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Abstract

This thesis details two experiments and one theoretical manuscript that explore the nature of mea-

surement disturbance in quantum mechanics. The first experiment exploits measurement distur-

bance to enhance measurement precision by two orders of magnitude, and in principle even more.

The second experiment investigates a paradox where three quantum pigeons seem to occupy two

pigeonholes without any pair belonging to the same hole. It finds that measurement disturbance

accounts for some, but not all of the counter-intuitive phenomena at play in the paradox. The final

manuscript develops a new theoretical framework for studying quantum measurement and distur-

bance from the viewpoint of quantum agents. Our framework reveals how agents endowed with

quantum memories might view measurement not as a stochastic collapse, but as a continuous flow

of quantum information.
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4.2 Quantum measurements with external agents. (a) The traditional approach to

measurement characterised by the POVM elements {Ek}. The probability for an out-

come ak is p(aj) = Tr(Ekρ) and the corresponding minimally disturbing [147] state

transformation is |ψ⟩ →
√
Ek|ψ⟩√

⟨ψ|Ek|ψ⟩
. (b) The von Neumann scheme for a measure-

ment of a non-degenerate observable A provides a more detailed description than the

textbook approach. It includes a quantum measurement device M and an amplifica-

tion process whereby the information is copied onto multiple registers. The external

observer reads out the state of some of these registers and records a classical result

ak. The cut between the external agent and the other subsystems has no observable

consequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Quantum measurements with a quantum agent: A measurement interaction

M (blue box) fills an observer’s memory O with information about a system S in the

presence of an environment E . The interaction is defined in terms of two objects: a

unitary U (which couples the system S, environment E and the observer’s memory

O), and the initial EO state χEO. The interaction takes an initial system state ρS
to a final SO state M[ρS ]. The result AM[ρS ] is the reduced state encoded in the

observer’s memory. The interaction induces the result channel AM (dashed red on

bottom right) from system states to observer memory states and the back-action

BM (dashed red on bottom left), a channel from system states to disturbed system

states. The entire process is deterministic. The interaction is considered a sensation

(according to Def. 1) as long as AM[ρS ] is not a constant function of ρS , i.e., M is a

sensation of S whenever the result depends on the state of S. . . . . . . . . . . . . 58

4.4 Examples of measurements with a quantum agent: (a) The circuit diagram

for a von Neumann measurement performed in two steps (Eq. 4.5). The first, step

WSE couples between the environment (or measuring device) and the system. The

second, VEO, couples between the environment and the observer. The result is a

quantum state encoded in a preferred basis {|k⟩}k which can be copied (amplified)

and broadcast. Compare this to von Neumann’s original approach (Fig. 4.2), where

the observer is external to quantum dynamics and the result is a classical label. (b)

The circuit diagram for a swap measurement. The observer learns everything about

the system (|ψ⟩ is now encoded in the memory), but the disturbance is maximal (the

system retains no trace of its original state). There is no preferred basis and so the

state cannot be copied and broadcast. (c) Amplifying in a specific basis {|k⟩}k causes

decoherence. The result can be copied and broadcast but phase information is lost. 60

4.5 (a) The 3-level system for an off-resonant Raman quantum memory. A flying photon

mode a is mapped, via a strong control field, to a stationary spin-wave excitation.
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Chapter 1

Introduction

Quantum mechanics has been a pillar of modern physics for over a century, enabling inven-

tions like semi-conductors, lasers, and atomic clocks. While quantum mechanics has proven to

be astonishingly adept at modeling the laws of nature, humans have proven to be woefully inept

at accommodating its consequences into their classical intuition. At the heart of this issue is the

measurement problem.

There are many ways to phrase the measurement problem, but perhaps the most straightforward

is to appreciate the absurdity of the laws of motion in quantum mechanics. They posit that the

evolution of a state is determined by the Shrödinger equation at all times except for any time a

measurement occurs, in which case it collapses randomly according to the Born rule. Why is the

Shrödinger equation not appropriate during a measurement? How long does a measurement last?

How long does it take for a state to collapse? What even is a measurement? Does you reading

this page constitute a measurement? Do the photons that hit a paper copy of this manuscript

measure the atoms inside it? These are the kinds of questions that make the measurement problem

so puzzling.

Rather than get lost in such philosophical questions, let us discuss physics. Quantum mechanics,

like any theory, is a model for some collection of phenomena. What is the physical phenomenon

that quantum mechanics attempts to model that makes its laws of evolution so awkward? Is it

measurement? Not exactly. People were doing measurements long before anyone had even dreamed

of the scientific method and modeling them was never a deep issue. The troublesome phenomena is,

specifically, measurement disturbance. It was not until science explored the insides of atoms that we

became sensitive to a certain kind of fundamental disturbance. No matter how crafty our double slit

experiment, we could not measure which slit particles traversed without disturbing their interference

pattern. We realized measurement disturbance was not just an incidental consequence of imperfect

measuring devices, but an inescapable law of nature.

After a century of developing quantum mechanics, we have come to see measurement disturbance

as more than an annoying quirk of nature. We have put our understanding of measurement distur-

bance to work in quantum computing [1], quantum communication [2], and quantum metrology [3,

4]. We have come to see disturbance as essential in protecting basic notions of causality in light of

quantum teleportation [5] and even time travel [6–8].

Despite all the advances in understanding disturbance, there is still much to uncover. This thesis

1
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picks away at the mystery of measurement disturbance from three different angles. First, it details a

post-selected metrology experiment where disturbance is exploited to enhance measurement precision

(Ch. 2) [9]. Second, it explains a foundational experiment that tests the role of disturbance in one of

the strangest predictions of quantum mechanics to date: that three quantum pigeons can be placed

among two pigeonholes in such a way that no two pigeons are ever found in the same pigeonhole

(Ch. 3)[10]. Finally, it develops a framework for understanding measurement and disturbance that

is free from the baggage of classical intuition. It creates a natural language for describing how a

quantum agent, such as an advanced artificial intelligence running on a quantum computer, might

perceive its surroundings (Ch. 4)[11].

This thesis is structured as follows. There are three chapters, each covering one of the three

research projects described above. The first two begin with an introduction that explain necessary

background material. Then I include the journal article presenting the findings of that project. The

references for these articles are included below. Their content has been largely preserved, but small

formatting changes have been made to better integrate them together into a single document. The

final chapter features a longer, self-contained manuscript, so no additional introduction is provided.

Following each manuscript is a retrospective “outro”. There I describe my personal contributions to

each project, experimental details that might be helpful to future students, and ideas for how each

project might be followed up with further research.

1. Noah Lupu-Gladstein, Y. Batuhan Yilmaz, David R. M. Arvidsson-Shukur, Aharon Brodutch,

Arthur O. T. Pang, Aephraim M. Steinberg, and Nicole Yunger Halpern. “Negative Quasiprob-

abilities Enhance Phase Estimation in Quantum-Optics Experiment”. In: Phys. Rev. Lett.

128 (22 June 2022), p. 220504. doi: 10.1103/PhysRevLett.128.220504. url: https:

//link.aps.org/doi/10.1103/PhysRevLett.128.220504

2. Noah Lupu-Gladstein, Hugo Ferretti, Weng-Kian Tham, Arthur Ou Teen Pang, Aephraim

M Steinberg, Kent Bonsma-Fisher, and Aharon Brodutch. “Quantum violations of classical

counting principles via variable-strength non-local measurements”. In preparation. 2024

3. Noah Lupu-Gladstein, Aharon Brodutch, Hugo Ferretti, Weng-Kian Tham, Arthur Ou Teen

Pang, Kent Bonsma-Fisher, and Aephraim M Steinberg. “Do qubits dream of entangled

sheep? Quantum measurement without classical output”. In: New Journal of Physics 26.5

(May 2024), p. 053029. doi: 10.1088/1367-2630/ad48ad. url: https://dx.doi.org/10.

1088/1367-2630/ad48ad
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Chapter 2

Postelected Metrology

2.1 Introduction to postselected metrology

This chapter explores how quantum measurement disturbance can be exploited to design high-

precision measurements. The study of how quantum phenomena can be used to improve measure-

ments is called quantum metrology. Suppose we wish to measure some unknown parameter θ which

has been encoded in a quantum state. What is the best measurement we can perform on the state?

To answer this question in any meaningful way, we must first establish what we mean by “best.”

A common way to judge potential measurements is by the variance in the estimate of θ you would

get if you repeated the measurement many times. To be precise, suppose you run your experiment

and obtain some data X, which is a random variable distributed according to some probabilities

P (x|θ). You then analyze your data and determine an estimate θ̂(X) of the true value of θ. Ideally,

the expected value of this estimate equals the true value θ.

EX
[
θ̂(X)

]
= θ (2.1)

Such an estimator is called unbiased. The variance of an unbiased estimator is

Var
[
θ̂(X)

]
= EX

[(
θ̂(X) − θ

)2
]
. (2.2)

Given a particular unbiased estimator, one may wonder whether there are any other unbiased

estimators that have a smaller variance. The Cramér-Rao bound

Var
[
θ̂(X)

]
≥ 1/F (θ) (2.3)

answers this question. The quantity F (θ) is the Fisher information.

F (θ) = Var [∂θ logP (X|θ)] (2.4)

It depends only on the probability distribution P (x|θ), not on any particular estimator. If we find

that our unbiased estimator has a variance equal to one over the Fisher information, we can be

confident that there is not some better estimator we should be using instead.

3
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The definition of Fisher information may seem arbitrary and confusing at first. Why is it that

to make the variance of my estimator smaller, I need to make the variance of some log-derivative

larger? The idea is that the Fisher information quantifies how different the distributions P (X|θ)
and P (X|θ + dθ) are in the limit dθ → 0. We compare the distributions by subtracting the log of

their probabilities (log probabilities are often easier to work with numerically and analytically) and

normalizing by the shift dθ.

lim
dθ→0

logP (X|θ + dθ) − logP (X|θ)
dθ

= ∂θ logP (X|θ) (2.5)

This calculation gives a list of derivative values for each outcome x. To aggregate this list into a single

number, we might be tempted to take its expectation value, but this would cause the derivatives for

outcomes with increased probabilities to cancel with outcomes with decreased probabilities. In fact,

as long as changing θ does not change the normalization of P (X|θ), then we have E [∂θ logP (X|θ)] =

∂θ
∑
x P (x|θ) = 0. So we aggregate the derivatives by taking the weighted sum of squares. Since

the expectation value of the log-derivatives is 0, the expectation of their squares is just the variance.

Hence Var [∂θ logP (X|θ)] is a sensible way measure the extent to which a distribution changes with

respect to small variations in θ.

Fisher information uses the probability distribution P (x|θ) to determine how well we can estimate

a parameter, but what determines P (x|θ)? In quantum metrology, we posit that the distribution

arises from measuring a quantum state ρ(θ). The most general model for obtaining a probability

distribution from a quantum state is called a positive operator-valued measure (POVM). A POVM

M is a set of positive semi-definite measurement operators Mx that together sum to identity.

M = {Mx}x, Mx ⪰ 0,
∑
x

Mx = 1 (2.6)

The Born rule tells us how to turn a state ρ(θ) and a POVM M into a probability distribution.

P (x|θ) = Tr[ρ(θ)Mx] (2.7)

Given a quantum state ρθ, and the ability to measure it using any POVM we want, how well

can we estimate θ? The quantum Cramér-Rao bound answers this question[12].

F (θ) ≤ Fq(θ) (2.8)

The new quantity Fq(θ) is called the quantum Fisher information.

Fq(θ) = Var[Λ(θ)], ∂θρ(θ) =
Λ(θ)ρ(θ) + ρ(θ)Λ(θ)

2
(2.9)

The Hermitian operator Λ(θ) is called the symmetric logarithmic derivative (SLD). The quantum

Fisher information gives a bound that is independent of any particular way to measure ρ(θ), which

goes one step further than the classical Fisher information that is independent of any estimator, but

does depend on the particular measurement. The SLD tells you more than just how much variance

to expect from the best measurement, it actually tells you what the best measurement is. It turns

out that a measurement in the eigenbasis of the SLD is optimal.
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In general, the quantum Fisher information can be tricky to work with analytically because

the SLD is only given implicitly (though it can be calculated using Lyapunov Equation solvers[13]).

Thankfully, if ρ(θ) is a pure state ρ(θ) = |ψ(θ)⟩ ⟨ψ(θ)|, then the SLD and quantum Fisher information

simplify respectively to

Λ(θ) = 2 |∂θψ(θ)⟩ ⟨ψ(θ)| + 2 |ψ(θ)⟩ ⟨∂θψ(θ)| (2.10)

Fq(θ) = 4 ⟨∂θψ(θ)|∂θψ(θ)⟩ − 4| ⟨ψ(θ)|∂θψ(θ)⟩ |2. (2.11)

If the state evolves according to a Schrödinger-like equation

|∂θψ(θ)⟩ = −iA(θ) |ψ(θ)⟩ (2.12)

for some θ-dependent generator A(θ) with the same units as θ−1, then

Λ(θ) = 2i[A(θ), |ψ(θ)⟩ ⟨ψ(θ)|] (2.13)

Fq = 4Var[A(θ)]. (2.14)

For example, if we are estimating how much a particle translates along the x-axis, we would identify

x with θ and A(θ) with p/ℏ.

For a particular generator A(θ), what is the best state |ψ(θ)⟩ we could hope for? The state

must maximize the variance of A(θ). Suppose the maximum eigenvalue of A(θ) is amax(θ) with

associated eigenstate |amax(θ)⟩ and its minimum eigenvalue is amin(θ) with associated eigenstate

|amin(θ)⟩. Then the best state |ψ(θ)⟩ is any equal superposition of |amax(θ)⟩ and |amin(θ)⟩, such as

|amax(θ)⟩ + |amin(θ)⟩√
2

(2.15)

and such a state achieves the maximum possible Fisher information

Fmax(θ) = ∆a(θ)2 = (amax(θ) − amin(θ))2 (2.16)

It would seem that for a given Hamiltonian, 1/∆a(θ)2 is the best variance we could ever hope to

achieve, even optimizing for all possible input states, all possible measurements, and all possible

estimators.

In the experiment I present at the end of this chapter, we obtain a variance roughly 100 times

smaller than the 1/∆a(θ)2 limit. How is this possible and how does it not conflict with the arguments

I just presented? The trick is that while each photon we detect in that experiment caries ≈ 100 ×
∆a(θ) information, our probability to detect a photon is only 1/100. Thus each input photon still

only carries “on average” 1 × ∆a(θ) unit of information. Nevertheless, there are still individual

instances where a photon truly carries more information than it has any right to.

How exactly can overcoming the ∆a(θ)2 limit be explained? In a technical sense, we sidestep

the proof given above because the mapping in our experiment from quantum states to probabilities

is not, in fact, a POVM. Whereas the probabilities generated by a POVM are linear in the state ρ

the probabilities in our experiment are non-linear in ρ because they are postselected on successfully

detecting a photon. This postselection is represented mathematically by a Kraus operator K with
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1−K†K ⪰ 0 and the non-linear map

ρ→ KρK†

Tr[KρK†]
. (2.17)

Practically, it amounts to empirically estimating probabilities from detector counts via a formula

like
counts from detector 1

counts from detector 1 + counts from detector 2
(2.18)

instead of

counts from detector 1

counts from detector 1 + counts from detector 2 + number of photons not detected
. (2.19)

However, there is more to the story than just postselection. There are postselections that do

not increase Fisher information and there are even postselections that decrease Fisher information.

A thought-provoking paper[14], proved that a postselection can only break the ∆a(θ)2 bound if it

does not commute with the generator A(θ) on the support of ρ(θ). That is,

if Tr[ρ(θ)[A(θ),K†K]] = 0, then Fq(θ) ≤ ∆a(θ)2. (2.20)

They proved this result by quantifying the extent to which the postselection and Hamiltonian fail

to commute using a mathematical tool called a quasiprobability distribution.

Unlike a normal probability distribution, a quasiprobability distribution is allowed to have nega-

tive, or even complex values. The only requirement is that all the quasiprobabilities in a distribution

sum to unity. In quantum mechanics, quasiprobability distributions are useful for modeling quan-

tum states in a phase space of incompatible observables, such as position and momentum or the

x, y, z components of spin projection. One such distribution often encountered in quantum optics

is the Wigner distribution. However, it is not the Wigner, but the lesser-known Kirkwood-Dirac

quasiprobability distribution that turns out to be the natural distribution for modeling postselected

quantum metrology.

The Kirkwood-Dirac distribution p̃ρ(a, b, c, . . .) for a sequence of measurements A,B,C, . . . can

be, loosely speaking, thought of as representing the “complex likelihood” for a fixed state ρ to take on

value a of measurement A, then b of B, then c of C, and so on. The formula for the Kirkwood-Dirac

distribution is delightfully simple:

p̃ρ(a, b, c, . . .) = Tr[. . .MC
c M

B
b M

A
a ρ]. (2.21)

The notation MZ
z denotes the positive semi-definite operator that corresponds to a value z in the

measurement Z with the property that
∑
zM

Z
z = 1. This property ensures that the KD distribution

always has the correct marginals. That is∑
a

p̃ρ(a, b, c, . . .) = p̃ρ(b, c, . . .). (2.22)

Naturally, there is nothing special about the index a, and a similar identity holds for every index

in the distribution. The paper in the next section explores the surprising connection between this

abstract mathematical tool and an empirical advantage in a polarimetry experiment.
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2.2 Introduction

Advances in quantum metrology have kindled new measurement techniques [15–19]. The paradig-

matic quantum measurement is phase estimation, whose applications span polarimetry, magnetic

sensing, gravitational-wave astronomy, and quantum-computer calibration [20–26]. A fundamental

limit bounds how precisely one can estimate a phase from a given number of trials [27, 28]. If some

trials are filtered out, the average information per retained, or postselected, trial can exceed this

limit [14]. Filtering can never increase the information per input trial, so successful postselections’

rarity counterbalances the extra information [29, 30]. Nevertheless, distilling information from many

input trials into fewer postselected trials can alleviate challenges that scale with trial number, in-

cluding detector saturation, proportional noise, low-frequency noise, limited memory, and limited

computational power [31–35].

We elucidate this distillation’s physical and mathematical roots using a filtering technique that

we call partially postselected amplification (PPA). Theoretically, the information obtained per PPA

trial can diverge as the fraction of postselected trials vanishes [14]. A related technique, weak-value

amplification, offers a similarly diverging advantage [3, 4, 31, 33–59]. Both techniques are examples of

noncommutative filtering. We define noncommutative filtering as any filtering whose effect depends

on when the filter acts. During the alternative, commutative filtering, the per–postselected-trial

precision cannot exceed the per–input-trial limit [14]. Examples include the neutral-density filter

that reduces a camera’s overexposure. PPA’s postselected trials break the per–input-trial limit by

endowing a certain quasiprobability distribution with negative elements [14].

Quasiprobabilities represent quantum states as probability densities represent states in classical

statistical mechanics. Like probabilities, the quasiprobabilities in a distribution sum to one. Yet

quasiprobabilities can assume negative and nonreal values, called nonclassical values. They can

arise when the quasiprobability describes quantum-incompatible operations or observables. Well-

known quasiprobability distributions include the Wigner function. A rising star is the Kirkwood-

Dirac distribution [60, 61], which has recently found applications in quantum state tomography [62–

66], chaos [67–71], postselected metrology [14, 39–41, 72–78], measurement disturbance [79–82],

quantum thermodynamics [67, 83–86], and quantum foundations [47, 80, 87–98]. Negative Kirkwood-

Dirac quasiprobabilities have been demonstrated, under certain conditions, to underlie operational

advantages in quantum computation, work extraction, and parameter estimation [14, 69, 78, 86].

In this Letter, we demonstrate PPA’s parameter-estimation enhancement in a proof-of-principle

polarimetry experiment. We estimate the birefringent phase imparted to photons by a near-half–

waveplate. A tunable polarization filter implements the PPA. The filter boosts the per–detected-

photon precision by over two orders of magnitude. Furthermore, we measure a Kirkwood-Dirac

distribution that describes the experiment. Our experiment operationally motivates a measure of

the distribution’s negativity. We prove theoretically and confirm experimentally that the negativity

is proportional to the precision enhancement when the phase is probed optimally. We also pinpoint

which systematic errors limit PPA’s theoretically unbounded precision enhancement (Sec. 2.6.1).

Our experiment unifies theoretical quantum foundations with practical precision measurement.
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2.3 Theoretical background and equality

Consider estimating a parameter θ by measuring a quantum state ρ(θ). The quantum Fisher

information (QFI) I(θ) quantifies the information provided by ρ(θ) about θ, via the state’s sensitivity

to changes in θ [12] (Sec. 2.6.2). The QFI’s reciprocal lower-bounds the variance of every unbiased

estimator θe of θ, in the Cramér-Rao bound, var(θe) ≥ 1/I(θ). [27, 28]

Let A denote an observable with greatest and least eigenvalues a+ and a− = a+ − ∆. The

eigenstates |a±⟩ satisfy A |a±⟩ = a± |a±⟩. Let a unitary U(θ) = exp(iθA) imprint θ on an input

state. The optimal inputs are even-weight superpositions of extremal A eigenstates, e.g., |0⟩ =

(|a+⟩ + |a−⟩)/
√

2 and |1⟩ = (|a+⟩ − |a−⟩)/
√

2. The imprinted state U(θ) |0⟩ = |Ψ(θ)⟩ carries the

most QFI possible without postselection, I(θ) = ∆2.

A postselected state can provide more QFI. If the angle is small (θ∆ ≪ 1), then |Ψ(θ)⟩ ≈
|0⟩ + i θ∆2 |1⟩. The |0⟩ coefficient is less sensitive to θ than the |1⟩ coefficient, yet |0⟩ has a greater

population. PPA partially postselects on |1⟩ via a filter whose |1⟩ transmission amplitude is unity

and whose |0⟩ transmission amplitude is parametrically smaller.

PostselectionPreparation Transformation Measurement
HWP1

HWP0

HWP2

QWP HWP3 WP
PBD0 PBD1 PBD2

SPCM1

SPCM2

HSPS

Figure 2.1: Photonic parameter-estimation experiment: Preparation: A heralded–single-photon
source (HSPS) emits light that hits a polarizing–beam-displacer (PBD0) and emerges vertically polarized
(|1⟩). Transformation: The half-waveplate (HWP0) has an optic axis angled 45◦ above the horizontal.
HWP0 is tilted away from normal incidence through an angle α about its optic axis. The waveplate rotates
a photon’s polarization through an angle θ(α)−π. A calibration curve of θ(α) ≡ θ provides a prior estimate
of θ. We use this estimate to calculate the polarization projection optimal for inferring θ (Sec. 2.6.2).
Postselection: A polarizing–beam-displacer interferometer, followed by a beam block in the undisplaced
port, realizes a partial polarizer. The horizontal-polarization transmission amplitude, t with |t| ∈ [0, 1], is
controlled by a half-waveplate (HWP2) inside the interferometer. The filter discards all horizontally
polarized photons when |t| = 0 and none when |t| = 1. Measurement: Motorized waveplates, followed by a
Wollaston prism (WP) and single-photon counter modules (SPCM), project onto any desired polarization.

