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aPhysics Department, Faculty of Electrical Engineering, University of Zagreb, Unska 3,
10000 Zagreb, Croatia
bPhysics Department, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia

Abstract. The nonlinear chiral quark meson U(3) � U(3) model is solved using the Tamm-
Dancoff inspired approximation (TDIA) which is described in our earlier paper [1]. The re-
sulting system of 15 coupled nonlinear differential equations self-consistently determines
all quark-meson coupling constants. Obtained solutions for quark and meson fields are
stable and physically acceptable. These approximate Heisenberg fields resulted from dy-
namics in which u, d and s quarks were treated on the same footing. They were used to
calculate SU(3) baryon octet magnetic moments and axial vector coupling constants. The
baryon state vectors containing valence quarks were used. The results strongly indicate
that simple state vectors and currents cannot adequately describe physical baryons.

1 Introduction

The Tamm-Dancoff inspired approximation (TDIA) [1] was applied some time
ago to the chiral quark meson model based on the SU(2) linear ff-model [2,3]. The
results seemed to be comparable to those obtained using the hedgehog Ansätze
[4–7]. That is to some extent understandable as both methods lead to similarly
looking sets of equations for meson solitons (fields). All details of the TDIA are
described in ref. [1]. It is well known that the Tamm-Dancoff method [8] is a better
approximation than the perturbation theory. That feature it has in common with
the hedgehog based meson field solutions [5–7].

In ref. [1] the linear ff-model was used as a transparent example for the appli-
cation of TDIA. However since 1996. evidence has been found for the existence
of the ff meson [9–11]. It has been stated [10,11] that the linear ff-model with
three flavors works much better than what was generally believed. In the linear
ff-model one can treat both scalar and pseudoscalar nonets simultaneously. The
scalars are the chiral partners of ı, ”, etc. and the analysis strongly suggests that
they, like the pseudoscalars, are q̄q states [10,11]. Such theoretical conclusions
made TDIA approach quite attractive as in that approximation mesons (solitons)
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naturally appear, in the lowest order as q̄q states. In TDIA one works in the
Heisenberg picture [12], expands field operators in the free field creation and an-
nihilation operators and then truncates the expansion. That leads automatically,
after truncations, to meson fields (soliton phases) which depend on bilinear com-
binations of quark/antiquark operators, i.e. to q̄q structures.

The chiral quark/meson U(3) � U(3) model under consideration has the fa-
miliar form which was used previously when the SU(2) model [5,6] was enlarged
by cranking involving intrinsic flavor space [7]. The system of nonlinear differ-
ential equations obtained here bears some similarity to the systems obtained by
using hedgehog ansätze [5–7]. It has been argued that the linear ff-model [10,11]
and its close relative the quark-meson model [7] might capture the essential fea-
tures of QCD in the low energy region, while being easier to handle than the
complex exact quark-gluon theory. The TDIA treatment of the U(3) � U(3) quark-
gluon model thus might give some physical insights in the baryon structure.

Even with the bag formalism for quarks retained [1,13], thus using the static
spherical cavity approximation and with the modest symmetry breaking, the
lowest order TDIA leads to the coupled system of 15 nonlinear differential equa-
tions and 21 boundary conditions. That problem is completely solvable, as it will
be outlined below. The strengths of quark-meson couplings are self consistently
determined by the system. In principle the spherical cavity approximation for
quarks can be dropped. That would lead to somewhat larger system of equations.

The structure of this model [1] is very transparent and all of its features are al-
ways discernible. One can see directly how the approximate baryon states, made
of valence quarks only [14,15], perform. In order to do that one calculates the ma-
trix elements of the (approximate) Heisenberg operators. As in TDIA the isospin
(and hypercharge) and spin are separably conserved, the solutions can be used to
calculate magnetic moments and axial-vector coupling constants for the baryon
octet. The results indicate the need for richer structure (ss̄ pairs etc. ) of baryon
state vectors [16] and for the inclusion of exchange current corrections [17]. The
inclusion of quark triplet in the dynamical scheme does not seem to be sufficient
by itself alone.

2 Model formalism

TDIA has been already described in some detail elsewhere [1]. Here we give some
particulars concerning the quark linear ff-model and TDIA approximation. The
Lagrangian in which the linear ff-model is embedded in the bag environment has
the well known form [1,6,18]

�
=

�
 ˆ+

�
int‹S + [

�
ffl +U(ffl)]ˆ: (2.1)

Here all pieces but the symmetry-breaking one (
�
SB), are U(3) � U(3) invari-

ant [3,7,11] i.e.
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Here (ffa, ıa, a=0,1,. . . ,8) are (scalar, pseudoscalar) U(3) nonets. The symme-
try is broken in a minimal way by the vacuum expectation values of U(3) scalars
ff and “

�
SB = m2ıfıff +

(2m2KfK -m2ıfı)

� 2 “

ffvac = fı ) ff! ff- fı

“vac =
(2fK - fı)

� 2 ) “! “- “vac:

(2.3)

That leaves pseudoscalar (scalar) masses in the corresponding U(3) nonets de-
generate.

