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Abstract: The class of two-interacting-qubit spin–boson models with vanishing transverse fields on

the spin-pair is studied. The model can be mapped exactly into two independent standard single-

impurity spin–boson models where the role of the tunneling parameter is played by the spin–spin

coupling. The dynamics of the magnetization are analyzed for different levels of (an)isotropy. The

existence of a decoherence-free subspace, as well as of different classical regimes separated by a

critical temperature, and symptoms of quantum (first-order and Kosterlitz–Thouless type) phase

transitions in the Ohmic regime are brought to light.

Keywords: open quantum systems; spin–boson model; interacting qubits; quantum phase transitions

1. Introduction

The dynamics of any open quantum system is profoundly influenced by its surround-
ing environment, which is at the origin of decoherence and/or dissipation manifestation [1].
The former effect plays a leading role in determining the transition from quantum to clas-
sical behavior. In recent decades, it has attracted much attention, mostly in the field of
quantum state manipulation and quantum computation [2].

An important model exhibiting quantum dissipation is the so-called single-impurity
spin–boson model (SISBM), which describes a single-spin-1/2 coupled to a bosonic quan-
tum bath [3]. The SISBM has been thoroughly studied in wide regions of the parameter
space [3–8] with diverse methods and techniques [9–11] since 1980. It is a popular starting
point for investigations about the dissipative dynamics of a noisy two-level system or qubit.
The SISBM indeed encapsulates effects stemming from quantum decoherence, dissipation,
and relaxation on the otherwise coherent spin evolution [3]. Furthermore, the model ex-
hibits a nontrivial ground-state behavior since it displays a quantum phase transition as a
function of system-bath coupling strength [7,8], attributed to zero-point rather than thermal
fluctuations within the bath [12–15]. Applications are numerous, ranging from quantum
optics to quantum information and computation [16–36].

The interest towards decoherence and dissipation, as well as quantum phase transi-
tions (QPTs) in two-impurity spin–boson models (TISBMs) with competing interactions,
has remarkably grown in the last two decades [37–50]. The TISBM is currently under
attention to determine the existence of critical points and then the presence of quantum
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and/or classical phase transitions [38,39]. Based on numerical approaches, different results
have been proposed; however, until now, a univocal response is missing [38,39]. Moreover,
a remarkable question to be addressed is whether, in the presence of the impurity-impurity
coupling, the transition is of the Kosterlitz–Thouless (K-T) type [38,39].

Recently, a two-qubit quantum Rabi model (QRM), presenting a nontrivial interaction
between the two qubits, has been studied [51]. In this case, the qubit–qubit interaction has
proved to be fundamental for the determination of two distinguished phases separated by
an interaction-based superradiant level-crossing for the ground state of the system [51].
The analogous effect has been brought to light in a more complex system consisting of a
two-qubit SBM [52]. There, the authors have found specific and physically meaningful
conditions that make the model exactly diagonalizable.

In this work, we analyze the same two-qubit (or two-impurity) SBM, useful for de-
scribing binuclear units [53,54], where the transverse (x) field on the spins is absent and
a non-isotropic spin–spin Heisenberg interaction is considered. In this case, however, we
are interested in investigating the ground-state properties and the dynamical effects of the
complex system when the special conditions ensuring the exact solvability are relaxed.

We point out that, until now, the TISBMs considered [37,39,45] have been mainly
focused on the effects stemming from the application of external (longitudinal and trans-
verse) magnetic fields, taking into account the simplest spin–spin coupling. In the present
work, instead, the attention has been focused on the physical properties of a two-spin/bath
system related to the internal parameters that characterize the system itself: a nontrivial
spin–spin coupling (anisotropic Heisenberg interaction) and the spin–bath coupling(s). This
aspect is of crucial importance from a physical point of view since it means that the results
reported in the present work are basically related to the intrinsic nature of the physical
system under scrutiny: the two kinds of coupling depend on both the physical geometry
of the system and the chemical-physical nature of the constituting elements [53,54]. The
physical effects arising from our analysis are then determined by the relative role played by
the internal parameters of the system. This kind of study has already shown its potentiality
in unveiling intriguing properties of condensed-matter systems coupled to quantized boson
field(s) [51,52].

We emphasize that qubit–qubit interactions are fundamental in fields like quantum
computation [55–57]. In this applicative context [58,59], the generation of multipartite
entangled states [55–57] can be indeed performed through highly controlled quantum
gates [60,61]. Circuit quantum electrodynamics [62,63] and semiconductor systems [64–66]
are the main scenarios where such a kind of models with spin–spin interaction turns out to
be of relevant importance.

Furthermore, the presence of a longitudinal magnetic field is also considered to disclose
how such properties are modified when external operations (for example, measurements)
are carried out.

We show that the dynamical problem can be exactly and analytically reduced to that
of two independent SISBMs, wherein the role of the transverse field is effectively played
by the two-spin coupling(s). First, we bring to light the existence of a decoherence-free
subspace characterized by dissipationless spin dynamics. Furthermore, based on the results
previously obtained for the SISBM in the Ohmic case [3,7,8], we derive the behavior of
the magnetization of the system as well as the presence of two classical (non-vanishing
temperature) regimes and QPTs. In particular, two types of QPT are present: a first-order
QPT (due to a level crossing) and a K-T QPT.
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2. Model

The model of two interacting spin-1/2’s subjected to local longitudinal (z) fields and
coupled to a common bath of quantum harmonic oscillators can be written (in units of ℏ)
as [51,52]:

H =
Ω1

2
σ̂z

1 +
Ω2

2
σ̂z

2 −
γx

2
σ̂x

1 σ̂x
2 − γy

2
σ̂

y
1 σ̂

y
2 − γzσ̂z

1 σ̂z
2+

N

∑
j=1

ωj â
†
j âj +

2

∑
i=1

N

∑
j=1

cij

2

(
â†

j + âj

)
σ̂z

i .
(1)

