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Abstract

A gravitational theory involving a vector field whose zero component has the prop-
erties of a dynamical time Y, is studied. The variation of the action with respect
to the vector field gives the covariant conservation of an energy momentum tensor.
At the first chapter, cosmological solutions with a scalar field behaving as radia-
tion using this theory are obtained. The solution requires the spacial curvature of
the universe k, to be zero, unlike the standard radiation solutions, which do not
impose any constraint on the spacial curvature of the universe. This is because
only such k& = 0 radiation solutions poses a homothetic Killing vector. This kind
of theory can be used to generalize electromagnetism and other gauge theories, in
curved space time, and there are no deviations from standard gauge field equation
(like Maxwell equations) in the case there exist a conformal Killing vector. But
there could be departures from Maxwell and Yang Mills equations, for more general
space times. In the second chapter we generalize ideas of unified Dark Matter Dark
Energy in the context of propose two formulations of this idea: I - by demanding
that this vector field be the gradient of a scalar, II - by considering the dynamical
space field appearing in another part of the action. Then the Dynamical space
time Theory becomes a theory of Diffusive Unified Dark Energy and Dark Matter.
These generalizations produce non conserved energy momentum tensors instead
of conserved energy momentum tensors which leads at the end to a formulation of
interacting DE-DM dust models in the form of a diffusive type interacting Unified
Dark Energy and Dark Matter scenario. We solved analytically the theories for
perturbative solution and asymptotic solution, and we show that the ACDM is a

fixed point of these theories at large times. Also a preliminary argument about the

il
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good behavior of the theory at the quantum level is proposed for both theories.
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Chapter 1

Introduction

There have been theoretical approaches to gravity theories, where a fundamental
constraint is implemented, like in Two Measures Theories [1]-[10] one works, in
addition to the regular measure of integration in the action \/—g, also with another
measure which is also a density and which is also a total derivative. In this case,
one can use for constructing this measure 4 scalar fields ¢,, where a = 1,2, 3,4.
Then we can define the density & = 50‘5755abcd8agoaaggpbavgoca(ggod, and then we can

write an action that uses both of these densities:

S = /d4x<I>£1 +/d4x\/—g£2 (1.1)

As a consequence of the variation with respect to the scalar fields ,, assuming

that £, and Ly are independent of the scalar fields ¢,, we obtain that:

A9 Ly =0 (1.2)

where A2 = %% 4,.405040, 00504 Since det[A2] ~ ®3 as one easily see, then
that for ® # 0 ,(1.2) implies that £; = M = Const. This result can expressed as
a covariant conservation of a stress energy momentum of the form T(’f{)”) = Lig",
and using the 2nd order formalism, where the covariant derivative of g, is zero,
we obtain that V#T(‘fb”) = 0, implies 9,£; = 0. This suggests generalizing the

idea of the Two Measures Theory, by imposing the covariant conservation of a
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more nontrivial kind of energy momentum tensor, which we denote as 7' (‘; l; [11].
Therefore, we consider an action of the form:
1

S =8y +Skr = /d4x\/—gxm,, T d*v/—gR (1.3)

where .., = Oy Xy — Ff;ux,\. If we assume T&") to be independent of x,, and having

Ffw being defined as the Christoffel Connection Coefficients, then the variation
with respect to x, gives a covariant conservation: VMT(’;< V) = 0.

Notice the fact that the energy density is the canonically conjugated variable

to x°, which is what we expect from a dynamical time (here represented by the

dynamical time x°). For a related approach where a set of dynamical space-time

coordinates are introduced, not only in the measure of integration, but also in the

lagrangian, as [12].

I. DIFrFUSIVE ENERGY THEORY FROM ACTION PRINCIPLE

Let’s consider a 4 dimensional case, where there is a coupling between a scalar

field x, and a stress energy momentum tensor T& ’;:

S = /d4x\/—gx7u;,,T&V) (1.4)

where , y4; v are covariant derivative of the scalar field. When F/*W is being defined
as the Christoffel Connection Coefficients, the variation with respect to x gives a

covariant conservation of a current f*:
T“” 5V, ff =0 (1.5)

which it is the source of the stress energy momentum tensor. This corresponds to
the ”dynamical space time” theory (1.3), where the dynamical space time 4-vector
X is replaced by a gradient of a scalar field x. In the ”dynamical space theory” we
obtain 4 equations of motion, by the variation of x,, which correspond to covariant
conservation of energy momentum tensor V;LT(’;< 1; = (. By changing the 4 vector to
a gradient of a scalar d,x at the end, what we do is to change the conservation of

energy momentum tensor to asymptotic conservation of energy momentum tensor
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(1.5) which corresponds to a conservation of a current V, f* = 0. In an expanding

universe, the current f, gets diluted, so then we recover asymptotically a covariant

conservation law for T& l; again. The equation (1.5) has a close correspondence with

the one obtained in a ”diffusion scenario” for DE-DM exchange [13][14].
This stress energy tensor is substantially different from stress energy tensor we

%TGT(“GV) = R" — 1" R. In this case, the stress energy

all know, which is defined as

momentum tensor T& l; is not conserved (but there is some conserved current f”,

which is the source to this stress energy momentum tensor non conservation), here
v

there is some conserved stress energy tensor 7; ("G), which comes from variation of

the action according to the metric:

T = o= i VT =0 (1.6)

The lagrangian L£,; could be the modified term X,W,T(‘;< l;, but as we will see, it
could be added to more action terms. Using different expressions for T (‘; V) which
depend on other variables, will give the connection between the scalar field x and
those other variables.

