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Abstract. About 40 years ago, since no viable candidate for “dark matter” was discovered,
M. Milgrom and J.Bekenstein introduced a non-covariant modification of gravitational theory
(MOND) to account for the anomalous rotation curves of galaxies. Bekenstein and Sanders then
developed a relativistically covariant form of the theory, called TeVeS, involving scalar and tensor
fields, which accounts well for the rotation curves as well for the observed lensing of background
radiation around galaxies without the introduction of “dark matter”. The dynamical behavior
of a particle in such a gravitational theory has been recently discussed by Horwitz, Gershon and
Schiffer. In this paper we study the dynamics of the N ≥ 2 particle problem in the framework of
the TeVeS theory.

1. Introduction
It has been found that galactic rotation curves are not consistent with Newtonian dynamics as
they should be for the large interstellar distances in galaxies [1]. To account for this discrepancy,
the idea of “dark matter” was introduced [2], which permits a reasonable fit to the data.
However, no viable candidate for this matter has been found. Milgrom [3] consequently
introduced the idea of modifying the gravitational force, with a construction called MOND,
which was phenomenologically quite successful, even with relatively universal modification
functions, without the need for “dark matter”.

There was, however, no relativistically covariant formulation of the MOND theory until
Bekenstein [4] and Bekenstein and Sanders [5] introduced a theory with scalar and tensor fields
called TeVeS, successfully accounting for the galactic rotation curves and for the gravitational
lensing of light by galaxies from background stars.

Horwitz, Gershon and Schiffer [6] then showed that the TeVeS theory can have a
simple Hamiltonian formulation consistent with Einstein relativity through a conformal
transformation, for which the potential in the Hamiltonian plays the role of the scalar field
of TeVeS.

In this paper we discuss the dynamics of N ≥ 2 particles in this framework. We argue that
each particle moves in an independent MOND type gravitational field, but the particles interact
in the presence of a Bekenstein-Sanders gauge field [6] which must be non-Abelian. We then
show that the resulting geometry can be represented in a Kaluza-Klein structure [7].
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2. Hamiltonian for N ≥ 2
In Stueckelberg’s approach to relativistic dynamics [8], a Hamiltonian of the form (pµ = ηµν pν,
M a dimensional parameter)

K =
pµ pµ

2M
+ V(x) (2.1)

is defined, for a particle represented as an event, on the manifold xµ, pν, with V(x) a scalar
function, invariant under the Lorentz transformations of special relativity. The (Hamilton)
equations of motion are then given by

ṗµ = − ∂K
∂xµ

(2.2)

and
ẋµ =

∂K
pµ

. (2.3)

The dynamics of this theory is discussed extensively in [9].
It has recently been shown that this theory can be embedded in the space-time manifold of

general relativity [10].
The many body problem [11] can be treated by taking a Hamiltonian of the form

K =
N

∑
i=1

{
piµgµν piν

2Mi
+ V(xi)

}
, (2.4)

where we assume that each particle is affected independently by the potential energy field.
Let us first consider the one-particle case, for which

K =
1

2M
pµgµν(x)pν + V(x), (2.5)

where V(x) is a world scalar field. From the canonical equations,

ṗµ = − 1
2M

∂gλσ(x)
∂xµ

pλ pσ −
∂V
∂xµ

(2.6)

and
ẋµ =

1
M

gµσ(x)pσ. (2.7)

We then have, with the help of the identity

gβσ
∂gβγ

∂xµ
gγω = −∂gσω

∂xµ
, (2.8)

and its inverse, the geodesic equation, in the presence of a scalar field,

ẍ = −Γσ
λν ẋλ ẋν − 1

M
∂V
∂xν

gσν, (2.9)

where

Γµ
λσ =

1
2

gµν

{
∂gνσ

∂xλ
+

∂gνλ

∂xσ
− ∂gλσ

∂xν

}
is the usual affine connection form [12].
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For the N ≥ 2 problem, we assume the additive form

K = K1 + K2 + . . . KN , (2.10)

where
Ki =

1
2Mi

piµgµν(xi)piν + V(xi). (2.11)

We now make a conformal transformation on each of the Ki, eliminating the scalar function, by
defining

ĝµν(yi) =
Ki

Ki − V(xi)
gµν(xi) ≡ e−2ϕ(xi)gµν(xi). (2.12)

Writing this as
ĝµν(yi) = F(yi)gµν(xi) (2.13)

and setting
δyi

µ = F(yi)δxi
µ (2.14)

enables us to solve for yi(x) and the inverse [13]; however the functions yi(x) do not cover
the whole space time; they are defined only in a patch in the neighborhood of each of the
particles. This is sufficient to define, as for the one particle case, local Einstein geodesics on the
submanifold patches {yi}. We shall write, with this understanding, ĝµν(yi) ≡ g̃µν(xi) in the
following.

Therefore, a many body Hamiltonian can, in the presence of a world scalar field, acquire a
Milgrom type modification of Einstein gravity.