Ωi and ωj (i = 1, 2; j = 1, . . . , N) are the characteristic frequencies of the i-th spin and the
j-th mode, respectively, while cij are the parameters taking into account the interaction

strength between the i-th spin and the j-th mode. σ̂l
i (l = x, y, z) are the Pauli operators

of the spins, while aj and a†
j are the annihilation and creation boson operators of each

field mode.
We point out that the present model profoundly differs from those studied until

now [37–50]. The latter can be classified as direct generalizations of the single-spin–boson
model. These models include indeed both a longitudinal (z) and a transverse (x) magnetic
field applied to the spins, the standard interaction term of each spin with the quantum

oscillator bath [∑2
i=1 ∑

N
j=1

cij

2 (â†
j + âj)σ̂

z
i ], and either no spin–spin coupling or (at most)

the simplest interaction term (σ̂zσ̂z) between the two spins. In our model, instead, the
transverse (x) field is absent, and a remarkably more complex spin–spin coupling (precisely,
an anisotropic Heisenberg interaction) is considered, which has never been proposed and
studied so far. This difference between the two types of models is crucial and causes a
significantly different physical behavior of the system. The Hamiltonian considered here
(see below) is indeed characterized by a symmetry that would be lost if the transverse field
were present. We will see, in fact, that this symmetry is the key ingredient, making the
model integrable and allowing for the exact reduction of the initial dynamical problem to
two independent and easier (sub)problems pertaining to two dynamically invariant sub-
spaces. Moreover, we underline that the transverse spin–boson coupling (σ̂x ∑

N
j=1(â†

j + âj))

is the one usually studied since it can be found and/or implemented in many physical
systems. However, the longitudinal one is not unphysical or exotic for physical systems,
which can be appropriately exploited for quantum information and quantum computation
tasks. It is possible indeed to show that the decoherence mechanism for a qubit (intended
as part of a quantum computer) can be formulated in terms of a spin–boson model with a
longitudinal spin-mode coupling [67–70].

Thanks to the existence of the constant of motion σ̂z
1 σ̂z

2 , the model can be unitarily
transformed into [71] (see Appendix A)

H̃ = H̃a ⊕ H̃b, (2)

with

H̃a =
Ωa

2
σ̂z

a −
γa

2
σ̂x

a − γz1̂a +
N

∑
j=1

ωj â
†
j âj +

N

∑
j=1

ca
j

2

(
â†

j + âj

)
σ̂z

a , (3)

H̃b =
Ωb

2
σ̂z

b −
γb

2
σ̂x

b + γz1̂b +
N

∑
j=1

ωj â
†
j âj +

N

∑
j=1

cb
j

2

(
â†

j + âj

)
σ̂z

b , (4)

where Ωa/b = Ω1 ± Ω2, γa/b = γx ∓ γy, ca/b
j = c1j ± c2j [a(b) corresponds to upper (lower)

sign], and 1̂a (1̂b) is the identity operator in the subspace Ha (Hb) which corresponds to the
eigenvalue +1 (−1) of the constant of motion σ̂z

1 σ̂z
2 . H̃a and H̃b are then effective Hamiltoni-

ans governing the dynamics of the two-spin/bath system (TSBS) within each dynamically
invariant subspace, related to each of the two eigenvalues of the constant of motion,
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Ha and Hb, respectively. In each subspace, the two spins behave as effective two-level
systems, so that the two Hamiltonians H̃a and H̃b can be thought of as the Hamiltonians
of two fictitious two-level systems, ~̂σa and ~̂σb, which dynamically arise because of the
symmetry exhibited by H (see Appendix A). Indeed, the subspace Ha related to the eigen-
value +1 of σ̂z

1 σ̂z
2 is spanned by {|++〉, |−−〉} ⊗N

j=1 {|nj〉}∞
n=0 [with σ̂z|±〉 = ±|±〉, and

âj
† âj|nj〉 = nj|nj〉 (j = 1, . . . , N)], and the dynamics is ruled by the effective Hamiltonian

(A8). Therefore, in this case, by studying the dynamics of the fictitious two-level system a
coupled to its own bath, we study the dynamics of the two-spin/bath system within the
subspace Ha. It means that the two states {|+〉a, |−〉a} of the fictitious two-level system a
are the mapping images of the two two-spin states {|++〉, |−−〉}. Analogously, the sub-
space Hb related to the eigenvalue −1 of σ̂z

1 σ̂z
2 is spanned by {|+−〉, |−+〉} ⊗N

j=1 {|nj〉}∞
n=0,

and the effective Hamiltonian ruling the dynamics is given in Equation (A9). In this case,
the two two-spin states {|+−〉, |−+〉} are mapped into the two states {|+〉b, |−〉b} of the
fictitious spin-1/2 b. We underline that the dynamical separation allows the easy deriving
of the exact time evolution of initial conditions, which have contemporary non-vanishing
projections in the two invariant subspaces.

Furthermore, the two independent subdynamics are equivalent to two effective SIS-
BMs: (I) the coupling between the two true spins provides the effective transverse magnetic
field (γa and γb); (II) the longitudinal field results from precise combinations (Ωa and Ωb) of
the two fields applied to the actual spin-1/2’s; (III) the coupling with the quantum oscillator
bath is mediated by appropriate combinations (ca

j and cb
j ) of the coupling parameters of

the two-spin-1/2’s with each boson mode. We stress that the field operators appearing in
H̃a and H̃b are formally different. The operator (â + â†) appearing in H̃a, in fact, must be
intended as (â+ â†)⊗ (|++〉〈++|+ |−−〉〈−−|). Analogously, in H̃b, the same operator is
the compact form of the following extended operator (â + â†)⊗ (|+−〉〈+−|+ |−+〉〈−+|).
We note that the two effective Hamiltonians are qualitatively similar. However, depending
on the specific physical conditions under scrutiny, they can deeply differ and can lead to
remarkably different dynamics of the two interacting spins in the two subspaces.

Thanks to our approach, leading to the exactly derived expressions of the two effective
Hamiltonians H̃a and H̃b, we can solve the original two-spin/bath dynamics by solving the
two independent effective single-spin–boson subdynamics (see Appendix A). Therefore,
all the results obtained for the SISBM can be applied to each subdynamics and exploited to
obtain information about the TSBS dynamics.

