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Abstract Focusing on the numerical aspects and accuracy
we study a class of bulk viscosity driven expansion scenar-
ios using the relativistic Navier–Stokes and truncated Israel–
Stewart form of the equations of relativistic dissipative fluids
in 1 + 1 dimensions. The numerical calculations of conser-
vation and transport equations are performed using the nu-
merical framework of flux corrected transport. We show that
the results of the Israel–Stewart causal fluid dynamics are
numerically much more stable and smoother than the results
of the standard relativistic Navier–Stokes equations.

PACS 25.75.-q · 24.10.Nz

1 Introduction

The recent discovery of near perfect fluidity of hot QCD
matter at the Relativistic Heavy Ion Collider (RHIC) [1]
brought about a lot of attention for and interest in model-
ing the collective phenomena in relativistic heavy-ion col-
lisions using the relativistic dissipative fluid dynamical ap-
proach. In contrast to perfect fluid dynamical models, dis-
sipative fluids provide a more accurate and physically more
plausible description incorporating first- and second-order
corrections compared to perfect fluids.

These higher-order corrections are irreversible; thermal
conductivity and dissipation are related to temperature gra-
dients and inhomogeneities of the flow field. A linear rela-
tion between the two establishes transport equations, where
the parameters entering these equations are the so-called
transport coefficients: for thermal conductivity λ, shear vis-
cosity η, and bulk viscosity ζ , also referred to as second
viscosity or volume viscosity [2–6].
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Recently many studies have specifically investigated the
fluid dynamical description of matter created at RHIC in-
cluding shear viscosity; see [7–17] and references therein.
Some of these calculations [10, 13] made use of the first-
order theory by Eckart [2], and Landau and Lifshitz [3], but
the main focus was on the second-order causal theory of dis-
sipative fluid dynamics by Israel and Stewart [4–6], and the
theory by Öttinger and Grmela [18].

These calculations particularly examined the effect of a
small shear viscosity motivated by the conjectured lower
bound from the AdS/CFT correspondence [19–21]. It was
found only recently that, contrary to perturbative QCD esti-
mates [22], lattice QCD reveals a large increase of the bulk
viscosity near the critical temperature [23–25]. This numer-
ical evidence motivates studies of the evolution of matter
with large viscosity. It has also been suggested that a large
bulk viscosity near Tc may entirely change the standard pic-
ture of adiabatic hadronization employed so far in hydrody-
namical models [26, 60].

In this paper we address the phenomena related to vis-
cous evolution of matter in 1 + 1 dimensional systems
neglecting the contribution of heat conduction. We focus
on the numerical implementation of both the first-order
and second-order approaches and investigate specific test
cases to clarify numerical aspects and accuracy of the so-
lutions. This represents an important first step before multi-
dimensional models can be constructed and applied. We also
show how the relaxation equations for the dissipative cor-
rections in the second-order theory can be solved efficiently
and accurately also via the flux corrected transport algorithm
by writing them in the form of continuity equations with a
source.

The paper is organized as follows. First, we briefly re-
capitulate and formulate the equations of dissipative fluid
dynamics and the numerical method which will be used to
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solve the respective equations. Afterwards we present and
discuss the results in several cases. To our knowledge ma-
jor parts of this work, including the specific comparisons
between the first-order and second-order theories, are pre-
sented and discussed in detail for the first time.

2 The equations of dissipative fluid dynamics

We adopt the standard notation for four-vectors and tensors
and use the natural units, � = c = k = 1, throughout this pa-
per. The upper Greek indices denote contravariant while the
lower indices denote covariant objects. The Roman indices
or bold faced letters denote three-vectors.

In the Eckart frame, the conserved charge four-current
is Nμ = nuμ, where n is the local rest frame conserved
charge density, uμ = (γ, γ v) is the four-flow of matter nor-
malized to one, uμuμ = 1, and the relativistic gamma is
γ = 1/

√
1 − v2. The dissipative energy–momentum ten-

sor is T μν = (e + p + Π)uμuν − (p + Π)gμν + πμν ,
where e = uμT μνuν is the local rest frame energy den-
sity, the orthogonal projection of the energy–momentum
tensor, p(e,n) + Π = − 1

3	μνT
μν denotes the local equi-

librium pressure plus the bulk pressure and gμν ≡ gμν =
diag(1,−1,−1,−1) is the metric of the flat space-time. The
stress tensor, πμν = [ 1

2 (	
μ
α	ν

β +	ν
α	

μ
β )− 1

3	μν	αβ ]T αβ ,
is the symmetric, traceless quantity πμνgμν = 0, and we
write the part of the energy-momentum tensor orthogonal
to the flow velocity πμνuν = 0. The local conservation of
charge, energy, and momentum requires that

∂μNμ = 0, (2.1)

∂μT μν = 0, (2.2)

and the second law of thermodynamics demands that the
four-divergence of the entropy four-current is non-decreas-
ing and positive,

∂μSμ ≥ 0. (2.3)

Here ∂μ = (∂t , ∂i) denotes the four-divergence, where ∂t ≡
∂/∂t is the time derivative and ∂i ≡ ∂/∂xi = (∂/∂x, ∂/∂y,

∂/∂z) is the divergence operator.
The explicit form of the conservation equations for

charge, energy, and momentum are

∂tN
0 + ∂iN

i = 0, (2.4)

∂tT
00 + ∂iT

0i = 0, (2.5)

∂tT
0j + ∂iT

ij = 0, (2.6)

where we defined the conserved charge density N0, the
charge flux Ni , the total energy density T 00, the energy
flux density T 0i , the momentum flux density T i0 and the

momentum flux density tensor T ij . These laboratory frame
quantities can be expressed in terms of the local rest frame
quantities and velocity by

N0 ≡ nγ, (2.7)

Ni ≡ nγ vi, (2.8)

T 00 ≡ (e + p + Π)γ 2 − (p + Π) + π00, (2.9)

T 0i ≡ (e + p + Π)γ 2vi + π0i ,

= viT
00 + vi(p + Π) − viπ

00 + π0i , (2.10)

T ij ≡ (e + p + Π)γ 2vivj − (p + Π)gij + πij ,

= viT
0j − (p + Π)gij − viπ

0j + πij . (2.11)

The relation between the local rest frame and laboratory
frame quantities can be calculated using the above equa-
tions; hence

n = N0
√

1 − v2, (2.12)

e = (
T 00 − π00) − vi

(
T 0i − π0i

)
, (2.13)

where the absolute value of the velocity is v ≡ |v|. These lo-
cal rest frame quantities are needed to calculate the pressure,
p(e,n), from the equation of state (EOS).

The fluid velocity and relativistic gamma can be calcu-
lated from (2.10), therefore

vi = (T 0i − π0i )

(T 00 − π00) + P(e,n,Π)
, (2.14)

γ = 1√
1 − v2

, (2.15)

where P(e,n,Π) = p(e,n) + Π gives the correction to the
equilibrium pressure absorbed in the trace of the energy-
momentum tensor.