More precisely, let t denote the amplitude for |0⟩’s survival of the filter. The filter acts as the

Kraus operator [99] K(t) = t|0⟩⟨0| + |1⟩⟨1|, wherein |t| ∈ [0, 1]. For any |t| < 1, the filter does not

commute with the generator A and enables noncommutative filtering. The filter lets |Ψ(θ)⟩ pass

with a probability

pps(θ, t) = Tr(K(t)|Ψ(θ)⟩⟨Ψ(θ)|K(t)†) (2.23)

= |t|2 cos2(∆θ/2) + sin2(∆θ/2). (2.24)

The state becomes

|Ψps(θ, t)⟩ = K(t) |Ψ(θ)⟩ /
√
pps(θ, t) (2.25)

= cos(∆Θ/2) |0⟩ + i sin(∆Θ/2) |1⟩ . (2.26)
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p̃ρ(θ),t(a, a
′|+) a′ = a+ a′ = a−

a = a+
1+|t|2

4pps(θ,t) ei∆θ −1+|t|2
4pps(θ,t)

a = a− e−i∆θ −1+|t|2
4pps(θ,t)

1+|t|2
4pps(θ,t)

Table 2.1: Conditional Kirkwood-Dirac distribution (2.29) for our PPA experiment and
ρ(θ) = |Ψ(θ)⟩⟨Ψ(θ)|.

The filter effectively amplifies θ to a Θ defined through tan(∆Θ/2) = tan(∆θ/2)/|t|. The postse-

lected state carries the QFI

I(θ) = [∆ |t|/pps(θ, t)]2 . (2.27)

A large angle is typically easier to observe than a smaller one. If the angle is small, ∆θ ≪ 1, then

Θ exceeds θ by a factor of 1/|t|. This amplification boosts the information obtained per detected

state: I(θ) ≈ (∆/|t|)2. The amplification is arbitrarily large if ∆θ is arbitrarily small. Such extreme

filtering does not significantly reduce the information obtainable per input state: pps(θ, t)I(θ) ≈ ∆2,

if tan(∆θ/2) ≪ |t|.
PPA can be beneficial even if ∆θ is large. Suppose prior knowledge indicates that θ ≈ θp.

Performing U(−θp) after U(θ) shrinks the probed angle to ∆(θ − θp).

Why can a successful PPA trial offer more information than ∆2, the most information offered by

any input trial? Reference [14] identified a necessary condition. A projectively postselected trial can

carry information > ∆2 only if a Kirkwood-Dirac distribution contains a negative quasiprobability.

We generalize that result beyond projective postselection.

Let {|a⟩}a and {|a′⟩}a′ denote copies of anA eigenbasis. Kraus operators {Kf}f with
∑
f K

†
fKf =

1 model the partial postselection. The information-bearing state ρ(θ) is represented by the Kirkwood-

Dirac quasiprobabilities (Secp. 2.6.3)

p̃ρ(θ)(a, f, a
′) := Tr(|a′⟩⟨a′|K†

fKf |a⟩⟨a|ρ(θ)). (2.28)

Conditioning on a postselection outcome f induces the conditional Kirkwood-Dirac distribution

p̃ρ(θ)(a, a
′|f) := p̃ρ(θ)(a, f, a

′)/
∑
a,a′

p̃ρ(θ)(a, f, a
′). (2.29)

These quasiprobabilities are positive if A and K†
fKf commute on the support of ρ(θ) [96].

PPA involves Kraus operators, K+ = K(t) and K− =
√
1−K(t)†K(t), that effect successful

and unsuccessful postselection. Table 2.1 shows PPA’s conditional quasiprobabilities, labeled by t,

for ρ(θ) = |Ψ(θ)⟩⟨Ψ(θ)|. If ∆ θ < π and |t|2 < 1, the real part of p̃ρ(θ),t(a±, a∓|+) is negative, and

the postselected QFI (2.27) exceeds ∆2. This concurrence stems from an equality that we prove.

We start by introducing a new measure of Krikwood-Dirac negativity [69, 96, 97]. Let x de-

note the vector of arguments for a Kirkwood-Dirac distribution {p̃(x)}x. Define the nonclassicality

gap as the greatest difference between quasiprobabilities’ absolute squares: maxx
{ ∣∣ p̃(x)|2

}
−

minx
{ ∣∣ p̃(x)|2

}
. The gap > 1 only if a quasiprobability ̸∈ [0, 1]. For any postselection operator



CHAPTER 2. POSTELECTED METROLOGY 11

0 0.2 0.4 
True angle  (rad)

0 

0.2 

0.4 

0.6 

0.8 

1 
Am

pl
ifi

ed
 a

ng
le

 
 (r

ad
) (a)

Experiment
Theory: = 2tan 1(tan( /2)/|t|)
Experiment
Theory: = 2tan 1(tan( /2)/|t|)

0.01 0.1 1 
True angle  (rad)

10 2

10 1

100

101

102

103

In
fo

rm
at

io
n 

(ra
d

2 ) (b) Precision
Accuracy
QFI theory

|t| = 0.044
|t| = 0.082
|t| = 0.15

|t| = 0.29
|t| = 0.53
|t| = 1.0

|t| = 0.044
|t| = 0.082
|t| = 0.15

|t| = 0.29
|t| = 0.53
|t| = 1.0

Figure 2.2: Experimental performance of PPA with different magnitudes of postselection parameter, |t|.
(a) Amplified angle vs. true angle θ. The slope signifies sensitivity to changes in θ. When θ is small
[tan(∆θ/2) ≪ |t|], PPA magnifies θ by a factor of 1/|t|. Setting |t| = tan(∆θ/2) amplifies θ to π/2 and
optimizes the sensitivity. Decreasing |t| further reduces the sensitivity, rendering prior knowledge about θ
important. (b) Information per photon vs. θ. For each (θ, |t|), we make 32 independent estimates of θ and
display the estimates’ precision (1/variance) and accuracy (1/[mean squared error]) per mean detected
photon. The per-photon precision agrees with the predicted QFI (2.27) and climbs to 540± 150 rad−2 at
(θ, |t|) = (0.040 rad, 0.044). The per-photon accuracy suffers from systematic errors at the smallest θ and
|t|, yet still reaches 78± 15 rad−2 at (θ, |t|) = (0.116 rad, 0.082).

K+, the nonclassicality gap is proportional to the optimal input state’s postselected QFI (Sec. 2.6.4):

I(θ) = 4∆2

[
max
a,a′

{ ∣∣ p̃ρ(θ)(a, a′|+)|2
}
− min

a,a′

{ ∣∣ p̃ρ(θ)(a, a′|+)|2
}]
. (2.30)

Equation (2.30) crystallizes the relationship between postselected quantum metrology and Kirkwood-

Dirac nonclassicality.

2.4 Experimental setup

We realize PPA in a proof-of-principle polarimetry experiment (Fig. 2.1). The to-be-estimated

parameter θ is the excess birefringent phase, beyond π, imparted by a near-half–waveplate (HWP0).

A heralded–single-photon source emits vertically polarized photons with wavelengths of 808 nm.

The photons hit HWP0, whose optic axis lies 45◦ above the horizontal. Tilting HWP0 through

an incidence angle α sets its birefringent retardance to θ(α) − π. A calibration curve of θ(α) ≡ θ

provides prior knowledge about θ.

Denote horizontal polarization by |0⟩; and vertical polarization, by |1⟩. We filter the photons by

attenuating one polarization, using an interferometer formed from polarizing beam displacers. The

postselection parameter t equals the filter’s (|0⟩ transmission amplitude)/(|1⟩ transmission ampli-

tude). We control t with a motorized waveplate (HWP2) placed in the interferometer.

HWP0 rotates the photon’s polarization with the unitary exp(i[θ− π]σx/2). The generator A =

σx/2 has eigenvalues a± = ±1/2 and eigenstates |a±⟩ = (|0⟩± |1⟩)/
√

2. The filtered photons occupy

the state ρps(θ, t)—ideally, the pure state (2.26). We projectively measure the state’s polarization

to estimate θ.

Experimental results.—First, we assess PPA’s metrological performance. Then, we present the
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Figure 2.3: Quasiprobabilities vs. amplification factor 1/|t|. We inferred the Kirkwood-Dirac
distribution (2.28), p̃ρ(θ),t(a, a

′|+), from tomography of the unpostselected (|t| = 1) state. We present
empirical results together with theoretical predictions at different θ and |t| for select elements: (a)
Re[p̃ρ(θ),t(a+, a+|+)], (b) Re[p̃ρ(θ),t(a−, a−|+)], (c) Re[p̃ρ(θ),t(a−, a+|+)], and (d) Im[p̃ρ(θ),t(a−, a+|+)]. All
other elements are redundant because (2.28) ensures p̃ρ(θ),t(a, a

′|+) = p̃ρ(θ),t(a
′, a|+)∗. For each (θ, |t|), the

quasiprobabilities’ sum is normalized to 1. Negativity in Re[p̃ρ(θ),t(a±, a∓|+)] allows the magnitude of each
element to be greater than 1. The negativity increases as the amplification strengthens.

measured quasiprobabilities (2.29). Comparing the quasiprobabilities with the QFI, we support

Eq. (2.30) experimentally.

Polarization tomography reveals how PPA boosts sensitivity. Figure 2.2a shows the postselected

state’s amplified angle, Θ, versus the true θ value. We infer the latter using state tomography

without postselection (|t| = 1). The slope of Θ(θ) quantifies our sensitivity to small changes in θ.

When |t| = 1, Θ(θ) has a unit slope. As we postselect more (|t| decreases), the slope grows—by a

factor of > 20 at |t| = 0.044.

We estimate θ by projectively measuring many copies of the amplified state identically. The

measurement basis is optimized to provide the QFI according to calibrations of θ(α) and t (Sec. 2.6.2).

For each (θ, t), we sample 32 independent estimates of θ. Figure 2.2b displays our estimates’

precision and accuracy, normalized by the number N of detected photons. The precision per photon,

var(θe)
−1/N , agrees excellently with the QFI (2.27). The accuracy per photon, MSE(θe)

−1/N ,

mostly agrees with the QFI but falls short at the smallest θ and |t|. The per-photon precision

enhancement maximizes at 540 ± 150, when θ = 0.040 rad, |t| = 0.044. The per-photon accuracy
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Figure 2.4: Information per detected photon (a) and per input photon (b) vs. magnitude of postselection
parameter, |t|. Error bars denote the geometric standard error of 4 independent runs. The experimental
QFI and 4 times the nonclassicality gap are within error of the theoretical QFI (2.27). Without
postselection, our estimates are shot-noise–limited to the per–input-photon precision 1 rad−2. As we
increasingly postselect (as |t| decreases), the per–detected-photon precision increases when θ ≈ 0 and
decreases when tan(θ/2) < |t|. The smallest |t| and θ provide a per–detected-photon precision
> 200 rad−2, despite sacrificing little per–input-photon precision.

caps at 78 ± 15, when θ = 0.116 rad and |t| = 0.082.

The discrepancy between precision and accuracy arises because PPA amplifies systematic errors

(Sec. 2.6.1). Small errors in adjusting the waveplates that set |t| or A produce systematic error.

These errors begin to dominate the statistical noise as the amplification increases. Remarkably,

we found the amplified errors helpful for detecting and correcting errors in A that went unnoticed

without PPA’s amplification.

We extract the conditional quasiprobabilities (2.28) from tomography of the unpostselected (|t| =

1) state and present them in Fig. 2.3. At each (θ, t), the sum over the quasiprobabilities is normalized

to one. When |t| < 1, quasiprobabilities acquire negative real parts, so other quasiprobabilities

acquire real parts > 1 to ensure a unit sum. As |t| decreases, elements’ magnitudes increase—to

> 70 at the smallest θ and |t|.
Figure 2.4 compares the nonclassicality gap with the QFI. We compute the gap from the

quasiprobabilities shown in Fig. 2.3. The estimated gap is the arithmetric mean over four runs

of tomography. We determine the QFI at θ = θ0 empirically from estimates of ρps(θ0, t) and

∂ρps(θ, t)/∂θ|θ0 (Sec. 2.6.2 states the formula for QFI). The derivative is the matrix slope of a linear

fit through three tomographic estimates: ρps(θ0 − dθ, t), ρps(θ0, t), and ρps(θ0 + dθ, t); dθ = 0.035

radians. We repeat the procedure over four tomographic runs to obtain a distribution of QFIs at

each (θ, |t|). Empirically, the distribution of the QFIs is approximately log-normal, so we estimate

the QFI and its uncertainty using the geometric mean and geometric standard error.

The estimated QFI and nonclassicality gap are consistent with the theoretical QFI [Fig. 2.4(a)].

Thus, our experiment corroborates the relationship (2.30) between enhanced precision and quasiprob-

ability negativity.

2.5 Conclusions

We have experimentally demonstrated and theoretically proved how negative Kirkwood-Dirac

quasiprobabilities enhance postselected metrology. We introduced and illustrated a scheme for phase
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estimation, partially postselected amplification. In our polarimetry experiment, PPA boosted our

per–detected-photon precision by over two orders of magnitude. This enhancement derives from

negativity of a generalized Kirkwood-Dirac quasiprobability, according to an equation that we prove

and experimentally support. The negativity demonstrates that our filter provides a benefit offered

by no filter that commutes with U(θ).

In theory, PPA’s precision boost is unbounded. In practice, we find, the phase amplification

augments systematic errors. Yet the error amplification has a silver lining, having helped us detect

and correct systematic errors in our implementation of the generator A (Sec. 2.6.1).

PPA is related to weak-value amplification (WVA), a scheme for estimating couplings strengths [3,

4, 31, 33–59]. PPA and WVA concentrate information spread across many input trials into few

postselected trials. Yet PPA differs from WVA in three ways: (i) PPA can amplify any phase,

not just coupling strengths. (ii) PPA survives decoherence better. In WVA, an interaction couples

two systems. One system is measured, the other is postselected, and both must remain coherent

during the interaction. PPA only requires the measured system to maintain coherence. (iii) PPA

admits of a simpler mathematical treatment: WVA requires a Hilbert-space dimensionality ≥ 4,

whereas PPA works with a Hilbert-space dimensionality ≥ 2. PPA is therefore a promising tool for

combating metrological challenges that scale with the number of completed trials. As a whole, our

work interweaves the disparate studies of precision measurement and quantum foundations.
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2.6 Postselected metrology supplementary materials

2.6.1 Postselected amplification of systematic error

Some estimates of θ (Fig. 2.5a) deviate statistically significantly from the true θ values. We now

detail these deviations and explain PPA’s ability to amplify certain types of systematic errors.

Figure 2.5b shows our mean estimates’ residual, and residual per standard error, versus the true

θ value. Deviations greater than 2 standard errors point to statistically significant systematic errors.

Figure 2.5a showed rough agreement between our estimates and true values. However, Fig. 2.5b

reveals that statistically significant systematic errors bedevil our estimates.

We now distinguish the systematic errors present with and without postselection. Without post-

selection (|t| = 1), our estimates of θ differ significantly from the true (tomographically extracted)

values. This error is not unique to PPA and is specific to our polarimetry experiment’s details. An-
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Figure 2.5: (a) Mean estimate of θ vs. true θ value. Each mean is averaged over 32 independent
estimates and agrees roughly with the true value. Inset: mean detected-photon number, N . Difference
between our estimates and the true θ value. In the lower graph, the difference is normalized by standard
error. Modest postselections (|t| ≥ 0.15) do not suffer from significantly more systematic error than
postselection-free measurements (|t| = 1). The two most severe postselections (|t| = 0.044, 0.082) amplify
systematic errors significantly.

other type of error emerges at the two most extreme postselection levels, when |t| ∈ {0.044, 0.082}.

The systematic errors varies strongly with θ and characterizes PPA.

While amplifying θ, PPA also amplifies small errors in the implementations of (i) the generator

A and (ii) the Kraus operator K. As shown in the main text, PPA amplifies an unknown phase θ

to a larger phase Θ. To obtain an estimate θe of θ, we first obtain an estimate Θe of Θ. Then, we

numerically invert the amplification. Inversion requires an accurate model of the experiment, but

no model is perfect. In our model, postselection amplifies the state’s phase to

Θ = Θ(θ, t) = 2 arctan(tan(θ/2)/t), (2.31)

according to Eq. (2.26). Given the amplified-angle estimate, the θ estimate is θe = Θ−1(Θe, t).

The setting of t may suffer from a small error ∆t. The estimated phase, as a function of the true

phase, will become

θe = 2 arctan(tan(θ/2)[1 + ∆t/t]). (2.32)

The half-tangents of θe and θ differ by

tan(θe/2) − tan(θ/2) = [tan(θ/2)/t] ∆t = tan(Θ/2) ∆t. (2.33)

This difference is proportional to the amplified half-tangent, which leads to two problems. First,

amplifying θ amplifies the effects of the uncertainty in t. Second, the resulting systematic error

cannot be corrected, because tan(Θ/2) is unknown, by the phase-estimation task’s nature.

Separately, errors can mar the implementation of the generator A. Ideally, A = σx/2. However,

A is effected by a waveplate whose optic axis may be rotated by a small angle ϵ from 45◦ to the

horizontal. The generator will become A(ϵ) = cos(2ϵ)σx/2 + sin(2ϵ)σz/2. Under ei(θ−π)A(ϵ), the
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initial state |1⟩ evolves to

|ψ(ϵ)⟩ = cos(θ/2)[cos(2ϵ) |0⟩ − sin(2ϵ) |1⟩] + i sin(θ/2) |1⟩ . (2.34)

This state’s polar half-angle has a tangent

| ⟨1|ψ(ϵ)⟩ |
| ⟨0|ψ(ϵ)⟩ | =

√
sin2(2ϵ) + tan2(θ/2)

cos2(2ϵ)
. (2.35)

When sin2(2ϵ) ≪ tan2(θ/2), ϵ affects the polar angle negligibly. However, if sin2(2ϵ) > tan2(θ/2),

the polar angle depends on ϵ considerably. Amplifying the polar angle with PPA amplifies also the

error in the A implementation.

One can compensate, or correct, for the error amplification. Moreover, we exploited it to improve

our A implementation while aligning our equipment. However, calibration and correction errors

propagate to θ eventually. Thus, the precision of one’s K(t) and A implementations limits how

much one can filter and postselect usefully. This phenomenon extends beyond our polarimetery

experiment to every PPA implementation.

2.6.2 Optimal measurement

We estimated θ with an optimal polarization measurement. By optimal measurement, we mean

a measurement whose information yield, averaged over many trials, equals the QFI. Let Λ denote

the symmetric logarithmic derivative of ρ, defined implicitly through the Sylvester equation,

∂ρ

∂θ
=

Λρ+ ρΛ

2
. (2.36)

Projectively measuring an eigenbasis of Λ is optimal [12]. Moreover, the variance of such a measure-

ment equals the QFI.

I(θ) = Tr
(
ρ(θ)Λ2

)
(2.37)

Therefore, we aim to solve Eq. (2.36) for Λ.

We obtain a solution as follows. Let vec(Y ) denote the vectorized form of a matrix Y in row-

major order. For matrices X, Y , and Z with appropriate dimensions, vec(XY Z) = (X⊗ZT )vec(Y ).

Let Y + denote the Moore-Penrose inverse of a matrix Y . Solving for Λ, we vectorize it:

vec(Λ) =

(
ρ⊗ 1 + 1⊗ ρT

2

)+

vec

(
∂ρ

∂θ

)
. (2.38)

In our experiment, the photon polarization is nearly, but not exactly, pure: The initial polariza-

tion is ρ0 = v|0⟩⟨0| + (1 − v)1/2. The visibility v is close, but not equal, to unity. The postselected

state is

ρps(θ, t) = K(t)U(θ)ρ0U(θ)†K(t)†/pps(θ, t), (2.39)

and the postselection probability is

pps(θ, t) = Tr(K(t)U(θ)ρ0U(θ)†K(t)†). (2.40)
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Λ assumes the form

Λ = v pps(θ, t)

[
1 − |t|2

2
sin(θ)1 + cos(θ)(Re[t]σx + Im[t]σy) +

1 + |t|2
2

sin(θ)σz

]
. (2.41)

An optimal measurement is thus a polarization projection onto the Bloch vector whose polar angle

θopt and azimuthal angle ϕopt are defined through

cot(θopt) =
1 + |t|2

2|t| tan(θ), tan(ϕopt) = Im[t]/Re[t]. (2.42)

θopt turns out to be independent of v but not of θ. We use prior knowledge about θ, derived from

our calibration curve θ(α), to estimate θopt and approximate an optimal measurement.

2.6.3 Generalized Kirkwood-Dirac distribution

We called the quasiprobabilities (2.28) “Kirkwood-Dirac quasiprobabilities.” This appendix jus-

tifies that terminology. Kirkwood and Dirac independently defined a quasiprobability dependent on

a pure state |ψ⟩ and on two projectors, |a⟩⟨a| and |f⟩⟨f | [60, 61]: Tr(|f⟩⟨f |a⟩⟨a|ψ⟩⟨ψ|). Wiseman

generalized the pure state to an arbitrary quantum state ρ [100]: Tr(|f⟩⟨f |a⟩⟨a|ρ). Yunger Halpern

and collaborators generalized to arbitrarily many projectors Π
Mj
mj , which can project onto multi-

dimensional subspaces [67, 68]: Tr
(

Π
(k)
mkΠ

(k−1)
mk−1 . . .Π

(1)
m1ρ

)
. They called this quantity an extended

Kirkwood-Dirac quasiprobability.

We generalize the projectors to elements of POVMs
{
M

(1)
m1

}
m1

,
{
M

(2)
m2

}
m2

, . . . ,
{
M

(k)
mk

}
mk

:

p̃ρ(m1,m2, . . . ,mk) := Tr
(
M (k)
mk
M (k−1)
mk−1

. . .M (1)
m1
ρ
)
. (2.43)

By definition, the ℓth POVM’s elements are positive-semidefinite operators that resolve unity:

M
(ℓ)
mℓ ≥ 0, and

∑
mℓ
Mmℓ

= 1. We could call our quasiprobability (2.43) a “generalized ex-

tended Kirkwood-Dirac quasiprobability”; but the name, itself, would be too extended. Following

Wiseman’s lead, we avoid new names; we christen our construction, and rechristen the extended

Kirkwood-Dirac quasiprobability, a “Kirkwood-Dirac quasiprobability.”