Notice that for the theory the shift symmetry holds, and

X = X+ O TH = TS + ¢ Cr (1.7)

will not change any equation of motion. when C,,, Cr are some arbitrary constants.
This means that if the matter is coupled through its energy momentum tensor as in
(1.7), a process of redefinition of the energy momentum tensor, will not affect the
equations of motion. Of course such type of redefinition of the energy momentum
tensor is exactly what is done in the process of normal ordering in Quantum Field

Theory for example.

II. DIFFUSIVE ENERGY THEORY WITHOUT HIGH DERIVATIVES

Another model that does not involve high derivatives is obtained, by keeping x,, as
a 4-vector, which is not gradient, but we introduce the vector field x,, in another

part of action:
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St = [ dlov=gum e + 5 [ dey=glu + o APds (19

where A is another scalar field. Then from a variation of respect to x, we obtain:
VuT(’;S =o(x* +0"A) (1.9)

s (1.5) , where the source is:
fr=a(x"+0"A) (1.10)

But in contrast to (1.5), where f, appear as an integration function, here f*
appears as a function of the dynamical fields. From the variation with respect to
A, we indeed obtain that the current x* + 0*A in conserved, which means again

s (1.5), that VMV,,T(‘;V) = 0, but does not tell us that all of equation of motion
are the same. Nevertheless, asymptotically, for the late universe, both theories
coincide.

To start we discuss a toy model in one dimension describing a system that allows
the non-conservation of a certain energy function, which increases or decreases
linearly with time, while there is another energy which is conserved. It is of interest
to compare with a mechanism that produces non conserved energy momentum
tensors which leads to a formulation of interacting DE-DM models, however, there

are crucial differences.



Chapter 2

Radiation solutions

Based on Mod.Phys.Lett. A31 (2016) no.33, 1650188. DOI: 10.1142/S0217732316501881

I. SOLUTIONS WITH HOMOTHETIC VECTOR FIELD

Interesting particular cases of cosmological solutions are obtained when the vector

filed x* has the property of being a homothetic vector field:

X
§guy (21)

LyGuw = Xpw + Xvip =
when y = X;)\)\ is a constant trace of x,, (for homothetic Killing vector).
The effective stress energy momentum tensor, from variation of the metric using
the action (1.3) (using the identities in appendix A) is:
X 1

v a (0% 4 1 14
g+ gaga—Tﬁ 4XT&)—§(XAVA)T&) (2.2)

when T'(x) = T} (x) is the trace of (- We see that the stress-energy tensor

s XT(x)
Tel}f - 8

T!:; is related to original T“ but it is not equal to it. Here T/} is the stress-
energy momentum tensor that appear in the right side of Einstein equation 7"} off =
RM — 3 Ly R. As we can see, there is a simple linear relation between zXT& ) and
% (X’\V ,\) T& ") in some spaces the last expression could be proportional to 7T’ & l; if
such a tensor is an homogeneous function, by using Euler’s homogeneity theorem,

which it is satisfied for power law functions of time (in Cosmological solutions). In

5
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addition to conservation of T(‘; l; the original Te‘}yf also should be conserved. This
two conditions are co-exist on the same metric of space-time.

In a context of Cosmology, because of the presence of the term 1 (XAV A) T& l; we

2
are interested in using the Friedman-Lemaitre-Robertson-Walker (FLRW) metric,
with spacial curvature £k = 0, which is the only one that gives the property of
proportionality between those two kinds of stress-energy tensors T& '; and T/,
because only in the case k = 0, one can obtain generically power law behaving.
Otherwise, we get a contradiction between the two conservation of stress-energy
momentum tensors. We find this mathematical condition in our universe, that
from measurements we sure that there isn’t spacial curvature, or if it’s exists, it is
very small. From our theory, this is a natural consequennce. The only exeption to
this rule, would be a very special case, where a(t) = ¢, and k could non zero (like
for example, the Milne universe). This will be discussed later.

For this metric, with k& = 0, the scale parameter should be a(t) = t*, when « is

the index of the scale parameter: o = % for radiation, and o = % for dust (dark

matter). With the homothetic vector filed of the metric, using (2.1) we get:

V=21 -a)?) (2.3)

=

For this space we obtain that: X, = %g,, with no anti-symmetrical contribution

to the tensor x,..,.

II. RADIATION LIKE SCALAR FIELD

Some approches in the context of Two Measure Theories [15] [16] [17] have shown
that a scalar field can act as dust (dark matter). Here we will see that in our
approach a scalar field can have the behavior of radiation. We choose a stress
energy tensor of scalar filed ¢, which doesn’t have a trace T'(x) = 0, therefore we

choose:

v a v 1 vV«
T = ("9 — 1979 N at s (2.4)
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From the Cosmological Principle the dependence of the scalar filed is only a
function of time ¢(t). From (2.4) we get Tﬁ(x) = ppdiag{l,-1/3,-1/3,-1/3}

when p(x) = (£¢)%. From conservation of T{y we get p(x) ~ a~*, like radiation.

