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Abstract

The theory of Quantum Chromodynamics (QCD) elegantly describes the strong interac-
tion, the origin of nuclear forces, in terms of quarks and gluon degrees of freedom as a
(quantum) non-abelian gauge field theory. However, the emergence of complex phenom-
ena (such as dynamical spontaneous symmetry breaking and color confinement) due to
nonperturbative quantum effects at low energies makes it extremely challenging to explain
the phenomenology of strongly-interacting matter at a quantitative level from the first
principles of QCD in such regime. On the other hand, this low energy regime is precisely
the most relevant to the understanding of nuclear physics, namely, the structure of atomic
nuclei and their interactions, as well as the properties of cold, ultra-dense matter such as
that expected to be found in the interior of Neutron Stars (NS). Indeed, being the final
product of the gravitational collapse of massive stars, NS are the densest known compact
objects in the Universe after black holes. As opposed to the physics of nuclei, which has
been the subject of experiments in heavy-ion colliders and other research facilities, the
matter at the cores of NS is not well understood at all despite the almost 50 years passed
since they were first discovered, and even after a tremendous theoretical effort there are
many aspects of the Equation of State of dense nuclear matter which remain speculative.
It has been only recently that we have gained access to some of the properties of NS
matter with the advent of Gravitational Wave (GW) astronomy. In 2014, the first ob-
servation of a GW from a NS binary merger was announced by the LIGO collaboration.
It is expected that more of such events will be measured in the near future, hence the
description of the nature and properties of dense nuclear matter is of extreme relevance
in current theoretical physics.

In this thesis we aim to provide a unified framework to the study of both nuclear
physics and dense nuclear matter phenomenology from the point of view of the Skyrme
model approach. The principal feature of the Skyrme model, as oposed to other chiral
EFTs, is that the concrete interaction terms in the phenomenological lagrangian are chosen
to precisely allow for stable solitonic configurations (Skyrmions). These are then identified
as baryons, such as protons and neutrons. The model also allows to obtain stable multi-
skyrmion configurations, which can be identified with nucleon bound states, i.e. atomic
nuclei. We review the computation of some well known properties of light nuclei (such as
mass, charge radii and electromagnetic form factors) within a generalized Skyrme model,
and compute other quantities such as the gravitational form factors, the mass and scalar
radii, or beta-decay multipolar matrix elements, for the first time in a soliton approach.

Moreover, by imposing periodic boundary conditions on a finite box, one can obtain
infinite crystalline solutions, called Skyrmion crystals, which we identify with symmetric,
infinite nuclear matter at a finite density in order to find the equation of state for matter
inside Neutron Stars as predicted by the Skyrme model. We also describe the effects of



quantum isospin as a function of density, which allows us to determine the behavior of the
symmetry energy, and study the particle fractions in beta-equilibrated matter, including
the possibility of kaon condensation in dense Skyrmion matter.

Finally, we obtain NS solutions using different Skyrme-based equations of state, and
study their properties under rotation and tidal deformation, which in turn allow us to
compute observable magnitudes that can be accesible with current GW observations.
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Scope, structure and methodology

“Theory will only get you so far”
— E. Lawrence to J.R. Oppenheimer,
in Oppenheimer, by C. Nolan

The main body of this thesis is divided into two parts, each of them subdivided
into two chapters. The common thread between them is the Skyrme model, a nonlinear
(classical) field theory which presents topologically nontrivial solitons, also known as
Skyrmions. The main motivation for this model comes from the necessity of finding a
simple description of the low-energy phenomenology of strongly interacting matter, which
is known to be described at high energies by perturbative QCD. Our major aim in this
thesis is to investigate whether the Skyrme model, in spite of its simplicity, can be applied
to describe strongly interacting matter in a wide range of energy and density scales, from
the properties and interactions of free nucleons to the interior of neutron stars at several
times the nuclear saturation density. Our approach focuses not only on a qualitative
description, but on the quantitative level, trying to obtain valuable predictions that may
be checked against either experimental observations at the laboratory or astrophysical
observations from gravitational wave and multimessenger astrophysical signals. To reach
this goal, there are three important tasks that we have addressed in the thesis:

