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Abstract

Measurements of the Higgs boson using the H ! �� Higgs boson decay mode and

two di↵erent methods for identifying Higgs bosons produced via vector boson fusion

are presented. These analyses use proton-proton collision data collected by the CMS

collaboration during the 2016 running period and constitute 35.9 fb�1 of integrated

luminosity at
p

s = 13 TeV. One vector boson fusion identification method is based

on boosted decision trees, and the other is based on jets formulated as images and a

dense convolutional neural network. The categorisations produced by both methods

are subjected to the overall H ! �� statistical analysis and their results compared.

The neural network itself is also subjected to analysis to determine what features it

has learned to extract from the jet images.

The main objectives of this new approach are to reduce contamination from gluon

fusion in the vector boson fusion categories and to improve their statistical signif-

icance. This is indeed observed in the expected yields measured from simulation

where vector boson fusion category signal purity and significance are both increased.

The measurement of the vector boson fusion signal strength modifier is improved in

the new approach where we observe reduced uncertainties. The value relative to the

Standard Model is measured to be 0.8+0.6

�0.5
in the boosted decision tree variant and

1.5+0.5

�0.5
in the neural network variant. The neural network is also observed to give

a reduced uncertainty on many of the other measurements, especially those more

directly impacted by vector boson fusion production.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has had its remarkable predictive power

demonstrated through many experimental confirmations. At the core of this success

is the Higgs field and the way its behaviour radically alters the phenomenology of a

pristine, symmetric and massless theory.

The SM consists of a collection of fields whose quanta constitute fundamental

matter particles and force mediators, as well as the couplings between them. These

couplings determine the interactions in particle physics processes: the signals we

observe in experiment. All of these particles, and many of their interactions, have

been discovered by generations of high-energy particle physics experiments. This

culminated in the completion of the field content of the SM with discovery of the

Higgs boson itself in 2012 by the ATLAS and CMS collaborations [1, 2].

It is also known that the SM gives an incomplete description of nature. There

is no dark matter candidate to explain experimental observations such as the bullet

cluster [3], there is no description of the force of gravity, and neutrinos are considered

massless when they are known not to be [4]. Various extensions to the SM have been

suggested [5], and these can manifest as entirely new particles and as deviations in

SM-expected rates for some processes.

This raises the question of precisely what sort of Higgs boson has been discovered.

How does the Higgs field grant mass to the fermions? How does it self-interact and

what is the shape of the potential it experiences? Are there any unexpected couplings

that alter the Higgs boson’s production and decay? As we enter the precision mea-

surement era of Higgs physics we aim to answer these questions, and hopefully shed

light on physics beyond the SM.

Precision measurement depends on high-quality data and superior signal extrac-

tion. The field of machine learning (ML) has produced many algorithms that are

1
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used throughout experimental particle physics in both detector operation and data

analysis. The discovery of the Higgs boson decaying to a diphoton system (H ! ��)

in particular used these techniques in concert with its characteristically clean signal.

Here signal extraction is enhanced using information from extra objects characteris-

tic of certain predicted Higgs production modes and an algorithm called a boosted

decision tree (BDT).

BDTs have been a reliable workhorse of particle physics for over a decade [6],

but ML has made exceptional leaps in recent years thanks to deep learning (DL). In

particular, DL applied to image recognition has resulted in powerful approaches that

achieve super-human performance [7]. This thesis explores how to use these tech-

niques to improve the extraction of H ! �� events produced via Vector Boson Fusion

(VBF). Specifically, VBF signal extraction is reformulated in part as an image clas-

sification problem where VBF’s characteristic jets of particles are treated as images.

This thesis is based on the 2016 H ! �� analysis [8], and is structured as follows:

Chapter 2 begins by describing the theory underlying the SM, then the SM itself with

emphasis on the Higgs sector and its phenomenology.

Chapter 3 describes the experimental apparatus used to produce and record the

proton collision dataset used in this thesis: the Large Hadron Collider (LHC) and

the Compact Muon Solenoid (CMS). CMS is described in detail with each detector

subsystem’s structure and operation explained with emphasis on the electromagnetic

calorimeter.

Chapter 4 presents an introduction to machine learning covering basic theory,

how to control model capacity for generalisation performance, ensembles (BDTs),

plus how to design and tune an ML algorithm. The chapter then introduces neural

networks and deep learning, culminating in the more advanced dense convolutional

neural network (DCNN) models used in this thesis.

Chapter 5 describes how physics objects are reconstructed at CMS with emphasis

on photons and how they are formed into H ! �� diphoton candidates.

Chapter 6 describes how candidate H ! �� events are categorised by di↵erent

tags in the analysis for signal enhancement. Each of the tags is described in turn,

but VBF will be described and validated in fine detail in both the BDT-based and

DCNN-based variants. The DCNN will also be examined to determine what features

it has learned to detect using a collection of network interpretation techniques.

Chapter 7 describes the final statistical analysis of the categorised H ! �� candi-

dates and the resulting measurements. The construction of the statistical models for

signal and background are described, and a full description of all of the systematic

uncertainties is given. Final results of yields and likelihood scans of signal strength

and coupling modifiers performed for analyses with the DCNN-based VBF tags and
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compared to the BDT-based results.

Finally, Chapter 8 discusses the conclusions we may draw as well as possible

avenues for future development and research.
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Chapter 2

Theory

2.1 Introduction

Modern particle physics theory is built upon the twin pillars of Yang-Mills theories and

spontaneous symmetry breaking. Our best current model, the SM, is built from two

such theories: electroweak theory and quantum chromodynamics. The former of these

has its gauge symmetry spontaneously broken. In this chapter we will explore these

two ideas before moving on to how they are used to construct the SM with particular

emphasis on the mechanism of symmetry breaking and one of its phenomenological

consequences: the Higgs boson.

2.2 Yang-Mills Theories

2.2.1 From Geometry to Gauge Fields

The gauge covariant derivative Dµ and the field strength tensor Fµ⌫ are two vital

mathematical objects when one wants to construct the Lagrangian of a Yang-Mills

theory [9]. Far from simply being an ansatz, they have a deep origin in the fundamen-

tal geometry of field theory [10]. Their origin is outlined in this subsection: we start

by describing the concept of a fibre bundle, its relationship to the internal symmetries

of a field, and how the ‘warping’ of a fibre bundle is related to the covariant derivative

and the field strength tensor.

A fibre bundle B is a space which can be considered to consist of two parts: the

base space M and the fibre V. For each point p in the base space there is an associated

copy of the fibre space and these fibres do not intersect. In the context of a field one

can consider these to be the external and internal spaces respectively. A special case

is an ordinary product space where B is simply the Cartesian product of M and V,

5



6 Chapter 2. Theory

generally one has more warped examples with curvature and less trivial topology. A

visual example is given in Figure 2.1. These warped examples are of interest in gauge

M

V = U(1)

g(x)

Figure 2.1: A fibre bundle with V = U(1). A section is shown (grey line) choosing
g(x) 2 U(1) for a set of points in M.

theory, specifically when there is curvature in the fibre space with no torsion.

Particularly, we are interested in the cases when V is symmetric under some Lie

group G (in our case SU(N)). These symmetries allow for the warping of the fibre

bundle and correspond to the internal symmetries of a field. Furthermore, one can

model these examples by taking the fibre to be G with the identity element not at a

fixed location. One can then ‘lift’ the base space into the bundle: for each base space

point we get a point within the associated fibre. In the gauge theory context choosing

a section of the fibre bundle means choosing a particular g(x) 2 G; this is picking a

gauge.

To understand the warping of the fibre bundle we need the notion of a connec-

tion just like with the warped spaces of General Relativity. This will allow for the

introduction of warping to the internal space, and construction of invariants such as

curvature and torsion tensors. We can do this by constructing a di↵erential operator

Dµ, and in our case of a fibre bundle with V = G = SU(N) where the internal space

is simply stretched with no torsion we have,

Dµ = @µ � igAa

µ
T a, (2.1)

where Aa

µ
are generally complex-valued functions that depend on xµ and operate

by multiplying the input, and T a are the generators of the Lie group SU(N) which

provide a basis in the fibre space with a = 0, . . . , N2 � 1. We recognise this as having

the familiar form of the gauge covariant derivative and the Aa

µ
as the gauge potential.

Now we have the connection we can begin to construct invariants of the geometry
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of the internal space. In particular we can construct the curvature tensor as follows

i

g
[Dµ, D⌫ ] = Fµ⌫ = @µAb

⌫
T b � @⌫Aa

µ
T a � ig[Aa

µ
T a, Ab

⌫
T b]. (2.2)

We recognise this form as the field strength tensor.

One can now see what occurs when a global symmetry is promoted to a gauge

symmetry: we have induced some non-trivial warping of the field’s internal space that

gives rise to the Aa

µ
gauge fields and their kinematics through the curvature Fµ⌫ .

2.2.2 Constructing a Lagrangian

With these ingredients we can construct a generic Yang-Mills Lagrangian with a

straightforward procedure: we begin with a global symmetry of the fields that we

promote to a gauge symmetry, we construct the gauge covariant derivative, replace

@µ ! Dµ in the free theory, and add an interaction term based on the field strength

tensor [9]. As a concrete example, consider the collection of massive free Dirac

fermions which we will turn into an interacting gauge theory with G = SU(N). We

first construct the gauge covariant derivative,

Dµ = @µ � igAa

µ
T a, (2.3)

and replace @µ ! Dµ in the free Lagrangian

L =
X

↵

 ̄↵[i�µ(Dµ )↵ � m ↵]. (2.4)

We must also introduce a kinematic term for the gauge fields, but the contraction of

the general non-Abelian field strength tensor with itself is not gauge invariant, only

its trace over the generator indices is. Therefore we use this as the gauge-invariant

kinetic term for our final Yang-Mills Lagrangian [9],

LY M =
X

↵

 ̄↵[i�µ(Dµ )↵ � m ↵] � 1

2
TrFµ⌫Fµ⌫ . (2.5)

2.2.3 Phenomenology

To analyse what sort of particle interactions occur in this theory we ‘unpack’ equa-

tion 2.5 and isolate the fields and interaction terms. Firstly, in the spectrum of this

theory we have N2 � 1 gauge fields (one for each of the generators of SU(N)) that

are all massless. These fields couple to the massive fermionic fields via a trilinear

interaction term proportional to g introduced by the gauge covariant derivative.

LA = gAa

µ
 ̄↵�µ(T a)↵� 

� (2.6)
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Now consider the gauge field kinetic term: one can reformulate this as � 1

4
F a

µ⌫
F aµ⌫

using TrT aT b = 1

2
�a

b
and Fµ⌫ = F a

µ⌫
T a. Once the product has been evaluated one

finds the following forms of interaction terms

L3A / gfabc(@µA⌫�A�a)AbµAc⌫ (2.7)

L4A / g2fabcfadeAb

µ
Ac

⌫
Ad

�
Ae

�
(2.8)

that correspond to interactions between three and four gauge bosons respectively. We

now have the three types of interaction vertices which allow for the construction of

Feynman diagrams for a generic Yang-Mills theory (Figure 2.2). Their strengths are

all set in terms of a single parameter: the gauge coupling g. One should note that

the three and four-gauge boson interactions come from the commutator in the gauge

field kinematic term and are not present in the Abelian case.

Aa

µ

 �

 ̄↵

Aa

µ

Ab

⌫

Ac

�

Aa

µ

Ab

⌫

Ac

�

Ad

�

Figure 2.2: The three types of vertex in Yang-Mills theories.

2.3 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking (SSB) occurs when the lowest energy solutions to a

theory do not respect the symmetries of the Lagrangian that describes it. A straight-

forward example [11] is that of a three-dimensional ferromagnetic material cooling

down from above its Curie temperature. Above this threshold there is no magnetisa-

tion and solutions obey the SO(3) symmetry of the Lagranian. Below this threshold

the ferromagnet becomes magnetised and must ‘choose’ one of a degenerate family

of lowest-energy solutions. This picks out a direction of magnetisation. The SO(3)

symmetry of the ferromagnet has now been broken to SO(2) (Figure 2.3).

In the context of a field theory, symmetry can be spontaneously broken in the

following way: a field experiences a potential whose minima are a family of degenerate

states transforming under the symmetry group. Consider the Lagrangian of a complex
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x

y

z

Figure 2.3: A ferromagnet above (left) and below (right) the Curie temperature. The
example below the Curie temperature has magnetised along the z-direction
breaking the SO(3) symmetry to just SO(2) about the z-axis.

scalar field � experiencing a potential V (�),

L = (@µ�)†(@µ�) � V (�) (2.9)

where the potential has the form

V (�) = �µ2(�†�) + �(�†�)2. (2.10)

This has a global U(1) symmetry, � ! ei✓�, and the potential has a circle of degen-

erate minima at |�|= µ/
p

2� = v. The vacuum expectation value (VEV) of �, h�i
is now non-zero and will pick a state in this circle parameterised by h✓i which can

take any value ✓0. The global symmetry has been spontaneously broken. To see the

Figure 2.4: Perturbations around the vacuum state at ✓0 = 0 of a symmetry breaking
potential V (�). The family of degenerate minima are shown by the black
circle.
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e↵ects of this SSB consider a small perturbation around the vacuum with ✓0 = 0 as

shown in Figure 2.4. We describe � in terms of two real scalar fields: one along the

imaginary direction of � (along the family of vacuum states) and one along the real

(against the potential gradient),

�(x) = v +
1p
2
(�(x) + i'(x)). (2.11)

If one substitutes this into equation 2.9 and evaluates the non-kinematic part we find

that the field � is granted a mass term of the form 1

2
m2�2,

1

2
m2

�
�2 =

1

2
�v2�2 (2.12)

and there is no equivalent term for '. In the spectrum of this theory we now have a

massive and a massless scalar boson upon quantisation [12, 13]. This massless boson

is known as a Nambu-Goldstone boson and is a general result of breaking a global

symmetry: for each broken symmetry generator there is a massless Nambu-Goldstone

boson.

To see this more clearly consider the case of a global SU(N) symmetry where

the Lagrangian has the same form as before (equation 2.10) but � is now a complex

scalar N -tuple. There is a global symmetry � ! ei✓
a
T

a

�, and a family of minima

at �†� = µ
2

2�
that form an (N2 � 1)-dimensional surface instead of a circle. There

are (N2 � 1)-many ways to move on this surface and the one remaining direction

is away from the centre. The former are the fields associated with the (N2 � 1)

Nambu-Goldstone bosons and the latter is the single massive scalar boson as before.

2.3.1 Gauge Symmetry Breaking

In the case where we have a gauge symmetry that is spontaneously broken the be-

haviour is rather di↵erent: there are no Nambu-Goldstone bosons and the gauge

bosons are granted mass [14–17]. To see this take the example of equation 2.9 and

consider a local SU(N) symmetry: we construct the gauge-covariant derivative

Dµ = @µ + igAa

µ
T a, (2.13)

replace the partial derivative, and introduce a gauge field kinetic term to get the

gauge-invariant Lagrangian

L = (Dµ�)†(Dµ�) � V (�) � 1

2
TrFµ⌫Fµ⌫ . (2.14)



2.4. The Standard Model of Particle Physics 11

We can consider the field � in its ground state in terms of its norm and a local SU(N)

transformation, and then expand around v,

�(x) = ei✓
a
(x)T

a

0

BB@

0
...

v + 1p
2
H(x)

1

CCA (2.15)

where H is a real scalar field corresponding to the direction orthogonal to the family

of vacua and the ✓a correspond to the directions along its surface. The fields ✓a(x)

now completely parameterise the vacua in contrast to the global case where it was an

infinitesimal perturbation around a vacuum state. As a result of this, we recognise

that the SU(N) transformations can always be removed by some gauge transformation

exp(�i✓a(x)T a), so we can freely set it to zero. We have removed 2N � 1 degrees of

freedom and we only have only one real scalar left: the gauge freedom has eliminated

the Nambu-Goldstone bosons from the spectrum of the theory.

When we substitute equation 2.15 with ✓a(x) = 0 into the Lagrangian 2.14 and

then collect the terms that contain Aµ we get the following Lagrangian for the gauge

fields (neglecting interaction terms)

LA = �1

2
TrFµ⌫Fµ⌫ + g2v2Aa

µ
Aaµ (2.16)

This contains mass terms of the form 1

2
m2

A
AµAµ, so we conclude that the fields ✓a(x)

have indeed been eliminated and that these degrees of freedom have been absorbed

into the longitudinal components of the gauge fields Aa

µ
which have been granted mass

m2

A
= 2g2v2.

Collecting the scalar field H terms in the same way we have

LH =
1

2
(@µH)(@µH) � �2v2H2 (2.17)

and we conclude that the theory contains a massive scalar field with m2

H
= 2v2�2 as

in the global case. Upon quantisation fields such as H give rise to particles [16] called

Higgs bosons. These fields have far-reaching consequences for theories of fundamental

physics, playing a crucial role in the SM by granting mass to all the fundamental field

quanta such as electrons and quarks and by breaking part of the gauge symmetry

group of the SM.

2.4 The Standard Model of Particle Physics

The SM is a phenomenologically-motivated theory of fundamental particle interac-

tions consisting of two Yang-Mills theories: one of the unified weak and electromag-
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netic interaction (electroweak theory) and one of the strong interaction (quantum

chromodynamics). This section will treat these in turn using the theoretical machin-

ery presented in previous sections. At the end of this section the resulting Higgs

boson and its behaviour will then be discussed.

2.4.1 Electroweak Theory

The electroweak unification model of Glashow, Weinberg and Salam [18–20] marks

the birth of the SM and our modern understanding of fundamental physics. In this

subsection we will begin by constructing the interaction itself as a massless gauge

theory and then break its gauge symmetry via the Brout-Englert-Higgs mechanism.

We will then move on to introduce the leptonic sector and then the quark sector

discussing their dynamical mass generation and properties.

Gauge Fields and the Higgs Field

We begin with a Yang-Mills theory consisting of a complex scalar SU(2) doublet �

� =

 
�+

�0

!
(2.18)

and a global symmetry group G = SU(2) ⇥ U(1) experiencing a potential V (�) of the

same form as equation 2.10. We build the gauge-covariant derivative

Dµ = @µ1 + igW a

µ
T a +

ig0

2
yBµ1 (2.19)

where W a

µ
are the gauge fields corresponding to each of the generators of the SU(2)

subgroup of G, the ⌧a are the SU(2) generators (Pauli Matrices), Bµ is the gauge

field corresponding to the Abelian subgroup U(1), and g,g0 are the gauge couplings

corresponding to the SU(2) and U(1) respectively. The internal field space here has

two complex dimensions and the internal geometry corresponds to a unit circle in the

2D complex space (SU(2)) warped by a position-dependent complex phase (U(1)).

We construct the following Lagrangian for the complex scalar theory

L = (Dµ�)†(Dµ�) � V (�) � 1

2
TrFµ⌫Fµ⌫ � 1

4
Gµ⌫Gµ⌫ (2.20)

where Gµ⌫ = @µB⌫�@⌫Bµ is the Abelian field strength tensor. When µ2 > 0, � adopts

a ground state from the family of minima, gains a non-zero vacuum expectation value

(VEV) and breaks the SU(2) subgroup. As described previously the SU(2)-associated

weak gauge fields will gain mass terms, but there are extra complications. Consider
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the gauge fields in terms of their physical states W±
µ

W±
µ

=
1p
2
(W 1

µ
⌥iW 2

µ
) (2.21)

and the isospin structure of Dµ is shown explicitly by writing it in matrix form

Dµ =

 
@µ 0

0 @µ

!
+

igp
2

 
0 W+

µ

W�
µ

0

!
+

i

2

 
gW 3

µ
+ g0yBµ 0

0 �gW 3

µ
+ g0yBµ

!
. (2.22)

Note that both the third component of the SU(2) gauge field and Bµ both multiply

a diagonal matrix in the internal isospin space, as a result of this the symmetry

breaking pattern is more complex and the two fields will later need to be unmixed.

If we substitute this expression into the Lagrangian (equation 2.20) and gather terms

quadratic in the fields we have,

L =(@µH)(@µH) � 4�v2H2

+
1

2
g2v2W+

µ
Wµ�

+
1

4
v2(gW 3

µ
� g0yBµ)(gWµ3 � g0yBµ)

� 1

2
TrFµ⌫Fµ⌫ � 1

4
Gµ⌫Gµ⌫

. (2.23)

We observe that there is a mass term present for the Higgs field H and the charged

weak bosons W±, however, the quadratic terms for W 3 and B are ‘mixed’ and we

do not have a simple mass term for W 3 and a massless B field. These fields must be

unmixed by performing a rotation in the internal field space

Aµ = cos ✓W Bµ + sin ✓W W 3

µ

Zµ = � sin ✓W Bµ + cos ✓W W 3

µ

(2.24)

where ✓W is called the weak mixing angle and is defined as tan ✓W = g0/g. The field

Zµ now picks up a mass term,

1

2
m2

Z
ZµZµ =

1

4
v2(g2 + g02)2ZµZµ (2.25)

and the field Aµ does not have a mass term. Upon quantisation these are the neutral

weak boson, Z, and the photon of electromagnetism. We can also examine the Abelian

part of the gauge covariant derivative with the unmixed fields,

DAbel

µ
= @µ + ig sin ✓W (T 3 +

1

2
y)Aµ (2.26)
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this leads to the interpretation of T 3 + 1

2
y as the electromagnetic charge operator

where T 3 is the third component of weak isospin and y is the hypercharge.

We now have four vector bosons and one scalar boson: the three weak bosons of

the weak interaction (W±
µ

, Zµ), the photon (Aµ) of the electromagnetic interaction

and the Higgs boson (H) with the quantum numbers shown in Table 2.1.

Particle T 3 y Q = T 3 + y

2

W± ±1 0 ±1

Z 0 0 0

� 0 0 0

H � 1

2
1 0

Table 2.1: Electroweak quantum numbers of the electroweak gauge bosons and the Higgs
boson.

Leptons

Leptons, fermionic constituents of the SM that interact only via electroweak inter-

actions, must be introduced in a more careful fashion than in equation 2.5. Firstly,

neutrinos are assumed massless in the SM (but this not the case in nature [4]). Ex-

periment also observes that neutrinos have left-handed chirality [21], and that there

are processes involving the decay of W� ! e� + ⌫̄e. Therefore we begin by assigning

each lepton and its counterpart neutrino to a weak isodoublet with T3 = ± 1

2

 
⌫e

e�

!
,

 
⌫µ

µ�

!
,

 
⌫⌧

⌧�

!
. (2.27)

However, the fact that there are no right-handed neutrino interactions necessitates a

di↵erent structure: we need to split the leptonic isodoublets into left and right-handed

versions with the projection operator

`e =

 
⌫e

e�
L

!
, e�

L
=

1 � �5

2
e� (2.28)

and we note that the SU(2) gauge symmetry is actually SU(2)L which denotes op-

eration with the chirality operator along with the elements of the group, and the L

subscript has been omitted from the neutrino field as it is assumed that they are only

left-handed. We can also write the right-handed lepton doublets as

 
1+�

5

2
⌫e

1+�
5

2
e�

!
=

 
0

e�
R

!
. (2.29)
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This transforms as a singlet under SU(2)L due to the properties of the projection

operator. The electroweak quantum numbers of the leptonic families are shown in

Table 2.2

Particle T 3 y Q = T 3 + y

2

⌫e, ⌫µ, ⌫⌧
1

2
�1 0

ēL, µ̄L, ⌧̄L � 1

2
�1 �1

ēR, µ̄R, ⌧̄R 0 �2 �1

Table 2.2: Electroweak quantum numbers of the leptons.

To preserve gauge invariance (due to the singlet nature of the right-handed lep-

tons), and to grant mass only to the lower component of the lepton weak isodoublets,

mass is granted dynamically via Yukawa couplings [11]. For each isodoublet there is

a coupling to the Higgs field � of the form

gf (ēR�
†`e + ¯̀

e�eR), (2.30)

which is invariant under SU(2)L. Upon spontaneous symmetry breaking the Higgs

field vacuum expectation value generates mass terms and interactions of the form

gfv(ēReL + ēLeR) + gf (ēReLH + ēLeRH) (2.31)

where we recognise the left hand part of the expression as a fermionic mass term with

mf = gfv, where gf is the Yukawa coupling strength. The Lagrangian of the leptonic

sector of the SM is then

L = � 1

2
TrFµ⌫Fµ⌫ � 1

4
Gµ⌫Gµ⌫

+ (Dµ�)†(Dµ�) + µ2(�†�) � �(�†�)2

+ i
X

f=e,⌫,⌧

(¯̀f�
µDµ`f + gf (f̄R�

†`f + ¯̀
f�fR))

+ i
X

f=e,⌫,⌧

(f̄R�
µDY

µ
fR),

(2.32)

where DY

µ
denotes the part of the covariant derivative that corresponds to the hyper-

charge, and f labels lepton generation.

Quarks

To complete the fermionic content of the SM we must include quarks: fermions

with fractional electric charge that transform non-trivially under the full SM gauge

group [22]. In analogy with the leptons we begin by grouping the quarks into three
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generations of SU(2)L isodoublets with T3 = ± 1

2

 
u

d

!
,

 
c

s

!
,

 
t

b

!
, (2.33)

where from left to right and top to bottom we have the up, down, charm, strange,

top and bottom quarks. There are also right-handed singlet fields for each flavour of

quark.

The introduction of the electroweak interaction is performed in the same way

as before with the introduction of the covariant derivative and the breaking of the

SU(2)L subgroup by the Higgs mechanism. The quantum numbers of the quarks are

shown in Table 2.3.

Particle T 3 y Q = T 3 + y

2

u, c, t 1

2

1

3

2

3

d, s, b � 1

2

1

3
� 1

3

uR, cR, tR 0 4

3

2

3

dR, sR, bR 0 � 2

3
� 1

3

Table 2.3: Electroweak quantum numbers of the quarks.

However, the mechanism for the generating quark masses is slightly di↵erent.

One still uses couplings of the same form as before, but a few modifications are

required [22] to generate masses for the up-type quarks which would remain massless

if we proceeded in the exact same way as for leptons. Firstly, note that the following

also transforms as an SU(2)L doublet

�C = i⌧2�
⇤ =

 
�0⇤

��+⇤

!
, h�Ci =

 
v

0

!
, (2.34)

where ⌧2 is the second Pauli matrix. Now, when the Higgs field isodoublet gains a

vacuum expectation value this transformed version has the value in the upper part

of the isodoublet and one can use this to construct gauge-invariant masses for the

quarks of the following form

X

i=1,2,3

gi(ūiR�
†qiL + d̄iR�

†
C

qiL + h.c.) (2.35)

where h.c. denotes Hermitian conjugate. This grants equal masses to the up and

down-type quarks in disagreement with experiment. We therefore have to introduce
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matrix-valued couplings which mix the flavours

X

i,j=1,2,3

g(↵ij ūiR�
†qjL + �ij d̄iR�

†
C

qjL + h.c.). (2.36)

Finally, in the physical flavour-changing currents of the SM it is combinations of down

type quarks that appear by convention. Each type of quark is measured to have a

preference for their own generation but can also decay through the weak interaction

to others [22]. We can consider the down-type quarks to be ‘rotated’ in flavour space

such that the lower component of the quark isodoublets are actually mixed between

d, s, b. We therefore replace the down part of each with

 
u

d0

!
,

 
c

s0

!
,

 
t

b0

!
, q0

f =
X

f 0=d,s,b

Vff 0qf 0 (2.37)

where the Vff 0 are elements of the Cabbibo-Kobayashi-Maskawa (CKM) matrix [23,

24], a unitary matrix that performs the required rotation in flavour space.