This last aspect highlights remarkable physical properties directly stemming from
the symmetries exhibited by the physical systems. In fact, several physical effects related
to the existence of symmetry-protected (sub-)dynamics turn out to be relevant in differ-
ent contexts, such as quantum metrology [72,73] as well as quantum information and
computation [74].

3. Dynamics

3.1. Conditions

Consider the bath in a thermal state and the two-spin system prepared in the state
ρ(0) = |++〉〈++| (σ̂z|±〉 = ±|±〉), which is mapped to the fictitious single-spin state
ρa(0) = |+a〉〈+a| (|±a〉 being the states of the fictitious two-level system a). In this instance,
the dynamics are entirely restricted to the subspace Ha and the mean value of the total
magnetization 〈Σ̂z〉 ≡ 〈σ̂z

1〉+ 〈σ̂z
2〉, as well as the mean value of the single magnetizations

of the two spins, can be easily obtained from 〈σ̂z
a 〉 (see Appendix B):

Tr{ρ̂a(t)σ̂
z
a} = 〈σ̂z

a 〉 = 〈σ̂z
1〉 = 〈σ̂z

2〉 =
〈Σ̂z〉

2
. (5)

The above formula can be easily derived by considering the restrictions of the operators
σ̂z

1 , σ̂z
2 and Σ̂z to the subspace Ha and that Σ̂z = σ̂z

a ⊕ 0̂b (0̂b = 0 · 1̂b), σ̂z
1 = σ̂z

a ⊕ σ̂z
b , and

σ̂z
2 = σ̂z

a ⊕ (−σ̂z
b ).
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In the asymptotic low-temperature limit, the bath spectral density function
J(ω) = π ∑j (c

a
j )

2δ(ω − ωj) is determined by the low-energy part of the spectrum and its

standard parametrization is

J(ω) = 2παω1−s
c ωs, 0 < ω < ωc, s > −1, (6)

where ωc is a cutoff frequency and α is the dimensionless parameter accounting for the
dissipation strength [3]. The spectral exponent s defines three regimes: Ohmic (s = 1),
sub-Ohmic (s < 1) and super-Ohmic (s > 1). We underline that the Ohmic spectral density
is imposed on the effective couplings ca

j = c1j + c2j related to the subspace Ha.

3.2. Decoherence-Free Subspace

It is worth noticing that the subspace Hb related to the eigenvalue −1 of σ̂z
1 σ̂z

2 (see

Appendix A) presents the following peculiar dynamical property. If c
j
1 = c

j
2 (both the

spin-1/2’s have the same coupling to the bath), implying cb
j = 0, the subspace Hb is a

decoherence-free subspace. In fact, although the two spins interact with the bath, the
fictitious b-spin is effectively decoupled from the quantum oscillator environment. This is
due to a sort of ‘compensation’ of the two-spin–bath couplings (i.e., cb

j = 0). This implies

that the two actual spins experience dissipationless dynamics within such a subspace as
if the bath were absent. Therefore, if the two-spin/bath dynamics occur within such a
subspace (this happens if, e.g., the initial condition belongs to such a subspace), the initial
or produced entanglement between the spins, would not degrade, despite the presence of
the spin–bath coupling term.

This circumstance is of paramount importance in quantum computation, where con-
trolling the dissipative two-spin-boson dynamics in nonequilibrium conditions, e.g., in
the presence of time-dependent external fields, is crucial [45,49]. We emphasize that the
analytical treatment employed to unitary transform the TISBM is not affected by any time
dependence of the Hamiltonian parameters (see Appendix A). In this way, appropriate
time variations of the local fields and/or the coupling parameters can be engineered to
generate unperturbed quantum gates acting on the two spins.

3.3. Ohmic Regime

The Ohmic case (s = 1) presents a wide variety of different behaviors depending on the
region of the parameter space taken into account [3]. First, consider the case Ω1 = Ω2 = 0;
this case turns out to be interesting since, in this instance, we can investigate the physical
properties of our TISBM, which only depends on the ‘internal’ parameters of the two-
spin/bath system, determined by the nature and the geometry [53,54] of the physical
system itself: the spin–spin coupling and the spin–bath coupling(s). We underline that all
the following results are valid under the conditions below [3]:

γb/a ≪ ωc,

kBT ≪ ωc,
(7)

and for times large compared to ω−1
c [3].

For α = 1/2 the two-spin magnetization reads [3]

〈Σ̂z(t)〉 = 2 exp

{
−π

2

γ2
a

ωc
t

}
. (8)

This result is valid at all temperatures (T = 0 and T 6= 0) compatible with the condition
kBT ≪ ωc [3]. The exponential decaying rate of the two-spin probability depends on the
ratio γ2

a/ωc, meaning that the characteristic timescale of the system is determined by the
spin–spin coupling parameter. Precisely, it depends on the difference γx − γy, so that:
(i) in case of isotropy (γx = γy) the system tends to remain in its initial state; (ii) a slight
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difference between the two coupling parameters, instead, causes an exponential decay of
the magnetization(s) towards the equilibrium value.

For α < 1 ( 6= 1/2) two cases can be considered [3]:

(1) kBT & γ̃a,

(2) kBT . γ̃a,
(9)

with

γ̃a = γa

(
γa

ωc

)α/1−α

. (10)

In case (1), the magnetization is [3]

〈Σ̂z(t)〉 = 2 exp{−t/τ}, (11)

τ−1 =

√
π

2

Γ(α)

Γ(α + 1/2)

γ2
a

ωc

(
πkBT

ωc

)2α−1

, (12)

where Γ is the gamma function. The previous expression describes an exponential relaxation
with a rate ∝ T2α−1. In case (2): (i) if 1/2 < α < 1 the time behavior is most likely an
incoherent relaxation with an α-dependent rate of order γ̃−1

a ; (ii) if 0 < α < 1/2 the system
exhibits damped incoherent oscillations [3].