2.1 1 + 1 dimensional expansion

For simple 1 + 1 dimensional systems in 1 + 3 dimensional
space-time, where uμ = γ (1,0,0, vz), the equations of dis-
sipative fluid dynamics reduce to a similar form as in the
case of perfect fluids. Let us denote the pressure in the lon-
gitudinal direction by Pz ≡ p + Π + π = P(e,n,Π) + π ,
where π = πzz/γ 2 is the local rest frame value of the
stress. By construction, the tracelessness property implies
that πxx = πyy = −π/2 and π00 = v2

z γ
2π . The orthog-

onality relations will further reduce the number of un-
knowns; note that π0x = π0y = 0, π0z ≡ vzπ

zz = vzγ
2π ,

and all non-diagonal components of the stress tensor vanish,
π

ij
i �=j = 0, thus the only component of the shear tensor we

have to propagate is π [27].
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The conservation equations follow from (2.4, 2.5, 2.6),

∂tN
0 + ∂z

(
vzN

0) = 0, (2.16)

∂tT
00 + ∂z

(
vzT

00) = −∂z(vzPz), (2.17)

∂tT
0z + ∂z

(
vzT

0z
) = −∂zPz, (2.18)

where the laboratory frame quantities are

N0 = nγ, (2.19)

T 00 = (e + Pz)γ
2 − Pz, (2.20)

T 0z = (e + Pz)γ
2vz. (2.21)

The local rest frame variables expressed through the labo-
ratory frame quantities, the velocity and relativistic gamma
are

n = N0
√

1 − v2
z , (2.22)

e = T 00 − vzT
0z, (2.23)

vz = T 0z

T 00 + Pz

, (2.24)

γ = 1
√

1 − v2
z

, (2.25)

while the local rest frame effective pressure is

Pz = p(e,n) + Π + π. (2.26)

Here the equilibrium pressure is given by the equation of
state, p = c2

s e, where cs is the local speed of sound. The
equations and quantities for a perfect fluid are obtained in
the limit of vanishing dissipation, corresponding to Pz →
p(e,n), while the form of conservation equations and the
expressions relating the laboratory frame quantities to the
rest frame quantities and the calculation of the velocity are
formally the same as for perfect fluids.

The last two variables that remain to be explicitly defined
are the bulk pressure and the shear. These can be calculated
from (2.1, 2.2, 2.3) using different approaches. To study the
various methods is out of the scope of the current manu-
script; however, these theories and recent new phenomeno-
logical developments aimed to extend the theory of dissi-
pative fluids shed light on the open questions related to the
ambiguities on this matter; see for example [28–38] and ref-
erences therein.

In the first-order theories of Eckart [2] or Landau and Lif-
shitz [3], i.e., the relativistic Navier–Stokes equations, the
entropy four-current is decomposed as Sμ = suμ + βqμ,
where qμ is the heat flux, s is the local rest frame entropy
density and β = 1/T is the inverse temperature. These last
two scalar quantities satisfy the fundamental relation of ther-
modynamics, s = β(e + p), for matter with no conserved

charge. Hence, in first-order theories the only way to satisfy
the second law of thermodynamics, using a linear relation-
ship between the thermodynamic force and flux, is to choose

πNS ≡ π = −4

3
ηθ, (2.27)

ΠNS ≡ Π = −ζθ, (2.28)

where η and ζ are positive coefficients of shear and bulk vis-
cosity respectively, while θ ≡ ∂μuμ is the expansion scalar.
The first-order theories (contrary to second-order theories)
are known to have intrinsic problems attributed to the imme-
diate appearance and disappearance of the thermodynamic
flux once the thermodynamic force is turned on or off. As
shown by Hiscock and Lindblom [39–42] the linearized ver-
sion of these equations propagate perturbations acausally,
and even though initially these might be weak signals they
may grow unbounded bringing the system out of stable equi-
librium.

To remedy some of these problems the second-order the-
ory of Israel and Stewart was constructed [4–6], similarly
to the non-relativistic theory by Müller [43]. This was built
around the assumption that the entropy four-current con-
tains second-order corrections in dissipation due to viscosity
(here we disregard heat conductivity and cross couplings)
such that Sμ = suμ + βqμ − (β/2)(β0Π

2 + 3β2π
2/2)uμ,

where β0 and β2 are thermodynamic coefficients related to
the relaxation times. Applying the law of positive entropy
production and some algebra leads to the transport equations
for the shear and bulk pressure,

uμ∂μπ = 1

τπ

(πNS − π), (2.29)

uμ∂μΠ = 1

τΠ

(ΠNS − Π), (2.30)

where the relaxation time of bulk viscosity and shear are
τπ = 2ηβ2 and τΠ = ζβ0. The above equations are referred
as the truncated Israel–Stewart equations, since terms in-
volving the divergence of the flow field and thermodynamic
coefficients have been neglected compared to the equations
by Israel and Stewart [11]. However, the current form of the
transport equations already captures the essential features of
relaxation phenomena which make the theory causal and sta-
ble.

Another crucial difference between first- and second-
order theories is in the mathematical structure of the equa-
tions. In first-order theories the viscous corrections appear
linearly proportional to the divergence of the flow field,
therefore they are more sensitive to fluctuations and the in-
homogeneities in the flow field; see Sect. 4. In second-order
theory not only the coefficients of viscosity but also the ther-
modynamic coefficients need to be specified. For example
the latter parameters are known for a relativistic Boltzmann
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gas of massive particles [4–6], β0 = 216(mβ)−4/p, lead-
ing to a relaxation time of τΠ = 216(mβ)−4(ζ/p), which is
divergent for a fluid of massless particles, while the bulk
viscosity coefficient is zero in that limit. The thermody-
namic coefficient for the shear viscosity within the same
substance is β2 = 3/(4p), leading to the relaxation time of,
τπ = (3/2)(η/p).

In passing we point out a few important facts regarding
the bulk viscosity and its source. For a long time in the clas-
sical non-relativistic Navier–Stokes theory the purpose of
bulk viscosity was controversial [44]. Even Eckart in his pio-
neering work [2] was concerned with fluids without bulk vis-
cosity. Israel was the first to show that the bulk viscosity of
relativistic matter may not be unimportant [45]. This turned
the attention mainly in cosmology, rendering bulk viscosity
as the only possible form of dissipative phenomena; see for
example [46, 47] and references therein for a thorough intro-
duction. The bulk viscous effects are important in mixtures
when the difference in properties between the components
becomes substantial. This might be due to the difference in
cooling rates within the same type of substance or in a mix-
ture between massive and effectively massless particles dur-
ing a phase transition [48] (for other possible sources for
bulk viscosity, see [49]). Therefore in these situations bulk
viscosity is used to describe a mixture effectively as a sin-
gle fluid with a non-vanishing bulk viscosity coefficient and
relaxation time.