To merit the name, our quasiprobability distribution should exhibit two recursive properties:

1. A Kirkwood-Dirac distribution with one argument is a probability distribution.

2. Marginalizing over any argument of a Kirkwood-Dirac distribution with k > 1 arguments

yields a Kirkwood-Dirac distribution with k − 1 arguments.

Consequently, marginalizing over k − 1 arguments of a k-argument Kirkwood-Dirac distribution

yields a probability distribution. We now verify that our distribution (2.43) has these properties.

Consider the one-argument distribution with elements p̃ρ(m1) = Tr(M
(1)
m1ρ). It satisfies prop-

erty 1 because (i) each M
(1)
m1 is positive-semidefinite, so p̃ρ(m1) ≥ 0; and (ii)

{
M

(1)
m1

}
m1

resolves

unity, so
∑
m1

p̃ρ(m1) = Tr(ρ) = 1. The element p̃ρ(m1) is the probability that, upon preparing ρ

and measuring
{
M

(1)
m1

}
m1

, one obtains outcome m1.
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Now, consider the k-argument distribution (2.43). Marginalizing over the ℓth POVM yields∑
mℓ

p̃ρ(m1,m2, . . . ,mℓ−1,mℓ,mℓ+1, . . . ,mk) = p̃ρ(m1,m2, . . .mℓ−1,mℓ+1,mℓ+2, . . . ,mk) (2.44)

= Tr
(
M (k)
mk
M (k−1)
mk−1

. . .M (ℓ+1)
mℓ+1

M (ℓ−1)
mℓ−1

M (ℓ−2)
mℓ−2

. . .M (1)
m1
ρ
)
,

(2.45)

because each POVM resolves unity. The right-hand side is a (k − 1)-argument Kirkwood-Dirac

distribution. Therefore, our construction has property 2.

2.6.4 Proof of proportionality between postselected quantum Fisher in-

formation and quasiprobability nonclassicality

Equation (2.30) interrelates the postselected quantum Fisher information and the generalized

quasiprobability’s nonclassicality. We prove this equation—in fact, a generalization of the equation—

here.

Generalized setup: All the definitions presented here are independent of the definitions pre-

sented in the main text. For example, the A defined here is independent of the A defined in the

main text. However, quantities defined in the main text are examples of quantities defined here.

During a parameter-estimation experiment, the input state ρ undergoes a unitary U(θ) = eiθA

generated by a Hermitian operator A:

ρ 7→ U(θ)ρU(θ)† = ρ(θ). (2.46)

The parameter to be estimated is θ. The system corresponds to a Hilbert space of arbitrary dimen-

sionality. We assume that ρ is a pure state with support on only two A eigenspaces. The projectors

onto these eigenspaces, we denote by Πmin and Πmax. Their associates eigenvalues are amin and

amax > amin.

After undergoing the unitary, the state meets a filter. If the state survives the filter, a Kraus

operator K+ updates the state. Otherwise, K− =
√
1−K†

+K+ updates the state. The state

survives the filter with the postselection probability pps(θ) = Tr(ρ(θ)K†
+K+). We can represent the

experiment with the Kirkwood-Dirac quasiprobability

p̃ρ(θ)(a, f, a
′) = Tr(Πa′ K

†
fKf Πa ρ(θ)), for a, a′ ∈ {amax, amin}. (2.47)

Our result depends on the conditional quasiprobabilities, labeled by f = +, associated with a

successful postselection:

p̃ρ(θ)(a, a
′|+) = p̃ρ(θ)(a,+, a

′)/pps(θ). (2.48)

We assume that two “diagonal” quasiprobabilities, labeled by a = a′, equal each other:

Tr(Πmax ρ(θ) ΠmaxK
†
+K+) = Tr(Πmin ρ(θ) ΠminK

†
+K+). (2.49)

This condition is satisfied by the main text’s qubit system of interest, A = σx/2, and input state

(|a+⟩ + |a−⟩)/2 = |0⟩.
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Generalized equality: The postselected QFI, I(θ), is proportional to the quasiprobability’s

nonclassicality gap:

I(θ) = 4 (amax − amin)2
(

max
a,a′

{ ∣∣ p̃ρ(θ)(a, a′|+)|2
}
− min

a,a′

{ ∣∣ p̃ρ(θ)(a, a′|+)|2
})

. (2.50)

Proof: We calculate the postselected quantum Fisher information by substituting from Eq. (2.46)

into a formula for a pure state’s postselected QFI {Eq. (5) in [14]}:

I(θ) =
4

pps(θ)
Tr(Aρ(θ)AK†

+K+)−
4

[pps(θ)]2
|Tr(Aρ(θ)K†

+K+)|2 (2.51)

=
4

[pps(θ)]2

[
Tr(Aρ(θ)AK†

+K+)Tr(ρ(θ)K†
+K+)− Tr(Aρ(θ)K†

+K+)Tr(ρ(θ)AK†
+K+)

]
.

(2.52)

We will rewrite the right-hand side, by decomposing the evolved state as

ρ(θ) = (Πmax + Πmin) ρ(θ) (Πmax + Πmin) (2.53)

= Πmax ρ(θ) Πmax + Πmax ρ(θ) Πmin + Πmin ρ(θ) Πmax + Πmin ρ(θ) Πmin. (2.54)

We substitute this expression into Eq. (2.52). Then, we invoke the eigenvalue equations AΠmax =

amaxΠmax and AΠmin = aminΠmin. Once we multiply out, terms cancel:

I(θ|ρ(θ)) =
4

[pps(θ)]2
(amax − amin)2

[
Tr(Πmax ρ(θ) ΠmaxK

†
+K+)Tr(Πmin ρ(θ) ΠminK

†
+K+)

− Tr(Πmax ρ(θ) ΠminK
†
+K+)Tr(Πmin ρ(θ) ΠmaxK

†
+K+)

]
.

(2.55)

The final term equals |Tr(Πmax ρ(θ) ΠminK
†
+K+)|2, so

I(θ) = 4 (amax − amin)2
[
p̃ρ(θ)(amax, amax|+) p̃ρ(θ)(amin, amin|+) − |p̃ρ(θ)(amax, amin|+)|2

]
. (2.56)

Since I(θ) and (amax − amin)2 ≥ 0, Eq. (2.56) implies

p̃ρ(θ)(amax, amax|+) p̃ρ(θ)(amin, amin|+) ≥ |p̃ρ(θ)(amax, amin|+)|2. (2.57)

The left-hand side equals
[
p̃ρ(θ)(amax, amax|+)

]2
, by Eq. (2.49). Since each side of Eq. (2.49) is

overtly a probability, p̃ρ(θ)(amax, amax|+) is real. The square therefore equals the square modulus.

Substituting into Ineq. (2.57) yields |p̃ρ(θ)(amax, amax|+)|2 ≥ |p̃ρ(θ)(amax, amin|+)|2. This inequality

contains the square moduli of all the quasiprobabilities for which f = +. Hence the inequality’s left-

hand side equals the greatest square probability, maxa,a′
{

[p̃ρ(θ)(a, a
′ ∣∣ +)]2

}
, while the right-hand

side equals the least square modulus, mina,a′
{

[p̃ρ(θ)(a, a
′ ∣∣ +)]2

}
. Substituting the max and min

into Eq. (2.56) yields Eq. (2.50). □
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2.7 Postselected metrology outro

2.7.1 Contributions

Nicole Yunger Halpern and David Arvidsson-Shukur (along with Seth Lloyd initially) are re-

sponsible for proposing to Aephraim’s group an experiment connecting postselected metrology and

and non-classicality. I took the bait and organized conversations between our groups. I came up

with the idea for the optical experiment and the quantitative equation relating Fisher information

with Kirkwood-Dirac negativity. Nicole wrote the rigorous proof of the equality while Nicole and

David helped with various theory calculations along the way. I designed the apparatus, except for

the single-photon source built and designed by Edwin Tham. Batuhan Yilmaz built the apparatus

and collected most of the preliminary data. I analyzed almost all the data throughout the project.

Batuhan and I collected the final data together. I wrote most of the paper, with Batuhan responsi-

ble for polishing the figures and final rounds of edits. Arthur Pang helped in various ways as a lab

mate while he, Aharon Brodutch, and Aephraim Steinberg contributed to the project via regular

lab meetings.

2.7.2 Single photon source

We generated heralded single photons for our metrology experiment from the Sagnac source,

which Edwin Tham built and described in detail in his thesis [101]. The source was designed

to create polarization-entangled photon pairs, but in this experiment, we just used it as a bright

(around 50k coincidences per second) source of heralded single photons. I will discuss this source in

more detail in the next chapter (Sec. 3.3.2), where its entanglement properties were relevant. The

description of the source in that chapter is accurate for the source as it was used in the metrology

experiment, except that the source was pumped with a 160 MHz linewidth Ondax diode laser during

the metrology experiment instead of the Cobalt 08-17 from Hübner Photonics it was eventually

replaced by. In this section, I will answer the question of why we bothered to use a single photon

source for our experiment at all. Theoretically, all the postselected amplification that ocurred in

our single-photon experiment would have also ocurred with a coherent state. Despite that, there are

two primary reasons we chose to use single photons.

Using a coherent state would have weakened our claims of experimentally achieving a non-classical

metrological advantage. The classical bound we compared against was based on the minimum and

maximum eigenvalues of the phase generator. In the paper, we modeled this generator A as a qubit

operator: A = σx/2. Strictly speaking, the operator σx/2 only describes the generator’s action on

the single-photon subspace. The full generator is actually an infinite-dimensional operator of the

form (a†a− b†b)/2, where a† creates a diagonally polarized photon and b† creates an anti-diagonally

poalrized photon. The minimum and maximum eigenvalues of this operator are negative and positive

infinity, which do not give a useful classical bound to compare against. If we had used a coherent

state as our probe, which contains a superposition of photon numbers going all the way up to

infinity, the large eigenvalues of the generator would have played a role in the evolution. By using

a single-photon state, we ensure that only the single-photon subspace of the generator is relevant.

Consequently, A = σx/2 is indeed a faithful model of our phase generator and its finite eigenvalues

add an extra level of theoretical rigor to our claims of a non-classical advantage.
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The other reason we used a single-photon state over a classical laser was to achieve the shot-

noise limit. We wanted our experiment to show that we could amplify the information per detection

beyond the limit on information per input. The most straightforward way to achieve this is by

ensuring that without postselection, we were already at the per-input information limit. Heralded

single photon sources are great for taking shot-noise limited data because a) the large statistical

noise of a single-photon source can mask technical noise and b) heralding with a short coincidence

window practically eliminates dark counts.

2.7.3 Polarization optics

There were several key polarization components in our experiment. First, there was the generator

which implemented the polarization rotation we aimed to measure. We considered several options

for implementing this generator, including a liquid crystal waveplate, a rotating waveplate, and

the titled waveplate we ultimately chose. The essential requirements were that the polarization

transformation be stable over time, repeatable, and easy to precisely characterize. Furthermore, we

wanted the axis of the generator to be independent of the phase parameter θ because the theory

work on postselected metrology we based our experiment on made the same assumption. This

assumption led to us ruling out using a rotating waveplate as the generator, which would have

been an operator proportional to cos(θ/2)σz + sin(θ/2)σx. In retrospect, we might have used the

fact that two half waveplates in a row impart a phase shift between left-circular and right-circular

polarization. However, this approach would probably not have been better than our titled waveplate

approach as if either of those half waveplates had not had a retardance of exactly π, the axis of the

generator would have varied as they were turned. Our other consideration was a liquid crystal

waveplate, an optic whose birefringence can be controlled by an applied voltage. Ostensibly, the

orientation of the birefringence is independent of voltage, but we have found notable variations in

practice. Their relationship between voltage and birefringence is not linear and requires careful

calibration. Furthermore, liquid crystal waveplates tend to be very thick and thus depend much

more on temperature, wavelength, and incidence angle than typical passive waveplates.

The tilted waveplate approach worked well in the end, but did create its own set of challenges.

First, the relationship between the tilt of the waveplate and birefringent phase shift it imparted was

not as easy to characterize as we initially expected. This might have been because the waveplate we

used was a pseudo zero-order waveplate, not a true zero-order waveplate. Our initial plan was to

create a calibration curve relating tilt and retardance by fitting to equations derived from the basic

physics and geometry of uniaxial crystals. We found these fits to be inadequate, and eventually

resorted to spline interpolation to fill in our calibration curves. Second, setting up the waveplate

so that its optical axis was parallel to the tilt axis of its mount and 45◦ from the horizontal axis

proved more challenging than expected. We had to mount and remount the waveplate several times

until these angles were all aligned to within less than a degree in order for our data with large

amplification factors to agree with our predictions.

The last important decision for the experiment was the design of the partial polarizer. The partial

polarizer needed to attenuate one polarization by a factor t more than the orthogonal polarization,

which would ideally suffer no attenuation. Moreover, the attenuated polarization needed to be

coherent with the orthogonal polarization so that the resulting polarization state was pure, not

mixed. We considered three approaches: the polarizing beam displacer interferometer we settled
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on, a polarizing beam splitter based displaced Sagnac interferometer, and a single polarizing beam

splitter cube at variable incidence angle.

The idea behind the single polarizing beam splitter was that the reflection ports of most polarizing

beam splitters have a notoriously poor extinction. Polarizing beam splitter cubes tend to have an

extinction ratio of 1000 : 1 or better in their transmitted port, but only 100 : 1 in their reflected port.

Moreover, the reflected port extinction is sensitive to the incidence angle of the light. While these

aspects of the reflection port are typically seen as bugs, we might have turned them into features by

tuning the incidence angle of a polarizing beam splitter cube to alter the extinction ratio and achieve

a particular t value. The simplicity of this design is very appealing and perhaps worth exploring

further in the future. One reason we decided against this design was that it would have provided a

very limited range of t values. While changing the incidence angle does change the extinction ratio

slightly, it cannot turn polarization splitting off completely. That is, it cannot achieve t = 1, which

is essential in our experiment for comparing to the standard measurement that does not involve

postselection. Another point against this design is that changing the incidence angle of the beam

splitter changes the angle of the reflected beam and necessitates a realignment of the collection

optics. Finally, it is dubious to use a device for a purpose for which it was not designed. It is unclear

how coherent the leakage in the reflection port would be. While we never took the time to study

this carefully, I guessed that the light leaking into the reflection port would not be very coherent

with the non-leaked light.

The polarizing beam splitter based displaced Sagnac is a tried and true design for implementing

arbitrary polarization operations in quantum foundations experiments, but it would not have pro-

vided the level of purity and stability required for our metrology experiment. The Sagnac design

involves using both the reflected and transmitted ports of a beam splitter. As discussed above, the

reflected port of a polarizing beam splitter tends to only get extinction ratios on the order of 100 : 1,

thus limiting how low we can make t. Additionally, the alignment and phase of a displaced Sagnac

interferometers tends to be less stable than a polarizing beam displacer interferometer because a

beam displacer interferometer can be very compact and does not require any mirrors.

The polarizing beam displacer interferometer we made worked well for our metrology experiment.

We bought a matched pair of anti-reflection coated α-BBO polarizing beam displacers from Newlight

Photonics with 3 mm displacement. These polarizers have an extinction ratio greater than 105 : 1.

The alignment of our interferometer was stable over weeks at a time. For fixed values of t, the phase

was stable for hours, but we found that changing t, (accomplished by rotating a waveplate within

the interferometer) added a Berry phase. Although this phase shift was repeatable, it still added

an extra layer of complication. In retrospect, using a variable neutral density filter in place of a

waveplate to control t may have avoided this problem.

2.7.4 Follow up

The postselected metrology experiment detailed in the previous section offers several oppor-

tunities for further study. Our proof-of-principle centered around the toy problem of measuring

the retardance of a half waveplate. However, our partially postselected amplification technique is

applicable to any phase-estimation experiment. One interesting direction would be to apply our

amplification technique to a physically interesting problem where we might be able to push the state

of the art. Another direction involves relaxing the assumption that we have a good prior estimate of
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the phase we wish to measure. Presumably, a good adaptive algorithm could iteratively improve our

estimate of the phase (assuming the phase varies slowly over the iteration time) and feed back into

progressively greater postselected amplification. Finally, we could study postselected amplification

in the context of multi-parameter estimation. In one experiment, we could amplify sensitivity to a

few parameters that correspond to quantum mechanically incompatible observables, such as rota-

tions about all three Cartesian axes. Another approach would be to amplify sensitivity to a massive

number of compatible parameters, such as the relative phase of each pixel in a hologram.



Chapter 3

Disturbing Quantum Pigeons

3.1 Introduction to variable-strength measurements

This chapter explores the role of measurement disturbance, or lack thereof, in some of the counter-

intuitive conclusions one arrives at when attempting to infer properties of a quantum state between

two measurements. Perhaps the most notorious such conclusion is that the spin of a spin-1/2 particle

can be 100 in some sense [36]. To understand the properties of a state between two measurements,

we must understand the dynamics of these measurements.

The canonical description of a quantum measurement is called the von Neumann model [102]. It

provides a quantitative description of the physics behind a device that measures some property of a

system represented by an observable AS . The input of the device is a system in an unknown state

|ψi⟩S along with a meter in some pre-calibrated and well-known initial state |µ⟩O that will observe

the system. For now, we will imagine the meter is a single particle whose position XO is localized

within a Fourier transform-limited wavepackect. The device facilitates an interaction Hamiltonian

HSO = gASPO (3.1)

between the system and the meter for the duration of the measurement. PO is the momentum of

the meter and generates shifts in the meter position XO. g = g(t) is an envelope function sharply

peaked around the time t the measurement occurs. It is narrow compared to the free-evolution time

scales of both the system and the meter. The unitary the interaction Hamiltonian generates over

this short time window τ is

USO = e−iκASPO , (3.2)

where κ = gτ/ℏ is a coupling coefficient.

When the device measures a system prepared in an eigenstate |a⟩S of AS with eigenvalue a, it

shifts the meter to the state |µa⟩O = e−iκaPO |µ⟩. On an arbitrary input |ψi⟩S , the system and

meter evolve into the state

USO |ψi⟩S |µ⟩O =
∑
a

Πa,S |ψi⟩S |µa⟩O , (3.3)

where Πa,S is the projector onto the eigenspace of AS with eigenvalue a. The state of the meter

24
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now allows us to infer what value of AS the system had prior to the measurement. We represent

this inference by an observable AO which is calibrated to have an expectation value of a whenever

the meter is in the state |µa⟩O. That is

⟨µa|O AO |µa⟩O = a (3.4)

for all a we might expect to measure. Using the canonical commutation relation [XO, PO] = iℏ, we

can see that the operator

AO =
XO − ⟨µ|OXO |µ⟩O

κℏ
(3.5)

satisfies this property. It follows that the expectation value of AO after the measurement correctly

infers the expectation value of AS on any system before the measurement.

⟨ψi|S AS |ψi⟩S = ⟨ψi|S ⟨µ|O U
†
SOAOUSO |ψi⟩S |µ⟩O . (3.6)

Suppose the system is later measured and found to be in the state |ψf ⟩S . With this information

in hand, we can use a conditional expectation value to make an even better inference.

E [AO||ψf ⟩⟨ψf |S ] =
E [|ψf ⟩⟨ψf |SAO]

E [|ψf ⟩⟨ψf |S ]
=

⟨ψi|S ⟨µ|O U
†
SO (|ψf ⟩⟨ψf |SAO)USO |ψi⟩S |µ⟩O

⟨ψi|S ⟨µ|O U
†
SO|ψf ⟩⟨ψf |SUSO |ψi⟩S |µ⟩O

(3.7)

If each of the various meter states |µa⟩O are well-separated in the sense that ⟨µa|µa′⟩ ≈ 0 for all

a ̸= a′, then the probability for the meter to be in state |µa⟩O is approximately the probability that

the system had the eigenvalue a. The conditional expectation becomes

lim
⟨µa|µa′ ⟩→δa,a′

E [AO||ψf ⟩⟨ψf |S ] =

∑
a a| ⟨ψf |S Πa,S |ψi⟩S |2∑
a | ⟨ψf |S Πa,S |ψi⟩S |2

. (3.8)

This expression is known in the literature as the ABL rule[103] after its authors Aharanov, Bergmann,

and Lebowitz. In this limit, the device generates strong correlations between the system and the

meter, but these correlations do not come for free. Any relative phase there might have been between

different a eigenspaces has been completely washed out. This measurement is called “strong” because

it creates strong correlations, but also strong disturbance.

At first glance, the formula might seem innocuous, but it exhibits some rather strange proper-

ties. First, the formula is non-linear in the observable AS , unlike the usual formula for a quantum

expectation value. As a result, the ABL formula can lead us to infer that the conditionally expected

valued value for a sum of observables AS +BS is not the same as the sum of the conditional expecta-

tions for AS and BS . Furthermore, the formula is sensitive to how exactly we measure observables.

For example, suppose we want to check whether a spin-1 particle is spinning up or not. The corre-

sponding observable would be |1⟩⟨1|S . One way to measure the observable would be to measure the

spin projection of the particle using an interaction Hamiltonian HSO = gSz,SPO and assign a value

of 0 whenever the spin was 0 or −ℏ and 1 otherwise. The conditional expectation would be

| ⟨ψf ||1⟩⟨1||ψi⟩ |2
| ⟨ψf ||−1⟩⟨−1||ψi⟩ |2 + | ⟨ψf ||0⟩⟨0||ψi⟩ |2 + | ⟨ψf ||1⟩⟨1||ψi⟩ |2

. (3.9)

Another way would be to couple directly to the observable |1⟩⟨1|S with an interaction Hamiltonian
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HSO = g|1⟩⟨1|SPO. The conditional expectation with this approach would be

| ⟨ψf ||1⟩⟨1||ψi⟩ |2
| ⟨ψf (||−1⟩⟨−1| + |0⟩⟨0|) |ψi⟩ |2 + | ⟨ψf ||1⟩⟨1||ψi⟩ |2

. (3.10)

These two expressions for the conditional expectation of whether or not the particle is spinning

up are manifestly different, despite the fact that they both seem like perfectly legitimate ways to

measure that observable. The difference comes down to the fact that the two measurement methods

impart two different strong back-actions.

Strong measurements are not the only useful kind of measurement. The opposite limit is a

“weak” measurement in which the meter only shifts by a tiny amount. The meter’s state becomes

only weakly correlated with the state of the system, so finding the meter in state |µa⟩O does not

let us immediately infer that the state had eigenvalue a. However, if we are blessed with many

independent and identical copies of an unknown state |ψi⟩S , we can still infer something meaningful

in a statistical sense. While the state of the meter after any given trial might not be very informative,

the expectation value of the meter observable AO still lets us infer properties of the system ensemble.

We express a weak measurement mathematically by expanding the interaction unitary USO to

first order in the coupling κ.