These results show that, depending on the ratio of the spin–spin energy coupling to
the thermal energy, different dynamics arise. Therefore, the spin–spin interaction, as well as
the decaying rate, sets the limit temperature dividing the two dynamical regions. Physical
systems characterized by different couplings thus exhibit a different critical temperature
and/or different behaviors at the same temperature. Three scenarios can be considered. In
nuclear magnetic resonance, the spin–spin coupling typically ranges from 10 Hz to 300 Hz,
depending on the molecule [75]. For microwave-driven trapped ions, the interaction
strength can reach the kHz range [76]. Rydberg atoms and ions, due to the huge electric-
dipole moments of the Rydberg states, are characterized by an effective spin–spin coupling
that can reach a few MHz [77,78]. In the three cases the critical temperature Tc = γ̃a/kB

separating the two dynamical regimes results Tc ≈ 0.1 − 1nK, Tc ≈ 10nK, Tc ≈ 10µK,
respectively. In conclusion, the above considerations show that for dissipative two-
spin systems described by the TISBM (1) studied in this work, the spin–spin coupling is
crucial for the dynamics of the system since it determines the critical temperature which
separates two dynamical regimes characterized by a different evolution of the considered
initial condition.

When α > 1: (i) if T 6= 0, the two-spin dynamics consists of the same exponential
relaxation written in Equation (11), characterized by a rate ∝ T2α−1 [3]; (ii) for T = 0,
instead, the two-spin system experiences the localization regime, i.e., it is frozen in its initial
condition [3].

It is worth noticing that all the previous dynamical behaviors rely only on internal
parameters characterizing the physical system: the spin–spin coupling, the spin(s)-bath
coupling, and the bath cutoff frequency. This aspect suggests a sort of self-organization of
the system and an auto-determination of the system dynamics.

An appropriate non-vanishing bias (Ωa 6= 0, Ωa ≪ ωc), large compared to the
renormalized tunneling frequency (Ωa ≫ γ̃a), makes the system to relax from the upper
to the lower state, even at zero temperature [3]. Thus, the physical effect of a sufficient
bias is to suppress the coherent oscillations shown, in some cases, by the unbiased system.
We emphasize that the results reported for α = 1/2 can be analytically derived, provided
that the physical conditions in Equation (7) are satisfied. The expressions for the case
α 6= 1/2 can be obtained instead under the so-called non-interacting-blip approximation,
which is essentially a short-time and weak-coupling approximation and becomes exact at
high temperatures in the case of an Ohmic bath in the Markovian limit [3].
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Mixing Subspaces

All the previous results can even be applied to the subdynamics b, with |+−〉 as the
initial state of the two spins and Ωa and γa replaced with Ωb and γb, respectively. Of course,
the Hamiltonian parameters are constrained to fulfill γb ≪ ωc and Ωa ≪ ωc. In this case,
net magnetization vanishes, 〈Σ̂z〉 = 0, since 〈σ̂z

1〉 = −〈σ̂z
2〉.

If we consider the initial condition (|++〉+ |+−〉)/
√

2, both subspaces are involved.
In this circumstance, we must independently solve the dynamics in each subspace and
‘merge’ the results. It must be taken into account that the two subdynamics are characterized
by different (effective) couplings with the bath and then by different αs, say αa and αb.
Consider the following case: s = 1, αa = 1/2 and αb = 0. The latter condition stems from
c1j = c2j, ∀j, so that cb

j = 0.

The time behavior of the net magnetization 〈Σ̂z〉 is determined by the time evolution
in the subspace Ha since no contribution stems from the subspace Hb. Therefore, this
time, the value of the magnetization is half times that obtained when the system is initially
prepared in |++〉 [Equation (8)].

Rather, a relevant difference is found for 〈σ̂z
1〉 and 〈σ̂z

2〉. Previously, we had
〈σ̂z

1〉 = 〈σ̂z
2〉 = 〈σ̂z

a 〉 (Equation (8)). Now, the time behavior of each spin magnetization reads

〈σ̂z
1,2〉 =

〈σ̂z
a 〉 ± 〈σ̂z

b 〉
2

=
e−

π
2

γ2
a

ωc
t ± cos(γbt)

2
. (13)

The cosine term stems from the exact solution of the deterministic dynamics in the sub-
space Hb.

From Figure 1a,b, we see that the level of anisotropy influences both the frequency of
the single-spin oscillations and the decaying rate of the net magnetization. In the case of
isotropy (γx = γy), instead, the two spins exhibit dissipationless oscillations, and the net
magnetization is constant [see Figure 1c]. This circumstance is related to the vanishing value
of γa, which rules the exponential relaxation (playing the role of the effective transverse
field in the subdynamics a). Therefore, by studying both the oscillation frequency of
each spin magnetization and the exponential decaying rate of the net magnetization, the
coupling parameters γx and γy, and then the level of (an)isotropy of the two-spin system
can be estimated.
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Figure 1. Time behavior of both the single-spin and the net magnetizations for s = 1, αa = 1/2,

and three levels of isotropy: (a) minimum, (b) intermediate, (c) maximum. The two spins start

from (|++〉+ |+−〉)/
√

2, while the bath from the thermal state.

4. Quantum Phase Transitions

The ground state (GS) of the two-spin system can belong to either the a or b space
(coinciding then with the GS of the fictitious spin-qubit a or b) depending on the parameter-
space point identified by the Hamiltonian parameters. In this way, we can write the two
possible GSs and the related ground energies of the TISBM based on the expressions
obtained for the SISBM (see Appendix C). The ansatz proposed in Ref. [8] provides, in the
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Ohmic case, a good approximation of both the GS and the ground energy of the SISBM in
the scaling limit, i.e., in our case, for γa/b ≪ ωc.