It is also important to phenomenologically understand the
relation between viscosity and relaxation time [3]. For ex-
ample, bulk or volume viscosity appears when the system
undergoes an isotropic expansion or contraction. If this hap-
pens at a relatively fast rate such that the system is unable
to follow the change in volume and restore equilibrium in
a short time, then this means that the relaxation time of the
viscous pressure is long. On the opposite, if the system equi-
librates almost immediately, then the corresponding relax-
ation time must be short. Hence it is also intuitive that large
deviations from equilibrium can only be the consequence of
a large viscosity, while small departures from equilibrium
result from small viscosity, assuming in both cases that the
expansion rate is considerably small. It is also fundamental
that the relaxation time must be shorter than the inverse of
the expansion rate of the system, τπ,Π � 1/θ ; otherwise the
system will never be able to equilibrate and the fluid dynam-
ical approach is unsuitable.

In case of a relativistic Boltzmann gas, recalling the vis-
cosity coefficients from (2.27, 2.28), we find that the relax-
ation times are

τπ = −dπ

θ

(
πNS

peq

)
, (2.31)

τΠ = −dΠ

θ

(
ΠNS

peq

)
, (2.32)

where dπ = 9/8 and we can only assume, similarly to the re-
laxation time for the shear, that dΠ is a dimensionless pos-
itive number on the order of unity. This also follows from
the fact that both viscosities give birth to a local dissipa-
tive pressure, which for small dissipative corrections relax to
the Navier–Stokes values. In case the dissipative pressure is
comparable to the equilibrium pressure, the relaxation times
become longer than the mean free time between collisions;
thus the fluid dynamical approach may no longer be appro-
priate.

3 The numerical scheme

Here we briefly review the basic principles of the underlying
numerical scheme used in this work. The explicit finite dif-
ference scheme called sharp and smooth transport algorithm
(SHASTA) [50, 51] is a version of the flux corrected trans-
port (FCT) algorithm. Detailed tests, simulations and com-
parisons to semi-analytical solutions have been performed
with this algorithm in various situations; in non-relativistic
and relativistic perfect fluid dynamics and magnetohydro-
dynamics, in the last decades [52–56] achieving confidence
and wide usage.

Before discussing the version of the algorithm in detail,
let us rewrite the conservation equations (2.16, 2.17, 2.18)
and transport equations (2.29, 2.30) in conservation form,
which makes it possible to treat all equations with the same
numerical scheme. Due to similarity in form and effect in
case of 1 + 1 dimensional expansion scenarios, we include
only one type of viscosity and relaxation equation and refer
to it as bulk viscosity in the following. Hence,

∂tR + ∂z(vzR) = 0, (3.1)

∂tE + ∂z(vzE) = −∂z(vzPz), (3.2)

∂tMz + ∂z(vzMz) = −∂zPz, (3.3)

where R = N0, E = T 00, Mz = T 0z, and Pz = p + π or
Pz = p + Π . Introducing a common notation, Φ̃ = γΦ , for
the auxiliary variables, π̃ = γπ and/or Π̃ = γΠ , the relax-
ation equations (2.29, 2.30) can be rewritten1 in a form sim-
ilar to the conservation equations,

∂t Φ̃ + ∂z(vzΦ̃) = 1

τΦ

(ΦNS − Φ) + θΦ, (3.4)

where Φ , ΦNS and τΦ commonly denote the shear pressure
and its relaxation time and/or the bulk viscous pressure and
its relaxation time.

1Another possibility would be to rewrite the relaxation equation as,
∂tΦ + ∂z(vzΦ) = 1

γ τΦ
(ΦNS − Φ) + (∂zvz)Φ .
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The above conservation and transport equations are of
conservation type, written generally as

∂tU + ∂z(vU) = S(t, z), (3.5)

where U = U(t, z) is one of the conserved quantities, v = vz

is the velocity, and S(t, z) is the source term. The discretized
conservative variable defined as an average in cell, j , at
coordinate point, zj , at discrete time level, tn, is denoted
by Un

j . Some of the source terms in our examples contain
differential operations, therefore they are represented as fi-
nite (second-order) central differences, i.e., for spatial deriv-
atives 	Sj = (Sn

j+1 − Sn
j−1)/2	z.

In the SHASTA algorithm the velocity, the local rest
frame variables and source terms, are computed and updated
at half time steps, i.e., in 	t/2 time intervals. This require-
ment ensures second-order accuracy in both space and time.
In contrast, the conservative variables, U , used to advance
the solution from time level n to n + 1, are updated only
once at the end of full time steps. In a given cell, j , this can
be summarized formally as

Un+1/2 ∼ Ũn
(
Un,vn, Sn

)
, (3.6)

Un+1 ∼ Ũn
(
Un,vn+1/2, Sn+1/2). (3.7)

In case of the relaxation equation, the source terms contain
dynamical information on the divergence of the flow field
in both space and time. Second-order accuracy in time can
only be calculated in 	t time intervals (if we use the time-
split method), at time levels, n − 1/2, n,n + 1/2, n + 1, . . . ,
where the time derivatives are 	Sn ∼ (Sn − Sn−1)/	t ,
	Sn+1/2 ∼ (Sn+1/2 − Sn−1/2)/	t , etc. This ensures better
accuracy (however, the difference is rather small) than on
calculating the time derivatives as well as the source terms
at full time steps only, i.e., only between time levels n and
n + 1.

The difference of primary variables in adjacent cells
is denoted by 	j ≡ Un

j+1 − Un
j or later also by 	̃j =

Ũj+1 − Ũj . The explicit SHASTA method [50, 51] at half
step as well as at full step first computes the so-called trans-
ported and diffused quantities,

Ũj = 1

2

(
Q2+	j − Q2−	j−1

)

+ (Q+ − Q−)Un
j + 	t	S, (3.8)

where

Q± = 1/2 ∓ εj

1 ± (εj±1 − εj )
, (3.9)

εj = λv
n+1/2
j , (3.10)

and the Courant number is the ratio of time step to cell
size, λ = 	t/	z. A general requirement for any finite differ-

ence algorithm is to fulfill the so-called Courant–Friedrichs–
Lewy (CLF) criterion, i.e., λ ≤ 1, related to the stability of
hyperbolic equations; otherwise the numerical solution be-
comes unconditionally unstable. Physically this expresses
that matter must be causally propagated at most 	z = 	t

to distance into vacuum. For SHASTA, λ ≤ 1/2, while in
this paper we use a smaller value, λ = 0.4. Here we note
that since the numerical algorithms average the transported
quantities over a cell, part of the matter is acausally prop-
agated over (1 − λ)	z. This is a purely numerical artifact
called prediffusion.