1. Computation of nuclear physics magnitudes: Since the Skyrme model was first
proposed, most global properties of nucleons and nuclei have been computed, such
as classical binding energies, moments of inertia, mean radii and even form factors
for the simplest cases. In the first part of this thesis we introduce a generalization
of the Skyrme model that includes, apart from the terms originally introduced
by Skyrme in its seminal work, a term that is sextic in derivatives (which may
be thought of as coming from integrating out the w meson, the lightest of vector
mesons). Moreover, we review the process of obtaining classical Skyrmion solutions
and the canonical quantization of their zero modes, neglecting the back-reaction
on the classical solitonic configurations. This semi-classical approximation is called
the rigid rotor approximation. This allows to obtain the quantum ground states of
Skyrmions in order to identify them with nucleon and nuclei quantum states. We
end the first chapter with a discussion of the instanton approximation of Skyrmions,
and how the concept of constrained instantons may help in the search for a semi-
analytical expression that approximates the Skyrmion solution.

In the second chapter of the thesis, we show how to compute many different physical
magnitudes associated to nucleons and nuclei within the Skyrme model approach.
Some of these have already been computed several times in the literature (although
maybe not in the generalised model), while others, like the multipole form factors
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associated to beta decay, the charge densities, the gravitational form factors and
the neutron skin radii, are new to our best knowledge. In order to compute all these
quantities we just assume the rigid rotor approximation, and employ the numerical
solutions obtained in the previous chapter.

On the other hand, before comparing to the experimental values, one needs to fit
the free parameters appearing in the model to some values. There is not a general
consensus on which physical quantity one should fit the parameters to, and the one
that is most often used is, for historical reasons, the one proposed in [ANWS83b],
which fits the energies of the proton and the Delta baryon. The physical adequacy of
such a fit has been put into doubt due to the ultra-relativistic character of the delta
baryon, and also the general idea of fitting the classical energies (or semiclassical,
if one includes corrections using a zero-mode quantization) can be argued against,
since there may be significant contributions to the total energy, coming from the
zero point energy of vibrational modes and other pionic quantum corrections that
are assumed to cancel out when computing binding energies. Therefore, a natural
question, that we address, is wether one can find a better set of magnitudes that one
can fit the parameters to in order to make not only qualitative, but also quantitative
predictions for medium and large nuclei. We also discuss on how the different
physical magnitudes can be affected by the inclusion of the sextic term.

. Computation of the nuclear matter EOS in the high density regime: After study-
ing the properties of light nuclei, in the second part of this thesis we turn our
focus to the classical Skyrmion crystal solutions (also including the sextic term)
for different sizes of the unit cell (or equivalently, different densities). In practice,
we employ the same numerical methods (gradient descent functional minimization),
but slightly modified to account for the periodic boundary conditions. Furthermore,
we have quantized these crystal solutions in order to include the effects of a finite
isospin chemical potential, which becomes relevant for higher densities. Formally,
the quantization of isospin degrees of freedom follows the same lines as for isolated
skyrmions, but charge neutrality requires the introduction of a leptonic background
that neutralizes the system (since the ground state of quantum skyrmion crystals is
electrically charged, as we carefully show in chapter 3). The whole system can then
be identified with npep matter at finite density. The Equation of State (EOS) is
then computed by straightforward application of the thermodynamical definitions
of energy and pressure densities. Finally, we extend our analysis to include the
effects of strangeness (a quantum number related to the presence of a third type
of quark, the strange quark) in order to study the possibility of kaon condensation
at sufficiently high densities. It turns out that the Skyrme model predicts the con-
densation of kaons at a relatively small threshold density, well below the maximum
densities that can be reached inside a neutron star.