USO = 1− iκASPO +O(κ2) (3.11)

E [|ψf ⟩⟨ψf |S ] = ⟨ψi|S ⟨µ|O U
†
SO|ψf ⟩⟨ψf |SUSO |ψi⟩S |µ⟩O (3.12)

= | ⟨ψf |ψi⟩ |2 +O(κ2) (3.13)

E [AO||ψf ⟩⟨ψf |S ] = ⟨ψi|S ⟨µ|O U
†
SO|ψf ⟩⟨ψf |SAOUSO |ψi⟩S |µ⟩O (3.14)

= 2κ Im [⟨ψi|AS |ψf ⟩ ⟨ψf |ψi⟩ ⟨µ|POAO|µ⟩] +O(κ2) (3.15)

= 2κRe [⟨ψi|AS |ψf ⟩ ⟨ψf |ψi⟩] Im [⟨µ|POAO|µ⟩] (3.16)

+ 2κ Im [⟨ψi|AS |ψf ⟩ ⟨ψf |ψi⟩] Re [⟨µ|POAO|µ⟩] +O(κ2) (3.17)

The conditional expectation of a weak measurement is

E [AO||ψf ⟩⟨ψf |S ] = 2κRe

[ ⟨ψf |AS |ψi⟩
⟨ψf |ψi⟩

]
Im [⟨µ|POAO|µ⟩] (3.18)

+ 2κ Im

[ ⟨ψf |AS |ψi⟩
⟨ψf |ψi⟩

]
Re [⟨µ|POAO|µ⟩] +O(κ2). (3.19)

To proceed further, we must simplify the terms involving ⟨µ|POAO|µ⟩. Using the canonical commu-

tation relation [XO, PO] = iℏ again, we get Im [⟨µ|POAO|µ⟩] = 1/(2κ). The real part is

⟨µ| 12 (POXO +XOPO) |µ⟩ − ⟨µ|PO|µ⟩ ⟨µ|XO|µ⟩
κℏ

, (3.20)

which is proportional to the covariance between theXO and PO quadratures of the initial meter state.

We assume the Gaussian meter state |µ⟩O is aligned with the axes laid out by these quadratures so

that this covariance is 0. At last, we have a simple equation for the conditional expectation in the
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weak limit:

E [AO||ψf ⟩⟨ψf |S ] = Re

[ ⟨ψf |AS |ψi⟩
⟨ψf |ψi⟩

]
+O(κ2). (3.21)

The complex quantity
⟨ψf |AS |ψi⟩
⟨ψf |ψi⟩

(3.22)

is known as the “weak” value, because of its central importance in weak measurements[36].

Unlike the ABL formula, the weak value is linear in the observable AS . Moreover, it appears not

to depend on how we couple to the observable like the ABL formula does. If we wanted to know

whether a spin-1 particle was pointing up, we would get the same conditional expectation from a

weak measurement regardless of whether the measurement device coupled to Sz,S or directly to

|1⟩⟨1|S . However, the weak value is, at the end of the day, a property of an ensemble. It is extremely

tempting to interpret it as a property of individual states as well, but such an interpretation has

been the cause for decades of debate.

Famously, if we measure a spin-1/2 particle and we set |ψi⟩S = |1/2⟩, |ψf ⟩S = (200 |−1/2⟩ +

|1/2⟩)/
√

2002 + 1, and AS = sx, we get

⟨ψf |AS |ψi⟩
⟨ψf |ψi⟩

= 100ℏ. (3.23)

Does this result imply that individual particles really took on a spin value of 100ℏ between their

pre and postselection? If it does, how would we interpret situations where the spin weak value is

an imaginary number like i100ℏ, which is the weak value we get from postselecting on |ψf ⟩S =

(i200 |−1/2⟩ + |1/2⟩)/
√

2002 + 1.

To understand what an imaginary weak value might mean, even as an ensemble property, we

will first describe how one might actually measure this imaginary value. Previously, our conditional

expectation ended up giving us the real part of the weak value because the initial meter state |µ⟩O
and meter observable AO were designed so that

⟨µ|POAO|µ⟩ =
i

2κ
. (3.24)

Evidently, we can get the imaginary part of the weak value by replacing our inference from AO to

a new observable ÃO with the properties that

⟨µ|POÃO|µ⟩ =
1

2κ
(3.25)

and

⟨µ|ÃO|µ⟩ = 0. (3.26)

These conditions are both satisfied by setting

ÃO =
1

κ

PO − ⟨µ|PO|µ⟩
⟨µ|P 2

O|µ⟩ − ⟨µ|PO|µ⟩2
. (3.27)

Now we have a way to measure the imaginary part of the weak value, but what does it actually

tell us? The imaginary part turns out to be related to how the postselection success probability

depends on the infinitesimal back-action induced by measuring AS . The probability of postselection
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is

E [|ψf ⟩⟨ψf |S ] = ⟨ψi|S ⟨µ|O eiκASPO |ψf ⟩⟨ψf |Se−iκASPO |ψi⟩S |µ⟩O . (3.28)

The right-hand side of this equation involves iterated commutators of AS with |ψf ⟩⟨ψf |S such as

[AS , |ψf ⟩⟨ψf |], [AS , [AS , |ψf ⟩⟨ψf |]], and so on. These iterated commutators can be expressed neatly in

terms of the superoperator adAS (pronounced “adjoint”) which acts on an arbitrary system operator

MS as adAS [MS ] = ASMS −MSAS . Using this notation, the probability of postselection is

E [|ψf ⟩⟨ψf |S ] = ⟨ψi|S ⟨µ|O eiκ adAS PO [|ψf ⟩⟨ψf |S ] |ψi⟩S |µ⟩O . (3.29)

We will now assume that the meter starts with zero expected momentum ⟨µ|PO|µ⟩ = 0 and

its initial momentum uncertainty is σ2
p = ⟨µ|P 2

O|µ⟩. To see how the postselection varies with the

back-action from measuring AS , we will introduce a transformation

iκ adAS → iκ adAS +δκ−1σ−2
p . (3.30)

The size of the parameter δ controls the amount of back-action imparted to the meter in units of

1/AS .

E [|ψf ⟩⟨ψf |S ] (δ) = ⟨ψi|S ⟨µ|O eiκ adAS PO+2δÃO [|ψf ⟩⟨ψf |S ] |ψi⟩S |µ⟩O . (3.31)

In the equation above, we used the assumption ⟨µ|PO|µ⟩ = 0 to equate ÃO = PO(2κ)−1σ−2
p . The

sensitivity of the postselection probability to δ is

∂ logE [|ψf ⟩⟨ψf |S ]

∂δ

∣∣∣∣
δ=0

= 2
⟨ψi|S ⟨µ|O eiκ adAS PO

[
|ψf ⟩⟨ψf |SÃO

]
|ψi⟩S |µ⟩O

⟨ψi|S ⟨µ|O eiκ adAS PO [|ψf ⟩⟨ψf |S ] |ψi⟩S |µ⟩O
. (3.32)

The conditional expectation of the imaginary meter observable is exactly half of the above quan-

tity. The precise relationship between the imaginary part and the sensitivity of the postselection

probability is thus
1

2

∂ logE [|ψf ⟩⟨ψf |S ]

∂δ

∣∣∣∣
δ=0

= E
[
ÃO||ψf ⟩⟨ψf |S

]
. (3.33)

Having gone through the archetypical von Neumann measurement model, I am ready to present the

following paper.
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The correspondence between quantum measurements and physical reality has been a source

of intense debates since the early days of quantum theory [104–108]. One point of contention

involves the connection between mathematically defined observables and our classical intuition about

what these observables represent. The problem manifests starkly in pre and postselection (PPS)

experiments where a system is first prepared in some initial state |ψi⟩ (the preselection), then

measured at some intermediate time, then projected onto some final state |ψf ⟩ (the postselection).

Naively interpreting the result of the intermediate measurement as reflecting elements of physical

reality can lead to paradoxes [109–121]. One resolution invokes measurement back-action, implying

a disconnect between measurement results and the real state of affairs.

We present an experiment that probes the role of back-action in these paradoxes by varying the

type and strength of measurement disturbance. The experiment is inspired by the so-called quantum

pigeonhole paradox [120, 122]. The paradox arises from a counter-intuitive prediction that three

pigeons placed among two holes can each occupy a different hole. This apparent logical contradiction

has been observed indirectly at the weak limit in the correlations of a neutron interferometer [123]

and directly at the the strong limit, using the Hong-Ou-Mandel effect to check if a pair of photons

are in the same polarization state [124]. Our experiment is the first to investigate the pigeonhole

paradox across the full spectrum of measurement strengths, and indeed, the first to measure any

non-local observable of a spatially distributed system over such a range of strengths.

In our experiment, the “pigeons” are photons in displaced Sagnac interferometers and the “pi-

geonholes” are the two possible travel directions: clockwise |C⟩ and anti-clockwise |A⟩ (see Fig.

3.1). The corresponding, observables for a particular pigeon k ∈ {(1, 2, 3)} are the projectors

ΠC
k = |C⟩k ⟨C|k and ΠA

k = |A⟩k ⟨A|k. Each photon is preselected in the state |+⟩k =
(

|C⟩k+|A⟩k√
2

)
as it enters the interferometer and later postselected in the state |+i⟩k =

(
|C⟩k+i|A⟩k√

2

)
as it leaves.

The quantum pigeonhole paradox concerns the observables Πk,ℓ
S = ΠA

kΠA
ℓ + ΠC

kΠC
ℓ, which asks

whether a particular pair of photons (k, ℓ) ∈ {(1, 2), (1, 3), (2, 3)} traveled the same direction. These

observables seems to defy two fundamental counting principles.

1. The pigeonhole principle: when there are more pigeons than holes, at least one pair of

pigeons must be in the same hole. Violated because | ⟨+i|k ⟨+i|ℓ Πk,ℓ
S |+⟩k |+⟩ℓ |2 = 0.

2. The sum rule: the number of pigeons among two holes is at least the number of pi-

geons in either hole. Violated because | ⟨+i|k ⟨+i|ℓ ΠC
kΠC

ℓ |+⟩k |+⟩ℓ |2 = 1/16 > 0 and

| ⟨+i|k ⟨+i|ℓ ΠA
kΠA

ℓ |+⟩k |+⟩ℓ |2 = 1/16 > 0.

The quantum pigeonhole paradox

As a quantum paradox, the pigeonhole paradox exhibits several crucial features. First, the

paradox involves correlations in a non-local system: each pigeon could be in a different space-like

separated region of the galaxy, but quantum mechanics predicts the paradox will occur nevertheless.

Second, the preselection and postselection are both separable states, making it difficult to rely on

the features of quantum entanglement to explain away the paradox. Finally, these separable states

are symmetric, making it irrelevant which particular pair of pigeons are observed.

This last feature is experimentally convenient, as it enables us to measure only a single pair of

pigeons. While putting two pigeons in two different holes is trivial, we can still derive a bound
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Figure 3.1: Conceptual overview. a) and b): quantum pigeons in two pigeonholes are represented as
photons that can propagate clockwise or anti-clockwise through a displaced Sagnac interferometer.
Beamsplitters prepare the pigeons in |+⟩ |+⟩, then one of the devices c), d), or e) measures them, then we
postselect them onto the state |+i⟩ |+i⟩ by only detecting photons that exit the same port of the
interferometer they entered. c), d), and e): different measurements used to observe the pigeons. c) asks
“are both pigeons traveling the same direction?” d) asks “are both pigeons traveling clockwise?” e) asks
“are both pigeons traveling anti-clockwise?”.

that separates intuitive classical behavior from the phenomna arising in the pigeonhole paradox.

Suppose three pigeons are placed in two holes according to an arbitrary probability distribution

P (b1, b2, b3), where bi ∈ {C,A} are boolean variables indicating which of two holes the ith pigeon is

placed. Uniformly at random, a pair of pigeons are examined to determine whether or not they are

in the same hole. The chance to find the random pair in the same hole is

(P (C, C, C) + P (A,A, C) + P (C, C,A) + P (A,A,A)

+P (C, C, C) + P (A, C,A) + P (C,A, C) + P (A,A,A)

+P (C, C, C) + P (C,A,A) + P (A, C, C) + P (A,A,A))/3

= 1/3 + (P (C, C, C) + P (A,A,A))2/3

≥ 1/3.

There is no classical distribution of three pigeons across two holes in which a random pair of pigeons

is found in the same hole less than 1/3 of the time. In this sense, a measurement of Πℓk
S that comes

out “yes” with any frequency less than 1/3 violates the classical pigeonhole principle. For the rest

of the manuscript, we will deal only with Pigeons 1 and 2 without loss of generality, so we set

ΠS = Π12
S , ΠCC = ΠC

1ΠC
2, and ΠAA = ΠA

1ΠA
2.

Our experiment hones in on the distinction between an observable and the variety of ways to

measure that observable. We compare several different ways to measure ΠS . The first has only

two outcomes: {“same direction”, “different direction”}. That is, the measurement reveals whether



CHAPTER 3. DISTURBING QUANTUM PIGEONS 32

photon 1 and 2 travelled the same direction, but not which direction they travelled. The second

sums the results of {“both clockwise”, “neither clockwise” } and {“both anti-clockwise”, “neither

anti-clockwise” }.

Every “yes” or “no” question in quantum mechanics can be represented by some projector Π.

We will call a measurement of Π “direct” if it indicates whether or not the system was in a “yes”

(or “no”) state, but not which among potentially many “yes” (or “no”) states the system was in.

Mathematically, we represent such a “direct” measurement by a unitary UΠ(s) that acts on any

system state |ψ⟩ and a particular meter state |µ⟩ according to

UΠ(s) |ψ⟩ |µ⟩ = Π |ψ⟩ |s⟩ + (1− Π) |ψ⟩ |−s⟩ , (3.34)

where

s =
√

1 − | ⟨s| − s⟩ |2 (3.35)

is the “strength” of the measurement. A strong measurement has s = 1 and sends the meter into

one of two orthogonal state: |s = 1⟩ or |s = −1⟩. A weak measurement has s ≪ 1, meaning the

meter shifts to one of two nearly indistinguishable states.

While a single weak measurement provides vanishing information about whether the system was

in a “yes” or “no” state, averaging the results of weak measurements across many independent

and identical systems yields the so-called “weak value” [125]. The weak value of an observable Π

prepared in state |ψi⟩ and postselected in state |ψf ⟩ is the complex number

⟨ψf |Π |ψi⟩
⟨ψf |ψi⟩

. (3.36)

The real part of the weak value is obtained by measuring the meter in the “real” basis |±Re⟩ =

|s = ±1⟩. The imaginary part comes from measuring the meter in the “imaginary” basis |± Im⟩ =

(|+ Re⟩ ± i |−Re⟩)/
√

2.

In the strong limit, measuring the meter in the real basis gives the probability for the system to

have been in a “yes” state, given the postselection succeeded. This probability is predicted by the

Aharonov-Bergmann-Lebowitz formula [103].

| ⟨ψf |Π |ψi⟩ |2
| ⟨ψf |Π |ψi⟩ |2 + | ⟨ψf | (1− Π) |ψi⟩ |2

(3.37)

Curiously, the literature on PPS experiments has so far ignored the strong limit of measuring the

meter in the imaginary basis. Even the recent work of De Zela, which studied the role of weak

values in strong measurements, did not comment on such strong imaginary measurements[126]. Like

their weak counterparts [81], they can be related to the sensitivity of the postselection probability

to the measurement’s back-action (see Sec. 3.2.2 for more details). The usual model of quantum

measurement uses a Gaussian probe, and in fact, this model predicts the imaginary part goes to 0

in the infinitely strong limit [81]. However, the decay of the imaginary part to 0 is not a universal

feature of quantum measurement. For a strong, direct measurement of a projector via a qubit probe,

the quantity comes out to
Im[⟨ψi|ψf ⟩ ⟨ψf |Π |ψi⟩]

| ⟨ψf |Π |ψi⟩ |2 + | ⟨ψf | (1− Π) |ψi⟩ |2
. (3.38)
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Figure 3.2: Experimental setup. A Bell-state source generates polarization-entangled photons by
pumping a PPKTP crystal with a continuous-wave laser at 405 nm. Each photon enters a non-polarizing
displaced Sagnac interferometer which allows the photonic pigeon to travel in a superposition of two
pigeonholes. The photons are postselected by ignoring an output port of each interferometer. A half
waveplate in the anti-clockwise path of the Pigeon 2 interferometer performs a strong which-path
measurement. The photon is detected and the result of its which-path measurement steers Pigeon 1. One
of three different sets of optics in Pigeon 1 encode a strong, direct measurement of either ΠS , ΠCC , or ΠAA
onto polarization. The partial eraser, a polarizing displaced Sagnac interferometer, couples polarization to
path, then erases the polarization information. The strength of the polarization-path coupling is set by the
angle of two half waveplates inside the partial eraser.
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This value is not always 0, which complicates criticisms of the weak value on the basis of its imaginary

component [127–129]. Strong measurements, at least in some sense, have imaginary parts too.

Direct non-local measurements

Our experiment implements three direct measurements at a continuum of measurement strengths:

UΠS
(s), UΠCC

(s), and UΠAA
(s). These measurements are made on pairs of particles, and must be

non-destructive [130]. These types of non-local measurements are currently attracting considerable

attention with a number of recent theoretical proposals [114, 131–137] and experimental results at

both the strong limit [138–140] and the weak limit [112, 115, 141]. The Hamiltonians that generates

variable-strength, direct measurements of two-body observables such as ΠCC require three-body

interaction terms of the form

M0Π1Π2, (3.39)

where M0 is some meter observable. Physically, these terms represent a single meter interacting

simultaneously with two spatially separate systems. This interaction would have to be non-local,

and thus un-physical. Nevertheless, it is possible to simulate these interactions using a combination

of quantum steering and quantum erasure [131].

The first step in generating these non-local interactions is to prepare our photonic pigeons with

a shared and entangled polarization probe. We use the Bell state source, illustrated in Fig. 3.2

and described in detail in Sec. 3.2.3 to generate pairs of photons whose joint polarization state

is |H⟩|H⟩+|V ⟩|V ⟩√
2

. We use the standard notation |H⟩, |V ⟩ for horizontal and vertical polarization

respectively, |D⟩ = (|H⟩+|V ⟩)/
√

2, |A⟩ = (|H⟩−|V ⟩)/
√

2 for diagonal and anti-diagonal respectively,

and |R⟩ = (|H⟩ + i |V ⟩)/
√

2, |L⟩ = (|H⟩ − i |V ⟩)/
√

2 for right- and left-circular polarizations,

respectively. Each photon is then sent into its own displaced Sagnac interferometer, which is opened

and closed with a 50/50 beamsplitter to create the initial and final states. The initial state is

always |ψi⟩ = |+⟩ |+⟩ and the final state, which is selected by only detecting photons that exit

the interferometer through the same port they entered and optionally blocking one of the paths is

|ψf ⟩ ∈ {|+i⟩ |+i⟩, |C⟩ |C⟩ , |C⟩ |A⟩ , |A⟩ |C⟩ , |A⟩ |A⟩}.

Polarization optics in the Sagnc interferometers perform strong, but non-destructive which-path

measurements. The Pigeon 2 interferometer has a half waveplate in its anti-clockwise path, but not

its clockwise path. Projecting photon 2 onto |D⟩ (which succeeds with probability 1/2) steers Photon

1’s initial polarization to |D⟩ if photon 2 went clockwise and |A⟩ if photon 2 went anti-clockwise.

At this stage, the polarization-path state (with normalization indicating success probability) is(
|D⟩1 ⊗ ΠC

2 |ψi⟩12 + |A⟩1 ⊗ ΠA
2 |ψi⟩12

)
/
√

2. (3.40)

One of three different strong which-path measurements (shown in Fig. 3.2), corresponding to

ΠS , ΠCC , and ΠAA, shifts the polarization of photon 1. To measure ΠS , we place a half waveplate

in the anti-clockwise path, but not in the clockwise path, which evolves the state to(
|D⟩1 ⊗ Π12

S |ψi⟩12 + |A⟩1 ⊗ (1− Π12
S ) |ψi⟩12

)
/
√

2. (3.41)

The polarization of photon 1 at this stage strongly encodes whether both photons have traveled the
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same direction, but not which direction they traveled.

To measure ΠCC , we place a polarizer followed by a half waveplate in the anti-clockwise path that

together apply the operator − |A⟩ ⟨V |. Photon 1 only survives this operator with probability 1/2.

To keep the interferometer balanced, we place a neutral density filter with transmission probability

1/2 in the clockwise path. The state at this point is(
|D⟩1 ⊗ Π12

CC |ψi⟩12 + |A⟩1 ⊗ (1− Π12
CC) |ψi⟩12

)
/
√

4. (3.42)

The approach for Π12
AA is similar. In the clockwise path, we place a polarizer and half waveplate

to effect the operator − |D⟩ ⟨V | and in the other path we place a neutral density filter. The state

becomes (
|D⟩1 ⊗ (1− Π12

AA) |ψi⟩12 + |A⟩1 ⊗ Π12
AA |ψi⟩12

)
/
√

4. (3.43)

The next step for all three measurements is to project the path state onto |ψf ⟩ by closing the

Pigeon 1 interferometer. A quarter and half waveplate apply a unitary U , which rotates the results

of the strong measurement into either the H/V basis, for a “real” measurement or the R/L basis

for an “imaginary” measurement. The state of Photon 1’s polarization at this point is proportional

to

⟨ψf |Π |ψi⟩U |D⟩ + ⟨ψf | (1− Π) |ψi⟩U |A⟩ (3.44)

for any of the three projectors Π.

We use a quantum eraser to erase some, but not all, of the coupling created by the strong mea-

surement. We send the photon into a partial eraser (see Fig. 3.2), which we implement as a displaced

Sagnac interferometer that opens and closes with a polarizing beamsplitter. The interferometer cou-

ples polarization and path with a strength determined by the angle of two waveplates that enact

equal and opposite rotations to photons traveling through either of the two interferometer paths.

The strong correlations between polarization and the original pigeon observable are destroyed by

projecting the polarization onto an unbiased basis, which incurs another loss factor of 1/2. The path

state of the photon just before being detected is proportional to

⟨ψf |Π |ψi⟩ |s⟩ + ⟨ψf | (1− Π) |ψi⟩ |−s⟩ , (3.45)

where

|s⟩ =

√
1 + s

2
|yes⟩ +

√
1 − s

2
|no⟩ . (3.46)

In a “real” measurement, |yes⟩ and |no⟩ correspond the output ports of the partial eraser. The

imaginary measurement rotates these states to the superpositions (|yes⟩ ± i |no⟩)/
√

2. All told, the

variable-strength non-local measurement procedure works with probability 1/4 for ΠS and proba-

bility 1/8 for ΠCC or ΠAA.