The time-advanced quantities are calculated removing
the numerical diffusion by subtracting the so-called antid-
iffusion fluxes, Ã, from the transported and diffused quanti-
ties such that

Un+1
j = Ũj − Ãj + Ãj−1. (3.11)

Here we have defined the flux corrected antidiffusion flux

Ãj = σj min
[
0,max

(
σj 	̃j+1, |Aj |, σj 	̃j−1

)]
, (3.12)

where the ‘phoenical’ antidiffusion flux2 is

Aj = Aad

8

[
	̃j − 1

8
(	j+1 − 2	j + 	j−1)

]
, (3.13)

σj = sgn(Aj ). (3.14)

The so-called mask, Aad, is introduced to regulate the
amount of antidiffusion [57]. The algorithm tends to pro-
duce small wiggles, due to the fact that in the antidiffusion
step one removes too much diffusion; therefore, adjusting
the mask, one can suppress this artifact leading to a more
stable and smoother solutions. However, the drawback is
that by reducing the antidiffusion we increase the numerical
diffusion causing larger prediffusion and entropy production
even in perfect fluids! This step is unavoidable in numeri-
cal algorithms in which due to discretization the differential
equations are truncated already at leading order, and without
additional but with purely numerical corrections they lead to
unstable solutions. Within the numerical framework this is
called numerical dissipation, or, since it acts similarly to
the physical viscosity, it is also called artificial or numerical
viscosity [58].

In case we want to model physical viscosity one has to
keep in mind that there is already a small numerical viscos-
ity in the algorithm, which has to be estimated (for exam-
ple, by measuring the entropy production in case of a per-
fect fluid) and taken into account. This leads to a total ef-
fective viscosity which is larger than the one we explicitly

2The explicit antidiffusion flux [50, 51], Aj = Aad	̃j /8, leads to
somewhat smoother results.
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include. Obviously, things are not as simple, since the nu-
merical viscosity and numerical diffusion contain linear and
non-linear parts [56], and its effect strongly depends on the
grid size, initial condition and flux limiters we use. There-
fore, it is a question of numerical analysis and extensive test-
ing to reveal the effect of numerical viscosity. Some can be
found in the original or related publications of the numerical
schemes.

It is important to remember that SHASTA is a low im-
plicit viscosity algorithm, and it conserves energy (and mo-
mentum) up to 5 digits, but produces entropy in the case of
a perfect fluid roughly between 0.5% and 5%, depending
on the initial setup, antidiffusion flux, mask coefficient and
physical situation. The lower value was found in the stud-
ies we are going to show in the next section, using a mask
of Aad = 0.8, while the error is less than 0.2% using the
standard value, Aad = 1, after 200 time steps. The large en-
tropy production was found in the case of a 3D grid with
the same proportions, cell size, number of time steps and
reduced mask coefficient in case of 1 + 3 dimensional ex-
pansion into vacuum of an initially constant energy sphere.

To determine the bulk viscous pressure one also has
to calculate the expansion scalar, θ(t, z). One possibility
is to take the standard form, used in this work, using a
second-order accurate central difference formula, θ ≡ ∂tγ +
∂z(vzγ ) = γ 3(vz∂tvz + ∂zvz). The other form can be ex-
pressed from the conservation of energy, uν∂μT μν = 0, or
in case we also have conserved charge, from the continuity
equation, ∂μNμ = 0, leading to θ = −γ (∂t e + vz∂ze)/(e +
p + Π + π) = −γ (∂tn + vz∂zn)/n.

The numerical differentiation of the velocity field intro-
duces obvious numerical problems, which we need to ad-
dress. In particular, finite differences of the velocity field
in adjacent cells, usually fluctuate due to numerical noise.
Since we solve a set of non-linear coupled partial differen-
tial equations, these may become uncontrollable. To make
the numerical expansion rate smoother we found that an
additional five-point stencil smoothing is necessary.3 How-
ever, the maximum number of neighboring cells to include
is restricted by the Courant number; otherwise we acausally
propagate information into the neighboring cells. In our ex-
ample the maximal number of these cells are two to the right
and two to the left, hence the five-point stencil.

In the first- and second-order theories the dissipative
pressure must be smaller than the equilibrium pressure,
|Π | ≤ peq. If the correction to the equilibrium pressure is
small, the system will continue to expand with a lower ef-
fective pressure, but the overall behavior should not change

3In a loose sense this coarse-graining of the expansion rate may be
viewed as providing a “mass” to fluctuations with wavelength on the
order of the grid spacing.

considerably from the perfect fluid limit. However, at dif-
ferent parts of the system the local expansion rate may be-
come very large (for example, in the transition region to vac-
uum) and generate large dissipative corrections. This thresh-
old is given by the equilibrium pressure locally, at least in the
first-order theory. Hence, even though the physical situation
may encounter larger values of the bulk pressure, we choose
to keep this maximum. The upper bound imposed on the
bulk pressure leads to an upper bound for the local expan-
sion rate, θmax = peq/ζ . In other words, the Navier–Stokes
bulk pressure is defined to be ΠNS = −ζθ for θ < θmax and
Πmax

NS = −ζθmax for θ ≥ θmax. In the latter region the total
pressure vanishes and the acceleration therefore stalls.

We keep the above convention also for second-order the-
ory, so that for very short relaxation times we exactly ap-
proach the Navier–Stokes limit. It is also important to men-
tion that, since we solve the relaxation equation in con-
servation form, the expansion rate appears explicitly in the
truncated equations as well, similarly as in the full Israel–
Stewart equations. Hence it is obviously necessary to find an
upper bound for terms containing the expansion rate; other-
wise those terms may grow unbounded and destabilize the
solutions.

4 Results and discussion

In all numerical calculations, we have fixed the following
parameters. The Courant number is λ = 0.4, and the cell size
is dz = 0.2 fm; therefore dt = 0.08 fm/c. The grid contains
240 cells, while the total number of time steps is n = 200,
which corresponds to 	t = 16 fm/c expansion time. The
amount of antidiffusion is reduced by 20%, i.e., Aad = 0.8,
which leads to some prediffusion but returns smoother pro-
files. The thermodynamic quantities are given by the Stefan–
Boltzmann relations where the degeneracy of massless parti-
cles is g = 16. In case of dissipative fluids, the bulk viscosity
coefficient to entropy density ratio is constant, with values
corresponding to small, ζ/s = 0.2, and to large, ζ/s = 1,
ratios.

In most situations the initial expansion rate is unknown;
therefore the dissipative corrections are neglected at start.
This may only last for one time step, since after that the time
derivatives can already be calculated and dissipative correc-
tions added. In particular cases, such as the Bjorken scaling
solution, the expansion rate can be inferred from the geom-
etry; therefore it does not pose a problem. We will return to
this issue in Sect. 4.5.

The relaxation time is given similarly to (2.32); therefore
τΠ = − 1

θ
(
ΠNS
peq

). We have checked the asymptotic limits of
the relaxation equations. In case the relaxation time is small,
τΠ ≈ dt , the effect of bulk viscosity is immediately felt by
the system, and therefore the system behaves as in the case
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of first-order theories. For very large relaxation times, i.e.,
larger than the lifetime of the system, and small initial dis-
sipation, the effect of viscosity is exponentially suppressed
and the solution approaches the perfect fluid limit.

4.1 Expansion into vacuum of perfect fluid

In case of perfect fluids one of the analytical solutions which
relates the thermodynamic properties of matter and the type
of fluid dynamical solution is the 1 + 1 dimensional expan-
sion into vacuum. This is a special case of the relativistic
Riemann problem describing 1-dimensional time-dependent
flow. The initial conditions are such that initially at t = 0
half of the space, z ≤ 0, is filled uniformly with fluid at rest,
v(z,0) = 0, with energy density e(z,0) = e0, while the pos-
itive half z > 0 is (empty) filled with vacuum.

