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ABSTRACT

— - -

We present a comprehensive partial-wave analysis of the processes 7rN — ¢ps B,
KN — ¢.,B and KN — ¢.,B in the 3-flavor Skyrme model, with ¢, an arbi-
trary pseudoscalar-octet meson and B a %+ octet or %+ decuplet baryon. Overall, |
we find good, poor, and mixed agreement, respectively, between the model and
experiment for these three types of processes. We pay particular attention to as-
sessing the independence of our results from the details of the Skyrme Lagrangian.
We also examine the effect of including a third light flavor on the linear relations
between experimental TN — 7N and 7N — 7A partial-wave amplitudes that
are predicted by 2-flavor soliton models of the nucleon. Although tAhe emphasis
t-hroughout is on a detailed qualitative comparison with Nature, we also present
Skyrme-model predictions for six processes such as 7N — KX* and KN — nX

for which experimental partial-wave analyses are unavailable.



I. Summary and Outline

In this paper we present a comprehensive partial-wave analysis of the pro-
cesses TN — ¢..B, KN — ¢..B, and KN — ¢..B in the 3-flavor Skyrme
model,l'_6 with ¢., denoting an arbitrary pseudoscalar-octet meson and B a
%+ octet or %+ decuplet baryon. As our approach to meson-nucleon scattering
in both 2-flavor and 3-flavor soliton models of the baryon has been discussed in
detail elsewhere, a fresh introduction hardly seems necessary (see Refs. 7-13 and
also Refs. 14-15). Instead, this Section will serve as a summary of our principal
results. We should, however; underscore our two principal approximations:

1. Our results are valid only to leading order in 1/ Nc—, where N, is the number
of colors of the underlying gauge group;u1
2. Our group-theoreti¢ formalism assumes unbroken SU (3)ﬁa.‘,°,;ﬂ2 further-

more, our numerical phase-shift computations are carried out in the limit of

massless mesons, 1.e., exact chiral symmetry.

In our work on the 2-flavor Skyrme model, we found excellent agreement with
experiment for the mass spectrum of nucleon and A resonances. ' (Masses of the
nucleon and A resonances agreed on the average to within 8% of their experimen-
tal values after optimizing the pé,ra.meters fr and e that appear in the Skyrme
Lagrangian, Eq. (1) below; the results are summarized in Fig. 1b in Section III.)
However, given the severity of the second approximation above, we will refrain in
the present 3-flavor analysis from mé.king similar quantitative statements about

the spectrum of strange baryons in the model. Such statements would be of du-

§1 See Section II of Ref. 8 for a detailed explanation of the large-N, approximation in the
context of meson-baryon scattering.

2 The opposite limit, corresponding to mg > my, has been studied by Callan and Klebanov. 16



bious value until a kaon mass is introduced. Instead, we shall concentrate here on
the qualitative behavior of the partial-wave amplitudes, and on patterns of size
and sign alternation between amplitudes. Unlike mass predictions, such features
are completely independent of the values of the Skyrme parameters fy and e: a
different choice of parameters would not alter the shapes of the amplitudes, only

their parametrization as a function of energy.

We have located experimental data for 165 partial-wave channels’™ cor-
responding to the processes TN —- 7N , atN - 7A, «N - n9gN, «N — KA,
7N - KX, KN — KN-.<KN = KA ,KN - KN-, KN - 7%, KN — 7\,
KN —nA, KN - 72* and KN - KA. A detailed pictorial comparison to
the Skyrme model is presented in Sections III-V. Several of these processes have
been subject to more than one partial-wave analysis; in these cases we usually
selected the most recent one to compare to the Skyrme model. This choice was
not without repercussions: often there was serious disagreement between inde-
pendent analyses, and a different selection would have modified the results of our
comparison accordingly. We shall bring up differences between various experi-

mental analyses when the Skyrme model sheds light on the issue. -

It is conventional to test models of the baryon spectrum by checking the
signs of the various amplitudes against experiment. In view of the large number
of channels involved in this study, we have summarized the results of this compar-
ison in Tables I-XIII. In these tables, each inelastic amplitude has been assigned
a + or — according to whether it first journeys appreciably into the upper or

lower half of the unitarity circle, and a zero if this is unclear.”™ We have labeled

§3 Our sign definitions differ somewhat from the traditional ones, whereby a + and - refer,
not to the amplitude as a whole, but to its value at a resonance; specifically, they indicate
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the channels in the standard fashion: 7N channels are denoted by L3725 whereas
KN and KN channels are labeled by L1325, where L is the meson’s orbital an-
gular momentum, and I and J stand for total isospin and angular momentum.
For processes where the final baryon has spin—% (Tables II, VII, XII and XIII),
the initial and final meson angular momenta L and L' need not be equal, but

can differ by two; hence the notation LL] 1,27 OF LL’I’2 J-

In addition to signs, Tables I-XIII present numerical ratings from 1 to 4
which represent our assessment of the degree of qualitative agreement between
the Skyrﬂle model and experiment, with a “1” being the best and a-“4” the worst.
The criteria we employed in arriving at such a score are the following: Does the
Skyrme amplitude have the same general shape as its experimental counterpart?
Does it point in the same general angle in the unitarity circle? Are distinctive
features (e.g., cusps, loops, repulsive behavior) mimicked correctly? Are the
magnitudes of the curves comparable? Do the graphs share a + or — designation?
To score a “1,” the answer must be “yes” to all of these questions, with sizes
agreeing to within 30%. A “2” guarantees that the + or — assignments will agree,
and that the shapes are similar, but the magnitudes can differ substantially (e.g,
by a factor of 3 or 4); alternativély, the sizes might be in close correspondence
while the shapes are rather different. For a “3,” the two graphs must lie in either
the same or adjacent quadrants (so the signs can disagree); there is usually some
additional feature of similarity, for example an energy range over v»;hich the shapes

of the amplitudes are in rough correspondence, but on the whole the agreement

whether the resonance occurs at the top (+) or bottom (-) of a circle. For resonant am-
plitudes, our definition almost always coincides with the traditional definition as applied
to the lowest-lying appreciably-coupled resonance in that channel; however, our broader
definition allows us to characterize non-resonant (e.g., repulsive) amplitudes as well.



looks no better than random. For a “4,” the agreement is truly dismal; typically
such graphs point in opposite directions. The reader is encouraged to glance at a
few plots chosen at random from Sections III-V in order to gain a “feel” for this

(admittedly subjective) scoring system.

mIN processes. As is apparent from Tables I-V, the results for # N processes
are, on the whole, surprisingly good. Elastic 7 N scattering as calculated in both
the 2-flavor and 3—ﬂav9r Skyrme models (the two approaches differing even for
non-strange processes) was examined previously.7—15 In general, the 3-flavor
model constitutes an improvement over the 2-flavor model. However, in both
cases there are serious discrepancies with experiment in the S and P waves, as
reflected in the preponderance of 3’s and 4’s in these channels. The most severe
of these is the failure of the model to reproduce the strongly resonant behavior
observed in the P;; and P33 channels, associated with the Roper resonance and
with the A, respectively. These problems are due to the fact that, in leading
order in 1/N,, certain states such as the Roper and the A are in fact degenerate
with the nucleon, and hence could not show up as resonances above threshold.
Thus, these are most likely failures, not of the model itself, but rather of our

leading-order analysis.

In contrast, for D waves and higher, with the exception of the Djss, the
agreement is quite impressive. The main source of disagreement in the high
waves (L > 4) is the overly large size of the Skyrme model curves, which is pri-
marily due to the limited number of inelastic channels that we are allowing for
(¢-s B only); this situation is improved when the Skyrme model is enlarged to
~ the 3-flavor case.’® Significantly, both the 2- and 3-flavor Skyrme models mimic

the “big-small-small-big” pattern that characterizes the behavior of the four in-



aN — A

Channel | Exp. 2-Flav. 3-Flav.
Skyrme Skyrme
PPy + + 1 + 1
. N — *N PPis + +
Channel | 2-Flav. { 3-Flav. |{ Channel | 2-Flav. | 3-Flav. PPy, + +
Skyrme | Skyrme Skyrme | Skyrme PPy + + 2 + 2
Sn 3 3 Gir 2 2 DDy - - 2 - 1
S31 4 4 _ G 2 2 DDy + + 1 + 1
Py 4 4 Gar 2 2 DDj3 + + 3 + 3
Ps 3 2 Gss 2 2 DDgs + +
Py 2 2 Hig 2 2 FFyg + + 3 + 2
Pu 4 4 Hlll 2 2 FFH + +
D3 1 1 Hag 2 2 FFss + + 2 + 1
Dy 2 2 Hsi 2 2 FFs; + + 1 + 1
Dss 2 2 I 3 2 SDy + + 3 + 3
Dss 3 3 Inys 2 2 SDs - - 3 - 3
F15 1 1 I 3 3 DSy - - 2 - 3
Fyy 2 2 Ins 2 2 DS33 + + 3 + 3
F3s 1 1 K3 2 2 PF3 + +
F3y 1 1 Kus 2 2 PFs3 - -
Kas 3 3 FPy - - 2 -
K35 2 2 FPas + + 2 + 3
Table 1 o —— — _ Ta!)le n
(cf. Fig. 1) _ (cf. Fig. 2)
N — KX
Channel | Exp. Skyrme
Sn -
Py, -
Py -
Py, - - 3
P33 0 - 2
Dy +
Dy -
D33 - 1] 4
N — nN N — KA Dss B 0 P
Channel | Exp. Skyrme Channel | Exp. Skyrme Fg -
Sn + + 3 Sn + - 4 F 3t -
Py - + 4 Py, - - 2 Fys - -
Pis - 0 3 Pys + + 3 Fs7 - - 1
st. - - 3 Dys + - 4 Gi7 -
Dis - - 3 Dss + + 2 G -
Fis + + 1 Fig - - 2 Gs7 - - 2
Fiq + + 2 Fu + + 3 Gyy -
Gyt + + 2 Gyr - - 4 Hyg -
G 0 + 2 G + + 2 Hyn -
Hye + + 2 Hje - - 2 Hso - - 2
Hin + Hyy,y + Hjyy - - 2
Table IT1 Table IV Table V
(cf. Fig. 3) (cf. Fig. 4) (cf. Fig. 5)

Tables I-V. xN processes: Skyrme model vs. experiment. Inelastic channels are assigned a
_+ or — according to whether the amplitude first journeys significantly into the upper or lower
half-plane, and a O if this is unclear. The values 1:4 represent the degree of qualitative agreement
between the model and experiment, with a “1” being the best and a “4” the worst (see text for
details).



KN — KN KN = KA . EN-TEN

Channel | Skyrme . Solution A | Solution B | Solution C | Skyrme Channel | Skyrme
So1 4 PPy - + + + So1 4
S 4 PPy + + + + Su 4
Poy 4 DD,y - + 0 + Py 4
Pos 2 DDy + + 0 + Pes 4
P, 2 SDy + + - - P 4
Pys 4 DSs + + - + Pis 4
N Dos 2 Dos 1
- Dos 3 Table VII DOS 2
- Dy 4 (Cf Fig. 7) D3 2
Dis 4 Dys 1
Fos Fos 1
For For 1
Fis ‘4 Fis 2
Fa ‘ Fyy 1
Gor - Gor 2
Goo _ Goo 3
Gur 4 EN — nA KN —nA Gir 2
G G 4
Hio 4 Channel | Exp. I{Exp. II Skyrme Channel | Exp. | Skyrme
Sign|vs. 1] vs. I So1 - Table VIII
Table VI Sn - - |+ 4] s Poy - (cf. Fig. 8)
(cf. Fig. 6) P | - | |- |8 Ps ||+ o
Pis + + + | 2 4 Dos -
D3 + + -1 3 4 Dos - +
Dy - - + | 4 4 Fos - -
Fis - - - 11 1 For +
KN — nX Fiy + + + | 3 1 Gor - -
*Channe! | Exp. Skyrme Gur - 0 ) - ! z Gos s KN —o_fA
Gy + + 3
So1 + - 4 Table XI Channel | Exp. Skyrme
S + - 3 Table X (¢f. Fig. 12) PPy + +
Poy - - 3 (¢f. Fig. 11) PP - +
Po3 + - 4 DDs _ +
Pu - B 4 DDys + +
i B I FF +
Dy + + 3 FRy; | + +
o I GG | - | +
Ds + | - | 4 GG +
Dy + + 3 _ SDy + +
Fos - - 1 KN — xX* DSys - -
?.’ i : : Channel | Exp. Skyrme Channel | Exp. Skyrme PFys +
F”' PPy | + + 2 SDg | + + 2 Fhs 1 O -
i B 2 PP, -1 + 4 sD - - 3 DG +
Goz + - 4 ad 11
Goo _ _ 3 PP, 0 DSos - GDyy + -
G - - 3 PPy + DSis + + 3 o
Gio ~ DDy - PRs | -} + | 4 Table XIII
DDgs + + 1 PFhs - (cf. Fig. 14)
Table IX DDis + FPy | - | - 2
3 DDg - + 4 FPg + + 3
(cf. Fig. 10) , R | + N N pee | - N .
FFoz + DGis + - 4
FFy + + 2 GDor -
FFyq + + 1 GDyy +
Table XII
(¢f. Fig. 13)

Tables VI-XIII. KN and KN processes: Skyrme model vs. experiment. See caption for Tables
V.



dependent experimental amplitudes {Ly 271, L1,20+1, L32L-1, L3 2r+1} for each
value of pion angular momentum L > 0; for example, the Fi5 and F37 amplitudes
take a much greater excursion through the unitarity circle than do the Fy7 and

7,8,13

F3g5 curves. We shall see this explicitly in Section III.