Based on these results, the GS of the TISBM, in the Ohmic regime, takes one of the
following forms:

|GS〉a = Aa

[
|++〉∏

j

|0+j 〉
]
+ Ba

[
|−−〉∏

j

|0−j 〉
]

, (14)

|GS〉b = Ab

[
|+−〉∏

j

|0+j 〉
]
+ Bb

[
|−+〉∏

j

|0−j 〉
]

, (15)

where |0±j 〉 = D(β±
j )|0〉 [8]; |0〉 stands for the GS of the quantum oscillator bath,

D(β j) = exp{β j(â†
j − âj)} (β j real) are the bosonic displacement operators, and

Aa/b = − (1 + Ra/b)Ωa/b − ηa/b

Na/b
, Ba/b =

γ′
a/b

Na/b
, (16)

Ra/b =
2αa/bωc

χa/b + ωc
, χa/b =

√
(γ′

a/b)
2 + Ω2

a/b, (17)

ηa/b =
√
(γ′

a/b)
2 + Ω2

a/b(1 + Ra/b)2, (18)

γ′
a/b = γa/b

(
χa/b

χa/b + ωc

)αa/b

exp{αa/bωc/(χa/b + ωc)}, (19)

with Na/b being the normalization factors.
We underline that Equation (19), through the definition of χa/b in Equation (17), is self-

consistent. However, such a self-consistency is solved by considering the Ohmic spectral
density as well as the scaling limit. Indeed, as shown in Ref. [8], under such conditions the
equation for γ′

b/a can be cast as follows:

γ′
a/b =

(
γa/beαa/b

ω
αa/b
c

)1/1−αa/b

, Ωa/b ≪ Ta/b
K , (20)

γ′
a/b = γa/b

(
Ωa/b

ωc

)αa/b

, Ωa/b ≫ Ta/b
K , (21)

where Ta/b
K = γa/b(γa/b/D)αa/b/1−αa/b is the Kondo energy which scales the energies of the

system, with D being a cutoff introduced to regularize the integral for the ground-state
energy [7,8]. We underline that, in our case, the scaling Kondo energy strictly depends on
the spin–spin interaction strength.

The related energies can be cast as follows:

λa/b
0 =

1

2

(
αa/bωc(Ω2

a/b − χa/bωc)

χa/b(χa/b + ωc)
− ηa/b

)
. (22)

Therefore, the spectrum of the TISBM is constituted by two sets of eigenvalues, each
of which is the spectrum of the related effective SISBM.

Since the latter does not present level crossing, by studying the difference Λ ≡ λa
0 − λb

0,
the subspace where the GS of the TSBS is placed can be deduced. In Figure 2a the depen-
dence of Λ on α = αa = αb/k for different values of the parameter k ≡ αb/αa is shown.
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The α-dependent straight lines emerge by considering the expression of Λ in the limits
Ωa/b → 0 and γa/b ≪ ωc, which becomes

Λ ≈ (k − 1)ωcα + [γ′
b(α)− γ′

a(α)]

2
. (23)
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Figure 2. Dependence of Λ = λa
0 − λb

0 on α = αa = αb/k for: (a) γx = 2γy = 10−2ωc and Ω1 = 2Ω2

= 10−7ωc; (b) γx = 2γy = 10−3ωc and Ω1 = 2Ω2 = 10−9ωc; (c) γx = 2γy = 10−3ωc and Ω1 = 2Ω2

= 10−2ωc; with k = 0 (solid red line), k = 0.25 (dashed green line), k = 0.5 (dotted blue line), k = 0.75

(dot-dashed cyan line). The horizontal black line represents Λ = 0.

The presence of a QPT at αc ∈ [0.01, 0.05] is clearly visible, as well as the dependence
of the critical point (αc) on k. The GS of the TSBS is then placed in the b (a) space for α < αc

(α > αc). The 2D-plot in Figure 3 shows the two different phases as a function of α and k.
The white stripe in the figure corresponds to the critical points, i.e., those points where the
level crossing occurs.

Figure 3. Dependence of Λ = λa
0 − λb

0 on α = αa = αb/k and k for γx = 2γy = 10−2ωc and Ω1 = 2Ω2

= 10−7ωc. The white strip identifies the critical points where the level crossing occurs. As explicitly

shown in the figure, the red (blue) phase corresponds to the GS |GS〉a (|GS〉b).

The critical value αc, for which such a QPT occurs, is sensitive to the Hamiltonian
parameters, as shown in Figure 2b, where αc ∈ [0.001, 0.005]. This circumstance can be
traced back to the different value taken on in the two cases by the intercept of the straight
lines in Equation (23), which is (γb − γa)/2 = γy, with the slope remaining unchanged. In
the isotropic case γx = γy (γa = 0), the QPT is still present since the intercept is γb/2.

In the QPT, the spin-pair moves from the vanishing (b) to the non-vanishing (a) magne-
tization subspace. In this way, the total magnetization plays the role of the order parameter.
It jumps from zero to a constant value, which can be derived based on the result obtained
for the SISBM, namely [7,8]:

〈Σ̂z〉 = −Cz(α)
Ωa

Ta
K

, Ωa ≪ Ta
K, (24)

Cz(α) =
4e

β
2(1−α)

√
π

Γ[1 + 1/(2 − 2α)]

Γ[1 + α/(2 − 2α)]
, (25)
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β = α ln(α) + (1 − α) ln(1 − α). (26)

The transition can then be classified as a first-order QPT [12].
When Ω1, Ω2 ≫ γx, γy as in Figure 2c, no QPT occurs: the GS of the TSBS is |GS〉a

and the net magnetization expression is equal to Equations (24)–(26). This is due to the fact
that in this case, Λ can be approximated as in Equation (23), but this time, the intercept
takes on the negative value −Ω2. For homogeneous magnetic fields, Ω1 = Ω2 (Ωb = 0),
the QPT is still absent since the intercept reads −Ωa/2.

It is worth pointing out that first-order QPTs can occur, in general, in the presence
or not of the thermodynamic limit [12]. Within the quantum Rabi model, it is indeed
possible to distinguish between fully quantum first-order QPTs that occur at finite frequency
ratio(s) and first-order QPTs occurring only for vanishing frequencies for the bosonic field
(thermodynamic limit) [79–83]. In these cited works, it is shown that the physical system
exhibits physical features related to the ground state remarkably different in the two
regimes [79–83].