From variation of ¢ we get a covariantly conserved current:

Jiy = (X + X)) ¢ — %XW (2.5)

The conservation of the current ]’L(X) = 0 may be a condition for the vector
field x*. For the ansatz (2.1) of homothetic Killing vector we get jé‘x) = 0. This
obviously satisfies the covariant conservation of (2.5). From the variation of the

metric we get the effective stress-energy momentum tensor,which is the right hand

side of the Einstein Tensor, then (2.2) reduce to the term:

12 X 112 1 A 2 1 Ay

Tirr = =510 — 5 (VA T = =5 (AT (2.6)

Two Friedman equation’s are reduced to one, because of the tracelessness of

the stress-energy tensor. Then we take the ’00’ component for the and p(x) ~ a™,
then we get:

X 1.0 a—1
eff = —=(1+ =t— = 2.7
pess = =5 (1 + 5t5)p00 = X—5 P (2.7)

where the Hubble constant is defined as H = g (for a power law universe
H = «/t). That means p.ss is proportional to p(x). We can get from that
a o t'/2 because of the relation p.;; oc H?, which cames from Einstein equation,
for FRLW metric. The constant proportionality factor between p.ss and p(x) is
—%. We understand that the physical meaning of this theory is that a scalar field
could act like a radiation field, and could co-exist with the backround radiation in

the early universe.

III. ELECTROMAGNETIC RADIATION

Another possibilty to explore is when T(‘; l; will be like the standard Electromagnetic

stress-energy mommentum tensor:
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1
Th = FreFy — Zg“"FaﬁFo‘ﬁ (2.8)

where F,,, = 9,A, —0,A,. From a variation of A, we get some anti-symmetric

tensor, which can be interpreted as a “dielectric” field tensor:

DWW — _XM'BFZ%/ + XV;ﬂFéL _ XB;VFéL + Xﬁ;qu — (2.9)
which has no sources (V,D* = 0). For the ansatz (2.1) of homothetic Killing
vector we get D* = 0 , like the effective current of the radiation like scalar field.
In this case we will get the same identity like (2.6-2.7), and the theory with a
dynamical time will give the same predictions about the behavior of the expansion
of the universe, as in standard theory. Unlike the case of a scalar field, which is
automatically homogeneous and isotropic, now for the A, field, we obtain that in
order to regain homogenity and isotropy, we have to consider a statistical average.
For a more general gauge theory, without any scalar fields, we may include the
traditional action for E.M field and the action from (1.3). So the total action will
be:

S = [ el =auu Tl + 1oV IR~ 3VTIRaF] (210

Without the last term F,5F*? | Maxwell equations are not obtained, even for
spaces where the ansatz (2.1) of homothetic Killing vector applies, although the
energy momentum conservation of 7 (’; ") is obtained. If the space does not satisfies
the ansatz (2.1), then there will be a deviation from Maxwell equations. This

deviation will take the following form:
D — _Xu;ﬂFg + XV;BFEL _ Xﬂ;qu + X'B;”Fg — YF* — v (2.11)

where V,D* = 0. If the space satisfies the ansatz (2.1) we get the regular
Maxwell equations. When the space time does not satisfy the ansatz (2.1), it
aquires non-trivial diaelectric properties, that can exist close to charged massive
body or black holes for example, which will change the general behavior of elec-

tromanetic field in curved space-time. The stress energy tensor for the case of
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homothetic Killing vector is:

17 1 v
T, =T - §(XAT(’;));A (2.12)

For non-abelian Yang-Mills gauge theories the same effect takes place, where £, =
O Ay — 0, AL + g f“bCAi’/lC we will get that similar results analogous to those

v )

considered in the abelian case.

IV. SITUATION FOR WHICH T/, =0 BUT T(’;”) =+ 0

Looking for example at (2.12), with respect to cosmological solutions, like FRWM
we get perr = [1+ XO‘T_I] P(x)- In a particular case, the effective gravitational energy
is zero T, = 0, but it contains radiation which is represented by T& ") and y = 4.
In this case we get that k doesn’t have to be zero, in order to have the non trivial
homogenity 1 (x*V,) T& Z; = nT(’; '3 which we discused at (2.2). Taking the case
of Milne Universe (k = —1 and a(t) ~ t), and taking the case of homothetic
Killing vector which is of the form x* = ¢(¢,0,0,0), we obtained that p() ~ a™*,
and because it’s a flat universe, and p() ~ t=*, which is a boundary between

inflationary behavior (o > 1) and non-inflationary (1 > « > 0) behavior.

V. (CONCLUSIONS

We have found that a generalization of TMT gives rise to two non trivial energy
momentum tensors which are related but not equal in general. Because of the
vector field variation, it enforces its covariant conservation of T& ”) in addition
to Te’}’} . We have studied this for the case of the vector field as homothetic
Killing vector, and using 7T} (’; '; of radiation or radiation like scalar filed Cosmological
solutions. In the radiation era of the universe, the Te’}yf stress energy tensor could
co-exist with the original radiation, which is the source of the Backround Cosmic
Radiation. The solution, which could be a model for the early universe, requires no

spacial curvature for the universe, because those solutions require homogenity of

the dependence on time of the scale factor a(t) = t* in order for the T{7 and T7}}
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to be proportional to each other. This mathematical explanation singles out zero
spacial curvature. So it may be an alternative explanation for negligible spacial
curvature instead of inflation [18]-[23]. In any case, inflation still takes care of
other problems, like the horizon problem.

These kind of models could be used in the context of inflation. It will be
interesting to add a potential to this scalar filed, and see if one can reproduce an
inflationary behavior, also a quantum behavior of this field, and its effects on the
first moments of the universe as an inflationary model.