For the inelastic processes 1N - 7#A , #atN - nN ,«N — KA ,and 7N —
K?Z, the sign agreement between the Skyrme-model and experimental amplitudes
is, respectively, 100%, 80%, 80% and 85%. Such numbers are certainly competi-
tive with traditional algebraic coupling schemes such as SU(6), as well as with
the nonrelativistic quark_model, although unlike the Skyrme model, which is a
full-fledged dynamical model, these dpproaches concern themselves only with the
behavior of the amplitudes at resonance energies. As in the elastic case, the
lower partial waves in the Skyrme model are often in disagreement with experi-
ment, whereas the F waves—which are the first not to mix with the skyrmion’s
zero-modes—represent the model at its best. Clearly, a careful treatment of the
zero-modes, which would enable us to trust our analysis in the lower partial

waves, would be of the utmost importance.

KN processes. The situation is quite the opposite for KN scattering
(Tables VI and VII). The agreement for both KN — KN and KN — KA is
dismal.™ The reason for this is not hard to understand. KN processes occupy a
special role from the point of view of the quark model, since resonances in these
channels (unlike KN) cannot correspond to ggqq, but rather gqqqg states. Not
surprisingly, in Nature, the majority of amplitudes show no hint of a resonance,

and are in fact repulsive (that is, curve clockwise). The existence of any such -

§4 In light of the three-fold ambiguity in the experimental solution for KN — KA , we have
not presented “scores” in Table VII; however, a comparison of the Skyrme model amplitudes
to any one of these solutions would produce mostly 4’s.



resonances is still an open question, with the most recent analyses favoring such
states in at least two channels. In contrast, there is nothing particularly “exotic”
about KN scattering in the sky‘rmion approach, for reasons we shall discuss be-
low. Consequently, most of the Skyrme-model graphs evince the usual resonant
behavior: anticlockwise curves and Breit-Wigner peaks in the speed. In Section
IV we shall speculate on whether the (apparent) existence of KN resonances
in the real world might be construed as evidence for the soliton nature of the

nucleon.

KN processes. Finally, the Skyrme model gives mixed results in describing

.

KN scattering (Tables VIII-XIII). On the level of inglividual gral;hs, the model
works less well for KN than for 7N scattering; this is perhaps a consequence of
our having set mg = 0, which is much more severe than setting m, = 0. Nev-
ertheless, in certain important respects, the agreement is quite pleasing. Most
notably, for the processes KN — KN and KN — nX , the model successfully
reproduces a pattern reminiscent of 7N — 7N that characterizes the four inde-
pendent experimental amplitudes for each value of L: specifically, in the model
as in Nature, the Po;, Dos, Fos and Go7 amplitudes travel significantly further
phrough the unitarity circle than do their counterparts. We shall return to this
“big-small-small-small” pattern in Sections V and VI. The sign agreement for
KN 7L , KN - 7A ,KN —-nA ,KN — 7%* and KN — KA is 65%, 64%,
67%, 67% and 55%, respectively. Agreement in the last of these processes is ex-

tremely poor.

It should be kept in mind that, for most of the processes summarized in

10



fhese tables, the experimental curves do not represent the data directly, but
result instead from a multi-parameter fit of the differential cross-section to the
squared sum of pé,rtial-wave aniplitudes. Such a fit involves a complex, model-
dependent and frequently ambiguous statistical analysis, or “solution,” of multi-
body final states. (For example, 7 A must be disentangled from pN.) In fact,
for processes with relatively low statistics, not only can two experiments differ
substantially from one another, but two solutioné of the same data can disagree
(cf. Table VII and Fig. 7, for example). In light of this, it is noteworthy that the
Skyrme model does best for the processes that are relatively well established (e.g.,
aN —- 7N, 7N —- A ,T{*N —*%N ), and worst for those that seem the least
well understood (e.g., KN — KA and KN — KA ). It would be interesting
to see whether, ten years hence, there will be any noticeable improvement in

agreement between the model and experiment for these latter processes.

Before proceeding to the specifics of our analysis, we would like, once again,
to express our wonderment that so much detailed structure of the meson-nucleon
S-matrix—much of it in reasonable accord with Nature—can emerge from a
simple meson Lagrangian with no explicit quark or nucleon fields. The moral is
that this structure must be largely determined by the symmetries of the effective
Lagrangian alone. (By this we mean, not just the familiar chiral symmetries; but
also the peculiar “K-symmetry” characterizing hedgehog solitons, as reviewed in
Appendix B.) It is surprising that effective Lagrangians have so much to say far

beyond the “soft-pion” energy regime to which they are normally applied.

The remainder of this paper is organized as follows. In Section II we review
the formalism for meson-nucleon scattering in skyrmion models of the nucleon.

Sections III, IV and V are devoted to a pictorial comparison between the model

11



and experiment for 7N, KN and KN scattering, respectively.

In Section VI, which we consider the theoretical heart of the paper, we ex-
plore the degree to which the predictions of the Skyrme model, both successful
and unsuccessful, can in fact be considered model-independent (i.e., independent
of the precise details of the Skyrme Lagrangian, but based only on the familiar
“hedgehog” form of the soliton, as reviewed below). In particular, we shall fo-
cus on sign predictions for inelastic processes, and on the “big-small-small-big”
and “big-small-small-small” patterns mentioned earlier. The question of model-
independence is a crucial one; for, if the soliton approach to baryon physics is
ever to be honed into an accurate calculational tool, Skyrme’s Lagrangian will
eventually have to give way to a more realistic model involving many more low-
lying mesons. In the course of our investigation, we shall discover what we believe
to be the secret behind much of the Skyrme model’s success in describing the
scattering data. As a consequence, we shall be able to delineate a large class of
models which, we believe, would enjoy comparable overall success. We hope that

this might usefully constrain the model-building efforts currently under way.

In Section VII we leave the Skyrme Lagrangian behind, and concentrate in-
stead on the assumption that the optimal low-energy effective Lagrangian of
Nature possesses solitons of the same “hedgehog” structure as in the Skyrme
model. It has béen shown in the context of 2-flavor skyrmion physics that this
assumption implies the existence of energy-independent linear relations between

,15

expertmental TN — 7N and # N — nA partial-wave a,mplitudes.8 In gen-
eral, these relations are well satisfied by the experimental data, with certain
exceptions in the lower partial waves.® Section VII examines to what extent in-

clusion of a third light flavor modifies these relations; we focus, in particular, on

12



the peculiar role played by the Wess-Zumino term. We shall find that all but one
of these relations emerge virtually unscathed in the 3-flavor formalism. We also

discuss some new linear relations designed to test the conclusions of Section VI.

In order to make this paper relatively self-contained, Appendix A depicts
some intermediate results of our numerical analysis, Appendix B contains a
derivation of the 3-flavor scattering formalism first presented in Ref. 12, and Ap-
pendix C gives explicit formulae for the group-theoretic expressions we have used.
Finally, Appendix D contains the Skyrme-model graphs for the six «tN — ¢, B

and KN — ¢.,B processes for _which an experimental partial-wave analysis in

—

the resonance region has yet to be done, namely: 7N — nA , 7N —- KX*,
KN —-nZ, KN —-nLZ*, KN - KE and KN — KE* . We very much hope

that this paper will provide fresh impetus for such work.

II. Basic Notions

In order to pave the way for the detailed comparison that follows between the
Skyrme model and experiment, this Section is devoted to a brief review of the
meson-nucleon scattering formalism in soliton models. (The casual reader eager
for results should skip directly to Section IIL.) Since we shall be contrasting the
2- and 3-flavor versions of the Skyrme model in Sections III, VI and VII, we shall

sketch both formalisms here.

The Skyrme Lagrangian is given ’by:l_3

£

L=16

Tra, Ua Ut + ﬁ Tr[(8,U)UL, (B, U)U? + Lwz (1)

with U an SU(2) or SU(3) matrix in the 2-flavor or 3-flavor model, respectively.

Here, the first term is the usual nonlinear sigma model familiar from soft-pion

13



physics; the second serves to stabilize a finite-size soliton, or “skyrmion,” which

is our candidate nucleon; and the third, the Wess-Zumino term,3’43 reflects the

#5

presence of anomalies. The traditional identification of the Goldstone fields

comes from setting

exp (% 3, w“o“) : 2-flavor case
U=
exp (}—: 2=1 ¢“A“) : 3-flavor case
in (1).

To study meson-nucleon scattering in this model, one simply bréaks up the
Goldstone fields 7% or ¢% into two pieces: a spatially-varying c-number piece, t.e.,
the skyrmion, and a ﬂuctuating piece, which we identify with physical mesons.
Calculating the meson-nucleon T-matrix® then reduces to a problem of potential
scattering, from which partial-wave phase-shifts can be extracted in the usual
manner. In addition, it is necessary to fold in a little group theory, as we now

describe.

Consider first the case of 2-flavor scattering, which suffices for the study of
the non-strange processes tN — #N , 7N — 7A and 7A — 7A . The quantum
numbers needed to describe such processes are the following: the initial and final
pion angular momenta L and L'; the initial and final spin (or isospin) represen-
tation of the baryon s and s', which equal % for nucleons and % for A’s; and

the total pion-baryon isospin and angular momentum I and J. The T-matrix

§5 The Wess-Zumino term is not present in the 2-flavor model unless it is gauged.3
6 In order to facilitate comparison to experiment, we will present all our results in terms of
T-matrix elements. The T-matrix is related to the S-matrix via T = (S — 1)/21, where 1
* is the identity operator on the Hilbert space (which vanishes for inelastic scattering).

14



describing such processes in the Skyrme model can then be shown to be:®1®

T({Ls13} > {L’:s’IJ})
(2)

— ()BT DRI ) S 2K +1) { K1 } {K”
K

s'L'1 | sL1 }TKL’L '

The expressions in curly brackets are 67-symbols, and the sum over K extends
over all integer values consistent with [L - 1| < K < L+1land |L'—1]< K <
L' + 1. The quantities Txy/r, which are functions of pion energy w, are the
“reduced amplitudes” of the mo?lel, obtainable numerically from a phase-shift
analysis about the classical soliton solution of the Lagrangian. (In contrast, we
shall refer to the bold-face T’s as “physical amplitudes.”) Although these reduced
amplitudes have been preséntéd previously,-”14 we display them in Appendix A

in a form more suited to our purposes.

Although, in Eq. (2), K plays the part of a dummy index, it actually has an
interesting physical interpretation. Specifically, K can be viewed as the vector
sum of the pion’s angular momentum and isospin in the unphysical frame in which
the pion scatters, not from a nucleon, but rather from an unrotated soliton of the
“hedgehog” form. (A hedgehog soliton is one in which the c-number piece of the
pion field, an isovector, is proportional to T; cf. Eq. (15) in Appendix B below.)
This frame is “unphysical” in that a nucleon properly corresponds to a rotating
hedgehog soliton in the skyrmion a.pproach.49 More details on the meaning of K

can be found in Refs. 7-15, as well as in Appendix B below.

The 3-flavor analog of Eq. (2) is of the same general structure albeit a little

more complicated. The 3-flavor scattering processes that we are focusing on are

15



special cases of the general quasielastic process

"¢PSB — ¢:>SBI’

-+
where ¢, and ¢ are pseudoscalar-octet mesons and B and B’ are 17 octet

2
or %+ decuplet baryons. The meson-baryon system in either the entering or
exiting channel for such a process can be fully characterized by the following
set of quantum numbers: the orbital angular momentum L of the meson; the
spin s and flavor representation R of the baryon [t.e., (s, R) = (—;—,8) or (%, 10)];
the total meson-baryon angular momentum J; and thg total SU (3)'ﬂav0r quantum
numbers { Riot, ¥, Ttot, [ztot) Ytot}.w As in the 2-flavor case, the physical T-matrix

" . 12,13
can be expressed as a superposition of reduced amplitudes: ™

T({LsRRiotVlsot Intot YiotI} = {L's'R' Ryt Y Liot L1tot Yiotd}) =

s_sVdimR-dim R’ ) KiJ KiJ
e S oY@ vex o { TG

(v} i K
R' 8 R 8
s'1T IY sl 1Y

This expression, whose derivation is reviewed in Appendix B, requires some

( Rioty!