3. Many Body Dynamics in TeVeS and Kaluza Klein Structure
We have seen so far that the theory for many particles can treat the particles as essentially
independent. However, we shall see that TeVeS can introduce a non-Abelian gauge field
(like the Yang-Mills field [14]) which couples the dynamics of the many body system. In
order to achieve a generalized TeVeS theory to account for lensing and gravitational redshifts,
Bekenstein and Sanders [5] introduced a timelike vector field Uµ satisfying UµUµ = −1, with
Uµ = gµνUν. In a previous work [6] we have considered this field as a gauge field, necessarily
non-Abelian to preserve the normalization condition under gauge transformations. With an
additional scalar field Φ(x, τ), we write the corresponding Hamiltonian for the many body
theory

K =
N

∑
i

Ki =
N

∑
i

{
1

2Mi
(piµ − ϵUµ(xi, τ))gµν(xi, τ)(piν − ϵUν(xi, τ)) + Φ(xi, τ)

}
, (3.1)

defined on an N body Hilbert space with direct product basis. . Our analysis here
is independent of whether the functions are symmetrized (Bose-Einstein statistics) or
antisymmetrized (Fermi-Dirac statistics). The scalar field arises as a gauge field to compensate
for the τ-derivative of a scalar gauge phase, depending linearly on τ, of each of the wave
functions in the Stueckelberg-Schrödinger equation, in addition to the U fields carrying
compensation for the derivative action of piµ on the non-Abelian local phase transformations
of the wave functions, i.e., under gauge transformations, each factor ψi(xi) obtains a coefficient
U(xi, τ) = U0(xi)e−iφ(xi)τ, with U0(xi, τ) inducing the non-Abelian gauge. It is easily seen that
the Φ(xi, τ) additively can compensate for the Abelian part of the gauge transformation. The
space-time derivative (pµ) introduces, necessarily, a τ dependence into the gauge fields. As
for the one particle case, one can eliminate the scalar potential terms by defining a modified



IARD 2022
Journal of Physics: Conference Series 2482 (2023) 012001

IOP Publishing
doi:10.1088/1742-6596/2482/1/012001

4

metric. The Hamilton equations, however, assure that the Hamiltonian remains independent
of τ.

For the non-Abelian part (we suppress the zero subscript),

U ′(xi, τ) = U(xi)Uν(xi, τ)U−1(xi, τ)− i
ϵ

∂U(xi, τ)

∂xi
µ

U−1(xi, τ). (3.2)

As for the Yang-Mills fields, we define the gauge and locally Lorentz covariant force field at
each x,

fµν(x, τ) =
∂Uµ

∂xν
− ∂Uν

∂xµ
+ iϵ[Uµ,Uν]. (3.3)

The motion of each particle gives rise to a current which, by means of the Yang-Mills propagator
[14], generalized to the manifold (a procedure somewhat simplified for weak gravitational
fields), contributes to this field in linear superposition. This structure will be studied in a
succeeding publication.

We now define a Kaluza-Klein Hamiltonian (with g̃µν(xi, τ) of the same form as in (2.12)
with V(xi) replaced by Φ(xi.τ))

KKK = ∑
i

g̃µν(xi, τ)piµ piν (3.4)

with the (τ-dependent) Kaluza-Klein [6, 15] metric, at each xi

g̃µν(xi, τ) = e−2ϕ(xi)(gµν(xi, τ) + Uµ(xi, τ)U ν(xi, τ))− e2ϕ(xi)Uµ(xi, τ)U ν(xi, τ) (3.5)

for which the Hamiltonian has the form

KKK = Σie−2ϕ(xi)gµν(xi, τ)pµ pν − 2 sinh 2ϕ(xi)(Uµ(xi, τ)pµ)
2. (3.6)

With the definition, on 5D,

gAB(xi, τ) =

(
g̃µν(xi, τ) U ν(xi, τ)
Uµ(xi, τ) g̃55(xi, τ)

)
, (3.7)

we have

gAB(xi, τ)pA pB = g̃µν(xi.τ)piµ piν + 2pi5(piµUµ(xi, τ)) + pi5
2g55(xi, τ). (3.8)

Taking

pi5 = −
(piµUµ(xi, τ))

g55(xi, τ)
(1 ±

√
1 − 2g55(xi, τ) sinh 2Φ(xi, τ), (3.9)

the Kaluza-Klein theory provides an equivalent dynamics generated by

KKK = ∑
i

1
2Mi

gAB(xi, τ)piA piB. (3.10)

4. Conclusions
In this study, we have shown that a many body dynamics can be formulated in the framework
of the TeVeS theory of Bekenstein and Sanders. In this formulation, the Bekenstein-Sanders
tensor fields as well as the scalar field arise from the requirement of gauge invariance of the
Stueckelberg-Schrödinger equation embedded in the manifold of gravitation.
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