Results

The results of our experiment are plotted in Fig. 3.3. Our goal is to observe properties of

the pigeon system, but our data come from measurements of a polarization meter. We call the

probability of finding our polarization probe in its real “yes” state the “real meter value” and the
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Figure 3.3: Variable-strength measurement results. In each plot, the x-axis denotes measurement
strength (Eq. 3.35) such that 0 is a weak measurement and 1 is a strong measurement. a), b), and c) show
the results for direct measurements of the projectors Π12

S , Π12
CC , and Π12

AA respectively. The y-axis is the
probability for the polarization meter to be in the real “yes” state. The labeled grid slopes denote the
corresponding probability for the pigeons to be in the “yes” subspace of the projector, after accounting for
measurement strength. At small measurement strengths, these values correspond to the real part of the
weak value. Each marker and color combination represents a different path postselection. The fuchsia dots
represent the paradoxical postselection |+i⟩ |+i⟩. The other four colors are calibration data. Two different
theoretical models are plotted for comparison. Solid lines are theory. Dotted lines represent a correction to
this theory tomographic calibrations. d), e), and f) are organized similarly, but their y-axes show the
results of measuring in the imaginary basis. At small measurement strengths, the values denoted by the
labelled grid slopes correspond to the imaginary part of the weak value. The direct measurements of Π12

S
suggest that photons postselected in |+i⟩ |+i⟩ propagate in different directions at least as often as photons
which always take the |C⟩ |A⟩ path or the |A⟩ |C⟩ path at all strengths. The disturbance to the meter along
its imaginary axis for photons postselected in |+i⟩ |+i⟩ is somewhere between that of |C⟩ |A⟩ path or the
|A⟩ |C⟩ for all strengths. Thus, measurement disturbance cannot explain why 3 pigeons among 2
pigeonholes can each be in a different hole. On the other hand, direct measurements of Π12

CC and Π12
AA show

that measurement disturbance is responsible for violation of the sum rule. Strong measurements suggest
photons postselected in |+i⟩ |+i⟩ both travel clockwise/anti-clockwise a significant fraction of the time, but
at weaker measurements, they fall within the “no” calibration points and agree with the direct
measurement of Π12

S .
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probability for the pigeon system to be in a “yes” state of our pigeon observable the “real system

value”. In a strong measurement, the real meter value is simply equal to the real system value.

For weaker measurements, pigeons in a “yes” state of an observable only shift the meter by a small

amount, leaving the meter in the real “no” state some fraction of the time. To convert meter values

to system values, we divide by measurement strength.

Similarly, we call the probability of finding our polarization probe in the imaginary “yes” state the

“imaginary meter value”. To convert to the corresponding “imaginary system value”, we subtract

1/2 (so that a probe in the real “yes” state registers as having 0 imaginary component) and then

divide by measurement strength. In the weak limit, the real and imaginary system value equal the

real and imaginary component of the weak value (Eq. 3.36). In the strong limit, the real system

value equals the ABL probability (Eq. 3.37). The strong limit of the imaginary system value has not

been described previously in the literature, but it can be related to the sensitivity of the postselection

probability as described in Sec. 3.2.2.

All data in Fig. 3.3 are plotted according to their meter value. Grid slopes represent the

conversion between meter values and system values. We begin with the calibration points, which

were taken by blocking one path in each pigeon interferometer to postselect the state on one of

|C⟩ |C⟩ , |C⟩ |A⟩ , |A⟩ |C⟩ , or |A⟩ |A⟩. These photons should all have a real system value of either 0

or 1 and their real meter values should move towards 1/2 linearly in the measurement strength.

Their imaginary meter value should be 1/2 and their imaginary system value should be 0 at all

measurement strengths. These predictions (solid lines in Fig. 3.3) agree qualitatively with our data

(points in Fig. 3.3).

The data postselected on |+i⟩ |+i⟩ are the meat of the experiment (fuchsia dots in 3.3). The

direct measurements of ΠS (3.3 a) reveal that the real system value for both pigeons to be in the

same hole is indeed consistent with 0 at all measurement strengths. This can be seen from the fact

that the real meter value of the |+i⟩ |+i⟩ data is never significantly higher than the |C⟩ |A⟩ or |A⟩ |C⟩
calibration data. While the imaginary values of the |+i⟩ |+i⟩ data do not quite match their predicted

value of 0, they are no further from this prediction than the calibration data. Thus, measurement

disturbance is not a viable resolution to the quantum pigeonhole paradox.

On the other hand, our data confirm that measurement disturbance does explain the violation

of the sum rule. The real part of our |+i⟩ |+i⟩ data is “both clockwise” or “both anti-clockwise”

significantly more often than it is “both same” at high strengths, but agrees with the “both same”

values at weaker strengths. For both strong and weak measurements, the imaginary part of “both

same” significantly differs from the imaginary parts of “both clockwise” and “both anti-clockwise”.

Nevertheless, the sum rule holds because the imaginary parts of “both clockwise” and “both anti-

clockwise” are equal and opposite. While the cancellation of the imaginary parts in the weak limit

was predicted by the weak value formula 3.36, it is remarkable that the cancellation extends into

the strong regime, even as the sum rule for the real part fails. The question of whether this kind

of cancellation is a general feature of imaginary system values at all measurement strengths is a

fascinating avenue for further study.

Having explained the qualitative features of our data, we turn to its quantitative agreement with

theory. Most of the discrepancy between our data and theory is accounted for by the quality of our

Bell state source and polarization optics. The fidelity of our actual Bell state to the desired one is

95%. Furthermore, the nominally non-polarizing beamsplitters used to open and close our pigeon
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Figure 3.4: Violation of classical counting principles. The x-axis denotes measurement strength (Eq.
3.35) such that 0 is a weak measurement and 1 is a strong measurement. The y-axis is the probability for
the polarization meter to be in the real “yes” state. The labeled grid slopes denote the corresponding
probability for the pigeons to be in the same hole after accounting for measurement strength. Blue dots
show results from direct measurements of the same hole projector ΠS . Orange squares denote an indirect
measurement obtained from summing the direct measurements for ΠCC and ΠAA. Blue and orange slopes
denote theoretical predictions for the respective points. The orange region highlights the difference
between our two methods for measuring ΠS , indicating a violation of the sum rule. The violation shrinks
as the measurement strength decreases. The blue region indicates where direct measurements of ΠS would
violate the pigeonhole principle. At all strengths, our direct measurements of ΠS fall in this region.

interferometers are birefringent, complicating our polarization-based which-path measurements. We

measure these effects using polarization state tomography of our Bell state source and polarization

process tomography in each path of our pigeon interferometer and use them to generate refined

predictions, plotted as dotted lines in Fig. 3.3. The systematic uncertainty of our data dominates

its statistical uncertainty. The error bars in Fig. 3.3 and Fig. 3.4 denote the root-mean-square

deviation of our calibration data from these refined predictions. They are computed separately for

each measurement strength and quadrature (real or imaginary).

To conclude, we realized the first variable-strength measurement of a non-local observable to

study quantum violations of two seemingly irrefutable counting laws: the pigeonhole principle and

the sum rule. Our data show that the violation of the sum rule is an artifact of measurement

disturbance. On the other hand, the violation of the pigeonhole principle is the same, regardless of the

strength of the back-action. Our experiment shows there is a concrete, empirical, and measurement-

independent sense in which three quantum pigeons really can occupy two holes without any being

in the same hole. Finally, our variable-strength apparatus led us to discover that the same process

that yields the imaginary part of a weak measurement can yield a non-trivial quantity in the strong

limit as well. Further exploration of the quantity is a ripe opportunity for further research.
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3.2 Disturbing quantum pigeons supplementary materials

3.2.1 Variable-strength measurements with a qubit meter

The direct measurements of projectors ΠS on the pigeon system are described by the von Neu-

mann interaction unitary

USO = e−iθ(2ΠS−1S)σy,O (3.47)

between the pigeon system S and an observer O with a spin-1/2 meter. The meter momentum σy,O
generates rotations of the initial meter state |+z⟩O by ±θ radians in Hilbert space depending on

whether the initial pigeon state |ψi⟩S is in a “yes” (eigenvalue 1) or “no” (eigenvalue 0) eigenspace

of ΠS . Euler’s theorem simplifies the unitary to

USO = ΠS(cos θ1O − i sin θσy,O) + (1− ΠS)(cos θ1O + i sin θσy,O). (3.48)

This unitary evolves the initial system and meter state to

USO |ψi⟩S |+z⟩O = ΠS |ψi⟩S |s⟩O + (1− ΠS) |ψi⟩S |−s⟩O , (3.49)

where

|s⟩O =

√
1 + s

2
|+x⟩O +

√
1 − s

2
|−x⟩O , (3.50)

and s = sin θ. The meter observable ΠO for the real basis is calibrated so that

⟨±s|ΠO| ± s⟩ =
1 ± 1

2
, (3.51)

which is satisfied when

ΠO =
1 + σx,O/s

2
. (3.52)

The real part of the system value is the expectation of ΠO conditioned on successful postselection

E [ΠO||ψf ⟩⟨ψf |S ] =
E [|ψf ⟩⟨ψf |SΠO]

E [|ψf ⟩⟨ψf |S ]
, (3.53)

where the expectation value is taken over the coupled state USO |ψi⟩S |+z⟩O. The denominator is

the probability that the postselection succeeds.

E [|ψf ⟩⟨ψf |S ] = | ⟨ψf |ΠS |ψi⟩ |2 + | ⟨ψf |(1− ΠS)|ψi⟩ |2 (3.54)

+ 2
√

1 − s2 Re[⟨ψf |ΠS |ψi⟩ ⟨ψi|(1− ΠS)|ψf ⟩]. (3.55)

The numerator is the joint expectation

E [|ψf ⟩⟨ψf |SΠO] =| ⟨ψf |ΠS |ψi⟩ |2 +
√

1 − s2× (3.56)

Re[⟨ψf |ΠS |ψi⟩ ⟨ψi|(1− ΠS)|ψf ⟩]. (3.57)
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When s = 0, the conditional expectation simplifies to the real part of the weak value (Eq. 3.36) and

when s = 1, it simplifies to the Aharonov-Bermann-Lebowitz formula [103] (Eq. 3.37).

3.2.2 Imaginary measurements

To measure the imaginary part of the weak value, we measure in the imaginary meter basis σy,S .

The imaginary meter observable Π̃O is calibrated so that

⟨±s|Π̃O| ∓ s⟩ = ±i/2, (3.58)

which is satisfied with

Π̃O =
σy,O
2s

. (3.59)

The conditional expectation of the imaginary meter observable is

E
[
Π̃O||ψf ⟩⟨ψf |S

]
=

E
[
|ψf ⟩⟨ψf |SΠ̃O

]
E [|ψf ⟩⟨ψf |S ]

. (3.60)

The denominator is the postselection probability probability from the real case treated earlier. The

numerator is

E
[
|ψf ⟩⟨ψf |SΠ̃O

]
= Im[⟨ψf |ΠS |ψi⟩ ⟨ψi|(1− ΠS)|ψf ⟩]. (3.61)

When s = 0, the conditional expectation simplifies to the imaginary part of the weak value (Eq.

3.36). Curiously, the joint expectation E
[
|ψf ⟩⟨ψf |SΠ̃O

]
does not depend on the measurement

strength s at all. If the imaginary part of the weak value is non-zero, the conditional expecta-

tion of the imaginary meter observable Π̃O will be non-zero at all measurement strengths. However,

this result is specific to a spin-1/2 meter. If the meter was instead the position of a particle, the

Euler expansion of the coupling unitary used to evaluate the evolution at all measurement strengths

would not be valid.

We have shown how to calculate the conditional expectation of the imaginary meter observable,

but we have so far said nothing on how to interpret it. The imaginary part of the weak value is

related to the sensitivity of the postselection success probability to the back-action the meter suffers

from measuring a system observable[81]. The probability Pps of successfully postselecting an initial

system state |ψi⟩S onto a final system state |ψf ⟩S is

Pps = || ⟨ψf |S e−iθ(2ΠS−1S)σy,O |ψi⟩S |+z⟩O ||2. (3.62)

= E
[
ei2θ adΠS σy,O [|ψf ⟩⟨ψf |S ]

]
. (3.63)

The super operator adΠS represents the infinitesimal back-action due to measuring ΠS . The action

of adΠS on an arbitrary system operator AS is adΠS [AS ] = ΠSAS − ASΠS . To describe how the

postselection probability changes with the strength of the back-action, we will increase the size of

adΠS uniformly with the transformation iθ adΠS → iθ adΠS +δ1S/ sin(θ). δ is an artificial parameter

that lets us tune the strength of the back-action independently from the measurement strength. The

postselection probability Pps(δ) as a function of this back-action parameter is

Pps(δ) = E
[
ei2θ adΠS σy,O+2δΠ̃O [|ψf ⟩⟨ψf |S ]

]
(3.64)
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using the fact that Π̃O = σy,O/(2 sin θ). The sensitivity of the postselection probability to back-

action is

∂ logPps

∂δ

∣∣∣∣
δ=0

= 2
E
[
ei2θ adΠS σy,O

[
|ψf ⟩⟨ψf |SΠ̃O

]]
E
[
ei2θ adΠS σy,O [|ψf ⟩⟨ψf |S ]

] . (3.65)

The right-hand side of this expression is exactly twice the conditional expectation of the imaginary

meter observable.
1

2

∂ logPps

∂δ

∣∣∣∣
δ=0

= E
[
Π̃O||ψf ⟩⟨ψf |S

]
(3.66)

In the weak limit, this conditional expectation equals the imaginary part of the weak value. In the

strong limit, it may not manifestly be the imaginary part of a complex number, but it is still related

to the sensitivity of the postselection probability in the same way.

3.2.3 Entangled photon source

We create photon pairs with a wavelength near 810 nm via type II colinear spontaneous paramet-

ric down-conversion. We pump a periodically polled potassium titanyl phosphate (PPKTP) crystal

with 2 mW of 405 nm light emitted from a continuous wave laser diode. Before being coupled into

a single-mode fiber, each photon passes through a 10 nm band-pass filter centered at 810 nm. The

source produces 40,000 pairs per second.

The photons are entangled in polarization because the crystal sits inside a polarizing Sagnac

interferometer as shown in Fig. 3.2. The polarization of the pump is set to |D⟩ so that when pump

light hits the two-color (405 nm and 810 nm) polarizing beamsplitter (PBS) that opens the Sagnac,

it splits into an equal superposition of illuminating the crystal from the front and back. A two-color

half waveplate placed just after the reflected port of the PBS rotates |V ⟩ to |H⟩ so that the crystal

is illuminated by |H⟩ polarized pump light from both sides. The crystal emits photons in the state

(|HV ⟩ |C⟩+ |HV ⟩ |A⟩)/
√

2. The photons in the anti-clockwise path see the two-color half waveplate,

rotating their state to |V H⟩ |A⟩. Then the clockwise and anti-clockwise paths recombine at the two-

color PBS and exit the interferometer with the polarization state (|HV ⟩ + eiϕS |V H⟩)/
√

2, where

ϕS is the relative phase between the two paths in the Sagnac. We apply local polarization rotations

on both photons until their state upon exiting the fibers and entering the experiment is as close to

(|HH⟩ + |V V ⟩)/
√

2 as possible.

3.3 Disturbing quantum pigeons outro

3.3.1 Contributions

The manuscript presented in the previous section would not have been possible without the

contributions of several individuals. As the lead author in the experiment, I built the experiment,

collected and analyzed the data, and wrote much of the paper. However, the original idea for the

experiment came from Aharon Brodutch and Hugo Ferretti. Specifically, Aharon proposed an ex-

periment studying the pigeonhole paradox and conceived the scheme for weakly measuring non-local

observables using partial erasure while Hugo designed the optical implementation. Aharon also

wrote an initial draft for the paper, which I subsequently adapted. Edwin Tham designed and built

the entangled photon source. Hugo, Edwin, Arthur Pang, and Kent Bonsma-Fisher provided invalu-
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able advice and experimental support throughout the project. As principle investigator, Aephraim

Steinberg lead numerous helpful lab meetings.

3.3.2 Sagnac source

A vital ingredient in the non-local measurements we preformed in the pigeonhole experiment was

the entangled photon source. In the lab, we often refer to this source as the “Sagnac source” because

it uses a Sagnac interferometer to generate polarization entanglement. Edwin Tham, the designer

and builder of the source, details its specifications in his thesis [101]. Originally, the source was

pumped with a 160 MHz linewidth Ondax diode laser, but it was replaced with a 1 pm linewidth

Cobalt 08-17 from Hübner Photonics. Arthur Pang’s thesis [142] explains the details behind this

switch, which was done to improve the second-order interference between signal and idler photons.

One difficulty with using the Sagnac source is determining exactly which entangled state it

generates. The photon pairs are coupled into single-mode fiber, which means they undergo some

polarization rotation determined by the stresses and strains on each fiber. Thus the polarization

state of the source must be characterized every time the fibers are moved and once every day during

active use to account for changes in lab temperature and humidity. As a result, it is crucial that

any experimental apparatus using entangled light from the Sagnac source has a setup for performing

state tomography in situ. Here are some typical properties of the source which are independent of

local polarization unitaries on the signal and idler. The entanglement of formation ranges between

0.81 and 0.87 ebits. The maximum eigenvalue ranges from 0.93 to 0.95 and the entanglement of

formation of the corresponding eigenstate is always greater than 0.998 ebits. Numerically optimized

over local rotations, the fidelity to the singlet state (i.e. expectation value of the singlet state

projector) ranges from 0.93 to 0.96. Doing my best to physically optimize over local rotations, I

typically get a fidelity between 0.91 and 0.95 with a desired maximally entangled state.

To physically optimize over local unitaries, I do not actually make iterative local adjustments

while performing state tomography at each step, as this would be far too time consuming. Instead,

I take one round of tomography, then numerically optimize over rotations to a pair of quarter

and half waveplates placed just after the signal and idler launch from their respective fibers into

my experiment. I then apply these optimized rotations (4 angles in total for 2 quarter and 2 half

waveplates) and perform another round of state tomography to confirm that the new state is a better

match to my desired state. This second verification round is crucial as there are many opportunities

to make sign errors when calculating the optimized angles. For example, one must be sure that the

rotation direction in the optimization code matches the physical rotation direction of the waveplate,

which might vary for each waveplate depending on which way the mount is facing. In addition, the

orientation of the simulated waveplates must match the physical waveplates modulo 180◦, not just

modulo 90◦.

A typical coincidence rate for the source is 40k per second at 2 mW of pump power. In principle,

we could use a much higher pump power and get higher rates, but I am paranoid about burning the

dual-wavelength polarizing beam splitter that opens and closes the Sagnac interferometer. When

the source was first built, it used a polarizing beam splitter from Bernhard Halle Nachfolger GmbH

with a nominal damage threshold of only 100W/cm
2
. The beam splitter was positioned after a

lens, where the beam had a waist less than 1 mm. We noticed burn spots would develop on the

beam splitter after just a week or so of use at pump powers around 1 mW. I replaced that old
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beam splitter with PBS0012-405/810 from Newlight Photonics, which features a nominal damage

threshold of 0.6GW/cm
2
. If this damage threshold is to be trusted, the beam splitter could easily

handle 30 mW of pump power, the maximum output of the Cobolt pump. However, the fact that

the beam splitter is coated for both 405 nm and 808 nm might skew these numbers, so I have never

pumped with much more than 2 mW just to be safe.

3.3.3 Characterizations

The key novelties of the pigeonhole experiment made quantifying and, to the extent possible,

correcting for systematic errors extremely experimentally challenging. The pigeonhole experiment

involved weak measurements, which like the partially postselected measurements described in Ch.

2, have amplified sensitivity to systematic errors. Furthermore, we measured real and imaginary

values, which meant we were sensitive to phases that we could have otherwise ignored if we had just

measured only real or only imaginary values. Finally, measuring joint non-local observables between

Pigeon 1 and Pigeon 2 meant that characterizing each system independently was not enough to

characterize the joint system. In this section, I will detail the tomography we did to tame and

quantify these systematic errors. In particular, I will describe how I arrived at the dotted lines in

Fig. 3.3, which represent theoretical predictions based on our calibrations of the apparatus.

The pigeonhole apparatus consisted of several distinct modules. The first was the Sagnac source

of entangled photons, which was characterized with polarization state tomography as described in

the previous section. Next were the Pigeon 1 and Pigeon 2 interferometers. Both the clockwise

and anti-clockwise paths through these interferometers were characterized separately via polariza-

tion process tomography. Finally, the eraser interferometer was characterized at several different

measurement strengths via detector tomography. Each of these characterizations were fed into a

numerical simulation of the experiment to yield the dotted lines in Fig. 3.3.

Polarization process tomography was a two-step process. The usual setup for polarization process

tomography of an unknown channel is polarizer, half waveplate, quarter waveplate, channel, quarter

waveplate, half waveplate, polarizer. However, the initial part of my apparatus was set up as quarter

waveplate, half waveplate, polarizer so that I could perform state tomography as described above.

The simplest, but least cost-effective solution would have been to add an additional set of motorized

quarter and half waveplates after the tomography polarizer before each pigeon interferometer. I

decided to use a more economical solution, removing the state tomography polarizers when I wanted

to do process tomography. The cost of this approach was that there was no longer a polarizer to

fix the initial polarization to a well-known state. To do process tomography, I would first set up

the Sagnac source to generate a separable state and characterize it using the tomography polarizer.

Having measured the state, I would remove the tomography polarizer, then perform process tomog-

raphy. Despite the extra complication this method introduced, it seemed repeatable and accurate

enough.

Detector tomography on the eraser interferometer was the simplest, and most robust of the

characterizations. For each of several measurement strengths, I sent in a tomographically complete

set of input states, then found the positive polarization operator that best fit the data. The results

of these characterizations were nearly ideal, so the simulation used the ideal eraser interferometer for

simplicity. One noteworthy exception is the phase of the eraser interferometer. Unlike most of the

parameters of the eraser interferometer, its phase was configured and characterized relative to the rest
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of the apparatus. In an ideal weak measurement, postselecting the system onto a state orthogonal

to its initial state never succeeds. I used this fact to set the phase of the eraser interferometer.

Specifically, I set the path phase of Pigeon 1 and Pigeon 2 to π to postselect the initial path state

of |+⟩ |+⟩ onto the orthogonal state |−⟩ |−⟩. Then I set the eraser to preform a weak measurement

and tuned its phase to minimize coincidence counts. Unfortunately, this procedure was not very

accurate as it a) depended on how close the phase of Pigeon 1 and Pigeon 2 actually were to π

and b) required minimizing coincidence counts at the very end of my apparatus, where after all the

postselections inherent to the experiment, I was left with a coincidence rate of only around 50 per

second. An alternative way to set the phase, though arguably less theoretically justifiable, would

have been to tune the eraser phase to balance counts in the imaginary basis when one of the paths

in Pigeon 1 and Pigeon 2 was blocked. This method would have amounted to ensuring that one

of the path postselections, say |C⟩ |C⟩, had an imaginary weak value of 0. Although I did not use

this method to set the eraser phase, I did use it to get a more or less independent measurement of

the eraser phase, which I fed into my simulation of the experiment. According to this method, my

eraser phases erred by +100 mrad during the “both clockwise?” data run, −60 mrad during the

“both same?” data run, and −30 mrad during the “both anti-clockwise?” data run.