Rty {Ivr}
oy )7

i,1+Y ) KLL”-

explication. The quantities in parentheses are SU(3) isoscalar factors, tabu-
lated by DeSwa;t.“ The pair {IY} is summed over {1,0},{0,0}, and {3, +1}.
The index K assumes integral values when {IY'} = {1,0} or {0,0} and odd-half-

integral values when {IY'} = {},£1}, while the index ¢ assumes odd-half-integral

7 Here v is a largely redundant index whose only real purpose is to distinguish between
degenerate representations that can occur in the product of two SU(3) representations,
as for example the 8,y and 8gntisym in 8 X 8.** As can be seen in Eq. (8), it is not in
general conserved, even for exact SU(3)gavor- To understand this, one need only consider
the nonvanishing 8antisym +* 8sym coupling Tr({B, ®}|B, ®]) between the baryon octet B
and the meson octet &.

16



and integral values, respectively, in these cases. In addition, these sums are con-
strained by the various triangle inequalities implicit in the two 65 symbols, as a
consequence of which we find the following contributing reduced amplitudes for

physical processes: 8

¢osB — ¢\, B' with L' = L:

{T{l:o} TL{I’O} {0,0} T{%,l} Té%:-l}

Lenrrs ‘crps ‘il 'pxirp :t%,LL} all contribute;

¢psB — ¢, B’ with =L +2: - -

only Téi—j?ﬁ, K = (L + L')/2, contributes. Furthermore, by time-reversal
invariance,”—8 it follows that TI?L’?I% = TI?L’%%
Useful closed-form expressions for the group-theoretic coefficients in Eq. (3)

that multiply these reduced amplitudes are given in Appendix c.w

1 1 _
It turns out that the reduced amplitudes Téz’z} and TK{’},’L 1} are numerically
quite close to one another for all energies. M0 1t is therefore convenient to introduce

the linear combinations

1 1!1 ls—l 1 1
7-IécLva §(TI§zL} = T}E},L }) , K=L- 5 or L+ 5;

these are depicted in Appendix A. It happens that, in the Skyrme model, these

are the only new quantities that one needs in order to pass from the 2-flavor to

#8 Parity precludes the case L' = L + 1.
#0 The analogous 2-flavor quantities are tabulated in Appendix B of Ref. 8.
#10 In fact, they would be precisely equivalent to one another in the absence of the Wess-Zumino
t:erm;13 that they are so close means that the Wess-Zumino term has a small effect on the
meson-nucleon phase-shifts in the Skyrme model.
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the 3-flavor formalism. Specifically, the amplitudes TL{E’I(,)} turn out to be trivial:

T @) =0,

while the quantities TI?I:,O g (w) are identical to the 2-flavor reduced amplitudes |
Trr'n(w) that appear in Eq. (2).
From the discussion in this Section we can make the following observations:

1. Since all physical amplitudes for processes with L' = L3-2 are proportional
to the single reduced amplitude {lljf)g = Téi’?} with K = (L + L')/2, it follows
that all such amplitudes for each value of K are necessarily proportional to one
another. The group-theoretic coefficients of (2) and (3) furnish the relative mag-

nitudes and signs of these amplitudes for the 2- and 3-flavor model, respectively.

2. Processes with L = L' are more complicated from a group-theoretic stand-
point, since they are expressed as a superposition of eight reduced amplitudes.
However, from the graphs in Appendix A, we see that, with a few exceptions in
the lower partial waves, the three reduced amplitudes {T,L{i’lo,}LL’ TL{Iif }, TL+— 1L Lt
vary much more dramatically as functions of energy than do the other five am-

. 1,0 0,0 - - .
plitudes {TL{+1,%L’ TL{LL}’ TLt-%,LL’ TL—;,LL’ TL+§,LL}’ and consequently provide
the dominant contributions to the physical Skyrme-model amplitudes.

3. Lastly, we ought to point out that Egs. (2) and (3) are valid for any

soliton model of the baryon, not just Skyrme’s, in which the soliton is a “hedge-

hog” configuration. The only model-dependent input is the precise values of the

- reduced amplitudes.

We will make frequent use of these observations throughout the remainder
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of the paper. We turn now to a channel-by-channel comparison of the Skyrme

model T-matrix with experiment.

III. N Scattering

We begin with the elastic case 7N — # N . This process has been studied

7-12,14—-15 12-13

before in the context of both the 2-flavor and 3-flavor Skyrme
models; in particular, the reader is referred to Ref. 7 for a discussion of the
spectrum of baryon resonances in the 2-flavor model. Elastic 7N scattering is
extremely well understood experimentally, as evidenced by the close agreement
between the three principal partial-wave analyses (Refs. 17-19). As such, it

represents a crucial test for the Skyrme model.

Figure 1a displays the 30 experimental # N — « N partial-wave amplitudes
for 0 < L <5 (Ref. 18) and 6 < L < 7 (Ref. 17) juxtaposed with both

the 2- and 3-flavor Skyrme-model gra.phs.nll

For completeness, we have also
summarized the results of our mass spectrum calculation™® in Fig. 1b. We
consider the overall degree of agreement impressive. Obviously, for G waves and

M2 this is primarily due

higher, the Skyrme model graphs are much too large;
to the fact that, in our formalism, we are not allowing for the large variety of
inelastic processés that dominate these channels in Nature. In this regard, the

3-flavor Skyrme model, which allows for final states involving strangeness such

as KX, constitutes a clear improvement over the 2-flavor model. Inclusion of a

111 In Ref. 7, in contrast, we compared the Skyrme-model curves solely to Ref. 17. Overall, the
Skyrme model agrees somewhat better with Ref. 18 than with Ref. 17. The most recent
experimental analysis (Ref. 19) only goes up to Ecy = 1726 MeV and L = 3.

12 Note the magnification by a factor of 4 in the experimental graphs with L > 4.
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FIG. la. N — nN : comparison between the 2- and the 3-flavor Skyrme models and the
experimental solutions of: (i) Ref. 18 for L < 5 (1.08 GeV < Ecy < 2.40 GeV); (32) Ref. 17 for
6 < L <7 (1.08 GeV < Egy < 2.50 GeV). The plots show Im(T) vs. Re(T) for each channel.

Channels are labeled by La; 27, where L is the pion angular momentum, I is the total isospin
and J the total angular momentum. Note the change of scale for the experimental graphs with

L>4.
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FIG. 1b. Spectrum of N and A resonances: Skyrme model vs. experiment. The experimental
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third flavor can also be seen to improve the agreement in the Py3, P3; and D3

channels.

The case of the F waves is more subtle. Although the 3-flavor curves do
not appear at first glance to be in quite so close correspondence with Nature as
their 2-flavor counterparts, they actually constitute an improvement: a “speed

» #13

analysis reveals the emergence of a second resonance in both the Fis and

the Fz7 3-flavor amplitudes, in agreement with Nature (see Ref. 13 for details).

Most of the severe disagreement between the model and experiment is concen-
trated in the lower partial.waves; especially the S3;, P11, P33 and. D35 channels.
As discussed in detail in Refs. 7 and 8, this is probai)ly a failure, not of the
Skyrme model per se, but rather of our leading order analysis in 1 /Nc.”14 It is
illuminating to summarize the situation for these four “problem” channels:

(?) The A (i.e., the P33(1232)) is degenerate with the nucleon in the large- N,
limit; they are split in mass only by terms that scale like 1 /Nc.49 Consequently,
the A does not—indeed, cannot—show up as a resonance in a leading-order 2- or
3-flavor analysis such as ours."® 1t is interesting that, beyond the energy range
associated with the A, the experimental and Skyrme-model amplitudes appear
to be in quite reasonable agreement (note the cusp-like behavior in each case).

(7¢) Similar disagreement plagues the P;; channel, where the Skyrme-model

amplitude stands in stark contrast to the classic resonant behavior that appears

§13 This entails looking for Breit-Wigner peaks in the function |dT/dE| plotted against energy.

14 Specifically, the S, P and D waves can be shown to couple to the rotational and trans-
lational gzero-modes of the skyrmion, and therefore turn out to be extremely sensitive to
next-order 1/N, corrections.”

§15 Skyrme himself recognized the lack of a P-wave resonance in his model:? “The P-wave
meson-particle interaction [is] repulsive on the average. There is no indication of the strong
attraction observed in the pion-nucleon resonant state, but this would hardly be expected
in a static classical treatment where the rotational splitting of the particle states has been
ignored.”
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in Nature, associated with the Roper resonance at 1440 MeV. In light of the qual-
itative similarity between the P;y and P33 amplitudes in both the Skyrme model
and experiment, we proposed somewhat optimistically in Ref. 7 that the same
1/N, corrections that are expected to produce a low-lying Skyrme-model reso-
nance in the P33 channel (i.e., the A) are likely to produce a low-lying resonance

in the Pj; channel too (i.e., the Roper).

At the time, this scenario left us somewhat in a quandary, for the following
reason. A speed analysis reveals that the Skyrme-model P;; amplitude in both
the 2-flavor and 3-flavor case contains a weak resonance before' the cusp, at
approximately 1430 MeV."® On aesthetic grounds, it would certainly be hard
to justify identifying this tenuous state with the robust Roper resonance seen
in Nature; indeed, as just mentioned, we preferred to equate the Roper with
a Skyrme-model state that we hoped would emerge in the next order in 1/N..
This left us no choice but to associate the Skyrme-model state at 1430 MeV with
the next-excited state observed in this channel, which is traditionally assigned a
mass near 1700 MeV. The large discrepancy between these two values stood out
as one of the most disappointing results in an otherwise successful Skyrme-model
spectroscopy (see Fig. 1b). However, the experimental situation for this channel
has since changed. Surprisingly, the most recent 7N experimental partial-wave
analysis19 finds no evidence for a P;; excitation at 1700, but instead finds a
second state nearly degenerate with the Roper—in much closer agreement with
the Skyrme model. ™7 Tt is interesting that, from the point of view of skyrmion

physics, these two nearly-degenerate states arise in very different ways: the Roper

16 Note that the amplitude does in fact curve counterclockwise in this region.
§17 The analysis of Ref. 19, which probes an energy range Ec\ < 1726 MeV, is not sensitive

enough in the upper region to exclude definitively the P;;(1700).

-
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(like the A) is split from the nucleon only by an energy of O(1/N.), while its
partner has an excitation energy of O(1). The observed near-degeneracy is an
accidental consequence of the fact that, in the real world, N, is not a very large
number.

(137) Another area of severe disagreement between the Skyrme model and
experiment is in the S3; channel, which is repulsive near threshold in Nature but
attractive in the Skyrme model. Again, this discrepancy is an artifact of our
leading-order 1/N, analysis. Specifically, the repulsive threshold behavior of the

S31 amplitude, predicted by the Weinberg-Tomozawa two-soft-pion theorem,46

——

emerges in the Skyrme model only at order 1/ Nc-8’47_48—

(1v) Finally, the poor agreement between the model and experiment in the
D35 channel deserves some comment. It is clear from Fig. 1 that, in the Skyr-me
model, the D35 amplitude is nearly as big as the D;3, while in Nature it is by
far the smallest of the four D-wave amplitudes. Furthermore, the resonance
masses of the four D-wave states are nearly degenerate with one another in both

the 2- and 3-flavor Skyrme models,7’13

while in Nature the D35 state at 1940
MeV is 200-300 MeV higher in mass than its three pa,rtners.‘118 It is interesting
to speculate as to the reason for these discrepancies between the model and

experiment.

It happens that the D35(1940) is of particular interest from the quark point of
view, since, in the language of SU(6), it is the only state present in the Lqyark = 1
56 that is not contained in the Lgy,;x = 1 70; as such, it serves as a “marker”

for this multiplet.ulg Now, in Nature, the Lqyark = 1 56 is substantially higher

#18 It is noteworthy that the D35 amplitude is clearly resonant (hence qualitatively closer to
the Skyrme model) in the experimental analysis of Ref. 18, as opposed to that of Ref. 17.
{19 We thank Bob Jaffe for an illuminating discussion on this point.
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in mass than the Lqy,x = 1 70. However, there is a well-known problem that
plagues naive bag-model spectrum calculations: *® namely, the physical quark
excitations corresponding to this multiplet turn out to mix with the (unphysical)
translational zero-modes of the center of mass of the system, which also generate
an Lqyarx = 1 56. The result of this mixing is to lower the predicted mass of the

multiplet to a phenomenologically-unacceptable level.

It is likely that a similar phenomenon is taking place in our Skyrme-model
calculations. One would therefore expect that a proper “factoring-out” of the
skyrmion’s translational zero-modes would raise the mass of the Skyrme-model
prediction for the mass of the D35,' improving the agréement with experiment.
Hopefully, the overall size of the Skyrme-model curve in this channel would be
diminished as well. (Of course, the other S- and D-wave states would also be
expected to be modified, to the extent that they, too, contain admixtures of the

Lgyark = 1 56.)