2.4.2 Quantum Chromodynamics

As mentioned previously quarks are the only fermions of the SM to transform non-

trivially under the full SM gauge group. This means that they experience an extra

interaction from the gauging of the SU(3) subgroup, the strong interaction, and carry

colour charge. This is described by quantum chromodynamics (QCD) [22], the other

Yang-Mills theory that constitutes the SM.

To construct the Lagrangian of QCD we begin by defining the SU(3) covariant

derivative

Dµ = @µ + igs�
aAa

µ
, (2.38)

where �a are the generators of SU(3), and gs is the QCD gauge coupling. We then

replace @µ in a Dirac-type Lagrangian that has the corresponding non-Abelian field

strength tensor F a

µ⌫
and whose fermions are the six flavours of quarks. Each of these

are isodoublets that also carry the colour charge qC

f
, C = R, G, B (red, green, blue)

and are structured in colour triplets transforming under SU(3)

 f =

0

B@
qR

f

qG

f

qB

f

1

CA . (2.39)
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The Lagrangian is then

LQCD =
X

f

i ̄f�
µDµ f � 1

2
TrFµ⌫Fµ⌫ , (2.40)

where the index f denotes quark flavour. Upon quantisation we will have eight mass-

less gauge bosons called gluons that couple to quark pairs of the same flavour.

The strong interaction behaves di↵erently to the weak or electromagnetic interac-

tions: instead of the weakening with distance the strong force increases in strength.

An important result of this phenomenon is that colour-carrying particles such as

quarks and gluons are confined and can only exist within composite particles called

hadrons [22]. This is responsible for the phenomenon of jets in high-energy particle

collisions.

Jets are collimated cone-shaped sprays of particles that result from quark or gluon

(parton) production [25]. When produced these will radiate other partons in a similar

process to an electromagnetic particle shower (parton showering). Collinear gluon

emission is much more common during this process giving the conical shape of the

jet. However, due to confinement the partons can only exist bound within composite

particles and therefore must hadronize to form colourless hadrons. These hadrons

may further fragment or decay to daughter particles.

We now have the full fundamental particle content of the SM and the couplings be-

tween them. Next we will consider how the above is manifested as the phenomenology

of the Higgs boson.

2.4.3 Higgs Boson Phenomenology

The Higgs field couples directly to every massive particle in the SM [22]: either

through the gauge-covariant derivative that gives interaction between the Higgs boson

and the weak gauge bosons, or the Yukawa couplings which cause interaction with the

non-neutrino fermions. In this section we will look at how Higgs bosons are created in

proton-proton collisions at the Large Hadron Collider, and their subsequent decays.

Higgs Boson Production in Proton Collisions

There are four main ways that a Higgs boson can be produced in proton collisions:

gluon fusion (ggH), vector boson fusion (VBF), associated production (VH), and top

fusion (tt̄H) (Figure 2.5). In proton collisions at
p

s = 13TeV gluon fusion dominates

over the other processes for a Higgs boson of mass mH = 125GeV with a cross section

of 49 pb. VBF is the second largest with 3.8 pb, VH is third with 2.3 pb and tt̄H is last

with 0.5 pb [26]. Although ggH has by far the largest crossection, the other production

modes contain extra objects in their final state aiding the separation of Higgs bosons
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Figure 2.5: The four main production modes of the Higgs boson at the LHC. Clockwise
from top left: ggH, VBF, tt̄H and VH.

from events that resemble them. In particular VBF gives rise to two highly energetic

jets from the final-state quarks with a large angular separation.

Higgs Boson Decays

Once produced, the Higgs boson is predicted to decay very quickly [27] to pairs

of particles. At tree-level it will decay into massive particles in proportion to their

masses in two di↵erent ways: in the case of particles granted mass through the Yukawa

couplings (fermions) the branching fraction will be proportional to the square of the

mass, in the case of particles granted mass through the gauge-covariant derivative the

branching fraction will be proportional to the fourth power of the mass (weak gauge

bosons). The Higgs boson can also decay via loop diagrams that have a reduced

branching fraction. The prevalences of the main decay modes [28] are summarised in

Table 2.4.

Decay Mode bb̄ W±W⌥⇤ gg ⌧ ⌧̄ cc̄ ZZ⇤ ��

Branching fraction 58.2% 21.4% 8.2% 6.3% 2.8% 2.6% 0.23%

Table 2.4: Main branching fractions of the Higgs boson.

The H ! �� decay (Figure 2.6) is of particular interest in experimental searches



20 Chapter 2. Theory

despite its relatively small branching fraction. It has a simple, fully-reconstructed final

state with no composite objects such a jets or missing momentum that cause di�culty

in the high-multiplicity hadronic environment of the LHC. This decay mode’s clean

signal led to it being one of the two channels in which the Higgs boson was discovered

in 2012.

H

�

�

t

t

t̄

H

�

�

W±

W±

W⌥

H

�

�

W±

W⌥

Figure 2.6: Main contributing diagrams to the Higgs boson to diphoton decay mode.



Chapter 3

Apparatus

3.1 Introduction

This chapter describes the experimental apparatus used to produce the 2016 proton-

proton collision dataset used in this thesis. A description of the means of collision

production, the Large Hadron Collider (LHC), will be given and subsequent measure-

ment with the Compact Muon Solenoid (CMS) will be described in particular detail.

The CMS design and operation described corresponds to the 2016 running period.

3.2 The Large Hadron Collider

The LHC [29] is a large synchrotron-type particle accelerator whose purpose is to

provide collisions to survey electroweak-scale physics, particularly the mechanism of

electroweak symmetry breaking, in addition to a broad physics program ranging from

dark matter searches to flavour physics to studies of quark-gluon plasma. These

studies are a↵orded by the production of high-energy and high-luminosity proton,

lead ion and xenon ion collisions in counter-circulating beams. These achieve a long

reach for the production of heavy particles and superior statistical power for the

study of rare processes. The remainder of this section will be solely concerned with

the LHC’s proton-proton operation.

3.2.1 LHC Accelerator Chain

Before collisions occur at the LHC interaction points the beams must be produced

and conditioned with a collection of accelerators [30] before injection into the LHC

(Figure 3.1). This process begins with the acquisition of protons from a small quantity

of hydrogen gas: hydrogen is injected into a chamber and the atomic electrons are

21
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Figure 3.1: A schematic view of the LHC accelerator chain for proton-proton operation.

stripped o↵ using a strong electric field. The resulting bare protons are then injected

into a linear accelerator (LINAC 2) and accelerated by radio-frequency (RF) cavities

to an energy of 50 MeV. The protons then enter the Proton Synchrotron Booster

(PSB), consisting of four synchrotron rings stacked on top of each other with a radius

of 25 m, the protons are further accelerated up to an energy of 1.4 GeV allowing for

more protons to be injected into the next part of the accelerator chain and therefore

higher-intensity beams. The protons from each ring of the PSB enter the Proton

Synchrotron (PS) in sequence with 25 ns spacing to form the bunch structure. The PS

is another synchrotron, with a radius of 72m, where they are accelerated to 25 GeV.

When they have reached this energy the protons are then injected into the Super

Proton Synchrotron (SPS) which has a circumference of nearly 7 km and accelerates

protons to 450GeV before their injection into the LHC in two opposing directions.

3.2.2 LHC Structure and Operation

The LHC itself is a 27 km ring consisting of 1232 8 T superconducting dipole magnets

that force the protons into a circular path so they can be repeatedly accelerated

by 16 superconducting RF cavities oscillating at 400MHz. As on-time protons with

correct energy come in to the cavity they do not experience any acceleration, if they

arrive slightly later they experience an accelerating potential, slightly early and they

experience a deceleration. This maintains the energy of the protons and the bunch

structure as they circulate in the LHC ring. The beams are then further adjusted by

392 quadrupole magnets to maintain stable beam conditions and stronger quadrupole

magnets are used to focus the beams at the four LHC collision points.

Bunches of protons are brought together to collide at each of the LHC interaction

points every 25 ns during normal operation. This is referred to as a bunch crossing and

usually produces multiple superimposed proton collisions (pileup) and a large dose
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of radiation for any equipment situated nearby. These conditions pose challenges for

the design and operation of the LHC’s experiments.

The LHC is designed to operate with a centre of mass energy of
p

s = 14 TeV and

instantaneous luminosity of 1034 cm�2s�1 with two beams of 2880 bunches. During

the 2016 period the LHC operated at
p

s = 13 TeV and an instantaneous luminosity

above design specification at 1.4 ⇥ 1034 cm�2s�1. This culminated in 40.82 fb�1 of

integrated luminosity delivered to the CMS experiment in the 2016 period with an

average pileup rate of 27 [31] (Figure 3.2).
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Figure 3.2: Left: total integrated luminosity over the 2016 proton-proton running period
delivered to (blue) and recorded by (orange) the CMS experiment [31]. Right:
the 2016 pileup distribution [31].

3.3 The Compact Muon Solenoid

The CMS experiment [32] is a general-purpose detector situated at Point 5 on the LHC

directly opposite its counterpart, ATLAS [33]. CMS uses a right-handed coordinate

system with the x-axis pointing horizontally towards the centre of the ring, the y-axis

pointing vertically, and the z-axis pointing along the beamline in the anti-clockwise

direction. An angular coordinate system is commonly used in physics analyses which

consists of the coordinates (�, ⌘, z), where � is the azimuthal angle in the x-y plane

and ⌘ is the pseudorapidity defined from the polar angle ✓ as

⌘ = � ln tan
✓

2
. (3.1)

Generally, the high |⌘| regions closer to the beamline are referred to as forward, and

the low |⌘| region is referred to as central. In addition, the radial distance in the x,

y plane r is sometimes used. The di↵erent coordinates used at CMS are summarised

in Figure 3.3. This thesis will use the (�, ⌘, z) coordinate system.
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Figure 3.3: Coordinate systems used at CMS. Example values for the pseudorapidity ⌘
are shown by the red arrows.

3.3.1 Design Overview

The design of CMS is driven by the challenges of operating in the LHC collision

environment and by the broad range of its physics goals [34]. The LHC produces

proton-proton bunch crossings at a high rate (40MHz) and this requires CMS to be

very responsive to facilitate a short decision time on accepting an event. This high

collision rate also means that the components of CMS operate in a high-radiation en-

vironment, so their performance must be robust to large doses of radiation. Finally,

the pileup in each bunch crossing puts particular requirements on the CMS design to

achieve isolation of di↵erent kinds of particles in a complex, high-multiplicity envi-

ronment: it requires fine granularity, both spatial and temporal.

The physics goals of CMS include the discovery and measurement of the Higgs

boson and searches for supersymmetry amongst other topics like extra gauge bosons,

extra dimensions and heavy ion collisions. The CMS Higgs physics programme has

prioritised searches for the Higgs boson in the leptonic final states as well as the dipho-

ton final state, as these have superior signal separation potential and mass resolution

in the LHC collision environment when compared with hadronic searches. For super-

symmetry searches one expects events with a significant degree of missing-transverse

energy (Emiss

T
) and this, along with maximising the acceptance of other analyses,

motivates the hermetic design of CMS. Therefore, the main CMS performance goals

were decided to be [32]:

• Good identification of muons and good muon momentum resolution,

• Good charged particle momentum resolution and reconstruction e�ciency,

• E�cient triggering and o✏ine tagging for ⌧ leptons and b quark jets,

• Good energy resolution for electromagnetically interacting particles over a large

geometric area,
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• Good ⇡0 rejection,

• Good missing-transverse energy and dijet mass resolution.

The design of CMS, shown in Figure 3.4, is driven by these goals.

Figure 3.4: The CMS experiment separated into barrel (top) and endcap (bottom), both
have an azimuthal section removed to show structure of the detector
subsystems. Rendering was built with the model in [35].
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The general structure of CMS is a classic hermetic design with a main cylindrical

section centred around the interaction point called the ‘barrel’ that is then sealed by

two ‘endcaps’. This gives a detector with a pseudorapidity range from �5 to 5 that

almost covers the entire 4⇡ solid angle. Both barrel and endcaps consist of multiple

concentric detector subsystems with di↵erent functionality, all of this is based around

the main feature of the CMS detector: its large superconducting solenoid. The CMS

solenoid, along with the steel return yoke it is supported by, achieves a high-strength

and homogenous magnetic field over a large volume. This field bends the trajecto-

ries of charged particles into a helix and when this bend is measured accurately, one

can achieve a precise momentum measurement. This meets the performance require-

ments for momentum resolution of charged particles and especially muons. Within

the bore of the solenoid there are three subsystems: the tracker, the electromagnetic

calorimeter (ECAL) and the hadron calorimeter (HCAL). The tracker consists en-

tirely of silicon-based sensors and performs precise measurements of charged particle

trajectories, at the centre are pixel detectors which allow CMS to meet its ⌧ lepton

and b-quark jet tagging goals by reconstructing tracks and secondary vertices with

great precision. The ECAL then measures the energy of electromagnetically interact-

ing particles with good resolution. This energy resolution allows for excellent mass

resolution for dilepton and diphoton objects and is crucial to the measurement of

Higgs boson decays to �� and ZZ(⇤). Situated around the ECAL, the HCAL mea-

sures the energies of neutral hadrons and covers a large area with fine granularity

to achieve hermeticity and to meet the objective of good Emiss

T
measurement. Fi-

nally, the muon detectors are sited around the outside of the solenoid and cover a

large area. These systems are interleaved with the steel return yoke and measure

muon trajectories and energy precisely in order to achieve good muon momentum

resolution and particle identification with a fast response. Each of these subdetector

systems, with the exception of the tracker, provide fast measurements for the CMS

trigger system. This allows CMS to cope with the very high data rate by making fast

decisions about whether to keep events. Each of these systems will be described in

detail in the following subsections. Particular attention will be given to the ECAL,

due to its importance to the measurement of the Higgs diphoton decay mode.

3.3.2 Solenoid and Return Yoke

The CMS magnet is a liquid helium-cooled superconducting solenoid, 12.5m in length

with a bore of diameter 6 m and a mass of 220 t (including all systems operating at

cryogenic temperature) [34]. This is situated within a steel return yoke [36] that

weighs 12000T extends outwards to a diameter of 14 m and is made of five barrel

‘wheels’ with three layers, and then completed by three disks in each endcap (Fig-

ure 3.5). The niobium-titanium coils of the solenoid carry 18160 A of current that
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Figure 3.5: The CMS solenoid (white) within the steel return yoke (red). Rendering
uses [35].

produces a magnetic field strength within the bore of 3.8T and a stored energy of

2.3 GJ. This field strength is below the design capability of 4 T to maximise the oper-

ating lifetime of the solenoid. The return yoke then conditions this field, increasing the

strength in the bore by a small amount (8%) [36] and improving the field homogeneity

in the barrel and the muons systems.

3.3.3 Inner Tracking

The CMS tracker [37] is the innermost detector layer and is designed to measure the

trajectories and the secondary vertices of charged particles with high precision. In

order to meet the requirements of the LHC operating environment, the tracker must

have fine granularity to handle the high-multiplicity environment, precise timing to

match the particle tracks to the correct bunch crossing, and it must be robust to large

doses of radiation. It must also introduce minimal material in front of the other de-

tector subsystems to avoid photon conversion, bremsstrahlung and other interactions.

This would particularly degrade the quality of reconstructed photons and electrons.

These requirements motivated the choice of silicon sensor technology for the tracker

that uses two di↵erent types: pixel detectors and microstrip detectors. Pixel detec-

tors are made up of many small pixels and measure a position on a trajectory in

two dimensions. Microstrips consist of small parallel strips separated by a distance

called the ‘pitch’ that detects the ionisation from an incident charged particle in one

dimension.

The general structure of the tracker (Figure 3.6) has a length of 5.8 m, a diameter

of 2.5 m and covers a pseudorapidity range of |⌘|< 2.5. Its active surface consists of

1440 pixel sensors, 15148 microstrip detectors and covers an area of approximately

200 m2. These are assembled into several subsystems: the pixel, the tracker inner
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Figure 3.3: Material budget in units of radiation length as a function of pseudorapidity � for the
different sub-detectors (left panel) and broken down into the functional contributions (right panel).

30% of the transverse momentum resolution while at lower momentum it is dominated by multiple
scattering. The transverse impact parameter resolution reaches 10 µm for high pT tracks, domi-
nated by the resolution of the first pixel hit, while at lower momentum it is degraded by multiple
scattering (similarly for the longitudinal impact parameter). Figure 3.5 shows the expected track
reconstruction efficiency of the CMS tracker for single muons and pions as a function of pseudo-
rapidity. For muons, the efficiency is about 99% over most of the acceptance. For |� | ⇡ 0 the effi-
ciency decreases slightly due to gaps between the ladders of the pixel detector at z ⇡ 0. At high �
the efficiency drop is mainly due to the reduced coverage by the pixel forward disks. For pions and
hadrons in general the efficiency is lower because of interactions with the material in the tracker.

– 31 –

Figure 3.6: Left: the tracker subsystem showing the the central pixel detector in yellow,
TIB in orange, TID in red, TOB in purple and TECs in blue [35]. Right: the
material before the ECAL in radiation lengths (X0) [32].

barrel (TIB), the tracker inner disks (TID), the tracker outer barrel (TOB) and the

tracker endcaps (TEC).

The innermost subsystem of the tracker is the pixel detector which provides precise

measurements in �, r and z of particle trajectories and achieves a high transverse and

longitudinal position resolution. The pixel detector consists of pixel sensors arranged

in cylinders of 4.4 cm, 7.3 cm, and 10.2 cm with two disks of pixels sensors at either

end to give a total of 66 million pixels and an active area of 1 m2. This gives a

pseudorapidity coverage of |⌘|< 2.5 and at least three position determinations along

each track with a transverse resolution of 10 µm and longitudinal resolution of 20-

40 µm. Further out from the pixel detector, all of the tracker subsystems use silicon

microstrip sensors.

Situated around the pixel detector are the TIB and TID subsystems that extend

in radius out to 55 cm and consist of four cylinders of sensors in the TIB and three

disks of sensors in the TID. These deliver up to four r-� measurements using sensors

oriented parallel to the beam axis in the barrel and radially on the disks. These

sensors have a pitch of 80µm in layers one and two of the TIB and 120 µm further

out, giving a position resolution of 23 µm and 35 µm respectively. Surrounding the

TIB and TID is the TOB subsystem with an outer radius of 116 cm, z between

±118 cm. The TOB consists of six cylindrical layers with pitches of 183 µm in the

first four layers and 122µm in the fifth and sixth. This gives six r-� measurements

with single point resolutions of 53µm and 35µm respectively. Finally, at either end,

are the TEC tracker subsystems that extend in radius from 22.5 cm to 113.5 cm and

extend in |z| between 124 cm and 282 cm. Each of the two TECs consist of nine disks

of up to seven rings of radially-oriented microstrip sensors. This gives up to nine

measurements of � for each trajectory. Some of the microstrip modules are in pairs to



3.3. The Compact Muon Solenoid 29

provide a second coordinate measurement: z in the cylindrical layers, r in the discs.

They are mounted back to back and rotated by 100 mrad with respect to each other.

These modules make up the first two layers of the TIB and TOB, the first two rings

of the TID and the first, second and fifth rings of the TECs. All of this ensures ⇡9

precision measurements of trajectories in the silicon microstrip part of the tracker in

the range |⌘|< 2.4 with ⇡4 of them being two-dimensional.

The entire tracker material budget manages to remain under two radiation lengths:

it ranges from 0.4 X0 at |⌘|⇡ 0 to about 1.8 X0 at |⌘|⇡ 1.4 back to about 1 X0 at

|⌘|⇡ 2.5. This is shown in Figure 3.6.

3.3.4 Electromagnetic Calorimetry

The CMS ECAL [38] is a calorimeter designed to reconstruct the energy of electro-

magnetically interacting particles such as photons with good resolution. In particular,

the ECAL is aimed at the detection and reconstruction of leptonic and diphoton Higgs

final states with good mass resolution within the confines of the CMS solenoid and

in LHC operating conditions. To meet these requirements the ECAL must have fine

spatial granularity, a large spatial acceptance, a fast response time, and it must cap-

ture maximal information from the showers in the restricted space available within

the solenoid.

The ECAL as a whole has the following geometry (Figure 3.7): the barrel region

(EB) covers a pseudorapidity range of |⌘|< 1.442, there is then a gap between 1.442 <

|⌘|< 1.566, and finally the endcaps (EE) cover the range 1.566 < |⌘|< 3. Due to

prohibitive radiation and pileup conditions, electrons and photons are only measured

with precision up to |⌘|< 2.5. In addition to these subsystems there is the preshower

detector (ES) mounted in front of the endcaps that occupies the range 1.54 < |⌘|<
2.61. The ES consist of two disks of lead absorber followed by two planes of silicon

strip detectors with pitch 1.9 mm. The main purpose of the ES is ⇡0 rejection.

The EB and the EE regions are constructed out of lead tungstate (PbWO4) crys-

tals, 61200 in the former region and 7324 in the latter. The choice of PbWO4 owes

to its short radiation length (0.89 cm), and small Molière radius. The short radia-

tion length ensures that particle showers are shorter in extent and can be contained

in as small a depth as possible. The short Molière radius (a measure of showers

spread transverse to their direction in a material) ensures that the showers are more

contained in the ⌘,� directions.

In the EB, each crystal has a front face of 22⇥22 mm2 corresponding to the Molière

radius of 21.9 mm and a segmentation of (�⌘,��) = (0.0174, 0.0174). The crystals

are also tapered in ⌘ with 25.8 X0 length (230 mm) and are oriented at a 3� o↵set

from the average primary vertex position in ⌘ and �. This improves the hermeticity.

In the EE, the crystals have a front face of 28.6 ⇥ 28.6 mm and are 24.7 X0 (220 mm)
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Figure 4.6: The barrel positioned inside the hadron calorimeter.
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Figure 3.7: The CMS ECAL with a section removed to show structure [32].

in length.

The individual crystals are grouped together in both the EB and EE. In the EB

they are grouped into 36 ‘supermodules’ that cover �� = 20� and extend half the

barrel length in z. In each EE identically-shaped crystals are grouped into 5 ⇥ 5

‘supercrystals’ arranged in a rectangular x-y grid with angular o↵sets of 2-8�.

When a particle enters one of the crystals and then showers, scintillation light will

be produced and collected by a sensor at the opposite end. This sensor will produce

a pulse that is amplified and then converted into a digital signal. The height of this

digitised pulse is then used to determine the energy deposition within the crystal.

Two di↵erent types of sensor are used: in the barrel region avalanche photodiodes are

used, while in the endcaps vacuum phototriodes are used due to the di↵erent magnetic

field properties and higher radiation levels. Crystals are read out as 5 ⇥ 5 trigger

towers whose digital signal sum constitutes the fast, coarse information provided to

the trigger system with every bunch crossing.

The energy resolution of a single PbWO4 crystal is modelled with the following

equation [34]
⇣ �

E

⌘2

=

✓
Sp
E

◆2

+

✓
N

E

◆2

+ C2, (3.2)

where S is the stochastic term, N is a noise term, and C is a constant term. The

crystal performance was measured in a test beam and the above parameters deter-

mined by fitting a Gaussian function to the reconstructed energy distributions. Their

values were measured to be S = 2.8 GeV
1
2 , N = 0.12 GeV, and C = 0.3%.
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To reconstruct the energy of a photon or electron, multiple crystals are typically

used as the shower spreads in the ECAL or even starts to shower in the tracker

material before it. Clustering algorithms [39] are used to reconstruct energy from

these crystals and assemble them into a supercluster (SC). The energy associated to

the supercluster is then calculated as

ESC = FSCG
NcX

i=0

AiCiSi(t) (3.3)

where Nc is the number of crystals in the SC, Ai is the amplitude of the pulse of

crystal i, Si(t) corrects crystal transparency loss due to radiation, Ci is a factor that

adjusts the response of the crystal, G is a conversion factor from the digital signal

to GeV (global energy scale) and FSC is a correction to the SC energy sum due to

second order e↵ects.

To calibrate the ECAL [40] one must use a variety of measurements to determine

the factors G, Ci, and Si(t) corresponding to calibration of the overall energy scale,

uniformity of measurement in space and uniformity over time respectively. Correc-

tions over time due to radiation-induced transparency change in the crystals (Si(t))

are derived by injecting laser light at 440 nm every 40 minutes.

Several methods are used to derive the factors for an even crystal response over

the ECAL spatial extent using the symmetries of CMS. Firstly one uses � symmetry

to find factors in rings of ⌘ that should all have the same response. Other methods

reconstruct particles of known mass decaying to diphotons and use this as a standard

candle. The mass should be the same in each part of the detector which allows for

the determination of regional di↵erences in response. These di↵erent methods are

combined to give a collection of per-crystal corrections.

The final factor, the global energy scale, is derived by reconstructing Z bosons

decaying to an e+e� pair and comparing the measured dielectron mass to the known

Z boson value.

3.3.5 Hadron Calorimetry

The CMS HCAL [41] is situated around the ECAL and its function is to identify

neutral hadrons, measure their energies and positions, and to determine Emiss

T
with

good resolution over a large acceptance. It is a sampling calorimeter that uses material

to produce particle showers (absorber) distinct from the active material measuring

deposited energy, unlike the ECAL which is a homogeneous calorimeter where one

material (lead tungstate) performs both functions.

The structure of the HCAL is shown in Figure 3.8. It consists of a barrel re-

gion (HB), two endcaps (HE), a region outside the solenoid (HO), and two forward
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calorimeters (HF) that take the HCAL acceptance up to |⌘|< 5. The HB region covers

Figure 3.8: The CMS HCAL with the barrel and endcap sections (left) with part
removed to show structure and the forward hadronic calorimeter (right) [35].

a pseudorapidity range of |⌘|< 1.3 and consists of two half-barrel sections that slot

in to either end of the solenoid bore and each consist of 36 identical wedges in the

azimuthal angle �. These wedges are constructed from 2 steel and 14 brass absorber

plates with a plastic scintillator active material in alternating layers. Brass is used

because it is non-magnetic, while steel absorber is only used in the innermost and

outermost plates to provide structural support. Each wedge is segmented into four

azimuthal regions and the plastic scintillator is divided into 16 pseudorapidty regions

giving a granularity of (�⌘,��) = (0.087, 0.087). The HE regions cover a pseudo-

rapidity range 1.3 < |⌘|< 3 and each is divided into 36 azimuthal wedges. It uses

brass absorber plates and achieves a granularity between (�⌘,��) = (0.087, 0.087)

and (0.017, 0.017) The HF region covers a pseudorapidity range from 3 < |⌘|< 5 and

must deal with extremely high levels of radiation. This motivates a di↵erent con-

struction with quartz fibres chosen for the active material and steel for the absorber.

