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Abstract

A gravitational theory involving a vector field whose zero component has the prop-

erties of a dynamical time χµ is studied. The variation of the action with respect

to the vector field gives the covariant conservation of an energy momentum tensor.

At the first chapter, cosmological solutions with a scalar field behaving as radia-

tion using this theory are obtained. The solution requires the spacial curvature of

the universe k, to be zero, unlike the standard radiation solutions, which do not

impose any constraint on the spacial curvature of the universe. This is because

only such k = 0 radiation solutions poses a homothetic Killing vector. This kind

of theory can be used to generalize electromagnetism and other gauge theories, in

curved space time, and there are no deviations from standard gauge field equation

(like Maxwell equations) in the case there exist a conformal Killing vector. But

there could be departures from Maxwell and Yang Mills equations, for more general

space times. In the second chapter we generalize ideas of unified Dark Matter Dark

Energy in the context of propose two formulations of this idea: I - by demanding

that this vector field be the gradient of a scalar, II - by considering the dynamical

space field appearing in another part of the action. Then the Dynamical space

time Theory becomes a theory of Diffusive Unified Dark Energy and Dark Matter.

These generalizations produce non conserved energy momentum tensors instead

of conserved energy momentum tensors which leads at the end to a formulation of

interacting DE-DM dust models in the form of a diffusive type interacting Unified

Dark Energy and Dark Matter scenario. We solved analytically the theories for

perturbative solution and asymptotic solution, and we show that the ΛCDM is a

fixed point of these theories at large times. Also a preliminary argument about the

iii



iv ABSTRACT

good behavior of the theory at the quantum level is proposed for both theories.
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Chapter 1

Introduction

There have been theoretical approaches to gravity theories, where a fundamental

constraint is implemented, like in Two Measures Theories [1]-[10] one works, in

addition to the regular measure of integration in the action
√
−g, also with another

measure which is also a density and which is also a total derivative. In this case,

one can use for constructing this measure 4 scalar fields ϕa, where a = 1, 2, 3, 4.

Then we can define the density Φ = εαβγδεabcd∂αϕa∂βϕb∂γϕc∂δϕd, and then we can

write an action that uses both of these densities:

S =

∫
d4xΦL1 +

∫
d4x
√
−gL2 (1.1)

As a consequence of the variation with respect to the scalar fields ϕa, assuming

that L1 and L2 are independent of the scalar fields ϕa, we obtain that:

Aαa∂αL1 = 0 (1.2)

where Aαa = εαβγδεabcd∂βϕb∂γϕc∂δϕd. Since det[Aαa ] ∼ Φ3 as one easily see, then

that for Φ 6= 0 ,(1.2) implies that L1 = M = Const. This result can expressed as

a covariant conservation of a stress energy momentum of the form T µν(Φ) = L1g
µν ,

and using the 2nd order formalism, where the covariant derivative of gµν is zero,

we obtain that ∇µT
µν
(Φ) = 0, implies ∂αL1 = 0. This suggests generalizing the

idea of the Two Measures Theory, by imposing the covariant conservation of a

1



2 CHAPTER 1. INTRODUCTION

more nontrivial kind of energy momentum tensor, which we denote as T µν(χ) [11].

Therefore, we consider an action of the form:

S = S(χ) + S(R) =

∫
d4x
√
−gχµ;νT

µν
(χ) +

1

16πG

∫
d4x
√
−gR (1.3)

where χµ;ν = ∂νχµ−Γλµνχλ. If we assume T µν(χ) to be independent of χµ and having

Γλµν being defined as the Christoffel Connection Coefficients, then the variation

with respect to χµ gives a covariant conservation: ∇µT
µν
(χ) = 0.

Notice the fact that the energy density is the canonically conjugated variable

to χ0, which is what we expect from a dynamical time (here represented by the

dynamical time χ0). For a related approach where a set of dynamical space-time

coordinates are introduced, not only in the measure of integration, but also in the

lagrangian, as [12].

I. Diffusive Energy theory from Action principle

Let’s consider a 4 dimensional case, where there is a coupling between a scalar

field χ, and a stress energy momentum tensor T µν(χ):

S(χ) =

∫
d4x
√
−gχ,µ;νT

µν
(χ) (1.4)

where , µ; ν are covariant derivative of the scalar field. When Γλµν is being defined

as the Christoffel Connection Coefficients, the variation with respect to χ gives a

covariant conservation of a current fµ:

∇µT
µν
(χ) = f ν ;∇νf

ν = 0 (1.5)

which it is the source of the stress energy momentum tensor. This corresponds to

the ”dynamical space time” theory (1.3), where the dynamical space time 4-vector

χµ is replaced by a gradient of a scalar field χ. In the ”dynamical space theory” we

obtain 4 equations of motion, by the variation of χµ, which correspond to covariant

conservation of energy momentum tensor ∇µT
µν
(χ) = 0. By changing the 4 vector to

a gradient of a scalar ∂µχ at the end, what we do is to change the conservation of

energy momentum tensor to asymptotic conservation of energy momentum tensor
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(1.5) which corresponds to a conservation of a current ∇νf
ν = 0. In an expanding

universe, the current fµ gets diluted, so then we recover asymptotically a covariant

conservation law for T µν(χ) again. The equation (1.5) has a close correspondence with

the one obtained in a ”diffusion scenario” for DE-DM exchange [13][14].

This stress energy tensor is substantially different from stress energy tensor we

all know, which is defined as 8πG
c4
T µν(G) = Rµν− 1

2
gµνR. In this case, the stress energy

momentum tensor T µν(χ) is not conserved (but there is some conserved current f ν ,

which is the source to this stress energy momentum tensor non conservation), here

there is some conserved stress energy tensor T µν(G), which comes from variation of

the action according to the metric:

T µν(G) =
−2√
−g

δ(
√
−gLM)

δgµν
;∇µT

µν
(G) = 0 (1.6)

The lagrangian LM could be the modified term χ,µ;νT
µν
(χ), but as we will see, it

could be added to more action terms. Using different expressions for T µν(χ) which

depend on other variables, will give the connection between the scalar field χ and

those other variables.