When T(’; ”) is a standard stress energy tensor of gauge filed, we obtain similar
conclusions. Also this could lead to a modified electromagnetism and similar sit-
uations for other gauge theories in curved space time. We would like to find the

spherically symmetric charged solutions like charged black hole.



Chapter 3

Interacting Diffusive Unified Dark
Energy and Dark Matter

Based on The European Physical Journal C
DOI: 10.1140/epjc/s10052-017-4939-x.

The best explanation, and fitting with data for the accelerated expansion of
our universe, is the ACDM model, which tells us that our universe contains 68
percent of dark energy, and 27 percent of dark matter. This model present two big
questions: The Cosmological Constant problem [24][25][26] - why there is a large
disagreement between the vacuum expectation value of the energy momentum
tensor which comes from Quantum Field Theory and the observable value of dark
energy density? and the Coincidence problem [27] - why observable values of dark
energy and dark matter densities in the late universe are of the same order of
magnitude?

In order to solve this problem, many approaches emerged [28]. One interesting
suggestion was a diffusive exchange of energy between dark energy and dark matter
made by Calogero[13][14], Haba [29] and others, with some solution to cosmic
problems. The basic notion is that diffusion equation (or more exactly - Fokker
Planck equation [30][31], which describes the time evolution of the probability
density function of the velocity of a particle under the influence of random forces),

implies a non-conserved stress energy tensor 7", which has some current source

11
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j*:
vV, " = 30" (3.1)

where o is the diffusion coefficient of the fluid. This generalization is Lorentz
invariant and fit for curved space time. The current j* is a time-like covariantly
conserved vector field and its conservation tells us that the number of particles in
this fluid is constant.

However, in the gravitational equations, the Einstein tensor is proportional to
a conserved stress energy tensor V,T(5) = 0, we labeled with "G” [32][33]. So
Calogero come up with what he called #CDM-model, which achieves a conserved
total energy momentum tensor appearing in the right hand side of Einstein’s equa-
tion. But for the dark energy and dust stress tensors there is some source current
for those tensors (however the sum is conserved):

VT = VTl = TV =0 (3.2)

As Calogero mentioned [13], the diffusion model introduced in his paper lacks
an action principle formulation. Therefore we develop from a generalization of
Two Measure Theories [1]-[9], a ”diffusive energy theory” (1.4)-(1.10), which can
produce on one hand a non-conserved stress energy tensor (T(’;‘( V)), as in (3.1), and
on the other hand a conserved stress energy tensor (T(“Cl;)) that we know from the
right hand side of Einstein’s equation. As we will see, this suggested theory is
asymptotically different from the CDM model, and more close in this limit to the
standard ACDM.

I. A MECHANICAL SYSTEM WITH A CONSTANT POWER AND

DIFFUSIVE PROPERTIES

In order to see the applications of the ideas, we start with a simple action of
one dimensional particle in a potential V(x). We introduce a coupling between

the total energy of the particle %mx’Z + V(z) and the second derivative of some



I. AMECHANICAL SYSTEM WITH A CONSTANT POWER AND DIFFUSIVE PROPERTIES]:

dynamical variable B:

S = /B[%m:ﬁ + V(x)]dt (3.3)

In order to see the applications of the ideas, we start with a simple action of
one dimensional particle in a potential V(x). We introduce a coupling between
the total energy of the particle %ma’:g + V(z) and the second derivative of some
dynamical variable B:

S— / B[%mﬁ V() dt (3.4)

The equation of motion according to the dynamical variable B, gives that the
second derivative of the total energy is zero. In other words, the total energy of

the particle is linear in time:

1
§mx'2 +V(r)=E(t) = Pt+ E, (3.5)
where P is a constant power which given to the particle or taken from it, and Ej
is the total energy of the particle at time equals zero.

From the equation of motion according to coordinate x we get a close connection

between the dynamical variable B and the coordinate of the particle:
mi—— +mi—r = V'(2)— (3.6)

with the equation (3.5) give:

B \2m(E(lt) — V() 2(BE(t)—V(x)) '

To get a feeling of these kind of theories, let us look at the case of a harmonic
oscillator V (z) = 1kx?. First of all, we see from eq (5) and the condition that the
right hand side be positive, since the left hand side obviously is positive, we get
that there is a boundary time 7 = —%, that for P > 0 we get ¢t > 7, and for P < 0
there is a maximal time ¢ < 7. Let us consider the case the power P is positive.
The equations of motion in that case will not oscillate, but will grow exponentially
until the "Pt” term present in equation (3.5) dominates, when (x?) oc ¢. This is

very similar to a Brownian motion behavior.
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The momentums for this toy model are:

oL .
= = rB .
T = 5 = mi (3.8)
oL d oL d
™= oE T dan - atW (3.9)
oL
== — E(t 3.10
b=z = E() (3.10)

Using Hamiltonian formalism (with second order derivative [34][35]) we get that

the hamiltonian of the system is:

2

H = in, + Brp + Bllg — L = Wx\/E(HB —V(z)) + Brg = Const ~ (3.11)

Since the action in not dependent explicitly on time, the hamiltonian is con-
served. So even if the total energy of the particle is not conserved, there is the
conserved hamiltonian (3.11). This notion is equivalent to non-conserved stress
energy tensor T(’; ”), in addition to the conserved stress energy T(‘g), which appear
in Einstein equation.