Fortunately, the other TN — # N partial waves pose no such problems. It
is particularly striking that both the 2- and 3-flavor Skyrme models reproduce
the “Big—small—small-big” pattern found in Nature, whereby, for instance, the Fis
and F37 amplitudes take much larger excursions through the unitarity circle than

hzo furthermore, in the model as in Nature, the first

do the Fy7 and F35 curves;
amplitude is almost always bigger than the last: Fy5 > F37, etc. We shall return
to this phenomenon in Section VI, where we shall argue that both the Skyrme

model and the optimal 2- and 3-flavor effective Lagrangians of Nature (which we

do not know) lie in a large class of models which can be expected to display a

§20 The pattern emerges even more sharply if the experimental curves are cut off at the natural
8
resonance scale for each value of L.
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big-small-small-big pattern.

A technical aside is in order concerning our parametrization of energies. Each
of the Skyrme-model graphs depicted in Fig. 1 extends from threshold to an
excitation energy of 2efr, where ¢ and f, are the two independent parameters
that enter into the Skyrme Lagrangian, Eq. (1). It is not clear to us how best to
convert this energy into GeV’s, especially in light of our having set m; = mg =
0 in our phase-shift calculations. However, for purposes of comparison with
experiment, an excitation energy of 2efr, can be thought of as corresponding

roughly to a total center-of-mass energy of 2.5 GeV.” We emphasize once again

— o~

that the shapes of the Skyrme-model curves are completely independent of the
values of e and f,, apart from the issue of determining precisely where the tails
of the curves should be cut off. For simplicity, we shall cut off all Skyrme-model

graphs presented in this paper at 2efy (although the experimental cutoffs vary).

Let us turn to the process 7N — wA . Of all the inelastic processes that
we shall survey, this one is by far the best understood. As a measure of this,
the recent partial-wave analysis of Manley et al.,20 which is based on a quarter-
million 7w N events, is in good overall agreement with the three principal analyses

that preceded it. 21-23

Figure 2 displays the experimental 7N — 7A solution drawn from Ref. 20
compared with f,he 2- and 3-flavor Skyrme-model predictions. As in the elas-
tic case, the agreement is surprisingly good. In fact, there is 100% agreement
between b‘oth the 2- and 3-flavor models and experiment in the signs of the

N — A :«;,mplitudes.“21 We find the correctly-rendered minus-sign in the DDj3

§21 The reader is referred to Ref. 20 for a survey of sign predictions made by competing
theories. '
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FIG. 2. #N — A : comparison between the 2- and the 3-flavor Skyrme models and the ex-
perimental solution of Ref. 20 (1.34 GeV < Eg,, < 1.91 GeV). Channels are labeled by LLy; 55,
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channel especially gratifying, in view of the fact that all other PP, DD and FF
graphs lie in the upper-half plane. It is also noteworthy that, in both the model
and experiment, the FFj5s amplitudes circle around much more than the FFag

and F F37 curves.

For channels where L = L, it is clear that the 3-flavor model improves signif-
icantly on the 2-flavor model as regards the magnitudes of the curves. However,
the reverse is true when L' = L % 2: in these channels, the 3-flavor curves are
uniformly smaller by é factor of 5\/16/ 36 ~ .4 than their 2-flavor counterparts,
which were already sma,lle_l; than experiment. We shar.ll see when yvevdiscuss the
processes KN — KA, KN — 7X* and KN — KA 'that the Skyrme model
systematically underestimates the sizes of the amplitudes with L' = L + 2 com-

pared to those with L' = L.

In the remainder of this Section, and in Sections IV and V to follow, we shall
examine processes that involve strange particles. As a result, whenever we refer

to the Skyrme model, we shall mean the 3-flavor version necessarily.

Figures 3 and 4 display the Skyrme model juxtaposed with experimental so-
lutions for the processes 1N — n N 2 and 7N —» KA .2 In general, the Skyrme-
model graphs are too small for the former, but too big for the latter. .For
7N — nN , the agreement is poor for the lower partial waves (L < 2) but quite
respectable for the higher waves (L > 3). Probably, this is largely due to the
fact that the S-, P- and D waves in the model are highly sensitive to 1/N; cor-
rections, as mentioned earlier. However, the issue is clouded by the fact that the
two most recent experimental analyses for this process are themselves in severe

. . 2425
disagreement with one another for these waves.

The overall degree of agreement is somewhat better for TN — KA . Here,
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the most noticeable feature of the model is the sign alternation characterizing
the plots; this pattern appears to be present in Nature as well, albeit in a more

ambiguous manner.

Figure 5 depicts the process 7N — KX 2 Despite the scale difference be-
tween the Skyrme model and experiment in the D, G and H waves, the agreement
generally is quite good. It is interesting to compare the experimental graphs of
Ref. 27, which are the ones displayed in Fig. 5, with the results of previous

28—-30 : . ' .
These earlier analyses, based on an order of magni-

partial-wave analyses.
tude fewer events, required.several additional strongly-coupled resonances in the
lower partial waves. Furthermore, fhe four solutions pfesented in Ref. 29 and
the two solutions given in Ref. 30 are all characterized by positive F35 and Fz;

amplitudes, and they predict that the F3s amplitude should be larger than the

F37. On all of these counts, the Skyrme-model results argue strongly in favor of

Ref. 27.

Unfortunately, the analysis of Ref. 27 is restricted to isospin—% channels. In
the isospin—% sector, there is no visible agreement among the previous studies,
although on the whole the Skyrme-model graphs seem closest to those of Ref.
30. |

The comparison with the Skyrme model sheds light on an interesting ob-
servation made by the authors of Ref. 27. They regard the fact that their
partial-wave amplitudes lie almost entirely in the lower-half plane as compelling
evidence aga’inst the existence of “exotic” 27-plet resonances in these channels. 22

This claim is based on the observation that, in the isospin-% channels, the 27

22 Such states are called “exotic” because they cannot be formed from three quarks; see Section
Iv.
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couples to 7N — KX with a sign opposite to that of the 10; a strongly-coupled
exotic resonance would therefore be expected to spoil the observed homogeneity
in sign. However, the Skyrme model provides a counterexample to this claim!
For, as we shall see in the following Section, the model actually features an
overabundance of resonances in the 27. Nevertheless, in the isospin-% channels
of tN — KX , these exotics are outweighed by the stronger resonances in the
10, which are nearly degenerate with those in the 27."% The net result is that
the Skyrme-model ami)litudes, too, favor the lower-half plane, as can be seen in

Fig. 5. -

— - -

The issue of exotic resonances in the Skyrme model is the topic of the fol-

lowing Section.

IV. KN Scattering

We turn, next, to the case of KN scattering. The isospin-0 and isospin-1

channels of KN correspond to pure 10’s and 27’s of SU(3) Consequently,

flavor*®

a KN resonance, although not forbidden, cannot be composed of three quarks,

‘but must consist instead of four quarks and an antiquark in the simplest case.

The existence of such resonances has been the subject of considerable contro-

versy over the last two decades.’* The most recent partial-wave amanlysessa_35

tentatively favor such states in the P35 and Doz channels, and perhaps in the

#23 This near-degeneracy is simply due to the fact that both sets of amplitudes are built from
the same reduced amplitudes in the skyrmion formalism.

§24 On opposite sides of the spectrum, Martin and Oades®' claim that there are no bona fide
poles on the second sheet for such processes, while Arndt, Roper and Steinberg32 seem to

find poles in almost every channel; however, in Arndt and Roper’s later ana.lysis33 , most
of these poles disappear thanks to a different choice of parametrization.
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Po1, P11, Dos and D;5 channels as well. It is interesting to see what the Skyrme

model has to say on the matter.

Figure 6 illustrates elastic KN scattering in the Skyrme model juxtaposed

with the results of the two latest partial-wave analyses.%’34

The overall degree
of agreement between the model and experiment is poor. This should not come
as a surprise, for the following reason. It turns out that the 3-flavor Skyrme
model with N. = 3 contains as rotational excitations of the canonical “hedgehog”
soliton (Eq. (15) below) an infinite tower of baryon multiplets beyond the usual
spin-% octet and spin-% d‘(icuple_t_.4 This tower includes, in particular, a spin-
% 10 and spin-% and spin—% 27’s. Each of these multiplets would naturally be
expected to have excitations of higher angular momentum, just as the usual octet
and decuplet have; such states would manifest themselves as resonances in KN
scattering. In short, there is nothing exotic about KN processes in the Skyrme

model; this is confirmed by the multitude of obviously resonant Skyrme-model

amplitudes in Fig. 6.

It is instructive to consider an analogous situation involving the 2-flavor

Skyrme model. It is well known that this model contains states with I = J =

1 35 7

2>5:3>39,.-- that emerge as rotational excitations of the hedgehog.49 The two

lowest-lying multiplets are naturally identified with the nucleons and A’s, re-
spectively, while the states with I = J > g are traditionally labeled “artifacts
of the model” and swept under the rug. Thankfully, isospin conservation forbids

these states from appearing in the s-channel of 7N scattering, so that they do

25 .
not really cause a problem.” However, one can consider the gedanken ex-

125 Note that an isospin-% baryon B% can be produced in the Skyrme model in the process
N — ﬂ’Bg_ and is therefore required for unitarity.

- 35



periment of 7+ A*+ scattering, which is pure isospin-3. From the quark point
of view, this is an exotic process just like KN scattering, and we would expect
to see a high proportion of repulsive amplitudes. In contrast, in the skyrmion
approach, there is nothing exotic about this channel, since isospin—% states exist;
we have, in fact, explicitly verified that nearly all the Skyrme model graphs for

7T AT+ o 7 At evince the usual resonant behavior.

The moral is that the skyrmion approach can hardly be expected to yield
accurate information about KN scattering, as these processes directly probe
those states that one would preferto dismiss as unphysical artifacts of the model.
This having been said, it is interesting to speculate about whether those exotic
states that do seem to be present in Nature reflect in any way the “skyrminess”

of the nucleon. We offer the following cautious observations:

1. Although the four P-wave Skyrme-model amplitudes appear to be re-
pulsive, close inspection reveals that the Py; and Py3 amplitudes actually curve
anticlockwise before the cusps. Therefore, they might be interpreted as very weak
resonances superimposed on a strongly repulsive background. It is interesting to
note that these are the same two P-wave amplitudes that curve anticlockwise in

Nature.

2. The Do3 channel is the most prominent of the D-wave curves in the Skyrme

model, and it is the most plausibly resonant D-wave channel in Nature as well.

3. Interestingly, there appears to be some unexpected resemblance in the P-
and the D-wave sectors between the four KN — KN experimental amplitudes
and their tN — 7N counterparts (compare “Experiment I” in Fig. 6 to Fig. 1).
~ In particular, in the P waves, the first and fourth amplitudes for both processes

curve anticlockwise, while the second and third curve clockwise. Likewise, the D
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waves are characterized by a pattern of “decreasingly resonant behavior” across
the four graphs in each process. Consequently, it is conceivable that the same
1/N, corrections that are expected to improve the agreement in these waves

between the Skyrme model and experiment for tN — 7N will do likewise for

KN - KN .

4. Finally, we have come to expect reasonable agreement between the Skyrme
model and experiment in the F, G and H waves. It is unfortunate that the
only such channels fox; which experimental KN — KN amplitudes have been
presented, namely the FL5.LG17 and Hjg, are predicte:d by the Sk)_rrme model to
be small and rather featureless (Fig. 6). A much more critical test of whether the
model has anything relevant to say about KN scattering would be the appearance
of resonances in the Fyps, Go7 and Hog channels. An analysis of these channels

can be expected in the not-too-distant future.*®

The process KN — KA is understood much less well than the elastic case.

In fact, due to the dearth of data, the authors of the only existing partial-wave

-a,na.lysis36 were unable to decide among three possible solutions, each of which

gives a mediocre fit to the data (x%/DoF = 2.33,2.33, and 2.68, respectively, for
Solutions A, B and C). We have depicted all three solutions in Fig. 7. Evidently
the Skyrme-model graphs bear no resemblance to any of the three solutions,
apart from a reasonable sign correlation with Solution B. Particularly disturbing
is the fact that, while those channels in which the kaon jumps by two units of

angular momentum contribute appreciably to the experimental T-matrix, they

126 R. A. Arndt, private communication.
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are suppressed in the Skyrme model by roughly a factor of 25 compared with the

channels in which_L does not change.

All in all, it is unclear to what extent, if any, the Skyrme model has anything

valid to contribute to our understanding of KN scattering.

V. KN Scattering

We turn, finally, to an examination of KN scattering. The elastic case
KN — KN is considered very well established, with excellent agreement be-
tween the two most comprehensive partial-wave analyses (Refs.. 37 and 38).
Figure 8 presents the Skyrme modél versus experimen"c37 for this process. As
in the case of mN scattering, there is poor agreement for the S and P waves,
but reasonable agreement for the D waves and higher, with the F waves be-
ing the best. The most obvious feature of the Skyrme-model graphs is the
“big-small-small-small” pattern characterizing the four independent amplitudes
{Loz2r-1,Lo2r+1,L1,2—1,L1,20+1} for each value of L > 0; for example, the Foys
curve is larger than its Fyp7, Fi5 and Fy7 counterparts. In general, this pattern
characterizes the experimental graphs as well. The Pyz and D;s curves appear
from Fig. 8 to be semi-exceptions to the rule; however, if one cuts off the en-
ergies at the “natural” resonance scale for each value of L (which we take to
be the average value of the masses of the prominent resonances formed in these
channels), then the big-small-small-small pattern shows up much more clearly. 27

This point is illustrated in Fig. 9 for the P and D waves.