Notice that for the theory the shift symmetry holds, and

χ→ χ+ Cχ;T µν(χ) → T µν(χ) + gµνCT (1.7)

will not change any equation of motion. when Cχ, CT are some arbitrary constants.

This means that if the matter is coupled through its energy momentum tensor as in

(1.7), a process of redefinition of the energy momentum tensor, will not affect the

equations of motion. Of course such type of redefinition of the energy momentum

tensor is exactly what is done in the process of normal ordering in Quantum Field

Theory for example.

II. Diffusive Energy theory without high derivatives

Another model that does not involve high derivatives is obtained, by keeping χµ as

a 4-vector, which is not gradient, but we introduce the vector field χµ in another

part of action:
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S(χ,A) =

∫
d4x
√
−gχµ;νT

µν
(χ)d

4x+
σ

2

∫
d4x
√
−g(χµ + ∂µA)2d4x (1.8)

where A is another scalar field. Then from a variation of respect to χµ we obtain:

∇µT
µν
(χ) = σ(χµ + ∂µA) (1.9)

as (1.5) , where the source is:

fµ = σ(χµ + ∂µA) (1.10)

But in contrast to (1.5), where fµ appear as an integration function, here fµ

appears as a function of the dynamical fields. From the variation with respect to

A, we indeed obtain that the current χµ + ∂µA in conserved, which means again

as (1.5), that ∇µ∇νT
µν
(χ) = 0, but does not tell us that all of equation of motion

are the same. Nevertheless, asymptotically, for the late universe, both theories

coincide.

To start we discuss a toy model in one dimension describing a system that allows

the non-conservation of a certain energy function, which increases or decreases

linearly with time, while there is another energy which is conserved. It is of interest

to compare with a mechanism that produces non conserved energy momentum

tensors which leads to a formulation of interacting DE-DM models, however, there

are crucial differences.



Chapter 2

Radiation solutions

Based on Mod.Phys.Lett. A31 (2016) no.33, 1650188. DOI: 10.1142/S0217732316501881

I. Solutions with homothetic vector field

Interesting particular cases of cosmological solutions are obtained when the vector

filed χµ has the property of being a homothetic vector field:

Lχgµν ≡ χµ;ν + χν;µ =
χ

2
gµν (2.1)

when χ = χλ;λ is a constant trace of χµ;ν (for homothetic Killing vector).

The effective stress energy momentum tensor, from variation of the metric using

the action (1.3) (using the identities in appendix A) is:

T µνeff =
χT (χ)

8
gµν +

χ

4
gαβ

∂

∂gµν
Tαβ(χ) −

1

4
χT µν(χ) −

1

2

(
χλ∇λ

)
T µν(χ) (2.2)

when T (χ) = T λλ (χ) is the trace of T µν(χ). We see that the stress-energy tensor

T µνeff is related to original T µν(χ) but it is not equal to it. Here T µνeff is the stress-

energy momentum tensor that appear in the right side of Einstein equation T µνeff =

Rµν − 1
2
gµνR. As we can see, there is a simple linear relation between 1

4
χT µν(χ), and

1
2

(
χλ∇λ

)
T µν(χ) in some spaces the last expression could be proportional to T µν(χ) if

such a tensor is an homogeneous function, by using Euler’s homogeneity theorem,

which it is satisfied for power law functions of time (in Cosmological solutions). In

5



6 CHAPTER 2. RADIATION SOLUTIONS

addition to conservation of T µν(χ) the original T µνeff also should be conserved. This

two conditions are co-exist on the same metric of space-time.

In a context of Cosmology, because of the presence of the term 1
2

(
χλ∇λ

)
T µν(χ) we

are interested in using the Friedman-Lemaitre-Robertson-Walker (FLRW) metric,

with spacial curvature k = 0, which is the only one that gives the property of

proportionality between those two kinds of stress-energy tensors T µν(χ) and T µνeff ,

because only in the case k = 0, one can obtain generically power law behaving.

Otherwise, we get a contradiction between the two conservation of stress-energy

momentum tensors. We find this mathematical condition in our universe, that

from measurements we sure that there isn’t spacial curvature, or if it’s exists, it is

very small. From our theory, this is a natural consequennce. The only exeption to

this rule, would be a very special case, where a(t) = t, and k could non zero (like

for example, the Milne universe). This will be discussed later.

For this metric, with k = 0, the scale parameter should be a(t) = tα, when α is

the index of the scale parameter: α = 1
2

for radiation, and α = 2
3

for dust (dark

matter). With the homothetic vector filed of the metric, using (2.1) we get:

χµ =
χ

4
(t, (1− α)−→x ) (2.3)

For this space we obtain that: χµ;ν = χ
4
gµν with no anti-symmetrical contribution

to the tensor χµ;ν .

II. Radiation Like Scalar Field

Some approches in the context of Two Measure Theories [15] [16] [17] have shown

that a scalar field can act as dust (dark matter). Here we will see that in our

approach a scalar field can have the behavior of radiation. We choose a stress

energy tensor of scalar filed φ, which doesn’t have a trace T (χ) = 0, therefore we

choose:

T µν(χ) = (gµαgνβ − 1

4
gµνgαβ)φ,αφ,β (2.4)
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From the Cosmological Principle the dependence of the scalar filed is only a

function of time φ(t). From (2.4) we get T µν(χ) = ρ(χ)diag {1,−1/3,−1/3,−1/3}

when ρ(χ) = ( d
dt
φ)2. From conservation of T µν(χ) we get ρ(χ) ∼ a−4, like radiation.