The last few pages of this chapter display the results of state and process tomography for each

data run. For each of the three runs, I present state tomography of the polarization entangled

state, process tomography of the Pigeon 1 clockwise path, and process tomography of the Pigeon 1

anti-clockwise path. Pigeon 2 did not change over the three data runs, so I present the results of a

typical tomographic reconstruction for the Pigeon 2 clockwise and anti-clockwise paths, which are

fed into the simulation for all three data runs. The eraser interferometer tomography is not included

as it was close to ideal and not used in my final simulation.

All of the tomographic reconstructions were computed using the maximum likelihood method.

I used the MOSEK convex optimization solver via the Python package CVXPY to ensure that the

reconstructions were globally optimal. The channel solutions were constrained to be completely

positive, but not trace-preserving to account for preferential transmission of one polarization over

another. Instead, the channels were normalized so that the Choi matrix had a trace of 4, the dimen-

sion of the process. An unphysical consequence of this normalization method is that certain Choi

matrix elements come out slightly greater than 1, which implies some polarizations are amplified.

This spurious amplification is negligible in the final simulation, as the largest estimated Choi matrix

element is less than 1.02. The purity, entanglement of formation, and fidelity with the ideal state

or process are included in the caption of each figure. Some of the reconstructions have a purity of

1 or 0.99, but these are likely overestimates. Maximum likelihood reconstructions of nearly pure

states and channels have a tendency to overestimate purity. Finally, the numerical values of the

state and Choi matrix elements are included up to 3 decimal points. The 3 digits of precision are

included for the sake of reproducing the simulation and do not reflect my systematic or statistical

uncertainty. I did not rigorously compute uncertainties on these values, but experience suggests the

matrix elements are accurate to roughly 2 decimal points.

3.3.4 Follow up

Over the course of the pigeonhole experiment, two interesting ideas emerged that merit further

study. First, there is the matter of imaginary parts of strong measurements. While I have given an
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interpretation of the imaginary part of general strength measurements in terms of the sensitivity of

the postselection probability, it is unclear to what extent the value I have been referring to as the

“imaginary” part is really the imaginary part of a complex number. By which I mean, if I define

a complex number z as being “real part” +i “imaginary part”, is there any physical significance to

quantities like |z|2, z2, or ez? There is also the question of which measurement dynamics allow for

strong imaginary parts. The pigeonhole experiment demonstrates that a qubit pointer measuring

a two-outcome observable can have a non-zero strong imaginary part. However, the prototypical

gaussian pointer coupled via the von Neumann Hamiltonian always has a zero-valued imaginary part

in the strong limit [81]. Is the same true for all purely real continuous variable pointer wavefunctions?

What about a qutrit pointer that measures a three-outcome observable?

The second idea leverages the quantum pigeonhole effect to control interaction strengths. Con-

sider a pair-wise interaction which shifts the energies of particles in similar modes as each other.

Interactions of this type are ubiquitous. For example, the Coulomb potential shifts the energy of

two charged particles in close proximity and certain forms of χ2 non-linear media shift the energy of

photon pairs that occupy the same mode. The interference phenomenon at the heart of the quan-

tum pigeonhole effect allows one to perform a selective measurement that tunes the strength of these

interactions by controlling how many “pigeons” are allowed to be in the same “pigeonhole.” For ex-

ample, consider a χ2 non-linear medium with a hamiltonian of the form H ∝ a†1a
†
1a1a1 + a†2a

†
2a2a2,

where a†1 and a†2 create photons in distinct modes. An interferometer prepares a coherent state

|α/
√

2⟩ |α/
√

2⟩ and postselects on |α/
√

2⟩ |iα/
√

2⟩. The resulting weak value of the interaction en-

ergy is 0, just like the weak value for a pair of pigeons to be in the same pigeonhole in the pigeonhole

experiment. This effect relies on postselection, so the interaction cannot be zeroed out determin-

istically. In fact, to balance out the null interaction in the cases that the postselection succeeds,

the interaction must be stronger in the events where the postselection fails. Thus the result of the

postselective measurement can act as a kind of heralded knob for tuning the interaction strength.
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
Figure 3.6: The Choi matrix of the polarization process applied by the clockwise path of Pigeon 1 during
the “both clockwise?” data run. Purity: 1. Entanglement of formation: 1 ebit. Fidelity with ideal: 0.95.
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
Figure 3.7: The Choi matrix of the polarization process applied by the anti-clockwise path of Pigeon 1
during the “both clockwise?” data run. Purity: 1. Entanglement of formation: 0 ebits. Fidelity with ideal:
0.96.
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
Figure 3.8: The density matrix of the entangled polarization probe after passing through the clockwise
paths of both pigeon interferometers during the “both same?” data run. Purity: 0.87. Entanglement of
formation: 0.81 ebits. Fidelity with ideal: 0.91.
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
Figure 3.9: The Choi matrix of the polarization process applied by the clockwise path of Pigeon 1 during
the “both same?” data run. Purity: 0.93. Entanglement of formation: 0.91 ebits. Fidelity with ideal: 0.95.

HH
HV

VH
VV HH

HV
VH

VV
0.00

0.25

0.50

0.75

1.00

/2

0

/2

ar
g


1.0 (−0.005 + 0.005j) (−0.001 − 0.004j) (−0.991 + 0.04j)

(−0.005 − 0.005j) 0.005 (0.001 − 0.004j) (0.005 + 0.004j)
(−0.001 + 0.004j) (0.001 + 0.004j) 0.004 (0.001 − 0.004j)
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
Figure 3.10: The Choi matrix of the polarization process applied by the anti-clockwise path of Pigeon 1
during the “both same?” data run. Purity: 0.99. Entanglement of formation: 0.98 ebits. Fidelity with
ideal: 0.99.
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
Figure 3.11: The density matrix of the entangled polarization probe after passing through the
anti-clockwise paths of both pigeon interferometers during the “both anti-clockwise?” data run. Purity:
0.91. Entanglement of formation: 0.87 ebits. Fidelity with ideal: 0.95.
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(−0.004 − 0.012j) (0.002 − 0.001j) (0.96 + 0.235j) 0.998


Figure 3.12: The Choi matrix of the polarization process applied by the clockwise path of Pigeon 1
during the “both anti-clockwise?” data run. Purity: 0.98. Entanglement of formation: 0 ebits. Fidelity
with ideal: 0.98.
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(0.991 − 0.023j) (−0.001 + 0.004j) (−0.016 + 0.008j) 0.979


Figure 3.13: The Choi matrix of the polarization process applied by the anti-clockwise path of Pigeon 1
during the “both anti-clockwise?” data run. Purity: 0.99. Entanglement of formation: 0.99 ebits. Fidelity
with ideal: 0.99.
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
Figure 3.14: The Choi matrix of the polarization process applied by the clockwise path of Pigeon 2.
Purity: 0.96. Entanglement of formation: 0.95 ebits. Fidelity with ideal: 0.98.
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
Figure 3.15: The Choi matrix of the polarization process applied by the anti-clockwise path of Pigeon 2.
Purity: 0.96. Entanglement of formation: 0.94 ebits. Fidelity with ideal: 0.98.
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Abstract

Quantum mechanics is usually formulated with an implicit assumption that agents who can

observe and interact with the world are external to it and have a classical memory. However, there

is no accepted way to define the quantum-classical cut and no a priori reason to rule out fully

quantum agents with coherent quantum memories. In this work, we introduce an entirely quantum

notion of measurement, called a sensation, to account for quantum agents that experience the world

through quantum sensors. Sensations eschew probabilities and instead describe a deterministic flow

of quantum information. We quantify the information gain and disturbance of a sensation using

concepts from quantum information theory and find that sensations always disturb at least as

much as they inform. Viewing measurements as sensations could lead to a new understanding of

quantum theory in general and to new results in the context of quantum networks.
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4.1 Introduction

It is decisive to recognize that, however far the phenomena transcend the scope of clas-

sical physical explanation, the account of all evidence must be expressed in classical terms.

Niels Bohr [143]

Measurement has been central to quantum mechanics since its inception. Historically, measure-

ments were formalized with the notion of observables: Hermitian operators [102, 144] that represent

quantities like position, momentum, and spin. This formulation of measurement has since been gen-

eralized several times [145–148], but none of these advances have questioned the basic notion that

a measurement yields a classical outcome that can be copied. To account for classical outcomes,

quantum mechanical models of measurement invoke an external, classical observer.

As quantum technology improves, we draw closer to an age where quantum machines make

complex decisions using quantum computations that run on quantum data gathered with quantum

sensors. These systems would be quantum agents in the sense that they autonomously sense and act

upon the quantum world [149, 150]. When a quantum agent measures its surroundings, is it really

natural to view the results of that measurement as merely classical? Should the agent be viewed as

external to the quantum world, or an active participant within it (see Fig. 4.1)?

Our aim is to model quantum measurements as a quantum agent might: free of classical outcomes

and external observers. A fully quantum paradigm will facilitate the development of new experi-

ments, measurement techniques, communication protocols, and computational algorithms that do

not fit easily in a classical framework. A complete description of quantum agents would not just

model their observations, but also their decisions and actions. In this work, we focus solely on obser-

vation and leave the matter of decisions and actions for further study. We assume that a quantum

agent has some ability to decide when and how to observe a given system. The mechanics behind

this decision process is beyond the scope of this work, seeing as modeling how a classical agent makes

decisions is already a difficult problem. We take for granted that a quantum agent can distinguish

between its external environment and “itself”, leaving the question of how a quantum agent even

develops a sense of “self” for future research. Although this work does not paint a complete picture

of quantum agency, its ideas have already inspired a forthcoming experiment [151].

Agents, both classical and quantum, experience the world through sensors. We define a sensor

as a system with a memory that can interact with another system and store information from that

system in its memory. We compare two types of relationships between an observer and a sensor:

� Classical - The sensor is separate from the observer and the sensor’s memory decoheres faster

than the observer can process it

� Quantum - The sensor is a part of the observer and the sensor’s memory remains coherent

throughout being processed by the observer

For a given observer, we classify a sensor as classical or quantum accordingly. A quantum sensor

can take in incoherent information like a classical sensor, but it can also take in and store quantum

information about a quantum system.
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As humans, we are naturally equipped only with classical sensors and the standard notion of

measurement (see Fig. 4.2) reflects that. Traditionally, a measurement involves a system and an

observable property of that system. The measurement is completed when an observer obtains a

result, i.e. a classical record which can be copied and shared. Von Neumann developed a pragmatic

quantum measurement model that is satisfactory for predicting our classical experience, yet invokes

an observing agent external to the system [102]. There have been many attempts to adapt von Neu-

mann’s model and keep the observer inside the system (notably collapse theories and the approaches

following Everett and Bohm [152–154] ), but all cling to the central role of observables.

We adopt a radical view of measurement: a measurement is any interaction between two systems

in which the final state of one system depends on the initial state of the other. To avoid confusion

with the historically laden term “measurement”, we call such an interaction a sensation. The result

of a sensation is a quantum state, not a classical label. Completing a sensation does not require an

external agent.

Any traditional measurement can be cast as a sensation followed by a transition to a classical

value (the sensation is the so-called pre-measurement[155]), but there are sensations that transcend

traditional measurements. For example, consider a sensor that swaps a state in its memory with

a state in the environment. This interaction does not result in a distinct set of classical outcomes,

so it cannot be associated with an observable or positive operator valued measure (POVM). It is

nevertheless a sensation because the final state of the sensor depends on the initial state of the

environment.

We explore how an agent that uses sensations might view the world. We do not attempt to

describe the inner workings of a quantum agent, nor attempt to accommodate the way humans

with classical memories observe the world through events and probabilities. Instead, our aim is to

describe information flow in a deterministic theory with as few assumptions as possible. In this

sense our work is also very different from approaches that put the observer at the center (e.g [156,

157] ) which tend to begin with probabilities as a primitive. Our results give a consistent way of

understanding information in a deterministic (collapse-free) interpretation of quantum mechanics

as a complete theory in the sense that all physical objects (including observers) and all dynamical

processes (including sensation) are described by the same rules.

Our work takes a world-view which is similar to the Everettian (many-worlds, relative-state)

interpretation, i.e., starting from Sec. 4.3 we will consider the sensor as part of the quantum world

and assume a unitary theory. However, our work is not an interpretation of quantum mechanics. It

is instead the beginning of a framework for studying quantum agents.

We begin in the next section with a description of the traditional — classical sensor — approach

to measurement. In Sec. 4.3 we define sensations with quantum sensors. We introduce the result

channel as the extension of the positive operator-valued measure (POVM) into the deterministic

quantum regime, and give two examples of sensations: the von Neumann sensation, and the swap

sensation (Sec. 4.3.1). We then show how such swap sensations can be implemented in practice

(Sec. 4.3.2). In Sec. 4.4 we develop a method to quantify information gain, and disturbance. Using

these tools, we compare the von Neumann and swap sensations. Implications of quantum agency

are discussed in Sec. 4.5 where we provide examples involving multiple agents sharing information,

emphasising one of the limitations of the swap sensation, and mention the relation to quantum

computing (Sec. 4.5.2). Our main conclusion (Sec. 4.6) is that a complete quantum treatment of
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(a) Quantum Agency (b) Classical Agency

ObservationUnitary
Evolution

Action

∞

Figure 4.1: Agency with internal (quantum) agents compared to external (classical) agents.
External agents can observe the world or act on it (note that these these distinct operations can be
inextricably connected through back-action). Quantum agents have quantum memories which are part of
the quantum world. In the quantum scenario there is no clear distinction between an observation of the
world and an action on the world.

agency which is free from anthropocentric pre-conceptions can lead to new results. It is conceivable

that by ignoring the possibility of quantum agents with quantum sensors we are in danger of making

an oversight similar to the one made by the founders of modern computing and information theory

(many of whom had in-depth knowledge of quantum mechanics) who missed or ignored the possibility

of quantum information processing.

4.2 External observers: Observables and POVMs

John von Neumann first described the measurement of an observable A in terms of three separate

subsystems:

1. A system to be measured with an associated Hilbert space HS on which the observable A is

an Hermitian operator

2. A sensor with Hilbert space HM on which there are two canonically conjugate operators: the

pointer operator PM and its canonical conjugate QM

3. An external agent with no mathematical representation

The measurement process according to von Neumann’s scheme can be broken into two stages: in-

teraction and readout. In the interaction stage a Hamiltonian of the type

Hi ∝ AS ⊗QM (4.1)

is switched on to couple the system and sensor. The result can then be amplified (see Fig. 4.2 b).

At the readout stage, an external agent records the state of the sensor. Prior to the mathematical
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(a)

(b)

POVM

System

Sensor

Amplification

Readout

Figure 4.2: Quantum measurements with external agents. (a) The traditional approach to
measurement characterised by the POVM elements {Ek}. The probability for an outcome ak is
p(aj) = Tr(Ekρ) and the corresponding minimally disturbing [147] state transformation is

|ψ⟩ →
√
Ek|ψ⟩√

⟨ψ|Ek|ψ⟩
. (b) The von Neumann scheme for a measurement of a non-degenerate observable A

provides a more detailed description than the textbook approach. It includes a quantum measurement
device M and an amplification process whereby the information is copied onto multiple registers. The
external observer reads out the state of some of these registers and records a classical result ak. The cut
between the external agent and the other subsystems has no observable consequences.

derivation, von Neumann (invoking Bohr [102, footnote 207]) argues that the agent being external

is not unique to the quantum regime, and that the precise cut between the agent and the sensor

is arbitrary even in the classical case. The aim of the derivation, which would later be called the

von Neumann measurement scheme, was to regain the classical intuition that measurements are

independent of the specific choice of the cut between the sensor and the agent. This motility of the

cut is demonstrated by showing that the agent and the sensor can be treated as a single composite

system which can be cut into subsystems arbitrarily without modifying the outcome probabilities

or the state update rules.

To make a comparison between sensations and traditional measurements, we list a number of

features that arise from the von Neumann scheme:

� Result - After the interaction, the sensor’s memory is in a state that generally depends on the

initial system.

� Broadcastability - The result can be copied and broadcast to others.

� Constrained back-action - A second sensor interacting identically with the same system yields

the same result up to statistical uncertainty.

� Motility of the cut - There is no accepted scientific theory that separates the sensor from the

external observer.

The first feature is essential in the definition of a measurement [154]. The next two points

play a key role in communication since they allow multiple agents to communicate the results

of their measurements by making copies and broadcasting them. Such communication engenders

objectivity in the sense that different agents can agree on some specific property by making individual
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Measurement
Interaction

Figure 4.3: Quantum measurements with a quantum agent: A measurement interaction M (blue
box) fills an observer’s memory O with information about a system S in the presence of an environment E .
The interaction is defined in terms of two objects: a unitary U (which couples the system S, environment
E and the observer’s memory O), and the initial EO state χEO. The interaction takes an initial system
state ρS to a final SO state M[ρS ]. The result AM[ρS ] is the reduced state encoded in the observer’s
memory. The interaction induces the result channel AM (dashed red on bottom right) from system states
to observer memory states and the back-action BM (dashed red on bottom left), a channel from system
states to disturbed system states. The entire process is deterministic. The interaction is considered a
sensation (according to Def. 1) as long as AM[ρS ] is not a constant function of ρS , i.e., M is a sensation of
S whenever the result depends on the state of S.

measurements of the same system and comparing their results [154, 158–160]. Historically, these or

some subset of these features are taken as the defining properties of measurements (e.g. [161]). Our

aim in this work is to explore the consequences of keeping only the requirement that measurements

have results that depend on the initial system.

4.3 The quantum observer

The features of von Neumann measurements match our classical experience, but do they also

capture everything a quantum observer can experience? To start answering this question, we define

sensations, the more general class of interactions enabled by access to a quantum sensor.

4.3.1 Defining sensation

As before, the system S to be observed is associated with the Hilbert space HS . The sensor is

a part of an observer O and interacts with the system. In contrast to traditional measurement, we

consider the observer itself a quantum system. We associate the memory in the observer’s sensor

with the Hilbert space HO. The sensation is a procedure which includes a unitary operation U on S,

O, and possibly other subsystems. We call these other subsystems the environment E , with Hilbert

space HE , because it is conceptually separate from the measured system and the observer. Despite

the terminology, the environment need not be noisy and could simply represent an additional sensor
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(see section 4.3.1).

For simplicity, we assume that free evolution can be ignored on the time scales of the sensation1.

To keep the notation simple, we will also use no subscripts when describing an operator on the

joint SEO Hilbert space HS ⊗ HE ⊗ HO. Furthermore, we will use the term channel to refer to

completely-positive trace-preserving maps. We denote such channels C : X → Y when they take

states on HX to states on HY .

A sensation is driven by an interaction between the system, observer, and environment. The

interaction is defined by a unitary U and the initial composite state χEO of the environment E and

the observer O. Mathematically, the interaction is a quantum channel M (U, χEO) : S → SO acting

on an arbitrary system state ρS

M (U, χEO) [ρS ] = TrE
[
UρS ⊗ χEOU

†] (4.2)

(See Fig. 4.3 a). To simplify our notation we will henceforth drop the arguments in M (U, χEO).

For any interaction M : S → SO, we also define a result channel AM : S → O that maps the

state ρS onto a state in HO called the result,

AM[ρS ] = TrS [M [ρS ]] . (4.3)

This result channel can be seen as the analogue of the POVM, but whereas the POVM maps system

states to probabilities, the result channel AM maps system states to observer states. Similarly, we

introduce the back-action

BM[ρS ] = TrO [M[ρS ]] (4.4)

which is a channel that describes how the interaction modifies S. This channel is the standard

channel associated with measurement back-action (as defined in [147] for example). In a theory with

external agents we would say that a channel is a measurement if the associated POVM elements are

not all proportional to the identity, similarly the result channel plays the central role in the following

definition of a measurement.

Definition 1 (Sensation, result). An interaction M : S → SO with an associated result channel

AM : S → O is a sensation (of S by O) if and only if there are two system states ρS , σS such that

AM[ρS ] ̸= AM[σS ]. The result is the quantum state AM[ρS ].

Note that since the channel is linear, it is sufficient to consider pure states. That is, a channel

M : S → SO with an associated result channel AM : S → O is a sensation when there are two pure

states ρS , σS such that AM[ρS ] ̸= AM[σS ].

The asymmetry in our definition of sensations as channels from S to SO (as opposed to SO
to SO) may seem like a “bug”, but it is actually a crucial feature. It provides a formal lever to

distinguish the observer from the observed. If two quantum agents interact, they will each experience

a different sensation because the two agents will define themselves as the observer and the other as

the system. A coupling between two agents A and B establishes an objective channel from AB to

AB, but the resulting sensation is subjective in that it depends on whether A is seen as the observer

or the system.

1Note that in practice the free evolution can lead to significant corrections, see for example Sec. 4.3.2 below.
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Amplification

Figure 4.4: Examples of measurements with a quantum agent: (a) The circuit diagram for a von
Neumann measurement performed in two steps (Eq. 4.5). The first, step WSE couples between the
environment (or measuring device) and the system. The second, VEO, couples between the environment
and the observer. The result is a quantum state encoded in a preferred basis {|k⟩}k which can be copied
(amplified) and broadcast. Compare this to von Neumann’s original approach (Fig. 4.2), where the
observer is external to quantum dynamics and the result is a classical label. (b) The circuit diagram for a
swap measurement. The observer learns everything about the system (|ψ⟩ is now encoded in the memory),
but the disturbance is maximal (the system retains no trace of its original state). There is no preferred
basis and so the state cannot be copied and broadcast. (c) Amplifying in a specific basis {|k⟩}k causes
decoherence. The result can be copied and broadcast but phase information is lost.

We will soon explore concrete examples of specific sensations, but first we will give two examples

of interactions that are not sensations. An interaction driven by any unitary of the form USEO =

USE ⊗ UO, is not a sensation. Second, consider an interaction of the form USEO = eiXS⊗YEO ̸= 1.

The interaction is not a sensation in the special case where χEO happens to commute with YEO,

although it is a sensation otherwise.

Example 1: the von Neumann measurement

In the von Neumann measurement, the environment is a classical sensor. To measure an observ-

able A =
∑
k akAk with eigenspace projectors Ak, we start with an initial product state written as

|ψ⟩ |0⟩ |0⟩, where |ψ⟩ is an arbitrary S state and |0⟩ |0⟩ is a fixed initial EO state. We then generate

an interaction WSE between the environment and the system and follow with an interaction VEO
between the system and the observer, so U = VEOWSE . These interactions and the initial EO states

are chosen so that

|ψ⟩ |0⟩ |0⟩ WSE−→
∑
k

[Ak |ψ⟩] |ak⟩ |0⟩ VEO−→
∑
k

[Ak |ψ⟩] |ak⟩ |k⟩ . (4.5)

where the environment states |ak⟩ are orthogonal to each other, as are the memory states |k⟩ (we

assume that the dimensions of HE and HO are large enough). Each of these interactions can be

generated by a Hamiltonian in the form of Eq. (4.1).