One can show that for thermodynamically normal matter,
e.g., a massless ideal gas with the EOS, p(e) = c2

s e, where
c2

s = 1/3 is the speed of sound squared, the stable solution to
the fluid dynamical equations is a simple rarefaction wave.
The rarefaction wave is a wave for which the energy den-
sity decreases in the direction of propagation, but the profile
of the flow does not change with time as a function of the
similarity variable,

ξ ≡ z

t
= v(e) − cs

1 − v(e)cs
. (4.1)

Here we recall the analytic results for a perfect fluid in the
forward light-cone [53]. The energy density as a function of
the similarity variable for −1 ≤ ξ ≤ −cs is constant,

e(ξ) = c−2
s p0, (4.2)

while in the region −cs ≤ ξ ≤ 1 the matter starts to rarefy
and the energy density decreases as

e(ξ) = c−2
s p0

(
1 − cs

1 + cs

1 − ξ

1 + ξ

)(1+c2
s )/(2cs)

. (4.3)

The temperature can be inferred from standard thermody-
namical relations and the EOS, leading to

T (ξ) = T0

(
e(ξ)

e0

)c2
s /(1+c2

s )

. (4.4)

We also compare how well the fluid flow is reproduced by
the numerical calculation, where the analytical solution as a
function of energy density is

v(e) = 1 − (e/e0)
2cs/(1+c2

s )

1 + (e/e0)
2cs/(1+c2

s )
. (4.5)

The velocity can be given as a function of the similarity vari-
able as well from (4.1). This is plotted in Fig. 4.1a. The

Fig. 4.1 The exact solution in case of a perfect fluid (thick line) and
numerical solutions (thin dotted line at t = 4 fm/c, thin dashed line at,
t = 8 fm/c, and thin line at t = 16 fm/c) as a function of the similarity
variable ξ(z, t). a The flow velocity v(ξ); b the expansion scalar θ(ξ)

results for the expansion scalar calculated numerically are
shown in Fig. 4.1b.

Figure 4.2a shows the temperature normalized by the ini-
tial temperature, from (4.4), while Fig. 4.2b, shows the lab
frame energy density normalized by the initial pressure as a
function of the similarity variable. The thick line shows the
exact solution for a perfect fluid (ES-PF), while the numer-
ical solutions also for a perfect fluid are at t = 4 fm/c with
a thin dotted line, at t = 8 fm/c with a thin dashed line, and
at t = 16 fm/c with a full thin line.

Both figures compare the analytical solutions to the nu-
merical solutions, to pinpoint how well the underlying nu-
merical method reproduces the ES-PF. We see that the nu-
merical solutions asymptotically approach the exact result,
while they also reduce the numerical prediffusion into vac-
uum. This is due to the fact that the initially sharp disconti-
nuity smears out as the rarefaction wave covers an increasing
number of cells. Due to prediffusion and coarse-graining,
the expansion rate is not zero for ξ > 1, as can be seen in
both figures; this problem mostly affects the acausally prop-
agated low density matter. For a perfect fluid the numerical
results are smooth and very nicely reproduce (especially at
later times) the exact results. The larger deviations from the
ES-PF around the boundary to vacuum is due to a some-
what large prediffusion caused by the reduced antidiffusion,
while the deviations around −cs are due to a larger numer-
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Fig. 4.2 a The temperature normalized to the initial tempera-
ture, T (ξ)/T0; b the laboratory frame energy density normalized to the
initial pressure T 00(ξ)/p0; both as a function of the similarity variable
ξ(z, t). The parameters are the same as in Fig. 4.1

ical diffusion. A more thorough study of the expansion into
vacuum of a perfect fluid can be found in Ref. [53].

4.2 Expansion into vacuum with small
and large dissipation

Here we analyze and study the behavior of dissipative fluids
corresponding to the first-order and second-order theories,
and we plot the numerical results next to the exact solution
in case of a perfect fluid. In all figures, unless stated other-
wise, all quantities are plotted as a function of the similarity
variable; the ES-PF is plotted with a dotted line, while the
numerical solutions at t = 4 fm/c appear with a thin dashed
line and at t = 16 fm/c with a continuous line. The upper
bound for the bulk pressure is Πmax ≡ peq, and the relax-
ation time is τΠ = − 1

θ
(
ΠNS
peq

) fm/c. The ratio of viscosity
over entropy density corresponds to small ζ/s = 0.2 or large
ζ/s = 1.0 values.

Figure 4.3a shows the velocity profile calculated from
first-order theory, while Fig. 4.3b comes from second-order
theory. We see that for first-order theory the velocity is fluc-
tuating with an increasing frequency in time. Initially the
amplitude and the wavelength of the fluctuations is large;
however as the expansion proceeds these large fluctuations
are damped and become smaller amplitude and smaller
wavelength oscillations. This is partially due to the initial

Fig. 4.3 The velocity profile for a perfect fluid ES-PF compared to
dissipative fluids with ζ/s = 0.2 (thin) and ζ/s = 1.0 (thick), as numer-
ically calculated and plotted at t = 4 fm/c (dashed) and t = 16 fm/c

(full); a first-order theory; b second-order theory

discontinuity being smeared out in time and the problem is
resolved on a larger grid. However, the damping is also due
to the non-linear antidiffusion term (3.12) in the numerical
algorithm. In other words this is numerical viscosity, which
always acts to smooth the fluxes, contrary to the numerical
dispersion, which acts exactly in the opposite direction and
produces ripples in the results. It should also be obvious that
working on a larger grid with the same cell size would not
improve the results!

For bigger viscosity, the numerical fluctuations become
larger, which is clearly a sign that the method fails and
the numerical errors become uncontrollable. The results for
second-order theory are much smoother and show that there
is a relevant change in the velocity profile, which is an out-
come of the large dissipative pressure. This interesting phe-
nomenon appears near the edge of the matter, where due to
a large bulk pressure contribution the effective pressure es-
sentially vanishes; therefore, that part of the system stops to
accelerate. But due to inertia it keeps moving forward with
constant speed, hence forming a constant velocity plateau.
Note that the small wiggle in the velocity profile for large
dissipation, visible for example on Fig. 4.3b, is an artifact of
the phoenical antidiffusion flux.

Figures 4.4a and b shows the expansion scalar calculated
numerically at different time steps for both theories. We can
see that in the case of first-order theory, the expansion scalar
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Fig. 4.4 The calculation of the expansion scalar at different time steps
in the case of a dissipative fluid with ζ/s = 0.2. a First-order theory;
b second-order theory

is highly fluctuating, while in second-order theory it is much
smoother. Both calculations reflect the space-time inhomo-
geneity of the flow field amplified by the velocity.