From variation of φ we get a covariantly conserved current:

jµ(χ) = (χµ;ν + χν;µ)φ,ν −
1

2
χφ,µ (2.5)

The conservation of the current jµ;µ(χ) = 0 may be a condition for the vector

field χλ. For the ansatz (2.1) of homothetic Killing vector we get jµ(χ) = 0. This

obviously satisfies the covariant conservation of (2.5). From the variation of the

metric we get the effective stress-energy momentum tensor,which is the right hand

side of the Einstein Tensor, then (2.2) reduce to the term:

T µνeff = −χ
2
T µν(χ) −

1

2

(
χλ∇λ

)
T µν(χ) = −1

2
(χλT µν(χ));λ (2.6)

Two Friedman equation’s are reduced to one, because of the tracelessness of

the stress-energy tensor. Then we take the ’00’ component for the and ρ(χ) ∼ a−4,

then we get:

ρeff = −χ
2

(1 +
1

2
t
∂

∂t
)ρ(χ) = χ

α− 1

2
ρ(χ) (2.7)

where the Hubble constant is defined as H = ȧ
a

(for a power law universe

H = α/t). That means ρeff is proportional to ρ(χ). We can get from that

a ∝ t1/2,because of the relation ρeff ∝ H2, which cames from Einstein equation,

for FRLW metric. The constant proportionality factor between ρeff and ρ(χ) is

−χ
4
. We understand that the physical meaning of this theory is that a scalar field

could act like a radiation field, and could co-exist with the backround radiation in

the early universe.

III. Electromagnetic Radiation

Another possibilty to explore is when T µν(χ) will be like the standard Electromagnetic

stress-energy mommentum tensor:
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T µν(χ) = F µαF ν
α −

1

4
gµνFαβF

αβ (2.8)

where Fµν = ∂µAν−∂νAµ. From a variation of Aµ we get some anti-symmetric

tensor, which can be interpreted as a “dielectric” field tensor:

Dµν = −χµ;βF ν
β + χν;βF µ

β − χ
β;νF µ

β + χβ;µF ν
β − χF µν (2.9)

which has no sources (∇µD
µν = 0). For the ansatz (2.1) of homothetic Killing

vector we get Dµν = 0 , like the effective current of the radiation like scalar field.

In this case we will get the same identity like (2.6-2.7), and the theory with a

dynamical time will give the same predictions about the behavior of the expansion

of the universe, as in standard theory. Unlike the case of a scalar field, which is

automatically homogeneous and isotropic, now for the Aν field, we obtain that in

order to regain homogenity and isotropy, we have to consider a statistical average.

For a more general gauge theory, without any scalar fields, we may include the

traditional action for E.M field and the action from (1.3). So the total action will

be:

S =

∫
d4x[
√
−gχµ;νT

µν
(χ) +

1

16πG

√
−gR− 1

4

√
−gFαβFαβ] (2.10)

Without the last term FαβF
αβ , Maxwell equations are not obtained, even for

spaces where the ansatz (2.1) of homothetic Killing vector applies, although the

energy momentum conservation of T µν(χ) is obtained. If the space does not satisfies

the ansatz (2.1), then there will be a deviation from Maxwell equations. This

deviation will take the following form:

Dµν = −χµ;βF ν
β + χν;βF µ

β − χ
β;νF µ

β + χβ;µF ν
β − χF µν − F µν (2.11)

where ∇µD
µν = 0. If the space satisfies the ansatz (2.1) we get the regular

Maxwell equations. When the space time does not satisfy the ansatz (2.1), it

aquires non-trivial diaelectric properties, that can exist close to charged massive

body or black holes for example, which will change the general behavior of elec-

tromanetic field in curved space-time. The stress energy tensor for the case of
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homothetic Killing vector is:

T µνeff = T µν(χ) −
1

2
(χλT µν(χ));λ (2.12)

For non-abelian Yang-Mills gauge theories the same effect takes place, where F a
µν =

∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , we will get that similar results analogous to those

considered in the abelian case.

IV. Situation for which T µνeff = 0 but T µν(χ) 6= 0

Looking for example at (2.12), with respect to cosmological solutions, like FRWM

we get ρeff = [1+χα−1
2

]ρ(χ). In a particular case, the effective gravitational energy

is zero T µνeff = 0, but it contains radiation which is represented by T µν(χ) and χ = 4.

In this case we get that k doesn’t have to be zero, in order to have the non trivial

homogenity 1
2

(
χλ∇λ

)
T µν(χ) = nT µν(χ) which we discused at (2.2). Taking the case

of Milne Universe (k = −1 and a(t) ∼ t), and taking the case of homothetic

Killing vector which is of the form χµ = c(t, 0, 0, 0), we obtained that ρ(χ) ∼ a−4,

and because it’s a flat universe, and ρ(χ) ∼ t−4, which is a boundary between

inflationary behavior (α > 1) and non-inflationary (1 > α > 0) behavior.

V. Conclusions

We have found that a generalization of TMT gives rise to two non trivial energy

momentum tensors which are related but not equal in general. Because of the

vector field variation, it enforces its covariant conservation of T µν(χ) in addition

to T µνeff . We have studied this for the case of the vector field as homothetic

Killing vector, and using T µν(χ) of radiation or radiation like scalar filed Cosmological

solutions. In the radiation era of the universe, the T µνeff stress energy tensor could

co-exist with the original radiation, which is the source of the Backround Cosmic

Radiation. The solution, which could be a model for the early universe, requires no

spacial curvature for the universe, because those solutions require homogenity of

the dependence on time of the scale factor a(t) = tα in order for the T µν(χ) and T µνeff
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to be proportional to each other. This mathematical explanation singles out zero

spacial curvature. So it may be an alternative explanation for negligible spacial

curvature instead of inflation [18]-[23]. In any case, inflation still takes care of

other problems, like the horizon problem.

These kind of models could be used in the context of inflation. It will be

interesting to add a potential to this scalar filed, and see if one can reproduce an

inflationary behavior, also a quantum behavior of this field, and its effects on the

first moments of the universe as an inflationary model.

When T µν(χ) is a standard stress energy tensor of gauge filed, we obtain similar

conclusions. Also this could lead to a modified electromagnetism and similar sit-

uations for other gauge theories in curved space time. We would like to find the

spherically symmetric charged solutions like charged black hole.