The result of the interaction is the final memory state
∑
k ⟨ψ|Ak |ψ⟩ |k⟩ ⟨k|. The observer’s

information about the system is captured by the correlations between S and O. The result depends
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on the initial system state in the sense that each of the orthogonal sensor states ‘points’ at a

corresponding system state with weights determined by the initial system state.

Example 2: The swap sensation

We now go to the extreme situation where the agent learns everything about the quantum state

of the system by “swapping” the latter, lock, stock, and barrel with her quantum sensor’s memory

register. We refer to this operation as the swap sensation. For simplicity, we choose O to be the

same dimension as S so U can be the standard SWAP gate [148] between S and O. For an initial

SEO state |ψ⟩ |0⟩ |0⟩, the SWAP induces the transformation |ψ⟩ |0⟩ |0⟩ → |0⟩ |0⟩ |ψ⟩ (see Fig. 4.4

b) which puts the state |ψ⟩ in the observer’s sensor. Following this measurement, the observer’

sensor contains everything about the state of S before the interaction, at the cost of a very strong

back-action. The sensation’s result cannot be shared across multiple sensors and there is no system

observable associated with it. The agent senses the state |ψ⟩, rather than a specific property of |ψ⟩.
The back-action of a swap sensation is so strong, one may wonder whether it is even appropriate

to call S the system once its contents have been entirely swapped with a part of the observer.

In practice, S is often a small piece of a much larger system. For example, if an observer uses a

swap sensation to store a photon in a quantum memory (explored further in Sec. 4.3.2), she only

senses one small portion of the entire electromagnetic field. Whatever state was swapped out from

her sensor’s memory would start to participate in the dynamics of electromagnetism, so there is a

physical sense in which S is still the system, even afters its contents have been completely disturbed.

Example 3: The decohered swap

A more realistic scenario involves a memory which is open to the environment. Analysis in this

case depends on the precise dynamics of the coupling to the environment. One possibility that allows

us to recapture the classically intuitive broadcasting feature is dephasing of O in some preferred basis

{|k⟩}k through interaction with the environment (see Fig 4.4 c). The full transformation for the SO
subsystems would then be

ρS ⊗ τO → τS ⊗ ρO → τS ⊗
∑
k

⟨k| ρ |k⟩ |k⟩ ⟨k|O (4.6)

The observer’s state is then similar to the one in the von Neumann scheme above (Eq. 4.5) with

equivalence in the case Ak = |k⟩ ⟨k|, however there are no longer any correlations with S. Corre-

lations with E would be similar to those of Eq. (4.5) and in principle E could include many copies

of the result. As we will show below, the swap-and-decohere process is similar to the behaviour of

a photon detector. The main feature we want to highlight for now is that once decoherence kicks

in, the sensation can be associated with an observable like a traditional measurement. The main

features of all three sensations discussed above are presented in Table 4.1 using terminology which

we develop further in section 4.4.

4.3.2 Physical models for a swap sensation

The swap sensation is an extreme example of a new capability granted by quantum sensors with

ideal quantum memories. We now show that this sensation is not only physically feasible, but that
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the dephased swap is also fairly commonplace.

Photon detectors

Photoelectric devices that measure light intensity are among the most common ways to sense the

world. These devices typically work by swapping the state of the incoming light field with the state of

photoelectrons, which then interact with each other and rapidly decohere (see Appendix. 4.7.2). This

detection process is essentially the decohered swap measurement described above in Sec. 4.3.1. The

fact that one of the most ubiquitous ways of observing the world does not follow the von Neumann

scheme and moreover acts like a decohered SWAP operation (with all information in the field being

lost) is significant. In particular any assertion (see [154] for example) that good observations should

be repeatable by multiple observers must be assessed with this in mind. While photodetection

with rapid decoherence does not fit within the narrow model of von Neumann measurements, it

is nevertheless a classical measurement in the sense that its outcomes can be modelled as classical

labels rather than coherent quantum states. Only the number (as opposed to the relative phase)

of photoelectrons detected is meaningful because the environment washes out any definite phase

relation between photoelectron number states.

Optical quantum memories

If the environment’s action on a photodetector can be sufficiently tamed, it becomes more than

a mere measurement. It becomes a quantum memory for an optical mode. Such a memory is not

beholden to any particular optical observable. Its dynamics are described by sensations where the

optical mode is the system to be measured, and the memory mode represents the sensor. It has

been demonstrated that photon storage in an off-resonant Raman quantum memory is equivalent to

a beamsplitter interaction between a flying photon mode (a†) and a stationary spin-wave excitation

(b†) [162, 163] (see Fig. 4.5). The ‘reflectivity’ in this beamsplitter interaction is given by the storage

efficiency of the memory which can, in theory, approach unity [164]. This storage process acts like

a SWAP between the bosonic optical and spin-wave memory modes. Any superposition of photon

number states in the optical mode becomes the same superposition of spin-wave excitations in the

spin-wave mode and vice versa.

Perfect or near-perfect quantum memories are yet to be demonstrated, but it is reasonable to

expect that such devices will exist in the not-too-distant future, most likely with some type of error

correction mechanisms to increase coherence times. Some of these memories, in particular those

directly connected to communication channels and sensors, will likely be optical memories with a

mechanism that resembles a SWAP operation with an incoming light mode. A sufficiently advanced

quantum computer might interact with the world mostly through swap sensations (see Sec. 4.5.2).

4.4 Information theory for quantum observers

The information gained from a measurement is usually quantified through some function of the

probability distribution associated with the possible measurement results, viewed as classical labels.

This approach cannot be applied as is to our deterministic framework that defines results as quantum

states. In this section we present an intuitive way to think about information gain and disturbance
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Figure 4.5: (a) The 3-level system for an off-resonant Raman quantum memory. A flying photon mode a
is mapped, via a strong control field, to a stationary spin-wave excitation. The spin-wave mode b is an
excitation from the ground state (|g⟩) to the storage state (|s⟩) of the medium. (b) The storage process can
be represented as a beamsplitter interaction between the optical and spin-wave states. With unit
reflectivity, i.e., storage efficiency, number information is swapped between modes a and b: b†i → a†f and

a†i → b†f .

that can be applied in the quantum-agent scenario. We start by introducing maximally informative

and maximally disturbing sensations in Sec. 4.4.1 and point out that their non-informative and non-

disturbing counterparts are not sensations. We then (Sec 4.4.2) introduce an additional agent A who

is initially entangled with S (see Fig 4.4) and show that correlations with this agent can be used to

quantify information gain and disturbance. We calculate the information gain and disturbance for

the von Neumann, swap, and decohered swap sensations (Sec. 4.4.3). We discover, and subsequently

prove, that even the most exotic sensation can never inform more than it disturbs.

4.4.1 Maximal information gain and disturbance

A sensation M is maximally informative whenever the observer’s final memory state and the

details of M are sufficient to produce at least one state identical to any arbitrary initial system

state.

Definition 2 (Maximally informative sensation). A sensation M : S → SO with an associated

result channel AM : S → O is called maximally informative when there exists a quantum channel

A−1
M : O → S such that the composition of channels A−1

M ◦ AM = 1 where 1 is the identity channel.

It is tempting to demand that a maximally informative sensation enables the observer to produce

not just one, but any number of states identical to a given input. While that requirement might be

appropriate for a classical observer, quantum observers must abide by the no-cloning theorem [165,

166]. A related, but distinct notion in standard quantum mechanics is an informationally complete

measurement [167]. These measurements eventually allow an observer to produce many copies of a

measured state, but only after measuring many identical instances of that state.

The opposite limit of a maximally informative sensation is an interaction in which the observer’s

final state is independent of the initial system state. Such a non-informative interaction is in fact

not a sensation under Def. 1.

Definition 3 (Non-informative interaction). An interaction M : S → SO with an associated result

channel AM : S → O is called non-informative when AM[ρS ] = AM[σS ] for any pair of states ρS , σS
in S.
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(b) Information Gain

(c) Back-action

Figure 4.6: Information gain and disturbance: (a) A second agent A is initially entangled with S so
that they are maximally correlated, IA:S = 2 log d. The observer O is initially uncorrelated with A. (b)
The information gain is defined as the change in mutual information between A and O after the sensation
(Eq. 4.8). (c) The disturbance is the change in mutual information between A and S (Eq. 4.9).
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von Neumann SWAP SWAP
with decoherence

Motility of the cut Yes No Yes
Broadcastable Yes No Yes
Repeatable Yes No No
Reversibility Requires environment Yes Requires environment
Information gain G(M) Heisenberg Maximal Heisenberg
Disturbance D(M) Heisenberg Maximal Maximal

Table 4.1: Comparing three types of sensations: the von Neumann scheme, the swap, and the swap with
decoherence (see Sec. 4.3.1,4.3.1 for details). Motility of the cut refers to the possibility of identifying
different cuts between the observer and the environment. The result is broadcastable when it can be
copied and shared with other observers, and the measurement is repeatable if a second measurement of the
same type will produce the same outcome. Reversibility refers to the resources required for reversing the
operation so that the system will be restored to its original state (the resources are either access to SO or
access the entire SEO). Information gain and disturbance (Defined in Sec. 4.4.2) are given in terms of two
reference points defined in Sec. 4.4.1. For a system of dimension d, the Heisenberg limit is log d and
maximal is 2 log d. The swap sensation obtains maximal information at the cost of maximal disturbance.
The decohered swap performs as well or worse than the von Neumann scheme on all accounts and is
essentially equivalent to a destructive von Neumann measurements like photodetection.

A sensation is maximally disturbing if the final system state is independent of the initial system

state.

Definition 4 (Maximally disturbing sensation). A sensation M : S → SO with an associated back-

action BM : S → S is called maximally disturbing when BM[ρS ] = BM[σS ] for any pair of states

ρS , σS in S.

By contrast, a non-disturbing interaction is one that allows the system to perfectly recover its

initial state from its final state.

Definition 5 (Non-disturbing interaction). An interaction M : S → SO with an associated back-

action BM : S → S is called non-disturbing when there exists a quantum channel B−1
M : S → S such

that the composition of channels B−1
M ◦BM = 1 where 1 is the identity channel.

4.4.2 Quantifying information gain and disturbance

We seek an information gain function G(AM) and a disturbance function D(BM) to quantita-

tively describe the results and back-action of an interaction M. These functions must be compatible

with the definitions given above for maximally informative, non-informative, maximally disturbing,

and non-disturbing. Furthermore, we demand that no local operation on O after the interaction

increases G(AM). Similarly, no local operation on S after the interaction may decrease D(BM).

These requirements are summarized below.

� G(AM) = 0 when M is non-informative and strictly positive otherwise.

� G(AM) maximizes for a given system S when M is maximally informative.

� G(AM) is non-increasing under local operations on O: if M′ = CO ◦ M and CO is a local

channel on O, then G(M′) ≤ G(M).
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� D(BM) = 0 when M is non-disturbing and strictly positive otherwise.

� D(BM) maximizes for a given system S when M is maximally disturbing.

� D(BM) is non-decreasing under local operations on S: if M′ = CO ◦ M and CO is a local

channel on O, then D(M′) ≥ D(M).

To construct functions G(AM) and D(BM) that respect the above properties, we will consider a

second agent A who is maximally entangled with S before the measurement interaction. Maximally

entangling S with A reflects the assumption that the observer has no prior knowledge about the sys-

tem state ρS . 2 For concreteness, we choose the entangled state to be |Φ+⟩AS = 1√
d

∑d
k=1 |k⟩A |k⟩S

where d = dim(HS) = dim(HA) and {|k⟩}dk=1 is a complete, orthonormal basis. 3 We will quantify

the correlations between two subsystems X and Y via mutual information, defined as

IX :Y(τXY) = S(τX ) + S(τY) − S(τXY) (4.7)

where S(τ) = −Tr [τ log τ ] is the von Neumann entropy of a state τ . Mutual information enjoys

some properties [148, 168, 169] which are specifically useful for our purposes:

� IX :Y(τXY) ≥ 0 with equality if and only if τXY is a product state, i.e. τXY = τX ⊗ τY .

� The mutual information reaches its maximal value 2 log d when τXY is a maximally entangled

state.

� Mutual information is non-increasing under local operations.

We can now quantify both the information gain and back-action by looking at the change in

mutual information after the measurement interaction. We define information gain G(AM) as IA:O
after the interaction M

G(AM) ≡ IA:O
(
(1A ⊗AM) [|Φ+⟩ ⟨Φ+|AS ]

)
. (4.8)

and the disturbance D(BM) as the drop in IA:S after M (see Fig. 4.6)

D(BM) ≡ IA:S
(
|Φ+⟩ ⟨Φ+|AS

)
− IA:S

(
(1A ⊗BM) [|Φ+⟩ ⟨Φ+|AS ]

)
. (4.9)

To see that these quantities make sense, we examine the qualitative behaviour of IA:O and

IA:S . First we note that once we fix dim(HS) = dim(HA) = d, the initial correlations are

IA:S(|Φ+⟩ ⟨Φ+|AS) = 2 log d. Since O is initially uncorrelated with A and S, we also have IA:SO(|Φ+⟩ ⟨Φ+|AS⊗
χO) = 2 log d. The measurement interaction M is a local operation on SO, so IA:SO(M[|Φ+⟩ ⟨Φ+|AS ]) ≤
2 log d. Ignoring O to obtain the back-action BM is a local operation, so IA:S(BM[|Φ+⟩ ⟨Φ+|AS ]) ≤
2 log d. Ignoring S to obtain the result channel AM is also local, so IA:O(AM[|Φ+⟩ ⟨Φ+|AS ]) ≤ 2 log d.

As a result,

0 ≤ G(AM), D(BM) ≤ 2 log d. (4.10)

2It is possible to modify the approach by encoding any prior knowledge the observer has in the initial AS state
so that ASEO would be the purification of the ensemble of initial states, but the details of such modifications are
beyond the scope of this work.

3For the sake of simplicity, we consider only finite dimensional Hilbert spaces.
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4.4.3 Examples

Let us consider the simple case where each subsystem is a qubit. Both E and O are initially in

the state |0⟩ and the maximally entangled AS state is |Φ+⟩ = 1√
2
[|00⟩ + |11⟩]. In the von Neumann

scheme, the final ASEO state is 1√
2
[|0000⟩ + |1111⟩], which gives G(AM) = D(BM) = log 2.

For a swap sensation, the final ASO state is 1√
2
[|000⟩ + |101⟩], so the reduced AO state is

maximally entangled and G(AM) = 2 log 2 (this can also be seen by noting that AM is the S →
O identity). The channel BM takes all system states to |0⟩S so recovery is impossible and the

disturbance is maximal: D(BM) = 2 log 2.

The decohered swap sensation yields 1
2 [|000⟩ ⟨000|+ |101⟩ ⟨101|] as the final ASO state. The final

AO state is the classically correlated state 1
2 [|00⟩ ⟨00| + |11⟩ ⟨11|], which has G(AM) = log 2. The

final AS state is uncorrelated 1
2 [|0⟩ ⟨0| + |1⟩ ⟨1|] ⊗ |0⟩ ⟨0| and has D(BM) = 2 log 2.

These results generalize naturally to d dimensional systems. The von Neumann scheme has

G(AM) = D(BM) = log d, which we call the Heisenberg limit. The swap sensation has G(AM) =

D(BM) = 2 log d and the decohered swap sensation has G(AM) = log d and D(BM) = 2 log d.

These results are summarised in Table 4.1.

The fact that the information gain of a swap sensation is 2 log d warrants an explanation. In-

tuitively, a swap should provide at least some information, even if it is not obvious how much. It

should provide at least as much information as any von Neumann sensation, because once the system

state falls into the memory of the agent’s sensor, she is free to post-process it with any von Neumann

sensation she sees fit. Yet a naive analysis of the swap sensation suggests it provides no information.

To wit, the swap sensation maps any system state |ψ⟩ to a separable state |0ψ⟩. The system and

observer are completely uncorrelated, no matter the initial system state. Any attempt to quantify

information gain based on correlations of observer and system observables will fail to match the

intuition that a swap offers non-zero information. It is a triumph of the sensation formalism that it

succeeds in assigning the swap non-zero information. In fact, it assigns the swap the highest possible

value of 2 log d for a given system dimension d.

4.4.4 Information-disturbance relation

The examples above suggest a relationship between the information gain G(AM) and disturbance

D(BM) of a measurement interaction M. In the first two examples (von Neumann and swap) we

had G(AM) = D(BM) and in the last example (decohered swap) we had D(BM) > G(AM). In all

three examples, the observer disturbed at least as much information as she gained. In the following

theorem, we prove that 0 ≤ D(BM) − G(AM). Furthermore, the examples suggest that when the

sensation yields a pure state, the disturbance equals the information gain. We show that this is true

in general by proving that the difference between the disturbance and information gain is bounded

from above by twice the joint entropy of the ASO system.

Theorem 1. Consider a measurement interaction M : S → SO of a system S with a Hilbert space

of finite dimension d. Let |Φ+⟩AS be the state of that system maximally entangled with an ancilla

A. Let ρASO = (1A ⊗M) [|Φ+⟩ ⟨Φ+|AS ] be the state after the interaction. Then the information

gain G(AM) = IA:O (ρAO) and disturbance D(BM) = 2 log d− IA:S (ρAS) satisfy

0 ≤ D(BM) −G(AM) ≤ 2S(ρASO) (4.11)
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Proof. We start by proving 0 ≤ D(BM) −G(AM). Our proof is based on the strong subadditivity

of quantum information, which can be expressed as the following inequality valid for any tripartite

state: τXYZ : [148, Eq. 11.114]

IX :Y(τXY) + IX :Z(τXZ) ≤ 2S(τX ). (4.12)

Applying this inequality to ρASO shows that

IA:O(ρAO) ≤ 2SA(ρA) − IA:S(ρAS). (4.13)

The interaction M does not act on the ancilla, so the A subsystem remains in its initial state, which

was half of a maximally entangled state. Consequently, S(ρA) = log d. Substituting this value, along

with the definitions for disturbance and information gain reveals G(AM) ≤ D(BM).

Next we prove D(BM) −G(AM) ≤ 2S(ρASO). The proof relies on a corollary of strong subad-

ditivity known as the Araki-Lieb triangle inequality[170], which states that any bipartite state τXY
obeys the following inequality:

|S(τX ) − S(τY)| ≤ S(τXY). (4.14)

We also reuse the fact that S(ρA) = log d.

D(BM) −G(AM) = 2 log d− IA:S (ρAS) − IA:O (ρAO) (4.15)

= 2S(ρA) − [S(ρA) + S(ρS) − S(ρAS)] − [S(ρA) + S(ρO) − S(ρAO)] (4.16)

= [S(ρAS) − S(ρO)] + [S(ρAO) − S(ρS)] (4.17)

≤ 2S(ρASO) (4.18)

The last line follows from applying the triangle inequality to obtain S(ρAS) − S(ρO) ≤ S(ρASO)

and S(ρAO) − S(ρS) ≤ S(ρASO).

The upper bound in Eq. 4.11 shows that a sufficient condition for a sensation to inform as

much as it disturbs is for it to map pure state to pure states, and thus output an ASO state with

zero entropy. However, this sufficient condition is not a necessary condition. The von Neumann

measurement considered in Sec. 4.4.3 produced the ASEO state 1√
2
[|0000⟩ + |1111⟩]. Although

the reduced ASO state is mixed, the sensation has equal disturbance and information gain. A

complete classification of the necessary and sufficient conditions for a sensation to inform as much

as it disturbs would essentially give a recipe for ideal, minimally disturbing measurements, but it is

beyond the scope of this work.

4.5 Agency in the quantum world

In the previous sections we developed a framework to study measurements involving agents

equipped with quantum sensors. Within this framework we extended the classically motivated

concepts of observation and uncertainty into the quantum regime without trying to force a connection

to our own experience. While our experience of the world seems to be classical at least in the sense
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Figure 4.7: Simultaneous observations using a swap interaction (a) Two observers OA and OB

simultaneously couple to the same system using the swap Hamiltonian. (b) A circuit diagram for the
sensation with an ancilla A added to account for disturbance and information gain. (c) Informational
quantities in bits as a function of time. The solid blue curve denotes the information gained by each
observer individually during the double swap. Dashed purple shows the disturbance to the original system.
It also equals the information gained by both observers when they cooperate and act as a single, joint
observer. Olive dots denote the single swap information gain and disturbance, which describes what would
have happened if only one observer attempted to sense the system. Green dashed dots show the Heisenberg
limit for reference, which corresponds to the information gain and disturbance of an ideal von Neumann
measurement. At the cost of extra disturbance compared to a von Neumann measurement, swap observers
can nearly achieve the Heisenberg limit without cooperation and significantly exceed it with cooperation.

that our observations can be described using POVMs, there seems to be no law of nature that can

rule out the more general type of observation described in Sec. 4.3 above (It should however be

emphasised that a wide body of work has been devoted to finding such laws; e.g. the quantum

Darwinism [158, 159, 171] and spontaneous collapse [172] programs). If we believe quantum theory

applies at all levels, then quantum agents can exist in principle, for example in the form of sufficiently

advanced fault tolerant quantum computers with peripheral quantum sensors (see Fig. 4.8). In this

section we discuss quantum agency through well known results developed in the context of traditional

measurements and explore possible directions for research in quantum computing.

4.5.1 Simultaneous observations

We now move to a scenario involving two observers OA and OB who try to sense the same system

simultaneously (see Fig. 4.7). In the case of a von Neumann sensation of the same observable, this

is a well studied scenario [171]. The two sensations commute and the outcomes are the same as

those arising from the scenario where the observers perform the sensation one after the other, or a

situation where the two observers monitor the same sensor. In all of these cases the observers do not

influence each other’s sensation and all can reach the Heisenberg limit and moreover have correlated

results.
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What happens if two observers attempt to sense the same system simultaneously, both using

the same swap sensation? The SWAP operator SSOA
that swaps system states with memory states

in OA’s sensor does not commute with the otherwise identical SWAP operator SSOB
for OB . As

a result, the two observers’ sensations will influence each other. We model the simultaneous swap

using the interaction Hamiltonian Hi2 = SSOA
+ SSOB

. The system and observers are initially in

the product state |ψ⟩S |0⟩OA
|0⟩OB

. The Hamiltonian Hi2 is applied for a time t, leading to the state

e−itHi2 |ψ⟩S |0⟩OA
|0⟩OB

. At every moment in time, we associate a sensation with each observer, OA

and OB , denoted MA and MB respectively. Both of these sensations refer to the same dynamical

process, save for an exchange in the notion of observer and environment. Since the situation is

symmetric, we will only study it from observer OA’s perspective.