It is cylindrical in structure with 5 mm thick grooved plates where the fibres fit into

the grooves and operate by detecting Cherenkov light produced by incident particles.

The fibres are bundled to form (�⌘,��) = (0.175, 0.175) towers. Finally, the HO

covers the barrel region around the solenoid and consists of plastic scintillator tiles

matching the granularity of the HB. It uses the solenoid itself as the absorber and is

designed to operate as a shower ‘tail catcher’ that compensates for hadron showers

that begin later in the HCAL and may not be properly measured. This leakage has

a direct e↵ect on the measurement of Emiss

T
.
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3.3.6 Muon Detection

The CMS muon system [42] is situated around the outside of the solenoid and consists

of detectors interleaved with the steel return yoke assembled into barrel and endcap

regions (Figure 3.9). The muon system has three objectives: to identify muons,

to measure their momentum with precision, and to trigger on them over a large

spatial acceptance. The muon detectors are all gas-based and belong to three di↵erent

12 Chapter 1. Introduction

regions. These RPCs are operated in avalanche mode to ensure good operation at high rates
(up to 10 kHz/cm2) and have double gaps with a gas gap of 2 mm. A change from the
Muon TDR [4] has been the coating of the inner bakelite surfaces of the RPC with linseed
oil for good noise performance. RPCs provide a fast response with good time resolution
but with a coarser position resolution than the DTs or CSCs. RPCs can therefore identify
unambiguously the correct bunch crossing.

The DTs or CSCs and the RPCs operate within the first level trigger system, providing 2
independent and complementary sources of information. The complete system results in a
robust, precise and flexible trigger device. In the initial stages of the experiment, the RPC
system will cover the region |⌘| < 1.6. The coverage will be extended to |⌘| < 2.1 later.

The layout of one quarter of the CMS muon system for initial low luminosity running is
shown in Figure 1.6. In the Muon Barrel (MB) region, 4 stations of detectors are arranged in
cylinders interleaved with the iron yoke. The segmentation along the beam direction follows
the 5 wheels of the yoke (labeled YB�2 for the farthest wheel in �z, and YB+2 for the farthest
is +z). In each of the endcaps, the CSCs and RPCs are arranged in 4 disks perpendicular to
the beam, and in concentric rings, 3 rings in the innermost station, and 2 in the others. In
total, the muon system contains of order 25 000 m2 of active detection planes, and nearly
1 million electronic channels.
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Figure 1.6: Layout of one quarter of the CMS muon system for initial low luminosity running.
The RPC system is limited to |⌘| < 1.6 in the endcap, and for the CSC system only the inner
ring of the ME4 chambers have been deployed.

Figure 3.9: Left: the CMS muon detector subsystems (white) within the structure of the
steel return yoke (red) [35]. Right: a diagram showing a quarter-view of of
the muon system with detector types labelled.

types: drift tubes (DTs), cathode strip chambers (CSCs) and reactive plate chambers

(RPCs). They all operate the same way, with incident particles ionising gas, producing

free electrons which drift towards the anode and produce an electrical signal.

In the barrel region DTs are used as the magnetic field is more uniform, the

neutron flux is small and the muon rate is lower. They are arranged in four layers

covering the pseudrorapidity |⌘|< 1.2 where the detectors in the first three layers have

a di↵erent construction to the fourth. The first three layers’ detectors consist of eight

chambers in two groups of four: the first half measure in the r-� plane, the second

half measure in z. The outermost detectors do not have the z determination. All

of these detectors use aluminium wires with an Ar plus CO2 gas mix and achieve a

position resolution of 100µm.

In the endcap regions the magnetic field is less uniform, the neutron-induced back-

ground is high and so is the muon rate. This led to the adoption of CSC technology

due to their fast timing ability, granularity, and robustness to high radiation. These

detectors cover a pseudorapidity region of 0.9 < |⌘|< 2.4 and are arranged in four

layers. Each detector consists of six gas gaps with cathode strips running radially

away from the beamline and anode wires running perpendicularly to the cathode

strips. The cathode strips give a precise but relatively slow measurement in the r-�
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plane and the anodes measure in ⌘ with fast timing for triggering and bunch crossing

attribution. They achieve a position resolution of around 200µm.

Finally, in addition to the DTs and CSCs, the muon system uses RPCs placed in

the barrel and the endcaps (up to |⌘|< 1.6) as an independent and complimentary

way of triggering. The RPCs are double gap chambers operating in avalanche mode

to give a fast response time and good timing resolution. In the barrel region there

are six layers of RPCs: two layers in each of the first two layers of drift tubes and one

each in the last two. This redundancy helps with triggering on muons with low-pT .

In the endcaps there are planes of RPCs in each of the layers that, in addition to

triggering, help to resolve ambiguities in the CSCs when there are multiple tracks in

a chamber.

3.3.7 Trigger System and Storage

The LHC delivered bunch crossings to CMS at a rate of 40MHz in the 2016 period.

With each of these events requiring up to 1MB of memory this would amount 40 TB

per second of readout and storage which is not feasible. However, most of these events

are not physically interesting: they will mostly be low-energy interactions where the

protons only glance o↵ each other rather than collide head-on.

To filter out these events, a fast measurement and decision must be made whether

to store or discard; this is achieved with the CMS trigger system [43]. The trigger

system operates as a two-step process: first the hardware-based level-1 trigger (L1T)

makes fast decisions on whether to keep events using coarse information from some

of the subsystems; and then the software-based high-level trigger (HLT) cuts the rate

further by using all detector subsystems and a basic physics object reconstruction.

The L1T achieves a rate reduction of 40MHz to 100 kHz by performing fast cal-

culations using custom, reprogrammable hardware called field-programmable gate ar-

rays (FPGAs). To achieve this the L1T must make an accept decision within 3.2 µs,

including the time of transmission from the detector and decision return. Coarse

information, due to speed and bandwidth limitations, is received from the ECAL,

HCAL, and the muon system to be stored in a bu↵er that contains information from

multiple bunch crossings. Furthermore there is insu�cient time for using correlations

between subdetectors and also insu�cient time and other resources to use information

from the tracker. Once information is received, a collection of algorithms are used

to pick out relevant events and if the event is accepted the entire detector readout is

passed on to the HLT.

At the HLT, the data rate is still too high and must be cut further to 1 kHz. This is

achieved with a computing farm a short distance away from the CMS detector which

runs a basic reconstruction of physics objects from the full CMS readout including

the tracker. Here more sophisticated algorithms may be run to pick out collections of
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objects in events and make the final accept decision. After this, events are recorded

to permanent storage, put through the full CMS reconstruction, evaluated for data

quality and then made available for physics analyses.
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Chapter 4

Machine Learning

4.1 Fundamentals

The field of Machine Learning is concerned with algorithms with the capacity to

‘learn’ from experience; this may be contrasted with algorithms that achieve some

task with a set of statically-defined steps [44]. The ability to learn allows these

algorithms to solve problems which may be too complex for a collection of explicitly

defined instructions. This chapter will give an overview of machine learning, and deep

learning in particular, as pertinent to the field of high-energy physics. We begin with

the fundamentals of machine learning, then move on to ensembling and decision trees,

and finally neural networks and deep learning.

4.1.1 The Learning Process

Problem Formulation

The data in a machine learning problem are often formulated in terms of a vector space

X = Rn, where each dimension is an observable quantity referred to as a ‘feature’

and a particular datum corresponds to a single feature vector ~x 2 X [45]. A dataset

is a set of feature vectors ~xi sampled from some underlying probability distribution

P (~x): the data-generating distribution. A machine learning algorithm can then be

considered [45] to consist of a model f ,

f(~x, ~w) ! Y (4.1)

a function that maps from a feature vector ~x to an outcome Y given a vector of

parameters ~w; a loss function L

L(f, ~x) ! R (4.2)
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that measures a notion of performance given the model, a set of feature vectors and

sometimes the desired outcome; and finally, an optimisation scheme that tunes the

parameters of the model with respect to the loss to drive the learning process.

Learning is said to occur when the model’s performance at some class of tasks

T , as measured by some performance measure P , improves given experience E [46].

There are many types of task that depend on the dataset and the desired outcome,

but the two main tasks of interest are classification and regression [44]:

• Classification tasks aim to predict one of k-many classes given a feature vector,

f(~x) ! y where y 2 {1, . . . , k}. This is often an integer class label but can be

a probability distribution over classes. An example of a classification problem

from physics would be signal-background event discrimination where we attempt

to classify events into background-like or signal-like classes.

• Regression tasks aim to predict a continuous value given the input features,

f(~x) ! y where y 2 R. An example of a regression task in physics would

be detector calibration where we attempt to predict the true value from the

measured value.

In addition to these main tasks there are others such as structured prediction that

attempt to predict more complicated structures such as trees and lists.

The experience that the model receives depends on the data that the model is

exposed to during optimisation, and can be split into two broad categories [44]:

• Supervised machine learning algorithms experience target values y as well as the

input features x and learn properties of the conditional probability distribution

P (~x|y). An example would be a classifier trained on simulated data where we

know the true signal-background class label.

• Unsupervised algorithms do not have access to target values and will attempt

to learn properties of the data-generating distribution itself such as clusters.

An example of this would be a Gaussian mixture model used in calorimetric

clustering.

Training and Evaluation

The learning process is also referred to as ‘training’ and has a di↵erent objective to

a typical optimisation problem. Rather than just finding the parameters giving the

optimal loss over the training dataset, we require the model to find useful properties

that generalise to new data [44]. To estimate the generalisation power of a model,

we evaluate performance over another unseen dataset, the test set, which should be

chosen such that it is representative of the distribution of the whole dataset.

During training most machine learning algorithms will use some form of gradient-

based optimisation where one descends the gradient of L with respect to ~w to find
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the minimum of L,
~r~wL = 0. (4.3)

The most conceptually simple approach is to evaluate this expression over the en-

tire training set. However, this is often impractical for large datasets with a large

population or high dimensionality. An alternative is to use stochastic gradient de-

scent (SGD) [44]. In SGD the optimiser evaluates the gradient with small batches of

training data (minibatches). The parameters of the model are then updated as

~w ! ~w � ⌘~r~wL (4.4)

where ⌘ is the learning rate, a non-learned parameter that controls the size of the

change at each parameter update. As we iterate the model parameters should ideally

converge to a global optimum. This is not always guaranteed, as there are sometimes

local optima that the optimisation can get stuck in.

More intuitively, the loss as a function of the model parameters is like a moun-

tainous landscape. Each optimiser iteration during SGD is like a hiker evaluating the

gradient at their location and taking a step in the direction of the negative gradient.

SGD is often extended with ‘momentum’ where the update depends on accu-

mulated steps over time: the gradient changes the parameters indirectly through a

‘velocity’. In practise this often gives better results more quickly [47]. This is imple-

mented mathematically as,

~v ! µ~v � ⌘~r~wL

~w ! ~w + ~v
(4.5)

where ~v is the velocity and µ is a non-learned parameter referred to as momentum but

actually behaves more like a coe�cient of friction. Typical values for µ are between 0.5

and 0.9 so it decays the accumulated velocity and has a damping e↵ect on oscillation

during training. In contrast to the hiker example, SGD with momentum is more like

a skier: the skier begins with zero velocity but accumulates velocity over time as they

descend the mountain in the direction of negative gradient.

There are also more advanced optimisation algorithms and an alternative formu-

lation of momentum. Nesterov momentum [48] allows the velocity to carry the evalu-

ation point forward and then the gradient is calculated at this new point. This results

in a scheme that ‘looks forwards’ and then corrects. Optimisation with Nesterov mo-

mentum has better theoretical guarantees for convergence and is often superior to

ordinary momentum. Adaptive optimisers have a learning rate for each parameter

that adapts over training depending on how often the parameter is updated [47]. An

example of this is Adam [49] which also includes classical momentum. A variant on
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this that uses Nesterov momentum (Nadam [50]) is used to train the DCNNs in this

thesis.

Example: Linear Regressor

Now we have the ingredients of a machine learning algorithm, we can consider the

simple example of a linear regressor. The task of linear regression is to predict the

value y given a collection of features. In this formulation we will consider a single

feature x, and the algorithm will have access to the y during training, making this a

supervised learning problem.

The formula of the model is

ŷ = w1 + w2x, (4.6)

and the term linear refers to the model parameters, powers of x are considered fea-

tures. The dataset will consist of n-many points of single features, and the value to

predict. These are distributed as a linear function of x like the model (Equation 4.6)

with ~w = (�2, 2), plus Gaussian noise. The loss will be the mean squared error,

L =
1

n

nX

i=1

(ŷi � yi)
2, (4.7)

and a single SGD step will be

 
w1

w2

!
!
 

w1

w2

!
� ⌘

1

m

mX

i=0

 
2(w1 + w2xi � yi)

2xi(w1 + w2xi � yi),

!
(4.8)

where m is the minibatch size.

Training is performed for 500 minibatches with a learning rate of 0.0001, param-

eters initialised to ~w = (1, 1), and µ = 0.9 in the training with momentum. A small

learning rate was chosen deliberately to show the progress of the model during train-

ing. The training process and final outcome of this algorithm are shown in Figure 4.1.

The training with SGD plus momentum shows a much faster convergence to the true

model parameter values.

4.1.2 Model Capacity and Generalisation

The space of functions that a model can draw upon to describe observed data is

referred to as the model’s hypothesis space. Taking the example of a linear regressor,
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Figure 4.1: Training a linear regressor with SGD (blue) and SGD plus momentum
(magenta). Top row: loss histories over training (left), the trajectory of the
model parameters in parameter space during training (centre), and the final
result with the result in red and the true value in black. An example
minibatch is also shown by the black points (right). Lower plot: how the
optimisation descends the ‘loss landscape’ during training. The surface shows
the loss calculated over the entire dataset at once for each parameter value.
Each step during training computes an estimation of this surface using the
sampled minibatch.

the hypothesis space can be expanded by using higher-order polynomials

ŷ =
NX

i=0

wix
i. (4.9)

When we increase or decrease the size of this space we are increasing or decreasing

the model’s descriptive power, known as its ‘capacity’ [44]. If it is inappropriately

large or small, the model can experience problems with generalisation. Specifically,

over or under-capacity can lead to generalisation error from two sources which often

need to be traded against each other: bias and variance. Bias is the error that comes

from the model approximating the underlying function. Variance is how much the
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trained model estimate will change if the training dataset is changed [44].

If the capacity is too small, this leads to ‘underfitting’. Here the model does

not have enough descriptive power to fit the data and we get generalisation error

due to bias. If there is too much capacity, the model will find a function fit to the

training set arbitrarily well and have large variance. This will cause another sort of

generalisation error called ‘overfitting’. Examples of how inappropriate capacity can

lead to generalisation error are shown in Figure 4.2 where a linear regressor is trained

with di↵erent order polynomials. In this example, we note that the high-capacity
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Figure 4.2: Linear regressors with di↵erent order polynomials fitted to the same data.

model has been fitted to noise and fails to generalise to unseen data.

An alternative and more general approach to controlling model capacity is to

penalise parts of the hypothesis space rather than remove them. Removing them

is equivalent to infinite penalisation. This way, if we have two functions performing

equally well, we can express some sort of preference for which one to choose by adding

a term to the loss. This penalty term is called a ‘regulariser’ term [44] and has the

form

�⌦(~w), (4.10)

where � is a value scaling the strength of the regulariser’s e↵ect. The variable � is

an example of a ‘hyperparameter’, defined as any unlearned parameter of a machine

learning algorithm. Furthermore, adding regulariser terms to the loss is an example

of regularisation, a broad class of techniques that aim to improve an algorithm’s

generalisation error.

Two common forms of regularisation are penalty terms based on the squared-L2
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and L1 norm of the model’s weight vector

�⌦(~w) = �||~w||2
2
=�

nX

i=0

w2

i

�⌦(~w) = �||~w||1=�
nX

i=0

|wi|.
(4.11)

These two regularisers have a di↵erent e↵ect on the model parameters: L2 regularisa-

tion expresses a preference for using each parameter a small amount, L1 regularisation

will prefer sparsity where a few parameters are large, and the rest close to zero. A

comparison of a range of values for both regularisers applied to a linear regressor with

a 9th-degree polynomial is shown in Figure 4.3.

These models have been evaluated for generalisation error on another unseen

dataset: the ‘validation’ set. The reason to use this rather than the test set, is that

when we choose a hyperparameter value we are essentially doing another fit to data.

If we do this on the test set we may fit to unrepresentative patterns in the test data

and overfit again. Evaluation on the test set is then no longer a good measurement

of generalisation.

4.1.3 Ensembles

It is sometimes useful to train multiple models (base learners) and combine them

in some way, for example by some weighted sum of their outputs, chaining them

together, or some other approach. This technique is called ensembling, and one of the

most popular machine learning algorithms in particle physics is an example of this:

boosted decision trees (BDTs) [6]. This subsection will give only a narrow overview

of this area as relevant to the CMS Higgs diphoton analysis: we will focus on a single

ensembling method, gradient boosting, and a single base learner: the decision tree

(DT).

Decision Trees

Decision trees [51] are binary tree structures that recursively partition the feature

space into non-overlapping regions. Each node of the tree corresponds to a region, and

each additional child node corresponds to further splits into subregions. We eventually

reach a node with no child, this last node is a leaf of the tree and assigns a value to the

corresponding region. Decision trees are trained by calculating a collection of possible

splits and then choosing one optimising a measure of purity in classification case, or

a loss function such as mean-squared error in the regression case. This process is

usually stopped once the leaf nodes have reached some optimal value, or a maximum
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Figure 4.3: Fits for di↵erent regularisation strengths with L2 (top) and L1 (bottom)
regularisation data drawn from a uniformly sample of y = 1 + x2 plus noise.
The red curve is the unregularised fit, the orange curve is the result with the
lowest loss with respect to the validation set (triangles). The bar charts show
the parameter values of the overfitted result and optimal regularised result.

depth has been reached. Decision trees are also regularised by pruning which removes

branches that use unimportant features and give no overall performance improvement.

Decision trees have advantages such as their simplicity, interpretability, and their

ability to handle di↵erent types of data. However, they also have various disadvan-

tages such as their cuts being aligned with the dimensions of the feature space (so

diagonal decision boundaries need to be constructed out of many orthogonal cuts),

their tendency to get stuck in local minima, and their training variance leading to
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overfitting. These disadvantages can be mitigated by using decision trees as base

learners in an ensemble producing an algorithm stronger than its constituent parts.

Gradient Boosting of Decision Trees

Generally, boosting algorithms [52] construct a strong learner from base learners by

iteratively training base learners, compensating for earlier weakness in some way.

Each base learner is then added together in a weighted fashion to produce the final

ensemble. Gradient boosting [53] is a particular boosting algorithm that fits to the

errors of prior base learners in a way that is equivalent to gradient descent. Gradient

boosting assumes that at each iteration n, 1 < n  N there is a base model fn(~x)

that can be improved by addition of another estimator (in our case another decision

tree) h(~x)

fn+1(~x) = fn(~x) + h(~x). (4.12)

If h(~x) perfectly corrects fn(~x) this implies that,

fn+1(~x) = fn(~x) + h(~x) = y

h(~x) = y � fn(~x)
(4.13)

where y � fn(~x) is referred to as the ‘residual’. A key insight was that this process is

analogous to gradient descent as the residuals are the negative gradients with respect

to F (~x) of the squared error loss function

1

2
(y � F (~x))2. (4.14)

This can then be generalised to other di↵erentiable loss functions.

When the base learners are decision trees, the process is as follows: at each itera-

tion n we train a DT on the residual

hn(~x) =
JnX

j=1

bjn1Rjn(~x) (4.15)

where Jn is the number of regions of hn, R1n, . . . , RJnn are the regions themselves,

bjn is the value predicted in region Rjn, and 1Rjn returns 1 for ~x in region Rjn and

zero otherwise. The output of this tree is multiplied by a value �n minimising the

loss chosen by line search,

�n = argmin
�

mX

i=1

L(yi, fn�1(~x) + �hn(~xi)), (4.16)
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and then the ensemble is added to as

fn(~x) = fn�1(~x) + ⌘�nhn(~xi). (4.17)

where ⌘ is a learning rate parameter and controls steps size just like in normal gradient

descent.

4.1.4 Algorithm Design, Evaluation and Optimisation

The No Free Lunch theorem of machine learning [54] states that, averaged over all

possible data-generating distributions, every classification algorithm has the same

error rate when classifying previously unobserved points. This result essentially means

that no machine learning algorithm is universally superior, but it does not mean that

they are all equally powerful for a particular task. The theorem only holds averaged

over all distributions, and some algorithms will indeed perform better given specific

focus. We must make assumptions given prior knowledge and build our algorithms

accordingly. This will inform how we choose the model, how we measure performance,

and how we optimise the hyperparameters.

A particularly important phenomenon is the ‘curse of dimensionality’ [45] where

machine learning algorithms can under-perform given a dataset with a large number

of features (high-dimensionality). For such a dataset the number of possible configu-

rations of the features are far larger than the size of the training set. This can also be

formulated in terms of coverage of a hypervolume (Figure 4.4): if one considers a unit

cube of dimension D, the portion of the sides required to cover a given volume in-

creases rapidly with D. This issue is a primary motivator for the development of deep

learning, and is also something that needs to be considered during hyperparameter

optimisation.

Choice of model, and input features, will depend on a number of practical con-

straints such as time and computational resources, but also constraints that avoid

biases particular to physics analyses. In training a classifier to separate Higgs boson

signals on simulation, we do not want the algorithm to reconstruct the mass and bias

itself to the simulation value. This can happen if the algorithm is given this value ex-

plicitly or if it is capable of reconstructing it from the other features. Furthermore one

must use assumptions from prior knowledge of dataset size, dimensionality and other

properties such as linear separability and class balance to choose the model. One can

then evaluate candidate algorithms using appropriate performance measures.

Once the model is chosen, hyperparameters can be selected with a variety of

optimisation approaches. However, because the underlying function mapping from

hyperparameters to performance values is unknown we cannot use gradient-based

methods. Here we use derivative-free optimisation methods, two of which will be
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Figure 4.4: Range of the side length to cover a fraction of the volume of a unit cube in up
to nine dimensions. The grey lines show the fraction required to cover 25% of
the volume.

presented here and used later in this thesis: grid search and Bayesian optimisation.

Before we can optimise, we need to define a performance measure to optimise

with respect to. A common measure for binary classifiers, and the one used in this

thesis, is the area under the ‘Receiver Operating Characteristic’ curve (AUROC).

ROC curves are constructed by cutting on the output score of a machine learning

model and plotting the false positive rate versus the true positive rate. The area

under this curve will be between 1 and 0.5 where 1 indicates a perfect classifier and

0.5 is equivalent to random guessing. This is demonstrated in Figure 4.5.
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Figure 4.5: ROC curve construction. On the left is the definition of the True Positive
Rate (TPR) and the False Positive Rate (FPR) where TP is true positive, FP
is false positive, TN is true negative and FN is false negative. In the centre
and right are the distributions that are thresholded with the coloured lines in
the central plot being cuts that correspond to the same coloured point on the
right plot, a ROC curve.
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Grid search is a simple method that samples a set of evenly-spaced values over a

given region of the hyperparameter space. This method can be used when there are

fewer hyperparameters to optimise and the time cost of sampling each point is not

too great. As the number of hyperparameters goes up, dimensionality increases and

the sampling becomes extremely sparse as each point represents a smaller portion of

the space.

Bayesian optimisation [55] belongs to a class of optimisation algorithms that use

previous observations of the performance to determine the next point to sample. The

method consists of two main steps:

1. using evaluated points in the hyperparameter space, calculate a posterior ex-

pectation of the performance as a function of the hyperparameters

2. evaluate the performance at a new point maximising an ‘acquisition function’.

This is a function that trades o↵ exploration versus exploitation in choosing the

next optimal point to sample given the posterior expectation.

Bayesian optimisation makes e�cient use of sampling and is more appropriate when

evaluating a single point in the hyperparameter space is expensive. The di�culty

of the optimisation will still increase rapidly with the dimensionality so one should

consider, where possible, the optimisation as a set of orthogonal problems. These two

methods can be combined where an initial grid search is performed, and the set of

evaluated points are used in the first iteration of the Bayesian optimisation. This step

is called a ‘warm start’.

Often we do not know the form of the data-generating distribution a priori. There-

fore a good approach to choosing and tuning a model is to have as much capacity as

design constraints allow and then restrict this capacity with regularisation using an

optimisation over the validation set as described earlier.

4.2 Deep Learning

Deep learning is a powerful approach to machine learning problems based on artificial

neural networks (ANNs), especially with a large quantity of input features. The

name of the field refers to the depth of the ANNs: as depth increases they can

model ever-more complex functions of the input features. This section will give a

description of ANNs, how they are trained and regularised, the challenges that come

with increasing network depth, and finally convolutional neural networks including

dense convolutional neural networks.
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4.2.1 Artificial Neural Networks

The Single Neuron

Artificial neurons receive a weighted collection of input signals and then ‘fire’ depend-

ing on their sum [47]. Mathematically, they consists of an input feature vector xi,

a weight vector wi, a bias b and a nonlinear activation function f that produces an

output o via the following computation,

o = f(wixi + b). (4.18)

A schematic of an artificial neuron is shown in Figure 4.6 along with three commonly

used activation functions:

f(z) =
ez � e�z

ez + e�z
,

f(z) =

8
<

:
0 z  0

z z > 0
,

f(z) =

8
<

:
↵z z  0

z z > 0
.

(4.19)

These are tanh, the rectified linear unit (ReLU) and the leaky ReLU respectively.

The value ↵ in the leaky ReLU is a hyperparameter and is typically set to a value of

0.2 [47].
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Figure 4.6: Schematic of an artificial neuron(left) and a plot of three commonly-used
activation functions (right).

The weights vector and the bias constitute the learnable parameters of this model.

With the correct loss and activation, this structure is equivalent to a linear classifier:
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we can consider each neuron to be attempting to place an optimal linear decision

boundary in the space of its input features. If the data are linearly separable this

will be achievable, but if they are not, this simple classifier will struggle. To help the

neuron we could construct a function �(xi) on the feature space to produce trans-

formed feature vectors in which the data are now linearly separable [44]. This could

be constructed explicitly, or it could be learned from data.

Feedforward Neural Networks

ANNs come in many di↵erent architectures, but the ones we will consider here will

be exclusively feedforward networks. These networks are constructed from layers of

neurons where each layer feeds into the ones after it, starting with the input layer,

then often multiple hidden layers, with the final output layer giving the prediction.

The most common layer type used is the ‘fully-connected’ layer where each neuron in

layer l is connected to every neuron in layer l + 1.