Chapter 3

Interacting Diffusive Unified Dark

Energy and Dark Matter

Based on The European Physical Journal C

DOI: 10.1140/epjc/s10052-017-4939-x.

The best explanation, and fitting with data for the accelerated expansion of

our universe, is the ΛCDM model, which tells us that our universe contains 68

percent of dark energy, and 27 percent of dark matter. This model present two big

questions: The Cosmological Constant problem [24][25][26] - why there is a large

disagreement between the vacuum expectation value of the energy momentum

tensor which comes from Quantum Field Theory and the observable value of dark

energy density? and the Coincidence problem [27] - why observable values of dark

energy and dark matter densities in the late universe are of the same order of

magnitude?

In order to solve this problem, many approaches emerged [28]. One interesting

suggestion was a diffusive exchange of energy between dark energy and dark matter

made by Calogero[13][14], Haba [29] and others, with some solution to cosmic

problems. The basic notion is that diffusion equation (or more exactly - Fokker

Planck equation [30][31], which describes the time evolution of the probability

density function of the velocity of a particle under the influence of random forces),

implies a non-conserved stress energy tensor T µν , which has some current source

11
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jµ:

∇µT
µν = 3σjµ (3.1)

where σ is the diffusion coefficient of the fluid. This generalization is Lorentz

invariant and fit for curved space time. The current jµ is a time-like covariantly

conserved vector field and its conservation tells us that the number of particles in

this fluid is constant.

However, in the gravitational equations, the Einstein tensor is proportional to

a conserved stress energy tensor ∇µT
µν
(G) = 0, we labeled with ”G” [32][33]. So

Calogero come up with what he called φCDM-model, which achieves a conserved

total energy momentum tensor appearing in the right hand side of Einstein’s equa-

tion. But for the dark energy and dust stress tensors there is some source current

for those tensors (however the sum is conserved):

−∇µT
µν
(Λ) = ∇µT

µν
(Dust) = Jν ,∇µJ

µ = 0 (3.2)

As Calogero mentioned [13], the diffusion model introduced in his paper lacks

an action principle formulation. Therefore we develop from a generalization of

Two Measure Theories [1]-[9], a ”diffusive energy theory” (1.4)-(1.10), which can

produce on one hand a non-conserved stress energy tensor (T µν(χ)), as in (3.1), and

on the other hand a conserved stress energy tensor (T µν(G)) that we know from the

right hand side of Einstein’s equation. As we will see, this suggested theory is

asymptotically different from the φCDM model, and more close in this limit to the

standard ΛCDM.

I. A mechanical system with a constant power and

diffusive properties

In order to see the applications of the ideas, we start with a simple action of

one dimensional particle in a potential V (x). We introduce a coupling between

the total energy of the particle 1
2
mẋ2 + V (x) and the second derivative of some
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dynamical variable B:

S =

∫
B̈[

1

2
mẋ2 + V (x)]dt (3.3)

In order to see the applications of the ideas, we start with a simple action of

one dimensional particle in a potential V (x). We introduce a coupling between

the total energy of the particle 1
2
mẋ2 + V (x) and the second derivative of some

dynamical variable B:

S =

∫
B̈[

1

2
mẋ2 + V (x)]dt (3.4)

The equation of motion according to the dynamical variable B, gives that the

second derivative of the total energy is zero. In other words, the total energy of

the particle is linear in time:

1

2
mẋ2 + V (x) = E(t) = Pt+ E0 (3.5)

where P is a constant power which given to the particle or taken from it, and E0

is the total energy of the particle at time equals zero.

From the equation of motion according to coordinate x we get a close connection

between the dynamical variable B and the coordinate of the particle:

mẍ
d2B

dt2
+mẋ

d3B

dt3
= V ′(x)

d2B

dt2
(3.6)

with the equation (3.5) give:

˙̈B

B̈
=

2V ′(x)√
2m(E(t)− V (x))

− P

2(E(t)− V (x))
(3.7)

To get a feeling of these kind of theories, let us look at the case of a harmonic

oscillator V (x) = 1
2
kx2. First of all, we see from eq (5) and the condition that the

right hand side be positive, since the left hand side obviously is positive, we get

that there is a boundary time τ = −E0

P
, that for P > 0 we get t > τ , and for P < 0

there is a maximal time t < τ . Let us consider the case the power P is positive.

The equations of motion in that case will not oscillate, but will grow exponentially

until the ”Pt” term present in equation (3.5) dominates, when 〈x2〉 ∝ t. This is

very similar to a Brownian motion behavior.
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The momentums for this toy model are:

πx =
∂L
∂ẋ

= mẋB̈ (3.8)

πB =
∂L
∂Ḃ
− d

dt

∂L
∂B̈

= − d

dt
E(t) (3.9)

ΠB =
∂L
∂B̈

= E(t) (3.10)

Using Hamiltonian formalism (with second order derivative [34][35]) we get that

the hamiltonian of the system is:

H = ẋπx + ḂπB + B̈ΠB − L = πx

√
2

m
(ΠB − V (x)) + ḂπB = Const (3.11)

Since the action in not dependent explicitly on time, the hamiltonian is con-

served. So even if the total energy of the particle is not conserved, there is the

conserved hamiltonian (3.11). This notion is equivalent to non-conserved stress

energy tensor T µν(χ), in addition to the conserved stress energy T µν(G), which appear

in Einstein equation.

