2𝑡
−
1

𝑡 ∫ℝ 𝜓(𝜂; 𝑥, 𝑡)
2𝜍′(𝜂)d𝜂. (1.29)

Plugging (1.29) into (1.28) one obtains the so-called integro-differential Painlevé II equation ofAmir,
Corwin, and Quastel [2]

𝜕2

𝜕𝑥2
𝜓(𝜁; 𝑥, 𝑡) =

(
𝜁 −

𝑥

𝑡
+
2

𝑡 ∫ℝ 𝜓(𝜂; 𝑥, 𝑡)
2𝜍′(𝜂)d𝜂

)
𝜓(𝜁; 𝑥, 𝑡), (1.30)

whose solution (subject to the boundary value condition in (1.28)) characterizes the distribution
𝐹𝜍 , since, by (1.20) and (1.29),

𝜕2

𝜕𝑥2
log 𝐹𝜍(𝑥, 𝑡) = −

1

𝑡 ∫ℝ 𝜓(𝜂; 𝑥, 𝑡)
2𝜍′(𝜂)d𝜂. (1.31)

It is worth recalling that in the limit 𝜍 → 𝟏(0,+∞), the kernel (1.16) reduces to the classical Airy
kernel, the integro-differential Painlevé II equation (1.30) reduces to the standard Painlevé II equa-

†We thank PercyDeift for pointing out that such relation is the analogue of theTrace Formula of [18] for potentials𝑈𝜍(𝑥, 𝑡)

which, unlike the classical setting of op. cit., do not vanish as 𝑥 → ±∞ but rather behave as 𝑥∕(2𝑡).
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280 CAFASSO and RUZZA

tion, and its solution selected by the boundary behavior in (1.28) is the Hastings–McLeod solution
(in agreement with the celebrated result by Tracy and Widom [32]).
The next result is an analogous property for the finite-temperature discrete Bessel kernels.

Theorem III. Let 𝐿 > 0 and 𝑠0 ∶= min{𝑠 ∈ ℤ′ ∶ 𝑄𝜎(𝐿, 𝑠) > 0} ∈ ℤ′ ∪ {−∞}. For all 𝑠 ∈ ℤ′

with 𝑠 ⩾ 𝑠0, we introduce

𝔞(𝐿, 𝑠) ∶=

√
𝑄𝜎(𝐿, 𝑠 + 1)𝑄𝜎(𝐿, 𝑠 − 1)

𝑄𝜎(𝐿, 𝑠)
, 𝔟(𝐿, 𝑠 + 1) ∶=

𝜕

𝜕𝐿
log

𝑄𝜎(𝐿, 𝑠 + 1)

𝑄𝜎(𝐿, 𝑠)
. (1.32)

Then, for all 𝑠 ∈ ℤ′, 𝑠 ⩾ 𝑠0,

𝔞−1(𝐿, 𝑠) − 𝔞(𝐿, 𝑠) =
1

𝐿

∑
𝑙∈ℤ′

(
𝜎(𝑙 + 1) − 𝜎(𝑙)

)
𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)𝜑(𝑙; 𝐿, 𝑠), (1.33)

𝔟(𝐿, 𝑠 + 1) =
2

𝐿

∑
𝑙∈ℤ′

(
𝜎(𝑙 + 1) − 𝜎(𝑙)

)
𝜑(𝑙 + 1; 𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠), (1.34)

where 𝜑(𝑙; 𝐿, 𝑠) are defined for 𝑙 ∈ ℤ′ and for 𝑠 ∈ ℤ′ with 𝑠 ⩾ 𝑠0 − 1 and satisfy the recursion

𝔞(𝐿, 𝑠 + 1)𝜑(𝑙; 𝐿, 𝑠 + 1) + 𝔞(𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠 − 1) =

(
𝑙 + 𝑠 + 1

𝐿
+
𝔟(𝐿, 𝑠 + 1)

2

)
𝜑(𝑙; 𝐿, 𝑠). (1.35)

Moreover, for all 𝑙 ∈ ℤ′ we have

𝜑(𝑙; 𝐿, 𝑠) ∼
√
𝐿 J𝑙+𝑠+1(2𝐿), 𝑠 → +∞. (1.36)

The proof is given in Section 6 and is based on a Lax pair argument. In particular, when 𝜎 =
𝟏ℤ′+

we obtain a Lax pair which, although different from the one used by Borodin [7], can be
equivalently used to prove the connection to the discrete Painlevé II equation established in op. cit.
(and independently proved by other methods in [1, 3]); see Section 6.1 for more details.
It is worth observing that in the scaling limit (1.22) as 𝜖 → 0, the equations of Theorem III for-

mally reduce to above mentioned equations for Fredholm determinants of the finite-temperature
Airy kernel. More precisely, with the notations of (1.22), (1.24), and (1.25), we have, as 𝜖 → 0,

𝔞
(
𝐿(𝑥, 𝑡; 𝜖), 𝑠(𝑥, 𝑡; 𝜖)

)
= 1 +

1

2
𝜖2𝑡2

𝜕2

𝜕𝑥2
𝑓0(𝑥, 𝑡) + O(𝜖3), (1.37)

𝔞−1
(
𝐿(𝑥, 𝑡; 𝜖), 𝑠(𝑥, 𝑡; 𝜖)

)
− 𝔞

(
𝐿(𝑥, 𝑡; 𝜖), 𝑠(𝑥, 𝑡; 𝜖)

)
∼ −𝜖2𝑡2

𝜕2

𝜕𝑥2
𝑓0(𝑥, 𝑡), (1.38)

𝔟
(
𝐿(𝑥, 𝑡; 𝜖), 𝑠(𝑥, 𝑡; 𝜖) + 1

)
∼ −2𝜖2𝑡2

𝜕2

𝜕𝑥2
𝑓0(𝑥, 𝑡). (1.39)

Introducing 𝜓 and 𝜍 by the 𝜖 → 0 expansions

(𝜖𝑡)1∕2𝜑(𝜁∕𝜖; 𝐿(𝑥, 𝑡; 𝜖), 𝑠(𝑥, 𝑡; 𝜖)) = 𝜓(𝜁; 𝑥, 𝑡) + O(𝜖), 𝜎(𝜁∕𝜖) = 𝜍(𝜁) + O(𝜖), (1.40)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 281

we also have (by approximating a Riemann–Stieltjes sum with the corresponding integral)

1

𝐿

∑
𝑙∈ℤ′

(
𝜎(𝑙 + 1) − 𝜎(𝑙)

)
𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)𝜑(𝑙; 𝐿, 𝑠)

|||𝐿=𝐿(𝑥,𝑡;𝜖), 𝑠=𝑠(𝑥,𝑡;𝜖) ∼ 𝜖2𝑡 ∫ℝ 𝜍
′(𝜂)𝜓(𝜂; 𝑥, 𝑡)2d𝜂,

(1.41)

2

𝐿

∑
𝑙∈ℤ′

(
𝜎(𝑙 + 1) − 𝜎(𝑙)

)
𝜑(𝑙 + 1; 𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠)

|||𝐿=𝐿(𝑥,𝑡;𝜖), 𝑠=𝑠(𝑥,𝑡;𝜖) ∼ 2𝜖2𝑡 ∫ℝ 𝜍
′(𝜂)𝜓(𝜂; 𝑥, 𝑡)2d𝜂.

(1.42)

By (1.33) we have equality of (1.38) and (1.41), and looking at the leading order terms gives (1.31).
Similarly, by (1.34) we have equality of (1.39) and (1.42), and looking at the leading order terms
gives again (1.31). Moreover, using (1.37) and (1.39), Equation (1.35) reduces to (1.28). Finally, also
the asymptotic relation in (1.36) for 𝜑 formally matches with the one for 𝜓 in (1.28) using [11,
Lemma 4.4]

𝐿1∕3J2𝐿+𝜉𝐿1∕3(2𝐿) ∼ Ai(𝜉), 𝐿 → +∞. (1.43)

1.4 Organization of the rest of the paper

In Section 2 we gather some properties of the discrete Bessel point process and its finite-
temperature deformation. In Section 3 we prove a discrete RH characterization of 𝑄𝜎(𝐿, 𝑠),
following a general strategy developed by Borodin and Deift [6] which parallels the theory of
integrable operators of Its–Izergin–Korepin–Slavnov [22] in a discrete setting. Next, we prove The-
orem I, II, and III in Sections 4, 5, and 6, respectively. We briefly discuss the connection of our
approach to the results of Borodin [7] relative to the special case 𝜎 = 𝟏ℤ′+

in Section 6.1. An ele-
mentary technical lemma which is helpful in the discussion of discrete RH problems is deferred
to the Appendix.

2 PRELIMINARIES ON THE DISCRETE BESSEL KERNEL

The Bessel functions satisfy [30, Equation (10.6.1)]

𝐿
(
J𝑘+1(2𝐿) + J𝑘−1(2𝐿)

)
= 𝑘J𝑘(2𝐿), 𝑘 ∈ ℂ, (2.1)

and [30, Equation (10.4.1)]

J−𝑘(2𝐿) = (−1)𝑘J𝑘(2𝐿), 𝑘 ∈ ℤ. (2.2)

Lemma 2.1. As 𝑘 → +∞, we have

J𝑘(2𝐿) ∼
1√
2𝜋𝑘

(
e𝐿

𝑘

)𝑘
,

𝜕

𝜕𝜅
J𝜅(2𝐿)

||||𝜅=𝑘 ∼ log(𝐿∕𝑘)√
2𝜋𝑘

(
e𝐿

𝑘

)𝑘
, (2.3)
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282 CAFASSO and RUZZA

and, as 𝑘 → +∞ through integer values, we have

J−𝑘(2𝐿) ∼
(−1)𝑘√
2𝜋𝑘

(
e𝐿

𝑘

)𝑘
,

𝜕

𝜕𝜅
J𝜅(2𝐿)

||||𝜅=−𝑘 ∼ (−1)𝑘+1
√

2𝜋

𝑘

(
𝑘

e𝐿

)𝑘

. (2.4)

Proof. For real 𝑘 > −1∕2, we can represent the Bessel function by the Poisson integral [30,
Equation (10.9.4)]

J𝑘(2𝐿) =
𝐿𝑘√

𝜋 Γ(𝑘 + 1

2
) ∫

𝜋

0
cos(2𝐿 cos 𝜃)e2𝑘 log(sin 𝜃)d𝜃. (2.5)

Since 𝜃 ↦ log(sin 𝜃) has a unique non-degenerate maximum at 𝜃 = 𝜋∕2 for 𝜃 ∈ (0, 𝜋), it suffices
to use Laplace’smethod to obtain the large 𝑘 asymptotics of the integral. Combiningwith Stirling’s
asymptotics, we obtain the first relation in (2.3). The first relation in (2.4) then follows from (2.2).
Next, by (2.5), for real 𝑘 > −1∕2,

𝜕

𝜕𝑘
J𝑘(2𝐿) =

𝜕

𝜕𝑘

(
log

𝐿𝑘√
𝜋 Γ(𝑘 + 1

2
)

)
J𝑘(2𝐿)

+
𝐿𝑘√

𝜋 Γ(𝑘 + 1

2
) ∫

𝜋

0
2 log(sin 𝜃) cos(2𝐿 cos 𝜃)e2𝑘 log(sin 𝜃)d𝜃. (2.6)

Using the asymptotics for the digamma function Γ′∕Γ, as well as the already established first
relation in (2.3) for the first term, and again Laplace’s method for the second term, we obtain
(after some computations) the second relation in (2.3). Finally, for the last relation we use that,
for 𝑘 ∈ ℤ, we have [30, 10.2.4],

(−1)𝑘
𝜕

𝜕𝜅
J𝜅(2𝐿)

||||𝜅=−𝑘 = 𝜋Y𝑘(2𝐿) −
𝜕

𝜕𝜅
J𝜅(2𝐿)

||||𝜅=𝑘, (2.7)

where Y𝑘(⋅) is the Bessel function of second kind of order 𝑘, and it suffices to use the sec-
ond relation in (2.3) along with the asymptotics Y𝑘(2𝐿) ∼ −

√
2∕(𝜋𝑘) (e𝐿∕𝑘)−𝑘 as 𝑘 → +∞ [30,

Equation (10.19.2)]. □

Let us recall the discrete Bessel kernel𝐾𝖡𝖾(𝑎, 𝑏) =
∑
𝑙∈ℤ′+

J𝑎+𝑙(2𝐿)J𝑏+𝑙(2𝐿), as in (1.2). It is worth
observing that only Bessel functions of integer order appear in this expression.

Lemma 2.2. We have

𝐾𝖡𝖾(𝑎, 𝑏) = 𝐿
J
𝑎− 1

2
(2𝐿)J

𝑏+ 1
2
(2𝐿) − J

𝑎+ 1
2
(2𝐿)J

𝑏− 1
2
(2𝐿)

𝑎 − 𝑏
, 𝑎, 𝑏 ∈ ℤ′, 𝑎 ≠ 𝑏, (2.8)

𝐾𝖡𝖾(𝑎, 𝑎) = 𝐿

(
J
𝑎+ 1

2
(2𝐿)

𝜕J
𝑎− 1

2
(2𝐿)

𝜕𝑎
− J

𝑎− 1
2
(2𝐿)

𝜕J
𝑎+ 1

2
(2𝐿)

𝜕𝑎

)
, 𝑎 ∈ ℤ′. (2.9)

In particular, 𝐾𝖡𝖾(𝑎, 𝑎) is a decreasing function of 𝑎 ∈ ℤ′ satisfying

𝐾𝖡𝖾(𝑎, 𝑎) → 1, 𝑎 → −∞, 𝑎 ∈ ℤ′. (2.10)

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12745, W

iley O
nline L

ibrary on [10/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 283

Proof. Fix𝑀 ∈ ℤ′+. Using (2.1) we compute, for any real 𝑎 ≠ 𝑏, omitting the argument 2𝐿 of the
Bessel functions,

(𝑎 − 𝑏)
∑

𝑙∈ℤ′+∩[
1

2
,𝑀]

J𝑎+𝑙J𝑏+𝑙 =
∑

𝑙∈ℤ′+∩[
1

2
,𝑀]

(
(𝑎 + 𝑙)J𝑎+𝑙J𝑏+𝑙 − (𝑏 + 𝑙)J𝑎+𝑙J𝑏+𝑙

)
= 𝐿

∑
𝑙∈ℤ′+∩[

1

2
,𝑀]

(
J𝑎+𝑙−1J𝑏+𝑙 + J𝑎+𝑙+1J𝑏+𝑙 − J𝑎+𝑙J𝑏+𝑙−1 − J𝑎+𝑙J𝑏+𝑙+1

)
= 𝐿

(
J
𝑎− 1

2
J
𝑏+ 1

2
+ J𝑎+𝑀+1J𝑏+𝑀 − J

𝑎+ 1
2
J
𝑏− 1

2
− J𝑎+𝑀J𝑏+𝑀+1

)
, (2.11)

where in the last step we telescope the sum. Sending 𝑀 → +∞ and using the first asymptotics
in (2.3) and (2.4), we obtain (2.8). Sending instead 𝑎 → 𝑏 first and then sending 𝑀 → +∞ we
obtain (2.9). Finally, it suffices to insert (2.4) in (2.9) to obtain (2.10). □

Lemma 2.3. For all 𝑎, 𝑏 ∈ ℤ′ we have
∑
𝑙∈ℤ′ J𝑎+𝑙(2𝐿)J𝑏+𝑙(2𝐿) = 𝛿𝑎,𝑏.