Now, we discuss the existence of another critical point for α = 1, in the limit
Ω1, Ω2 → 0. For the SISBM in the Ohmic case, indeed, by mapping the model onto the
anisotropic Kondo model with bosonization techniques, it has been proved that the K-T
transition is present at α = 1 (in the scaling limit and for vanishing z-magnetic field) [3].
This critical value of α separates a localized phase at α > 1 (the spin is in |+〉 or |−〉), charac-
terized by a renormalized vanishing tunnel splitting, from a delocalized phase at α < 1 with
an effective non-vanishing tunnel energy [3]. Therefore, based on our approach, we can
claim that at α = 1 the TSBS undergoes a quantum phase transition of the K-T type, with a
consequent localization of the two spins in the state |++〉 or |−−〉 (the fictitious spin-1/2 a
localizes in |+〉a or |−〉a). In our case, the tunneling parameter, which renormalizes to 0 for
α > 1, causing the localization phenomenon, consists of the spin–spin coupling.

We point out that with respect to the previous works [37,39,45], we obtain a different
critical value of α for which we observe the occurrence of QPTs in the TISBM, e.g., the
K-T transition. However, it must be remembered that our TISBM is different from those
analyzed to date: the absence of an external actual transverse field applied to the spin-pair
is crucial and causes a remarkable difference. The fictitious transverse field that arises in
the two effective Hamiltonians governing the two subdynamics of our system is due to
the spin–spin coupling, and it is essential for the physical effects discussed here. For this
reason, we talk about spin–spin coupling-based QPTs, a phenomenon that is conceptually
different from standard QPTs induced by external parameters. In the other works, instead,
the physical effects are mainly based on the application of an actual external magnetic
field. Due to such a fundamental aspect, the dynamics of our system turn out to be
completely different, as well as the results arising from our analysis. The model studied
to date [37,39,45] cannot be reduced to that analyzed in our work. Furthermore, if we
reduce our model to the one already studied (with a vanishing actual transverse field), we
should put the transverse spin–spin coupling equal to zero (γx = γy = 0). However, it
is exactly such a coupling that causes all the intriguing effects highlighted above. Thus,
our model is not a particular case of the standard TISBM, and, consequently, our results
cannot be obtained by simply considering special conditions on the standard two-spin/bath
Hamiltonian [37,39,45]. This circumstance makes our conclusions not comparable with
the other ones present in the literature [37,39,45]. Finally, it is worth underlining that the
interesting aspects of the present model are both the possibility of rigorously deriving
the existence of different classical regimes and quantum phase transitions and the fact
that both classical and quantum effects rely on the presence of a non-vanishing transverse
spin–spin interaction.

5. Conclusions

The present work reports on nontrivial dynamical effects emerging in a newly pro-
posed two-spin/bath model. Such effects are related to the interplay between the spin–spin
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coupling and the spin–bath coupling. Until now, the two-spin/bath models considered in
the literature [37,39,45] have presented physical effects stemming from the application of
external controllable (magnetic) fields, considering only the simplest spin–spin coupling.
In our case, instead, the highlighted physical effects are related to the concomitant presence
of a nontrivial spin–spin coupling (an anisotropic diagonal dipole interaction or anisotropic
Heisenberg interaction) and the standard spin–boson coupling. It means that the physical
properties brought to light in our paper depend only on the internal parameters of the
system and are then related to the intrinsic nature of a real two-spin/bath system.

The strength and the novelty of our work are grounded in the fact that we have
demonstrated that the existing mathematical results valid for the single-qubit spin–boson
model (SISBM) can be used in the case of a nontrivial two-qubit spin–boson model (TISBM)
to obtain new physical results for the system under scrutiny. The new model proposed here
is characterized by an experimentally relevant anisotropic Heisenberg interaction between
the two qubits, which supports the occurrence of remarkable dynamic manifestations of
entanglement in actual physical qubit systems [55–66].

The new physical results established for our TISBM can be summarized as follows:
(1) the mathematical expression for the SISBM magnetization is used to derive the TISBM
one; (2) the mathematical expressions of the ground state and its energy for the SISBM
are the basis to obtain the ground and the first-excited state for the TISBM, which allow
us to unravel level crossings and related QPTs; (3) the existence of critical points at non-
vanishing temperatures for the SISBM leads us to clearly show the presence of two physical
dynamical regimes of the TISBM, which are separated by a critical temperature that, in our
case, depends on the spin–spin coupling. This latter aspect transparently discloses the aim
of the present work: to bring to light intriguing physical results for a new integrable system
smartly exploiting some previous mathematical knowledge. We emphasize that all this is
possible only thanks to our analysis and approach, which enables the decomposition of the
TISBM dynamics into two independent SISBM dynamics. This fact is another significant
result in itself, as it serves as a platform for the whole conceptual construction reported in
the manuscript.

We further underline that we have introduced the new concept of spin–spin coupling-
based QPTs, which are different from the standard QPTs that are induced by external
parameters. In our case, indeed, the parameters playing a role in the QPT are internal
physical quantities characterizing the system (the spin mode and the spin–spin couplings).
This fact is a crucial point since it means that, depending on the chemical/physical features
of a system, the latter can exhibit one phase rather than another. The possible presence of
the longitudinal magnetic field allows the consideration of how the physical properties of
the TISBM system are modified when external operations (for example, measurements) are
carried out.

We highlight that physical systems exist where the internal parameters can be in-
directly determined. In dimeric compounds (ensembles of binuclear units), it has been
demonstrated that it is possible to enhance the interdimeric interactions with respect to
the intradimeric ones [54]. In this case, the single dimeric unit can be described as two
spins immersed in a phononic environment constituted by all the other dimeric molecules.
Our model (in this case, the modes are phononic excitations) could, therefore, be useful for
investigating some of the physical features of such systems.

What deserves to be remarked on is also the fact that our rigorous and exact approach
allows the obtaining of analytical results, and, thanks to its generality, it can be applied to
other different scenarios and/or other models, opening a wide range of further investiga-
tions to better characterize such kind of systems useful for the future quantum technologies.
Such an approach is based on the identification of symmetry-induced and symmetry-
protected subspaces, thanks to which the dynamical problem can be broken down into
relatively easier and treatable (sub)problems, as it happens in different scenarios [84–86].