A classic feedforward architecture is the multi-layer perceptron (MLP) consisting

of a series of fully-connected layers. Often the outputs ~o of these networks (referred

to as ‘logits’) are transformed with the ‘softmax’ function,

�(~o)i =
eoi

P
N

k=1
eok

, (4.20)

where N is the number of outputs. This maps the vector of network logits to a vector

of probabilities that sum to one.

When we connect multiple layers together we are constructing a model capable of

performing a chain of feature space transformations �(xi) where each layer produces

features for the one that follows it, and the final layer can place a linear decision

boundary on this transformed feature space [44]. The e↵ect of composing layers

together can be seen by comparing a model with no hidden layers versus a model

with a single hidden layer on data that are not linearly separable (Figure 4.7).

With increasing depth neural networks are able to construct ever-more complex

functions of their input. Mathematically, this corresponds to a chain of matrix mul-

tiplications of feature vectors plus biases interleaved with non-linear activation func-

tions,

ok = fn(fn�1(. . . (f1(w
1

ij
xi + b1)))). (4.21)

Training Neural Networks

ANN classifiers may use a variety of di↵erent loss functions. Let oj indicate the jth

element of the output class vector of the neural network and yi indicate the true class

label of datapoint i. Two popular choices of loss function [47] are the hinge loss and
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Figure 4.7: Decision boundaries for a two-input (x0, x1), two-class neural network
classifier with no hidden layer (left) and one hidden layer (right). The
outputs of the networks are mapped to probabilities with the softmax
function and are shown by the background contour plot.

cross entropy loss with softmax function. The hinge loss has the form

Li =
X

j 6=yi

max(0, oj � oyi + 1) (4.22)

and is a ‘maximum margin’ loss that attempts to strongly penalise misclassified ex-

amples. The cross entropy loss has the form

Li = �log

 
eoyi

P
j
eoj

!
(4.23)

and is used in conjunction with a softmax function. This loss can be interpreted as

minimising the negative log likelihood of the correct class. Each of these will cause the

network to behave in a di↵erent way: the hinge loss will in e↵ect prioritise accurate

classification at the cost of modelling probability, whereas the cross entropy will model

p(y|xi) with less priority on accuracy [47].

Once the loss has been defined, neural networks are usually trained via SGD with

gradients computed using an algorithm called backpropagation [56]. A single iteration

works as follows:

1. Forward pass: inputs are repeatedly transformed from the first layer to the

last with product sums dependent on wk

ij
and then by the activation functions.

The final output ŷ, the input to each activation, and the outputs from each

activation are stored for the next step.

2. Backward pass: this works like the forward pass but from the output layer
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backwards to the input calculating @L/@wk

ij
as it goes. The ‘input’ is the output

layer’s loss terms and these are repeatedly transformed by product sums with

the weights wk

ij
and then multiplied by the values of the derivatives of the

activation function with inputs from the forward pass.

3. Weight update: after the backward pass, we now have the gradients required to

update the weights by SGD.

Regularising Neural Networks

Just like other machine learning models neural networks will overfit when they have

too much capacity and therefore regularisation is crucial. The L1 and squared-L2

regularisers are commonly used and L2 is often preferred [47]. Another regularisation

method, max-norm clipping [47], restricts the norm of the gradient vectors during

weight update and stops them from getting above a certain size whilst preserving

their direction in parameter space. Finally, a highly-e↵ective and complimentary

method is ‘dropout’ [57] (Figure 4.8) where neurons are switched o↵ at random. This

aids model generalisation by stopping the network from over-using neurons and also

acts as an e↵ective ensembling where many random subnetworks are trained and then

combined together at inference time.

x0

x1

x2

o0

o1

x0

x1

x2

o0

o1

Figure 4.8: Left: a multi-layer perceptron with no dropout. Right: the same network
with dropout. Dropped neurons are shown greyed-out.

Additionally, although they are not strictly regularisations, data preprocessing

and augmentation can greatly help with model generalisation. Augmentation is when

we apply random transformations to the input features such as random rotations

and reflections of an image. Standardisation is when each of the features are mean-

subtracted and divided by their standard deviation so that each feature has zero mean

and unit variance. This helps greatly with training time and convergence.
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Network Depth and its Problems

As one simply increases the depth of a neural network, the performance does not

always increase. Depth brings with it a collection of problems each of which have

their solutions and therefore an impact on network design.

A major problem that occurs with deep ANNs using sigmoidal activation functions

is the vanishing/exploding gradient problem [58]. During training, these functions can

have gradients in the range [0, 1] that are multiplied n-many times given how many

layers from the output layer the backward pass is. This causes the gradients to become

small, the weight updates in turn become small, and the training slows down heavily

or stops altogether. If the gradients are greater than one, the opposite problem can

happen where the gradient becomes very large, this will cause inputs to neurons to

become large and push the activation functions into the saturation region where the

gradient is again small. This can be mitigated by using a non-sigmoidal activation

such as ReLU, and choosing the correct weight initialisation. The recommended

initialisation [47, 59] is to draw values for each neuron weight vector from a Gaussian

with µ = 0 and � =
p

2/n where n is the number of inputs to the neuron.

Using ReLU activations can pose its own problems as well. With these activations,

there can be large negative corrections to the weights that then cause the inputs to

a neuron to become strongly negative. Due to the ReLU having zero gradient for

negative input, all future weight updates for this neuron will be zero and it will never

activate again. This is the ‘dying ReLU’ problem. The solution to this is to use

leaky ReLU activations [60] that have a small non-zero gradient below zero and are

therefore able to recover from large negative corrections.

Another problem is internal covariate shift [61]: because the input to each layer

depends on all the ones before it, small changes can be amplified and cause the

distributions in later layers to shift. This makes learning in later layers harder. To

solve this issue, we introduce ‘batch normalisation’ layers [61]. These layers normalise

the input into each layer on a per-minibatch basis during training and also have a

learnable scale � and shift �,

x0 = �
x � µ

�
� �. (4.24)

During inference, the population statistics of the layer inputs are used, so this must

be calculated from the training set during the training process. These layers also help

with the vanishing gradient problem.

Finally, even with the above measures in place, the performance of a deep network

can saturate as depth increases and then drop. This is not caused by overfitting but is

actually caused by the network’s failure to reproduce identity transformations leading

to the degradation of information as it passes to deeper layers [7]. This has been solved

by using di↵erent sorts of bypass connections where outputs from earlier layers are
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directly connected to later ones to facilitate the flow of information. This was the

key insight that drove the development of the ResNet architecture [7], and the dense

convolutional network architecture used in this thesis.

4.2.2 Images and Convolutional Neural Networks

Introduction

This thesis is concerned with treating jets within CMS as images, and then using

these images to enhance the classification of VBF Higgs events with their character-

istic dijets. A particular class of ANN architectures, convolutional neural networks

(CNNs), are used to solve such image-based machine learning problems. This section

will describe how images are formulated, classic CNNs with their constituent parts,

and finally the more advanced architecture used in this thesis.

Images are formulated as three-dimensional volumes of values with height, width,

and then a depth usually corresponding to the RGB channels. Each of these values is

an individual feature that measures a particular type of information at a transverse

location (such as ‘redness’ in a non-transformed image). These features can be more

complex, such as an image after a local edge-detection transform where each feature

now corresponds to whether an edge is present at that location. Therefore the features

located at a particular depth are said to form 2D feature maps, and the depth-wise

stack of feature maps are said to form a feature volume. Image processing problems are

concerned with manipulating and extracting information from these feature volumes.

Images often have certain properties allowing two assumptions to be made which

inform the design of CNNs. Firstly, the statistical properties of an image dataset

are uniform in the transverse directions and therefore local feature detectors will be

useful over the whole image extent. Secondly, that features near to each other in the

transverse directions are highly correlated and we can downsample the image without

losing much information.

If we try to apply an ordinary MLP to an image processing problem the large

number of input features will give rise to a very large number of model parameters

(proportional to the square of the inputs). For example, if the input is a 100⇥100⇥3

RGB image, each neuron in the next fully-connected layer would receive 30000 inputs,

leading to a very large number of parameters even in a shallow network. A network

with such a large number of parameters will be di�cult to train and su↵er from severe

overfitting.

CNNs are feedforward-type ANNs constructed from successive 3D volumes of neu-

rons using local connectivity and parameter sharing to avoid the issues with MLPs in

this area [47]. Specifically, CNNs introduce two new layer types: convolution layers

and pooling layers corresponding to the two image assumptions described above.
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Convolution Layers

Convolution layers (Figure 4.9) learn to find local feature transformations that pick

out features in the image which are then transformed into ever-more abstract and

complex features by later convolution layers. They receive a feature volume as in-

put, and consist of a convolution operation that produces a transformed (convolved)

feature volume and then a volume of activation functions. Each activation function

receives one feature in the convolved feature volume.

This convolution operation consists of a collection of local transformations that

multiply the values of a local patch of the input by learned weights and then sums

them. These weights are shared over the transverse extent of the image: each patch

will be multiplied by the same set of weights, and all the patches together will produce

a feature map. This parameter sharing design is inspired by the feature translation

assumption. Each convolution layer will have multiple filters that will each make

a di↵erent feature map constituting the transformed feature volume given to the

activations.

This can be interpreted as a volume of neurons each of whom only see a small

portion of the input feature volume (its field of view, FOV). All of the neurons at the

same depth in the volume will share the same weights and can be considered to be

looking for the same feature at di↵erent locations. The volume of activation values

constitutes the convolution layer output volume and each value will correspond to the

possible presence of some higher-level feature constructed from the lower-level input

features.

Figure 4.9: Convolution layer: a single neuron connected and its connection to a 4 ⇥ 4
patch of input (left) and an image patch with neurons in context with an
input image [62] (right)
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Sometimes the individual convolutions only see a single feature (1 ⇥ 1 patch),

but still the full extent of the input depth. These transformations operate only on

di↵erences between the feature maps and are used to reduce the depth of the input

feature volume. This corresponds to feature reduction, where we combine or remove

features to produce a small set of performant features.

Pooling Layers

Pooling layers are inspired by the local correlation assumption and reduce the size of

their input by mapping sections of neuron outputs to a single value. For example:

a 2 ⇥ 2 patch of each feature map is mapped to a single value whilst keeping the

depth of the feature volume the same. This has the dual function of reducing model

complexity and increasing the local field of view of later neurons as each later neuron

input corresponds to multiple neuron outputs from prior layers. The two main types

of mapping are the maximum value of the patch and the average value, referred to as

max pooling and average pooling respectively (Figure 4.10).

17.0 16.0 12.0 19.0

20.0 14.0 6.0 14.0

5.0 2.0 21.0 21.0

5.0 4.0 1.0 8.0

Input Image

20.0 19.0

5.0 21.0

Max Pool

16.8 12.8

4.0 12.8

Average Pool

Figure 4.10: An example input to a pooling layer is shown on the left with two outputs
on the right from max pooling (above) and average pooling (below).

Max pooling leads to faster trainings and to translation invariance of feature detec-

tion, but loses information from the non-maximal values and will cause the network

to be less aware of spatial arrangement. Average pooling takes the average in the

region of interest and does not lose as much information, however it can be slower

and does not have the same translation invariance properties.

Classic Architecture

The classic example of a CNN [47] consists of interleaved convolutional and pooling

layers. At the end of these, the feature map is flattened to a 1D array of neurons and

the rest of the network has the structure of an MLP (Figure 4.11).
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Figure 4.11: A typical CNN architecture with three convolutional layers (grey)
containing neurons with a restricted FOV (green), pooling layers for
downsampling (orange), a flattening of the final feature map (purple) and a
set of fully-connected layers.

4.2.3 Dense Convolutional Neural Networks

Dense convolutional neural networks [63] are inspired by the bypass layers in models

such as ResNet, but here every layer is connected to the layers situated after it. This

dense connectivity gives superior gradient flow during backpropagation and allows

for increased depth (due to the mitigation of depth degradation) and therefore much

more sophisticated features. It also encourages feature reuse, and allows the network

to achieve high performance with fewer parameters.

Dense CNNs have a similar general structure to ordinary CNNs: they are feed-

forward and make use of convolution and pooling, but their structure is much more

complicated. Instead of interleaved convolution and pooling layers dense CNNs have

dense blocks made of multiple composite layers of convolutions, these are interleaved

with transition layers which play the role of pooling but can also perform feature

reduction. After this the feature volume is flattened and input to a MLP classifier

structure as normal.

Composite Layers

These layers are the basic unit constituting the dense blocks. They consist of (Fig-

ure 4.12) a batch normalisation, a ReLU activation function, a 1 ⇥ 1 convolution for

compressing the depth of the input volume, a second batch normalisation, a second

ReLU activation and then an ordinary convolution that outputs a feature volume of

a set length k called the growth rate. The 1⇥1 convolution is called a bottleneck and

serves to reduce model complexity and perform feature reduction. These layers, as

formulated in this thesis, have two hyperparameters: the depth of the output feature
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volume, the ‘growth rate’ and the size (width and height) of the filter in the second

convolution.

Input

Batch Norm

ReLU
1 ⇥ 1 Conv (bottleneck)

Batch Norm

ReLU
Conv

Output

Figure 4.12: The separate components of a composite layer.

Dense Blocks

Dense blocks consist of d-many composite layers where there is direct connection from

each layer to all those after it (Figure 4.13). In other words each layer receives all

of the feature volumes produced before it, concatenated along the depth axis. Each

Figure 4.13: A dense block with depth 5 and growth rate 4. Input feature volume is
shown by the stack of white squares, each composite layer is shown as a grey
square and the output feature volume of the layer is shown by the coloured
layered stack. Coloured arrows show the which layers each feature volume is
input to. The final concatenated output of the dense layer is shown by the
white and coloured stack on the right.

dense block has a number of hyperparameters. In the formulation used in this thesis

they are the following: depth is the number of composite layers in the dense block,

filter size is the size of the filter of the second convolution in the composite layers,

and the growth rate of the composite layers.
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Transition Layers

Transition layers are pooling layers with average pooling, but with batch normalisa-

tion applied to the input and a 1 ⇥ 1 convolution for compressing the input feature

volume before the pooling operation (Figure 4.14). This compression of the feature

volume performs feature reduction where less useful features are removed. It will

also reduce model complexity and overfitting. This reduction is controlled by another

hyperparameter: the reduction factor.

Input

Batch Norm

1 ⇥ 1 Conv (Compression)

(Pooling)

Pooled volume

Figure 4.14: A transition layer with a reduction factor of 0.5.

4.3 Conclusion

The objective of a machine learning algorithm is to produce a model for solving a task.

This is defined as a function of input features and parameters that is optimal with

respect to some performance measure. This chapter has described the theoretical and

practical steps for the development of such models to set the field for building one for

VBF discrimination. It has described supervised deep learning for image-based input

in detail and has introduced dense convolutional neural networks.

Deep learning is often more performant for problems with a large number of input

features (high-dimensionality). Convolutional neural networks achieve this through

neurons that share parameters across the vertical and horizontal extent of the image.

When combined into layers where prior neurons feed into later ones, the whole network

learns a sophisticated hierarchy of features. This begins with local assemblies of pixels

at the front and culminates in large complex features at the end.

This capability will be exploited to develop a new model for VBF categorisation.

To apply this machinery to VBF dijets, the jet substructure will be represented as an

image and a DCNN-type network will be trained to construct a performant model.

This process will also construct a hierarchy of dijet substructure features using the

images as part of the training process.



60



Chapter 5

Object Reconstruction and

Selection

5.1 Introduction

The CMS H ! �� analysis works by searching for excess production in the distribu-

tion of diphoton invariant masses. A Higgs boson signal will manifest itself as a small

bump on top of a continuous distribution due to background processes from Standard

Model diphoton production.

The invariant mass of a diphoton system is calculated with the expression

m�� =
q

2E�1E�2(1 � cos↵), (5.1)

where E�1 and E�2 are the energies of the leading energy photon and subleading

energy photon respectively, and ↵ is the opening angle between them. To determine

the value of ↵ we require the locations of the photons in the ECAL and the correct

originating vertex. Good identification and measurement of photons and their vertices

are therefore crucial to the analysis, and the reconstruction of these will be described in

detail in this chapter. Other objects such as jets and leptons provide extra information

on the production mode and allow for improved signal isolation. The reconstruction

of these objects will also be described.

5.2 Tracks, Clusters, and Physics Objects

Tracks are reconstructed from hits in the CMS tracker using a standard iterative

procedure based on Kalman filters [64]. Each iteration is as follows: first, track can-

didates are seeded from two or three hits, next a Kalman filter extrapolates these

61
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trajectories and looks for more hits to associate to the track, then another Kalman

filter and a smoother is used to produce estimates for parameters of each candidate

track, finally a selection rejects low-quality candidates.

Calorimetry clusters are used in all of the objects of interest in this chapter, and

ECAL clusters are especially important for photons. The clustering for ECAL depo-

sition is described here, the HCAL clustering proceeds in a similar fashion. Energy

deposition from photon and electron electromagnetic showers is often spread out over

multiple ECAL crystals due to the magnetic field and interaction with tracker ma-

terial. The objective of the ECAL clustering is to gather these energy deposits into

‘superclusters’ (SCs) to achieve good energy containment, pileup robustness and to

take variation in the ECAL structure into account.

The process [38] begins with the identification of ‘seed’ crystals. These are crys-

tals over a threshold energy (greater than 230 MeV in the barrel and 600 MeV in the

endcaps) that also have more energy than all their neighbours. The seeds are then

grown into ‘topological clusters’ by iteratively including crystals that neighbour with

crystals already in the cluster beginning with the seed. For a crystal to be included,

its energy must be over another threshold equal to twice the noise level in the associ-

ated ECAL region (greater than 80 MeV in the barrel and 150 MeV in the endcaps).

There is also an extra requirement for endcap clusters: because the noise increases

with ⌘, seeds have an additional criterion of ET > 150 MeV. Topological clusters are

then assembled into superclusters with a dynamic clustering algorithm [38].

Physics objects are reconstructed with the CMS global event description known

as particle flow (PF) [65]. PF uses information from all of the subdetectors to identify

and reconstruct individual particles produced within CMS, and to achieve good energy

resolution. The information used as inputs are tracks from the tracker, tracks from

the muon systems, and energy clusters from the ECAL and HCAL. Depending on

which of these are present, PF will output ‘PF candidates’ corresponding to di↵erent

types of semi-stable particles:

• Photons: ECAL supercluster is present with no associated track in the tracker.

The energy of the photons is obtained from the ECAL deposition.

• Electrons: ECAL supercluster is present with associated track in the tracker.

Energy is determined from the electron momentum at the primary vertex, the

ECAL deposition, and the energy of associated bremsstrahlung photons.

• Muons: compatible tracks in the tracker and muon system. Energy is deter-

mined from the curvature of the tracks.

• Charged Hadrons: a compatible track in the tracker, ECAL supercluster and

associated HCAL cluster. Energy is determined from the track curvature, and
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the matching ECAL/HCAL deposition.

• Neutral Hadrons: HCAL and ECAL deposition with no associated track in

the tracker. Energy is measured with the deposition from the ECAL and HCAL.

These PF candidates are then used to construct jets, and to determine missing trans-

verse momentum. This process is applied in the same way to data collected with the

CMS detector and data from simulation.

5.3 Samples

5.3.1 Trigger

The analysis uses events selected with the two-step CMS triggering system (L1T and

HLT). The objective of this system is to keep the event rate below an acceptable level

due to limited bandwidth resources, whilst keeping the signal e�ciency as high as

possible. Requirements at L1T are looser due to its dependence on fast coarse mea-

surements. HLT uses more stringent requirements to compensate for false positives

from the L1T’s poorer precision.

At L1T we require one or two energy deposits in the ECAL with energy thresholds

that varied over the 2016 running period. For the single deposit, energy requirements

are tighter, and were 25GeV during low luminosity and going up to 40 GeV at high-

luminosity periods to keep the trigger rate at an acceptable level. For two deposits at

high-luminosity, 22 GeV for the leading energy deposit and 15 GeV for the subleading

were required.

At HLT, events were selected with ET thresholds of 30GeV and 18 GeV for the

leading and subleading photon respectively. Furthermore, the selection had loose

requirements on the shape of the electromagnetic showers, isolation variables, and

the ratio of deposition in the ECAL compared to the HCAL.

These selections have their e�ciencies measured with the ‘tag-and-probe’ tech-

nique [66]. This uses the resonant production and decay to pairs of well-understood

particles near their mass peak to ensure a pure and well-understood sample. In the

H ! �� analysis Z ! e+e� is used as both electrons and photons are reconstructed

with the ECAL clustering, so one can use dielectron decays as a proxy for diphotons.

A strict ID requirement is placed on one of the decay products (the tag) and a looser

requirement is placed on the other (the probe). The requirement on the probe should

be loose enough that it does not a↵ect the selection being measured. The selection

e�ciency may then be measured as the proportion of the probes which satisfy the

selection.
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5.3.2 Data

The data used in the analysis corresponds to the 35.9 fb�1 of proton-proton collision

data recorded by the CMS experiment in the 2016 run period with a centre of mass

energy of
p

s = 13TeV and selected with the trigger requirements described above.

5.3.3 Simulation

Simulated samples are used for a variety of tasks such as to train the ML models of

the analysis, to optimise cuts and categorisations, producing signal models, and to

perform validations.

Signal events are simulated for a range of mass points from 120 GeV to 130 GeV

using cross sections and branching fractions recommended by the LHC cross section

working group. The signal events are generated at next-to-leading order in pertur-

bative QCD with MadGraph5_aMC@NLO [67], with parton showers and hadronization

modelled with pythia8 [68]. The pythia tune parameter set CUETP8M1 [69] is used.

The background simulations are generated in di↵erent ways. For the main irre-

ducible background from prompt diphotons, Sherpa [70] is used which includes Born

processes with up to three jets, as well as box diagram processes at leading order. For

the �-jet and jet-jet reducible backgrounds, where jets are mistakenly reconstructed

as photons, we use pythia8 with a filter applied to enhance the electromagnetic en-

ergy content of the jets. Finally, W� and Z� samples used in validation studies are

simulated with Madgraph and Drell-Yan (DY) is simulated with Madgraph_aMC@NLO.

The CMS detector itself is simulated in detail with GEANT4. This includes the

simulation of both in-time and out-of-time pileup. Simulated events are then weighted

such that they reproduce the pileup distribution observed in data from CMS.

5.4 Photon Reconstruction

Candidate photons are reconstructed from calibrated ECAL superclusters. However,

these constitute an imperfect measurement of the underlying object and must be

corrected. This section will describe these corrections in both simulation and data:

first the SC energy is corrected using a trained regressor model and a collection of

features; then the photon energies are scaled or smeared, depending on whether they

are from simulation or data. Once the energy is finalised, the photons are evaluated

by a BDT classifier that attempts to identify fake photons from jet fragments. This

is implemented as a preselection based on the output score and some other features.

All of these steps, including their validation, use a common collection of variables

detailed in the next subsection for later reference.
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5.4.1 Common Variables

The set of common variables can be divided into two main types: shower shape

variables and isolation variables, plus some other miscellaneous variables. Shower

shape variables describe properties of the electromagnetic showers within the ECAL

which will allow us to infer information about the object, for example, whether a

shower is from a converted or unconverted photon. The set of shower shape variables

consists of the following:

• E2⇥2/E5⇥5: the ratio of energy in the 2 ⇥ 2 grid containing the most energetic

crystals in the SC to the energy in the 5 ⇥ 5 grid around the SC seed crystal;

• covi⌘i�: the covariance of the crystal ⌘ and � locations within the 5 ⇥ 5 grid

around the SC seed crystal;

• �i⌘i⌘: pseudorapidity width of the shower in terms of crystals;

• R9: the ratio E3⇥3/ESC , where E3⇥3 is the energy in the 3 ⇥ 3 grid around the

SC seed crystal and ESC is the energy of the SC;

• �⌘⌘: The energy-weighted ⌘ width. Computed as the standard deviation of the

logarithmic energy-weighted crystal positions in ⌘ of a SC;

• ���: The energy-weighted � width. Computed as the standard deviation of the

logarithmic energy-weighted crystal positions in � of a SC;

• �rr: the standard deviation of the shower width in the x � y plane as measured

by the preshower subsystem (only for photons measured in the endcaps).

Isolation variables measure how well-separated an object, in this case a photon,

is from other objects in the event such as electrons or charged hadrons that could

imitate the true signal. The set of isolation variables consists of the following:

• I� : photon isolation, the sum of the transverse energy of the particles identified

as photons in a cone of R = 0.3 around the candidate photon;

• IV

CH
: charged hadron isolation, the sum of transverse momenta of charged par-

ticles in a R = 0.3 cone around the candidate photon associated with vertex

V ;

• IT: track isolation, the sum of transverse momenta of tracks in a hollow cone

between R = 0.3 and R = 0.04 around the candidate photon;

• H/E: the ratio of energy measured in the HCAL to the energy measured in the

ECAL in a cone of R = 0.15 around the candidate photon.

Finally there are other miscellaneous variables used throughout the selection for

di↵erent purposes:

• Electron veto: true or false if there is a track associated with the candidate SC

or not;

• ⇢: the event median energy density per unit area;
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• ⌘SC : the pseudorapidity of the candidate SC;

• ESC : the energy of the candidate SC.

5.4.2 Photon Energy

The deviation between the true photon energy (Etrue) and the SC energy (ESC)

occurs due to loss of energy prior to the ECAL and mismeasurement of the energy

that is actually deposited. Photons can interact with the pre-ECAL material and

begin to shower early. This leads to a more spread-out shower in the ECAL and an

overall loss of energy in the pre-ECAL material. Once at the ECAL, the resulting

electromagnetic showers can be mismeasured when energy is lost due to improper

containment. This can occur via leakage into the gaps between crystals of the ECAL

and even through the back of the ECAL if the photon begins to shower deep in the

crystal. These e↵ects on the energy are corrected using the photon energy regression.

There are also extra corrections applied due to changing detector conditions that

depend on whether the photon is from simulation or data. A time-dependent energy

scale correction is applied in data, and in simulation a smearing is applied to match

the energy resolution to data. More detail on these processes can be found in Ref. [71].

Photon Energy Regression

The objective of the photon energy regression is to predict the correction factor

Etrue/ESC . The regression problem is formulated to target the parameters of the

Etrue/ESC probability distribution function on a per-photon basis. This is taken to

have a modified Crystal Ball form with a Gaussian core and two power law tails. The

correction is then the peak value of the distribution and a resolution energy estimate

may be computed from the width of the Gaussian core. The training itself uses a

large set of variables formed from positions within the ECAL, shower shape variables,

and region specific information such as from the preshower detector [72].

Energy Scale Correction

Once we have the corrected energies, the overall energy scale needs to be corrected

to account for detector e↵ects. During operation the CMS ECAL receives large doses

of radiation that can degrade its performance over time. This will lead to drifts and

jumps in the detector response as conditions change, and as a result the measured

energy will also drift and jump. Scale factors to account for this e↵ect in data are

calculated using the Z ! e+e� decay as a standard candle where the electrons are

reconstructed as photons. Using comparison to simulation, and the well-known value

of the Z boson mass, scales are derived for di↵erent times and detector regions to

bring the measured value of real Z bosons back to the true value.
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Energy Resolution Correction

Simulation also needs to be corrected by comparison to data to make it more realistic.