For a better understanding, we have plotted the effective
pressure as a function of the similarity variable in Fig. 4.5
for both theories. One can see that for early times the expan-
sion rate, and therefore the bulk viscous pressure, is largest.
When the effective pressure drops (to zero), the accelera-
tion of matter is reduced (the matter flows with constant
velocity). However, the expansion rate will also decrease
later, reducing the viscous pressure; and therefore the ve-
locity will continue to increase. The important thing to re-
member is that the speed of sound decreases due to dissipa-
tion and the effective rarefaction speed [59] can be given as
c2

eff ∼ (p + Π)/e.
It is also interesting to remark that even though the bulk

viscosity is large at places, the effective pressure (and there-
fore the equilibrium pressure) may be larger than in the case
of perfect fluid, due to the fact that the thermodynamic state
of the system is influenced by entropy production and slower
cooling. This is why the lab frame energy density decreases
more slowly; see Fig. 4.7.

Figure 4.6 shows the temperature profile plotted at dif-
ferent time steps for both theories. As in the case of veloc-
ity, the presence of viscosity is observable in the overall re-
duced cooling of matter. The increase in the expansion rate
increases the dissipation which in turn slows the expansion,

Fig. 4.5 The effective pressure normalized by the initial pressure
with dissipation proportional to ζ/s = 1. a First-order theory; b sec-
ond-order theory

Fig. 4.6 The temperature normalized by the initial temperature.
a First-order theory; b second-order theory. The parameters are the
same as in Fig. 4.3
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thus the matter cools at a slower rate. On the other hand in
first-order theories, the visibility of this effect is much more
reduced due to numerical problems.

The laboratory frame energy density normalized to the
initial pressure is presented in Fig. 4.7. Since this quantity
is proportional to the fourth root of the temperature divided
by the initial temperature, it is much less affected by the
fluctuations and prediffusion in both cases. Based on the
previous arguments the deviation from the ES-PF are no-
ticeable for larger values of the similarity variable, where
the effect of dissipation is most pronounced. This plot also
confirms that the effective pressure drops to zero; however,
since the matter has a finite energy density, temperature, and
velocity, the laboratory energy density is not zero at those
places. As soon as the expansion rate decreases, the finite
albeit small effective pressure will continue to expand the
matter into vacuum. Further comparisons between the first-
order and second-order theories can be found in the appen-
dix.

4.3 Expansion into vacuum with a soft EOS

To further investigate the behavior of matter with large vis-
cosity we have used a relatively soft EOS, where the speed
of sound squared is c2

s = 1/15, while keeping the other para-
meters intact. Using a soft equation of state reduces the pres-
sure and the pressure gradients in the system, while the re-

Fig. 4.7 The laboratory frame energy density normalized to the initial
pressure. a First-order theory; b second-order theory. The parameters
are the same as in Fig. 4.3

laxation time increases, inversely with local speed of sound
and temperature, τΠ ∼ (1 + c2

s )/(c
2
s T ).

Figure 4.8a shows the velocity profile for first-order the-
ory while Fig. 4.8b for second-order theory, both in case of
a soft EOS. In comparison to Fig. 4.3, the velocity profiles
are much improved and the constant velocity part of veloc-
ity profile is clearly visible even from the first-order theory.
It is clear that the algorithm works much better, producing
overall smooth results. We have also checked our algorithm
with a hard EOS, e = p, which proved that overshoots and
oscillations become enhanced compared to the standard case
(c2

s = 1/3) and the results became less reliable.
Figure 4.9 shows the effective pressure normalized by the

initial pressure, similar to Fig. 4.5, but with a soft EOS. Once
again the results are good, especially in the case of second-
order theory. This is due to fact that a softer EOS not only
reduces the thermodynamic pressure compared to the stan-
dard EOS but also decreases the dissipative pressure. It is
also important to understand that in this case the dissipative
effects act on an overall wider scale as function of ξ , but
even though the effect of dissipation is immediately added,
the results are much smoother because the dissipative pres-
sure is also reduced.

Fig. 4.8 The velocity profile for a perfect fluid (ES-PF), compared to
a dissipative fluid with ζ/s = 1, using a soft EOS. a First-order theory;
b second-order theory
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Fig. 4.9 The effective pressure normalized by the initial pressure for
a soft EOS. a First-order theory; b second-order theory

4.4 Expansion into vacuum of a matter
with temperature-dependent bulk viscosity

An interesting and relevant question to study is the expan-
sion of dissipative matter with a temperature-dependent bulk
viscosity. To model this property, we assumed that bulk vis-
cosity acts in the close vicinity of a specific or critical tem-
perature, T = Tc(1 ± 0.02), and otherwise it is zero. Thus
the bulk viscosity coefficient is

ζ = ζ0Θ(T − 1.02Tc)
(
1 − Θ(T − 0.98Tc)

)
. (4.6)

Here the choice of critical temperature is Tc = 2T0/3, where
T0 is the initial temperature, and ζ0 = s is the bulk viscos-
ity coefficient. The calculations are done for second-order
theory including the above temperature-dependent bulk vis-
cosity.

Figures 4.10a and b shows the velocity of the matter and
the expansion rate as a function of the similarity variable.
For the same setup, in Figs. 4.11a and b the temperature nor-
malized by the initial temperature and the laboratory frame
energy density normalized by the initial pressure is shown.

When the temperature falls in the respective regime, the
viscosity over entropy ratio rises suddenly, to ζ0/s = 1,
while otherwise the dissipation is switched off. In our case
this manifests itself as almost constant velocity tempera-
ture, pressure, and energy density plateau, located roughly

Fig. 4.10 The velocity profile a, and the numerical calculation of the
expansion scalar b, using a temperature-dependent bulk viscosity for
second-order theory

Fig. 4.11 The parameters are the same as in Fig. 4.10. a The temper-
ature normalized to the initial temperature, T (ξ)/T0; b the laboratory
frame energy density normalized to the initial pressure T 00(ξ)/p0
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between 0 < ξ < 0.2. Because the effective pressure de-
creased suddenly, the matter is slowed down considerably,
until the matter cools below the predefined temperature (al-
though much slower); then the system will suddenly find lo-
cal thermal equilibrium and continue to accelerate. This is
apparent in all plots. This type of studies may be relevant in
case of a phase transition where the temperature-dependent
viscosity modeling becomes necessary [60].

4.5 The Bjorken solutions for perfect and dissipative fluids

In this section we test how well the numerical calculations
reproduce 1-dimensional dissipative scaling flow. The relax-
ation time was kept constant, τΠ = 1 fm/c, which does not
effect the final outcome qualitatively.