By considering other parameter-space regions, as well as the sub-Ohmic and super-
Ohmic regimes, the same approach can lead to a plethora of new results based on those
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obtained for the SISBM. For example, future works could take into account (I) other results
obtained for the SISBM through accurate numerical approaches like HEOM (hierarchical
equations of motion) and QUAPI (quasi-adiabatic propagator path integral) methods [11];
(II) different ansatze to the approximate the single-spin–boson ground state, for example,
based on superposition of coherent states of the bath [10]. As far as this last point is
concerned, we do emphasize that adopting the new ansatze can quantitatively refine the
results achieved in this manuscript without significantly countering the existence of QPTs,
which is our substantial result. Recently [87], indeed, the comparison between the ansatz
we have used here (introduced in Ref. [8]) and the new one [37,87], shows only small
deviations in the estimation of the critical parameter(s) (∼0.5% of discrepancy). On this
basis, we believe it is reasonable that a superposition of coherent states used as a variational
trial of the bath state in the GS of the system would improve the quantitative estimate of
the ground-state energy (and its related properties) without conflicting with the existence
of the QPT in the physical system under scrutiny.

In future works, possible departures from the integrable scenario can also be con-
sidered, which could consist of considering a transverse (along the x direction) external
magnetic field and/or a transversal spin-mode coupling. These terms break the symmetry
of the Hamiltonian considered in this work, and by considering perturbative approaches,
they can create a tunneling between the two subspaces. In this case, it is, therefore, possible
to hypothesize that the level crossing would become an avoided crossing with the possible
creation of topological excitations in the case of Kibble–Zurek mechanisms [88,89] (that is,
the time variation of the control parameter).

Finally, our key idea can be exploited in other formal frameworks too, easily allowing
the comparison between different approaches devoted to the dynamical description of
open quantum systems: (i) the non-Hermitian formalism [90–96], (ii) the standard Lindblad
theory [97,98], and (iii) the partial Wigner transform [99–102]. The former, in particular, has
been proven to be a mathematical framework suitable for the study and the description
of photonic structures, like engineered photonic waveguides, whose possible applications
are mainly based on the emergence of quantum-optical analogies (entanglement, Zeno
dynamics, Bloch oscillations, etc.) [103–106] (and references therein).
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Appendix A. The Model and Its Symmetries

The following model (in units of ℏ)

H =
Ω1

2
σ̂z

1 +
Ω2

2
σ̂z

2 −
γx

2
σ̂x

1 σ̂x
2 − γy

2
σ̂

y
1 σ̂

y
2 − γzσ̂z

1 σ̂z
2+

N

∑
j=1

ωj â
†
j âj +

2

∑
i=1

N

∑
j=1

cij

2

(
â†

j + âj

)
σ̂z

k ,
(A1)

represents two interacting spin-1/2’s acted upon by local fields along the z direction and
coupled to a common bosonic reservoir. σ̂x

i , σ̂
y
i and σ̂z

i (i = 1, 2) are the Pauli matrices.
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The Hamiltonian turns out to be invariant under the following transformation [71]

σ̂x
i → −σ̂x

i , σ̂
y
i → −σ̂

y
i , σ̂z

i → σ̂z
i , i = 1, 2, (A2)

being nothing but a rotation of π around the ẑ axis of each spin. Therefore, the following
unitary operator

eiπσ̂z
1 /2 ⊗ eiπσ̂z

2 /2 = −σ̂z
1 σ̂z

2 = cos
(π

2
Σ̂z

)
, (A3)

with Σ̂z ≡ σ̂z
1 + σz

2 , accomplishes the transformation (A2), and, by construction, it is a
constant of motion.

The existence of this constant of motion gives rise to two orthogonal, dynamically
invariant, and infinite-dimensional Hilbert subspaces, say Ha and Hb, related to the two
eigenvalues ±1 of σ̂z

1 σ̂z
2 , respectively, and then H = Ha ⊕Hb (H being the total Hilbert

space). The two subdynamics living in the two orthogonal subspaces can be extracted by
considering that the operator σ̂z

1 σ̂z
2 has the same spectrum of 1̂1 ⊗ σ̂z

2 (1̂j being the identity
operator for the j-th spin), i.e., ±1 with the same two-fold degeneracy. Therefore, there
exists in H a unitary time-independent operator U transforming σ̂z

1 σ̂z
2 in 1̂1 ⊗ σ̂z

2 . The
unitary and Hermitian operator

U =
1

2
[1 + σ̂z

1 + σ̂x
2 − σ̂z

1 σ̂x
2 ] (A4)

accomplishes the desired transformation:

U
†σ̂z

1 σ̂z
2U = Uσ̂z

1 σ̂z
2U = 1̂1 ⊗ σ̂z

2 , (A5)

which in turn allows the transformation of H into H̃ = U† HU, obtaining

H̃ =
Ω1

2
σ̂z

1 +
Ω2

2
σ̂z

1 σ̂z
2 −

γx

2
σ̂x

1 +
γy

2
σ̂x

1 σ̂z
2 − γzσ̂z

2+

N

∑
j=1

ωj â
†
j âj +

N

∑
j=1

c1j

2

(
â†

j + âj

)
σ̂z

1 +
N

∑
j=1

c2j

2

(
â†

j + âj

)
σ̂z

1 σ̂z
2 .

(A6)

Since σ̂z
2 is a constant of motion of H̃, it can be treated as a parameter and, consequently,

H̃ can be cast as:

H̃σz
2
=

Ω1 + Ω2σz
2

2
σ̂z

1 −
γx − γyσz

2

2
σ̂x

1 − γzσz
2 1̂+

N

∑
j=1

ωj â
†
j âj +

N

∑
j=1

c1j + c2jσ
z
2

2

(
â†

j + âj

)
σ̂z

1 ,
(A7)

with 1̂ = 1̂1 ⊗ 1̂2. This implies the existence of two (σz
2 = ±1) subdynamics related to

the two dynamically invariant Hilbert subspaces. The two-spin systems, thus, in each
dynamically invariant subspace, behave effectively as a two-level system. We may write
thus two effective Hamiltonians, each one describing a fictitious two-level system coupled
to a bath. In particular, from Equation (A7), when σ̂z

2 = 1 we immediately achieve

H̃a =
Ωa

2
σ̂z

a −
γa

2
σ̂x

a − γz1̂a+

N

∑
j=1

ωj â
†
j âj +

N

∑
j=1

ca
j

2

(
â†

j + âj

)
σ̂z

a ,
(A8)
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while for σ̂z
2 = −1 we obtain

H̃b =
Ωb

2
σ̂z

b −
γb

2
σ̂x

b − γz1̂b+

N

∑
j=1

ωj â
†
j âj +

N

∑
j=1

cb
j

2

(
â†

j + âj

)
σ̂z

b ,
(A9)

with
Ωa/b = Ω1 ± Ω2,

γa/b = γx ∓ γy,

ca/b
j = c1j ± c2j.