Notice that this hamiltonian is not necessarily bounded from below. However,
there are only mild instabilities in the solutions. For example, for the case V(x) =
0, we get © B o t2. In the case of a harmonic oscillator, where V(z) = %k:cQ,
there is an even milder behavior at large times: z o ¢ which resemble to a diffusive
behavior, or Brownian motion. This behavior is a mild kind of instability, since
no exponential growth appears, only power law growth. The related model in
cosmology, as we will see, because of the coupling to an expanding space time
shows dumped perturbations, towards a fixed point solution, where it coincides
with the standard ACDM model. This is because whatever potential instabilities
the model may have in a flat background, the expanding space (most notably the
de Sitter space) has the counter property of red shifting any perturbation, this
effect overcomes and cancels these rather soft instabilities (power law instabilities
that may exist for the solution in flat space) as we will see in section VII. The

exponential expansion is known to counter all kind of unstable behaviors, for

example goes against the gravitational instability and a big enough cosmological
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constant can prevent galaxy formation, our case is much simpler than that but
the basic reason is the same. In this context it is important to notice that in an
expanding universe a non-covariant conservation of an energy momentum tensor,
which may imply that some energy density is increasing in the locally inertial
frame, does not mean a corresponding increase of the energy density in the co
moving cosmological frame. For example, a non-covariant conservation of the dust
component of the universe, in the examples we study, will produce a still decreasing
dust density although there is a positive flow of energy in the inertial frame. The
result of this flow of energy in the local inertial frame is going to be just that
the dust energy density decreases a bit slower that the conventional dust in the
co-moving frame.

Independently of this, we will see how it is possible to construct theories with

positive Euclidean action that describe Diffusive DE-DM unification.

II. GRAVITY, "K-ESSENCE” AND DIFFUSIVE BEHAVIOR

Our starting point is the following non-conventional gravity-scalar-field action,
which will produce a diffusive type of interacting DE-DM theory:

— ﬁ d*z/—gR + / d*o/—gL(¢, X) + / d4x\/—_gX,WT&”) (3.12)
with the following explanations for the different terms: R is the Ricci scalar
which appears in; Einstein-Hilbert action. L(¢, X) is general-coordinate invari-
ant Lagrangian of a single scalar field ¢ ,which can be of an arbitrary generic "k-
essence” type: some function of a scalar field ¢ and the combination X = 9,¢0"¢

[40][41][42]): N
L6, X) =D Au(d)X" =V (9) (3.13)
N=1
As we will see, this last action will produce a diffusive interaction between DE-

DM type theory. For the ansatz of T(’; V) we choose to use some tensor which is

proportional to the metric, with a proportionality function A(¢, X):

T&V) = g"A(p, X) = S(X) = /d4$ADX (3.14)
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From the variation of the scalar field x we get: OA = 0, whose solution will
be interpreted as a dynamically generated Cosmological Constant with diffusive
source.

We take the simple example for this generalized theory, and for the functions
L, \ we take the first order of the Taylor expansion from (3.13), or L = A = X
(A =1, Ay = A3 = ... = 0). From the variation according to the scalar field we

get a conserved current Jh, =0
Ja=2(0x +1)¢q (3.15)

For a cosmological solution we take into account only change as function of time
¢ = ¢(t). From that we get that the 0’ component of the current j, is non zero.
The last variation we should take is according to the metric (using the identities

at appendix A), which gives us a conserved stress energy tensor:
T(“LGI,/) = g#l/(_A + X,O’A’U) + ju¢,u _ X,HA,V . X,ZIA,# (316)

For cosmological solutions the interpretation for dark energy is for term propor-
tional to the metric —A+x?A ,, and dark matter dust from the 00’ component of
the tensor j*¢" — x*AY — x'YA*. Let’s see the solution for Friedman Robertson

Walker Metric:

dr?

1— kr2
The basic combination becomes £L = A = X = 0,00"¢ = —¢%. Notice that

ds® = —dt* + a*(t)] + r2dQ?] (3.17)

there are high derivative equation, but all such type of equations, correspond to
conservation laws. For example, we get that the variation of the scalar field (II)

will give %(2q5¢§a3) = 0, which can be integrated to:

. C
2¢¢::-E§ (3.18)
which can be integrated again to give:
- dt
&=Q+@/$ (3.19)

The conserved current from eq (3.15) gives us the relation:

. Cs

26(0x +1) = — (3.20)
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which can be also integrated to give:

1 dt
X=—= s GG

— 21
as ad  2a3 ) (3.21)

which provides the solution for the scalar field x. From (3.16) we get the terms
for DE-DM densities:

Pae = ¢+ 2X 09 (3.22)
C - -
Pam = a_§¢ — 4xd (3.23)

and the pressure of DE: pge = —pge and DM: pg,,, = 0. This leads to the Friedman
equations with (3.22)(3.23) as source, and there are a few approximations that we

want to discuss. The first one is the asymptotic solution.

III. ASYMPTOTIC SOLUTION AND STABILITY OF THE THEORY

We can solve asymptotically and by the way show the basic stability of the theory
(which should eliminate any concerns related to the formal unboundedness of the
action). First we solve for x (3.21). We see that the leading term is the fraction
& [a*dt. For asymptotically De-Sitter space, where a(t) ~ agexp (Hot),then we

obtain that there is a unique asymptotic value:

.. 1

This is in accordance with our expectations that the expansion of the universe
will stabilize the solutions, indeed (3.20) is basically equivalent to the equation of
a particle rolling down a linear potential plus additional negligible terms as a(t)
goes to infinity, the fixed point solution is of course that of constant velocity, when
friction x velocity = force = 1, since friction = 3H, we obtain equation (3.24).