Proof. Let𝑀,𝑁 ∈ ℤ′ with 𝑁 < 0 < 𝑀. Using a similar argument as in (2.11), we obtain, for real
𝑎 ≠ 𝑏,

(𝑎 − 𝑏)
∑

𝑙∈ℤ′∩[𝑁,𝑀]

J𝑎+𝑙J𝑏+𝑙 = 𝐿
(
J𝑎+𝑁−1J𝑏+𝑁 − J𝑎+𝑁J𝑏+𝑁−1 + J𝑎+𝑀+1J𝑏+𝑀 − J𝑎+𝑀J𝑏+𝑀+1

)
,

(2.12)
and so sending𝑀 → +∞,𝑁 → −∞ and using (2.3) we obtain the thesis for 𝑎 ≠ 𝑏. Sending instead
𝑎 → 𝑏 first, and then sending 𝑀 → +∞,𝑁 → −∞ using (2.4) and (2.10) we obtain the thesis
for 𝑎 = 𝑏. □

Lemma2.4. Wehave 0 ⩽ 𝖡𝖾
𝜎 ⩽ 1.Moreover, if𝜎 ∈ 𝓁1(ℤ′ ∩ (−∞, 0)), the operator𝑠𝖡𝖾

𝜎 𝑠 is trace
class, where 𝑠 is the orthogonal projector onto 𝓁2({𝑠 + 1, 𝑠 + 2,… }), for all 𝑠 ∈ ℤ′.

Proof. It follows from Lemma 2.3 that the operator  induced by the kernel J𝑎+𝑏(2𝐿) is an uni-
tary involution of 𝓁2(ℤ′), that is,  =  † =  −1. By a slight abuse of notation, denote with 𝜎 the
operator of multiplication by 𝜎, that is, the operator on 𝓁2(ℤ′) induced by the kernel 𝜎(𝑎)𝛿(𝑎, 𝑏).
Then, by definition, 𝖡𝖾

𝜎 =  𝜎 . Let ⟨⋅, ⋅⟩ be the scalar product on 𝓁2(ℤ′): since 0 ⩽ 𝜎 ⩽ 1, we
have

⟨(𝖡𝖾
𝜎 )

2𝜓, 𝜓⟩ = ⟨𝜎2 𝜓, 𝜓⟩ ⩽ ⟨𝜎 𝜓, 𝜓⟩ = ⟨𝖡𝖾
𝜎 𝜓, 𝜓⟩, for all 𝜓 ∈ 𝓁2(ℤ′). (2.13)

Therefore,𝖡𝖾
𝜎 ⩾ (𝖡𝖾

𝜎 )
2 ⩾ 0, which also implies 1 −𝖡𝖾

𝜎 ⩾ (1 −𝖡𝖾
𝜎 )

2 ⩾ 0.
For the second statement, observe that 𝑠𝖡𝖾

𝜎 𝑠 = 𝑠†
𝑠 where𝑠 is induced by kernel

𝐻𝑠(𝑎, 𝑏) = 𝟏𝑎>𝑠J𝑎+𝑏(2𝐿)
√
𝜎(𝑏), 𝑎, 𝑏 ∈ ℤ′. (2.14)

For a fixed 𝑠 ∈ ℤ′, the operator𝑠 is Hilbert–Schmidt on 𝓁2(ℤ′) if and only if∑
𝑎,𝑏∈ℤ′

|𝐻𝑠(𝑎, 𝑏)|2 = ∑
𝑎∈ℤ′+

∑
𝑏∈ℤ′

𝟏𝑎>𝑠J𝑎+𝑏(2𝐿)
2𝜎(𝑏) = 𝐿

∑
𝑙∈ℤ′

𝜎(𝑙 − 𝑠 − 1

2
)𝐾𝖡𝖾(𝑙, 𝑙) < +∞. (2.15)
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284 CAFASSO and RUZZA

The convergence of the latter series at 𝑙 → +∞ follows from (2.9) and the first asymptotic rela-
tions in (2.3) and (2.4), along with 0 ⩽ 𝜎 ⩽ 1. The convergence at 𝑙 → −∞ follows instead by (2.9)
and the second asymptotic relations in (2.3) and (2.4), along with the summability assumption
on 𝜎. □

It follows from this lemma and theMacchi–Soshnikov criterion [31, Theorem3] that there exists
a unique determinantal point process on ℤ′ whose correlation kernel is 𝐾𝖡𝖾

𝜎 . It also follows from
the general theory of determinantal point processes, for example, from [31, Theorem 4], that this
process has almost surely a largest particle 𝑎𝗆𝖺𝗑, whose distribution is given by the Fredholm
determinant as in (1.8).

3 DISCRETE RIEMANN–HILBERT CHARACTERIZATION OF 𝑸𝝈

Let us introduce the operator𝑠 on 𝓁2(ℤ′), for 𝑠 ∈ ℤ′, induced by the kernel

𝑀𝑠(𝑎, 𝑏) =
√
𝜎
(
𝑎 − 𝑠 − 1

2

)
𝐾𝖡𝖾(𝑎, 𝑏)

√
𝜎
(
𝑏 − 𝑠 − 1

2

)
, 𝑎, 𝑏 ∈ ℤ′, (3.1)

where 𝐾𝖡𝖾 is as in (1.2). The operator𝑠 is of discrete integrable form [6, 7], namely, using (2.8)
the off-diagonal entries of the kernel can be expressed as

𝑀𝑠(𝑎, 𝑏) =
𝐟⊤(𝑎)𝐠(𝑏)

𝑎 − 𝑏
, 𝑎, 𝑏, ∈ ℤ′, 𝑎 ≠ 𝑏, (3.2)

where

𝐟 (𝑎) ∶=
√
𝜎(𝑎 − 𝑠 − 1

2
)

(
J
𝑎− 1

2
(2𝐿)

𝐿J
𝑎+ 1

2
(2𝐿)

)
, 𝐠(𝑏) ∶=

√
𝜎(𝑏 − 𝑠 − 1

2
)

(
𝐿J

𝑏+ 1
2
(2𝐿)

−J
𝑏− 1

2
(2𝐿)

)
. (3.3)

Using (2.9) we can express the diagonal entries as

𝑀𝑠(𝑎, 𝑎) = 𝜎(𝑎 − 𝑠 − 1

2
)𝐾𝖡𝖾(𝑎, 𝑎)

= 𝐿 𝜎(𝑎 − 𝑠 − 1

2
)

(
J
𝑎+ 1

2
(2𝐿)

𝜕J
𝑎− 1

2
(2𝐿)

𝜕𝑎
− J

𝑎− 1
2
(2𝐿)

𝜕J
𝑎+ 1

2
(2𝐿)

𝜕𝑎

)
. (3.4)

Lemma 3.1.

(i) The operator𝑠 is trace class and we have

𝑄𝜎(𝐿, 𝑠) = det(1 −𝑠). (3.5)
(ii) The identity (1.9) holds true.
(iii For all 𝑠 ∈ ℤ′ such that 𝑄𝜎(𝐿, 𝑠) > 0, we have

𝑄𝜎(𝐿, 𝑠 − 1)

𝑄𝜎(𝐿, 𝑠)
− 1 = tr

(
(1 −𝑠)

−1𝑠

)
, (3.6)

where𝑠 is the rank one operator on 𝓁2(ℤ′) induced by the kernel

𝑁𝑠(𝑎, 𝑏) =
√
𝜎(𝑎 − 𝑠 − 1

2
) J
𝑎− 1

2
(2𝐿)

√
𝜎(𝑏 − 𝑠 − 1

2
) J
𝑏− 1

2
(2𝐿). (3.7)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 285

Proof.

(i) We have

𝑄𝜎(𝐿, 𝑠) = det(1 − 𝑠𝖡𝖾
𝜎 𝑠) = det(1 −𝑠†

𝑠 ) = det(1 −†
𝑠𝑠), (3.8)

where 𝑠 is induced by the kernel (2.14). Let  be the shift operator on 𝓁2(ℤ′), induced by

the kernel 𝑇(𝑎, 𝑏) = 𝛿𝑎,𝑏+1. It is straightforward to verify that†
𝑠𝑠 =  𝑠+

1

2𝑠 −𝑠−
1

2 . This
identity implies that𝑠 is trace class, and, by combining it with (3.8), we obtain (3.5).

(ii) We have, by the previous point,

𝑄𝜎(𝐿, 𝑠) = det(1 − 𝜎(⋅ − 𝑠 − 1

2
)𝖡𝖾), (3.9)

where 𝜎(⋅ − 𝑠 − 1

2
) denotes the multiplication operator induced by the kernel 𝜎(𝑎 − 𝑠 −

1

2
)𝛿𝑎,𝑏. Then (1.9) follows from a general property of determinantal point processes (for

example, see [9, Equation (11.2.4)]).
(iii) Let 𝑠 be the operator on 𝓁2(ℤ′) induced by the kernel 𝑆𝑠(𝑎, 𝑏) =

√
𝜎(𝑎 − 𝑠 − 1

2
)𝛿𝑎,𝑏. Then,

𝑠 = 𝑠𝖡𝖾𝑠 where𝖡𝖾 is the operator induced by the discrete Bessel kernel 𝐾𝖡𝖾, defined
in (1.2). Recalling the shift operator  , induced by the kernel 𝑇(𝑎, 𝑏) = 𝛿𝑎,𝑏+1, we observe
that 𝑠−1 =  −1𝑠 so that

𝑄𝜎(𝐿, 𝑠 − 1) = det
(
1 − 𝑠 𝖡𝖾 −1𝑠) = det

(
1 −𝑠 + 𝑠(𝖡𝖾 −  𝖡𝖾 −1

)𝑠). (3.10)

From (1.2), we note that𝑠 ∶= 𝑠(𝖡𝖾 −  𝖡𝖾 −1)𝑠 is the rank one operator induced by
the kernel (3.7). As long as 𝑄𝜎(𝐿, 𝑠) ≠ 0, we have

𝑄𝜎(𝐿, 𝑠 − 1) = det(1 −𝑠 +𝑠) = det(1 −𝑠) det
(
1 + (1 −𝑠)

−1𝑠

)
= 𝑄𝜎(𝐿, 𝑠)

(
1 + tr

(
(1 −𝑠)

−1𝑠

))
, (3.11)

using a standard formula for the determinant of a rank one perturbation of the identity.

□

The next key step is to apply the discrete version of Its–Izergin–Korepin–Slavnov procedure
[22], as developed for instance by Borodin [7]. This approach provides us with an effective way of
computing the resolvent operator 𝑠 ∶= (1 −𝑠)

−1 − 1 that proves useful to investigate (3.6).
Indeed, the main result of this theory (Theorem 3.4 below, following from general results of
Borodin) is that the resolvent operator𝑠 is also induced by a kernel of integrable form expressed
through ameromorphic 2 × 2matrix-valued function𝑌(⋅) (parametrically depending on 𝜎, 𝑠, 𝐿 as
well) which is uniquely characterized by the following RH conditions.

Discrete RH problem for 𝒀

(a) 𝑌(𝑧) is a 2 × 2matrix-valued meromorphic function of 𝑧 with simple poles at ℤ′ only.
(b) For all 𝑎 ∈ ℤ′, the function

𝑌
𝗋𝖾𝗀
𝑎 (𝑧) ∶= 𝑌(𝑧)

(
𝐼 −

𝑊𝑌(𝑎)

𝑧 − 𝑎

)
(3.12)

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12745, W

iley O
nline L

ibrary on [10/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



286 CAFASSO and RUZZA

has a removable singularity at 𝑧 = 𝑎, where

𝑊𝑌(𝑎) ∶=
𝐟 (𝑎)𝐠⊤(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
, 𝑎 ∈ ℤ′. (3.13)

Here, 𝐟 (𝑎), 𝐠(𝑎), and𝑀𝑠(𝑎, 𝑎) are given explicitly in (3.3) and (3.4).
(c) We have lim𝑛→+∞ sup|𝑧|=𝑛 |𝑌(𝑧) − 𝐼| = 0, where the limit is taken over integer values of 𝑛, 𝐼

denotes the 2 × 2 identity matrix and | ⋅ | denotes any matrix norm.
Before describing how 𝑌 allows us to express the resolvent operator 𝑠, we make a few

observations.

Remark 3.2.

(i) The usual formulation of condition (b) in the discrete RH problem is the slightly different
but completely equivalent requirement that, for all𝑎 ∈ ℤ′, the limit lim𝑧→𝑎 𝑌(𝑧)𝑊𝑌(𝑎) exists
and that

lim
𝑧→𝑎

𝑌(𝑧)𝑊𝑌(𝑎) = res
𝑧=𝑎

𝑌(𝑧) d𝑧. (3.14)

(ii) Since 0 ⩽ 𝜎(𝑎) ⩽ 1 and𝐾𝖡𝖾(𝑎, 𝑎) < 1 for all 𝑎 ∈ ℤ′ (see Lemma 2.2), we get 1 −𝑀𝑠(𝑎, 𝑎) > 0

for all 𝑎 ∈ ℤ′. In particular, (3.13) is well defined.
(iii) For any solution 𝑌 to the above discrete RH problem, we have det 𝑌(𝑧) = 1 identically in

𝑧. Indeed, 𝐟 ⊤(𝑎)𝐠(𝑎) = 0 implies𝑊2
𝑌
(𝑎) = 0, hence det 𝑌(𝑧) = det 𝑌

𝗋𝖾𝗀
𝑎 (𝑧) for all 𝑎 ∈ ℤ′ and

so det 𝑌(𝑧) extends to an entire function of 𝑧. By condition (c) together with the maximum
modulus theorem we conclude that det 𝑌(𝑧) = 1 identically in 𝑧.