. Extraction of signatures of the NS EOS from GW and astrophysical observations
In the last chapter of the thesis, we comment on the previous approaches of study-
ing static Neutron Star (NS) solutions within the Skyrme model, in particular, the
Bogomoln’y-Prasad-Sommerfeld (BPS) submodel, and review the theory of slowly
rotating and tidally deformed neutron stars. The idea is to be able to obtain infor-
mation not only from global observables such as the mass-radius curves, but other



interesting properties that can be extracted from gravitational wave observations,
such as love numbers and quadrupolar moments. As it turns out, there is a set of
universal relations that some of these properties should satisfy, the I-Love-(@) rela-
tions, first proposed by Yagi and Yunes [YY13b] . We show that these relations are
indeed satisfied for Skyrme based NSs, remarkably even in the case in which the
stars are not described in terms of a barotropic equation of state.

We end this document with a summary of the principal results, a comment on the main
conclusions obtained from them and an overview of possible further work directions in
the last section.

Methodology

In general, there is not a standard, step-by-step way of proceeding in theoretical high
energy physics. In the making of this thesis, we have mainly followed the Feynman-
esque interpretation of the scientific method!, as applied to theoretical physics. It starts
by developing a theoretical model, either using an effective theory approach or a more
phenomenological one (by directly “guessing” it, as Feynman would put it), from some
basic principles such as symmetry, unitarity, etc. The model will, in general, include
some free parameters such as coupling constants or mass/energy scales. To make contact
with the real world phenomenomena, one must fit the free parameters of these theoretical
models to a given set of observables. A good choice of relevant observables is important,
as they must be available in terms of experimental data and/or empirical observations,
but also one must be able to calculate them independently from the theoretical model.
These calculations are usually quite involved technically, and sometimes require some kind
of approximation that makes them more tractable. Thus, the number of free parameters
defines the predictive power of a model, as once their values have been fitted to a set
of observables, all other independent observables will be, in principle, determined, their
values coming out as predictions. Of course, the number and accuracy of its predictions
will ultimately determine the validity of such a model (and the approximations that have
been taken) as a good description of the natural phenomena under consideration. We
will devote this thesis to the computation of different observables as predicted by the
Skyrme model, guided by the principles of Quantum Mechanics and General Relativity,
and analyze the accuracy of the predicted values of such observables as compared to the
corresponding empirical data.

The methods employed for analytical computations in this thesis come from standard
nuclear, particle and high energy physics theoretical tools: basic notions of geometry and
topology are necessary to work with the classical Skyrme model, plus the formalism of
canonical quantization, as well as perturbation theory and representation theory tech-
niques for the computation of nuclear form factors. However, as it is often the case in

!During one of his acclaimed lectures, Richard Feynman described the procedure of finding a new law
in theoretical physics in three simple steps: “First, we guess it. [...] Then we compute the consequences
of the guess to see what it would imply, [...] and then we compare those computation results to nature.”,
to which he added “If it disagrees with experiment, it’s wrong. And that simple statement is the key to
science. It doesn’t make a difference how beautiful your guess is. It doesn’t make a difference how smart
you are, who made the guess, or what his name is, if it disagrees with experiment, it’s wrong. That’s all
there is to it.” A video of this lecture is available in YouTube: Feynman on the Scientific Method.
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https://youtu.be/EYPapE-3FRw?si=jSLgj8wptRjRebKZ

modern theoretical physics, a satisfactory answer to the more relevant questions cannot be
found with analytical methods alone, and numerical computations become essential. In
our case, they are necessary for obtaining the classical Skyrmion solutions, which implies
the minimization of a complicated energy functional. In order to solve this problem for
different topological sectors, we developed a C++ code based on a gradient-descent numer-
ical method, described in appendix A. On the other hand, the last chapter of this thesis is
more focused on the methods of General Relativity. In particular, the Einstein equations
are solved (numerically) for static, spherically symmetric spacetimes, for which a simple
Python script that integrates the corresponding system of ODEs is enough. Afterwards,
we apply perturbation theory on top of such a background, which yields a slightly more
complicated set of differential equations that can nevertheless be solved using a similar
script. Details can be found in chapter 4 and appendix B.