We first recall the 1 + 1 dimensional Bjorken scaling
solution for perfect [61] and dissipative fluids [7, 8]. The
equations follow from the conservation law, ∂μT μν = 0, and
the second law of thermodynamics, under the assumption
that the matter expands longitudinally with a flow velocity
v = z/t in a boost-invariant manner. To transform the par-
tial differential equations into simple differential equations
(using the assumption of boost invariance), one carries out
a coordinate transformation from (t, z) to (τ, η), where τ =√

t2 − z2 is the proper time and η = 1
2 log[(t + z)/(t − z)]

is the space-time rapidity. Therefore, the truncated Israel–
Stewart equations for the energy and bulk pressure are

de

dτ
= − 1

τ
(e + p + Π), (4.7)

dΠ

dτ
= 1

τπ

(ΠNS − Π), (4.8)

where ΠNS = −ζ/τ , and the effective pressure satisfies
d(p + Π)/dη = 0. The equations of perfect fluid dynam-
ics are obtained when the dissipative bulk pressure is zero,
Π(τ) = 0. The relativistic Navier–Stokes equation is given
by (4.7) alone, since the bulk pressure, Π(τ) = ΠNS(τ ), is
given algebraically.

In the Bjorken picture the system is infinitely elongated
in rapidity. Since our SHASTA code is written in standard
space-time coordinates (t, z), we have to determine initial
values on a t = t0 surface and the fluid must have a finite
length (due to the finite grid), −z0 ≤ z ≤ z0. This is done as
follows.

We first solve (4.7, 4.8) using a fourth-order Runge–
Kutta solver for all times τ ≥ τ0 = 1 fm/c. Together with the
assumption of boost invariance, this determines the hydro-
dynamic fields in the entire forward light cone. We then re-
peat the solution with the SHASTA partial differential equa-
tion solver with initial conditions at t0 = z0 +	z = 6 fm set
by the Runge–Kutta solution. We note that in the SHASTA
solution the system has a boundary, since the velocity at z0

is close to but slightly less than the velocity of light (z0 is
smaller than t0 by one grid spacing).

In the first-order theory the initial value for the bulk pres-
sure is ΠNS = −ζ0/τ0, which can be limited by the equi-
librium pressure, i.e., the dissipative pressure should not be
larger than the initial equilibrium pressure; otherwise the
system becomes unstable. In the second-order theory, we
take the initial value of the bulk pressure to be the same as in
the first-order theory. Using this initial condition allows for
a direct comparison, since both theories start from the same
initial values. Moreover, on physical grounds, if τ0 is to be
interpreted as the onset of hydrodynamic behavior (thermal-
ization time), then the Reynolds number at τ0 should be sta-
tionary, i.e., it should neither grow nor decrease; this implies
that the initial value for the bulk pressure should be close to
that given by the first-order approach [62].

We can see in Fig. 4.12 that the flow velocity and expan-
sion rate are fairly well reproduced for the second-order the-
ory while the results for the first-order theory show large nu-
merical artifacts already at a few fm distance from the center.
This is correlated with the coarse-graining, since the results

Fig. 4.12 The exact velocity vBJ (full line) and expansion rate ΘBJ
(dash dotted line), compared to the numerically calculated velocity v

(dotted line) and expansion rate Θ (full line), for a dissipative fluid
with ζ/s = 0.2 after 	t = 8 fm/c evolution. a First-order theory;
b second-order theory with τΠ = 1 fm/c constant relaxation time.
In both cases the initial value for the bulk pressure is given by the
Navier–Stokes value
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Fig. 4.13 The effective pressure normalized by the initial pressure.
a First-order theory; b second-order theory. The parameters are the
same as in Fig. 4.12

improve on finer grids.4 We can also observe the large pred-
iffusion into vacuum due to reduced antidiffusion similarly
to the Riemann wave discussed above. The fluctuations in
the velocity are also visible in the expansion rate and in the
pressure shown in Fig. 4.13.

We have also tested how well the algorithm solves the re-
laxation equation for the bulk pressure. This is important to
know, since the SHASTA was specially designed to solve
conservation equations. We have plotted the evolution of
the bulk pressure in the central cell, which has a velocity
v ≈ 0, next to the results of a standard fourth-order Runge–
Kutta solver. The comparison in case of first-order theory is
given in Fig. 4.14a. Here Π1(RK), indicated with a full line
is the Runge–Kutta solver, while the result of SHASTA is
Π1, indicated with a dashed line. The curves match reason-
ably well; deviations are due to the overestimate of the local
expansion rate.

For second-order theories our standard choice for the ini-
tial value of the bulk pressure is given by the Navier–Stokes
value; this corresponds to Π2(RK) and Π2 in Fig. 4.14b. We
have also compared to the case when the system starts from

4In view of forthcoming applications to 3-dimensional problems we
only consider grids with at most a few hundred grid cells.

Fig. 4.14 The evolution of the bulk pressure in a central cell.
a First-order theory; b second-order theory. The initial condition for the
bulk pressure is given by the Navier–Stokes value for Π1, Π2, Π1(RK)

and Π2(RK). The evolution of the initially equilibrated system are for
Π3 and Π3(RK)

equilibrium5 (Π(t0) = 0); see the curves Φ3(RK) and Φ3. In
both cases the SHASTA result is very good. There are some
small deviations, however, due to the difference between the
calculated and analytical expansion rates. We have checked
our calculations using the exact expansion rate θ = 1/τ and
in this case not only the second-order calculations but also
the first-order ones are smooth and very accurately match
the Runge–Kutta results.

5 Summary and outlook

In this work we have focused on testing numerical solu-
tions of first- and second-order theories of relativistic hy-
drodynamics with bulk viscosity using the SHASTA flux
corrected transport algorithm. This is a rather efficient and
fast algorithm for solving causal fluid transport on a fixed
grid; it provides accurate solutions of ideal hydrodynamics
with minimal numerical viscosity and prediffusion and can
be easily adapted to multi-dimensional problems. In fact,
the algorithm can also be used to solve the relaxation equa-
tions of the second-order approach simultaneously with the

5Note that, as mentioned above, for such a type of initial conditions
the dissipative corrections initially grow very rapidly, which is not a
physically plausible scenario [62].
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conservation equations without resorting to other numeri-
cal schemes, which may reduce the computational time and
complicate the problem and its implementation further.

The first-order theory of viscous hydrodynamics provides
the proper description of long-wavelength, low-frequency
density waves in a fluid. The second-order theory intro-
duces relaxation equations for the dissipative fluxes thereby
maintaining causality. Its solutions converge to those of the
first-order theory over time scales larger than the relaxation
times. It has been argued that these relaxation times might
be on the order of the microscopic time scales in the prob-
lem and that the second-order theory is therefore no better
approximation to the dynamics than the first-order approach.

Our numerical solutions with the SHASTA algorithm,
however, indicate that the accuracy and stability of the solu-
tions of the second-order theory is significantly better than in
the first-order theory, even if the calculated local expansion
rate is smoothed over a few fluid cells: the solution of the
Riemann wave with viscosity in the first-order approach pro-
duces oscillations which are absent from the second-order
theory. This observation holds for virtually any amount of
dissipation. Also, the numerical problems encountered in
the first-order approach get milder if the speed of sound
is smaller (which reduces the acceleration of the flow) but
worse if the equation of state is stiff.

These observations are valid in the 2- or 3-dimensional
cases [63]; therefore, in conclusion, we believe that for gen-
eral purpose codes the second-order theory is not only more
general, but also more stable and reliable, even numerically.
Although using the second-order theory it is computation-
ally more intensive since the dissipative quantities have to
be propagated in time, its implementation into some existing
numerical codes which solve hyperbolic partial differential
equations in conservation form, does not require more effort
than adding the first-order corrections.