Notice that this hamiltonian is not necessarily bounded from below. However,

there are only mild instabilities in the solutions. For example, for the case V (x) =

0, we get ẋ ∝ Ḃ ∝ t
1
2 . In the case of a harmonic oscillator, where V (x) = 1

2
kx2,

there is an even milder behavior at large times: x ∝ t
1
2 which resemble to a diffusive

behavior, or Brownian motion. This behavior is a mild kind of instability, since

no exponential growth appears, only power law growth. The related model in

cosmology, as we will see, because of the coupling to an expanding space time

shows dumped perturbations, towards a fixed point solution, where it coincides

with the standard ΛCDM model. This is because whatever potential instabilities

the model may have in a flat background, the expanding space (most notably the

de Sitter space) has the counter property of red shifting any perturbation, this

effect overcomes and cancels these rather soft instabilities (power law instabilities

that may exist for the solution in flat space) as we will see in section VII. The

exponential expansion is known to counter all kind of unstable behaviors, for

example goes against the gravitational instability and a big enough cosmological
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constant can prevent galaxy formation, our case is much simpler than that but

the basic reason is the same. In this context it is important to notice that in an

expanding universe a non-covariant conservation of an energy momentum tensor,

which may imply that some energy density is increasing in the locally inertial

frame, does not mean a corresponding increase of the energy density in the co

moving cosmological frame. For example, a non-covariant conservation of the dust

component of the universe, in the examples we study, will produce a still decreasing

dust density although there is a positive flow of energy in the inertial frame. The

result of this flow of energy in the local inertial frame is going to be just that

the dust energy density decreases a bit slower that the conventional dust in the

co-moving frame.

Independently of this, we will see how it is possible to construct theories with

positive Euclidean action that describe Diffusive DE-DM unification.

II. Gravity, ”k-essence” and Diffusive behavior

Our starting point is the following non-conventional gravity-scalar-field action,

which will produce a diffusive type of interacting DE-DM theory:

S =
1

16πG

∫
d4x
√
−gR +

∫
d4x
√
−gL(φ,X) +

∫
d4x
√
−gχ,µ;νT

µν
(χ) (3.12)

with the following explanations for the different terms: R is the Ricci scalar

which appears in; Einstein-Hilbert action. L(φ,X) is general-coordinate invari-

ant Lagrangian of a single scalar field φ ,which can be of an arbitrary generic ”k-

essence” type: some function of a scalar field φ and the combination X = ∂µφ∂
µφ

[40][41][42]):

L(φ,X) =
∞∑
N=1

An(φ)Xn − V (φ) (3.13)

As we will see, this last action will produce a diffusive interaction between DE-

DM type theory. For the ansatz of T µν(χ) we choose to use some tensor which is

proportional to the metric, with a proportionality function Λ(φ,X):

T µν(χ) = gµνΛ(φ,X)⇒ S(χ) =

∫
d4xΛ2χ (3.14)
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From the variation of the scalar field χ we get: 2Λ = 0, whose solution will

be interpreted as a dynamically generated Cosmological Constant with diffusive

source.

We take the simple example for this generalized theory, and for the functions

L,Λ we take the first order of the Taylor expansion from (3.13), or L = Λ = X

(A1 = 1, A2 = A3 = ... = 0). From the variation according to the scalar field we

get a conserved current jµ;µ = 0:

jα = 2(2χ+ 1)φ,α (3.15)

For a cosmological solution we take into account only change as function of time

φ = φ(t). From that we get that the ’0’ component of the current jα is non zero.

The last variation we should take is according to the metric (using the identities

at appendix A), which gives us a conserved stress energy tensor:

T µν(G) = gµν(−Λ + χ,σΛ,σ) + jµφ,ν − χ,µΛ,ν − χ,νΛ,µ (3.16)

For cosmological solutions the interpretation for dark energy is for term propor-

tional to the metric −Λ+χ,σΛ,σ, and dark matter dust from the ’00’ component of

the tensor jµφ,ν − χ,µΛ,ν − χ,νΛ,µ. Let’s see the solution for Friedman Robertson

Walker Metric:

ds2 = −dt2 + a2(t)[
dr2

1− kr2
+ r2dΩ2] (3.17)

The basic combination becomes L = Λ = X = ∂µφ∂
µφ = −φ̇2. Notice that

there are high derivative equation, but all such type of equations, correspond to

conservation laws. For example, we get that the variation of the scalar field (II)

will give d
dt

(2φ̇φ̈a3) = 0, which can be integrated to:

2φ̇φ̈ =
C2

a3
(3.18)

which can be integrated again to give:

φ̇2 = C1 + C2

∫
dt

a3
(3.19)

The conserved current from eq (3.15) gives us the relation:

2φ̇(2χ+ 1) =
C3

a3
(3.20)
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which can be also integrated to give:

χ̇ =
1

a3

∫
a3dt+

C4

a3
− C3

2a3

∫
dt

φ̇
(3.21)

which provides the solution for the scalar field χ. From (3.16) we get the terms

for DE-DM densities:

ρde = φ̇2 + 2χ̇φ̇φ̈ (3.22)

ρdm =
C3

a3
φ̇− 4χ̇φ̇φ̈ (3.23)

and the pressure of DE: pde = −ρde and DM: pdm = 0. This leads to the Friedman

equations with (3.22)(3.23) as source, and there are a few approximations that we

want to discuss. The first one is the asymptotic solution.

III. Asymptotic solution and stability of the theory

We can solve asymptotically and by the way show the basic stability of the theory

(which should eliminate any concerns related to the formal unboundedness of the

action). First we solve for χ̇ (3.21). We see that the leading term is the fraction

1
a3

∫
a3dt. For asymptotically De-Sitter space, where a(t) ≈ a0 exp (H0t),then we

obtain that there is a unique asymptotic value:

lim
t→∞

χ̇ =
1

3H0

(3.24)

This is in accordance with our expectations that the expansion of the universe

will stabilize the solutions, indeed (3.20) is basically equivalent to the equation of

a particle rolling down a linear potential plus additional negligible terms as a(t)

goes to infinity, the fixed point solution is of course that of constant velocity, when

friction× velocity = force = 1, since friction = 3H, we obtain equation (3.24).