(A10)

The two Hamiltonians must be intended as effective Hamiltonians governing the
dynamics of the two-spin/bath system within each dynamically invariant Hilbert subspace,
Ha and Hb, respectively. The transformed Hamiltonian can be then written as the direct
sum H̃ = H̃a ⊕ H̃b. Thus, the dynamics of the two-spin/bath system in each subspace are
equivalent to that of a fictitious single-spin-1/2 immersed in an effective field and coupled
to a reservoir through effective coupling constants.

Before concluding, we do remark that the possibility of solving the original problem
related to the TISBM is related to two aspects: (1) the decomposition of the total Hilbert
space into two invariant subspaces; (2) the possibility of exploiting previous results obtained
for the SISBM since the two effective Hamiltonians (H̃a and H̃b), governing the dynamics
in the two invariant subspaces, can be mapped into two effective SISBMs where the role of
the transverse field is played by the spin–spin coupling.

Appendix B. Observables’ Mapping

Based on the mapping used to write the two effective two-level Hamiltonians H̃a and
H̃b, namely

|±±〉 ↔ |±〉a, |±∓〉 ↔ |±〉b, (A11)

it is easy to derive the expressions of the two-spin observables in terms of the physical
quantities related to the two fictitious TLSs.

First, it is important to point out that the value of Σ̂z = σ̂z
1 + σ̂z

2 is constantly equal to
zero in the subspace Hb. Thus, its time evolution depends only on the dynamics within the
subspace Ha, and it is easy to verify the following relation

〈Σ̂z〉 = 2〈σ̂z
a 〉. (A12)

Moreover, following the same reasoning, it is possible to convince oneself that

〈σ̂z
1〉 = 〈σ̂z

a 〉+ 〈σ̂z
b 〉, (A13)

〈σ̂z
2〉 = 〈σ̂z

a 〉 − 〈σ̂z
b 〉, (A14)

〈σ̂x
1 σ̂x

2 〉 = 〈σ̂x
a 〉+ 〈σ̂x

b 〉, (A15)

〈σ̂y
1 σ̂

y
2 〉 = −〈σ̂x

a 〉+ 〈σ̂x
b 〉, (A16)

〈σ̂x
1 σ̂

y
2 〉 = 〈σ̂y

a 〉 − 〈σ̂y
b 〉, (A17)

〈σ̂y
1 σ̂x

2 〉 = 〈σ̂y
a 〉+ 〈σ̂y

b 〉, (A18)
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〈σ̂z
1 σ̂z

2〉 = 〈1̂a〉 − 〈1̂b〉. (A19)

Since the spin–boson model is invariant under the transformation σ̂y → −σ̂y, then
〈σ̂y〉 = 0. This implies that, for the two-spin-1/2s, 〈σ̂x

1 σ̂
y
2 〉 = 〈σ̂y

1 σ̂x
2 〉 = 0. Therefore,

by studying the time evolution of the dynamical variables of the two fictitious TLSs,
information about both the dynamical variables and the correlations of the two real spin-
1/2s can be easily obtained. Finally, we underline that, as seen before, the value of the
operator σ̂z

1 σ̂z
1 is constant within each subspace and equal to +1 and −1 for the subspace

Ha and Hb, respectively. Then, its value would vanish if initial conditions, consisting of
equally weighted superpositions of states belonging to the two subspaces, were considered,
e.g., (|++〉+ |+−〉)/

√
2.

Appendix C. Ground State of the Single-Impurity Spin–Boson Model

The ansatz proposed in Ref. [8] provides, in the Ohmic case and in the scaling limit
(that is, in our case, for γa/b ≪ ωc), a good approximation of both the ground state and its
related energy for the single-impurity spin–boson model:

HSB =
ǫ

2
σ̂z − ∆

2
σ̂x +

N

∑
k=1

ℏωk â†
k âk +

N

∑
k=1

gk

(
â†

k + âk

)
σ̂z, (A20)

with gks assumed real. The ground state |GS〉 and its energy λ0 can be written as

|GS〉 =− R + ǫ − η

Γ

[
|+〉∏

k

D(αk,+)|0〉
]
+

+
∆r

Γ

[
|−〉∏

k

D(αk,−)|0〉
]

,

(A21)

λ0 =
1

2

(
αωc(ǫ2 − χωc)

χ(χ + ωc)
− η

)
, (A22)

χ =
√

∆2
r + ǫ2, (A23)

∆r = ∆

(
χ

χ + ωc

)α

exp{αωc/(χ + ωc)}, (A24)

R =
2αωcǫ

χ + ωc
, (A25)

η =
√

∆2
r + ǫ2(1 + R/ǫ)2, (A26)

where |0〉 stands for the ground state of the quantum oscillator bath and
D(αk) = exp{αk(â†

k − âk)} (with αk real numbers) are the bosonic displacement opera-
tors. The self-consistent equation for ∆r, in the scaling limit χ/ωc → 0, reads

∆r =

(
∆eα

ωα
c

)1/1−α

, ǫ ≪ TK, (A27)

∆r = ∆

(
ǫ

ωc

)α

, ǫ ≫ TK, (A28)

where TK = ∆(∆/D)α/1−α is the Kondo energy which scales the energies of the system,
with D being a cutoff introduced to regularize the integral for the ground-state energy [7,8].
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