In most cases, derivations of the main results are explicitly shown within the text,
or, in the cases when they are not particularly illuminating, have been relegated to an
appendix (with the exception of the first appendix, in which the numerical gradient flow
algorithm is detailed). Some of the analytical computations have been hugely simpli-
fied by the use of symbolic computer algebra software such as Sympy [Meu+17], and
MATHEMATICA® notebooks [Wol23]. Moreover, most figures in this thesis have been ob-
tained using Matplotlib [Hun07] and the native MATHEMATICA® plotting packages. We
have also made use of PGF/TikZ and the TikZ-Feynman KWTEXpackage [EI17].
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Notation and conventions

“FEs misero, sordido, y aun diria tétrico,
someterlo todo al sistema métrico”
— Javier Krahe, Un Burdo Rumor

Units, metric and indices

Even though the results presented in this thesis are of theoretical nature, and have been
obtained either with analytical or computational methods, in most cases we will ultimately
be interested in the comparison between our results and the corresponding experimental
data. It is also a common practice to choose a convenient system of units, to perform
analytical calculations or computer simulations, in order to rewrite the relevant equations
in terms of dimensionless constants. For instance, in the first part of this thesis, it will
be useful to choose the following combinations of constants

B — 37T2f7r’ ke

e Ts = fﬂe’ (1)
as units of energy and length, respectively, where f, = 130 MeV is the pion decay constant,
and e is a dimensionless parameter whose meaning will be clarified in chapter 1.

In order to simplify the analytic expressions, it will probe useful to choose units in
which h = ¢ = 1, so that time and length will have the same dimensions, and so will
mass and energy, with the latter being inverse of the former. However, when compar-
ing the value of physical magnitudes obtained in a simulation with their corresponding
experimentally measured values, dimensionless computational units must be brought to
physical units. Depending on the particular problem at hand, we will either use GeV
and MeV (for nuclear physics) or solar masses (Mg = 1.9885 x 103 kg, for gravitational
physics) as typical dimensions of energy. Similarly, for nuclear physics calculations we
will mainly use the Fermi (1fm = 107'm) as unit of length, while the typical distance
scales in neutron star physics are more easily measured in km.

This choice of units will affect the values of the different fundamental constants that
will be relevant on each case, which must also be taken in the correct units. For example,
we will use, for computing nuclear magnitudes in physical units, the value

he =197.3269804 MeV - fm,

while for computations involving the gravitational field, we will use the following value of

Newton’s constant: "
m
G/ct =1.48 —.
/e 7
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Unless otherwise specified, we will work in a 4 dimensional spacetime, with Lorentzian
metric, for the most part of the thesis. The sign convention for the metric signature will,
however, differ between the two different parts of this thesis. Indeed, in the first part,
we will choose the mostly minus convention, (+ — ——), as it is common in particle
physics. On the other hand, for the last chapter of the thesis we will change it and work
with the mostly plus metric convention, (— + ++), because it is the standard choice in
gravitational physics, and will be most convenient for comparing our results with the
literature. Furthermore, as it is standard in high energy physics literature, we will denote
spacetime indices with greek letters (a, 8, i, v - - - ), which run from 0 to 3, and with latin
indices (4,7, k,l,--+) the components of the associated spatial three-vectors, and, most
generally, the components of any three-vector defined in other spaces (such as the su(2)
Lie algebra). Occasionally, we will refer to vector quantities in higher-dimensional spaces
with capital letter indices. For example, indices representing color degrees of freedom
will be typically denoted by (A,B,---). Some tensorial quantities present both spacetime
and flavor space index structures. In such cases, as a general rule of thumb we will
prefer to use latin indices from the first letters of the alphabet (a,b,¢,---) for denoting
indices associated to flavor space, while the spatial indices will generally be denoted by
latin letters from the middle part of the alphabet (i,7,k,[,---). Additionally, we will
denote a three-vector, without any mention to a specific coordinate basis, by boldfaced
letters, (x, o, etc.). Further, we will make use of the square braket notation for a pair of
antisymmetrized indices of any kind, so that