With this information we can check what is the asymptotic value of DE, from
(3.18)(3.19)(3.22). We see that in this limit, the non-constant part of ¢? is canceled

by 2xé¢, and then asymptotically:

1
Pde = 01 + 0(5) (325)
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with the same analysis for DM density we obtain that:
205 1 1
Pam = (C53/C1 — ==2)= 4+ O(—) (3.26)

As the Friedman equation provide a relation between C; and Hj (the asymp-
totic value of Hubble constant) which is HZ = %Cl. For negative Cy we have
decaying dark energy, the last term of the contribution for dark energy density is
positive (and the opposite). This behavior, where Cy < 0, has a chance of explain-
ing the coincidence problem, because unlike the standard ACDM model, where the
dark energy is exactly constant, and the dark matter decreases like a2 , in our
case, dark energy can slowly decrease, instead of being constant, and dark matter
also decreases, but not as fast as a=3.

As advanced, this behavior can be understood by the observation that in an
expanding universe a non-covariant conservation of an energy momentum tensor,
which may imply that some energy density is increasing in the locally inertial
frame, does not mean a corresponding increase of the energy density in the co
moving cosmological frame, here in particular the non-covariant conservation of
the dust component of the universe will produce a still decreasing dust density,
although for C; < 0, there will be a positive flow of energy in the inertial frame
to the dust component, but the result of this flow of energy in the local inertial
frame will be just that the dust energy density will decrease a bit slower that the
conventional dust (but still decreases).

This is yet another example where potential instabilities are softened or in this
case eliminated by the expansion of the universe. As it is known in the case of the
Jeans Gravitational instability which is much softer in the expanding universe and
also in other situations as well [43].

Another application for this mechanism could be to use it to explain the particle
production, "taking vacuum energy and converting it into particles” as expected
from the inflation reheating epoch. May be this combined with a mechanism that

creates standard model particles.

As we see, the expansion of the universe stabilizes the solutions, such that for
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large times all of them become indistinguishable to ACDM, which appears as an
attractor fixed point of our theory, showing a basic stability of the solutions at
large times. Choosing ('} as positive is necessary, because of the demand that the
terms with v/C; won’t be imaginary. But for the other constants of integration,
there is only the condition C3v/C; > %, which gives a positive dust density at

large times.

IV. (5 =0 SOLUTION

Another special case is when Co = 0. That means that the dark energy of this
universe is constant ¢ = C; and ¢ = 0. The equation of motions for the dark
energy and dust (3.22)(3.23) are independent on the scalar field y, and therefore
the density of dust is that universe is %ﬁl This solution says there is no interac-

tion between dark energy and dark matter. This is precisely the solution of T'wo

Measure Theory [44][45][46], with the action:

1

= L [aeyr / Az (® + V=g)L(X, ) (3.27)

which provides a unified picture of DE-DM. More about Two Measure Theory
and related models and solutions for DE-DM see a discussion in appendix C. The

FRWM for both theories gives the solution:

ppe =" =Cy (3.28)
VO, C
PDust = CL; > (329)

For this trivial case Cy = 0, there is no diffusion effect between dark matter and
dark energy. Because of the current f* which is the source of the stress energy
tensor 77,5 (see (1.5)) is zero, and both stress energy tensors are conserved. This
is equivalence to ACDM. The exact solution of the case of constant dark energy

and dust, using (3.28)(3.29) is [47]:

)3 sinh?3(at) (3.30)
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where o = %\/ (7. From comparing to the ACDM solution, we can obtain how
the observables values related to the constant of integration that come from the

solution of the theory:

G, _OVG
H ™ T H

where H is Hubble constant for the late universe. For exploring the non-trivial

O (3.31)

diffusive effect for Cy # 0, we use perturbation theory.

V. PERTURBATIVE SOLUTION

The conclusion from this correspondence is that the diffusion between dark energy
and dark matter dust at the late universe is very small, since that is the effect of
the Cy term, and therefore we can estimate the solution by perturbation theory.
So we obtain that there are two dimensionless terms, which are depending on time

and scale factor, and tell us the ”diffusion rate”:

Cy [tdt
Ai(t o) = 5? = (3.32)
to
Cy .
>\2(t7t0> = \/FngX(t’tO) (333)

where the integration is between two close time ty and t. For Cy = 0, both \; and
Ao are equal to zero, and there is no dissipative effect, which we saw give us the
ACDM model. For any non-zero, but A\, » < 1, the stress energy tensor T&’; is not
conserved, and there is a little diffusion effect.

The use of defining these two dimensionless terms, is evident when C is small
enough for using perturbation theory. By using \; we can write the scalar field
term as ¢> = Cy(1 + A). The definition for A, is from the assumption that the
leading term in (3.23), whose scale \/C,Cj3, is much bigger than the other term
X¢¢ (with xCy component, using (3.18)). The total contributions for the densities,
in the context of perturbation theory at the first order are:

C!
Pde = 01(1 + )\1 + —3)\2) + 02()\1, )\2) (334)

Vi
‘/ic?’ (1— %(Al +X2)) 4+ O2(A1, A2) (3.35)

Pdm =
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We can see from those terms, that in the deviation from the unperturbed
standard solution, the behavior of dark energy and dust are opposite - for rising
dark energy (for example the components are Cy < 0; Cy,C3,Cy > 0), the dark
matter amount (a®pg,) goes lower. Or in case of decreasing dark energy, the

amounts of dark matter goes up (and Cy,Cy, C3,Cy >0 ).