§27 As mentioned earlier, the same phenomenon occurs for elastic #N scattering, where the
“big-small-small-big” pattern likewise emerges most clearly when the graphs are cut off at
the natural resonance energies. In fact, if instead one goes out to ss4 GeV uniformly, then
the pattern disappears completely, and all four 7N amplitudes for each value of L approach

the same value.
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A subsidiary pattern apparent from the Skyrme-model graphs of Fig. 8 is a
relative size ordering among the three “small” amplitudes for each value of L > 2:
for instance Dgs < Dy3 < Dss, ;nd likewise for the F and G waves. And indeed,
with the glaring exception of the Gy, this ordering holds for the experimental

curves as well (Figs. 8-9).

We turn next to the inelastic processes KN — 71X and KN — 7wA . Here
there are areas of serious disaccord between competing partial-wave a,na,lyses.:w’39
As can be seen in Figs. 10 and 11, the agreement with the Skyrme model is
likewise less good than for ela,stlc scattering. Partlcularly dlsappomtlng in the
case of KN — 7% (Flg -;)) is the discrepancy in the sign of the D13 channel.
In contrast, the agreement in the F-wave sector is excellent. Moreover, the
Skyrme model successfully predicts a big-small-small-small (or, perhaps more

descriptively, a big-small-medium-small) pattern for KN — 7% , just as for the

elastic case.

In Fig. 11 we have juxtaposed the Skyrme-model graphs for KN — 7A
with the results of two independent experimental analyses.am9 Clearly the
model is in better agreement with Ref. 39 (“Experiment I”) than with Ref.
37 (“Experiment II”) in the P and D waves, although in either case the Djs
amplitude is in complete disaccord. Conversely, the agreement is much better
with Ref. 37 than with Ref. 39 in the S and F waves; however, for the Fj7
channel, this is simply due to the fact that the authors of Ref. 39 have cut
off their analysis before the effect of the ¥(2030) resonance could be felt. It is
pleasing that the Skyrme model renders correctly the relative signs between the

two graphs for each L for this process.

Figure 12 displays the Skyrme-model curves for KN — nA . Although an
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experimental partial-wave analysis for this process has never been published in
graphical form, Rader et al.quote couplings at resonance of approximately -.04,
-.1, and -.05, respectively, for the Dgs, Fos, and Goy amplitudes.'10 Note the sign

disagreement with the Skyrme model in the first of these channels.

Finally, Figs. 13 and 14 present the graphs for the processes KN — nX* a
and EN — KA .*? Here the agreement with the Skyrme model is mediocre. In
both cases the Skyrme model underestimates the importance of the amplitudes
with L' = L + 2 compared to those with L' = L, as before. For KN — nX*

the most serious discrepancies are the signs of the DD;s and PFy; channels;

o ol

interestingly, the PFp3 channel is also the site of greatest experimenfal disagree-
ment with SU (G)W.41 There is also sign disagreement in the DG channels, but

the authors of Ref. 41 consider these waves to be less well established. As for
KN — KA , the comparison to the Skyrme model is hampered by the fact that
the experimental solution finds only two clear resonances, the D;3(1940) and the
F17(2030), in the narrow energy-range probed. Disappointingly, the DD;3 curve
has the opposite sign of its Skyrme-model counterpart. It is noteworthy that
a negative experimental amplitude in this channel disagrees, not just with the

Skyrme model, but with the nonrelativistic quark model as well.>°

In sum, although KN scattering in the Skyrme model works less well than
« N, it is much more successful than K N. Many sign and size patterns are mim-
icked correctly. The agreement in the elastic case is particularly impressive, and
on a par with #N — 7N and N — 7A . It is an open question whether inclu-
sion of SU(3)-breaking terms (i.e., meson masses) into the effective Lagrangian
would improve the agreement with experiment for the scattering data, as it does

for the static properties of the model.®

45



KN—73*

_ Experiment
-02 0 02 O 02 O 02 O 02
0.2 T 1 T T
L
Ot - oGk (%)
PFoi Ppo\s/ PRI PPis
0.2 T T T DDI
5
oF  F O | (¥) b .
0.2 T T L T
ol O L (k) o 9 L /)
FFos FFoz FFis FFi7
-0.2 — —
-2 0 02 0O 02 O 02 O 02
0.2 T T T T
SD DS
_ SDo Q DSis
- 0.2 T T T T
PFos PFis FPos FPis
or G Q -
-0.2
-005 0 005 O 005 O 005 O 005
- 0.05 T T T T
DGos Q GDo7 GD7
Or - - -k
b\ DG/ (%) (%)
-0.05

FIG. 13. KN — X" :

Skyrme Model

0.2

-02 0 02 O 02 0O 02 O
0.2 T T I ]
o+ O E—_— - e .
PFoi PPos PP PP
03
Or O ~ 0 = 0 ~ -
DDogs DDy3 DDs
0.2 T /) T T
FFor FFis FFiz
-0.2 -
-0.08 O 008 O 008 O 0.08 O 0.C8
0.08 T T T T
9 SOy DSo3 ,
O - — — I
SDor < C DS;3
0.08 T T T T
) PFis FPos
or Q - o o) - _®
PFos FPis
-0.08
-0.05 O 005 © 005 O 005 O 0.05
0.05 —— . l :
DG GD
o DL o] o7 |
DGos C | 6oy
-0.05

0

©
v

o

5329824

comparison between the Skyrme model and the experimental solution of

Ref. 41 (1.78 GeV < Egy < 2.17 GeV). Channels are labeled by LL} ;. For a fairer comparison,
we have added a detached arrow in the experimental PPy;, DDys, SD1; and DS;3 channels to
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VI. How model-dependent are these results?

In the last three Sections, we have presented a detailed comparison of the
Skyrme model with experiment covering 165 7 N, KN and KN channels. Despite
areas of deep disagreement, such as “exotic” KN scattering, and S and P waves
in general, we consider the overall degree of accord obtained from such a simple
model to be powerful evidence for the validity of the soliton approach to baryon

physics.

In some people’s view, the surprising successes of the Skyrme model indicate
that the Skyrme Lagrangien, Eq: (1), must be extremely close to the optimal

effective Lagrangian of Nature, Lqpt, which is derivable in principle from QCD:

fropt = £skyrme .

We do not share this opinion. In our view, the Skyrme Lagrangian is not much
more than a convenient testing-ground for soliton dynamics; it is, in a sense, the
“minimal” model. A more realistic starting point would necessarily involve many
more low-lying mesons and higher-derivative interactions; there has already been

progress toward extending the Skyrme model along both these lines.

In light of this, it is crucial to determine to what extent the Skyrme-model
results presented here (both good and bad) can be expected to survive such
modifications. This is the topic of the present Section. In the course of the
discussion, we shall discover what we believe to be the key to the Skyrme model’s
success in describing meson-baryon scattering. This will enable us to define
implicitly a large class of models which, we believe, would enjoy comparable

overall success.
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We shall focus at first on processes where the initial and final meson orbital
angular momenta are equal. In" our eyes, a particularly striking achievement of
the Skyrme model in both its 2-flavor and 3-flavor incarnations is the big-small-
small-big pattern characterizing the four elastic 7N curves for each value of
L >0 (cf. Fig. 1). Let us start by reviewing the 2-flavor analysis of this pattern
presented in Ref. 8. We will find it convenient to represent the # N — « N partial-
wave amplitudes by the notation T};}N with I = %,% and J =L+ % From the

formula for 2-flavor scattering, Eq. (2), we obtain: 1

T:;:Z_% = 25—;'1“&—1,12 + %TLLL, - - (4a)
T’Z;:Z+§ = ﬁTLLL + :—E'EZ'TLH,LL, (4b)
T;;ZZ_% = %TL—I,LL + %TLLL + %—ETLH,LL, (4¢)
T;;;; = zz_;;TL—l,LL + :—E% LLL g}%%%% L+1,LL- (4d)

To make progress, let us make use of the fact that, in the Skyrme model, the
variation of Tz41, 1z from the origin is essentially negligible compared with that
of Tg—1,zr, and Tzrr (cf. Appendix A). Accordingly, let us make the simplifying

approximation
To+1,0(w) =0

in Eq. (4). The big-small-small-big pattern then emerges as a natural conse-
quence of the group-theory: it is simply due to the large group-theoretic coeffi-

cients multiplying Tz—1,rr and Tzrr in Eq. (4a) and (4d) compared with (4b)

4§28 Although Tk /1 and T}é}:’oL} refer to the same quantity, we shall employ the former notation
- when we are invoking the 2-flavor formalism.
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and (4c¢). In this way, the pattern in the 2-flavor Skyrme model results from an

elegant interplay between group-theory and dynamics.

How model-dependent s this argument? Recall that, as noted in Section II,
the group-theoretic structure of Eq. (2), and hence of Eq. (4), is completely in-
dependent of the details of the meson Lagrangian that one starts with, but relies
only on the “hedgehog” structure of the underlying skyrmion. The only specific
dynamical input from the Skyrme model that we needed to formulate the argu-
ment was the presence bf a two-tiered “hierarchy” among the reduced amplitudes.
We can therefore assert that the big-small-small-big pattern will characterize any
2-flavor skyrmion model for which the reduced amplitude Tp41,1L was negligi-
ble compared with Tg_1,rr and Tprr. As such, the pattern can be considered a
quasi-model-independent result. In particular, since the pattern characterizes the
experimental amplitudes (apart from the D waves), it is a safe bet that the op-
timal effective Lagrangian of Nature, which we do not know, itself falls into this
class of models. Further evidence for this claim will be put forth in the following

Section.

There is a natural way to extend this line of reasoning to the 3-flavor for-
malism. Recall that, in the 3-flavor Skyrme model, the variation of the reduced

. {1,0} {0,0} -+ - - . .
amplitudes TL+1,LL’ T’ TL+-;-,LL’ TL—%,LL’ and TL+§,LL is small in compar-
. 1,0 —{1,0
ison to TL{—-I,}LL’ L{LL}’ and T.*

L-1,IL" If one neglects the former, Eq. (3) implies

the following approximate expressions for the physical 7N amplitudes:

TtNrN ~ (2L—1)(49L+24) __{1,0} 25L+24T{1’0} 27L+10

(5¢)

Lypl-3 = assr(erL+1) L7UEL T aasp LEL T g5(an4n) L-3.LD
*NxN 2L-1 {1,0} 25L+1 T{l’o} 7L (5b)

T ~ Ml _E
L3 L+3 ~ assar+1) LULL T yasp4r) LLL U g52041) L-3.LD°

50



*N=N (2L-1)(13L—12) {1,0} 25L-12 (1 0} 12L-5
T ¢ 2 7 ! + T\ — T 5¢
L3,L-3 135L(2L+1) L~LLL " y35p "LLL T ggop4q) L-3,LL° (5¢)
Trl\;tN = 3_72L—1 {1,0} 25L+37 . {1,0} 22L -+ . . (5d)
L3L+3 ~ 1asap+r L~LLL T yap4n) LLL 7 45ar41) L-3.LL

Although these expressions are more complicated than their 2-flavor counter-
parts, the big-small-small-big pattern reveals itself, as before, in the relative

sizes of the group-theoretic coefficients.

In addition, despite the different coefficients involved in Eqgs. (4) and (5), the
first of the “big” amplitudes in each instance is predicted to be “bigger” than
the last: =

*NxN V *NxN
Trir-: > Tprep
This is manifestly the case in the 2- and 3-flavor Skyrme models; and indeed,
with the exception of the P waves, it is true for the experimental amplitudes as

well.