(iv) The solution 𝑌 to the above discrete RH problem is unique, if any exists. Indeed, for any two
solutions 𝑌(𝑧) and 𝑌(𝑧), the matrix 𝑇(𝑧) ∶= 𝑌(𝑧)𝑌−1(𝑧) has removable singularities at ℤ′
by condition (b), because 𝑇(𝑧) = 𝑌

𝗋𝖾𝗀
𝑎 (𝑧)(𝑌

𝗋𝖾𝗀
𝑎 )−1(𝑧) for all 𝑎 ∈ ℤ′, hence 𝑇(𝑧) extends to an

entire matrix function of 𝑧. By condition (c) together with the maximummodulus theorem,
we infer that 𝑇(𝑧) = 𝐼 identically in 𝑧.

(v) Condition (b) in the discrete RH problem for 𝑌 implies that 𝑌(𝑧) has the following Laurent
expansion near 𝑧 = 𝑎 ∈ ℤ′:

𝑌(𝑧) = 𝐶𝑌(𝑎)

(
𝑊𝑌(𝑎)

𝑧 − 𝑎
+ 𝐼 + 𝑌1(𝑎)(𝑧 − 𝑎) + 𝑂

(
(𝑧 − 𝑎)2

))
, (3.15)

where𝐶𝑌(𝑎) is an invertiblematrix. In particular, although𝑌(𝑧)has a pole as 𝑧 → 𝑎 ∈ ℤ′, the
limits lim𝑧→𝑎 𝑌(𝑧)𝐟 (𝑎) and lim𝑧→𝑎 𝑌

−⊤(𝑧)𝐠(𝑎) for 𝑎 ∈ ℤ′ exist and are finite. In the interest
of lighter notations, we suppress the limit notation in such expressions, namely for 𝑎 ∈ ℤ′

we define

𝑌(𝑎)𝐟 (𝑎) ∶= lim
𝑧→𝑎

𝑌(𝑧)𝐟 (𝑎), 𝑌−⊤(𝑎)𝐠(𝑎) ∶= lim
𝑧→𝑎

𝑌−⊤(𝑧)𝐠(𝑎). (3.16)

Similarly, for 𝑎 ∈ ℤ′ we also define

𝑌′(𝑎)𝐟 (𝑎) ∶= lim
𝑧→𝑎

d𝑌(𝑧)

d𝑧
𝐟 (𝑎) = 𝐶𝑌(𝑎)𝑌1(𝑎)𝐟 (𝑎). (3.17)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 287

Similarly, the inverse matrix 𝑌−1 has the Laurent expansion

𝑌−1(𝑧) =

(
−
𝑊𝑌(𝑎)

𝑧 − 𝑎
+ 𝐼 + 𝑌1(𝑎)(𝑧 − 𝑎) + 𝑂

(
(𝑧 − 𝑎)2

))
𝐶𝑌(𝑎), (3.18)

where 𝐶𝑌(𝑎) is an invertible matrix, which does not necessarily coincide with 𝐶−1𝑌 (𝑎).
(vi) In what follows we shall need also the subleading terms in the expansion at 𝑧 → ∞:

𝑌(𝑧) = 𝐼 +

(
𝛼 𝛽

𝛾 −𝛼

)
𝑧−1 + 𝑂(𝑧−2), (3.19)

for functions 𝛼 = 𝛼(𝐿, 𝑠), 𝛽 = 𝛽(𝐿, 𝑠) and 𝛾 = 𝛾(𝐿, 𝑠). This matrix is traceless because
det 𝑌(𝑧) = 1 identically in 𝑧. Here, as in condition (c) of the discrete RH problem, |𝑧| → +∞

through integer values.

Lemma 3.3. Fix 𝑎 ∈ ℤ′. Let 𝐶𝑌(𝑎) and 𝑌1(𝑎) be as in (3.15), and let 𝑐𝑌(𝑎) ∶= det 𝐶𝑌(𝑎). We have

𝐠⊤(𝑎)𝑌1(𝑎)𝐟 (𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
=
𝑐𝑌(𝑎) − 1

𝑐𝑌(𝑎)
(3.20)

and, for some 𝑑𝑌(𝑎) ∈ ℂ,

𝐶𝑌(𝑎)𝐶𝑌(𝑎) = 𝑐𝑌(𝑎)𝐼 + 𝑑𝑌(𝑎)𝑊𝑌(𝑎). (3.21)

Proof. Since 𝐟 (𝑎), 𝐠(𝑎) are orthogonal and non-zero, the 2 × 2matrix

𝑈 ∶=

(
𝐟 (𝑎)|𝐟 (𝑎)| |||| 𝐠(𝑎)|𝐠(𝑎)|

)
(3.22)

is an orthogonal matrix, 𝑈𝑈⊤ = 𝐼. Here, we denote |𝐯| ∶= √
𝐯⊤𝐯 for a column vector 𝐯 ∈ ℂ2.

Introducing

𝜅 ∶=
|𝐟 (𝑎)| ⋅ |𝐠(𝑎)|
1 −𝑀𝜎,𝑠(𝑎, 𝑎)

, (3.23)

we have

𝑊𝑌(𝑎) = 𝑈

(
0 𝜅

0 0

)
𝑈⊤. (3.24)

Using that det 𝑌(𝑧) = 1 identically in 𝑧 (Remark 3.2) and (3.15),

1

𝑐𝑌(𝑎)
=

det 𝑌(𝑧)

det 𝐶𝑌(𝑎)
= det

(
1

𝑧 − 𝑎
𝑈

(
0 𝜅

0 0

)
𝑈⊤ + 𝐼 + 𝑌1(𝑎)(𝑧 − 𝑎) + 𝑂

(
(𝑧 − 𝑎)2

))
= det

(
1

𝑧 − 𝑎

(
0 𝜅

0 0

)
+ 𝐼 + 𝑈⊤𝑌1(𝑎)𝑈(𝑧 − 𝑎) + 𝑂

(
(𝑧 − 𝑎)2

))
= 1 − 𝜅

(
𝑈⊤𝑌1(𝑎)𝑈

)
2,1
+ 𝑂(𝑧 − 𝑎) = 1 − 𝜅

(
𝑈⊤𝑌1(𝑎)𝑈

)
2,1
. (3.25)
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288 CAFASSO and RUZZA

Finally, using (3.22) and (3.23) we get

𝜅
(
𝑈⊤𝑌1(𝑎)𝑈

)
2,1

=
𝐠⊤(𝑎)𝑌1(𝑎)𝐟 (𝑎)

1 −𝑀𝜎,𝑠(𝑎, 𝑎)
(3.26)

and (3.20) follows.
By multiplying the Laurent expansion of 𝑌−1, given in (3.18), on the right by that of 𝑌, given

in (3.15), vanishing of terms of order (𝑧 − 𝑎)−1 implies𝑊𝑌(𝑎)𝐶𝑌(𝑎)𝐶𝑌(𝑎) = 𝐶𝑌(𝑎)𝐶𝑌(𝑎)𝑊𝑌(𝑎).
In turn, this means that 𝐶𝑌(𝑎)𝐶𝑌(𝑎) = 𝑒𝑌(𝑎)𝐼 + 𝑑𝑌(𝑎)𝑊𝑌(𝑎) for some constants 𝑑𝑌(𝑎), 𝑒𝑌(𝑎).
Next, the fact that the constant term is the identity gives

𝐶𝑌(𝑎)𝐶𝑌(𝑎) + 𝑌1(𝑎)𝐶𝑌(𝑎)𝐶𝑌(𝑎)𝑊𝑌(𝑎) −𝑊𝑌(𝑎)𝐶𝑌(𝑎)𝐶𝑌(𝑎)𝑌1 = 𝐼

⇒ (𝑒𝑌(𝑎) − 1)𝐼 +
(
𝑑𝑌(𝑎)𝐼 + 𝑒𝑌(𝑎)𝑌1(𝑎)

)
𝑊𝑌(𝑎) = 𝑒𝑌(𝑎)𝑊𝑌(𝑎)𝑌1(𝑎). (3.27)

Multiplying the last relation by 𝐟 ⊤(𝑎) on the left and by 𝐟 (𝑎) on the right, and combining
with (3.20), we obtain 𝑒𝑌(𝑎) = 𝑐𝑌(𝑎), and so also (3.21) is proved. □

Using [7, Theorem 1.1], we immediately obtain the following result.

Theorem 3.4. Let 𝑠 ∈ ℤ′ be such that 𝑄𝜎(𝐿, 𝑠) > 0, so that 1 −𝑠 is invertible. Then, the discrete
RHproblem for𝑌 has a unique solution and the resolvent operator𝑠 ∶= (1 −𝑠)

−1 − 1 is induced
by the kernel

𝑅𝑠(𝑎, 𝑏) =
𝐟⊤(𝑎)𝑌⊤(𝑎)𝑌−⊤(𝑏)𝐠̃(𝑏)

𝑎 − 𝑏
, 𝑅𝑠(𝑎, 𝑎) =

𝑀𝑠(𝑎, 𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
+ 𝐠̃⊤(𝑎)𝑌−1(𝑎)𝑌′(𝑎)𝐟 (𝑎), (3.28)

for 𝑎, 𝑏 ∈ ℤ′, 𝑎 ≠ 𝑏, where

𝐟 (𝑎) ∶=
𝐟 (𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
, 𝐠̃(𝑎) ∶=

𝐠(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
. (3.29)

Thanks to this result we can prove the following variational formulas for 𝑄𝜎.

Theorem 3.5. For all 𝐿 > 0 and all 𝑠 ∈ ℤ′ such that 𝑄𝜎(𝐿, 𝑠) > 0, we have

𝑄𝜎(𝐿, 𝑠 − 1)

𝑄𝜎(𝐿, 𝑠)
− 1 = 𝛽(𝐿, 𝑠),

𝜕

𝜕𝐿
log𝑄𝜎(𝐿, 𝑠) = −

2𝛼(𝐿, 𝑠)

𝐿
, (3.30)

where 𝛼(𝐿, 𝑠) and 𝛽(𝐿, 𝑠) are defined in (3.19).

Proof. We start with the first equation in (3.30). By (3.6) and (1 −𝑠)
−1 = 1 +𝑠, we have

𝑄𝜎(𝐿, 𝑠 − 1)

𝑄𝜎(𝐿, 𝑠)
− 1 = tr

(
(1 −𝑠)

−1𝑠

)
=

∑
𝑎,𝑏∈ℤ′

J
𝑎− 1

2
J
𝑏− 1

2

√
𝜎(𝑎)

√
𝜎(𝑏)

(
𝛿𝑎,𝑏 + 𝑅𝑠(𝑎, 𝑏)

)
, (3.31)

where 𝜎(𝑎) ∶= 𝜎(𝑎 − 𝑠 − 1

2
) and 𝑅𝑠(𝑎, 𝑏) is explicitly given in (3.28), and, throughout this proof,

we omit the argument 2𝐿 of the Bessel functions. We start by computing the part of the sum that
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 289

comes from 𝑎 ≠ 𝑏; denoting Δ = {(𝑎, 𝑎) ∶ 𝑎 ∈ ℤ′}, this is

∑
𝑎,𝑏∈ℤ′⧵Δ

J
𝑎− 1

2

√
𝜎(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)

𝐟 ⊤(𝑎)𝑌⊤(𝑎)𝑌−⊤(𝑏)𝐠(𝑏)

𝑎 − 𝑏

J
𝑏− 1

2

√
𝜎(𝑏)

1 −𝑀𝑠(𝑏, 𝑏)
=

∑
𝑎,𝑏∈ℤ′⧵Δ

res
𝑧=𝑎

res
𝑤=𝑏

𝝋⊤(𝑧)𝝍(𝑤)

𝑧 − 𝑏
d𝑤d𝑧,

(3.32)

where we introduce the meromorphic vector functions

𝝋(𝑧) ∶= 𝑌(𝑧)

(
0

−1

)
, 𝝍(𝑤) ∶= 𝑌−⊤(𝑤)

(
−1

0

)
. (3.33)

Indeed, condition (b) in the discrete RH problem for 𝑌 implies that

res
𝑧=𝑎

𝑌(𝑧)d𝑧 =
𝑌(𝑎)𝐟 (𝑎)𝐠⊤(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
, (3.34)

yielding

res
𝑧=𝑎

𝝋(𝑧)d𝑧 = 𝑌(𝑎)𝐟 (𝑎)
J
𝑎− 1

2

√
𝜎(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
, res

𝑤=𝑏
𝝍(𝑤)d𝑤 = 𝑌−⊤(𝑏)𝐠(𝑏)

J
𝑏− 1

2

√
𝜎(𝑏)

1 −𝑀𝑠(𝑏, 𝑏)
. (3.35)

Using condition (c) in the discrete RH problem for 𝑌, we can represent 𝝍 by its (infinite) partial
fraction expansion (see Lemma A.1), namely

𝝍(𝑧) =

(
−1

0

)
+

∑
𝑏∈ℤ′

res
𝑤=𝑏

𝝍(𝑤)d𝑤

𝑧 − 𝑏
. (3.36)

Hence we can rewrite (3.32) as

∑
𝑎∈ℤ′

res
𝑧=𝑎

𝝋⊤(𝑧)

[
𝝍(𝑧) +

(
1

0

)
−
res
𝑤=𝑎

𝝍(𝑤)d𝑤

𝑧 − 𝑎

]
d𝑧

=
∑
𝑎∈ℤ′

res
𝑧=𝑎

𝝋⊤(𝑧)

(
1

0

)
d𝑧 −

∑
𝑎∈ℤ′

res
𝑧=𝑎

res
𝑤=𝑎

𝝋⊤(𝑧)𝝍(𝑤)

𝑧 − 𝑎
d𝑤d𝑧, (3.37)

wherewe use that 𝝋⊤(𝑧)𝝍(𝑧) = 0. For the first term in (3.37) we appeal to Cauchy theorem towrite
the sum as a formal residue at 𝑧 = ∞;

∑
𝑎∈ℤ′

res
𝑧=𝑎

𝝋⊤(𝑧)