VI. E.0.M AND SOLUTIONS FOR DIFFUSIVE ENERGY WITHOUT

HIGHER DERIVATIVES

For the second class of theories we proposed in (1.8) (1.9) (1.10), we can write the

diffusive energy action, without high derivatives:

= 167 G/\/_R+/\/_A+/\/_qu o /\/_XM+5A) (3.36)

and as we did before, the stress energy tensor T& ") = g"A. From the variation

with respect to the vector field y,:
VA = fu=0(xu+0,4) (3.37)

The variations with respect to the scalars A and ¢:

fh=0 (3.38)
Jo =20\ + 1)a; i =0 (3.39)

s (1.5)(3.15). And finally the stress energy tensor, which comes from variation

with respect to the metric we obtain that:

1 1
TIE = g™ (=A+ x s — %MA,A) YT = XA = PAT A+ —AHA (3.40)

Both theories (3.12)(3.36) give rise to similar final equations of motion, besides the
variation according to the metric, which asymptotically for large times behave the
same. The new terms —%A’“A# and %A*‘A’“ are negligible at the late universe,
since they go as a% For the early universe those terms may be very important,

which will study in future publications.
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The modified model of diffusion, gives rise to the simpler model when o goes to
infinity. Since, in this case, the extra § [ /=g(x, +9,A)? term forces x,, = —0,A
(because (x, +9,A)* =0 and and we are also disregarding light like solutions for
(xu + 0,A) which do not appear relevant to cosmology), i.e. the x, is a gradient
of a scalar. Therefore the theory of Dynamical time (1.3) with a source (3.36),
becomes a diffusive action with high derivatives (1.4)(3.12).

VII. SOME PRELIMINARY IDEAS ON QUANTIZATION AND THE

BOUNDEDNESS OF THE EUCLIDEAN ACTION

Let’s us take the action (3.36), and by integration by parts of the Xu;VT(l;S’ and

throwing away total derivatives, we obtain the action:

worg [ VIR [ VR s [ VG d [ V0,47
(3.41)

" 167G

We notice that there are no derivatives acting on X, field at this action, and
therefor x, is Lagrange multiplier. It is legitimate to solve x, from it’s equation
of motions, and insert the result back into th action. The equation of motion

according the x, variation is:

0=V, 11+ o(xu + 0,4) (3.42)

Solving for x, and inserting back into the action gives:

o [vEare [VEatossa g [ Ve [ vegaav.a
(3.43)

~ 167G

Considering the functional integral quantization for this theory will give a few
integrations over field variables. The functional integral over the scalar A gives
rise to a delta function that enforces the covariant conservation of the current

V. T“ " = f¥. The Euclidean functional integral will be:
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1
Z = /D¢5(Vyf”) exp [%/d4x\/§f“f“— /d4x\/§g“l’¢’“¢y] (3.44)

This partition function excluding the Hilbert Einstein action term, which has
its own problems that are not special to this paper. In the full theory we need to
include the integration over all the Fuclidean geometries.

We can see that the integration measure is positive definite, and the argument
of the integrals in the exponents are negative definite in a Euclidean signature
space time sign|+, +, +, +], following Hawking approach [[49]] . The terms f,f*
and ¢ ,¢* are positive definite, and by choosing the proper sign of o, the action
is positive definite, and the partition function is convergent. The original theory
we formulated in (3.12) is equivalent to (3.36) when o goes to minus infinity.

Therefore, this proof is valid for both theories. However, the simple model
(3.12) has to be regularized by first taking finite and negative o, and then letting
the o goes to minus infinity. This is a preliminary approach, because in the quan-
tum theory, there are many issues concerning how one goes from the Hamiltonian
formulation to the path integral formulation, etc. But we see that the quantum

theory has a chance to be well defined.

VIII. DIFFUSIVE DARK ENERGY AND DUST BY CALOGERO

The solution for Calogero suggestion we presented at the beginning (3.1)(3.2) leads
to the following dependence between the densities of dark matter and dark energy
and the scale parameter:

dt
pae = C1+ Oy e (3.45)

t
pam = 22— 2 (3.46)

a3 a’
A complete set of solutions of these differential equations (in the form of Friedman
equations) is very complicated, but one phenomenological solution for this theory
predicts a DE-DM similar ratio to the observed one [29]. Both approaches (which

are described in this paper and in Calogero’s theory) become very similar when
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the time derivative of the scalar field is low xC5; < 1. In that case, dark energy

density (3.22) becomes:

dt
pae = C1 + Co ] (3.47)

The dark matter dust will reduce to the term (3.23):

pan = 4 (3.48)
and for those equation implies a diffusion between dark energy and dark matter
dust, like Calogero has found. In this model they assumed that the dark energy
and the dust are not separately conserved.