We explicitly calculate the time-evolved state in 4.24. From Eq. (4.24), we compute the infor-

mation gain and disturbance and plot it for d = 2 in Fig. 4.7 c. For comparison with this “double

swap” scenario, we plot the information gain and disturbance for a “single swap” sensation in which

only OA observes the system and the interaction Hamiltonian is Hi1 = SSOA
. Initially, each ob-

server gains nearly as much information from the double swap as the single swap. By the time each

observer gains 0.5 bits of information (half the Heisenberg Limit), the presence of the other observer

is felt and the double swap information begins to lag behind the single swap. While the single swap

reaches the maximal information gain and disturbance of 2 bits at time t = π/2, the double swap

caps out sooner at t = π/3 with an information gain of 0.91 bits and a disturbance of 1.68 bits.

If each observer had instead performed the same von Neumann measurement on the system, they

would have each gained 1 bit of information, slightly more than the double swap. They also would

have only disturbed the system by 1 bit, significantly less than the double swap.

The double swap seems worse in terms of both information gain and disturbance than a von

Neumann measurement, but there is more to the story. So far, we have only considered how much

information OA and OB gain individually. However, if they cooperate we can treat them as a

single joint observer and ask how much information O = OAOB gains. For this joint observer,

the interaction with the system is unitary, so their information gain equals their disturbance and

maximizes to 1.68 bits. This information gain significantly exceeds the 1 bit of information that one,

two, or indeed any number of cooperative observers using the same von Neumann measurement can

extract. Even though each von Neumann observer individually gains 1 bit from their measurement,

it is all the same, redundant bit. At the cost of extra disturbance, two observers using a swap

sensation can gain almost as much information individually as a von Neumann measurement while

gaining significantly more information as a single, cooperative unit.

4.5.2 Quantum computers as agents

Work on mechanized observers who are part of the quantum system goes back at least as far as

Everett [154] who imagined quantum automata observing the system in a generic way, but focused his

attention on von Neumann type measurements and a classical experience where results are classical

labels. Later, Albert [173, 174] showed that a quantum automaton with access to its own memory

registers could perform measurements whose (classically interpreted) results seem paradoxical. These

works inspired much of the early theoretical work on quantum computing, in particular Deutsch’s

pioneering work on universal quantum Turing machines [175]. Most subsequent research however,
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Figure 4.8: A quantum network where the different agents (the quantum computers) communicate via
quantum communication channels and interact with the world via quantum peripherals. If we ascribe
agency to sufficiently advanced quantum computers we expect that most of their interactions with each
other and the rest of the world will be fully coherent.

regards quantum computers as devices to be used by classical agents. 4

The usual quantum information processing paradigm involves classical inputs and outputs. In a

sampling problem for example, the input is a classical description of some quantum circuit ending

with a sequence of binary measurements, and the output is a string of bits that represents a sample

from the probability distribution for the measurement outcomes. This picture is certainly realis-

tic, but it can be modified in a quantum internet scenario where quantum computers are directly

connected to quantum sensors that feed a quantum state as the input for a computation. These

computers could interact with other quantum computers through quantum interconnects, so that

they only share quantum information. If perfect quantum communication networks were available,

we would expect most of the communication between quantum computers to involve no classical

results (see Fig. 4.8). Quantum states generated by one computer could then be used to make deci-

sions about which circuit to encode on other computers. While, most circuits are realized presently

with classical control parameters, quantum controls have been used to run superpositions of cir-

cuits [177–179]. Quantum computers communicating in this way would have entangled circuits and

classical results would only appear when these computers interact with us. 5 Such communication

would allow many small quantum computing nodes to be joined together into a single distributed

quantum computer.

Work on quantum computing theory tends to be based on the assumption that quantum theory

can be applied as-is to arbitrarily large systems, yet the vast majority of work takes an anthropocen-

tric view: classical input, classical output. Notably this approach even extends to problems in the

QMA computational complexity class [180] which involve a proof encoded in a quantum state that

is sent to a verifier who outputs a classical “accept” or “reject” with an appropriate probability.

Exceptions include delegated quantum computing [181, 182] and compression protocols [183–185]

which are usually framed as intermediate stages in a larger classical-in classical-out task. To the

best of our knowledge, none of these have been studied as computational complexity classes. For

example, one might study a type of decision problem where the language is defined in Hilbert space

4Note that the possibility of having quantum computers as observers is sometimes mentioned in the context of
quantum foundations [176].

5and perhaps never if certain science fiction scenarios turn out to be correct.
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and the verifier’s output is a quantum state.

There are a number of difficulties in extending ideas in computational complexity to the fully

quantum regime. One technical issue involves dealing with imperfections and handling non-orthogonal

output states. Classically it is customary to expect that the right result would appear with a high

probability (say 2/3) and that the results can be distinguished from each other. In the quantum

case, one could try to deal with imperfections by asking that the real output state be close to some

ideal output state. The metric used for the distance should make sense in the context of the problem.

The usual distance measures used in quantum mechanics are interpreted in terms of probabilities

for measurement outcomes, however as we showed here (Sec. 4.4.1), these can still make sense in

a theory without probabilities. The same issue appears when dealing with non-orthogonal output

states. There seems to be no inherent reason to claim that orthogonal states are more distinguishable

to a quantum observer than non-orthogonal ones. More precisely: without the Born rule, there is

no obvious notion of distinguishability which can be applied to orthogonal states. It might however

be reasonable to expect that since unitary operators preserve the inner product, it has a special

meaning. In fact this is probably unavoidable once we assign meaning to reduced density operators,

or start thinking about broadcasting information to multiple observers [161].

4.6 Conclusions

The orthodox approach to measurement in quantum mechanics is based on an assumption that

the observer is external to the quantum system and can observe the quantum world through ob-

servables. This approach works incredibly well to describe all known quantum phenomena and is

unlikely to fail as long as observers (such as ourselves) have classical memories. Quantum memories

do not seem to be a naturally occurring phenomenon, but much of the effort in quantum informa-

tion processing is aimed at increasing coherence times and it is increasingly likely that engineered

quantum memories will become commonplace in the not-too-distant future.

If we are to believe that the current technological trajectory will continue, we should entertain

the idea of attributing agency to sufficiently advanced quantum computers. As we have shown in this

work, such quantum agents would have access to a broader range of actions than those available to us.

In particular, they would use sensations rather than conform to the narrow definition of measurement

which has been adopted in quantum theory. We have explored these ideas and presented the swap

sensation (Sec. 4.3.1 and Fig. 4.4 b) as an extreme case of quantum observation. Our ideas have

already inspired an upcoming experiment [151] which empirically measures the information flow of

several sensations.

We began with a generalized definition of measurement (Def. 1) whose deterministic result is

a quantum state recorded in the quantum memory of an observer’s sensor. To handle this more

general formalism (which includes the von Neumann scheme as a special case) we modified the basic

mathematical tools of quantum measurement theory and replaced the POVM with the result channel

AM, which takes system states to states of the memory in the observer’s sensor (see Fig. 4.3).

Using these tools, we suggested a method for quantifying information gain and disturbance (Sec.

4.4 and Fig. 4.6). These definitions led to expected results for von Neumann measurements while

faithfully describing the swap sensation’s exotic ability to provide complete information at the cost

of maximal disturbance. We showed that the disturbance of a sensation always equals or exceeds
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the information gained, which places a fundamental constraint on the information processing power

of quantum agents. We provided a sufficient condition for a sensation to be ideal in the sense that

it informs as much as it disturbs, but left open the task of identifying conditions that are both

sufficient and necessary. We used these quantities to analyze a thought experiment in which two

agents both attempt to use a swap sensation on the same system at the same time. The thought

experiment revealed that cooperation amongst quantum agents is essential for making the most of

certain sensations.

Our results are the first steps in studying fully quantum agents, but there is still much work to

be done. We have only studied how quantum agents observe their surroundings, but the processes

by which quantum agents might decide and act using those observations is still ripe for exploration.

While much work is being done on studying new mechanisms for decoherence-free interactions,

there is very little work on protocols, algorithms, and computational paradigms that involve purely

quantum agents. While our framework formally separates the observer from the observed, the

physical mechanism by which a quantum agent gains a sense of self is still a mystery.

We hope that our work encourages others to consider scenarios that involve multiple quantum

agents who can interact with each other in a purely coherent, quantum mechanical way, for example

a world-wide network of intelligent quantum computers (see Fig. 4.8). As we work towards building

sophisticated quantum machines and a quantum internet, we should give careful consideration to

how these machines would think and interact with the world around them. Learning from past

oversights, we should not ignore the possibility of information being truly quantum mechanical.

4.7 Quantum agent supplementary materials

4.7.1 Traditional quantum measurements

Observables, outcomes and probabilities

Measurements in quantum mechanics have traditionally been associated with ‘observables’ which

are mathematically represented as Hermitian operators. Each observable A has unique set of eigen-

states (eigenspaces if it is degenerate) and eigenvalues so that it can be written as A =
∑
k akAk

where aj ̸= ak unless j = k and {Ak} are projectors onto orthogonal subspaces. The (real) eigen-

values {ak} are usually used to label the possible measurement results, while the projectors {Ak}
are used for calculating the probabilities for each result. For a system initially in the state ρ, the

probability that a measurement of A will yield the result ak is given by the Born rule p(ak) = Tr(Akρ)

This formalism can be extended by noting that the set of orthogonal projectors {Ak} can be

replaced by a set of positive operators {Ek} (not necessarily orthogonal) with
∑
k Ek = 1. Such a

set of positive operators is called a positive operator valued measure (POVM) and its elements can

be plugged into the Born rule to produce a probability distribution

p(ak) = Tr(Ekρ) (4.19)

for a set of possible measurement results labeled {ak}. For simplicity we will refer to Eq. 4.19 as

the Born rule.

In many cases we are also interested in the back-action of the measurement on the measured
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system. The POVM does not provide sufficient information to predict a unique outgoing system

state, although it can be used to identify a minimally disturbing measurement (as defined for example

in [147]). For a minimally disturbing measurement, a result ak with an associated POVM element Ek

implies the transformation ρ→
√
Ekρ

√
Ek√

Tr(Ekρ)
on the measured system (see Fig. 4.2 a). In the special case

of a measurement of an observable A =
∑
k akAk, the minimally disturbing measurement is called

a von Neumann measurement and the update rule is ρ→ AkρAk√
Tr(Akρ)

. When Ak is a rank-1 projector

this rule has the simple form ρ→ Ak i.e., the state projects onto the eigenstate associated with ak.

The disturbance is considered minimal since the update rule leaves eigenstates of A undisturbed.

The above description of a measurement (Born rule and state update rule) is in most cases

sufficient for making predictions about the outcomes of experiments where the precise details of the

measurement procedure and the observer can be ignored. It does however imply a hard cut between

the observer and the measured system.

The von Neumann scheme

Von Neumann’s approach can be used to model the measurement process associated with any

POVM by treating a measurement apparatus as a quantum mechanical system initially in a state

Υ. The measurement begins with some interaction USM so that ρ ⊗ Υ → USM(ρ ⊗ Υ)U†
SM

after

which the measurement result is encoded in the state of M. To read out the result, an observer

would need to measure an observable ΠM =
∑
k akΠk on M, where Πk are orthogonal projec-

tors and the labels ak are distinct. The probability for a result ak would then be P (ak|ρS) =

Tr
[
(1⊗ Πk)USM(ρ⊗ Υ)U†

SM

]
. This equation can be written in the form of Born’s rule (4.19) by

identifying the POVM element Ek = TrM
[
U†

SM
(1⊗ Πk)USM(1⊗ Υ)

]
so that P (ak|ρS) = Tr [EkρS ].

The procedure also gives the post-measurement state of the observed system given a result ak as
TrM[(1⊗Πk)USM (ρ⊗Υ)U†

SM ]
P (ak|ρS) [186]. The term von Neumann scheme is often used for the special case

where this procedure is applied to the inner workings of a von Neumann measurement. For this

measurement USM is generated by a Hamiltonian in the form of Eq. (4.1) (see Fig. 4.2 above and

Sec. 4.3.1 below for more details).

The scheme above is more detailed than the Born and state update rules, but it is not complete

since it invokes an observation of the measurement device (via ΠM) with no details on how this

measurement is constructed. It then begs the question ‘how is the measurement device observed?’

to which we could give the same answer ad infinitum. At this point von Neumann invoked the

external observer (which he previously justified). It is however possible to treat the result quantum

mechanically - i.e. as a state |ak⟩ rather than a classical label ‘ak’ - so that no external observers are

required. This fully coherent approach comes with interpretational issues, but it can be argued that

these are no more problematic than the alternative. As we will show in Sec. 4.3 the possibility of

encoding the measurement result in a quantum state allows a more general definition of measurement

where some observers can perceive the world in a way which cannot be modeled in the language of

POVMs.

Side remark: Locality and the Born rule

Quantum mechanics with external (classical) observers is fairly well defined at least from an

operational perspective where certain systems (e.g. humans, cameras, etc.) are postulated to be
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classical and external. In such an approach one generally accepts the Born rule and a certain version

of the collapse postulate as part of the quantum-to-classical transition. This in turn allows us to

use some tools which we usually take for granted, especially those that have been adopted from

statistical mechanics and information theory. One which is of particular significance here is the

reduced state. Consider a system which is composed of two distinct subsystems: S and M such

that its description is a state |ψ⟩
SM

in the tensor product Hilbert space HSM = HS ⊗ HM. The

reduced state of the system is ρS = TrM[|ψ⟩ ⟨ψ|], where TrM is the partial trace over HM. This

reduced state contains all the information necessary for calculating probabilities for the outcomes of

measurements via the Born rule (4.19). From the operational perspective of the external observer,

this reduced state contains all there is to know about the system. The notion of a reduced state

can also be extended to dynamics. Consider an initial product state ρS ⊗ τM on HSM = HS ⊗HM
and some Schrödinger evolution described by the unitary USM . The local (reduced) dynamics is

described by the completely positive trace preserving map C(ρS) = TrM[USMρS ⊗ τMU†
SM

] (also

called the quantum channel).

Quantum theory with quantum observers provides a more difficult situation than a theory with

external observers, and requires a more careful treatment of fundamental postulates and their inter-

pretation. Our approach here is to take the ‘standard’ Schrödinger-picture quantum theory (without

collapse) at face value, as is often done in many-worlds interpretations6 [188, 189]. In particular,

we assume that the reduced density operators are valid complete descriptions of the local states,

and that reduced dynamics provide a complete description of the local dynamics. We note that

this is not necessarily the situation in hidden variable theories such as those following de Broglie

and Bohm’s pilot wave [152], and that even in the many worlds interpretation the justification for

assigning meaning to reduced density operators requires a complicated argument and non-trivial

assumptions [190].

4.7.2 Photodetection

The usual treatment of photodetection [191, 192] begins with an atomic system interacting with

an electric field through an interaction Hamiltonian of the form Hi = d⃗ · E⃗, where d⃗ is the dipole

moment of the atom and E⃗ is the electric field. This Hamiltonian has the von Neumann form (4.1)

with the atom acting as the measurement apparatus and the field E⃗ as the measured operator, and

so we might be tempted to say that this is a von Neumann measurement of the field. However, free

evolution cannot be neglected at optical frequencies, and the free evolution term in the Hamiltonian

does not commute with the interaction term. The dynamics are usually treated by moving to

a rotating frame and making the rotating wave approximation to get rid of terms that oscillate

rapidly (see [192, Sec. 4.3 ] ).

We treat the detector as a two-level atom and assume that the atoms are initially in the ground

state and that the excited state is an ion and a free photoelectron. Each absorbed photon leads

to the release of a photoelectron (see [192, Sec. 5.2] for a detailed derivation) which induces an

irreversible amplification sequence whose details depend on the specifics of the detector. Ideally the

detector would perform a perfect SWAP followed by dephasing so that the incoming photon number

would be perfectly correlated with the amplified output signal; however, practical issues mean that

photon number sensitivity is usually far from perfect.

6see Deutsch and Hayden [187] for a different (Heisenberg based) approach to many worlds.
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4.7.3 Simultaneous swap

We calculate the state evolution and information exchange of the simultaneous swap sensation

described in Sec. 4.5.1. There are two relevant (unnormalized) eigenstates of Hi2:

|e2⟩ = |ψ00⟩ + |0ψ0⟩ + |00ψ⟩ , (4.20)

|e−1⟩ = 2 |ψ00⟩ − |0ψ0⟩ − |00ψ⟩ .

They have respective eigenvalues 2 and −1. These allow us to expand the initial state |ψ00⟩ in the

eigenbasis of Hi2.

|ψ00⟩ =
|e2⟩ + |e−1⟩

3
(4.21)

The evolved state is

e−itHi2 |ψ00⟩ =
e−2it |e2⟩ + eit |e−1⟩

3
(4.22)

=
e−2it + 2eit

3
|ψ00⟩ +

e−2it − eit

3
[|0ψ0⟩ + |00ψ⟩] .

When t is an integer multiple of 2
3π, the state evolves back to its original uncorrelated state times

a phase factor. For these t values, the interaction is not a sensation by Def. 1.

To calculate information gain and disturbance for the d = 2 case, we add a third agent A initially

entangled with S, so that the initial ASOAOB state is

|Ψ⟩ =
|0000⟩ + |1100⟩√

2
. (4.23)

The state evolves to

e−itHi |Ψ⟩ =
1√
2

[
e−2it |0000⟩ +

e−2it + 2eit

3
|1100⟩ +

e−2it − eit

3
[|1010⟩ + |1001⟩]

]
. (4.24)

The information gain is the mutual information of the reduced AOA state,

ρAOA
=

1

2

[
|00⟩ +

1 − e3it

3
|11⟩

] [
⟨00| +

1 − e−3it

3
⟨11|

]
+

7 + 2 cos(3t)

18
|10⟩ ⟨10| . (4.25)

The disturbance is 2 minus the mutual information of the reduced AS state,

ρAS =
1

2

[
|00⟩ +

1 + 2e3it

3
|11⟩

] [
⟨00| +

1 + 2e−3it

3
⟨11|

]
+

2 − 2 cos(3t)

9
|10⟩ ⟨10| . (4.26)

4.8 Quantum agents outro

4.8.1 Contributions

The paper in the previous section started as several animated conversations among Aephraim’s

group about quantum agency. Aharon Brodutch and Kent Bonsma-Fisher lead those conversations

and came up with the idea to look past the standard von Neumann notion of quantum measurement.

I, along with Hugo Ferretti, Edwin Tham, Arthur Pang, and occasionally Aephraim Steinberg
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contributed to these initial conversations as well. Kent devised almost all the figures while Aharon

wrote an initial draft of the manuscript. The first round of reviewers commented that the ideas in

the manuscript were interesting, but it was unclear how much if any of them were new. I stepped

up to lead revisions of the manuscript based on this feedback, and came up with almost all the

quantitative results in the present version in the process. Specifically, I developed the definitions of

information gain and disturbance and proved the inequalities between them. Aharon and I worked

together to calculate the simultaneous swap scenario presented in the paper.

4.8.2 Follow up

The purpose of the entangled sheep paper was to create a conceptual and mathematical frame-

work naturally suited for problems involving quantum agents. Broadly speaking, there are two

avenues for furthering the research program the paper set out: applying the framework to concrete

problems and continued development of the framework itself.

Our paper introduced a scenario (Sec. 4.5.1) in which two observers simultaneously use a swap

sensation to observe the same system. While there is certainly potential to come up with and

analyze more scenarios, I think we have only scratched the surface of the simultaneous swap. We

computed that each observer individually gains up to 0.91 bits of information and that the observers

jointly share up to 1.68 bits of information between them, but we did not delve into the nature of

this information. How might this information be used operationally for various tasks like steering

or cloning? The fact that the sum of the observers’ individual gains is greater than their shared

gain suggests some level of redundancy in the gained information and points to genuine tri-partite

correlations. Do these tri-partite correlations enable protocols that would not be possible with only

two-party correlations? How do different continuous-time models of the swap sensation impact the

information exchange? How well does our simultaneous swap thought experiment map onto a real

scenario in which photons trapped in a cavity leak symmetrically through one end of the cavity or

the other?

The framework we developed defines tools for calculating the flow of information between quan-

tum agents with finite-dimensional sensors and no prior knowledge of the systems they sense. The

growing interest in continuous-variable quantum computing motivates extending our framework to

describe infinite-dimensional sensors, but finding the appropriate extension is mathematically daunt-

ing. Our definitions of information gain and disturbance rely on maximally entangled states, which

are straightforward to define in finite dimensions, but notoriously difficult to describe rigorously in

infinite dimensions. For example, a naive attempt to define a maximally entangled state of two

photonic modes produces a non-normalizable state with infinite energy. The continuous-variable

quantum computing community surely has rigorous ways of dealing with these issues, so mining

their literature for ideas should be a good starting point.

Accounting for prior information is crucial at both a conceptual and practical level. A good

framework for information flow should assign zero information gain to an agent that senses a state

they already know everything about. However, the current definitions of information gain and

disturbance stipulate the system starts maximally entangled with some ancilla, leaving no room to

account for any prior knowledge the observer might have. A natural way to include such knowledge

in our framework would be to allow the initial system state to be only partially entangled with an

ancilla, or even not entangled at all. The amount of entanglement and the reduced state of the
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system would model the observer’s prior knowledge. Applying our current formulas for information

flow based on mutual information to such a non-maximally entangled state would give sensible

results in situations where the observer’s prior knowledge is accurate. What if an observer believes

with all their heart that a system is in a particular pure state, but upon sensing it, realizes it was

in an orthogonal state? Our framework ought to assign some non-zero information to the observer’s

sensation, but exactly how much is unclear. I expect that properly extending our framework to

handle prior knowledge will involve generalizing our usage of mutual information to relative entropy,

which is the tool of choice in classical statistics to measure the communication cost of sending

information to a receiver with a mismatched prior.

4.8.3 Relation to interpretations of quantum mechanics

After reading the paper in this chapter, one may wonder where the work sits amongst the zoo

of interpretations of quantum mechanics. However, the ideas presented in the entangled sheep

paper are not an interpretation of quantum mechanics. The work does not take a position on what

the elements of reality are. At the same time, it is not a new theory of nature. Our framework

does not suggest any changes to the usual calculations of quantum mechanics nor predict any new

phenomenon. So if the ideas are not an interpretation or a theory, what exactly are they?

At its core, the quantum sheep paper is a plea to the quantum mechanics community to expand

the definition of measurement. Quantum agents with coherent quantum memories will interact with

and sense their surroundings. If we refuse to see these actions as measurements, we will be at a loss

for words to describe the information flow among these agents. By defining a set of terminology

and associated mathematical definitions, we hope to endow researchers with a common language for

conceptualizing, analyzing, and discussing a future where quantum agents thrive.
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