(
1

0

)
d𝑧 = lim

𝑛→+∞

1

2𝜋i ∮|𝑧|=𝑛 𝝋⊤(𝑧)d𝑧
(
1

0

)
= 𝛽(𝐿, 𝑠), (3.38)

where 𝛽(𝐿, 𝑠) is introduced in (3.19). Using the Laurent expansion (3.15) and (3.21), we compute
the second part in (3.37) as

−
∑
𝑎∈ℤ′

res
𝑧=𝑎

res
𝑤=𝑎

𝝋⊤(𝑧)𝝍(𝑤)

𝑧 − 𝑎
d𝑤d𝑧 = −

∑
𝑎∈ℤ′

𝑐𝑌(𝑎)J
2

𝑎− 1
2

𝜎(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
, (3.39)
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290 CAFASSO and RUZZA

where 𝑐𝑌(𝑎) ∶= det 𝐶𝑌(𝑎). We now compute the terms in (3.31) coming from the diagonal Δ ⊂

ℤ′ × ℤ′; this contribution is, using (3.28) and Lemma 3.3,

∑
𝑎∈ℤ′

J2
𝑎− 1

2

𝜎(𝑎)

(
1 +

𝑀𝑠(𝑎, 𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
+ 𝐠̃⊤(𝑎)𝑌−1(𝑎)𝑌′(𝑎)𝐟 (𝑎)

)

=
∑
𝑎∈ℤ′

J2
𝑎− 1

2

𝜎(𝑎)

(
1

1 −𝑀𝑠(𝑎, 𝑎)
+ 𝐠̃⊤(𝑎)𝐶𝑌(𝑎)𝐶𝑌(𝑎)𝑌1(𝑎)𝐟 (𝑎)

)

=
∑
𝑎∈ℤ′

J2
𝑎− 1

2

𝜎(𝑎)

(
1

1 −𝑀𝑠(𝑎, 𝑎)
+

𝑐𝑌(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)

𝐠⊤(𝑎)𝑌1(𝑎)𝐟 (𝑎)

1 −𝑀𝑠(𝑎, 𝑎)

)

=
∑
𝑎∈ℤ′

J2
𝑎− 1

2

𝜎(𝑎)

(
1

1 −𝑀𝑠(𝑎, 𝑎)
+

𝑐𝑌(𝑎) − 1

1 −𝑀𝑠(𝑎, 𝑎)

)

=
∑
𝑎∈ℤ′

𝑐𝑌(𝑎)J
2

𝑎− 1
2

𝜎(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
. (3.40)

The proof of the first equation in (3.30) is obtained by combining (3.32), (3.37)–(3.40).
The proof of the second equation in (3.30) is similar. We have

𝜕

𝜕𝐿
log𝑄𝜎(𝐿, 𝑠) = −tr

(
(1 −𝑠)

−1 𝜕𝑠

𝜕𝐿

)
= −

∑
𝑎,𝑏∈ℤ′

(
J
𝑎− 1

2
J
𝑏+ 1

2
+ J

𝑎+ 1
2
J
𝑏− 1

2

)√
𝜎(𝑎)

√
𝜎(𝑏)

(
𝛿𝑎,𝑏 + 𝑅𝑠(𝑎, 𝑏)

)
= −2

∑
𝑎,𝑏∈ℤ′

J
𝑎+ 1

2
J
𝑏− 1

2

√
𝜎(𝑎)

√
𝜎(𝑏)

(
𝛿𝑎,𝑏 + 𝑅𝑠(𝑎, 𝑏)

)
, (3.41)

where we use the identity (1 −𝑠)
−1 = 1 +𝑠, the symmetry 𝑅𝑠(𝑏, 𝑎) = 𝑅𝑠(𝑎, 𝑏), and we

compute 𝜕𝑀𝑠∕𝜕𝐿 using

𝜕𝐿

(
J
𝑎+ 1

2
(2𝐿)

𝐿J
𝑎− 1

2
(2𝐿)

)
=

⎛⎜⎜⎝
𝑎− 1

2

𝐿
− 2

𝐿

2𝐿 −
𝑎−1

2

𝐿

⎞⎟⎟⎠
(
J
𝑎+ 1

2
(2𝐿)

𝐿J
𝑎− 1

2
(2𝐿)

)
. (3.42)

As before, we start by computing the part of the sum that comes from𝑎 ≠ 𝑏; denotingΔ = {(𝑎, 𝑎) ∶

𝑎 ∈ ℤ′}, this contribution to (3.41) is

−2
∑

𝑎,𝑏∈ℤ′⧵Δ

J
𝑎+ 1

2

√
𝜎(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)

𝐟 ⊤(𝑎)𝑌⊤(𝑎)𝑌−⊤(𝑏)𝐠(𝑏)

𝑎 − 𝑏

J
𝑏− 1

2

√
𝜎(𝑏)

1 −𝑀𝑠(𝑏, 𝑏)

= −2
∑

𝑎,𝑏∈ℤ′⧵Δ

res
𝑧=𝑎

res
𝑤=𝑏

𝝎⊤(𝑧)𝝍(𝑤)

𝑧 − 𝑏
d𝑤d𝑧, (3.43)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 291

where we introduce the meromorphic vector functions 𝝍, as in (3.33), and

𝝎(𝑧) ∶= 𝑌(𝑧)

(
1∕𝐿

0

)
, res

𝑧=𝑎
𝝎(𝑧)d𝑧 = 𝑌(𝑎)𝐟 (𝑎)

J
𝑎+ 1

2

√
𝜎(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
, 𝑎 ∈ ℤ′, (3.44)

the last equality stemming from (3.34). Thanks to (3.36), we rewrite (3.43) as

−2
∑
𝑎∈ℤ′

res
𝑧=𝑎

𝝎⊤(𝑧)

[
𝝍(𝑧) +

(
1

0

)
−
res
𝑤=𝑎

𝝍(𝑤)d𝑤

𝑧 − 𝑎

]
d𝑧

= −2
∑
𝑎∈ℤ′

res
𝑧=𝑎

𝝎⊤(𝑧)

(
1

0

)
d𝑧 + 2

∑
𝑎∈ℤ′

res
𝑧=𝑎

res
𝑤=𝑎

𝝎⊤(𝑧)𝝍(𝑤)

𝑧 − 𝑎
d𝑤d𝑧, (3.45)

where we use that 𝝎⊤(𝑧)𝝍(𝑧) is regular at ℤ′. Again, the first term is a formal residue at 𝑧 = ∞:

−2
∑
𝑎∈ℤ′

res
𝑧=𝑎

𝝎⊤(𝑧)

(
1

0

)
d𝑧 = −2 lim

𝑛→+∞

1

2𝜋i ∮|𝑧|=𝑛 𝝎⊤(𝑧)d𝑧
(
1

0

)
= −

2𝛼(𝐿, 𝑠)

𝐿
, (3.46)

where 𝛼(𝐿, 𝑠) is introduced in (3.19). Using the Laurent expansion (3.15) and (3.21), we compute
the second part in (3.45) as

2
∑
𝑎∈ℤ′

res
𝑧=𝑎

res
𝑤=𝑎

𝝎⊤(𝑧)𝝍(𝑤)

𝑧 − 𝑎
d𝑤d𝑧 = 2

∑
𝑎∈ℤ′

𝑐𝑌(𝑎)J𝑎− 1
2
J
𝑎+ 1

2
𝜎(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
, (3.47)

where, as before, 𝑐𝑌(𝑎) ∶= det 𝐶𝑌(𝑎). With a computation completely analogous to (3.40) we
compute the terms in (3.41) coming from the diagonal Δ ⊂ ℤ′ × ℤ′ as

−2
∑
𝑎∈ℤ′

J
𝑎− 1

2
J
𝑎+ 1

2
𝜎(𝑎)

(
1 +

𝑀𝑠(𝑎, 𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
+ 𝐠̃⊤(𝑎)𝑌−1(𝑎)𝑌′(𝑎)𝐟 (𝑎)

)

= −2
∑
𝑎∈ℤ′

𝑐𝑌(𝑎)J𝑎− 1
2
J
𝑎+ 1

2
𝜎(𝑎)

1 −𝑀𝑠(𝑎, 𝑎)
. (3.48)

The proof of the second equation in (3.30) is complete by combining (3.43), (3.45)–(3.48). □

4 PROOF OF THEOREM I

Throughout this section we shall assume that 𝑠 ∈ ℤ′ is such that 𝑄𝜎(𝐿, 𝑠) > 0. In particular
(Theorem 3.4), the matrix 𝑌(𝑧) introduced in the last section exists and is unique.

4.1 Dressing

We proceed to a dressing of the discrete RH problem for 𝑌, mimicking a common technique
for continuous RH problems, see, for example, [26]. Introduce the following entire matrix
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292 CAFASSO and RUZZA

function of 𝑧:

Φ(𝑧) ∶=

⎛⎜⎜⎜⎝
J
𝑧− 1

2
(2𝐿) i𝜋H(1)

𝑧− 1
2

(2𝐿)

𝐿J
𝑧+ 1

2
(2𝐿) i𝜋𝐿H(1)

𝑧+ 1
2

(2𝐿)

⎞⎟⎟⎟⎠, (4.1)

where H(1)
𝑘
(2𝐿) is the Hankel function of the first kind of order 𝑘 and argument 2𝐿 [30]. The

vectors 𝐟 and 𝐠 in (3.3) can be expressed as

𝐟 (𝑎) =
√
𝜎(𝑎 − 𝑠 − 1

2
)Φ(𝑎)

(
1

0

)
, 𝐠(𝑎) =

√
𝜎(𝑎 − 𝑠 − 1

2
)Φ−⊤(𝑎)

(
0

−1

)
. (4.2)

Moreover, we have detΦ(𝑧) = 1 identically in 𝑧 [30, Equation (10.5.3)]; thus Φ−1(𝑧) is also entire
in 𝑧. For later convenience, we also note that Φ satisfies

Φ(𝑧 + 1) =
1

𝐿

(
0 1

−𝐿2 𝑧 + 1

2

)
Φ(𝑧),

𝜕

𝜕𝐿
Φ(𝑧) =

1

𝐿

(
𝑧 − 1

2
−2

2𝐿2 −𝑧 + 1

2

)
Φ(𝑧), (4.3)

as it follows from the identities [30, Equation (10.6.1)]

B𝑘+1(2𝐿) + B𝑘−1(2𝐿) =
𝑘

𝐿
B𝑘(2𝐿),

𝜕

𝜕𝐿
B𝑘(2𝐿) = B𝑘−1(2𝐿) − B𝑘+1(2𝐿), (4.4)

where B𝑘(⋅) is either of the functions J𝑘(⋅), H
(1)
𝑘
(⋅).

In the interest of clarity, let us momentarily restore the dependence 𝑌(𝑧) = 𝑌𝜎(𝑧; 𝐿, 𝑠) and
Φ(𝑧) = Φ(𝑧; 𝐿). We introduce the matrix Ψ(𝑧) = Ψ𝜎(𝑧; 𝐿, 𝑠) by

Ψ𝜎(𝑧; 𝐿, 𝑠) ∶= 𝑌𝜎(𝑧 + 𝑠 + 1

2
; 𝐿, 𝑠)Φ(𝑧 + 𝑠 + 1

2
; 𝐿). (4.5)

As we shall now prove, Ψ(𝑧) is uniquely characterized by the following conditions.

Discrete RH problem for𝚿

(a) Ψ(𝑧) is a 2 × 2matrix-valued meromorphic function of 𝑧 with simple poles at ℤ′ only.
(b) For all 𝑎 ∈ ℤ′, the function

Ψ
𝗋𝖾𝗀
𝑎 (𝑧) ∶= Ψ(𝑧)

(
𝐼 −

𝑊Ψ(𝑎)

𝑧 − 𝑎

)
(4.6)

has a removable singularity at 𝑧 = 𝑎, where

𝑊Ψ(𝑎) ∶=

(
0 −𝜎(𝑎)

0 0

)
, 𝑎 ∈ ℤ′. (4.7)

(c) We have lim𝑛→+∞ sup|𝑧|=𝑛 |Ψ(𝑧)Φ−1(𝑧 + 𝑠 + 1

2
) − 𝐼| = 0, where the limit is taken over integer

values of 𝑛, 𝐼 denotes the identity 2 × 2matrix and | ⋅ | denotes any matrix norm.
Proof. The only condition that does not directly follow from the analogous conditions of the dis-
crete RH problem for 𝑌, thus deserving a proof, is (b). For, we need to show that with𝑊Ψ(𝑎) as
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 293

given, for all 𝑎 ∈ ℤ′

Ψ
𝗋𝖾𝗀
𝑎 (𝑧) = Ψ(𝑧)

(
𝐼 −

𝑊Ψ(𝑎)

𝑧 − 𝑎

)
(4.8)

is regular at 𝑧 = 𝑎. Using that𝑊2
𝑌
(𝑎) = 0 and the definition (4.5) ofΨ, this condition is equivalent

to regularity at 𝑧 = 𝑎 of

𝑌
𝗋𝖾𝗀

𝑎+𝑠̂
(𝑧 + 𝑠̂)

(
𝐼 +

𝑊𝑌(𝑎 + 𝑠̂)

𝑧 − 𝑎

)
Φ(𝑧 + 𝑠̂)

(
𝐼 −

𝑊Ψ(𝑎)

𝑧 − 𝑎

)
, (4.9)

wherewe denote 𝑠̂ ∶= 𝑠 + 1

2
∈ ℤ. Since𝑌𝗋𝖾𝗀

𝑎+𝑠̂
(𝑧 + 𝑠̂) is regular at 𝑧 = 𝑎, we only need to prove that(

𝐼 +
𝑊𝑌(𝑎 + 𝑠̂)

𝑧 − 𝑎

)
Φ(𝑧 + 𝑠̂)

(
𝐼 −

𝑊Ψ(𝑎)

𝑧 − 𝑎

)
is regular at 𝑧 = 𝑎. (4.10)

To this end we consider the Laurent expansion at 𝑧 = 𝑎 of the previous expression, which is

−
𝑊𝑌(𝑎 + 𝑠̂)Φ(𝑎 + 𝑠̂)𝑊Ψ(𝑎)

(𝑧 − 𝑎)2

+
𝑊𝑌(𝑎 + 𝑠̂)Φ(𝑎 + 𝑠̂) − Φ(𝑎 + 𝑠̂)𝑊Ψ(𝑎) −𝑊𝑌(𝑎 + 𝑠̂)Φ′(𝑎 + 𝑠̂)𝑊Ψ(𝑎)