We can profitably apply this mode of analysis to a wide range of other pro-
cesses. Most notably, for KN — KN we find:

RNEN | (L-1)@0LY9) - {1,0) | Lo {10} = 14L+6 (6a)
LoL-3 =  gor(zL+1) L~LLL T gop "LLL T y55p4y) L-3,LL

KNKN ~ 2L-1 {1,0} 11L+2 T{l’o} 2L T+ (6b)
LO,L+3 ™ g5(aL+1) L~LLL " go(r41) LLL 7 y5(2041) L-3.LL

BENEN _ (2L—1)(20L-3) - {1,0} L BS 0y 2204 oy (6¢)
LyL-3 = gpop(ar+1) L~LLL T gqor LLL 7 4g(5p41) L-3.LL

KNKN ~ EZL—I {1,0} 23L+26 __{1,0} + 2L T+ (Gd)
LyuL+; ~ yssor+1 L~UEL T gro(p41) LLL 7 3(ap41) L-3.LL°

Similarly, the T-matrix for KN — ¥ is determined by

Enes  (2L—1)(44L+21)V6 __{1,0} (23L+21)\/6T{1,0}
Lo,L-3 — sa0L(2L+1)  L~LLL se0L  LLL
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(OL+4)V6
45(2L+1) L—5,LL (7a)

KN»T (2L l)\/_T{l o} (23L+2)\/_ {1 o}+ Lve +

= 7b
LOL+3 = 7 groar+1) LBLL T Tgeo(r41) [£237 45(2L+1) L—§,LL’ (78)
KN»T ~ (2L—1)(8L+1) {1,0} 7L+1 T{l 0} 2L-3 + (76)
LLL-3 ~  “eor(2L+1) L-LLL T g0 'LLL 45(2L+1) L-3,LL
KNsz 2L-1 {1,0} 7L+6 {1 ,0} 2L T+ (7d)

For both these processés, as a moment’s inspection of the coefficients cénﬁrms,
we can expect to see a big-small-small-small pattern—which is precisely what we
found in the previous Section for both the Skyrme model and experiment (Figs.
8-10). In addition, the group-theoretic coefficients appearing in Eq. (6) suggest
a relative size ordering among the three “small” physical amplitudes,

KNKN KNKN ENKN

Tror+r <Trp1<Tpyip41

which we also noticed in Section V.

The same type of quasi-model-independent analysis successfully predicts the
signs of many inelastic amplitudes, as well. As an example, consider the Fi5 and
Fy7 channels for the process KN — A (Fig. 11). Eq. (3) tells us:

Fis: T=[-03T5" + 0375 — 0874 ]

0,0 -
+ 157:1{1 o 047'3{::’»3 = 03T”33 03T533 +'207’733 (80)
Fr: T=[08T5% + 0775 — 027 ]
1,0 0,0 -
— 00T, L% — 047,00 0975, + 15T, +.02T, 5, . (8D)
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If we assume that the reduced amplitudes enclosed in brackets dominate these
channels in Nature as they do in the Skyrme model, we correctly predict the —
and + signs for t};e Fis and F17", respectively; nor are we surprised to find a 1:3
ratio in the magnitudes of thé experimental curves (versus 1:2 in the Skyrme

model). 29

In sum, we have outlined a methodology that successfully explains many of
the observed features of the experimental meson-baryon partial-wave T-matrix.
Moreover, we have seen that the general success of the Skyrme model] can be
largely explained by the hypothesis that the Skyrme Lagrangian shares with the
(unknown) optimal eﬂ‘ect.i;; Lagrangian Lopt: (1) the “K -symmeizry;’ character-

istic of hedgehog solitons, and (ii) a plausible two-tiered hierarchy among the

reduced amplitudes.

This hierarchy defines a large class of models which we expect to enjoy success
comparable to that of the Skyrme model in explaining the experimental scattering
data. It would, however, be a mistake to conclude that all predictions made by
the Skyrme model are likewise quasi-model-independent. As a counterexample,
consider once again the process KN — 7% (Fig. 10). The Fys and Go7 channels
are governed by Eq. (7a), with L = 3 and L = 4, respectively. Note that, taken
together, the first two coefficients (which are negative) are comparable in size to
the third (which is positive). Thus, the overall sign of the physical amplitudes

will be determined by the detailed dynamical question of whether 709 and

L-1,LL
{1,0}
L

+
TLL

outweigh TL—‘ 1L °F vice versa. One would expect the answer to this
2

question to depend crucially on our particular choice of Lagrangian. (The reader

#29 This analysis also works for the G317 and G channels but fails for the D;3°and D;5 channels.
This suggests that, for the D waves, the two-tiered hierarchy that we have postulated for
the reduced amplitudes runs into trouble; we shall return to this shortly.
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should contrast this example with that of Eq. (8).) In light of this, it is not
surprising to find disagreement between the Skyrme model and experiment in

the Go7 channel.

As a somewhat different example, consider the Fy7 and Gpg amplitudes for
the same process. Here, the coefficients given in Eq. (7b) are so small to begin
with that it was probably an unjustified approximation to have dropped the
contributions of the other reduced amplitudes. (Even a “small” amplitude, after
all, can make a significant contribution if it is multiplied by a sufficiently large

number.) In particular, the coefficients of TL{i’loi 1, and TL-: 117 for these channels
. » _ 2!

e

turn out to be an order of magnitude bigger than those that appet;r in (7b), and
of opposite sign from one another in addition. As a result, we can no longer with
any degree of confidence make a quasi-model-independent sign prediction about
the physical amplitudes, and should not be surprised to learn that the Skyrme

model disagrees with experiment over the sign of the Fyy.

We can summarize the discussion so far in this Section by the following
statement: Whenever a Skyrme-model prediction follows from (i) the two-tiered
hierarchy among the reduced amplitudes and (it) group theory, as ;'Ilustrated in
Egs. (4)-(8), there is a high probability of agreement with experiment. Con-
versely, in all other cases the agreement is much less reliable. In particular, we
can certainly expect that specific details about the shapes of amplitudes will vary
significantly from model to model, as will the precise values of masses and widths
of resonances. In all of these areas, there is significant room for improvement over

the Skyrme model.

One specific recipe for improvement is suggested by the observation that

| fully 35% of the channels with L' = L for which the sign of the Skyrme-model
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amplitude disagrees with experiment are D-wave processes. This leads one to
suspect that the hierarchical hypothesis probably does not work very well in the
D-wave sector of Lopt—a conclusi'on bolstered by the violation of the big-small-
small-big pattern in that sector (Fig. 1). (We will supply a further piece of
evidence for this conclusion in the next Section.) Unfortunately, it is not clear
how best to modify the hierarchical assumption for the D waves in order to
predict the signs more accurately. However, an analysis similar to that used in
Eq. (8) suggests that the reduced amplitudes nglz,o}, 2{2%’0} and T%'Ez probably

cannot be neglected in Nature, as they can in the Skyrme model.

—

It is interesting to note that, in the Skyrme model, the two-tiered hierarchy
(i.e., the unexpectedly small size of five of the eight reduced amplitudes for each
L > 0) actually comes about for three independent reasons:

(?) The reduced amplitudes TL“_%’ ppand T 1,01 2T small because they only
receive contributions from the Wess-Zumino term.'?

Ta {1!0} - + R .
(53) TeiLes TL+§,LL and TL+§,LL are small because the differential equa-

tions that determine the phase—shift;s7 13,14 ontain attractive terms proportional
to factors such as [L(L+1) — K(K +1)]; such terms therefore give a net repulsive
contribution to these three reduced amplitudes, which have K > L. (Note that
[ 3LL is thus “doubly small.”)

(v32) TL{gf} vanishes identically in the Skyrme model because of the commu-
tator in the middle term of Eq. (1).
In our opinion, conditions (¢) and {#f) will almost surely survive the addition
of extra terms into the Skyrme Lagrangian. In contrast, the size of TL{},)’I?} can

be expected to vary greatly from model to model. In fact, it is possible that

this amplitude might not be completely negligible in the “optimal” 3-flavor ef-
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fective Lagrangian of Nature, and that this might partially account for some of

the disagreement with the Skyrme model.

Thus far in this Section, we have focused on processes in which the initial
and final meson orbital angular momenta L and L' are equal. The analysis has
involved an interplay between group theory and dynamics, the former providing
the numerical coefficients, and the latter enabling us to focus on only three of the
eight contributing reduced amplitudes. In contrast, processes with L' = L +2 are
much simpler to ana,lyzre, since, as discussed in Section II, the physical amplitudes
are proportional to a singl_g reduced amplitude TK{,E) Ii = Té}j?} w_ith K= (L+
L')/2. Thus all PF and FP #N, KN and KN amplitudes, for instance, are
predicted to be proportional to one another in the skyrmion approach, regardless
of the details of the effective Lagrangian that one starts with. Predictions of
relative signs and sizes between such amplitudes thus reduce immediately to

questions of pure group theory.

Tables XIV summarizes the situation for the 20 =N — 7A , KN — KA ,
KN — KA and KN — nZ* channels with L' = L + 2 for which we presented
experimental partial-wave data in Sections III-V. The column labeled “Coeff.”
gives the group-theoretic coefficients from Eq. (3) (rounded off) that multiply the
reduced amplitude TélL’,og , K = (L+L')/2. (Since, in the Skyrme model, these re-
duced amplitudeé lie in the lower half plane, the resulting physical Skyrme-model
amplitudes will have opposite sign to the indicated coefficient.) The column la-
beled “size” gives our rough estimates of the global sizes of the experimental
amplitudes (admittedly an ill-defined concept), together with the observed signs. -
The five channels in which the Skyrme-model graph disagrees in sign with the

experimental analysis are marked by asterisks.
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CHANNEL COEFF.| SIZE CHANNEL COEFF.| SIZE

SDj; (7N — 7wA) —.44 2 FPis (TN — 7A) 33 |-.3
SD3 (7N — 7A) 14 (-3 FP3s (TN — 7A) -.10 15
DSy3 (TN — wA) 31 [-.2 PFy3 (KN — n2*) | —.27 |-.15%
DSs3 (TN — 7A) —.10 2 || FPys (KN — 7nZ*) 22 | -—.15

SD1; (KN — KA) .04 A% || FPis (KN — 7)) | —.08 01
DS;3 (KN - KA)| —.02 | 1 ||FPs(KN—-KA)| - .03 ?
SDo; (KN — nZ*)| —.30 .05

SDy; (KN — n%*) A1 | —.2 DGos (KN — nZ*)| -.27 |-.03%
DSy3 (KN — n%*) ®7 |7 .15 || DGis (KN— nZ*)| -.09 .03*
KN — KA)| —.04 04 ||GDi7 (KN - KA) .03 .02*
DS13 (KN — KA) 02 |-.1

Ii

Table XIV

The relative sign and size information contained in the “Coeff.” column
within each of the three categories SD/DS, PF/FP and DG/GD is completely
model-independent. Unfortunately, the size predictions do not seem to correlate

well with experiment, and no SU(3)-preserving modification of the Skyrme La-

grangian can improve matters. In particular, the KN — KA and KN — KA

curves are predicted to be an order of magnitude smaller than the corresponding
7N — wA amplitudes, whereas if one trusts the experimental solutions they are
almost as big. In contrast, the questions of the relative sizes between the three
categories, as well as the relative sizes vis-d-vis the amplitudes with L' = L, are
highly model-dependent; in both these areas, the latter especially, the Skyrme

model can be improved upon greatly.

As for signs, there is of course no way to bring about agreement with the
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experimental analyses regarding the sign of the SD;;(KN — KA ) and the
PFy3(KN — wZ* ) graphs without destroying the agreement for the other SD/DS
and PF/FP char;nels. On the- other hand, one might imagine constructing a
model in which the reduced amplitude 7;{214’0} lies in the upper half plane, as op-
posed to the lower half as in the Skyrme model; such a model would then agree
with the experimental sign predictions for the three DG and G'D channels listed
in Table XIV. It is reassuring that the Skyrme-model sign predictions agree fully
with the experimental solution for 7N — wA , which we can trust much more

than the other three processes.

— -

VII. Linear Relations Between Experimental Amplitudes

In order to assess the validity of the 3-flavor scattering formalism that.we
have developed, it is crucial to verify that the successes of the 2-flavor approach
are retained. In Section III and in Ref. 13, we showed that, in fact, including a
third flavor improves the agreement between the Skyrme model and experiment
for the process TN — wN . In this Section we consider the effect of incorporating
strangeness on the model-independent linear relations between experimental 7N
amplitudes that were analyzed in Ref. 8. In addition, we shall supply evidence

for the “hierarchical hypothesis” put forth in Section VI.

Our analysis in this Section is predicated on the assumption that Egs. (2)
and (3) are applicable, not only to the specific case of the Skyrme model, but also
to the optimal effective Lagrangian Lopt, to which the Skyrme model is at best a
crude approximation. (Of course, the reduced amplitudes will differ.) With this

in mind, we now leave the Skyrme model behind, and apply Egs. (2)-(3) directly

to the study of the real-world 7 N amplitudes. In short, we are assuming that a
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skyrmion interpretation of the baryon is legitimate, and that the simultaneous
approximations of large-N. and exact SU(3)gayor (both of which enter crucially

in the derivation of (3)) are phy'éically relevant.

sN=zN

If we represent the physical amplitudes for N — 7N by T 117 as before,

then Eq. (3) can be shown to imply:

*NxN *N=xN sNaN

(L) (9a)
13L—-5 _ _ 23(L+1)  _
= e TL—;,LL + e TL+§,LL
and e - v
*sNxN *sN=xN s NxN
. (9b)
23 _ 13L+18 _ _
—45_7' -1,LL + 45 TL+§,LL :

These equations relate the experimental 7N amplitudes to reduced amplitudes
which can presumably be extracted from a phase-shift analysis of Lopt. Unfortu-
nately, Lopt, obtainable in principle from QCD, is unknown. Thus, without some

further approximation, Eq. (9) is entirely without predictive power.