With this information we can check what is the asymptotic value of DE, from

(3.18)(3.19)(3.22). We see that in this limit, the non-constant part of φ̇2 is canceled

by 2χ̇φ̇φ̈, and then asymptotically:

ρde = C1 +O(
1

a6
) (3.25)
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with the same analysis for DM density we obtain that:

ρdm = (C3

√
C1 −

2C2

3H0

)
1

a3
+O(

1

a6
) (3.26)

As the Friedman equation provide a relation between C1 and H0 (the asymp-

totic value of Hubble constant) which is H2
0 = 8πG

3
C1. For negative C2 we have

decaying dark energy, the last term of the contribution for dark energy density is

positive (and the opposite). This behavior, where C2 < 0, has a chance of explain-

ing the coincidence problem, because unlike the standard ΛCDM model, where the

dark energy is exactly constant, and the dark matter decreases like a−3 , in our

case, dark energy can slowly decrease, instead of being constant, and dark matter

also decreases, but not as fast as a−3.

As advanced, this behavior can be understood by the observation that in an

expanding universe a non-covariant conservation of an energy momentum tensor,

which may imply that some energy density is increasing in the locally inertial

frame, does not mean a corresponding increase of the energy density in the co

moving cosmological frame, here in particular the non-covariant conservation of

the dust component of the universe will produce a still decreasing dust density,

although for C2 < 0, there will be a positive flow of energy in the inertial frame

to the dust component, but the result of this flow of energy in the local inertial

frame will be just that the dust energy density will decrease a bit slower that the

conventional dust (but still decreases).

This is yet another example where potential instabilities are softened or in this

case eliminated by the expansion of the universe. As it is known in the case of the

Jeans Gravitational instability which is much softer in the expanding universe and

also in other situations as well [43].

Another application for this mechanism could be to use it to explain the particle

production, ”taking vacuum energy and converting it into particles” as expected

from the inflation reheating epoch. May be this combined with a mechanism that

creates standard model particles.

As we see, the expansion of the universe stabilizes the solutions, such that for
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large times all of them become indistinguishable to ΛCDM, which appears as an

attractor fixed point of our theory, showing a basic stability of the solutions at

large times. Choosing C1 as positive is necessary, because of the demand that the

terms with
√
C1 won’t be imaginary. But for the other constants of integration,

there is only the condition C3

√
C1 >

2C2

3H0
, which gives a positive dust density at

large times.

IV. C2 = 0 solution

Another special case is when C2 = 0. That means that the dark energy of this

universe is constant φ̇2 = C1 and φ̈ = 0. The equation of motions for the dark

energy and dust (3.22)(3.23) are independent on the scalar field χ, and therefore

the density of dust is that universe is C3
√
C1

a3
. This solution says there is no interac-

tion between dark energy and dark matter. This is precisely the solution of Two

Measure Theory [44][45][46], with the action:

S =
1

16πG

∫
d4x
√
−gR +

∫
d4x(Φ +

√
−g)L(X,φ) (3.27)

which provides a unified picture of DE-DM. More about Two Measure Theory

and related models and solutions for DE-DM see a discussion in appendix C. The

FRWM for both theories gives the solution:

ρDE = φ̇2 = C1 (3.28)

ρDust =

√
C1C3

a3
(3.29)

For this trivial case C2 = 0, there is no diffusion effect between dark matter and

dark energy. Because of the current fµ which is the source of the stress energy

tensor T µν(χ) (see (1.5)) is zero, and both stress energy tensors are conserved. This

is equivalence to ΛCDM. The exact solution of the case of constant dark energy

and dust, using (3.28)(3.29) is [47]:

a0(t) = (
C3√
C1

)
1
3 sinh2/3(αt) (3.30)
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where α = 3
2

√
C1. From comparing to the ΛCDM solution, we can obtain how

the observables values related to the constant of integration that come from the

solution of the theory:

ΩΛ =
C1

H
; Ωm =

C1

√
C3

H
(3.31)

where H is Hubble constant for the late universe. For exploring the non-trivial

diffusive effect for C2 6= 0, we use perturbation theory.

V. Perturbative solution

The conclusion from this correspondence is that the diffusion between dark energy

and dark matter dust at the late universe is very small, since that is the effect of

the C2 term, and therefore we can estimate the solution by perturbation theory.

So we obtain that there are two dimensionless terms, which are depending on time

and scale factor, and tell us the ”diffusion rate”:

λ1(t, t0) =
C2

C1

∫ t

t0

dt

a3
(3.32)

λ2(t, t0) =
C2√
C1C3

χ̇(t, t0) (3.33)

where the integration is between two close time t0 and t. For C2 = 0, both λ1 and

λ2 are equal to zero, and there is no dissipative effect, which we saw give us the

ΛCDM model. For any non-zero, but λ1,2 � 1, the stress energy tensor T µν(χ) is not

conserved, and there is a little diffusion effect.

The use of defining these two dimensionless terms, is evident when C2 is small

enough for using perturbation theory. By using λ1 we can write the scalar field

term as φ̇2 = C1(1 + λ). The definition for λ2 is from the assumption that the

leading term in (3.23), whose scale
√
C1C3, is much bigger than the other term

χ̇φ̇φ̈ (with χ̇C2 component, using (3.18)). The total contributions for the densities,

in the context of perturbation theory at the first order are:

ρde = C1(1 + λ1 +
C3√
C1

λ2) +O2(λ1, λ2) (3.34)

ρdm =

√
C1C3

a3
(1− 1

2
(λ1 + λ2)) +O2(λ1, λ2) (3.35)



VI. E.O.M AND SOLUTIONS FORDIFFUSIVE ENERGYWITHOUTHIGHER DERIVATIVES21

We can see from those terms, that in the deviation from the unperturbed

standard solution, the behavior of dark energy and dust are opposite - for rising

dark energy (for example the components are C2 < 0; C1, C3, C4 > 0), the dark

matter amount (a3ρdm) goes lower. Or in case of decreasing dark energy, the

amounts of dark matter goes up (and C1, C2, C3, C4 > 0 ).