The standard variational procedure leads to the coupled system which con-
tains equations of motion, linear boundary and derivative boundary conditions
involving quantum fields. However as system retains lot of symmetry in TDIA
this gets reduced to a smaller set of c-equations. Here we sketch TDIA procedure
and list nonlinear system of c-equations which will be solved numerically.

The ”driving” Ansätze are the ones for the quark fields. For the massless u
and d fields one uses:

 cf =
N0

� 4ı
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The SU(3)-flavor symmetry is explicitly broken by assuming that s-quark has
a mass ms �= 0, with corresponding Ansatz
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N2m(!m) =
N20(!m)

1 +N20(!m)NR
; NR =

msj0(!m)j1(!m)R3

E!m
: (2.5)

Here the indices c, f and — denote color, flavor and spin respectively.
Boundary conditions involving quark fields determine (by use of Ansätze

(2.4) and (2.5)), the Ansätze for the meson fields. This matching then automati-
cally produces mesons ”made out of quark pairs”, as suggested in the ff-model
analysis [9–11]. One needs for pseudoscalar fields, for example:

ı+ = ı+
s (r)(b

c �m;d dc �m � ;ū + dc
m;d̄

bcm � ;u)ffl �m1fflm � +

+ı+
p (r)(b

c �m;d bcm � ;u - d
c �m � ;ū d

c
m;d̄

)ffl �m(ffr̂)fflm � (2.6)

Both scalar (ıs, Ks, ”s) and pseudoscalar (ıpffr̂, ”pffr̂ etc.) components of the
pseudoscalar mesons are induced by the boundary conditions. The scalar parts
formally correspond to physical ”mesons” while the pseudoscalar ones are con-
nected with the solitons. The solitons contribute to the baryonic current matrix
elements. All that are just U(3) � U(3) generalizations of our earlier U(2) based
results [1]. For scalar fields, scalar and pseudoscalar contributions are reversed.
Everything is again driven by boundary conditions. which require the following

The system of q-equations is in TDIA transformed in a system of differential
c-equations. The operator equalities are expressed through Ansätze (2.4)-(2.6).
They are then sandwiched between suitable states. An example for that can be
found in ref. [1], equation (2.16).

One ends with the profile function and with some Pauli matrices and spinors.
In that way all the creation (annihilation) operators from Ansätze can be con-
tracted and one ends with the system of 20 equations of motion, 8 linear bound-
ary conditions and 18 derivative boundary conditions.

3 The numerical procedure

The numerical procedure is analogous to the one used by ref. [1]. It relies on the
code COLSYS, the collocation system solver developed by Ascher, Christiansen
and Russel [19]. However, one should keep in mind that here one deals with
much larger system, which contains many novel features, and which streches
COLSYS to its upper bounds.

The parameters assume the following values

mı = 140MeV; fı = 92:6MeV
mK = 494MeV; fK = 113MeV
ms = 125MeV; R = 5GeV-1

:

(3.1)

The parameters — and – from U(ffl) (2.2) were selected by the requirement
that all the profile functions appearing in (3.1), vanish at the infinity.

Using that requirement we have:
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—2 = -1:29525 � 10-2 GeV2; – = 9:95484:

The coupling constants gM (M=”, ı, . . . ) in (2.2) are connected with the linear
boundary conditions. This cannot be satisfied by an universal coupling constant
g which figures in (2.2) and one encounters, as it was found before [1], some
dynamical symmetry breaking. The U(3) � U(3) model determines all coupling
constants gM leading to the values, shown in Table 3.1.

Table 3.1. The quark-meson dimensionless coupling constants.

gM gff gı gK g” g” � ga0
g» g“

10.7 4.0 7.8 4.0 3.1 1.5 3.9 10.5

The model gı value is, interestingly, close to the estimated value in ref. [17].
The corresponding ! values are

!0 = 2:0; !m = 2:28 (3.2)

In Fig. 3.1 the radial dependencies of r2ffi2(r) (ffi=ıp, Kp, ffs, a0;s) are plotted. The
function corresponding to scalar fields (r2ff2s , r2a20;s) are much smaller than the
contributions associated with pseudoscalars (ıp and Kp).

As one has solved the complex coupled system, which contains both non-
strange and strange profile functions, one can say that u, d, ı etc. profile functions
”feel” the presence of the s-quark dynamics.