However, using the 3-flavor Skyrme model as a guide (¢f. Appendix A), one
can expect the right-hand sides of (9) to be extremely small (note that they would
vanish identically were it not for the Wess-Zumino term). Accordingly, let us ex-
amine the linear relations between ezperimental amplitudes that result from set-
ting the right-hand sides of (9) to zero. Here we find a surprise: these are precisely

the same relations that follow, without any such dynamical app‘roxima,tion,”s0

130 Recall that the Wess-Zumino term vanishes in the 2-flavor case.
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from the 2-fiavor_forma‘1ism!8’15 In general, these relations work quite well, with
the exception of severe problems in some of the lower partial waves, for which a
leading-order 1/N, analysis is inadequate; the reader is directed to Ref. 8 for full
details. The logical conclusion is that the Wess-Zumino term must make only a

small numerical contribution to the real-world meson-baryon T-matrix."™

It should be emphasized that, a priori, we had no right to expect any re-
lations, approximate or not, between physical TN — «# N amplitudes to efnerge
from the 3-flavor fornialism. The reason is the following. In the 2-flavor ap-
proach, the four physicalLrN amplitudes for each L. >0 (i.e.,J-=‘ L+ % and
I= %, %) are expressed through Eq. (2) as superpositions of only three reduced
amplitudes. Consequently, at least one nontrivial relation between physical am-
plitudes is guaranteed for each value of L (in fact, there are two). In contrast,
in the 3-flavor approach, these same four amplitudes are linear combinations of
etght reduced amplitudes. That the relations turn out to be the same in both
formalisms is cause for further surprise, since the group-theoretic factors multi-

plying the Téi’g} ’s are completely different in the two approaches.u?’2

We can also extract from (3) information about #N — 7A . Let us repre-
sent the physical amplitudes for this process by T}JIE}A‘, with L' the exiting pion
angular momentum (which can differ from L by two). For the case L = L', Eq.

(3) implies:

o 4(L-1) N 3 \/(L+1)(2L+3)(2L-—1) N
LL3,L-3 . Vio(zL+1)  EL3L-3  2pt1 10L LL3,L+3

(10a)

_ /EI(I) (-

= -T-
9(2L+1) L-3,LL L+§,LL)

131 This conclusion differs from that of Ref. 16.
#32 Compare Table XVI of Appendix C to Appendix B of Ref. 8.
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and likewise

TtN'A 3 - [L(2L+3)(2L-1) TrN.A 4(L+2) TrNrA
LL3L+3  aL+1 10(L+1) LL3.L-3  io(2L+1) ~LL3.L+3

1 L(2L+3)(2L+1) (- T )
9(2L+1) L+1 L-3LL  'L+3,LL7 "

(100)

Setting the right-hand sides to zero as before, we again recover precisely the
2-flavor predictions of Ref. 8. Similarly, for the case L' = L + 2, Eq. (3) can be

shown to imply the simple proportionality relations
'N-'-%p‘/ - _ sNxA .
VL +1- TL,L+2,§,L+§ =—V10(L +1)- TL,L+2,§,L+§

Nzl sNxA
=—VL+2 T3 =VI0(L+2) Ty s s

- (11)

which are identical to the 2-flavor results, with no “Wess-Zumino corrections.”

In the 2-flavor case, there was, for each L, one further (fairly successful)

model-independent prediction relating the processes 1N — 7N to 1N — 7A 8

sN=aN TrNtN
1 1 1 1
L3, L—3 L3,L+;

_ 2L-1 TthA + 2L+3 T:N:A
- L+1 LL},L-} L LL;,L+}°

but this is completely lost in the 3-flavor approach.

T
(12)

In sum, we have shown that, with the dynamical assumption

TL;%’LL(w) ~0

suggested by the 3-flavor Skyrme model, the 3-flavor formalism yields almost

all the model-independent linear relations between experimental 7 N scattering
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amplitudes that emerged from the 2-flavor approach. It is natural to explore the
consequences of making additional dynamical assumptions about the optimal 2-

and 3-flavor effective Lagrangians of Nature.

A natural set of such assumptions is suggested by the “big-small-small-big”
and “big-small-small-small” patterns exhibited by the experimental 7N and KN
amplitudes, respectively. As reviewed in detail in the previous Section, we can
expect the big-small-small-big pattern to occur automatically for a broad class of
2-flavor models for whiéh the reduced amplitude Té_}_’f’i 1, are negligible compared
with TL{IIO %L and Tégf};‘sbiglilag_ly, we saw that thersame patterfl would char-

acterize 3-flavor models if, out of the eight reduced amplitudes for each L > 0,

the amplitudes TL{LO},L’ TL{EI?}’ T— LD and T.* are small compared to the

L+3,LL
others. We have seen that these conditions are met in the 2- and 3-flavor Skyrme
models. Fortunately, we have the means of testing whether these dynamical
assumptions are valid approximations for the optimal 2- and 3-flavor effective
Lagrangians of Nature as well. For, with these additional approximations, the

2-flavor formalism (Eq. (2)) and the 3-flavor formalism (Eq. (3)) can be shown

to imply the extra relations:

*NxN aN=xN

3LTpyp 3+ (L+2)'1‘L1 L+l

— T 13)
2L 1 arNsrA errA (

sNxN IN!’N

14)
2L-1 "NxA L *NwxA (

o - 8(14L +15)4 /) ———T ;1 ;. 1,
_ 32LV 90(L+1)TLL1 -3t (141 + )\/ 90(2L+3) ~ LL3:L+3

respectively, which relate the processes TN — 7N and 7N — 7A .

and
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FIG. 15. Test of Egs. (13) and (14). The upper and lower expressions in braces, which refer
to the process TN — xA , are the 2-flavor and 3-flavor predictions, depicted by dot-dash and
dotted lines, respectively. The expressions to the left of the equalities, which refer to 7N — =N |

are depicted by solid lines.
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Figure 15 tests these relations as applied to the experimental #N — « N 17
and 7N — A 20_ P-, D- and F-wave amplitudes.u"53 Clearly, there is no substan-
tial difference between the 2- and 3-flavor predictions in the degree of agreement.
It should be noted that the agreement in the signs of the amplitudes is in itself
a nontrivial result. For the P and F waves, the relations appear rather well
satisfied. In particular, Eqs. (13) and (14) work roughly as well as Eq. (12),
which likewise relates TN — 7N and 7N — 7 A . Equation (12), however, was
derived from the 2-flavor approach without additional dynamical approximations
(cf. Ref. 8 and Fig. 7 th_(irein).' In other words, incorporating these extra ap-
proximations does not noticeably worsen the agreem;:nt for the I; aﬁd F waves.
Unlike Eq. (12), however, there is poor agreement evident in Fig. 15 in the

D waves—which is consistent with the fact that the big-small-small-big pattern

itself does not work well for the D waves (¢f. Fig. 1.)

Our conclusion, suggested by the big-small-small-big and big-small-small-
small patterns and reinforced by Fig. 15, is that the dynamical assumptions
stated above are (with the probable exception of the D waves) good descriptions

of the effective Lagrangian derivable, in principle, from QCD. We hope that,

‘as such, they will prove to be useful constraints on the current model-building

efforts in skyrmion physics.

#33 In order to make use of the available curves for TN — 7A ,20 we have combined Eqs. (13)
and (14) with Eq. (10) for the P and F waves. As discussed in Ref. 8, it is not obvious how
best to relate energies when comparing processes such as #N — «#N and 7N — 7xA with
different thresholds; following the practice adopted there, we have para-
metrized the amplitudes in Fig. 15 by “excitation energy” AZFE_,,, measured from the
average of the 7N and 7A thresholds.
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APPENDIX A. Reduced Amplitudes of the Skyrme Model

This Appendix depicts the reduced amplitudes of the 3-flavor Skyrme model.
The amplitudes T}lﬁ?g are identical to their 2-flavor counterparts, and were pre-

7

sented previously in a less transparent form. % 1t is convenient to present the

results for the linear combinations

1 1)1 %’-1}
TI?:LL = 5(71&1,} * TIELL )-

1
The differential equations _fgpm which the TI?I:'OE ’s and Téi’;l}’s are extracted

are given in Refs. 7 and 14 and in Ref. 13, respectively.’u34

It is clear from Fig. 16 that, with some exceptions in the lower partial waves, ,

the reduced amplitudes {TL{i’lo}J s TL{Il,f}’ T+ } vary much more dramatically

L-},LL
as functions of energy than do the other five amplitudes {TL{-hO}L I TL{I?’I?}’ TL—:- 1
s 3
T TL_+§,LL}'

§34 N.B. The reader should exercise caution in applying the formalism presented in Section
II of Ref. 7 to processes with L'’ = L = 2: On the one hand, there ought to have been
a minus-sign in the off-diagonal elements of Sk defined in Eq. (16) of Ref. 7 due to our
Bessel-function conventions. On the other hand, Fig. 6 of Ref. 7 is in error and should be
disregarded.
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A for details.
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APPENDIX B. Formalism for 3-Flavor Scattering

In this Appendix we review the derivation of the 3-flavor scattering formula,
Eq. (3), given in Ref. 12. We shall be focusing on Lagfangians such as Eq.
(1) where U € SU(3). The key assumption is that the Lagrangian admits a
“hedgehog” soliton solution Uy that lives in the conventional isospin subgroup of

SU(3), viz:

3
Up = exp{iF(r) Zi"i)\i}, (15)
1=1

L

#35

with A%, @ = 1,..., 8, the Gell-Mann matrices. We shall refer to Uy as a skyrmion

in its canonical orientation.

Of course, other orientations of the skyrmion are possible. In fact, by virtue
of the assumed SU(3)gayor invariance of the Lagrangian, one can construct a

family of degenerate solitons simply by taking
Ug = AUoA-l, A e SU(3). (16)

However, let us forget for the moment about the existence of these degenerate
configurations, and concentrate on the simplified problem of mesons scattering

from Up. This entails let‘,ting"36

3 .
Up — exp{iF(r) ) _#X* + 2 Z #°2°%} (17)

1=1

and expanding the Lagrangian to quadratic order in the ¢’s. Higher-order terms

35 The results of this Section would be unaffected if the n field had a radially-dependent
expectation-value as well, although this is not the case for the particular example of
Skyrme’s Lagrangian.

136 For calculating on-shell amplitudes, this parametrization of the meson fields is equivalent

- to the one advocated by Schnitger. *®
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are suppressed by powers of 1/fy ~ 1/4/N,, and are therefore ignored in our

lowest-order treatment.

What will the resulting quadratic Lagrangian look like? Thanks to the hedge-
hog structure of the skyrmion, it will consist of a sum of terms in which all isospin
and spatial indices have been contracted together in all possible ways to form sin-
glets under the “hybrid” angular momentum K, which is the vectorial sum of
isospin and angular momentum. Also, since the skyrmion commutes with A%,
the Lagrangian will embody hypercharge conservation. Consequently, kaons will

be coupled only to kaons, and antikaons to antikaons. There will be 77 and nn

e

couplings as well, but nn terms are forbidden by G-parity. In other words, the

T-matrix T?® characterizing the process
¢ + canonical skyrmion — ¢b + canonical skyrmion,

which is a prior? an 8 x 8 matrix in the flavor-space of pseudoscalar-octet mesons,
actually block-diagonalizes into a 3x3,a 1x1, and two 2 x 2 pieces, corresponding

to 7, n, K and K scattering, respectively.