The photon energy resolution in simulated events has a Gaussian smearing added to

it that is derived from comparing the width of the Z ! e+e� mass distribution in

di↵erent categories depending on |⌘|-location within the detector (two in the barrel

either side of |⌘|= 1 and two in the endcaps either side of |⌘|= 2), and the R9 variable

that measures photon quality (above or below R9 = 0.94). The mass peak in two of

these bins is shown in Figure 5.1.
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Figure 5.1: A comparison between data and simulation of dielectron invariant mass.

5.4.3 Photon Identification

The photon identification BDT is a classifier whose task is to discriminate between

real prompt photons and photon-like jet fragments which satisfy the preselection cri-

teria [71]. The BDT is trained using simulated �+jet events where the reconstructed

photons are matched to a generator-level particle; if there is no match it is considered

to be in the non-prompt class. To avoid the BDT introducing a dependence on photon

kinematics, the signal photons are re-weighted such that their distribution in pT and

⌘ is flat. The classifier then receives the following input features:

• Shower shape features: �i⌘i⌘, covi⌘i�, E2⇥2/E5⇥5, R9, �⌘⌘, ���, and �rr;

• Isolation features: I� , ISV

CH
, and IWV

CH
, where SV and WV refer to the selected

vertex and worst vertex in terms of the vertex probability BDT respectively;

• Other features: ⇢, ⌘SC , ERAW

SC
, and EES/ERAW

SC
where EES is the energy

measured by the ECAL preshower (endcaps only).

The performance of this classifier is shown in Figure 5.2. The systematic uncer-

tainty on the BDT output is shown by the red shaded region of the right hand plot.
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This is estimated so that it covers the largest disagreement between data and simu-

lation of Z ! e+e� reconstructed as photons in the endcap regions where agreement

is worst.
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Figure 5.2: Photon ID BDT performance and validation. (Left) Photon ID BDT output
score of the lower-scoring photon of each diphoton passing the photon
preselection. Signal photons from simulated Higgs events are shown in red
and simulated background events are shown in blue, data is shown by the
back dots. (Right) Validation on Z ! e+e� events.

5.4.4 Photon Preselection

Before a photon can accepted for the H ! �� analysis it must pass a set of selection

criteria, the photon preselection, which are tighter than the trigger and vary by loca-

tion. First, photons are grouped into candidate diphotons by considering all possible

pairs in the event, then the criteria are applied (with the exception of pT cuts) on a

per-photon basis. The criteria are:

• Electron veto: rejection if there is a track associated to the supercluster;

• Photon pT : p�1

T
> 30 GeV and p�2

T
> 20 GeV;

• Photon ID: ŷ > �0.9.

Both photons must then also satisfy either of two requirements:

• R9 > 0.8 and ICH < 20 GeV;

• ICH/p�

T
< 0.3.

Finally, additional requirements are applied depending on the |⌘| and R9 of the photon

(Table 5.1).

The e�ciencies of these criteria are measured using Z ! e+e� and the tag-and-

probe method, with the exception of the electron veto which uses Z ! µ+µ��. The

preselection e�ciencies are summarised in Table 5.2.



5.5. Vertex Reconstruction 69

Preselection Category H/E �⌘⌘ R9 I� IT

Barrel, R9 > 0.85 < 0.08 N/A > 0.5 N/A N/A

Barrel, R9 < 0.85 < 0.08 < 0.015 > 0.5 < 4.0 < 6.0

Endcap, R9 > 0.90 < 0.08 N/A > 0.8 N/A N/A

Endcap, R9 < 0.90 < 0.08 < 0.035 > 0.8 < 4.0 < 6.0

Table 5.1: Additional photon preselection requirements specific to di↵erent |⌘| and R9

regions.

Preselection Category ✏data(%) ✏sim(%) ✏data/✏sim

Barrel, R9 > 0.85 94.2 ± 0.9 94.7 ± 0.9 0.995 ± 0.001

Barrel, R9 < 0.85 82.5 ± 0.7 82.5 ± 0.7 1.000 ± 0.003

Endcap, R9 > 0.90 90.1 ± 0.2 91.3 ± 0.1 0.987 ± 0.005

Endcap, R9 < 0.90 49.7 ± 1.4 53.8 ± 1.5 0.923 ± 0.010

Table 5.2: Photon preselection e�ciencies measured in four di↵erent bins.

5.5 Vertex Reconstruction

If the selected vertex is within 1 cm of the correct vertex the contribution of spatial

uncertainty to the mass resolution is negligible and is dominated by the energy reso-

lution of the CMS ECAL [8]. The ECAL gives a good determination of the photon

location in z and �, but it does not provide any pointing information: to determine ↵

precisely we need to determine the correct vertex by other means. When diphotons

are produced in proton collisions there are often charged tracks present from jets or

from the proton remnants that are associated to the same vertex. One can exploit

this information to choose the correct vertex.

The process begins by gathering the tracks in the central tracker and grouping

them by their common points of origin. These are the candidate vertices. The next

step will be to choose the vertex most compatible with the candidate diphoton under

consideration.

5.5.1 Vertex Selection

Vertex selection is performed with a BDT classifier which takes a set of input features

formed from the transverse momenta of tracks associated to the candidate vertex and



70 Chapter 5. Object Reconstruction and Selection

the candidate diphoton. The features are
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where i enumerates the tracks of the candidate vertex. In the case of converted

photons there are two additional features: the number of conversion tracks and the

pull |zvtx � zconv|/�z where zvtx is the z position from the vertex, zconv is the posi-

tion estimated from the conversion tracks, and �z is the uncertainty on zconv. The

BDT is trained on vertices from simulated Higgs boson diphoton events with vertices

that correspond to the true Higgs vertex considered the signal class and all others

background. The selected vertex is then the candidate with the highest BDT score.

5.5.2 Vertex Probability

Once a candidate vertex is selected, another BDT is used to score the probability that

it is within 1 cm of the true vertex location in z. This is also trained on simulated

Higgs diphoton events and is given the following input features:

• The number of vertices in the event;

• The three highest vertex ID scores;

• pT of the candidate diphoton;

• �z between the highest scoring vertex and the second highest;

• �z between the highest scoring vertex and the third highest;

• The number of converted photon tracks.

5.5.3 Performance

The performance of the vertex selection BDT is validated with both simulated and

real Z ! µ+µ� events where the muon tracks have been removed and the event re-

reconstructed as a diphoton system. In the converted-photon case a similar procedure

uses �+jet events where the vertex is found using the tracks of the jet. The tracks

of the jet are then removed and the event is re-reconstructed as a diphoton system.

Validation of the BDT for unconverted photons is shown in Figure 5.3.

The selection e�ciency for selecting a vertex within 1 cm of the true position is

evaluated using simulated Higgs diphoton decay events. This e�ciency is shown as

a function of the number of vertices in the event and the diphoton pT in Figure 5.4.

The e�ciency over all events is approximately 81%.
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Figure 5.3: Vertex ID e�ciency of dimuon events reconstructed as diphotons as a
function of pT in simulation and data.
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Figure 5.4: Vertex ID e�ciency (dots) and average vertex probability (shaded band) as a
function of diphoton pT (left) and number of event vertices (right).

Corrections are applied to account for discrepancies between data and simulation

and an associated systematic uncertainty is assigned. This is estimated by varying

the ratio of data to simulation within their uncertainties.

The width of the distribution of vertex positions in z is a factor of 1.5 wider in

simulation than that measured in data. This is corrected by weighting simulated

events with selected vertices more than 0.1 cm from the generator-level Higgs vertex

to reproduce the data distribution [8].
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5.6 Other Objects

5.6.1 Leptons

Leptons are used for validation purposes throughout the analysis, and also event

categorisation where there are leptons in the final state such as production with the

tt̄H or VH modes.

Electrons

Electrons are reconstructed in a similar way to photons, but with the extra require-

ment of an associated track. This association can be achieved in two ways depending

on the properties of the candidate:

• ECAL-based: starting with an energetic and well-isolated ECAL SC, match the

track that is closest to the energy-weighted position of the SC and also within

a window of �⌘ = ±0.02, �� = ±0.15 of it;

• Tracker-based: starting with candidate tracks, associate them to a geometrically

compatible SC. This is used for low pT electrons (pT < 10 GeV).

Candidates from both methods are combined to produce the set of PF candidate

electrons of the event. There are also corrections applied to the tracks to correct for

bremsstrahlung e↵ects, and an energy correction from a BDT regressor analogous to

the photon reconstruction. More information on electron reconstruction can be found

in Ref. [73].

Muons

Hits in the muon system are formed into track segments and these are assembled via

a clustering algorithm into muon system tracks called standalone muons. These are

then associated with tracks from the inner tracker to produce global muons. A third

approach is also used where inner tracks with pT < 0.5 GeV and total p < 2.5 GeV

are extrapolated into the muon system. If a compatible muon segment is found this

makes a ‘tracker muon’. Global muons and tracker muons that share the same inner

track are merged into a single candidate. Standalone muons have worse momentum

resolution and are more contaminated by cosmic rays. More information on muon

reconstruction can be found in Ref. [74].

5.6.2 Jets

Jets are composite objects reconstructed from PF candidates using the anti-kT algo-

rithm [75] with R = 0.4. The dedicated calibration for each PF candidate type, as well
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as 90% of the jet energy being in the form of photons and charged hadrons, allows

for high-resolution measurement with the inner tracker and ECAL. The remaining

10% consists of neutral hadrons which are measured at lower energy resolution in

the HCAL [76]. The tracks also allow for the identification and rejection of particles

originating from pileup vertices. Pileup gives extra energy to signal jets, and the

soft pileup jets of these interactions can also be clustered into so-called fake jets of

relatively large pT when they overlap. This latter e↵ect rises quadratically with the

number of pileup interactions.

The jet objects receive corrections to their energy that relate the energy of the

reconstructed jets to the energy at particle-level. A factorised approach is used [76]:

• Subtract an o↵set in pT due to pileup contamination. This is an average cor-

rection derived from the global per-event density ⇢;

• Correct pT and ⌘ dependence of the average jet detector response: this is due

to non-linearities in the calorimetry, and di↵erences in detector construction as

a function of ⌘, and pT thresholds;

• Jet energy scale: corrects for average residual discrepancies between data and

simulation.

Finally, to reject pileup jets, charged hadrons from vertices other than the chosen

vertex are ignored within the tracker acceptance where this information is available.

Outside the tracker a selection criterion is placed on the width of the jet expressed as

�RMS =

P
i
pi 2

T
�Ri

P
j
pj 2

T

(5.2)

where �Ri is the distance between the constituent and the jet axis. The threshold

value used is �RMS > 0.03.
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Chapter 6

Event Categorisation

6.1 Overview and Objectives

Once a set of candidate photons is assembled they are tagged and categorised using

extra final-state objects characteristic of particular Higgs production modes. The

objective of this tagging procedure is to enhance overall significance, to construct

categories of events with superior mass resolution, and to separate out the Higgs

production modes for individual measurement.

The mass-scaled diphoton pT is used throughout the event categorisation to avoid

two unintended e↵ects from correlation between diphoton pT and diphoton mass.

Firstly, cutting out low-pT diphoton events will also remove low diphoton mass events.

This reduces the number of events in the low-mass region and can distort the mass

distribution into a non-monotonic shape. Monotonic diphoton mass spectra are pre-

ferred as this makes the background shape easier to model and also admits a larger

set of candidate functions. This larger set is desirable as it spans more of the space

of possible function choices and we can better estimate the systematic uncertainty

in background function choice. Secondly, using mass-scaled pT as a feature in the

machine learning models avoids biasing them to the signal mass of the simulated

events used in training. This can happen if the algorithm learns to discriminate using

diphoton pT as a proxy for the diphoton mass.

The event categorisation begins with a selection on the photon candidates with

p�1

T
/m�� > 1/3, p�2

T
/m�� > 1/4, and 100 < m�� < 180 GeV. There are then further

requirements on the photons’ supercluster pseudorapidities: both must have |⌘|<
2.5 to keep them in the fiducial region of the ECAL, and also must not be in the

barrel-endcap transition region 1.44 < |⌘|< 1.57 to ensure full containment of the

electromagnetic showers.

75
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6.1.1 The Diphoton BDT

Selected diphoton candidates are then evaluated for signal-like kinematics and mass

resolution by a BDT, the diphoton BDT, whose output score is used as a discrimi-

nating variable by the tags. The input features of this BDT are the following:

• the mass-scaled transverse momentum p�

T
/m�� for the leading and subleading

photons;

• the pseudorapidity ⌘ for the leading and subleading photons;

• the cosine of the azimuthal angle �� between the photons;

• the score from the photon identification BDT for both photons;

• the mass resolution estimate given the assumption that the correct vertex is

selected, �RV

��
/m�� ;

• the mass resolution estimate given the assumption that the incorrect vertex is

selected, �WV

��
/m�� ;

• the probability that the correct diphoton vertex has been selected pRV , esti-

mated with the vertex probability BDT.

The mass resolution in the right vertex case, �RV

��
/m�� , is assumed to be com-

pletely dominated by the ECAL photon energy resolution; one can therefore neglect

vertex uncertainty. The energy resolution for each photon can be approximated by

a Gaussian distribution and combined in quadrature to give the following expression

for mass resolution,

�RV

��
=

1

2

q
(�E

�1
/E�1)2 + (�E

�2
/E�2)2 (6.1)

where �E

�1
/E�1,�E

�2
/E�2 are the relative uncertainties on the photon energies for the

leading and subleading photons respectively. In the wrong vertex case, �WV

��
/m�� ,

the extra contribution to the mass resolution is modelled with an extra term. This

term is assumed to be Gaussian in form, with a width equal to the extent in z of the

beam spot multiplied by
p

2. This extra term is then summed in quadrature with the

mass resolution for the right vertex case,

�WV

��
=

1

2

q
(�RV

��
/m��)2 + (�V

��
/m��)2. (6.2)

The diphoton BDT is trained on all four signal samples and the QCD, GJet and

diphoton background samples. Each training event is weighted in proportion to its

cross section, its event weight and its expected mass resolution. When events are

weighted during training like this it can be considered to be a way of defining the

‘cost’ of misclassifying a particular event. Higher weight events will have a higher

associated misclassification cost and will therefore be prioritised over lower weight
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events. Specifically, signal weight events are weighted as follows,

wsig =
pRV

�RV
��

/m��

+
1 � pRV

�WV
��

/m��

. (6.3)

This scheme helps ensure that the diphoton BDT will assign a relatively high score to

events with good expected mass resolution. The signal-flattened score distribution for

all simulated signal and background samples, as well as data, is shown in the lefthand

plot in Figure 6.1.

The performance of the diphoton BDT is validated in a Z ! e+e� control region

where the normal diphoton selection has been applied, but the electron veto is inverted

(Figure 6.1 right). The diphoton BDT output score has good agreement between data

and simulation in the score region used by the event tagging.

7.1 Event categories for ttH production 11
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Figure 5: (Left) Transformed score distribution from the diphoton multivariate classifier for
events with two photons satisfying the preselection requirements in data (points), simulated
signal (red shades), and simulated background (coloured histograms). Both signal and back-
ground are stacked together. The vertical dashed lines show the boundaries of the untagged
categories, the grey shade indicates events discarded from the analysis. (Right) Score distribu-
tion of the diphoton multivariate classifier in Z ! e+e� events where the electrons are recon-
structed as photons. The points show the distribution for data, the histogram shows the distri-
bution for simulated Drell–Yan events. The pink band indicates the statistical and systematic
uncertainties in simulation. The grey shade indicates events discarded from the analysis.

Figure 6.1: Stacked diphoton BDT score distributions for simulated signal and
background, with data shown superimposed (left). Diphoton BDT score in
the Z ! e+e� control region (right). The same transformation has been
applied to the score distribution in both plots such that the total signal
distribution is flat.

6.1.2 Tagging Scheme

Tagging is implemented as a fall-through sequence where diphoton events are o↵ered

to each tag in order of priority (Table 6.1). If a diphoton event is not accepted by

a tag it then passes to the next tag for consideration until the final ‘Untagged’ tag

category. If the event does not meet the criteria for this last tag it is discarded. In

the case of multiple tagged candidate diphotons in an event the one with the highest

priority tag and category is selected, if they are in the same category the diphoton

with the highest diphoton pT is chosen. The criteria for each tag will be specified in

following sections in this chapter.
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Tag Target Process Structure

tt̄H Leptonic tt̄H with semi-leptonic top decays Single category

tt̄H Hadronic tt̄H with fully-hadronic top decays Single category

ZH Leptonic VH with leptonically-decaying Z boson Single category

WH Leptonic VH with leptonically-decaying W boson Single category

VH Leptonic Loose VH with leptonically-decaying W or Z boson Single category

VBF VBF with dijet in the final state Three categories

VH MET VH with significant amount of Emiss

T
Single category

VH Hadronic VH with hadronically-decaying W or Z boson Single category

Untagged Inclusive Four categories

Table 6.1: The H ! �� tag sequence in order of tag priority from highest (top) to lowest
(bottom).

6.2 Top Fusion Tagging

In the tt̄H production mode, a top-antitop pair is produced in association with the

Higgs boson. The top quark immediately decays to a b quark and a W boson which

will subsequently decay leptonically or hadronically. In the former (semi-leptonic)

case there will be a bottom quark jet plus at least one associated lepton with Emiss

T

from the W decay. In the latter (fully-hadronic) case there will be a bottom quark

jet plus two quark jets from the W decay to quarks (Figure 6.2).
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Figure 6.2: Top quark decay modes: a fully-hadronic decay (left) and a semi-leptonic
decay (right).

The top tags target these two decay modes: the leptonic tag searches for tt̄H

events where at least one top quark decays semi-leptonically, and the hadronic tag

searches for tt̄H events where both top quarks decay fully-hadronically.
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6.2.1 tt̄H Leptonic

This tag uses a set of selections on kinematic properties of leptons and jets in the

event. Leptons are required to pass selection requirements depending on their flavour:

• diphoton BDT score > 0.11;

• at least one selected lepton with pT > 20 GeV;

• all selected leptons are required to have an angular separation from a signal

photon of R(`, �) > 0.35;

• |me� � mZ |> 5 GeV (electrons only);

• a minimum of two jets in the event with pT > 25 GeV, |⌘|< 2.4, R(j, �) > 0.4

and R(j, `) > 0.4;

• at least one jet is tagged as a b jet by the CSV tagger (medium requirement).

6.2.2 tt̄H Hadronic

This tag uses a set of selections on kinematic properties of the jets in the event, as

well as a dedicated BDT. The tt̄H hadronic BDT is trained on the following input

features:

• the number of jets with pT > 25 GeV;

• the pT of the leading jet;

• the two highest scores of the CSV b-tagger.

A selection on the BDT output score (Figure 6.3) is optimised simultaneously on

simulation with a selection on the diphoton BDT score to maximise expected precision

on the signal strength of the tt̄H production channel.

A control region is constructed by selecting photon pairs where one passes the

preselection and photon ID requirements, whilst the other has no preselection re-

quirement and the photon ID is inverted. These events are then weighted in ⌘ and

pT to reproduce the kinematic properties of the photons in the signal region.

The selection requirements of the tt̄H Hadronic tag are as follows:

• pT /m�� > 1/3 and 1/4 for leading and subleading photons respectively;

• diphoton BDT score > 0.4;

• no leptons that meet the criteria of the tt̄H Leptonic tag;

• a minimum of three jets in the event with pT > 25 GeV and |⌘|< 2.4;

• at least one jet is tagged as a b jet by the CSV tagger (medium requirement);

• a tt̄H Hadronic BDT score above 0.75.
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Figure 6.3: Score distribution of the hadronic tt̄H BDT. The blue lined histogram shows
the distribution for the control region, the red filled histogram shows the score
distribution for simulated signal, and the points show the score distribution
of the data sideband regions (m�� < 115 GeV or m�� > 135 GeV).

6.3 Associated Production Tagging

In the associated production (VH) mode a W± or Z boson is produced in associa-

tion with the Higgs boson. The VH tags target di↵erent vector bosons decaying in

di↵erent ways which can manifest as leptons, jets or Emiss

T
in the event. All of the

leptonic VH tags are selection-based and have various isolation requirements to avoid

contamination from Drell-Yan background processes.

6.3.1 ZH Leptonic

This tag targets Higgs production in association with a Z boson that subsequently

decays leptonically by using stringent selection requirements. The selection criteria

are as follows:

• p�

T
/m�� > 3/8 for leading photon;

• diphoton BDT score > 0.11;

• two same-flavour leptons with pT > 20 GeV and satisfying the same require-

ments as in the tt̄H Leptonic tag;

• 70 < m`` < 110 GeV;

• R(�, e) > 1.0, or R(�, µ) > 0.5;

• conversion electron veto: if an electron and a photon share a supercluster, the

electron track must be well-separated from the supercluster centre (R(SC, e) >

0.4).
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6.3.2 WH Leptonic

Targets Higgs production in association with a W± boson that subsequently decays

leptonically by using stringent selection requirements. The selection criteria are as

follows:

• p�

T
/m�� > 3/8 for leading photon;

• diphoton BDT score > 0.28;

• at minimum one lepton with pT > 20 GeV and satisfying the same requirements

as in the tt̄H Leptonic tag;

• R(�, `) > 1.0;

• Emiss

T
> 45 GeV;

• a maximum of two jets each satisfying pT > 20 GeV, |⌘| < 2.4, R(j, `) > 0.4,

R(j, �) > 0.4;

• electron conversion veto as in the ZH Leptonic tag.

6.3.3 VH Leptonic Loose

This tag targets Higgs production in association with either W± or Z which then

decay leptonically. This tag uses an orthogonal Emiss

T
selection of Emiss

T
< 45 GeV,

with the rest of the selection being the same as WH Leptonic.

6.3.4 VH MET

Targets Higgs associated production with Emiss

T
from at least one missing lepton. The

selection criteria are as follows:

• p�

T
/m�� > 3/8 for leading photon;

• diphoton BDT score > 0.79;

• Emiss

T
> 85 GeV;

• |��(��, Emiss

T
)| > 2.4.

6.3.5 VH Hadronic

This tag targets Higgs production in association with a W or Z boson that decays

hadronically. The selection criteria are as follows:

• p�

T
/m�� > 1/2 for leading photon;

• diphoton BDT score > 0.79;

• a minimum of two jets with pT > 40 GeV and |⌘| < 2.4, R(j, �) > 0.4;

• dijet invariant mass 60 < mjj < 120 GeV;

• |cos✓⇤| < 0.5, where ✓⇤ is the di↵erence in diphoton polar angles ✓�� in the

diphoton-dijet centre-of-mass frame, and the lab frame.
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6.4 Untagged

If the candidate is not assigned to any of the other tags it is considered for inclusion in

a final inclusive tag: Untagged. The Untagged tag consists of four categories defined

as exclusive selections on the diphoton BDT score and consists mostly of gluon fusion

events. If an event does not meet the lowest requirement it is discarded from the

analysis.

These categories are optimised simultaneously in a similar way to the VBF tag,

but with a few di↵erences. The procedure begins with the boundaries spaced equally

along the score distribution. Each category is evaluated in simulation by fitting an

exponential for background plus two Gaussian distributions for the signal. Significance

is extracted from each category based on a fit to an Azimov dataset [77] derived from

the earlier exponential and Gaussian function fits. The boundaries are optimised to

maximise overall significance of the Untagged tag.

This procedure is repeated for increasing numbers of Untagged categories until

there is no significant increase in performance. This is then the number of Untagged

categories to be used in the tag.

6.5 VBF Tagging

The VBF production mode is characterised by its distinctive event topology and

kinematics: two high-pT jets with large pseudorapidity separation and high invariant

mass. Furthermore, the dijet substructure will also be distinctive with both jets orig-

inating from quarks, having colour connections to the proton remnants and possibly

having other correlations in structure between the two jets.

Other production modes can also produce a Higgs boson in association with jets

to produce a VBF-like final state. In particular, ggH can be a significant source of

background due to its larger cross section and capacity to produce jets at next-to-

leading order or from initial-state radiation. These dijets will mostly be from gluons,

therefore targeting the jet substructure will be important in discriminating these

production modes.

The VBF tag targets the VBF production mode by exploiting the distinctive

properties of VBF dijets. At the core of the VBF tag is a machine learning model

which takes these distinctive properties as input features. The selection and category

assignment of the tag is then based on the output of this model. This chapter explores

two approaches.

• A tag based on two BDTs with engineered kinematic features using Scikit-learn [78].

This is the approach used in the 2016 H ! �� analysis.
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• A tag based on a single dense convolutional neural network built in TensorFlow [79]

that receives jet structure information in the form of images in addition to en-

gineered kinematic features.

Both tags use the same event preselection, and produce scores used to define event

categories that enhance the expected significance of the VBF channel and will be

evaluated in the same way. The only di↵erence will be the machine learning model

that the tags are based around, and the extra image-based information in the dense

CNN tag.

The problem formulation is the following: to separate VBF from SM background

and ggH events using simulated data. Constraints are that the model must generalise

to real data and must not introduce a bias to the diphoton mass. There are a few

challenges associated with this problem.

• There is a severe class imbalance in the simulated samples used in training.

There there are approximately seven times more examples of the background

class than the signal.

• The events are weighted, some events can be equivalent to multiple others.

• Some events have negative weight and are needed for correct distribution shapes.

• The total weight di↵erence between the classes is very large and make the class

imbalance problem even worse.

• The QCD background sample has very large weights and very few events. This

causes the background distribution shapes to become very jagged.

The model is evaluated using the area under the ROC curve (AUROC), a perfor-

mance measure of a binary classifier. This measure is chosen because it is robust to

class imbalance and can easily be evaluated with weighted events.

When developing the tag itself and its categories the approximate mean signifi-

cance (AMS) [80] is used as the figure of merit. This is defined as

AMS =

s

2

✓
(s + b + breg) log

✓
1 +

s

b + breg

◆
� s

◆
, (6.4)

where s is the total number of signal events, b is the total number of background

events, and breg is a regularisation term that reduces sensitivity to local optima.

The value of breg is chosen to be 5. AMS is estimated by simultaneously fitting

an exponential plus a double Gaussian function to the diphoton mass distribution.

The background and signal event weights from an interval of two e↵ective standard

deviations around the peak are summed to produce s and b, and to estimate AMS.
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6.5.1 Selections

When a candidate diphoton is considered for VBF selection, additional requirements

are applied based on the jet content of the event. First requirements are applied on

a per-jet basis. If there are more than two jets that meet these requirements the top

two in pT are selected to form a dijet. Finally, a preselection based on dijet kinematics

is applied to the candidate dijet. If it does not pass, the event falls through to the

lower-priority categories (VH MET, VH Hadronic, and Untagged).