VI. E.o.M and solutions for Diffusive energy without

higher derivatives

For the second class of theories we proposed in (1.8) (1.9) (1.10), we can write the

diffusive energy action, without high derivatives:

S =
1

16πG

∫ √
−gR+

∫ √
−gΛ+

∫ √
−gχµ;νT

µν
(χ) +

σ

2

∫ √
−g(χµ+∂µA)2 (3.36)

and as we did before, the stress energy tensor T µν(χ) = gµνΛ. From the variation

with respect to the vector field χµ:

∇µΛ = fµ = σ(χµ + ∂µA) (3.37)

The variations with respect to the scalars A and φ:

fµ;µ = 0 (3.38)

jα = 2(χλ;λ + 1)φ,α; jα;α = 0 (3.39)

as (1.5)(3.15). And finally the stress energy tensor, which comes from variation

with respect to the metric we obtain that:

T µν(G) = gµν(−Λ + χ,λΛ,λ −
1

2σ
Λ,λΛ,λ) + jµφ,ν − χ,µΛ,ν − χ,νΛ,µ +

1

σ
Λ,µΛ,µ (3.40)

Both theories (3.12)(3.36) give rise to similar final equations of motion, besides the

variation according to the metric, which asymptotically for large times behave the

same. The new terms − 1
2σ

Λ,µΛ,µ and 1
σ
Λ,µΛ,µ are negligible at the late universe,

since they go as 1
a6

. For the early universe those terms may be very important,

which will study in future publications.
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The modified model of diffusion, gives rise to the simpler model when σ goes to

infinity. Since, in this case, the extra σ
2

∫ √
−g(χµ +∂µA)2 term forces χµ = −∂µA

(because (χµ + ∂µA)2 = 0 and and we are also disregarding light like solutions for

(χµ + ∂µA) which do not appear relevant to cosmology), i.e. the χµ is a gradient

of a scalar. Therefore the theory of Dynamical time (1.3) with a source (3.36),

becomes a diffusive action with high derivatives (1.4)(3.12).

VII. Some preliminary ideas on Quantization and the

Boundedness of the Euclidean action

Let’s us take the action (3.36), and by integration by parts of the χµ;νT
µν
(χ), and

throwing away total derivatives, we obtain the action:

S =
1

16πG

∫ √
−gR+

∫ √
−ggαβφ,αφ,β−

∫ √
−gχµ∇νT

µν
(χ)+

σ

2

∫ √
−g(χµ+∂µA)2

(3.41)

We notice that there are no derivatives acting on χµ field at this action, and

therefor χµ is Lagrange multiplier. It is legitimate to solve χµ from it’s equation

of motions, and insert the result back into th action. The equation of motion

according the χµ variation is:

0 = −∇νT
µν
(χ) + σ(χµ + ∂µA) (3.42)

Solving for χµ and inserting back into the action gives:

S =
1

16πG

∫ √
−gR+

∫ √
−ggαβφ,αφ,β−

1

2σ

∫ √
−g(∇νT

µν
(χ))

2+

∫ √
−g∂νA∇αT

να
(χ)

(3.43)

Considering the functional integral quantization for this theory will give a few

integrations over field variables. The functional integral over the scalar A gives

rise to a delta function that enforces the covariant conservation of the current

∇µT
µν
(χ) = f ν . The Euclidean functional integral will be:
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Z =

∫
Dφδ(∇νf

ν) exp [
1

2σ

∫
d4x
√
gfµf

µ −
∫
d4x
√
ggµνφ,µφ,ν ] (3.44)

This partition function excluding the Hilbert Einstein action term, which has

its own problems that are not special to this paper. In the full theory we need to

include the integration over all the Euclidean geometries.

We can see that the integration measure is positive definite, and the argument

of the integrals in the exponents are negative definite in a Euclidean signature

space time sign[+,+,+,+], following Hawking approach [[49]] . The terms fµf
µ

and φ,µφ
,µ are positive definite, and by choosing the proper sign of σ, the action

is positive definite, and the partition function is convergent. The original theory

we formulated in (3.12) is equivalent to (3.36) when σ goes to minus infinity.

Therefore, this proof is valid for both theories. However, the simple model

(3.12) has to be regularized by first taking finite and negative σ, and then letting

the σ goes to minus infinity. This is a preliminary approach, because in the quan-

tum theory, there are many issues concerning how one goes from the Hamiltonian

formulation to the path integral formulation, etc. But we see that the quantum

theory has a chance to be well defined.

VIII. Diffusive dark energy and dust by Calogero

The solution for Calogero suggestion we presented at the beginning (3.1)(3.2) leads

to the following dependence between the densities of dark matter and dark energy

and the scale parameter:

ρde = C1 + C2

∫
dt

a3
(3.45)

ρdm =
C3

a3
− C2t

a3
(3.46)

A complete set of solutions of these differential equations (in the form of Friedman

equations) is very complicated, but one phenomenological solution for this theory

predicts a DE-DM similar ratio to the observed one [29]. Both approaches (which

are described in this paper and in Calogero’s theory) become very similar when
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the time derivative of the scalar field is low χ̇C2 � 1. In that case, dark energy

density (3.22) becomes:

ρde = C1 + C2

∫
dt

a3
(3.47)

The dark matter dust will reduce to the term (3.23):

ρdm =
C3

a3
φ̇ (3.48)

and for those equation implies a diffusion between dark energy and dark matter

dust, like Calogero has found. In this model they assumed that the dark energy

and the dust are not separately conserved.

We can see that our asymptotic solution does not fit with Calogero’s model, for

general C2. As opposed to equation (3.2), in our asymptotic (3.25)(3.26) solution

the dark energy density becomes constant, providing much closer behavior to the

standard ΛCDM model. The main reason for this nonequivalence between those

theories, is the role of the χ̇ field, which has the effect of the making the exchange

between Dark Matter and Dark Energy less symmetric than in the φCMD model.

In our case, the χ̇ makes the decay of DE much lower than in φCDM, and keeps

the DM evolution still decreasing as ΛCDM (a−3).