1
AuBj) = E(AZ-B]- — A;By). (2)

Spin and flavor

Throughout this thesis, the set of three 2 x 2 matrices denoted by o represent the Pauli

matrices,
1 0 1 o (0 —i s (1 0
“‘(—1 0)’ U_<i o)’ 7= \o -1 ) (3)

and we will denote the same numerical matrices also by the letter 7, depending on wether

they act on spin or isospin spaces, respectively. Additionally, we define the Pauli spin

three-vector o = (a!,0?%,0%), and T its analogue in isospin space.

The Pauli matrices represent a basis of generators of the su(2) Lie algebra, so they
are traceless and fulfill:

040y = ieabcgc + 5(11)17 (4)

where €;;;, is the totally anti-symmetric Levi-Civita tensor, €123 = +1, and 1 is the
2 X 2 identity matrix.

When dealing with three quark flavors (or color degrees of freedom) we will also use
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the standard Gell-Mann representation of the su(3) generators,

010 0 — 0 1 0 0
=100, =i 0 0], =10 -10],

000 0 0 O 0 0 0

0 01 00 —2 000
M=loool], x=[00 0], =00 1], (5)

1 00 t 0 0 010

00 O 1 10 0
)\7: 00 —1 s /\8__ 00 0

0 ¢+ 0 V3 00 -2

We will also use the standard representation of the Dirac gamma matrices y* = (7°,~),

"’ = (é _01)7 7 = (—Oai %) ©)

and the pseudoscalar Dirac matrix,

. 0 1
¥ =17y = (1 0). (7)
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List of Abbreviations

Throughout this thesis, we have made use of abbreviations in order to facilitate the reading
of most technical parts to the expert reader, who will most probably be familiar with most
of them. However, we acknowledge that an extensive use of abbreviations may be a source
of confusion for a non-expert reader. Therefore, we present all of them, alphabetically, in
the following list.

ADM Arnowitt-Desser-Misner

ADHM Atiyah-Drinfeld-Hitchin-Manin
BCC Body-Centered Cubic

BCPM Barcelona-Catania-Paris-Madrid
BNL Brookhaven National Laboratory
BPS Bogomoln’y-Prasad-Sommerfeld
BPST Belavin-Polyakov-Schwarz-Tyupkin
DEC Dominant Energy Condition

DU Direct Urca

DVCS Deeply Virtual Compton Scattering
EFT Effective Field Theory

EIC Electron Ion Collider

EMT Energy Momentum Tensor

EOS Equation of State

FCC Face Centered Cubic

FFs Form Factors

FR Finkelstein-Rubinstein

GFFs Gravitational Form Factors

GR General Relativity
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GSM Generalized Skyrme Model

GW Gravitational Waves

ITO Irreducible Tensor Operator
LHC Large Hadron Collider

LIGO Laser Interferometer Gravitational-wave Observatory
NICER. Neutron star Interior Composition ExploreR
NLSM Nonlinear Sigma Model

NS Neutron Star(s)

NST Neutron Skin Thickness

ODEs Ordinary Differential Equations
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QGP Quark Gluon Plasma

RHIC Relativistic Heavy Ion Collider
RME Reduced Matrix Element
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Introduction

“BEs cosa averiguada [..] que no se sabe nada, y que todos son ignorantes, y
aun esto no se sabe de cierto, que a saberse ya se supiera algo; sospéchase.”
— Francisco de Quevedo, El mundo por de dentro

The modern understanding of fundamental interactions in physics is based on two great
theoretical pillars, namely the theory of General Relativity (GR) and the Standard Model
of particle physics. The former is a classical theory which describes the gravitational
interactions in terms of the curvature of spacetime, based in the concept of invariance
under general coordinate transformations. The latter, instead, consists on a complex
quantum field theory that collects our current knowledge of the different pieces that
conform the matter content of the universe, as well as their interactions through the
strong, weak, electromagnetic and Higgs fields.