𝑧 − 𝑎
+ 𝑂(1). (4.11)

Vanishing of the coefficient of (𝑧 − 𝑎)−1 implies

𝑊Ψ(𝑎) = Φ−1(𝑎 + 𝑠̂)𝑊𝑌(𝑎 + 𝑠̂)Φ(𝑎 + 𝑠̂)

×

(
𝐼 + Φ−1(𝑎 + 𝑠̂)Φ′(𝑎 + 𝑠̂)Φ−1(𝑎 + 𝑠̂)𝑊𝑌(𝑎 + 𝑠̂)Φ(𝑎 + 𝑠̂)

)−1

. (4.12)

Since 𝑊2
𝑌
= 0, this also implies that the coefficient of (𝑧 − 𝑎)−2 vanishes and that the series is

regular. It remains to show that (4.12) simplifies to (4.7). To this end we deduce from (4.2) that

𝑊𝑌(𝑎 + 𝑠̂) = 𝜌(𝑎, 𝑠)Φ(𝑎 + 𝑠̂)

(
0 1

0 0

)
Φ−1(𝑎 + 𝑠̂), 𝜌(𝑎, 𝑠) ∶= −

𝜎(𝑎)

1 −𝑀𝑠(𝑎 + 𝑠̂, 𝑎 + 𝑠̂)
, (4.13)

such that

𝑊Ψ(𝑎) = 𝜌(𝑎, 𝑠)

(
0 1

0 0

)(
𝐼 + 𝜌(𝑎, 𝑠)Φ−1(𝑎 + 𝑠̂)Φ′(𝑎 + 𝑠̂)

(
0 1

0 0

))−1

. (4.14)

We now observe by a direct computation that

𝐼 + 𝜌(𝑎, 𝑠)Φ−1(𝑎 + 𝑠̂)Φ′(𝑎 + 𝑠̂)

(
0 1

0 0

)
=

(
1 ⋆

0 1

1−𝑀𝑠(𝑎+𝑠̂,𝑎+𝑠̂)

)
, (4.15)

where ⋆ denotes a term whose explicit expression is inconsequential in this computation. The
right-hand side of (4.15) is invertible and so we finally get

𝑊Ψ(𝑎) = 𝜌(𝑎, 𝑠)

(
0 1

0 0

)(
1 −(1 −𝑀𝑠(𝑎 + 𝑠̂, 𝑎 + 𝑠̂))⋆

0 1 −𝑀𝑠(𝑎 + 𝑠̂, 𝑎 + 𝑠̂)

)
=

(
0 −𝜎(𝑎)

0 0

)
, (4.16)

as claimed in (4.7). □
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294 CAFASSO and RUZZA

4.2 Lax pair

The main result achieved by the dressing procedure is that 𝑊Ψ(𝑎) is independent of 𝑠, 𝐿. This
enables us to obtain the following equations. It is convenient here to restore the full dependence
Ψ(𝑧) = Ψ(𝑧; 𝐿, 𝑠) (omitting anyway the dependence on 𝜎 to have lighter notations).

Proposition 4.1. The matrix Ψ(𝑧; 𝐿, 𝑠) satisfies

Ψ(𝑧; 𝐿, 𝑠 + 1) = 𝐴(𝑧; 𝐿, 𝑠)Ψ(𝑧; 𝐿, 𝑠),
𝜕

𝜕𝐿
Ψ(𝑧; 𝐿, 𝑠) = 𝐵(𝑧; 𝐿, 𝑠)Ψ(𝑧; 𝐿, 𝑠), (4.17)

where

𝐴(𝑧; 𝐿, 𝑠) =
1

𝐿

(
0 1 + 𝛽(𝐿, 𝑠 + 1)

−𝐿2 − 𝛾(𝐿, 𝑠) 𝑧 + 𝑠 + 1 + 𝛼(𝐿, 𝑠) − 𝛼(𝐿, 𝑠 + 1)

)
, (4.18)

𝐵(𝑧; 𝐿, 𝑠) =
1

𝐿

(
𝑧 + 𝑠 −2

(
1 + 𝛽(𝐿, 𝑠)

)
2
(
𝐿2 + 𝛾(𝐿, 𝑠)

)
−𝑧 − 𝑠

)
, (4.19)

with 𝛼(𝐿, 𝑠), 𝛽(𝐿, 𝑠), 𝛾(𝐿, 𝑠) as in (3.19).

Proof. The fact that𝑊Ψ(𝑎) is independent of 𝑠 allows us to write

𝐴(𝑧; 𝐿, 𝑠) ∶= Ψ(𝑧; 𝐿, 𝑠 + 1)Ψ−1(𝑧; 𝐿, 𝑠) = Ψ
𝗋𝖾𝗀
𝑎 (𝑧; 𝐿, 𝑠 + 1)(Ψ

𝗋𝖾𝗀
𝑎 )−1(𝑧; 𝐿, 𝑠) (4.20)

for all 𝑎 ∈ ℤ′. Hence 𝐴(𝑧; 𝐿, 𝑠) has removable singularities at 𝑧 ∈ ℤ′ by condition (b) in the
discrete RH problem for Ψ, and so is an entire function of 𝑧. Further, due to (4.5) we can write

𝐴(𝑧; 𝐿, 𝑠) = 𝑌(𝑧 + 𝑠 + 3

2
; 𝐿, 𝑠 + 1)Φ(𝑧 + 𝑠 + 3

2
; 𝐿)Φ−1(𝑧 + 𝑠 + 1

2
; 𝐿)𝑌−1(𝑧 + 𝑠 + 1

2
; 𝐿, 𝑠)

= 𝑌(𝑧 + 𝑠 + 3

2
; 𝐿, 𝑠 + 1)

(
0 1

𝐿

−𝐿 𝑧+𝑠+1

𝐿

)
𝑌−1(𝑧 + 𝑠 + 1

2
; 𝐿, 𝑠), (4.21)

where we use (4.3). This identity, together with condition (c) in the RH problem for 𝑌, shows
that 𝐴(𝑧; 𝐿, 𝑠) grows linearly as 𝑧 → ∞; Liouville theorem then implies that 𝐴(𝑧; 𝐿, 𝑠) is a linear
function of 𝑧, explicitly obtained by the asymptotic relation (3.19) plugged in (4.21), which gives
the claimed formula for 𝐴(𝑧; 𝐿, 𝑠).
Similarly, 𝐵(𝑧; 𝐿, 𝑠) ∶=

(
𝜕𝐿Ψ(𝑧; 𝐿, 𝑠)

)
Ψ−1(𝑧; 𝐿, 𝑠) is an entire function of 𝑧 because 𝐵(𝑧; 𝐿, 𝑠) =(

𝜕𝐿Ψ
𝗋𝖾𝗀
𝑎 (𝑧; 𝐿, 𝑠)

)
(Ψ

𝗋𝖾𝗀
𝑎 )−1(𝑧; 𝐿, 𝑠) for all 𝑎 ∈ ℤ′ hence the singularities at ℤ′ are removable. (Here

we use again that𝑊𝜓(𝑎) does not depend on 𝐿, 𝑠.) Moreover, using (4.5) and (4.3), we obtain

𝐵(𝑧; 𝐿, 𝑠) =
(
𝜕𝐿𝑌(𝑧 + 𝑠 + 1

2
; 𝐿, 𝑠)

)
𝑌−1(𝑧 + 𝑠 + 1

2
; 𝐿, 𝑠) + 𝑌(𝑧 + 𝑠 + 1

2
; 𝐿, 𝑠)

×

(
𝑧+𝑠

𝐿
− 2

𝐿
2𝐿 −𝑧+𝑠

𝐿

)
𝑌−1(𝑧 + 𝑠; 𝐿, 𝑠). (4.22)

Finally, condition (c) in the RH problem for 𝑌 shows that 𝐵(𝑧; 𝐿, 𝑠) grows linearly as 𝑧 → ∞, and
by Liouville theorem it coincideswith the linear function of 𝑧 explicitly obtained by the asymptotic
relation (3.19) plugged in (4.22), and this gives the claimed formula for 𝐵(𝑧; 𝐿, 𝑠). □
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 295

Remark 4.2. Since detΨ(𝑧) = 1 identically in 𝑧, wemust have det𝐴(𝑧) = 1 identically in 𝑧 as well.
Looking at (4.18), this implies the relation(

1 + 𝛽(𝐿, 𝑠 + 1)
)(
𝐿2 + 𝛾(𝐿, 𝑠)

)
= 𝐿2. (4.23)

Proof of Theorem I. By Proposition 4.1 and Equations (4.5) and (4.3), we have

𝜕𝑌(𝑧; 𝐿, 𝑠)

𝜕𝐿
𝑌−1(𝑧; 𝐿, 𝑠) =

1

𝐿
𝑌(𝑧; 𝐿, 𝑠)

(
𝑧 − 1

2
−2

2𝐿2 −𝑧 + 1

2

)
𝑌−1(𝑧; 𝐿, 𝑠) + 𝐵(𝑧 − 𝑠 − 1

2
; 𝐿, 𝑠). (4.24)

Consider the asymptotic expansion of this identity as 𝑧 → ∞. Looking at the entry (1,1) of the
coefficient of 𝑧−1 we obtain, also using (4.23),

𝜕

𝜕𝐿
𝛼(𝐿, 𝑠) = 2𝐿

(
1 −

1 + 𝛽(𝐿, 𝑠)

1 + 𝛽(𝐿, 𝑠 + 1)

)
. (4.25)

The proof is completed using (3.30). □

5 PROOF OF THEOREM II

The discrete RH problem for𝑌 can be described equivalently as a linear equation on 𝓁2(ℤ′) ⊗ ℂ2,
as we now explain following the classical operator theory for continuous RH problems and the
works of Borodin [6, 7].
By conditions (a) and (c) in the discrete RH problem for 𝑌 and Lemma A.1, we can write the

solution in the form

𝑌(𝑧) = 𝐼 +
∑
𝑏∈ℤ′

𝑅𝑏
𝑧 − 𝑏

. (5.1)

The matrices 𝑅𝑎 must satisfy, by condition (b) or, equivalently, (3.14),

𝑅𝑎 = 𝑊𝑌(𝑎) +
∑

𝑏∈ℤ′⧵{𝑎}

𝑅𝑏𝑊𝑌(𝑎)

𝑎 − 𝑏
, 𝑎 ∈ ℤ′. (5.2)

By (3.13) we can write

𝑊𝑌(𝑎) = 𝐟 (𝑎)𝐠̂⊤(𝑎), 𝐟 (𝑎) ∶= 𝜎(𝑎 − 𝑠 − 1

2
)

(
J
𝑎− 1

2
(2𝐿)

𝐿J
𝑎+ 1

2
(2𝐿)

)
,

𝐠̂(𝑎) ∶=
1

1 −𝑀𝑠(𝑎, 𝑎)

(
𝐿J

𝑎+ 1
2
(2𝐿)

−J
𝑎− 1

2
(2𝐿)

)
, (5.3)

and so Equation (5.2) implies that 𝑅𝑎 is a rank one matrix of the form

𝑅𝑎 = 𝐫(𝑎)𝐠̂⊤(𝑎) (5.4)
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296 CAFASSO and RUZZA

for some 𝐫(𝑎) ∈ ℂ2 (column vector). Since 𝐠̂(𝑎) ≠ 0 for all 𝑎 ∈ ℤ′, (5.2) implies that

𝐫(𝑎) = 𝐟 (𝑎) +
∑

𝑏∈ℤ′⧵{𝑎}

𝐫(𝑏)𝐠̂⊤(𝑏)𝐟 (𝑎)

𝑎 − 𝑏
. (5.5)

Introduce the operator 𝖣 ∶ 𝓁2(ℤ′) ⊗ ℂ2 → 𝓁2(ℤ′) ⊗ ℂ2 by

𝖣 ∶
(
𝐫(𝑎)

)
𝑎∈ℤ′

↦
(
(𝖣𝐫)(𝑎)

)
𝑎∈ℤ′

, (𝖣𝐫)(𝑎) ∶=
∑

𝑏∈ℤ′⧵{𝑎}

𝐫(𝑏)𝐠̂⊤(𝑏)𝐟 (𝑎)

𝑎 − 𝑏
, 𝑎 ∈ ℤ′. (5.6)

It is a well-defined operator on 𝓁2(ℤ′) ⊗ ℂ2 by (2.3) and the fact that 𝑀𝑠(𝑏, 𝑏) = 𝜎(𝑏 − 𝑠 −
1

2
)𝐾𝖡𝖾(𝑏, 𝑏) is at a bounded distance from 1 for all 𝑏 ∈ ℤ′ by the assumptions on 𝜎.
If 1 − 𝖣 is invertible, the discrete RH problem admits a solution, constructed via (5.1) and (5.4)

with

𝐫 ∶= (1 − 𝖣)−1𝐟 . (5.7)

The convenience of this approach to the discrete RH problem is evident when the operator 𝖣 is
small. This is the case when 𝐿 → 0. For precision’s sake, let us fix the norm on 𝓁2(ℤ′) ⊗ ℂ2 to be
the one induced by the standard norm on 𝓁2(ℤ′) and the Euclidean norm on ℂ2.

Proposition 5.1. Let 𝑠 ∈ ℤ′ be such that 𝑄0𝜎(𝑠) ∶=
∏+∞

𝑖=1

(
1 − 𝜎(−𝑖 − 𝑠)

)
> 0. There exists 𝐿∗ =

𝐿∗(𝑠), 𝑐 = 𝑐(𝑠) > 0 such that ‖𝖣‖ < 𝑐𝐿 for 0 ⩽ 𝐿 < 𝐿∗, where ‖𝖣‖ is the operator norm of 𝖣.