Jet Selection

Jets are required to meet the criteria detailed in the previous chapter plus some ad-

ditional requirements specific to the VBF tag. Pileup jet ID (PUJID) uses a BDT

classifier [81] that takes a collection of jet shape variables and produces a score for

each jet. A collection of selections on this score are then applied for bins in pT

and ⌘ (Table 6.2). In this analysis the tight working point is used as this gives the

|⌘|< 2.5 2.5  |⌘|< 2.75 2.75  |⌘|< 3.0 3.0  |⌘|< 5.0

20 < pT  30 GeV 0.69 �0.35 �0.26 �0.21

30 < pT  50 GeV 0.86 �0.10 �0.05 �0.01

50 < pT  100 GeV 0.95 0.28 0.31 0.28

Table 6.2: Pileup jet ID cuts of the tight working point.

highest expected significance for the VBF tag, and also leads to marked improve-

ment in data/simulation agreement in ⌘ in the Z ! e+e� plus jets control region.

Furthermore, there is a photon-jet isolation criterion that requires the jet to have

�R(�, j) > 0.4 with both of the photons of the candidate diphoton and a jet pseudo-

rapidity requirement of |⌘j |< 4.7.

Dijet Preselection

Dijets are formed by selecting the two highest-pT jets in the event that pass the jet

selection requirements. The highest-pT jet in the pair is referred to as the leading jet,

and the other jet as the subleading jet. If there are fewer than two jets the event is

rejected by the VBF tag and falls through to Untagged. Candidate dijets are required

to meet the following selection criteria before being presented to the machine learning

model:

• p�

T
/m�� > 1/3 and 1/4 for leading and subleading photon respectively;

• photon ID BDT score > �0.2 for both photons;

• dijet invariant mass mjj > 250 GeV;
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• jet pT > 40 GeV and > 30 GeV for the leading and subleading jets respectively.

The criterion on the photon ID score is motivated by under-performance of the

diphoton BDT in the VBF phase space. The diphoton BDT was trained over all

signal, the bulk of which will consist of ggH where the diphoton is produced with

no extra objects such as jets. In this phase space the transverse momentum of the

diphoton system is highly discriminating. This leads the diphoton BDT to assign a

high score just on high values of diphoton pT , and with lax requirements on photon

ID. This in turn leads to under-performance in the VBF phase space where the pT

spectrum is harder and low photon ID background events are given a high score.

6.6 VBF Tag with BDTs

Once a candidate event passes the preselection, it is presented to a machine learning

model consisting of two BDTs in sequence: the dijet BDT and the combined BDT.

The output classification score of this model will be used to define the categories of

the tag selection.

6.6.1 Dijet BDT

The purpose of the dijet BDT is to evaluate how VBF-like events are based on kine-

matic information from the dijet and the diphoton, and in particular to handle the

rejection of ggH. The BDT receives the following features which are chosen to min-

imise correlation with the diphoton mass:

• p�

T
/m�� for the leading and subleading photons;

• pj1

T
and pj2

T
, the transverse momenta of the leading and subleading jets respec-

tively;

• mjj the invariant mass of the dijet;

• �⌘ the pseudorapidity gap between the two jets;

• min�R(�, j) the smallest angular separation between either of the diphoton

photons and either of the jets;

• |����jj | the absolute azimuthal angular di↵erence between the diphoton and

dijet;

• |��jj | the absolute azimuthal angular di↵erence between the jets of the dijet;

• C�� the diphoton centrality expressed as:

C�� = exp

 
� 4

(⌘j1 � ⌘j2)2

✓
⌘�� � ⌘j1 + ⌘j2

2

◆2
!

(6.5)

where ⌘j1 and ⌘j2 are the pseudorapidities of the leading and subleading jets.
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Their distributions with the VBF preselection applied are shown in Figure 6.4.
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Figure 6.4: Dijet BDT feature distributions with the full VBF preselection. Distributions
are all normalised to unity with the solid red line corresponding to VBF, blue
line to ggH, and black line to SM background. The SM background
distribution is shown as a stacked histogram.

This dijet BDT is trained on all simulated SM background samples (with ggH

included) versus VBF. To increase the number of training examples the training uses
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a loosened dijet preselection requirement where the p�

T
/m�� are reduced to 1/4 and

1/5, the jet pT cuts are reduced by 10 GeV, the dijet invariant mass cut is reduced to

100 GeV and the photon ID cuts are not applied. The normalised score distributions

for the classes and the ROC curves for each individual sample are shown in Figure 6.5.

These scores are then used as an input feature in the next BDT in the VBF tag: the

combined BDT.
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Figure 6.5: Dijet BDT performance. On the left are the output score distributions for
VBF (red), ggH (blue) and SM background (black). The SM background
distribution is shown as a stacked histogram. On the right are the ROC
curves for the dijet BDT split into the di↵erent samples. The performance
against ggH is noticeably lower than the other backgrounds.

6.6.2 Combined BDT

The purpose of the combined BDT is to combine information from the diphoton BDT

and dijet BDT to produce the final discriminant score for defining VBF tag categories.

Specifically, it takes the following input features:

• diphoton BDT score;

• dijet BDT score;

• p��

T
/m�� , the mass-scaled transverse momentum of the diphoton.

The distributions of these features with the full VBF preselection applied are shown

in Figure 6.6.

The combined BDT is then trained with the SM background samples vs VBF.

Gluon fusion is not included in this training, as it is found to reduce the ability of this

BDT to reject SM background. This is considered to be a higher priority than ggH

rejection because rejection of SM background has the largest impact on statistical

significance. The normalised combined score distributions for the classes and the

ROC curves for each individual sample are shown in Figure 6.7.
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Figure 6.6: Combined BDT feature distributions with the full VBF preselection.
Distributions are all normalised to unity with solid red corresponding to
VBF, blue line to ggH. The SM background is shown as a stacked histogram.
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Figure 6.7: Combined BDT score distribution with the full VBF preselection are shown
on the left. Distributions are all normalised to unity with solid red
corresponding to VBF, blue line to ggH, and black line to SM backgrounds.
The SM background distribution is shown as a stacked histogram. ROC
curves broken down by background sample are shown in the same colours on
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6.6.3 Model Interpretation

The model can be interpreted by observing how features are used together in high and

low-scoring events. This is achieved by examining their joint distribution for highest

and lowest percentile scoring events. The result is shown in Figure 6.8 where the solid

colour shows the values averaged over each percentile, and the lines show the top five

highest (or lowest) scoring events.

The discrimination power of the model is driven by the dijet angular variables,

with the exception of |����jj | and the dijet mass. High jet pT is actually more of an

indicator of background. Diphoton BDT score shows substantial overlap, likely from

ggH but there could still be residual high-pT SM background events and underper-
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Figure 6.8: Coloured regions correspond to mean values for top percentile (red) and
bottom percentile (black) combined score events. The top and bottom five
scoring events are also shown by lines and dots.

formance in the VBF phase space.

6.6.4 Categorisation and Tag Performance

Once a candidate event has been preselected and evaluated by the model it is consid-

ered for inclusion in the VBF categories. These are defined as exclusive selections on

the combined BDT output score and are chosen to maximise the AMS over all cate-

gories. If the combined score is not high enough for inclusion in the lowest category

it is rejected and is passed for consideration by lower-priority tags.

The AMS is estimated for each category by constructing a diphoton mass his-

togram of all events in the category score range, an exponential function is then fitted

to the mass sidebands, and a double Gaussian in the signal region to the background-

subtracted mass histogram. The parameters of these fits are then used as initial

values for a simultaneous signal-background fit. The values of s and b are evaluated

in a region around the peak with width equal to two e↵ective sigma either side esti-

mated from the simultaneous fit. Overall significance is then calculated as the sum

in quadrature of the significance of each category.

The boundaries are optimised simultaneously for overall significance with a ran-

dom search algorithm. The number of categories is chosen considering an increasingly

larger number and performing a category optimisation for each one. The procedure

stops when the improvement is less than one percent. This was found to happen with
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three categories.

Approximate studies (in lieu of the full final fits machinery) of the three VBF

categories using the procedure described above are carried out to study tag perfor-

mance. Their boundaries and their estimated performance is shown in Figure 6.9 and

Table 6.3.
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Figure 6.9: Mass fits for estimating AMS.

Category Score Range �e↵ AMS BggH/(S + BggH) S/(S + B)

VBF 0 (0.957, 1.000] 1.4 2.16 0.20 0.37

VBF 1 (0.902, 0.957] 1.2 1.00 0.34 0.17

VBF 2 (0.553, 0.902] 2.0 0.69 0.53 0.04

Table 6.3: Estimated category attributes for the BDT-based VBF tag.

6.6.5 Validation

Z ! e+e� Control Region

Validation of the VBF tag uses the same Z ! e+e� control region as the other tags,

but with the extra requirements of the VBF preselection. This control region is used

for simulation/data comparison of both the features input to the BDTs and the BDT

scores themselves (Figure 6.10). There is good data-simulation agreement in the

output scores of the BDTs and in the kinematic features (Appendix B).

These plots only show the marginal distributions of these variables, they do not

show their joint behaviour. In order to examine data-simulation agreement of the joint

distribution, a BDT is trained to discriminate between simulation and data events.

If the discrimination power of the resulting model is high then the agreement is bad,

if it is equivalent to guessing this suggests that the joint distributions match closely.
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Figure 6.10: Data/Simulation comparison for dijet and combined BDT output scores.

Selections on the BDT score can then be used to try to isolate regions of the joint

distribution where there is disagreement.

The results shown in Figure 6.11 show that the score distributions are similar,

discrimination is very low, and therefore the joint feature distribution has little dis-

agreement.
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Figure 6.11: Joint distribution study with BDT on the Z ! e+e� control region
data-simulation test set.

QCD Modelling Variations

The accuracy of QCD process modelling in hadronic collisions is a significant source

of theoretical uncertainty. This will have an impact on categorisation with hadronic
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objects such as jets, and is especially pertinent for any features that are based on jet

substructure.

To test for how such mismodelling a↵ects the VBF tag and VBF/ggH discrimina-

tion, samples are evaluated with up and down variations on aspects of jet production:

• Underlying event: interactions between parton pairs in the proton collision

that are not part of the hard scatter;

• Parton shower: simulates a succession of parton emissions from the incoming

and outgoing partons of the interaction.

These variations encompass di↵erent choices of generator and tune that the simulated

events are still consistent with observations at CMS. These will a↵ect the cross section

for jet production, the configuration of the jet substructure and particularly the degree

of colour connection to the proton remnant.

This is formulated as eight tunes that e↵ectively provide a basis that spans the

di↵erent choices of tune and generator. Uncertainties are then evaluated in terms of

these, then the uncertainties are summed in quadrature to define upper and lower

uncertainties. These are in turn used to define up and down variations around the

nominal tune used. This process is applied to VBF and ggH for parton shower mod-

elling uncertainty and underlying event uncertainty individually.

To evaluate how the performance of the model changes depending on these mod-

elling variations, a VBF vs ggH ROC curve is constructed for each variant, and an

envelope is drawn around the curves to estimate performance bounds. This is shown

in figure 6.12

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R

at
e

Dijet BDT Score

Nominal (AUC=0.786)

Upper (AUC=0.789)

Lower (AUC=0.769)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R

at
e

Combined BDT Score

Nominal (AUC=0.770)

Upper (AUC=0.771)

Lower (AUC=0.748)

Figure 6.12: ROC curves for parton shower and underlying event variations. The
nominal performance is shown in black, and the magenta lines show the
upper and lower bounds of the envelope covering all the curves.

The change in performance is modest. This is expected, as the VBF model only
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uses kinematic variables and the main impact of these variations may be through

pileup mitigation and selecting the incorrect jet rather than substructure mismod-

elling.

6.6.6 Single BDT Model

The two-step structure of the VBF tag was first developed for the Higgs boson Run 1

analysis on less performant software and di↵erent selections. In particular, the photon

ID cut of the preselection removes much of the background that the combined BDT

targets. When trained over events with this cut applied, the combined BDT adds

little to the performance of the VBF Tag. Using a single BDT equivalent to simply

adding the diphoton BDT score to the dijet BDT performs at the same level as the

two step tag (Figure 6.13).

Furthermore, the original train-test split of the two-step BDT was unavailable.

Evaluating over the entire sample will include training events and exaggerate the

performance of the BDT-based tag. A single-step BDT was trained and found to

be equal in performance. A small increase in the two-step tag is possibly from the

inclusion of training events. It is a fairer test to compare this model to the dense

CNN because the exact same training and test sets can be used.
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Figure 6.13: Single BDT performance and comparison to the two step approach.
Distributions of the single BDT score are shown on the left and are all
normalised to unity with solid red corresponding to VBF, blue line to ggH,
and black line to SM backgrounds. The SM background distribution is
shown as a stacked histogram. Corresponding ROC curves for the single
BDT (centre) and original approach (right) are shown with colours denoting
the same samples as the histogram.
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6.7 VBF Tag with a Dense Convolutional Neural

Network

In the BDT-based tag, the ggH separation power is much lower than the SM back-

ground samples. This is a challenging problem to solve when equipped with only

kinematic variables. Jet structure variables should o↵er important extra information.

Rather than using hand-engineered jet structure features, this problem is ap-

proached by formulating jet structure as an image and then training a dense convo-

lutional neural network. The model will form many discriminating features as part

of the learning process, some hopefully more sophisticated and more powerful than

common engineered features.

This section will describe the construction of these images, and the model built

to process them in detail. The optimisation techniques for selecting the model struc-

ture are described, and the features the model has learned will be explored using a

collection of techniques. The model will then be validated with particular emphasis

on how it is a↵ected by the quality of QCD event modelling.

6.7.1 Jet Images

The properties of a jet’s constituent particles can provide important information about

the originating parton. An image is a natural way of representing this information,

with the spatial distribution represented by the arrangement of pixel values and the

channels of the image representing properties such as charged particle pT deposition

in the pixel region.

Formulation

The image formulation used in this thesis (Figure 6.14) is inspired by Ref. [82], and

uses two three-channel jet images (corresponding to the leading and subleading jets)

stacked in the channels’ dimension to produce a n ⇥ n ⇥ 6 dijet image. The three

channels are the following: pT deposition of charged PF candidates, pT deposition

of neutral PF candidates, and PF candidate multiplicity. The space that the pixels

correspond to is the space of particle displacements in pseudorapidity and azimuthal

angle from the jet axis (�⌘,��),

�⌘ =⌘p � ⌘j

�� =�p � �j

(6.6)

where subscript p denotes a constituent particle and j denotes the jet. The pixels

themselves are not a rectilinear grid in (�⌘,��), but are evenly-spaced in the polar
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coordinates

�R =
p
�⌘2 +��2

' =atan2(��,�⌘)
(6.7)

These have been rotated by half a pixel in ' so that the (�⌘,��) axes line up with

the centres of a row of pixels rather than the boundary between them. Finally, the

images are normalised such that the sum of the pT -based channels equal one, and the

sum of the individual multiplicity channels equal one. All of the images in this thesis

will have the same form and are always centred on the jet axis.

This stacked dijet image formulation is used to facilitate finding correlations in

structure between the two dijet jets. In this formulation it will happen at a lower

level rather than constructing complex features on a per-jet basis and then comparing

them. For example, this is needed for detecting the characteristic colour connection

of VBF: if the jets are in opposite hemispheres the jet image will show the candidates

to be pulled in opposite �⌘ directions.

Polar coordinate pixels are used to give finer segmentation at the centre of the jet

and to make it easier for a DCNN to construct translation-invariant filters. Features

will depend more on (�R,') than (�⌘,��).

Image Dataset and Preprocessing

These images are di↵erent in their formulation and behaviour compared to a typical

image one finds in computer vision problems. Firstly, they are sparse with only a

fraction of the pixels ever non-zero in any one image. Secondly, assumptions about

local correlations between pixels do not apply: two adjacent red pixels would mean

two adjacent particles. Max pooling will simply pick the higher valued pixel during

downsampling and information about the second particle will be lost. Thirdly, in the

rectilinear image which is seen by the network (bottom right of Figure 6.14) there is

a periodic boundary condition where the top pixels wrap around to the bottom ones.

When convolution operations are performed on these images the padding must be

periodic in the vertical direction (' direction).

The dijet image distribution has a few notable features that originate from the

structure of CMS. Outside the tracker acceptance there is no charge measurement

and therefore the charged pT channel may be all zero. The coarse structure of the

forward detector regions also gives a change in image properties: here the images

become constrained to a grid of dots. This can be see in the mean images shown in

Figure 6.15 where it manifests as a green grid in the mean of the image distributions

(especially in VBF).

Images are preprocessed before being input to the DCNN for both training and
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��

�⌘

(⌘jet, �jet)

Figure 6.14: Construction of single 12 ⇥ 12-pixel three-channel jet image (top). Arrows
correspond to individual jet constituents where red arrows are charged,
green are neutral and the opacity of the arrows corresponds to candidate
pT . The multiplicity channel is drawn separately, and black pixels lightened
so the charged and neutral channels can be seen clearly. The final image
(bottom) shown in both (�⌘,��) coordinates (left) and the (�R,')
coordinates seen by the network (right).

inference such that each feature (image pixel channel value) distribution has mean

zero and standard deviation of one. This is achieved by subtracting the per-feature

mean of the dataset and dividing by the per-feature standard deviation. In this case

the class-balanced mean and standard deviation are used where each class has equal

weight. This is important for when the training is carried out over class-balanced

minibatches.
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Figure 6.15: Mean dijet images for VBF events (top), gluon fusion events (bottom left)
and Standard Model background processes (bottom right). In each dijet
image the left hand image corresponds to the leading jet and the right
corresponds to the subleading jet.

6.7.2 Dense CNN Model

Model Design

The overall structure of the model can be considered to built from three main parts:

• Convolutional section for learning dijet substructure features from dijet im-

ages.

• Merge section for processing and integrating engineered kinematic features

with learned features from the convolutional section.

• Main discriminant fully-connected layers for integrating all information and

producing the class logits.

The convolutional section consists of a ‘spread layer’ (SL) followed by three

dense blocks (DB1, DB2, DB3) each of which are followed by transition units (TU1,

TU2, TU3). All layer activation functions are leaky ReLUs to avoid the dying ReLU

problem.

The spread layer is a depth-wise convolution layer that produces N -many feature

maps for each channel where the filters do not mix the image channels. For each

channel’s associated feature maps half of them have their values evenly permuted in

the vertical direction, this corresponds to a rotation by ⇡ in the polar image. The

function of this layer is to spread-out the sparse image into a collection of feature
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maps that correspond to simple local spatial configurations of pixels such as radial or

angular bands of deposition. The interleaved rotations of this layer’s output feature

maps allows for the comparison of pixels opposite each other around the jet axis much

earlier in the network. This layer gives two hyperparameters to the model: the filter

size and the number of features per input channel.

The dense blocks construct increasingly higher-level feature maps, and the transi-

tion units combine feature maps for feature reduction as well as downsampling with

average pooling to avoid information loss associated with max pooling mentioned be-

fore. The structure of each of these parts is tuneable, and therefore gives another

twelve hyperparameters to the model: three from each dense block and one from each

transition unit.

The merge section consists of a set of fully-connected layers with the first one

after the initial input a di↵erent size to the others. This is then concatenated with

the output of the convolutional part. The function of this section is to embed the

engineered features in a higher-dimensional space, form them into a vector the same

size as the convolutional section output, and then combine them together with the

jet structure features. This section has three hyperparameters: the size of the hidden

layers, the number of layers, and the size of the first hidden layer relative to the

others.

The main discriminant consists of a sequence of fully-connected layers that take

the full vector of concatenated features as input and produce three class logits which

correspond to the VBF, ggH, and SM background process classes. These logits are

then mapped to class probabilities by a softmax function. The VBF class probability

is then used to define tag categories.

In addition to the above, the formulation of the image can also be tuned like

another hyperparameter to choose the most performant number of pixels.



6.7. DCNN VBF Tag 99

Dijet
Im

age

Sp
rea

d

DB1

TU1

DB2

TU2

DB3

TU3

Flat
ten

Log
its

Kine
mati

c Fe
atu

res

Figure 6.16: A schematic view of the dense CNN model architecture. The convolutional
section is indicated by blue, the merge section by red, and the main
discriminant by purple. Grey squares and rectangles show layers of neurons:
a depthwise convolution layer in the spread layer, composite layers in the
dense blocks, and fully-connected layers in the merge section and main
discriminant.
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Image Formulation and Network Architecture Search

Choosing the specific network architecture is a complex and time-consuming problem

as there are many hyperparameter choices to explore and model training can take as

long as 24 hours. To find an optimal model in the space of possible hyperparameter

choices an optimisation scheme based on Bayesian optimisation is used.

As the training time is a severe bottleneck the hyperparameter space is sampled for

trainings on the two-class subproblem of only VBF/ggH. The metric to be optimised

for is the peak AUROC evaluated on the validation set during training, and each

training can only take a maximum of 24 hours. This time requirement is to keep

the model size and therefore training time to a practical level for use in a physics

analysis. The optimisation is split into a series of steps targeting di↵erent parts

of the hyperparameter space. All of these optimisations were carried out using the

Imperial College London Research Computing Service [83].

First an approximate optimisation is carried out over all of the structure hyper-

parameters to ensure that the candidate model is not in a strongly suboptimal region

to begin with. Next the choice of image channels and pixels is optimised to find the

optimal image formulation. After this the spread unit, dense block and transition

unit depth structure are optimised and then another optimisation is carried out for

the filter sizes in the spread layer and dense blocks. Finally, the depth and size of the

fully-connected layers of the merge unit and main discriminant are optimised.

The final optimised structure is as follows.

• Image: 24⇥24 pixels with charged pT , neutral pT , and multiplicity for each jet.

• SL: 16 features per channel with a filter size of 5 ⇥ 5.

• DB1: 3 layers with growth rate 20 and filter size 3 ⇥ 3.

• TU1: reduction factor of 0.59.

• DB2: 6 layers with growth rate 10 and filter size 3 ⇥ 3.

• TU2: reduction factor of 0.95.

• DB3: 16 layers with growth rate 4 and filter size 3 ⇥ 3.

• TU3: reduction factor of 0.5.

• Merge: first layer size factor 1.5, layer size 512, depth 2.

• Discriminant: layer size 512, depth 3.

The optimisation appears to have favoured more abstract and complex features later

in the model where the field of view is larger. This is shown by the fact that much

of the depth is introduced in DB3. There is also a strong feature reduction in TU3

that strongly curtails model complexity. High-dimensional output from the convolu-

tional section leads to a large increase in parameters due to the fully-connected layer

immediately after it.
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Regularisation

The DCNN model is regularised with a single L2 regulariser term for the convolutional

section, dropout, and gradient clipping.

L2 regularisation encourages the learning of smoother features in the convolutional

section and was found in optimisation studies to give better performance than L1 or

L1 + L2. In the L1 + L2 optimisation the L1 term became very small and e↵ectively

converged to the L2 result. A three-dimensional Bayesian optimisation was carried

out to tune the final L2 hyperparameters for the convolution, merge and main dis-

criminant sections. This optimisation showed that very small values are preferred

in the non-convolutional sections, and they were therefore set to zero. The use of

L2 regularisation in the convolutional section will encourage smoother features. This

may stop the model memorising particular configurations of pixels and prevent over-

fitting. It is desirable that the representation learned by the model is spread-out in

the neurons as this leads to robustness and better generalisation [84]. This is another

e↵ect of L2 regularisation.

Dropout is used in all sections, but the dropout in the convolutional section is

di↵erent to standard dropout. In the convolutional section spatial dropout is used

where entire feature maps are dropped rather than individual neurons. This stops

the model from getting over-reliant over particular features and is another way of

encouraging a more spread-out representation.

Gradient clipping is particularly crucial to keep training updates stable in this

model. The scheme limits the maximum size of parameter updates during stochastic

gradient descent by clipping the gradients to some maximum value. Specifically this

is done by calculating the global L2 norm of the gradient vector in the parameter

space and scaling the gradient vector back if it is over the maximum value.

This is necessary when the loss surface as a function of the model parameters has

cli↵-like regions. If the gradient is evaluated at the cli↵ face the gradient may be very

large which will lead to a very large parameter update kicking the parameters of the

model far from the point it was evaluated at. Gradient clipping will stop this from

happening by keeping the parameter update small and allowing the parameters of the

model to settle at the bottom of the cli↵. These cli↵-like regions are common when

dealing with sparse inputs where most values are zero, therefore this is most likely a

consequence of the dijet image sparsity.

Loss

The loss function encodes an opinion of what constitutes good model performance

and it is here that one can define the cost of particular sorts of misclassification over

others. There are two components to this: inter-class costs and intra-class costs.
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Inter-class cost defines the relative priority of misclassification between the classes.

This was attempted in a less formal manner in the BDT-based model when ggH was

left out of the combined BDT training. This would be equivalent to setting the

misclassification cost for the ggH events to zero.

For the DCNN-based model a cost-sensitive version of cross entropy developed in

Ref. [85] is used,

Li = � log
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where i enumerates the events of the minibatch, oj is the logit of class j, p is the

true class index of the event, and ⇠ is the cost matrix which encodes misclassification

costs. The cost matrix has the following definition,

⇠ =

0

B@
cBG cBG/ggH cBG/VBF

cBG/ggH cggH cggH/VBF

cBG/VBF cggH/VBF cVBF

1

CA (6.9)

where each element c is a real number belonging to the interval (0, 1] on the diag-

onal and [0, 1] o↵-diagonal. This was selected to be symmetric to simplify the cost

optimisation problem. If all the elements are set to one this is equivalent to ordinary

cost-insensitive cross entropy.

When training the model cBG/ggH is set to zero as this type of misclassification does

not matter at all in the VBF tag. The training should not compromise on other types

of misclassification to improve it. This leads to the largest performance increase in

VBF discrimination and is crucial to being able to treat this as a three-class problem.

The diagonal values are all set to one, tuning this was found to make little di↵erence.

These entries are equivalent to setting the general cost of misclassifying a class. The

cost cBG/VBF is kept at one as this type of discrimination is the primary objective of

the model. Finally, cggH/VBF was tuned to maximise VBF/ggH discrimination while

keeping VBF/BG discrimination at or above the level of the BDT-based model. This

was found to be 0.5.

Intra-class costs are introduced by weighting events in each minibatch depending

on their event weight and their class. Within each class in the minibatch each event

is given a weight in proportion to its event weight scaled to belong to an interval [1, a]

where a is a positive real number greater than one. If this scaling is not used the

di↵erence in weight between events can be multiple orders of magnitude leading to

instability and underperformance. The total weight for each class is then scaled to

be equal to mitigate the e↵ects of class imbalance.
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The loss over the entire minibatch is expressed as a weighted sum of events,

L =
1

P
N�1

j=0
wj

N�1X

i=0

wiLi (6.10)

where N is the number of events in the minibatch, and wi is the weight of event i.

This is the final loss that is minimised by the optimiser during training.

Training Process

The training process consists of two steps: first the convolutional part is trained on

its own with two fully-connected layers, then the convolutional layer parameters are

frozen and the full model is trained with the engineered features. This approach is used

because it was found that when the convolutional section is trained simultaneously

with the rest of the network, the training is less stable and the model under performs.