IX. Discussion, Conclusions and Prospects

In this paper we have generalized the TMT and the dynamical space time theory,

which imposes the covariant conservation of an energy momentum tensor. By de-

manding that the dynamical space time 4-vector χµ, that appears in the dynamical

space time theory be a gradient ∂µχ. We don’t obtain the covariant conservation

of energy momentum tensor that is introduced in the action. Instead we obtain a

current conservation. The current being the divergence of this energy momentum

tensor. This current that drives the non-conservation of the energy momentum

tensor, is dissipated in the case of an expanding universe. So we get an asymptotic

conservation of this energy momentum tensor. Because the four divergence of the

covariant divergence of both the dark matter and dark energy is zero, we can make
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contact with the dissipative models of [13][14]. This can give deeper motivation

for these models and allow the construction of new models.

This energy tensor, in not the gravitational energy tensor which appears in

the right hand side of the Einstein tensor, in the gravity equations, but the non-

covariant conservation of the energy momentum tensor that appears in the action

induces an energy momentum transfer between the dark energy and dark matter

components, of the gravitational energy momentum tensor, in a way that resembles

the ideas in [29]. But they don’t provide any action principle to support their ideas.

Although the mechanism is similar, our formulation and theirs are not equivalent.

From the asymptotic solution we obtain that when C2 < 0, unlike the standard

ΛCDM model, where the dark energy is exactly constant, and the dark matter

decreases like a−3 , in our case, dark energy can slowly decrease, instead of being

constant, and dark matter also decreases, but not as fast as a−3. This special

property, is different in the φCMD model, where the exchange between DE and

DM is much stronger in the asymptotic limit.

This behavior, where C2 < 0, has a chance of explaining the coincidence prob-

lem, because unlike the standard ΛCMD model, where the dark energy is exactly

constant, and the dark matter decreases like a−3 , in our case, dark energy can

slowly decrease, instead of being constant, and dark matter also decreases, but

not as fast as a−3. This behavior can be understood by the observation that in

an expanding universe a non-covariant conservation of an energy momentum ten-

sor, which may imply that some energy density is increasing in the locally inertial

frame, does not mean a corresponding increase of the energy density in the co

moving cosmological frame, here in particular the non-covariant conservation of

the dust component of the universe will produce a still decreasing dust density,

although for C2 < 0, there will be a positive flow of energy in the inertial frame

to the dust component, but the result of this flow of energy in the local inertial

frame will be just that the dust energy density will decrease a bit slower that the

conventional dust (but still decreases).

We have seen that in perturbation theory, the behavior of dark energy and



26CHAPTER 3. INTERACTINGDIFFUSIVE UNIFIED DARK ENERGYANDDARKMATTER

dust are different - for rising dark energy (for example the components are C2 <

0; C1, C3, C4 > 0), the dark matter amount (a3ρdm) goes lower. Or in case of

decreasing dark energy, the amounts of dark matter go up (and all the constants

of integration are positive).

For another suggestion for diffusive energy action, which does not produce

high derivative equations, we have kept the χµ field as a 4-vector (not a gradient

of a scalar), but now χµ appears in another term at the action, in addition to a

scalar field A. The equations of motion produce again a diffusive energy equation,

but with the additional contribution of two terms, that are negligible for the late

universe.

A preliminary argument about the good behavior of the theory at the quantum

level is also proposed for both theories. Some additional investigations concerning

the quantum theory could be developed by using the W.D.W equation, in the

Mini-super space approximation.

Also in the future we will study not only the asymptotic behavior, but the full

numerical solution of the dark energy and dark matter components, starting from

the early universe, for all the theories we suggested.



Chapter 4

Appendixes

I. Appendix A - identities

∂gαβ

∂gµν
= −1

2
(gαµgβν + gανgβµ)

∂Γτλσ
∂gµν

= −1

2
(gµτΓνλσ + gντΓµλσ)

∂Γτλα
∂gµν,σ

=
1

4
[gµτ (δναδ

σ
λ + δνλδ

σ
α) + gτν (δµαδ

σ
λ + δµλδ

σ
α)− gτσ (δµαδ

ν
λ + δµλδ

ν
α)]

Tαβ(G) =
−2√
−g

∂
(√
−gχµ;νT

µν
(χ)

)
∂gαβ

+
2√
−g

∂

∂xσ

∂
(√
−gχµ;νT

µν
(χ)

)
∂gαβ,σ

II. Appendix B

An equivalent expression for (1.5), when T µν(χ) is formulated as a perfect fluid in

FRWM space is:

ρ̇+ 3
ȧ

a
(ρ+ p) =

C2

a3

27
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when C2 = 0, the stress energy tensor is conserved, and there is no diffusive effect.

For late times, where the scale parameter goes to infinity, we obtain that the

diffusive effect vanishes.

III. Appendix C

TMTs also have many points of similarity with the ‘Lagrange Multiplier Gravity

(LMG)’ [50, 51]. The Lagrange multiplier field in LMG enforces the condition

that a certain function be zero. In the TMT this is equivalent to the constraint

that requires some lagrangian to be constant. The two measure models presented

here, are different to the LMG models of [50, 51], and provide us with an arbi-

trary constant of integration for the value of a given lagrangian, this constant of

integration, if non zero, can generate spontaneous symmetry breaking of scale in-

variance, which is present in the theory for example. Recently a lot of interest has

been attracted by the so called ”mimetic” dark matter model proposed in [52].

The latter employs a special covariant isolation of the conformal degree of freedom

in Einstein gravity, whose dynamics mimics cold dark matter as a pressure-less

”dust”. Important questions concerning the stability of of ”mimetic” gravity are

studied in Refs.[53], [54] also a formulates a generalized mimetic tensor-vector-

scalar ”mimetic” gravity which avoids those problems is studied. In [55] the idea

is applied to inflationary scenarios.

Most versions of the mimetic gravity, except for [53] appears equivalent to a

special kind of Lagrange multiplier theory or TMT models that were known before,

where the simple constraint that the kinetic term of a scalar field be constant. This

of course gives identical results to a very special TMT, where the lagrangian that

couples to the new measure is the kinetic term of this scalar field.
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