Proof. For 𝑘 ⩾ 0, we have the Taylor series J𝑘(2𝐿) = 𝐿𝑘
∑
𝑗⩾0

(−𝐿2)𝑗

𝑗!(𝑘+𝑗)!
= (−1)𝑘J𝑘(2𝐿) which

implies

J𝑘(2𝐿) = 𝛿𝑘,0 + 𝐿(𝛿𝑘,1 − 𝛿𝑘,−1) + 𝐿2
(
𝛿𝑘,−2 + 𝛿𝑘,2

2
− 𝛿𝑘,0

)
+𝐿3

(
𝛿𝑘,3 − 𝛿𝑘,−3

6
−
𝛿𝑘,1 − 𝛿𝑘,−1

2

)
+ O(𝐿4), (5.8)

as 𝐿 → 0, with remainder uniform in 𝑘 ∈ ℤ because |J𝑘(2𝐿)| = |J−𝑘(2𝐿)| ⩽ 𝐿𝑘∕𝑘! for 𝑘 ⩾ 0 inte-
ger [30, Equation (10.14.4)]. In particular, we have the following estimate for 𝐿 → 0, uniform in
𝑎 ∈ ℤ′,

𝐾𝖡𝖾(𝑎, 𝑎) =
∑
𝑙∈ℤ′+

J𝑎+𝑙(2𝐿)
2 = 𝟏𝑎<0 + 𝐿2(𝛿

𝑎, 1
2
− 𝛿

𝑎,− 1
2
) + O(𝐿4). (5.9)

(The explicit term of order 𝐿2 will be needed later.) Therefore, for all 𝑎 ∈ ℤ′, we have

1 −𝑀𝑠(𝑎, 𝑎) = 1 − 𝜎(𝑎 − 𝑠 − 1

2
)𝐾𝖡𝖾(𝑎, 𝑎) =

{
1 + O(𝐿2), 𝑎 > 0,

1 − 𝜎(𝑎 − 𝑠 − 1

2
) + O(𝐿2), 𝑎 < 0,

(5.10)
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with remainders uniform in 𝑎 ∈ ℤ′. As long as we assume𝑄0𝜎(𝑠) ≠ 0we have 𝜎(𝑎 − 𝑠 − 1

2
) ≠ 1 for

all 𝑎 ∈ ℤ′ with 𝑎 < 0, and so we can estimate, for 𝐿 sufficiently small,

1

1 −𝑀𝑠(𝑎, 𝑎)
⩽ 𝑐1(𝑠), (5.11)

for a constant 𝑐1(𝑠) depending on 𝑠 only. Finally, we can estimate the square of the Hilbert–
Schmidt norm of 𝖣 (which is an upper bound of the square of the operator norm of 𝖣)
as

∑
𝑎,𝑏∈ℤ′, 𝑎≠𝑏

||||| 𝐠̂
⊤(𝑏)𝐟 (𝑎)

𝑏 − 𝑎

|||||
2

⩽ 𝐿2𝑐1(𝑠)
∑

𝑎,𝑏∈ℤ′

||||J𝑏+ 1
2
(2𝐿)J

𝑎− 1
2
(2𝐿) − J

𝑏− 1
2
(2𝐿)J

𝑎+ 1
2
(2𝐿)

||||2 ⩽ 2𝐿2e2𝐿𝑐1(𝑠)

(5.12)

(where we use again |J𝑘(2𝐿)| = |J−𝑘(2𝐿)| ⩽ 𝐿𝑘∕𝑘! for 𝑘 ⩾ 0 integer in the last step) and the proof
is complete. □

Corollary 5.2. Let 𝑠 ∈ ℤ′ be such that 𝑄0𝜎(𝑠) ∶=
∏+∞

𝑖=1

(
1 − 𝜎(−𝑖 − 𝑠)

)
> 0. There exists 𝐿∗ = 𝐿∗(𝑠)

such that the discrete RH problem for 𝑌 is solvable for 0 ⩽ 𝐿 ⩽ 𝐿∗, and moreover we have

𝑌(𝑧; 𝐿, 𝑠) = 𝑌[0](𝑧; 𝑠) + 𝐿𝑌[1](𝑧; 𝑠) + 𝐿2𝑌[2](𝑧; 𝑠) + 𝐿3𝑌[3](𝑧; 𝑠) + O(𝐿4), 𝐿 → 0, (5.13)

where 𝑌[𝑖](𝑧; 𝑠) are 2 × 2matrix-valued meromorphic functions of 𝑧 independent of 𝐿.

Proof. By the discussion above, if the operator 1 − 𝖣 is invertible, the discrete RH problem for 𝑌
admits a solution. By Theorem 3.4, if 1 − 𝖣 is invertible, then 𝑄𝜎(𝐿, 𝑠) > 0. It is then enough to
use Proposition 5.1 as well as the formula

𝑌(𝑧) = 𝐼 +
∑
𝑏∈ℤ′

(
(1 − 𝖣)−1𝐟

)
(𝑏)𝐠̂⊤(𝑏)

𝑧 − 𝑏
, (5.14)

stemming from (5.1), (5.4), and (5.7), along with the Neumann series (1 − 𝖣)−1 =
∑
𝑘⩾0 𝖣

𝑘. □

Proof of Theorem II. The proof follows from the above Corollary 5.2 and the following compu-
tations. In the limit 𝐿 → 0, the Poissonized Plancherel probability measure converges to a delta
measure supported on the empty partition. From (1.9), we obtain

𝑄𝜎(𝐿, 𝑠)||𝐿=0 = ∏
𝑖⩾0

(
1 − 𝜎(−𝑖 − 𝑠)

)
=∶ 𝑄0𝜎(𝑠), 𝑠 ∈ ℤ′. (5.15)

Next, by (5.9) and (5.8), we have that, denoting 𝜎𝑠(𝑎) ∶= 𝜎(𝑎 − 𝑠 − 1

2
),

𝑊𝑌(𝑎) =
𝜎𝑠(𝑎)

1 − 𝜎𝑠(𝑎)
(
𝟏𝑎<0 + 𝐿2(𝛿

𝑎, 1
2
− 𝛿

𝑎,− 1
2
) + O(𝐿4)

)
×

[(
0 −𝛿

𝑎, 1
2

0 0

)
+ 𝐿2

(
−𝛿

𝑎,− 1
2
+ 𝛿

𝑎, 1
2

−𝛿
𝑎,− 1

2
+ 2𝛿

𝑎, 1
2
− 𝛿

𝑎, 3
2

𝛿
𝑎,− 1

2
𝛿
𝑎,− 1

2
− 𝛿

𝑎, 1
2

)
+ O(𝐿4)

]
(5.16)
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298 CAFASSO and RUZZA

or, equivalently,

𝑊𝑌(𝑎) = 𝑊[0]
𝑌
(𝑎) + 𝐿2𝑊[1]

𝑌
(𝑎) + O(𝐿4), (5.17)

where

𝑊[0]
𝑌
(𝑎) = −𝜎(−𝑠)𝛿

𝑎, 1
2

(
0 1

0 0

)
, 𝑊[1]

𝑌
(𝑎) = 𝛿

𝑎,− 1
2
𝑉
−1
2
+ 𝛿

𝑎, 1
2
𝑉 1

2
+ 𝛿

𝑎, 3
2
𝑉 3

2
,

𝑉
−1
2
=

𝜎(−𝑠 − 1)

1 − 𝜎(−𝑠 − 1)

(
−1 −1

1 1

)
, 𝑉 1

2
= 𝜎(−𝑠)

(
1 2 − 𝜎(−𝑠)2

0 −1

)
,

𝑉 3
2
= 𝜎(−𝑠 + 1)

(
0 −1

0 0

)
. (5.18)

By Corollary 5.2, we can solve the discrete RH problem order by order in 𝐿, that is, we can plug
the expansion (5.13) into the conditions of the discrete RH problem for 𝑌(𝑧). Due to the parity of
the series (5.17) it is easy to check that the terms 𝑌[1] and 𝑌[3] in (5.13) vanish. In particular, the
leading term 𝑌[0](𝑧) is characterized by the fact that it is analytic in ℂ ⧵ {1

2
}, with a simple pole

at 1∕2, and satisfies

res
𝑧=1∕2

𝑌[0](𝑧)d𝑧 = lim
𝑧→1∕2

𝑌[0](𝑧)𝑊[0]
𝑌
( 1
2
), (5.19)

as well as sup|𝑧|=𝑛 |𝑌[0](𝑧) − 𝐼| → 0 as 𝑛 → +∞ through integer values. It follows that

𝑌[0](𝑧) = 𝐼 +
𝑊[0]

𝑌
( 1
2
)

𝑧 − 1

2

. (5.20)

Similarly, 𝑌[2](𝑧) is characterized by the fact that it is analytic in ℂ ⧵ {−1

2
, 1
2
, 3
2
}, with simple poles

at ±1∕2, 3∕2, and satisfies

res
𝑧=−1∕2

𝑌[2](𝑧)d𝑧 = lim
𝑧→−1∕2

𝑌[0](𝑧)𝑉
−1
2
, res

𝑧=3∕2
𝑌[2](𝑧)d𝑧 = lim

𝑧→3∕2
𝑌[0](𝑧)𝑉3

2
, (5.21)

and

res
𝑧=1∕2

𝑌[2](𝑧)d𝑧 = lim
𝑧→1∕2

(
𝑌[0](𝑧)𝑉1

2
+ 𝑌[2](𝑧)𝑊[0]

𝑌
( 1
2
)
)
, (5.22)

as well as sup|𝑧|=𝑛 |𝑌[2](𝑧)| → 0 as 𝑛 → +∞ through integer values. The solution is found in the
form

𝑌[2](𝑧) =
𝑁
−1
2

𝑧 + 1

2

+
𝑁1

2

𝑧 − 1

2

+
𝑁3

2

𝑧 − 3

2

. (5.23)

The residues 𝑁
−1
2
and 𝑁3

2
are found from (5.21) as

𝑁
−1
2
=

(
𝐼 −𝑊[0]

𝑌
( 1
2
)
)
𝑉
−1
2
=

𝜎(−𝑠 − 1)

1 − 𝜎(−𝑠 − 1)

(
𝜎(−𝑠) − 1 𝜎(−𝑠) − 1

1 1

)
, (5.24)

𝑁3
2
=

(
𝐼 +𝑊[0]

𝑌
( 1
2
)
)
𝑉1

2
=

(
0 −𝜎(−𝑠 + 1)

0 0

)
. (5.25)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 299

For the residue 𝑁1
2
, we use (5.22) to get

𝑁1
2
= lim

𝑧→1∕2

𝑊[0]
𝑌
( 1
2
)𝑉1

2
+ 𝑁1

2
𝑊[0]

𝑌
( 1
2
)

𝑧 − 1

2

+ 𝑉1
2
+ (𝑁

−1
2
− 𝑁3

2
)𝑊[0]

𝑌
( 1
2
). (5.26)

Existence of the limit implies

𝑊[0]
𝑌
( 1
2
)𝑉1

2
+ 𝑁1

2
𝑊[0]

𝑌
= 0 (5.27)

which can be used to show that

𝑁1
2
=

(
𝜎(−𝑠) ⋆

0 ⋆

)
. (5.28)

The remaining entries, denoted with ⋆, of 𝑁1
2
can be found then by (5.26) but are not needed for

the present argument†. Indeed, we have shown that

−
𝐿

2

𝜕

𝜕𝐿
log𝑄𝜎(𝐿, 𝑠) = 𝛼(𝐿, 𝑠) = 𝐿2

(
𝑁
−1
2
+ 𝑁1

2
+ 𝑁3

2

)
1,1
+ O(𝐿4), 𝐿 → 0+, (5.29)

where we use (3.30), hence the proof is completed by the explicit computation(
𝑁
−1
2
+ 𝑁1

2
+ 𝑁3

2

)
1,1

=
𝜎(−𝑠) − 𝜎(−𝑠 − 1)

1 − 𝜎(−1 − 𝑠)
. (5.30)

□

6 PROOF OF THEOREM III

Throughout this section we assume 𝑠 ∈ ℤ′ is large enough such that 𝑄𝜎(𝐿, 𝑠 − 1) > 0. Introduce,
as in (1.32),

𝔞(𝐿, 𝑠) ∶=

√
𝑄𝜎(𝐿, 𝑠 + 1)𝑄𝜎(𝐿, 𝑠 − 1)

𝑄𝜎(𝐿, 𝑠)
=

√
1 + 𝛽(𝐿, 𝑠)

1 + 𝛽(𝐿, 𝑠 + 1)
, (6.1)

𝔟(𝐿, 𝑠) ∶=
𝜕

𝜕𝐿
log

𝑄𝜎(𝐿, 𝑠)

𝑄𝜎(𝐿, 𝑠 − 1)
= −

2

𝐿

(
𝛼(𝐿, 𝑠) − 𝛼(𝐿, 𝑠 − 1)

)
, (6.2)

where we use (3.30), and

Θ(𝑧; 𝐿, 𝑠) ∶=

(
𝐿

1+𝛽(𝐿,𝑠)
0

0 1

)
Ψ(𝑧; 𝐿, 𝑠). (6.3)

The following proposition is a consequence of (4.18) and (4.19) whose proof is a simple
computation that we omit.

† It is however important to note that (5.26) is compatible with the structure (5.28) of 𝑁1
2
, so that we can really solve for

these entries and thus fully determine 𝑌[2](𝑧).
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300 CAFASSO and RUZZA

Proposition 6.1. We have

Θ(𝑧; 𝐿, 𝑠 + 1) = 𝐴(𝑧; 𝐿, 𝑠)Θ(𝑧; 𝐿, 𝑠),
𝜕

𝜕𝐿
Θ(𝑧; 𝐿, 𝑠) = 𝐵(𝑧; 𝐿, 𝑠)Θ(𝑧; 𝐿, 𝑠) (6.4)

where

𝐴(𝑧; 𝐿, 𝑠) =

(
0 1

−𝔞2(𝐿, 𝑠) 𝑧+𝑠+1

𝐿
+ 𝔟(𝐿,𝑠+1)

2

)
, 𝐵(𝑧; 𝐿, 𝑠) =

(
𝑧+𝑠+1

𝐿
+ 𝔟(𝐿, 𝑠) −2

2𝔞2(𝐿, 𝑠) −𝑧+𝑠

𝐿

)
. (6.5)

In particular,

Θ(𝑧; 𝐿, 𝑠) =

(
𝜒(𝑧; 𝐿, 𝑠 − 1) 𝜒(𝑧; 𝐿, 𝑠 − 1)

𝜒(𝑧; 𝐿, 𝑠) 𝜒(𝑧; 𝐿, 𝑠)

)
, (6.6)

where 𝑓(𝑠) = 𝜒(𝑧; 𝐿, 𝑠) or 𝑓(𝑠) = 𝜒(𝑧; 𝐿, 𝑠) are both solutions to

𝑓(𝑠 + 1) + 𝔞2(𝐿, 𝑠)𝑓(𝑠 − 1) =

(
𝑧 + 𝑠 + 1

𝐿
+
𝔟(𝐿, 𝑠 + 1)

2

)
𝑓(𝑠). (6.7)

Remark 6.2. It is worth noting that the compatibility of (6.4) is expressed by the identity

𝐵(𝑧; 𝐿, 𝑠 + 1)𝐴(𝑧; 𝐿, 𝑠) − 𝐴(𝑧; 𝐿, 𝑠)𝐵(𝑧; 𝐿, 𝑠) =
𝜕

𝜕𝐿
𝐴(𝑧; 𝐿, 𝑠). (6.8)

Spelling out this equation gives the two relations

𝜕𝔞(𝐿, 𝑠)

𝜕𝐿
=
𝔞(𝐿, 𝑠)

2

(
𝔟(𝐿, 𝑠 + 1) − 𝔟(𝐿, 𝑠)

)
,

𝜕𝔟(𝐿, 𝑠)

𝜕𝐿
= 4

(
𝔞2(𝐿, 𝑠) − 𝔞2(𝐿, 𝑠 − 1)

)
−
𝔟(𝐿, 𝑠)

𝐿
.