We can see that our asymptotic solution does not fit with Calogero’s model, for
general Cy. As opposed to equation (3.2), in our asymptotic (3.25)(3.26) solution
the dark energy density becomes constant, providing much closer behavior to the
standard ACDM model. The main reason for this nonequivalence between those
theories, is the role of the y field, which has the effect of the making the exchange
between Dark Matter and Dark Energy less symmetric than in the ¢CMD model.
In our case, the y makes the decay of DE much lower than in ¢CDM, and keeps
the DM evolution still decreasing as ACDM (a™?).

IX. DiscussioN, CONCLUSIONS AND PROSPECTS

In this paper we have generalized the TMT and the dynamical space time theory,
which imposes the covariant conservation of an energy momentum tensor. By de-
manding that the dynamical space time 4-vector x,,, that appears in the dynamical
space time theory be a gradient d,x. We don’t obtain the covariant conservation
of energy momentum tensor that is introduced in the action. Instead we obtain a
current conservation. The current being the divergence of this energy momentum
tensor. This current that drives the non-conservation of the energy momentum
tensor, is dissipated in the case of an expanding universe. So we get an asymptotic
conservation of this energy momentum tensor. Because the four divergence of the

covariant divergence of both the dark matter and dark energy is zero, we can make
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contact with the dissipative models of [13][14]. This can give deeper motivation

for these models and allow the construction of new models.

This energy tensor, in not the gravitational energy tensor which appears in
the right hand side of the Einstein tensor, in the gravity equations, but the non-
covariant conservation of the energy momentum tensor that appears in the action
induces an energy momentum transfer between the dark energy and dark matter
components, of the gravitational energy momentum tensor, in a way that resembles
the ideas in [29]. But they don’t provide any action principle to support their ideas.

Although the mechanism is similar, our formulation and theirs are not equivalent.

From the asymptotic solution we obtain that when Cy < 0, unlike the standard
ACDM model, where the dark energy is exactly constant, and the dark matter
decreases like a=2 , in our case, dark energy can slowly decrease, instead of being

constant, and dark matter also decreases, but not as fast as a=>.

This special
property, is different in the CMD model, where the exchange between DE and

DM is much stronger in the asymptotic limit.

This behavior, where Cy < 0, has a chance of explaining the coincidence prob-
lem, because unlike the standard ACMD model, where the dark energy is exactly
constant, and the dark matter decreases like a2 , in our case, dark energy can
slowly decrease, instead of being constant, and dark matter also decreases, but

not as fast as a 5.

This behavior can be understood by the observation that in
an expanding universe a non-covariant conservation of an energy momentum ten-
sor, which may imply that some energy density is increasing in the locally inertial
frame, does not mean a corresponding increase of the energy density in the co
moving cosmological frame, here in particular the non-covariant conservation of
the dust component of the universe will produce a still decreasing dust density,
although for Cy < 0, there will be a positive flow of energy in the inertial frame
to the dust component, but the result of this flow of energy in the local inertial

frame will be just that the dust energy density will decrease a bit slower that the

conventional dust (but still decreases).

We have seen that in perturbation theory, the behavior of dark energy and
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dust are different - for rising dark energy (for example the components are Cy <
0; C1,C5,Cy > 0), the dark matter amount (a®pg,) goes lower. Or in case of
decreasing dark energy, the amounts of dark matter go up (and all the constants
of integration are positive).

For another suggestion for diffusive energy action, which does not produce
high derivative equations, we have kept the x, field as a 4-vector (not a gradient
of a scalar), but now x, appears in another term at the action, in addition to a
scalar field A. The equations of motion produce again a diffusive energy equation,
but with the additional contribution of two terms, that are negligible for the late
universe.

A preliminary argument about the good behavior of the theory at the quantum
level is also proposed for both theories. Some additional investigations concerning
the quantum theory could be developed by using the W.D.W equation, in the
Mini-super space approximation.

Also in the future we will study not only the asymptotic behavior, but the full
numerical solution of the dark energy and dark matter components, starting from

the early universe, for all the theories we suggested.
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I. APPENDIX A - IDENTITIES
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when C5 = 0, the stress energy tensor is conserved, and there is no diffusive effect.
For late times, where the scale parameter goes to infinity, we obtain that the

diffusive effect vanishes.

III. AprPENDIX C

TMTs also have many points of similarity with the ‘Lagrange Multiplier Gravity
(LMG)’ [50, 51]. The Lagrange multiplier field in LMG enforces the condition
that a certain function be zero. In the TMT this is equivalent to the constraint
that requires some lagrangian to be constant. The two measure models presented
here, are different to the LMG models of [50, 51|, and provide us with an arbi-
trary constant of integration for the value of a given lagrangian, this constant of
integration, if non zero, can generate spontaneous symmetry breaking of scale in-
variance, which is present in the theory for example. Recently a lot of interest has
been attracted by the so called "mimetic” dark matter model proposed in [52].
The latter employs a special covariant isolation of the conformal degree of freedom
in Einstein gravity, whose dynamics mimics cold dark matter as a pressure-less
"dust”. Important questions concerning the stability of of "mimetic” gravity are
studied in Refs.[53], [54] also a formulates a generalized mimetic tensor-vector-
scalar "mimetic” gravity which avoids those problems is studied. In [55] the idea
is applied to inflationary scenarios.

Most versions of the mimetic gravity, except for [53] appears equivalent to a
special kind of Lagrange multiplier theory or TMT models that were known before,
where the simple constraint that the kinetic term of a scalar field be constant. This
of course gives identical results to a very special TMT, where the lagrangian that

couples to the new measure is the kinetic term of this scalar field.
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