The objective of the convolutional section training is to develop the learned fea-

tures that will be used in the full model. This is targeting VBF/ggH discrimination,

therefore training is treated as a two-class problem with just the ggH and VBF sam-

ples.

This runs over 150000 batches of 900 events with event weights equal to one. Each

batch is class-balanced and contains 450 events from each of ggH and VBF. During

the training the data are augmented by randomly reflecting the images in the �⌘ and

�� directions to improve generalisation.

The optimisation algorithm used is Adam with Nesterov momentum (Nadam) with

learning rate 0.001 and the loss used is cross entropy. Nadam was found to be the most

performant in contrast to the CNN literature where SGD with Nesterov momentum

is consistently better. This is likely due to adaptive learning rate algorithms such

as Adam having parameter-specific learning rates that are increased if the parameter

does not change much. This makes them better at handling sparse network inputs

which can result some parameters of the network not being updated as often as others.

The trained convolutional model then has its parameters frozen, and the fully-

connected layers after the convolutional section (after TU3) are removed. The output

of TU3 will be the learned features produced in the first training step, they are then

concatenated with the ‘spread-out’ engineered features of the merge section. Another

training is then performed over the full training set to train the merge section and

the final discriminant.

This training runs over 100000 batches of 900 events with scaled event weights

as described in the loss subsection. Each batch is again class-balanced, but this

time it has 300 events from the three classes: VBF, ggH, and SM background. The

optimisation algorithm is Nadam with the same learning rate and the loss is the
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cost-sensitive cross entropy described previously.

6.7.3 Model Performance

In order to determine how the learned features contribute to VBF/ggH discrimination

performance, the image-only network (stage one of the training) may be compared to

the single-step BDT model. This performance is examined on the same test set with

both the loose and full VBF preselections. On the loose preselection the image-only

network achieves an AUROC of 0.800, which is already better than the 0.796 of the

BDT (Table 6.4) However, upon moving to the full PS the image-only performance

drops below the BDT. The score distribution and the associated ROC curve for the

image-only model are shown in Figure 6.17. This drop is possibly due to the more

stringent pT cuts removing gluon jets which have a softer pT spectrum.
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Figure 6.17: VBF/ggH discrimination performance for the image-only model with the
full VBF preselection. The score distribution for VBF (red) and ggH (blue)
is shown on the left. The associated ROC curve measuring VBF/ggH
discrimination power is shown on the right.

The full model includes the same set of kinematic variables as the BDT and has

been trained with the tuned costs over all of the backgrounds (stage two of the train-

ing). This model brings a substantial improvement in the VBF/ggH discrimination,

especially with the full preselection. For the other background samples the perfor-

mance is similar with the DCNN AUROCs being slightly higher. This information is

summarised in Table 6.4 and the score distribution with the associated ROC curves

are shown in Figure 6.18.

In conclusion, the DCNN-based model demonstrates a strong improvement over

the BDT-based model in VBF/ggH discrimination and the learned features alone are

strongly discriminating.
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Full PS Loose PS

Sample BDT DCNN BDT DCNN

ggH 0.778 0.837 0.796 0.845

QCD 0.901 0.907 0.892 0.885

�-jet 0.868 0.870 0.869 0.882

�� 0.884 0.891 0.870 0.881

All 0.895 0.901 0.883 0.884

Table 6.4: Comparison table for BDT/DCNN AUROCs with full and loose preselections
broken down by background sample.
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Figure 6.18: Discrimination performance for all of the background samples with the full
model and the full VBF preselection. Score distributions (left) are shown as
stacked histograms for the SM background, a blue line histogram for ggH,
and a red line histogram for VBF. Associated ROC curves (left) are shown
in the same colours for each sample, with all background together shown in
black.

6.7.4 Categorisation and Tag Performance

To determine how the higher model performance of the DCNN translates into the VBF

tagging and categorisation itself, the category boundaries are re-evaluated. This uses

the same procedure as before for the boundary optimisation itself and the number of

categories. The optimal number of categories for the DCNN-based VBF tag is found

to be three. Approximate studies of the three VBF categories, their boundaries and

their estimated performance is shown in Figure 6.19 and Table 6.5.

The proper measurement of these category performances requires the full machin-

ery of the signal and background modelling, and the final fits of Chapter 7. These

studies show a reduction in the ggH contamination of VBF 0, but the other cate-

gories are approximately unchanged. This demonstrates the challenge of improving
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Category Score Range �e↵ AMS BggH/(S + BggH) S/(S + B)

VBF 0 (0.856, 1.000] 1.5 2.13 0.10 0.37

VBF 1 (0.704, 0.856] 2.0 1.15 0.27 0.11

VBF 2 (0.495, 0.704] 2.0 0.60 0.46 0.04

Table 6.5: Estimated category attributes for the DCNN-based VBF tag.
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Figure 6.19: Mass distributions and fits for the three optimised DCNN-based tag
categories.

ggH discrimination as it needs to be traded o↵ against overall background rejection

performance, and as a corollary; statistical significance.

6.7.5 Model Interpretation

A collection of techniques can be used to determine what sort of features the convolu-

tional section is learning to form. This section will explore three: feature visualisation

with synthetic images generated to maximally activate part of the network, real im-

ages that achieve the same thing, and direct inspection of the frontmost filters (filters

of the spread layer).

Feature Visualisation

The technique of feature visualisation uses optimisation and di↵erentiability of neural

networks to interpret their inner workings, particularly CNNs [86]. A famous example

of this process is inceptionism and the so-called ‘deep dream’ images [87]. The net-

work is in e↵ect forced to ‘hallucinate’ by creating a feedback loop between its visual

input and neural activations that iteratively alters the visual input to maximise the

activation.

The approach used in this thesis is based on SGD with momentum and no regu-

larisation or other conditions. The process begins with an initial image tensor, xijk,
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with small random positive values, and a momentum tensor, vijk, of the same size

initialised to zero. The loss in this case will be a single output neuron ol. The image

is then altered as follows:

vijk = µvijk + ↵
@ol

@xijk

xijk = xijk + vijk

(6.11)

where the partial derivative has been computed with backpropagation, and ↵ is the

learning rate. Before each iteration negative pixel values are set to zero and the image

is normalised as described in the image formulation section. This continues for 1000

iterations with the learning rate reduced by a factor of 0.75 every 100 iterations. The

end results of this for the VBF and ggH logits of the image only network are shown

in Figure 6.20.

Figure 6.20: Generated images for feature visualisation which maximally activate the
output neuron: VBF (top) and ggH (bottom).
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These images show a clear di↵erence in each class, and some interesting physical

features. It should be noted that these will be somewhat unphysical, as the optimisa-

tion will try to pack as much evidence for the target class in to the image as possible

with no constraints on what is sensible. For example, if one takes a network such

as inception and optimises for the dog class, it will produce an image of a carpet of

deformed dogs as the optimisation tries to include as many dog features as possible.

The VBF image shows clear signs of colour connection to the proton remnant

where the jet constituents are pulled in opposite �⌘ directions. This causes asymme-

try in the jet image where there are more non-zero pixels on one half and the leading

and subleading images have this asymmetry in opposite directions. They are also

more collimated with more pT deposition in the jet core as expected for quark jets.

This can be observed as more colour at the centre of the image and more empty pix-

els around the outside. The dominance of neutral pT deposition (green) and discrete

rings of multiplicity (blue) indicate that the model is forming features that detect jets

in the forward regions by detector coarseness and lack of charge.

In the ggH image, a more circular structure can be seen with a larger proportion of

charged deposition over a larger area. This is in line with the expectation that gluon

jets are less collimated and higher multiplicity. The rings line up with the gaps in the

coarse forward structure, this suggests that the model is learning to detect whether

the jets are in the tracker acceptance.

Sets of images generated to show feature construction in di↵erent parts of the

convolutional section can be found in Appendix C.

Pseudorapidity Inference

The structure of the feature visualisation images suggest that the model has learned to

reconstruct a coarse estimate of the pseudorapidity properties of the jet: whether the

jets are in the coarse forward regions or not. To test this hypothesis the second step of

the training is run again with the leading and subleading jet pseudorapidities included

in the engineered features. If there is no change in performance this would suggest

that the model already has access to this information via the image input. This

training shows no performance increase with the AUROCs of the two models being

almost identical. This leads us to conclude that the network does indeed reconstruct

this information, or the information is not useful.

However, training a single BDT model with the pseudorapidities shows a small

performance increase in discrimination power. This suggests that only a small portion

of the DCNN performance gain comes from inferring the pseudorapidity.
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Maximally-Activating Images

To get a better idea of what sort of physically sensible features are favoured by the

network, and whether the conclusions about the feature visualisation are true, real

event images are inspected that are maximally activating. A selection is applied on

the leading jet so that it is in the tracker acceptance and the charged-pT channel is

present. The most activating image without this requirement shows two very forward

jets with coarse structure. The two maximally activating images for the VBF and

ggH classes are shown in Figure 6.21.

Figure 6.21: Real images that maximally activate the class logits. The top image is the
maximally-activating VBF image, and the bottom is the
maximally-activating ggH image.

The max-activating images for ggH and VBF resemble the feature visualisations

with SGD. The VBF image is collimated, with a spread in one �⌘ direction in the

leading jet and the opposite in the subleading. This e↵ect is easier to see in the leading

jet, but is also present in the subleading image where there is one bright pixel to one
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side. The e↵ect of the coarse forward structure of CMS on the subleading jet image

can also be observed. The ggH is far higher in multiplicity, much less collimated and

more circular. This is in line with the image from feature visualisation.

Front Filters and Low-level Features

The lowest-level features that the network constructs are at the spread layer. This

layer can be interpreted as forming local arrangements of pixels into more spread-out

non-sparse feature maps. These convolution filters are shown in Figure 6.22.

Lead Jet Charged pT Lead Jet Neutral pT Lead Jet Multiplicity

Sublead Jet Charged pT Sublead Jet Neutral pT Sublead Jet Multiplicity

Figure 6.22: Front filters of the network grouped by the six image channels. Positive
weight values are darker red and more negative values are darker blue,
weights close to zero are shown as white. The vertical direction in the filters
corresponds to ' and the horizontal direction corresponds to �R.

The front filters have a coarse and noisy appearance. This would be a sign of

inappropriate training conditions in a CNN with normal images: either the learning

rate is too high or the model requires regularisation. In this case the noisiness could

be intrinsic to the dijet image problem because the images are sparse and are less

smooth. Training without event weights, with large batches and a lower learning rate

produced smoother filters and better generalisation performance.

The filters themselves detect radial and angular bands of pixels, this corresponds to

horizontal and vertical stripes in the filter. There are also filters that detect separated
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stripes of pixels these are two positive (red) stripes with a negative stripe (blue) in

between. This behaves like an edge detection filter. Finally, there are filters where

there is a single large-value weight o↵set from the centre of the filter. This appears

to perform a small angular or radial shift in the jet image. Examples are shown in

Figure 6.23.

Sublead Jet Multiplicity Filter 15 Sublead Jet Charged pT Filter 9

Lead Jet Neutral pT Filter 6 Lead Jet Neutral pT Filter 3

Lead Jet Neutral pT Filter 4 Lead Jet Charged pT Filter 0

Figure 6.23: The e↵ect of selected filters. Each subplot shows the e↵ect of the filter and
subsequent neural activation (left), the original preprocessed image (centre)
and the filter (right). Clockwise starting from top left the filters are: radial
gap detector, angular band smearer, general smearer, angular smear with
gap in front, radial and angular smearer with shifts, double shifter.

Conclusion

It has been shown that the network is capable of constructing sophisticated and phys-

ically relevant features of dijet substructure from the input images. It is learning to

infer information about jet pseudorapidity, but this accounts for only a small portion

of the performance increase. Furthermore, these studies show that feature visualisa-

tion and max-activation images are powerful techniques. These can be applied to any

part of the network to extract information about its behaviour.



112 Chapter 6. Event Categorisation

6.7.6 Validation

The DCNN-based model may be particularly vulnerable to disagreement between

simulation and data. The underlying QCD processes of the underlying event, parton

showering, and hadronization are challenging to model and this may adversely a↵ect

the application of this model to real data. To determine whether this is the case

the model is validated in the Z ! e+e� control region and with QCD modelling

variations described previously, with special attention given to how the performance

of the image-only model changes. The Z ! e+e� data/simulation disagreement will

be investigated with a specially trained network.

Z ! e+e� Control Region

First the simulation/data agreement of the network score is evaluated for both the

image-only and the full DCNNs (Figure 6.24).
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Figure 6.24: Z ! e+e� validation plots for the output scores of the image-only network
(left) and the full network (right).

Generally, the agreement is good with a very slight shift in the image-only model.

This suggests that the real data is slightly more VBF-like. The systematics bands

are slightly larger in the image-only model and at the lower end of the full DCNN

score compared to the combined BDT. This di↵erence may not be significant as it is

located in a score region that is rejected by the DCNN VBF tag.

To determine how the distribution of images di↵ers between simulation and data,

an images-only DCNN is trained to discriminate between them. This network will

have the same structure, regularisation, loss and training process as step one of the

VBF DCNN model. Once trained the performance of this network is evaluated and the

features it has built are analysed to learn about the image distribution disagreement.
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The performance of the data/simulation discriminant is shown in Figure 6.25.
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Figure 6.25: Z ! e+e� Simulation/data discriminant performance. The score
distribution for the simulation and data classes is shown on the left, and the
associated ROC curve is shown on the right.

The AUROC suggests that there is indeed detectable disagreement in the image

distributions. However, the network score validation’s level of agreement suggests

that although there is disagreement the network is fairly robust to it.

To extract the areas of disagreement between the image datasets from the network

the same interpretation techniques described previously are used. First feature visu-

alisation is used to produce images that contain a collection of discriminating features

(Figure 6.26).

The di↵erence is most pronounced in the leading jet where there is more charged pT

deposition in simulation and a di↵erent structure. The simulation is more rounded

and ggH-like, the data has radial bands of neutral pT along the �⌘, �� axes and

appears more VBF-like. The subleading jet appears to be similar in shape between

the two classes but with more charged pT in the simulation and a more collimated

jet in data. Overall the data class visualisation has more VBF-like qualities and the

simulation is more ggH-like.

To verify the feature visualisation, maximally activating images are inspected

for the most simulation-like and most data-like events according to the model (Fig-

ure 6.27).

These selected samples have a class purity of approximately 85%, and they re-

semble the generated images. The image feature di↵erences extracted with feature

visualisation appear to be physically sensible. The di↵erence in charged-pT deposition

is especially pronounced in these images, but a few other features are apparent. In

the leading jet data-like sample there is a spread along the �� axis that is much less

pronounced in the simulation-like sample. The smooth appearance of the neutral-

pT channel in the data-like subleading jet also suggests that there is more neutral
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Figure 6.26: Sim/Data discriminant feature visualisation. The top dijet image is
optimised for the simulation output neuron, and the bottom is optimised for
the data neuron.

deposition within the tracker acceptance.

QCD Modelling Variations

The model is evaluated over samples that explicitly di↵er in their modelling of QCD

with the same procedure as the BDT-based model. These consist of up and down

variations that should encompass the behaviour of real data. The resulting score

distribution variation and the variations in the ROC curves for both image-only and

the full model are shown in Figure 6.28.

Remarkably, the image-only model is not only robust to these variations but ac-

tually has a higher AUROC and therefore better performance on the QCD varia-

tion samples. This robustness suggests that the learned features are physically well-
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Figure 6.27: Mean images for top and bottom 5% maximally activating events. Score
selection for simulation-like is shown at the top, selection for data-like is at
the bottom.

motivated, as the features found in data should be within these variations. The full

model shows a small degradation in discrimination power, but at a level comparable

to the combined BDT.

6.7.7 Conclusions

Dijet images have been demonstrated to encode useful discriminating features and

that a dense CNN is capable of extracting them. These features are found to be

robust to QCD modelling variations, and the overall response of the model is similar

between simulation and data.

For model development Bayesian optimisation is a powerful technique for navigat-

ing possible hyperparameter choices. The final model is a powerful discriminant, but
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Figure 6.28: Variation in the score distributions and ROC curves with parton shower and
underlying event variation. The top pair corresponds to the image-only
model (step 1 of training) and the bottom plots correspond to the full model
used in the tag.

compromises must be made due to the relationship between VBF/ggH discrimination

and overall signal significance. To approach this tradeo↵ correctly and to tune for

the right choice, the notion of cost sensitivity needs to be introduced during training.

This is the correct way to set the priority between these two aspects of VBF tag

model performance.

The main impact on tag performance is reducing ggH contamination. This sort of

technique will be more useful for targeting high-purity samples of particular processes

rather than enhanced signal significance.

Finally, the common criticism that CNNs are black boxes is shown not to be the

case. There are many techniques available to interpret them and only a few are used

here. Feature visualisation and max-activation images can be used to look inside the

network at single neurons, feature maps or even entire feature volumes to determine

what they are looking for. Furthermore the above techniques can be used to analyse

data/simulation compatibility and isolate features from regions of disagreement.
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Statistical Analysis and

Results

7.1 Introduction

The set of categorised diphoton candidates are subjected to a statistical interpreta-

tion to measure the Higgs boson signal in data and to determine how its properties

compare to SM expectations. This procedure consists of a statistical model that is

fitted simultaneously to the m�� distribution in data for each tag category. Separate

models are constructed and then combined for signal and background that take into

account the contribution of di↵erent categories, production modes and systematic

uncertainties.

This chapter begins by describing the construction of these models and the in-

clusion of the associated systematic uncertainties (following Ref. [8]). After this, the

final fit of the model and the statistical interpretation of the result is described with

emphasis on how the two di↵erent VBF tagging approaches a↵ect the result.

7.2 Statistical Models

7.2.1 Signal Modelling

The signal modelling aims to construct a signal shape for each category using sim-

ulated data samples of the di↵erent Higgs production modes. This is achieved by

constructing many parameterised signal shapes: one for each choice of production

mode, category and whether the vertex has been correctly identified.

Furthermore, the Higgs boson mass mH is not assumed to have a specific value.

A parameterisation of the signal shape in terms of mH is derived from a collection of

117
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samples with di↵erent mH . This is constructed by performing a simultaneous fit over

all of the mass points where the parameters of the signal shape are all polynomials of

mH . The floating parameters of this fit are then the coe�cients of the polynomial.

This approach is used instead of interpolating the parameters as it leads to fewer

parameters per fit and guarantees consistency across mass points.

This procedure is also used to determine relative normalisation of the RV and

WV scenario shapes when they are combined. This is given by the vertex selection

e�ciency derived from simulated data. The value is then treated the same way as the

other shape parameters in the simultaneous mass point fit.

Once constructed, the di↵erent signal shapes from production modes are combined

together to produce the signal model for each category. The production mode shapes

are normalised to their expected signal yield and then summed.

7.2.2 Background Modelling

The background modelling aims to construct a smoothly falling background distri-

bution that takes uncertainty about the choice of functional form into account. This

is achieved with a data-driven approach based on the discrete profiling method [88].

This technique allows for the estimation of this systematic and its propagation to

the final fits as a discrete nuisance parameter, without assumptions about underlying

processes or functional forms.

The candidate functions are expressed as a set of function families, each of these

are expressed as a sequence where we pick a lowest and highest order form to consider.

The maximum order is found via an F-test [89] and the minimum order is found by

requiring a minimal level of goodness-of-fit. The families considered are polynomials

in the Bernstein basis, Laurent series, sums of exponentials, and sums of power laws.

The functions are fitted to the m�� sideband data using twice negative likelihood

(2NLL) minimisation with an additional regularisation term np (number of parame-

ters) to penalise function complexity.

7.3 Systematic Uncertainties

Systematic uncertainties are propagated to the final fits by including nuisance param-

eters primarily in the signal model. The description here is taken from the work in

Ref. [8] unless stated otherwise.

The systematic error in the signal model is handled in one of three main ways via

nuisance parameters that have di↵erent e↵ects on the m�� distribution:

• Shape uncertainties are propagated via nuisance parameters that alter the shape

of the Gaussian signal peak position, width and normalisation;
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• Yield uncertainties are handled by nuisance parameters that scale the m�� dis-

tribution and are subject to a log-normal constraint during the final fit;

• Categorisation uncertainties are implemented as category migration nuisance

parameters which behave in a similar way to yield uncertainties but will re-

duce the yield in other categories simultaneously as the category of interest is

increased.

There is an exception to this scheme with the vertex uncertainty. Here there is a nui-

sance parameter that controls the relative fraction of the RV/WV signal distributions

rather than a↵ecting the shape parameters directly.

An extra systematic uncertainty from choice of background functional form is

propagated to the final fits via the background model as a discrete nuisance parameter.

7.3.1 Theoretical Uncertainties

Uncertainties from QCD theory calculations have their e↵ects modelled in two ways:

uncertainty on the overall yield for a process and uncertainty associated with analysis

category migration. The migration uncertainties are extracted separately by scaling

such that the overall yield is unchanged.

• QCD scale uncertainty: yield uncertainty is parameterised separately for

the renormalisation scale and the factorisation scale. Category migrations as-

sociated with varying these parameters independently and together are also

included.

• PDF uncertainties: There is an uncertainty associated with variation in the

signal yield of each production process, and category migration uncertainties.

The yield uncertainty is calculated using the procedure from PDF4LHC [90] and

the migration uncertainties are computed from the NNPDF3.0 PDF set [91] and

the MC2Hessian [92] procedure.

• Strong force coupling (↵s) uncertainty: evaluated with the same procedure

as the PDF uncertainties.

• Underlying event and parton shower uncertainty: evaluated using simu-

lated data, where the modelling of the underlying event and the parton showers

have been varied (previously described in Subsection 6.6.5). This manifests pri-

marily as variation in the jets of the analysis and is modelled as a category

migration uncertainty. The probability that events move within the categories

of the BDT-based VBF tag, or from this tag to Untagged are found to be 7

and 9%. This was re-evaluated for the DCNN-based VBF tag and found to be

unchanged.

• Gluon fusion contamination in tt̄H tag categories: when the Higgs boson

is produced by ggH it can be produced in association with a number of jets.
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As the number of jets becomes large, the accuracy of theoretical predictions

becomes worse and introduces a systematic uncertainty in ggH contamination

of the jet-based tag categories. This manifests in the tt̄H tags in multiple ways:

• Uncertainty due to limited ggH sample size: only a small quantity

of simulated ggH events are accepted into the tt̄H tag. This introduces a

significant statistical uncertainty on the ggH yield and contributes a 10%

uncertainty.

• Uncertainty due to modelling parton showers: this is estimated

by comparing simulation and data for events whose production is domi-

nated by gluon-fusion-type diagrams (tt̄+jets with semi-leptonic tt̄ decays)

binned by the number of jets. The largest discrepancy is in Njets � 5 which

corresponds to an uncertainty of 35%.

• Uncertainty due to modelling gluon splitting: estimated by calcu-

lating the di↵erence in the ratio �(tt̄bb̄)/�(tt̄jj) for simulation and data.

The fraction of events in simulated ggH with b jets are then scaled by this

di↵erence. This gives a 50% variation in the ggH yield for the tt̄H tags.

• Gluon fusion contamination in tag categories with jets and a high-

pT Higgs boson: how ggH mismodelling manifests in the VBF categories, in

particular:

• Uncertainty due to jet multiplicity mismodelling: two nuisance pa-

rameters due to missing higher-order terms and two more nuisance param-

eters for category migration due to variation in jet multiplicity based on

STWZ [93] and BLPTW [93–95] predictions.

• Uncertainty due to Higgs boson pT mismodelling: two nuisance

parameters associated with migration between two bins in Higgs boson pT ;

from 60 to 120 GeV and above 120 GeV. There is also a third nuisance due

to uncertainty in top quark mass e↵ects. This is negligible for pT less than

150 GeV but increases to 35% at 500 GeV. These impact the highest-score

VBF and Untagged categories where the ggH yield uncertainty is 6-8%.

• Uncertainty in the acceptance of ggH in VBF categories due

to QCD e↵ects: e↵ects from missing higher-order terms are estimated

via variations in the renormalisation and factorisation scales in MCFM

5.8 [96]. Two nuisance parameters are introduced associated with the

overall normalisation of Higgs bosons produced in association with two

jets, and three or more jets. This allows for the impact of jet suppression

arising from how the kinematic variables are used to form the VBF scores

to be propagated to the analysis. The procedure is based on the Stewart-

Tackmann method [97, 98] and the impact on the ggH yield in the VBF
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categories is 8-13%.

• Uncertainty in the H ! �� branching fraction: the uncertainty on the

theoretical prediction of the H ! �� branching fraction is taken from [99] and

is approximately 2%.

The theory uncertainties with the largest impact on measuring signal strengths

and couplings are the H ! �� branching fraction, and the renormalisation and fac-

torisation scale uncertainties from the QCD scale.

7.3.2 Experimental Uncertainties

Uncertainty in the measurement and construction of physics objects at CMS give

rises to associated experimental systematic uncertainties. These a↵ect the shape of

the signal distribution and are propagated through to the final fits via the signal

model.

Photon Energy Measurement Uncertainties

Uncertainties in the photon energy measurement are a particularly important contri-

bution and can a↵ect the signal shape via both the photon energy scale and resolution.

• Energy scale and resolution: uncertainties associated with the photon en-

ergy scale and resolution corrections are estimated with events from the Z !
e+e� control region reconstructed as photons. Data and simulation are com-

pared in eight bins of R9 and |⌘| (high/low-R9, and four |⌘| bins). The uncertain-

ties are quantified separately in four photon classes (EB/EE and high/low-R9)

and are propagated to the categorisation with four scale nuisance parameters

(one per photon class) and eight shape nuisance parameters (one constant and

one stochastic term per photon class) for each event category. This has a 0.15-

0.5% e↵ect on the photon energy, and an e↵ect of 2.5% on the signal strength

modifier.

• Nonlinearity of photon energy: There is potential residual data-simulation

di↵erence in the linearity of the ECAL response with photon energy scale. This

is estimated by studying boosted Z ! e+e� events and has the e↵ect of shifting

the peak position by a small amount per category, constituting a maximum

uncertainty of 0.1% in each category except for the Untagged where it is 0.2%.

The uncertainty is propagated to the final fits as a shape nuisance parameter

that shifts the signal peak position.

• Non-uniformity of light collection: There is a systematic uncertainty asso-

ciated with the modelling of the fraction of scintillation light reaching the ECAL

crystal photodetector as a function of the longitudinal depth of the shower start.

The size of this e↵ect is 0.07% on the photon energy scale.
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• Electromagnetic shower modelling: Mismodelling of electromagnetic show-

ers in GEANT4 introduces a small di↵erence between electrons and photons and

therefore another small uncertainty. It is estimated by comparing the latest

version of shower simulation with a previous one and treating the small di↵er-

ence between them as representing the limit of accurate modelling. This gives

a contribution of 0.05% uncertainty to the photon energy scale.