(6.9)

The first identity is manifest already by comparing (6.1) and (6.2). Combining it with the second
one immediately implies the 2D Toda equation

𝜕2

𝜕𝜃+𝜕𝜃−
𝑞𝑠(𝜃+, 𝜃−) = e𝑞𝑠+1(𝜃+,𝜃−)−𝑞𝑠(𝜃+,𝜃−) − e𝑞𝑠(𝜃+,𝜃−)−𝑞𝑠−1(𝜃+,𝜃−) (6.10)

for 𝑞𝑠(𝜃+, 𝜃−) ∶= log
(
𝑄𝜎(

√
𝜃+𝜃−, 𝑠)∕𝑄𝜎(

√
𝜃+𝜃−, 𝑠 − 1)

)
, which is a consequence of Theorem I.

The matrix𝑊Ψ(𝑎) is not constant in 𝑎, and so we shall now obtain a difference equation in 𝑧
which, in general, has ameromorphic non-rationalmatrix coefficient. To this end, it is convenient
to work with the gauge transformed matrixΘ(𝑧; 𝐿, 𝑠) introduced in (6.3) and with the functions

𝜑(𝑧; 𝐿, 𝑠) ∶=

√
1 + 𝛽(𝐿, 𝑠 + 1)

𝐿
𝜒(𝑧; 𝐿, 𝑠). (6.11)

In particular, from (6.7) we have

𝔞(𝐿, 𝑠 + 1)𝜑(𝑧; 𝐿, 𝑠 + 1) + 𝔞(𝐿, 𝑠)𝜑(𝑧; 𝐿, 𝑠 − 1) =

(
𝑧 + 𝑠 + 1

𝐿
+
𝔟(𝐿, 𝑠 + 1)

2

)
𝜑(𝑧; 𝐿, 𝑠). (6.12)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 301

Proposition 6.3. We have

Θ(𝑧 + 1; 𝐿, 𝑠) = 𝐶(𝑧; 𝐿, 𝑠)Θ(𝑧; 𝐿, 𝑠), (6.13)

where

𝐶(𝑧) =

(
0 1

−𝔞2(𝐿, 𝑠) 𝑧+𝑠+1

𝐿

)

+
∑
𝑙∈ℤ′

Δ𝜎(𝑙)

𝑧 − 𝑙

(
𝔞(𝐿, 𝑠)𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)𝜑(𝑙; 𝐿, 𝑠) −𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)𝜑(𝑙; 𝐿, 𝑠 − 1)

𝔞2(𝐿, 𝑠)𝜑(𝑙 + 1; 𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠) −𝔞(𝐿, 𝑠)𝜑(𝑙 + 1; 𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠 − 1)

)
,

(6.14)

where Δ𝜎(𝑙) ∶= 𝜎(𝑙 + 1) − 𝜎(𝑙), 𝔞(𝐿, 𝑠) is defined in (6.1), and 𝜑(𝑧; 𝐿, 𝑠) is defined in (6.11).

Proof. Define 𝐶(𝑧; 𝐿, 𝑠) ∶= Θ(𝑧 + 1; 𝐿, 𝑠)Θ−1(𝑧; 𝐿, 𝑠). Using (4.5), (6.3), and (4.3), we obtain

𝐶(𝑧; 𝐿, 𝑠) =

(
𝐿

1+𝛽(𝐿,𝑠)
0

0 1

)
𝑌(𝑧 + 𝑠 + 3

2
; 𝐿, 𝑠)

(
0 1

𝐿

−𝐿 𝑧+𝑠+1

𝐿

)
𝑌−1(𝑧 + 𝑠 + 1

2
; 𝐿, 𝑠)

(
1+𝛽(𝐿,𝑠)

𝐿
0

0 1

)
.

(6.15)

Using this relation, it is straightforward to see that

𝐶−(𝑧; 𝐿, 𝑠) ∶= 𝐶(𝑧; 𝐿, 𝑠) −

(
0 1

−𝔞2(𝐿, 𝑠) 𝑧+𝑠+1

𝐿

)
= O(1∕𝑧) (6.16)

as 𝑧 → ∞, in the sense of Lemma A.1, and applying this lemma we get

𝐶−(𝑧; 𝐿, 𝑠) =
∑
𝑙∈ℤ′

res
𝑤=𝑙

𝐶−(𝑤)d𝑤

𝑧 − 𝑙
=

∑
𝑙∈ℤ′

res
𝑤=𝑙

𝐶(𝑤)d𝑤

𝑧 − 𝑙
. (6.17)

We are left with the task of computing these residues. For all 𝑙 ∈ ℤ′, using (6.3) we have

𝐶(𝑧) = Θ(𝑧 + 1)Θ−1(𝑧)

= Θ
𝗋𝖾𝗀

𝑙+1
(𝑧 + 1)

(
𝐼 +

𝑊Ψ(𝑙 + 1)

𝑧 − 𝑙

)(
𝐼 −

𝑊Ψ(𝑙)

𝑧 − 𝑙

)
(Θ

𝗋𝖾𝗀

𝑙
)−1(𝑧)

= Θ
𝗋𝖾𝗀

𝑙+1
(𝑧 + 1)(Θ

𝗋𝖾𝗀

𝑙
)−1(𝑧) +

1

𝑧 − 𝑙
Θ
𝗋𝖾𝗀

𝑙+1
(𝑧 + 1)

(
𝑊Ψ(𝑙 + 1) −𝑊Ψ(𝑙)

)
(Θ

𝗋𝖾𝗀

𝑙
)−1(𝑧), (6.18)

where

Θ
𝗋𝖾𝗀

𝑙
(𝑧) ∶=

(
𝐿

1+𝛽(𝐿,𝑠)
0

0 1

)
Ψ
𝗋𝖾𝗀

𝑙
(𝑧) =

(
𝐿

1+𝛽(𝐿,𝑠)
0

0 1

)
Ψ(𝑧)

(
𝐼 −

𝑊Ψ(𝑙)

𝑧 − 𝑙

)
, (6.19)
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302 CAFASSO and RUZZA

which is regular at 𝑧 = 𝑙. Hence, using (4.7), (6.6), and the fact that detΘ(𝑧; 𝐿, 𝑠) = 𝐿

1+𝛽(𝐿,𝑠)
, we

compute res
𝑤=𝑙

𝐶(𝑤)d𝑤 as

Θ
𝗋𝖾𝗀

𝑙+1
(𝑙 + 1)

(
0 𝜎(𝑙) − 𝜎(𝑙 + 1)

0 0

)(
Θ
𝗋𝖾𝗀

𝑙

)−1
(𝑙)

=
1 + 𝛽(𝐿, 𝑠)

𝐿

(
𝜎(𝑙) − 𝜎(𝑙 + 1)

)(−𝜒(𝑙 + 1; 𝐿, 𝑠 − 1)𝜒(𝑙; 𝐿, 𝑠) 𝜒(𝑙 + 1; 𝐿, 𝑠 − 1)𝜒(𝑙; 𝐿, 𝑠 − 1)

−𝜒(𝑙 + 1; 𝐿, 𝑠)𝜒(𝑙; 𝐿, 𝑠) 𝜒(𝑙 + 1; 𝐿, 𝑠)𝜒(𝑙; 𝐿, 𝑠 − 1)

)
(6.20)

and the proof is complete using the definition (6.11). □

Proof of Theorem III. We first prove (1.33) and (1.34). To this end, let 𝐶−1 be the coefficient of 𝑧−1
in the asymptotic series for 𝐶(𝑧; 𝐿, 𝑠) at 𝑧 = ∞. On the one hand, using (6.14), we have

(𝐶−1)1,1 = 𝔞(𝐿, 𝑠)
∑
𝑙∈ℤ′

Δ𝜎(𝑙)𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)𝜑(𝑙; 𝐿, 𝑠). (6.21)

On the other hand, using (6.15) and (3.19) instead,

(𝐶−1)1,1 = 𝐿

(
1 −

1 + 𝛽(𝐿, 𝑠)

1 + 𝛽(𝐿, 𝑠 + 1)

)
= 𝐿

(
1 − 𝔞2(𝐿, 𝑠)

)
, (6.22)

whereweuse (6.1) in the last equality.Hence, (6.21) and (6.22) are equal andwe get (1.33). Similarly,
using (6.14), we have

tr 𝐶−1 = 𝔞(𝐿, 𝑠)
∑
𝑙∈ℤ′

Δ𝜎(𝑙)
(
𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)𝜑(𝑙; 𝐿, 𝑠) − 𝜑(𝑙 + 1; 𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠 − 1)

)
, (6.23)

while using (6.15) and (3.19) we have tr 𝐶−1 = 𝛼(𝐿, 𝑠)∕𝐿, and so

𝛼(𝐿, 𝑠) = 𝐿𝔞(𝐿, 𝑠)
∑
𝑙∈ℤ′

Δ𝜎(𝑙)
(
𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)𝜑(𝑙; 𝐿, 𝑠) − 𝜑(𝑙 + 1; 𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠 − 1)

)
. (6.24)

Using this expression and (6.12) we finally simplify

𝛼(𝐿, 𝑠 + 1) − 𝛼(𝐿, 𝑠)

𝐿

=
∑
𝑙∈ℤ′

Δ𝜎(𝑙)

{
𝔞(𝐿, 𝑠 + 1)

[
𝜑(𝑙 + 1; 𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠 + 1) − 𝜑(𝑙 + 1; 𝐿, 𝑠 + 1)𝜑(𝑙; 𝐿, 𝑠)

]
− 𝔞(𝐿, 𝑠)

[
𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)𝜑(𝑙; 𝐿, 𝑠) − 𝜑(𝑙 + 1; 𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠 − 1)

]}
=

∑
𝑙∈ℤ′

Δ𝜎(𝑙)

{
𝜑(𝑙 + 1; 𝐿, 𝑠)

[
𝔞(𝐿, 𝑠 + 1)𝜑(𝑙; 𝐿, 𝑠 + 1) + 𝔞(𝐿, 𝑠)𝜑(𝑙; 𝐿, 𝑠 − 1)

]
− 𝜑(𝑙; 𝐿, 𝑠)

[
𝔞(𝐿, 𝑠 + 1)𝜑(𝑙 + 1; 𝐿, 𝑠 + 1) + 𝔞(𝐿, 𝑠)𝜑(𝑙 + 1; 𝐿, 𝑠 − 1)

]}
= −

1

𝐿

∑
𝑙∈ℤ′

Δ𝜎(𝑙)𝜑(𝑙; 𝐿, 𝑠)𝜑(𝑙 + 1; 𝐿, 𝑠). (6.25)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 303

Next, (1.35) is exactly (6.12), and it remains only to show the asymptotic relation (1.36). To this end,
we first observe that as 𝑠 → +∞ we have 𝑄𝜎(𝐿, 𝑠) → 1 and so, by (3.30),

𝛽(𝑠) =
𝑄𝜎(𝐿, 𝑠 − 1)

𝑄𝜎(𝐿, 𝑠)
− 1 → 0, as 𝑠 → +∞, (6.26)

implying, by (6.11), (6.3), and (6.6), that

𝜑(𝑧; 𝐿, 𝑠) ∼
1√
𝐿
𝜒(𝑧; 𝐿, 𝑠), 𝑠 → +∞. (6.27)

It is therefore enough to show that for all 𝑧 ∈ ℤ′ we have

𝜒(𝑧; 𝐿, 𝑠) ∼ 𝐿J𝑧+𝑠+1(2𝐿), 𝑠 → +∞. (6.28)

To this end we first write, using (4.5), (6.3), (6.6), and (5.14),||||| 𝜒(𝑧; 𝐿, 𝑠)

𝐿J𝑧+𝑠+1(2𝐿)
− 1

||||| =
||||| 1

𝐿J𝑧+𝑠+1(2𝐿)

(
(𝑌(𝑧 + 𝑠 + 1

2
) − 𝐼)Φ(𝑧 + 𝑠 + 1

2
)

)
2,1

|||||
⩽

∑
𝑏∈ℤ′

||||||(0, 1)
(
(1 − 𝖣)−1𝐟

)
(𝑏)

𝐠̂⊤(𝑏)Φ(𝑧 + 𝑠 + 1

2
)

(𝑧 + 𝑠 + 1

2
− 𝑏)𝐿J𝑧+𝑠+1(2𝐿)

(
1

0

)||||||, (6.29)

where we recall that the operator 𝖣 is defined in (5.6). We need to show that (6.29) vanishes as
𝑠 → +∞. To this end, we first estimate it as follows||||| 𝜒(𝑧; 𝐿, 𝑠)

𝐿J𝑧+𝑠+1(2𝐿)
− 1

||||| ⩽ 𝑐e𝐿
∑
𝑏∈ℤ′

|||(0, 1)((1 − 𝖣)−1𝐟
)
(𝑏)

||| (6.30)

because we claim that there exists 𝑐 > 0 such that for 𝑠 sufficiently large (depending on 𝐿, 𝑧 only,
not on 𝑏) we have, for all 𝑏 ∈ ℤ′,||||||

𝐠̂⊤(𝑏)Φ(𝑧 + 𝑠 + 1

2
)

(𝑧 + 𝑠 + 1

2
− 𝑏)𝐿J𝑧+𝑠+1(2𝐿)

(
1

0

)|||||| ⩽ 𝑐e𝐿. (6.31)