4 Results and Conclusions

Our model formalism in TDIA is used for the evaluation of the magnetic mo-
ments and the axial vector coupling constants of the nonstrange and strange
baryons.

The baryon magnetic moments are determined by quark —(Q) and meson
—(M) pieces. As the flavor SU(3) is broken only by ms �= 0, the quark piece has
the contribution coming from the u, d quarks —(Q)

0 and the contribution coming
from the s quark —(Q)

s . The meson pieces depend on the pion soliton —(M)
ı and

the kaon soliton —(M)

K . Their values are:

—
(Q)

0 = 1:886; —(Q)
s = 1:695 (4.1)

—(M)
ı =

8ı

3

Z1

Rbag

r2dr ı2p(r) = 0:027; (4.2)

—
(M)

K =
8ı

3

Z1

Rbag

r2dr K2p(r) = 0:020: (4.3)

In Table 4.1 the model values are compared with experimental results.
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Table 4.1. Baryon magnetic moments.

Baryon —Q —M — —exp ´—%

p 1.886 0.027 1.913 2.793 46
n -1:257 -0:026 -1:284 -1:913 49
˜ -0:564 -0:020 -0:584 -0:613 8
˚0 0.607 0.010 0.617 - -

˚0 ! ˜ 1.089 0.021 1.110 1.610 45
˚- -0:650 0.000 -0:650 -1:160 78
˚+ 1.864 0.020 1.884 2.458 31
¨0 -1:172 -0:020 -1:191 -1:250 5
¨- -0:543 0.000 -0:543 -0:651 20

Both quark Q and meson M phases were calculated in a model which in-
cludes s quarks. However the simplest ”valence” proton state vectors were used.
The same ”valence” approximation [14,15] was used for the other baryon state
vectors.

The s-quark admixture in the nonstrange baryon state vectors would pick up
additional contributions from quark and meson fields calculated in TDIA. That
would change both the theoretical expressions for the magnetic moments and
for the axial vector coupling constants. However, from the point of view of the
present work, that would require a substantial addition to the model.

A very similar conclusion follows from the investigation of the axial vector
coupling constants.

Table 4.2. Diagonal axial vector constants.

Constant g(Q)

A g
(M)

A gA Experiment ´g in %

g3
A 1.110 0.184 1.294 1.267 2
g0

A 0.666 0.111 0.777 0.280 178
g8

A 0.666 0.111 0.777 0.579 34

It seems reasonable to assume that the discrepancies are again caused by
the too poor structure of the proton state vectors. It is usually stated [16] that
s- quark admixture in the proton state vector must be important. However the
prediction for the isovector axial vector coupling constant g3A is very good. This
seems to be some general characteristic od the chiral models which are con-
structed to satisfactory reproduce gI=1A . Moreover the present nonlinear. nonper-
turbative approach seems to work somewhat better than some simple expansions
which might lead to too large gI=1A .

As shown in Table 4.3 the calculated gA’s, for the semileptonic decays, seem
reasonable in two cases. All signs are correctly predicted, absolute magnitude of
the ˜-decay constant is 14% too large, ˚-decay constant is 53% too small and the
¨--decay constant is 13% too large.
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Table 4.3. gA in semileptonic decays.

Decay (gA)Q (gA)M gA exp. ´g in %

˜ ! p+ e- + �̄e -0:758 -0:059 -0:817 -0:718 14
˚- ! n+ e- + �̄e 0.206 0.016 0.222 0.340 53
¨- ! ˜ + e- + �̄e -0:253 -0:029 -0:282 -0:250 13

Here, as in Tables 4.1-4.2 the meson phase contribution is noticeably smaller
than the quark phase contributions. This might look as a support for the simple
quark models [14,15]. However our model which contains the spherical cavity as
an essential ingredient, might be biassed in that direction. Thus in the future one
should attempt to solve a model in which a quark bound state does not need a
bag.

In its present form this nonlinear self consistent model shows interesting fea-
tures. For example ı and K contributions are considerably larger than the ff and
a0 contribution. One is tempted to conclude that this reflects the fact that in bary-
onic processes the presence of scalars was hard to detect. Generally speaking the
model offers the stable and physically acceptable [9–11] solutions.

In this model the complete problem with u, d and s quarks and two meson
nonets has been solved in TDIA. Quite complicated nonlinear operator dynamics
has been reduced to the highly nontrivial, but solvable, nonlinear system.

All model dependent quantities, Tables 4.1-4.3 have acceptable orders of mag-
nitude. All relative signs for — and gA are correctly predicted. The discrepan-
cies with the experimental magnitudes reflect the exploratory character of the
present TDIA solution. They might be connectable to the too simple description
of the baryon state vectors [16] and to the absence of the exchange current cor-
rections [17]. A future development of TDIA based solution might lead to better
predictions.
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