• Modelling of the material budget: The amount of material between the

interaction point and the ECAL a↵ects the behaviour of photons and electrons.

The modelling of this material is a further source of systematic uncertainty.

This uncertainty is estimated using simulated samples where the material has

been uniformly varied by ±5% to cover the di↵erence in the estimation between

simulation and data. The uncertainty manifests as an e↵ect on the photon

energy scale of 0.24%.

• Shower shape corrections: Finally, there is an uncertainty due to mismod-

elling of shower shapes themselves. This is estimated by comparing between

simulation samples with and without corrections on shower shape variables.

This gives an uncertainty in the photon energy scale of 0.01-0.15% at max-

imum. This is propagated by separate signal shape nuisance parameters for

each photon category.

Additional Experimental Uncertainties

Additional uncertainties that are not directly from the photon measurement arise

from estimations of e�ciencies, scale factors and selection variables. These are varied

and their estimated e↵ects propagated through the analysis chain. They are then

applied as per-category yield and category migration nuisance parameters in the final

fits.

• Trigger e�ciency: uncertainty in the trigger e�ciency estimation is evaluated

with the Z ! e+e� control region and the tag-and-probe technique. This leads

to an impact on the event yields of 0.1% at maximum.

• Photon preselection: the uncertainty of the photon preselection e�ciency is

estimated as the ratio between the e�ciency measured in simulation and data.

This has an impact on event yields of 0.2-0.5% depending on category.

• Photon ID BDT score: Photon energy measurement uncertainties are prop-

agated through the categorisation process to estimate their e↵ect on category

signal yields via the photon ID. The uncertainty is assigned to cover the observed

di↵erence between data and simulation in the Z ! e+e� control region.

• Photon energy resolution estimation: This uncertainty is estimated by

rescaling the energy resolution estimate around its nominal value by ±5% to
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cover all disagreement between data and simulation. This variation is propa-

gated through the categorisation and is implemented as a yield nuisance param-

eter.

• Jet energy scale and smearing corrections: Uncertainties in the correc-

tion of jet energy measurements are propagated through the event categorisation

and are modelled as category migration nuisance parameters. These nuisance

parameters correspond to migration within VBF categories, within VH cate-

gories, within tt̄H categories and from these tags to the Untagged categories.

Jet energy scale corrections correspond to the following migrations:

• 8-11% between VBF categories and 11% from VBF to Untagged;

• 15% from VH to Untagged;

• 5% from tt̄H to Untagged.

The jet energy resolution has a migration e↵ect of at most 3% across all tags

except for VH where it can reach 20%.

• Missing transverse energy: uncertainty in the measurement of Emiss

T
is esti-

mated by varying the pT of reconstructed physics objects entering the calcula-

tion of Emiss

T
for the event. These variations correspond to the momentum scale

and resolution uncertainties of each type of physics object. This corresponds to

a 10-15% migration between Untagged and VH MET and is propagated to the

final fits as a category migration nuisance parameter.

• Pileup jet ID: uncertainty associated with the PUJID in the VBF tags is

analysed using Z ! e+e� events with one jet whose momentum balances the

dielectron in the transverse plane. Data and simulation are compared and the

disagreement is used to estimate VBF category migrations. This e↵ect is found

to be at most 1% and is propagated to the final fits as a category migration

nuisance parameter.

• Lepton isolation and ID: the associated uncertainty is estimated for both

electrons and muons by measuring the di↵erence in e�ciency between simulation

and data and varying an associated scale factor within this di↵erence. This is

measured using the tag-and-probe technique on both Z ! e+e� and Z ! µ+µ�.

The associated variations manifest as yield uncertainties and are at most 1%

for the tt̄H Leptonic category, 1.5% for the WH Leptonic category and 3% for

the ZH Leptonic category. They are propagated to the final fit as category yield

nuisance parameters.

• E�ciency of b-tagging: this uncertainty is evaluated by comparing data

and simulation distributions of the b-tagging discriminant score. The uncer-

tainty has a statistical component associated with the estimation of the relative

amount of light and heavy quark initiated jets and confusion between them.

This uncertainty is propagated in two di↵erent ways due to the di↵erence in
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approach of the tt̄H Hadronic and tt̄H Leptonic tags:

• the hadronic category uses a BDT that receives the b-tagger discriminant

score as an input feature. The associated yield uncertainty is evaluated by

altering the shape of the score in simulation and found to be at most 5%.

• the leptonic category uses a fixed selection on the b-tagger discriminant

score. This uncertainty is evaluated by varying the e�ciency in data and

simulation within their uncertainties and is found to be 2%.

• Vertex finding e�ciency: this uncertainty derives from mismodelling of the

underlying event and disagreement between data and simulation from evaluating

Z ! µ+µ� events. The size of this uncertainty is around 2% and is propagated

to the final fit as a nuisance parameter that changes the relative contribution

of the RV and WV signal shapes.

• Integrated luminosity: this uncertainty is taken from [100] and modelled as

a yield nuisance that a↵ects all processes uniformly. The size of this e↵ect is

2.5%.

• Background modelling: handled by the discrete profiling method and prop-

agated to the final fits as a discrete nuisance that picks di↵erent functional

forms.

The experimental systematic uncertainties with the largest impact on signal strength

and couplings measurements are from the photon shower shape corrections which af-

fects the photon ID and the photon energy resolution estimate, the photon energy

scale and smearing, the jet energy scale and the integrated luminosity.

7.4 Results

Di↵erent measurements are extracted by performing a series of fits to the m�� distri-

butions simultaneously across all event categories under di↵erent constraints. The fits

are carried out in the range 100 < m�� < 180 GeV with a binning of 250 MeV, using

a binned maximum-likelihood fit. The likelihood function to be used is the product

of the individual category likelihoods and has the following form:

L(µc, mH ,~n|m��) =
N�1Y

c=0

(µcSc(mH ,~ns|m��) + Bc(~ns|m��)) , (7.1)

where c enumerates the N -many event categories; Sc is the signal model of category

c; Bc is the background model of category c; mH is the Higgs signal peak position; ~n

are the nuisance parameters of the model with ~ns and ~nb being the nuisance param-

eters of the signal and background models respectively; and µc is the category signal

strength. The signal strengths may be constrained to be the same depending on the
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measurement being performed: a global µ fit constrains them all to the same value

that then floats in the fit, per-process µ fits will allow for di↵erent values between the

production modes, but categories within them will use the same value.

This is maximised by finding the minimum twice negative log-likelihood (2NLL)

of L,

2NLL = �2 ln L(µc, mH ,~n|m��), (7.2)

while taking into account constraints on the parameters.

7.4.1 Best Fit of Model to Data

A maximum-likelihood fit is performed with a single global µ and mH to find their

best fit values. These constitute the central values of a measurement of the global µ

assuming the SM and the associated uncertainty is calculated via a likelihood scan of

an associated test statistic. Example mass fit plots for both BDT and DCNN-based

VBF tags are shown in Figure 7.1. A full set of mass fit plots for BDT-based and

DCNN-based VBF tags can be found in Appendix D.

The expected category yields by production mode contribution are shown in Ta-

ble 7.1 for fits with the BDT-based and DCNN-based VBF tags. A reduction in

contamination from ggH is observed in the DCNN-based VBF tag categories, partic-

ularly in VBF 0 where it has been reduced by around a third from 15.5% to 9.5%.

Downstream VH tags are only slightly a↵ected, and the overall e↵ect on the inclusive

Untagged categories is small.

The e↵ect of using the DCNN-based VBF tag over the BDT-based tag on category

significances is shown in Table 7.2. An increase in overall expected significance of 13%

is observed in the DCNN-based tag.
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Figure 7.1: VBF category mass fits for the BDT-based VBF tag (left) and the
DCNN-based VBF tag (right). Categories are shown in order from the most
stringent to least: VBF 0 at the top to VBF 2 at the bottom.
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S/
p

S + B

VBF tag VBF 0 VBF 1 VBF 2 Total

BDT-based 2.02 1.25 1.35 2.73

DCNN-based 2.44 1.65 0.97 3.10

Table 7.2: VBF tag category expected signal significances comparing the BDT-based
VBF tag to the DCNN-based VBF tag.

The final combined mass plots for both unweighted and weighted by sensitivity

are shown in Figure 7.2. The change to a DCNN-based VBF tag does not have a

significant e↵ect on these plots.
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Figure 7.2: Diphoton mass distribution plots for all categories combined using the
BDT-based VBF tag. The unweighted combined distribution is shown on the
left, and the sensitivity weighted combination is shown on the right.

7.4.2 Signal Strength Likelihood Scans

The test statistic used is the twice-negative delta log-likelihood (2�NLL),

2�NLL = �2 ln L(µ, m̂H,µ,~nµ|m��) + 2 ln L(µ̂, m̂H , n̂|m��), (7.3)

where µ̂, m̂H and n̂ are the best fit values for the signal strength modifier, Higgs mass

and nuisance parameters respectively. The parameters µ, m̂H,µ and ~nµ are the global

signal strength being profiled in the likelihood scan, the Higgs mass allowed to float

for a given value of µ, and the nuisance parameter values also allowed to float.

This procedure is used to measure the global µ, the production mode µ values and

the fermionic versus bosonic production µ values.
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Global Signal Strength Likelihood Scan

In order to calculate the uncertainty associated with the measurement of the global

signal strength, a likelihood scan is performed with a test statistic and profiling in the

value of µ. The contribution of statistical uncertainty is determined by performing the

likelihood scan with the nuisance parameters associated with systematic uncertainties

removed. The systematic contribution is then the di↵erence in quadrature between

these values and the total uncertainty from the full fit. The 2�NLL values of the

global µ likelihood scans are shown in Figure 7.3.
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Figure 7.3: Likelihood scan of the global signal strength modifier µ with a 2�NLL test
statistic for analysis with the BDT-based VBF tag (top) and the
DCNN-based VBF tag (bottom).

The measured value for µ and its associated uncertainties in the BDT-based case
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are found to be µ̂ = 1.18+0.17

�0.14
= 1.18+0.12

�0.11
(stat.)+0.09

�0.07
(syst.)+0.07

�0.06
(theo.). The best fit

value for the Higgs boson mass is found to be m̂H = 125.4±0.3 = 125.4±0.2(stat.)±
0.2(syst.). A precise determination of the systematic e↵ects on the mass value and

therefore a precise determination of the mass itself are beyond the scope of this thesis.

The measured value for µ is found to be larger in the DCNN case with similar-

sized uncertainties: µ̂ = 1.24+0.16

�0.15
= 1.24+0.11

�0.11
(stat.)+0.08

�0.08
(syst.)+0.06

�0.07
(theo.). The best

fit value for the Higgs boson mass is unchanged.

Production Mode Signal Strength Modifiers

Likelihood scans specific to each production mode are carried out in a similar way to

the global case, but with some di↵erences. Instead of a single global µ and likelihood

scan there are four, one for each production mode. For each case the corresponding µ

is profiled and the others are allowed to float in the fit. The results of these likelihood

scans are shown in Figure 7.4.

The DCNN-based VBF tag leads to a change in the VBF measurement from

µVBF = 0.8+0.6

�0.5
to µVBF = 1.5+0.5

�0.5
. The measured signal strength has increased, and

there has been a small reduction in the uncertainty of its measurement. The other

production modes are mostly unchanged except for the ggH and VH which correspond

to tags downstream from VBF.

The same approach is used to extract the ratio of observed cross sections to the

SM expectation as part of the simplified template cross section (STXS) framework

Stage 0 [99]. This scheme is aimed at reducing the impact of theory uncertainties due

to extrapolation to the full phase space from the fiducial region of the analysis. This

imposes a criterion on the Higgs boson rapidity of y < 2.5 and splits the VH into

separate WH, ZH and VH Hadronic categories. The results of measuring these ratios

are shown in Figure 7.5.

The DCNN-based VBF tag has a similar e↵ect in this scheme to the the production

mode signal strengths.

Fermionic Versus Bosonic Production

A measurement of the fermionic versus bosonic signal strength is performed with a

2D likelihood scan. The procedure is similar to the above but with a signal strength

for the bosonic production modes µVBF,VH and the fermionic modes µggH,tt̄H. A

best fit point is found and then a 2�NLL test statistic is evaluated over a 2D space

corresponding to di↵erent values of the two signal strength modifiers. The result with

68% and 95% confidence intervals is shown in Figure 7.6.

The best fit point for the BDT-based case was found to be µggH,tt̄H = 1.19+0.22

�0.18
,

µVBF,VH = 1.21+0.58

�0.51
. The best fit point for the DCNN-based case was found to be
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Figure 7.4: Likelihood scan results of the production mode signal strength modifiers µ
with a 2�NLL test statistic. Analysis with the BDT-based VBF tag is shown
at the top and the DCNN-based variant is at the bottom.

µggH,tt̄H = 1.11+0.20

�0.18
, µVBF,VH = 1.65+0.50

�0.42
. A significant reduction in the uncertainty

of the bosonic production mode µ is observed, along with an increase in its value.

7.4.3 Couplings Measurements

Deviation in the Higgs couplings from the SM expectation are modelled within the

 framework as described in Ref. [101]. These di↵erences are measured with two 2D

likelihood scans: fermionic versus bosonic and photons versus gluons. The  values

not subject to the 2D likelihood scan are fixed at unity. The resulting plots for the

BDT-based and DCNN-based VBF tags are shown in Figure 7.7.



132 Chapter 7. Statistical Analysis and Results

theoσ/procσ
2− 0 2 4 6 8

-2.3
+2.5        5.1 VH hadronic

-0.0
+0.9        0.0 ZH leptonic

-1.3
+1.5        3.0 WH leptonic

-0.7
+0.8        2.0 Htt

-0.5
+0.6        0.8 VBF

-0.18
+0.19      1.02 ggH

 profiledHm

Per process 68% CL

SM Prediction

CMS
γγ→H

TeV)  (13-1  35.9 fb

theoσ/procσ
2− 0 2 4 6 8

-2.4
+2.6        5.3 VH hadronic

-0.0
+0.9        0.0 ZH leptonic

-1.3
+1.5        3.1 WH leptonic

-0.7
+0.8        2.0 Htt

-0.4
+0.5        1.4 VBF

-0.18
+0.21      0.91 ggH

 profiledHm

Per process 68% CL

SM Prediction

CMS
γγ→H

TeV)  (13-1  35.9 fb

Figure 7.5: SM prediction to measured cross section ratios in the STXS Stage 0
framework. Analysis with the BDT-based VBF tag is shown on top and the
DCNN-based variant is on the bottom.

With the BDT-based VBF tag the e↵ective coupling to fermions is measured

to be F = 1.04+0.51

�0.25
and the e↵ective coupling to bosons to be V = 1.08+0.10

�0.08
.

The e↵ective coupling to photons is measured to be � = 1.25+0.16

�0.17
and the e↵ective

coupling to gluons to be g = 0.81+0.17

�0.13
. With the DCNN-based VBF tag the e↵ective

coupling to fermions is measured to be F = 0.85+0.22

�0.17
and the e↵ective coupling to

bosons to be V = 1.06+0.07

�0.07
. The e↵ective coupling to photons is measured to be

� = 1.32+0.14

�0.13
and the e↵ective coupling to gluons to be g = 0.75+0.13

�0.13
.

The DCNN-based case demonstrates a reduction in uncertainty in these measure-

ments, especially for the couplings to bosons.
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Figure 7.6: Two-dimensional likelihood scan of signal strength modifiers for bosonic
(VBF, VH) and fermionic (ggH, tt̄H) production modes. Analysis with the
BDT-based VBF tag is shown on the left and the DCNN-based variant is on
the right.

7.4.4 Conclusions

A collection of measurements have been made comparing the BDT-based and DCNN-

based VBF tags. The initial best fit to all categories shows an increase in expected

signal purity and significance in the VBF production mode. In the likelihood scans

the DCNN is seen to bring improvement to some of the measurements. The greatest

impact is seen in measurements of the VBF signal strength modifier itself, and on mea-

surements of the bosonic signal strength and coupling modifiers. All measurements

are compatible with the SM.
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Figure 7.7: Two-dimensional likelihood scan of  values for bosonic versus fermionic
production modes (left) and e↵ective gluon coupling versus e↵ective photon
coupling (right). The BDT-based VBF tag is shown on the top, and the
DCNN-based tag is shown at the bottom.
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Conclusions

8.1 Summary of Results

Studies of the H ! �� decay have been carried out using both a BDT-based VBF

tag and a DCNN-based VBF tag with 35.9 fb�1 of
p

s = 13TeV data. The Higgs

boson is observed with high significance and measurements made of signal strength

and coupling modifiers. These measurements are summarised in Table 8.1.

Measurement BDT-based VBF DCNN-based VBF

µ (Global) 1.18+0.17

�0.14
1.24+0.16

�0.15

µVBF 0.8+0.6

�0.5
1.5+0.5

�0.5

�VBF

proc
/�VBF

theo
0.8+0.6

�0.5
1.4+0.5

�0.4

µF , µV 1.19+0.22

�0.18
1.21+0.58

�0.51
1.11+0.20

�0.18
1.65+0.50

�0.42

F , V 1.04+0.51

�0.25
1.08+0.10

�0.08
0.85+0.22

�0.17
1.06+0.07

�0.07

� , g 1.25+0.16

�0.17
0.81+0.17

�0.13
1.32+0.14

�0.13
0.746+0.13

�0.13

Table 8.1: Measurement results.

The DCNN-based measurements have demonstrated significant improvement over

the BDT-based approach [8] used since the Higgs boson was discovered [2]. Expected

significance and purity in the VBF tag are improved leading to reduced uncertainty

on the measurements, particularly those a↵ected by the VBF tag. For this to be

achieved, the training had to be split into two steps: one for feature learning from

the jet images, and one for the actual classification problem with the costs defined

appropriately. Furthermore, the unique problems posed by the sparse nature of the jet

images also required particular training conditions. Gradient clipping regularisation

was needed to control large parameter updates early in the training, and an adaptive

135
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optimiser was needed to handle how the sparseness a↵ects the frequency of parameter

updates.

The DCNN learns to construct physically sensible and robust features from corre-

lations in structure between the jets. This was shown by data-simulation validation on

Z ! e+e�, and by evaluating how the network performs over di↵erent modelling vari-

ations. The features themselves were extracted using feature visualisation to produce

maximally-activating images for the class logits (and at other points in the network

in Appendix C). These features were found to correspond to expected properties of

VBF and ggH production, a particular example of this being the distortion of the jets

by colour connection in VBF.

The DCNN-based measurements, along with the validation and interpretation,

demonstrate that the DCNN-based VBF tag is superior and DCNNs have great po-

tential in particle physics analyses. However, this is still a relatively new technology in

the field of particle physics and will need to be studied closely for its precise systematic

e↵ects.

8.2 Future Development

The most immediate future improvement could be the application of a similar DCNN

to VH hadronic signal extraction. This is currently achieved using a set of kinematic

cuts and could be improved with a ML-based approach. When the associated vector

boson decays hadronically there will be structure correlations from colour connection

in the resulting dijet and characteristic charge deposition. These are features a DCNN

could pick up on.

In 2026 the LHC will have been upgraded to the High-luminosity LHC (HL-

LHC) [102] to provide much higher instantaneous luminosity resulting in a substan-

tially larger dataset. This collision environment will pose particular challenges for

the detector hardware and operation, as well as analyses. Pileup will increase to 200

collisions per event and the radiation dose to the detector itself will be markedly in-

creased. This has necessitated the future replacement of the CMS endcap calorimetry

by a high-granularity silicon sampling calorimeter with many readout channels [103].

The di�culty of extracting physics objects in such an environment, and in accurately

reconstructing them from such high-dimensional data, may be areas where deep learn-

ing approaches will prove to be especially important.

There are many avenues to investigate for the development of future ML algo-

rithms and where to apply them. A few possible directions are outlined here: neural

attention, generative adversarial networks (GANs), and ML algorithms more suited

to the natural structure of jets.
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Neural attention [104, 105] inserts a mechanism that allows the network to trans-

form and focus on particular parts of the input depending on what features are present.

This facilitates the construction of long-range dependencies between di↵erent input

regions, for example di↵erent parts of an image. This could be useful in processing jet

images by picking out dependencies between clusters of PF candidates in the jet more

e�ciently. However, given the non-standard behaviour of the polar jet images, the

way the transformations are applied will need to be handled carefully to be compatible

with the periodic boundary condition.

GANs [106] are generative models that attempt to model the underlying data-

generating process P (~x) itself and can achieve remarkable results (Figure 8.1).

Figure 8.1: Fake celebrity faces generated by a progressive GAN [107].

These consist of two competing networks: the generator and discriminator. The

generator makes ‘fake’ examples given a vector in a space, and the discriminator tries

to tell these fake examples from real ones. During training each learns from the other

and once fully trained the generator ideally becomes a realistic generative model, and

the discriminator develops many useful discriminating features.

Both the generator and discriminator may have application in particle physics

analyses. The generator could be used to enhance under-populated simulation samples

to improve cut optimisation or ML model trainings (an example may be found in

Ref. [108]). The discriminator could be used to learn features from data that can

then be used in another training, this was shown to work well in [109]. In a physics

analysis this could be achieved by training a GAN on real data with a CNN as

the discriminator, then using the frozen convolutional layers of the discriminator in

another training over simulation. This would be like the two-step training of the VBF
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DCNN model but with the discriminator features used instead of step one.

Finally, the components and structure of CNNs are geared towards images with

locality and translational invariance in their features that can then be combined hi-

erarchically. Recurrent neural networks (RNNs) make similar assumptions over a

sequence. However, jets are not naturally images or lists. They have a tree structure

where an initial parton gives rise to multiple daughter particles that then fragment

or decay to more daughter particles.

The assumptions in an ML algorithm’s construction determine how it makes pre-

dictions and is referred to as its ‘inductive bias’ [110]. The polar jet image formulation

was a way of representing jets in a way that works with the inductive bias of CNNs,

but it may be better to use an algorithm that is suited to trees or graphs. Examples

of such algorithms are recursive neural networks (Chapter 10 of Ref. [44]) that extend

the sequence processing of RNNs to tree structures, and graph CNNs [111] that have

analogues for convolution and pooling given graph-based input.

8.3 Conclusions

All of the measurements presented in this thesis are compatible with predicted values

for a Standard Model Higgs boson, but there is ample room for deviation within the

uncertainties. These uncertainties will be reduced as the available dataset increases in

size over the Run II era and onwards. As the measurements become less dominated by

statistical uncertainties, systematic uncertainties will become especially important, in

particular contamination of categories such as VBF by ggH. Here the DCNN approach

will be especially useful for constructing high-purity samples when overall significance

is less of a priority.

The fields of Higgs physics and machine learning have now entered a new era

of scale, precision and sophistication. Hopefully BSM signals are hidden within the

uncertainties of our measurements and ML will grant us the power to extract them

as our dataset expands. There is a bright future for both fields with great potential

for collaboration between them and lots of work to be done.
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VBF Tag Plots with Loose

Preselection

�1.0 �0.5 0.0 0.5 1.0

Dijet BDT Score

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
VBF

ggH

QCD BG

�-Jet BG

�-� BG

All BG

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R

at
e

ggH (AUC = 0.808)

QCD BG (AUC = 0.873)

�-Jet BG (AUC = 0.860)

�-� BG (AUC = 0.864)

All (AUC = 0.869)

�1.0 �0.5 0.0 0.5 1.0

Combined BDT Score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 VBF

ggH

QCD BG

�-Jet BG

�-� BG

All BG

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R

at
e

ggH (AUC = 0.800)

QCD BG (AUC = 0.889)

�-Jet BG (AUC = 0.874)

�-� BG (AUC = 0.874)

All (AUC = 0.883)

Figure A.1: Dijet BDT performance and combined BDT performance evaluated with the
loose preselection.
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Figure A.4: Single BDT performance with the loose VBF preselection.
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Figure A.5: Mean images in the loose VBF selection. From top to bottom: VBF, ggH
and SM background processes.
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Appendix B

VBF Tag Z ! e+e�

Validation Plots
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Figure B.1: Z ! e+e� validation plots of pseudorapidity distributions for leading jet in
pT (left) and subleading jet (right).
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Figure B.2: Z ! e+e� validation plots for kinematic features used by the VBF tag.
Clockwise from top left: dijet mass, dijet pseudorapidity gap, subleading jet
pT , minimum �R between either photon and either jet, centrality, and
leading jet pT .
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Figure B.3: Z ! e+e� validation plots for kinematic features used by the VBF tag.
Clockwise from top left: leading photon pT scaled by the diphoton mass,
subleading photon pT scaled by the diphoton mass, azimuthal angular
di↵erence between dijet and diphoton, total diphoton pT scaled by diphoton
mass, diphoton BDT score, and azimuthal angular di↵erence between the
dijet jets.
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Appendix C

Feature Visualisation of

Di↵erent Network Layers

This appendix presents feature visualisation applied to di↵erent parts of the trained

VBF DCNN model’s convolutional section. This is to demonstrate how features are

constructed and combined as one goes deeper into the network starting with the

spread layer. Earlier layers are optimised for the mean over a feature map, later ones

are for a single neuron as the receptive field becomes so large that trying to optimise

them all does not show much structure. The reader is referred to Figure 6.16 for

where the named places are located in the network.

These images are all normalised by dividing by the highest valued pixel in the

dijet image. This will show the relative weighting of features from the leading vs

subleading jet image channels.
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150 Appendix C. Feature Visualisation of Di↵erent Network Layers

Figure C.1: Feature visualisation of the spread layer features. Red is the charged pT
channel, green is the neutral pT channel and blue is the PF candidate
multiplicity channel. This layer only constructs features in individual
channels. Optimisation objective is the mean of the values over a whole
feature map.
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Figure C.2: Feature visualisation of the output of TU1. Here the low level features have
been combined together to compare structure across channels, directly
opposite around the jet axis and between the jets of the dijet. Optimisation
objective is the mean of the values over a whole feature map.
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Figure C.3: Feature visualisation of the output of TU2. Here the features of TU1 are
combined to make more complex features, but they are also reused (this is
facilitated by the skip connections and is a capability of dense CNNs).
Optimisation objective is the mean of the values over a whole feature map.
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Figure C.4: Feature visualisations of individual neuron values after TU3. These
constitute the learned features used in the main discriminant. These images
are optimised to maximally activate a single neuron rather than the mean of
the neurons of one feature map.
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Figure D.1: Mass plots of the tt̄H tags. BDT-based VBF analysis is on the left and
DCNN-based is on the right.
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Figure D.2: VH leptonic tags. BDT-based VBF analysis is on the left and DCNN-based
is on the right.
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Figure D.3: VBF tag categories. BDT-based VBF analysis is on the left and
DCNN-based is on the right.
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Figure D.4: VH MET and VH hadronic tags. BDT-based VBF analysis is on the left and
DCNN-based is on the right.
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Figure D.5: Untagged categories 0 and 1. BDT-based VBF analysis is on the left and
DCNN-based is on the right.
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Figure D.6: Untagged categories 2 and 3. BDT-based VBF analysis is on the left and
DCNN-based is on the right.
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