We have not yet made full use of the K symmetry of the canonical skyrmion.
To do so, we first expand ¢* and ¢’ in spherical harmonics Yzar and Yo,
with primes henceforth denoting final-state quantities. These orbital angular
momenta are, in turn, added to the mesons’ isospin I and I by familiar Clebsch-
Gordanry to form states [K2K,LI* > and |K’2K;L'Ib >. The K symmetry of
the canonically-oriented skyrmion then implies K = K’ and K, = K.; likewise,
thanks to the block-diagonal nature of T?®*, we must have I* = I®. In contrast, -
L and L' will not necessarily be equal, but can differ by two. Scattering in these

K-channels will then be described by the reduced amplitudes Té}fg, Té%? g and
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1
TK{riiil} defined in Section II (just as scattering from a spherical potential can be
characterized by reduced amplitudes Tz). In equations, the T-matrix will thus
be given by:

T = §rpibyays E < $(')|IL'M' >< LM|¢*(z) >
LML'M'

x Y <II'M'D|KK, >< KK,|LI°MIZ > TAY")
KK, -

(18)

where {I%,12,Y*} and {I’,I},Y?} are the SU(3) quantum numbers of the in-

coming and outgoing meson, respectively.

ol

This formula is easily generalized to account for the scattering of a meson,
not from a canonically-oriented skyrmion Up, but rather from a rotated skyrmion

U, as defined by Eq. (16). The prescription is simply
T — Y DE(4),, T DE)(4)], (19)
cd

with D(®)(A) the adjoint representation of A. Armed with Egs. (18) and (19),
we are finally prepared to tackle the scattering of a meson off a physical baryon,
which, in the soliton approach, is characterized by a superposition of Uy’s for
all values of A € SU(3), weighted by appropriately-constructed wavefunctions

x(A). The physical T-matrix is then given by:

dA X};nal (A) Z D(s) (A) bd Tdc D(S) (A) Iaxinitial (A) (20)
SU(3) cd

The final ingredient that we need is an explicit expression for the baryon
wavefunctions x(A) describing a baryon with spin, isospin and hypercharge quan-

tum numbers {s, s;,1,%z, Y }. Unfortunately, the 3-flavor wavefunctions given by
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. .4 . . . .
Guadagnini, which are often used in the literature, are characterized by non-
standard transformation properties under isospin and angular momentum. The
correct wavefunctions are, instead,

t [dimR

x(4) = - T[DR(A)T]a,ﬂ (1) (21)

where a = {s, —sz,1}, 8 = {1,4,,Y }, R denotes the SU(3)gavor representation of

the baryon, and dimR is its dimension®’

As in the 2-flavor ca.é”e’,‘s’ the integration over A can be carried out in closed
form, thanks to some standard identities. The resulting expression simplifies
greatly if, as indicated in Section II, we project the initial and final meson-
baryon systems onto states of definite total angular momentum and S U(3)ﬂa;or.
(The latter projection is accomplished with the help of an SU(3) Clebsch-Gordan

coefficient

(R191321Y1; Ratatz2Y2| Rty Lot Jatot Yeot)
which can be factored conveniently into the product

R, Ry

(ilizizliz2IItotIztot> ‘ (iIYI i2Y2

Rioty )
Lot Yiot

of an SU(2) Clebsch-Gordan coefficient with a so-called isoscalar factor.** ) With

#37 See, for example, Manohar.?’ The fact that the “left-handed hypercharge” is unity is a

nontrivial quantization condition arising from consideration of the Wess-Zumino term.*
Our normalization in (21) is such that fsu(a) dA = 2n2.
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quantum numbers defined as in Section II, we find, after some manipulation:

T({LsRRiotV totTatot Viotd} = {L's'R' Ry iy [ Vin I '}) =

zto

5Rtoth,ot 6ItotIt'ot 51 Il,tot 6Y Yt:)t JJ' 5‘]: Jx' x

stot tot

#—sVdimR -dim R’ : KiJ | [KiJ 2)
(=1) dimRto:n Zzz(z'+1)(2K+l){s'L'l}{sLI} )

{ary i K
R' 8 R 8
s't IY sl 1Y

The long string of Kronecker §’s-expresses the reassuring fact that total angular

Rioty!
1,1+Y

Rioty Tivy
i,1+Y ) KLL

momentum and SU(3)gavor are conserved in the sca.tteﬁng process. This is Eq.
(3).
Note that the derivation of this formula is independent of the particular

Lagrangian that we started from, apart from the requirement that it admit a

hedgehog soliton as in Eq. (15).
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APPENDIX C: Explicit Formulae
for SU(3) Scattering Coefficients

In this Appendix we present explicit formulae for the group-theoretic coeffi-
cients multiplying the reduced amplitudes in the SU(3) scattering formula, Eq.
(3). For fixed initial and final baryon representations, these depend only on the
total meson-baryon representation Ri.; and the total angular momentum J. We
will restrict ourselves to the physically relevant cases when the initial baryon is in

the spin-% octet, and the final baryon is in either the octet or the spin—% decuplet.

Table XV presents th& coefficients of the reduced amplitudes for the case
when the initial and final baryon are both in the octet. The decomposition for

both the initial and final meson-baryon states is given by:
8x8=27+10+10+8;+8;+1

where (following DeSwart ** ) the 8; and 8; are synonymous with 8gym and

8antisym, respectively. Note that, from Eq. (3),

< 81!82 >=< 82'81 > .

Of course, for most physical processes, one is interested in a superposition of
pure SU(3)gavor representations. Consider, for instance, the case KN — 7% in
the isospin-1 channel. With the help of the table of isoscalar factors given in Ref.

44, the initial and final states can be written as

v/30

1
O >, = —=|27> + |10 > — o —|8; > +%|82 >

NAGEy
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8x8 — 8x8

i

=1L-1
J=1L 3
. {1.0} {1.0} (0.0} | 4.1 (41 {4-1) {4.-1)
© Reot TL—I,LL TLLL TL+1 LL TLLL T }LL TL+§ LL TL gLL TL+§,LL
f§<27127) 2 (ZL-1)L=d 2 70-3| 42043 2 | 4 2L-1 |16 L2 1 14L-1 | 16 L+1
+ | 138 TIELED 135 L 27 2L+1 15 27 2L+1 27 2L+1 135 2L+1 135 2L+1
SATA 1 2L-1 1 L+1 1 2 1 2L-1 4 L+l
(10{10) L w1 0 3 5 0 i5 5031 | 16 3041
’ 2 {2L-1)(L-1) 2 2L-1 2 2L+3 1 2L-1 4 L+1
(10/10) 18 7 L{2L+1) 15 L ZL+1 0 0 0 15 2L+1 15 2L+1
3 2L-1 3 L+l 1 1 4L-1 3 L+1
(8181) 20 L 20 L 0 20 0 0 10 2LF1 5 2L+1
2L-1 L+1 1 1 4L+1 1 L+l
(82(82) 12L 120 0 1 0 0 6 2L+1 3 2L+1
(8 [8 ) 2L-1 L+1 L"‘"o ‘F -1 0 -0 1 —-{L+1)
1®z L./80 L/80 V30 ‘ TT5(2L+1) | VBi2L+1)
(1j1) 0 0 0 0 0 0 1 0
- — 1
J—L+§
’ {1.0) {1.0) {1.0) {0.0) 1) (3.1) {(.-1) (3.-1)
Riot To2iLL TLL Th1LL ToeL L *g.LL TL-fi- LL TL-;,LL TL-:, LL
(27]27) 4 2L-1 2 TL+10 2 (2L+3)(4L+7 2 1 _L 4 2L+43 16 _L 1 14L+15
1 27 20+1 135 L+1 135 i(L+17(2L+1)l 15 27 3L+1 27 3L+1 135 ZL+1 136 2L+1
TR 1 L 1 2L+3 1 2 4 L 1 2L+3
(10/10) 0 it I3 i "L—fr 5 0 5 15 ZL+1 15 20+1
2 2L-1 2 2L+3 2 (L+2){2L+3) 4 L 1 2L+3
(10]10) & 2L+1 15 L+1 15 (L+1)(2Z+1) 0 0 0 15 2L¥1 15 2L+1
3 L 3 2L+3 1 3 L 1 4L+5
(81181) 0 20 ZF1 20 L+t 20 0 0 5 2L+1 10 2L¥1
L 2L+3 1 1 L 1 4L+3
(82182) 0 SeTyESy] T2L41) i 0 0 3 7LTT & 2L+1
L 2L+3 -1 L -1
(8182) 0 (L¥1)v80 (L+1)/80 V&0 0 0 VE(2L+1) | 2V5(2L+1)
(1]1) 0 0 0 0 0 0 0 1

Table XV
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aN— xN

{1.0}) {1,0} {1,0} {0,0} | +{}.1)} {1} {4,-1) {4-1}

To- 1,LL ToLL TL+1.LL Lys) TL— $.LL TL+§,LL TL— dLL TL+ }.LL J 1
98L%-L-24 25L+24 2L+3 1 58L+25 4({L+1) 104L+35 f 17(L+1) | 7 1 1
135L{2L+1) 135L 135(2L+1) 15 270(2L+1) | 135(2L+1) | 270{2L+1) | 135(2L+1) 2 2

2L-1 25L+1 | 98L34197L+475 1 4L 58L+33 17L 104L460 | 7 4 1 1
135(2L+1) 135(L+1) | 135(2L3+43L+1) 15 135(2L+1) | 270{2L+1) | 135(2L+1) | 270(2L+1) 2 2
(26L2-37L+412) | 25L-12 37 2L+3 1 2(2L-1}) 8(L+1) 16L-5 26({L+1) L-1 3
135L(2L+1) 135L 135 2L+1 15 27(2L+1) | 27(2L+1) | 135(2L+1) | I35(2LF1) 2 2
37 2L-1 25L+37 | 26L?4+89L+75 1 8L 2(2L+3) 26L 160+21 |7 1 3
135 2L+1 135(L+1) | 135{2L343L+1) i85 27(2L+1) | 27(2L+1) | 135(2L+1) | 135(2L+1) 2 2

— e~ - - -
Table XVI
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8x8 — 10X 8;

L'=L

J=L-1
{1,0) {1.0) 1,0) 0.0 {3.1) {3.1) {3.-1}
Rior To-LLL ToiL TL{+1.LL TL{LL ) [N LLL TL: iLL 2 $.LL
(3-4LW10(L+1)(2L-1) | —(L+6) [5(2L-1) | _2L+43 _[5(2L-1) ~2/10(2L=1)(L+1) | 24/10(2L—1)(L+1) | 24/(2L-1)(L+
(27 27) 135L(2L+1) 13507V 2(L+1) | 272L+T1V 2{L+]) 0 Z7{2L+1) 27{2L+1) 27{2L+1)
2(1-L)y/(2L-1)(L+1)/5 | —(L+4) [2L-1 2L+3 [ 2L—1 -V(2L-1)(L-
(10| 10) 3L{2L+1) GL 5(L+1) 22L+11 Y 5(L+1) 0 0 0 3(2L+1)
-4/(L+1)(2L-1)/10 VI(L+1)(2L~1}/10 ‘ —y/(L+1){2L~
(8 84) 2L 2L 0 0 0 $ 0 2L+1
—/2(L+1)(2L~1) VZ(L¥1)(2L=1) 2(L+1)(2L
(8] 82) 12L 120 ‘ 0 0 0 | 0 6(2L+1)
J=L+}
{1,0 1,0 1.0} 0.0} {41} {3.1} {3.-1}
Ryot TL—l.}‘L TL(LL ' TL{-H.LL TL(LL TLji-.LL TL-Z,},LL TL—’*,LL
. (27| 27) “y—2r . [szL+3) | L-s [6(2L+3) | 2(4L+7)4/5L(2L+3}/2 0 ~24/10L(3L+3) | 24/10L{2L+3) | 24/L(2L43)/1C
27(2L+1) 2L 135{L+1) 2L 135(L+1)(2L+1) 27(2L+1) 27(2L+1) 27{(2L+1)
(10| 10) 1-2L_ [(2L+3) L-3 2L+3 2(L+2)y/L(2L+3)/5 0 0 0 =y/L(2L+3)/5
2(2L+1) 5L s(z+1)V 5L 3(L+1)(2L+1) 3(2L+1
(8] 81) 0 ~VLzLI /10 YEGLT3)To 0 0" o | =vIGEEE
(L+1) 2(L+1) 4 2L+1
—v/2L(2L+3) 2L(2L+3) 2L(2L+3)
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Table XVII



8x8 — 10 x 8;

L'=L+2

Ro [(LL)=(K-LK+1)|{(L,L)=(K+1,K-1)
(27|27) %\/3.3?0—;? yaT
(10/10) o2 L
(818:) Ve T *V ey
(818z) 1y 2 2 /EE)
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and

V6

_— 1
out<‘I’I=——<10|+——<10!+T<82|.

V6

The amplitude for this process is thus given by
¥ > =L Tongs L 1 1
out < Y| >, = ~8 < 10|10 > & < 10(10 > __ﬁ < 8,|8; > +§ < 82|82 > .

Each term in this expression can, in turn, be expressed in terms of reduced

amplitudes using Table XV.

As an important example of this procedure, Table XVI gives the. coefficients
for the case of 7N elastic scattering in the 3-flavor formalism. These coefficients

can be directly compared to their 2-flavor counterparts presented in Appendix B

of Ref. 8.

Table XVII presents the relevant coefficients when the initial and final baryons
are in the octet and decuplet, respectively, and when the initial and final meson
angular momenta are the same (L = L'). The relevant decomposition of the final

state is now:

10 x 8 =35+27+ 10+ 8.

Table XVIII lists the coefficients for the analogous 8 x 8 — 10 x 8 processes
when |L— L'| = 2. Note that these coefficients all multiply the single contributing

reduced amplitude TélL’,og = Té}:?}, where K = (L + L')/2.
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APPENDIX D: Skyrme-model predictions for additional processes

In this Appenciix we display the Skyrme-model amplitudes for the six
¢os N — ¢. B processes for which we were unable to find experimental partial-
wave analyses in the literature, namely: 7N — nA , 71N — KX* , KN — n%,
KN - nf*, KN - K& and KN — KE*. As always, the plots are from
threshold to an excitation energy of 2efr. On the basis of the results of Sec-
tions III and V, we would expect good agreement for the F and G waves, mixed

agreement in the D waves, and poor agreement in the S and P waves.

— —-—
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