To prove this last assertion, we rewrite

𝐠̂⊤(𝑏)Φ(𝑧 + 𝑠 + 1

2
)

(𝑧 + 𝑠 + 1

2
− 𝑏)𝐿J𝑧+𝑠+1(2𝐿)

(
1

0

)

=
𝐾𝖡𝖾(𝑧 + 𝑠 + 1

2
, 𝑏)(

1 −𝑀𝑠(𝑏, 𝑏)
)
𝐿J𝑧+𝑠+1(2𝐿)

=
∑
𝑙∈ℤ′+

J
𝑧+𝑠+ 1

2
+𝑙
(2𝐿)

J𝑧+𝑠+1(2𝐿)

J𝑏+𝑙(2𝐿)

1 −𝑀𝑠(𝑏, 𝑏)
. (6.32)

Observe that

𝑀𝑠(𝑏, 𝑏) = 𝜎(𝑏 − 𝑠 − 1

2
)𝐾𝖡𝖾(𝑏, 𝑏) ⩽

⎧⎪⎨⎪⎩
sup

𝑙∈ℤ′, 𝑙<−𝑠∕2
𝜎(𝑙), if 𝑏 < 𝑠∕2,

𝐾𝖡𝖾(⌊ 𝑠+1
2

⌋ + 1

2
, ⌊ 𝑠+1

2
⌋ + 1

2
), if 𝑏 > 𝑠∕2,

(6.33)
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304 CAFASSO and RUZZA

which implies

1

1 −𝑀𝑠(𝑏, 𝑏)
= O(1), as 𝑠 → +∞, uniformly in 𝑏 ∈ ℤ′. (6.34)

Next, for 𝑘 real and sufficiently large, J𝑘(2𝐿) is positive and monotonically decreasing in 𝑘, as it
follows, for instance, by (2.3). Therefore, we can bound (6.32), provided 𝑠 is sufficiently large,

||||||
𝐠̂⊤(𝑏)Φ(𝑧 + 𝑠 + 1

2
)

(𝑧 + 𝑠 + 1

2
− 𝑏)𝐿J𝑧+𝑠+1(2𝐿)

(
1

0

)|||||| ⩽ 𝑐
∑
𝑙∈ℤ′+

|J𝑏+𝑙(2𝐿)| ⩽ 𝑐
∑
𝑘∈ℤ

|J𝑘(2𝐿)| ⩽ 2𝑐e𝐿, (6.35)

for some 𝑐 > 0, where in the last step we use again the inequality J±𝑘(2𝐿) ⩽ 𝐿𝑘∕𝑘! for all
integers 𝑘 ⩾ 0. (In (6.30) we rename 𝑐 ↦ 𝑐∕2.) Next, we claim that

‖𝖣𝐫‖𝓁1(ℤ′) ⩽ 1

2
‖𝐫‖𝓁1(ℤ′) (6.36)

provided 𝑠 is sufficiently large. Postponing for a while the proof of this claim, let us show how to
complete the estimate of (6.30): note that 𝖣 commutes with multiplying on the left by the vector
(0,1), and therefore so does (1 − 𝖣)−1, to write, using (6.36),∑
𝑏∈ℤ′

|||(0, 1)((1 − 𝖣)−1𝐟
)
(𝑏)

||| = ‖‖‖(0, 1)(1 − 𝖣)−1𝐟
‖‖‖𝓁1(ℤ′)

⩽ 2
‖‖‖(0, 1)𝐟‖‖‖𝓁1(ℤ′).

= 2𝐿
∑
𝑎∈ℤ′

𝜎(𝑎 − 𝑠 − 1

2
)|J

𝑎+ 1
2
(2𝐿)|

= 2𝐿
∑

𝑎 ∈ ℤ′,
𝑎 < 𝑠∕2

𝜎(𝑎 − 𝑠 − 1

2
)|J

𝑎+ 1
2
(2𝐿)| + 2𝐿

∑
𝑎 ∈ ℤ′,
𝑎 > 𝑠∕2

𝜎(𝑎 − 𝑠 − 1

2
)|J

𝑎+ 1
2
(2𝐿)|

⩽

⎛⎜⎜⎝ sup
𝑙∈ℤ′, 𝑙<− 𝑠

2

𝜎(𝑙)
⎞⎟⎟⎠
∑
𝑘∈ℤ

|J𝑘(2𝐿)| + ∑
𝑎 ∈ ℤ′,
𝑎 > 𝑠∕2

𝐿𝑎+
1
2

(𝑎 + 1

2
)!
= 𝑜(1), (6.37)

as 𝑠 → +∞. Finally, it remains to prove the claim (6.36). To this end, we have

∑
𝑎,𝑏∈ℤ′, 𝑎≠𝑏

|||||𝐫(𝑏)𝐠̂
⊤(𝑏)𝐟 (𝑎)

𝑎 − 𝑏

||||| ⩽
∑
𝑏∈ℤ′

|𝐫(𝑏)| ∑
𝑎∈ℤ′

|𝐠̂⊤(𝑏)𝐟 (𝑎)|. (6.38)

We can bound this quantity, using |J
𝑏± 1

2
(2𝐿)| ⩽ e𝐿 and (1 − 𝑀𝑠(𝑏, 𝑏))

−1 ⩽ 𝑐 for 𝑠 sufficiently large
and for all 𝑏 ∈ ℤ′, as we proved in (6.34), as

(6.38) ⩽ 𝑐𝐿e𝐿‖𝐫(𝑏)‖𝓁1(ℤ′) ∑
𝑎∈ℤ′

𝜎(𝑎 − 𝑠 − 1

2
)
(|J

𝑎+ 1
2
(2𝐿)| + |J

𝑎− 1
2
(2𝐿)|) (6.39)
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INTEGRABLE EQUATIONS ASSOCIATEDWITH THE FINITE-TEMPERATURE DEFORMATION 305

and we can bound the last sum over 𝑎 exactly as in (6.37) by splitting it for 𝑎 < 𝑠∕2 and 𝑎 > 𝑠∕2,
to obtain ∑

𝑎∈ℤ′

𝜎(𝑎 − 𝑠 − 1

2
)
(|J

𝑎+ 1
2
(2𝐿)| + |J

𝑎− 1
2
(2𝐿)|) = 𝑜(1), 𝑠 → +∞, (6.40)

such that, indeed, for 𝑠 sufficiently large we have (6.36). □

6.1 Connection with the discrete Painlevé II equation

Let us now consider, more specifically, the case 𝜎 = 𝟏ℤ′+
, studied in depth by Borodin [7]. In this

case, (6.14) reduces to

𝐶(𝑧) =

(
0 1

−𝔞2(𝐿, 𝑠) 𝑧+𝑠+1

𝐿

)

+
1

𝑧 + 1

2

(
𝔞(𝐿, 𝑠)𝜑+(𝐿, 𝑠 − 1)𝜑−(𝐿, 𝑠) −𝜑+(𝐿, 𝑠 − 1)𝜑−(𝐿, 𝑠 − 1)

𝔞2(𝐿, 𝑠)𝜑+(𝐿, 𝑠)𝜑−(𝐿, 𝑠) −𝔞(𝐿, 𝑠)𝜑+(𝐿, 𝑠)𝜑−(𝐿, 𝑠 − 1)

)
, (6.41)

where we denoted, for sake of brevity, 𝜑±(𝐿, 𝑠) = 𝜑(±1∕2; 𝐿, 𝑠). In this case, the compatibility con-
ditions between the Lax equations (6.4) and (6.13) greatly simplify, andwe recover thewell-known
relations between the discrete Bessel kernel, the discrete Painlevé II and the modified Volterra
equation (see [7] and also [1, 21]).
Let us start by noting that the identities (1.33) and (1.34) reduce to

𝔟(𝐿, 𝑠 + 1) =
2

𝐿
𝜑+(𝐿, 𝑠)𝜑−(𝐿, 𝑠), 𝐿

(
𝔞−1(𝐿, 𝑠) − 𝔞(𝐿, 𝑠)

)
= 𝜑+(𝐿, 𝑠 − 1)𝜑−(𝐿, 𝑠). (6.42)

Taking the ratio of these gives

𝜑+(𝐿, 𝑠) =
𝔞(𝐿, 𝑠)𝔟(𝐿, 𝑠 + 1)

2(1 − 𝔞2(𝑠))
𝜑+(𝐿, 𝑠 − 1). (6.43)

We then expand the determinant of 𝐶(𝑧; 𝐿, 𝑠), which we know to be equal to 1, around 𝑧 = ∞.
Using (6.43), the term of order 𝑧−1 yields

𝐿𝔞2(𝐿, 𝑠)(𝔟(𝐿, 𝑠 + 1) + 𝔟(𝐿, 𝑠)) = (2𝑠 + 1)(1 − 𝔞2(𝐿, 𝑠)). (6.44)

Next, let us consider the compatibility condition between the first equation in (6.4) and (6.13)

𝐴(𝑧 + 1; 𝐿, 𝑠)𝐶(𝑧; 𝐿, 𝑠) − 𝐶(𝑧; 𝐿, 𝑠 + 1)𝐴(𝑧; 𝐿, 𝑧) = 0. (6.45)

Inspecting the entry (2,2) of this condition, once written in terms of 𝔟2(𝐿, 𝑠 + 1), 𝔞(𝐿, 𝑠 + 1) and
𝔞(𝐿, 𝑠) (using the equations obtained before), yields

𝔟2(𝐿, 𝑠 + 1) = 4(1 − 𝔞2(𝐿, 𝑠))(1 − 𝔞2(𝐿, 𝑠 + 1)). (6.46)

Equations (6.44) and (6.46) are the same (up to a change of variable) as [7, Equations (3.9), (3.10)]
and lead to an expression of the Fredholm determinants 𝑄𝟏

ℤ′+

(𝐿, 𝑠) in terms of a discrete recur-
sion known as the discrete Painlevé II equation, Equation (6.47). For the reader’s convenience,
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306 CAFASSO and RUZZA

we explain here how to derive it, closely following [7]. Note, however, that the Lax pair used to
obtain (6.44) and (6.46) is not the same as the one in op. cit.

Proposition 6.4 (cf. Borodin, [7]). Let 𝑣(𝐿, 𝑠), for 𝑠 ∈ ℤ′ with 𝑠 ⩾ −1

2
, be the sequence of functions

defined by the second-order recursion

𝑣(𝐿, 𝑠 + 1) + 𝑣(𝐿, 𝑠 − 1) =
(𝑠 + 1

2
)𝑣(𝐿, 𝑠)

𝐿(𝑣2(𝐿, 𝑠) − 1)
(6.47)

with initial conditions 𝑣(𝐿, −1

2
) = 1, 𝑣(𝐿, 1

2
) = −I1(2𝐿)∕I0(2𝐿), where I𝑘(2𝐿) is defined in (1.14).

Then, for all 𝑠 ∈ ℤ′ satisfying 𝑠 ⩾ −1

2
,

𝑄𝟏
ℤ′+

(𝐿, 𝑠 + 1)𝑄𝟏
ℤ′+

(𝐿, 𝑠 − 1)

𝑄2
𝟏
ℤ′+

(𝐿, 𝑠)
= 1 − 𝑣2(𝐿, 𝑠). (6.48)

Moreover, the functions 𝑣(𝐿, 𝑠) satisfy the modified Volterra equation

𝜕

𝜕𝐿
𝑣(𝐿, 𝑠) =

(
1 − 𝑣2(𝐿, 𝑠)

)
(𝑣(𝐿, 𝑠 + 1) − 𝑣(𝐿, 𝑠 − 1)). (6.49)

Proof. We start by defining 𝑣2(𝐿, −1

2
) = 1 (which satisfies (6.48)) and then recursively

𝑣(𝐿, 𝑠 + 1) ∶= −𝔟(𝐿, 𝑠 + 1)𝑣−1(𝐿, 𝑠). (6.50)

Using (6.46), we have 𝑣2(𝐿, 𝑠) = 1 − 𝔞2(𝐿, 𝑠) for all 𝑠 ⩾ −1

2
. We can now write (6.44) just in terms

of the functions 𝑣(𝐿, 𝑠), and in this way we obtain (6.47). As for (6.48), it comes from the equal-
ity 𝑣2(𝐿, 𝑠) = 1 − 𝔞2(𝐿, 𝑠) combined with (6.1). Finally, the initial condition for 𝑣(𝐿, 1∕2) can be
deduced from the recursive definition 𝑣(𝐿, 𝑠 + 1) = −𝔟(𝐿, 𝑠)𝑣−1(𝐿, 𝑠) combined with (6.2) and the
fact that 𝑄𝟏

ℤ′+

(−1∕2) = e−𝐿
2
, 𝑄𝟏

ℤ′+

(1∕2) = e−𝐿
2
I0(2𝐿), see (1.14). Finally, the modified Volterra

equation (6.49) is merely a rewriting of (6.9) in terms of the functions 𝑣(𝑠, 𝐿). □

APPENDIX: PARTIAL FRACTION EXPANSION

Lemma A.1. Let 𝑓(⋅) be a meromorphic function with simple poles at ℤ′ ∶= ℤ + 1

2
such that

max|𝑧|=𝑛 |𝑓(𝑧)| → 0, as 𝑛 → +∞ through integer values. (A.1)

Then, for all 𝑧 ∈ ℂ ⧵ ℤ′ we have

𝑓(𝑧) =
∑
𝑎∈ℤ′

res
𝑤=𝑎

𝑓(𝑤)d𝑤

𝑧 − 𝑎
. (A.2)

Proof. Fix 𝑧 ∈ ℂ ⧵ ℤ′: for all integers 𝑛 > |𝑧|, Cauchy theorem implies that

1

2𝜋i ∮|𝑤|=𝑛
𝑓(𝑤)

𝑧 − 𝑤
d𝑤 =

∑
𝑎∈ℤ′,|𝑎|<𝑛

res
𝑤=𝑎

𝑓(𝑤)d𝑤

𝑧 − 𝑎
− 𝑓(𝑧). (A.3)
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As 𝑛 → +∞, the left-hand side tends to 0 because

|||||∮|𝑤|=𝑛
𝑓(𝑤)

𝑧 − 𝑤
d𝑤

||||| ⩽ max|𝑤|=𝑛 |𝑓(𝑤)|∮|𝑤|=1
|d𝑤||𝑤 − 𝑧∕𝑛| → 0, (A.4)

as 𝑛 → +∞ by assumption, and the proof is complete. □
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