Within the Standard Model (SM), fundamental interactions are the result of invariance
of the physical laws under local (gauge) symmetries. The complete gauge symmetry group
of the Standard Model is SU(3)c x SU(2)w x U(1)w, i.e. the product of that of Quantum
Chromodynamics (QCD), corresponding to strong interactions, and the symmetry group
of the Glashow-Weinberg-Salam model of electroweak interactions. Each of these gauge
symmetries is associated with a set of bosonic, spin 1 fields that mediate them (one for
each generator of the corresponding group). Therefore, the gauge fields that mediate
the strong (color) interactions are 8 (gluons), whereas in the electroweak sector we have
two electrically charged weak gauge bosons, Wj, one neutral weak boson ZS and the
neutral photon «. In the matter sector, the SM postulates the existence of six flavours of
strongly-interacting, spin 1/2 fermions, the quarks. Additionally, there exists another six
fermionic fields, called leptons, of which three (the electron, muon and 7) are electrically
charged. Leptons do not interact with the color gauge field, but they still can interact
with quarks via the electroweak gauge bosons.

As with the leptons, the quark flavors can be arranged into three pairs (generations)
according to their masses. For example, while the masses of the first generation of quarks,
uw and d, are both smaller than 5 MeV, the next smallest massive quark, the strange quark,
has a mass of ~ 95MeV. Therefore, the particles of higher generations will be unstable,
and tend to decay into their lower-generation analogues, in flavor-changing processes
mediated by the weak bosons. This means that ordinary matter, including all the atoms
that form all the different elements in the universe?, is mainly made up of particles from

2A caveat about this statement concerns the possible existence of Dark Matter, a hypothetical kind
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the first generation, i.e. v and d quarks, electrons and neutrinos.
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Figure 1: A diagram with the particle content currently included in the Standard Model.
Modified from [Burl6].

Notwithstanding the great success of QCD in describing the strong interaction phe-
nomenology at very high energies (such as those achieved at the Large Hadron Col-
lider (LHC)), we are unable to achieve the same level of precision when trying to describe
strong interactions in the low-energy regime, using the full machinery of perturbative
quantum field theory. However, experimentally it is well known that in such regime, the
fundamental fields of QCD become confined into colorless bound states, called HADRONS,
such as the proton and the neutron. Despite being colorless, protons and neutrons (collec-
tively known as NUCLEONS) and other hadrons can interact via the residual strong force
between their color-charged constituents. In particular, due to such residual interaction,
nucleons can bind together to form atomic nuclei.

Indeed, an outstanding problem in modern nuclear physics is to determine the prop-
erties of atomic nuclei as nucleon bound states from the fundamental theory of QCD, as
well as their excitations and decay properties. This is an egregious task, since there are
hundreds of experimentally observed NUCLIDES (bound states with a definite number of
protons and neutrons), corresponding to the isotopes of the more than a hundred different
elements known to date. Most of them are not stable, but radioactive, and decay either
via nuclear fission or weak-mediated reactions (see fig. 2 for a chart of known nuclides
and their measured half-life).

of matter whose presence in the universe can be inferred due to its gravitational effects at cosmological
scales. The SM does not include such matter, as no direct detection of dark matter particles has been
produced up to date, so one can safely ignore it for practical purposes when concerned with the physics
of low energy particle interactions.
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Therefore, a satisfactory description of nuclear phenomenology should be able to in-
clude also the processes due to the other forces in the Standard Model, i.e. nuclear
transitions due to the electromagnetic and weak forces. The simplest example of the
latter is the § decay of the neutron, mediated by the charged W~ boson.
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Figure 2: Chart of stability of known nuclides, being N the neutron number and Z the
proton number, colored by half life. Taken from [Ben09].