Regardless of the difference between numerical methods,
using the same initial conditions and corresponding physical
quantities, all numerical results should be very closely the
same. Unfortunately, in case of dissipative fluid dynamics
there are only a few simple solutions where the numerical
accuracy can be tested in great detail. However, taking into
account that actual applications of relativistic fluid dynam-
ics in modeling relativistic heavy-ion collisions need several
other crucial approximations (introducing additional uncer-
tainties and parameters linked to the fluid dynamical cal-
culation, such as initial conditions and freeze-out), it is of
great importance that the numerical fluid dynamical meth-
ods should be very carefully investigated, tested and doc-
umented in various situations. To our knowledge, in most
publications this topic is rather forgotten and/or undisclosed.
The other reliable possibility and recommendation would
be to check the fluid dynamical codes against kinetic the-
ory [64, 65], which on the other hand would also ‘validate’
transport codes in the fluid dynamical regime.

Note added: during the preparation of this manuscript
we became aware of the very recent work by the Brazil-
ian group [66, 67], on the shock propagation and stability in
causal 1 + 1 dimensional dissipative hydrodynamics, using
the smoothed particle hydrodynamics (SPH). This impor-
tant problem was also investigated by us with the relaxation
method presented in this paper, and it lead to very promising
agreement with kinetic theory [68].
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Appendix A

Here we approximately extract and quantify the numerical
errors and uncertainties as a function of time and viscosity.
Since the exact solution for the Riemann problem with dis-
sipation is unknown, the deviation from analytic solutions
cannot be measured. However, since the second-order so-
lutions converge to the first-order solutions at late times,
we may quantify the error and deviations between the out-
comes, see Fig. A.1.

Therefore, we introduce the following relative deviation
(point by point) between the flow velocities of matter and
measure it by the following integral:

d(t) = 1

N

∫ 1.5

−1
dξ

∣∣v2nd(ξ) − v1st(ξ)
∣∣, (A.1)

where the normalization factor, N = ∫ 1.5
−1 dξ |v2nd(ξ)|. Note

that the first-order and second-order theories start from dif-
ferent initial values; hence the initial deviation. We also ob-
serve that increasing the viscosity the results start to diverge
at late times, signaling the instability and large errors in the
numerical solution of the first-order theory. This was appar-
ent in all figures in Sect. 4.2.

Next we discuss and show further examples and test re-
sults using different initial conditions and antidiffusion mask
coefficients. Using the purely conventional initial value for
the velocity of vacuum, v = 1 for z > 0, we make sure that
the fluid dynamical solution is continuous at the boundary
to vacuum.

This specific test ensures that the oscillations in the first-
order theory are not caused by the sharp boundary, and that
the oscillations propagate outwards and not inwards from
the vacuum; see Fig. A.2a. Therefore, this effect is mainly
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Fig. A.1 The relative difference between the first-order and sec-
ond-order theory as a function of time, measured by the above integral,
for values of viscosity given in the figure

Fig. A.2 The velocity profiles as calculated numerically at
t = 16 fm/c for a dissipative fluid with ζ/s = 0.1 in first-order the-
ory using different antidiffusion mask coefficients (ad) as shown on
the figure. The initial condition in subplot a is v = 1, for z > 0, it guar-
antees a continuous solution at the boundary to the vacuum. In b we
have v = 0 for z > 0

due to two things. First the higher-order derivatives of the
flow velocity appear in the equations and therefore even very
small fluctuations in the flow field are enhanced and couple
back into the solution. The second feature is a purely nu-
merical problem, which unfortunately affects of the numer-
ical scheme and its accuracy, since the SHASTA algorithm

Fig. A.3 The velocity profile for a Bjorken expansion in first-order
theory for ζ/s = 0.2 after 	t = 8 fm/c evolution. On a the
un-smoothed versus the smoothed vSM velocity profile with ad = 0.8
mask coefficient. The continuous boundary condition for the velocity
with various mask coefficients on b

was not explicitly designed to solve the relativistic Navier–
Stokes equations.

We also see the effect of a further numerical artifact
namely reducing the antidiffusion coefficient by 10%, 20%
and 30% not only increases the entropy in the system, but it
also gives as a result non-linear changes and differences in
the solutions. The standard version of the algorithm uses a
mask coefficient equal to 1. We can see in Figs. A.2 and A.3b
that using a 20% smaller mask is reasonably close to the so-
lution with the standard value of the mask, but, more impor-
tantly, the results become much smoother.

In Fig. A.3a we have plotted the velocity profile calcu-
lated with a 20% reduced antidiffusion for a smoothed and
un-smoothed expansion rate. We can see that the smoothing
affects the solution positively leading to even less prediffu-
sion into vacuum in this particular case.

Appendix B

Here we recall the solutions for the expansion into vacuum
in case of a perfect fluid, following [69]. Introducing the
similarity variable, ξ = z/t , the partial derivatives transform
as ∂t = −(ξ/t)(d/dξ) and ∂z = (1/t)(d/dξ). Therefore, the
equation for the energy and momentum in terms of the rest
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frame quantities becomes

(v − ξ)γ 2 de

dξ
+ [

v + (v − ξ)v2γ 2]dP

dξ

+ γ 2(e + P)
[
(v − ξ)

(
2vγ 2) + 1

]dv

dξ
= 0, (B.1)

(v − ξ)vγ 2 de

dξ
+ [

1 + (v − ξ)vγ 2]dP

dξ

+ γ 2(e + P)
[
(v − ξ)

(
1 + 2v2γ 2) + v

]dv

dξ
= 0. (B.2)

Using the standard EOS, P = c2
s e, the vanishing determi-

nant of the above system of equations leads to the expression
for the characteristic variable, ξ = v±cs

1±vcs
. The correct solu-

tions imply (4.1); hence we are lead to the following trivial
equation:

de

e
= − (1 + c2

s )

cs

dv

(1 − v2)
, (B.3)

which with the corresponding initial conditions given in
Sect. 4.1 leads to the results presented before.

Viscosity is introduced by P = c2
s e + Π , where the ex-

pansion rate is

∂μuμ = (1 − vξ)
γ 3

t

dv

dξ
. (B.4)

Using the expression for the dissipative pressure in first-
order theory, dP/dξ , leads to terms containing, d2v/dξ2,
(dv/dξ)2, dζ/dξ and dt−1/dξ = −t/ξ ; therefore, even in
this simple case the exact solution is unknown. In second-
order theory, the relaxation equation is

(v − ξ)γ
dΠ

dξ
− ζ

τΠ

(1 − vξ)γ 3 dv

dξ
= − t

τΠ

Π, (B.5)

while the derivative of the pressure reduces to dP/dξ =
c2

s de/dξ + dΠ/dξ . In conclusion, we see that for dissipa-
tive fluids the equations depend explicitly on the time in the
local rest frame, and the similarity of the flow is broken.
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