Low energy QCD and chiral effective theories

Mathematically, QCD is a non-abelian gauge theory in which the most fundamental de-
grees of freedom are carried by the quark and gluon fields, and very compactly expressed
in terms of the QCD Lagrangian

Zaocp = ¥(x) (i Dy — M )ip(x) — %F:VF;‘”. (8)
It describes a set of Ny = 6 quark flavors (up, down, strange, charm, top, and bottom) as
massive, spin 1/2 fields that transform in the fundamental representation of the SU(3)¢
(color) gauge group. In other words, quarks carry color charge, that can be of three
different types (with the corresponding anti-type). The color force is mediated by 8 gluon
gauge fields (one for each generator of the gauge group), which, as opposed to the photon in
the electromagnetic force, do carry color charge on their own. This means that gluons can
interact between them, a characteristic trait of nonabelian gauge theories with profound
implications in their particle spectrum. Indeed, the gluonic self-interaction implies that,
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Figure 3: Meson octet of the approximate SU(3) flavor symmetry.

as opposed to regular electromagnetism, the renormalized coupling constant of QCD
decreases with the energy scale. This means that, while at large energies quarks and
gluons barely interact with each other (a phenomenon usually referred to as asymptotic
freedom), at energies lower than a certain energy scale Agep ~ 200 MeV?, the coupling
constant grows arbitrarily, giving rise to what is known as COLOR CONFINEMENT. Due to
such phenomenon, quarks are never observed outside the bound states they compose, the
hadrons. Being colorless states, hadrons can only appear in the singlet representation of
SU(3)¢, which may be achieved by combining a quark and an antiquark to form MESONS
(3®3 = 1@ 8), or three quarks to form BARYONS (3 ®3®3 = 1 3G 8 G 8 @ 10)%
Experimentally, both baryons and mesons are found to be arranged in “multiplets” of
approximately the same masses, which points towards the existence of an underlying
approximate symmetry of the QCD Lagrangian (see eg the pseudo-scalar meson octet
in fig. 3). Historically, this idea lead Gell-Mann and Ne’eman to propose the eightfold
way model, in which the basic unit is an eight-member multiplet (octet), with mesons
and baryons belonging either to one octet or multiplets that could be made form them.
Later, Gell-Mann and Zweig introduced the concepts of quarks and flavor, and derived
the eightfold way model in terms of a simple SU(3) symmetry between quarks flavors.
Indeed, in the CHIRAL LIMIT M — 0, the symmetry group of the QCD Lagrangian is
given by [DGH23]:

gauge (local) flavor (global)
— Is N\ ~N
SUB)e x SUN;)L x SUN)ax U(L)y x U(1)a (9)
I ) hiral T3 ial
color chira aryon axia

The vector symmetry U(1)y is an exact symmetry of the QCD Lagrangian, and thus
it has an associated Noether charge, the baryon number B. Quarks (antiquarks) carry
B = 3(—3), so hadrons are split up into baryons (B = 1) and mesons (B = 0). Atomic
nuclei are particles with B > 1, which are not seen as fundamental, but as bound states
of individual baryons. On the other hand, while the axial U(1) 4 symmetry is exact in the
classical theory, it is broken in the quantum theory due to the axial anomaly [DGH23].

Finally, even in the chiral limit, the chiral subgroup of the flavor symmetry group is
spontaneously broken to its diagonal subgroup SU(Ny)p+r, at low energies, and a quark

condensate forms the physical vacuum of the flavor sector. By Goldstone’s theorem, there

3The specific definition and its particular value depends on the renormalization scheme.

4Color singlets may also appear as combination of two or more gluon fields to form glueballs, or higher
combinatons of quarks such as tetraquarks, pentaquarks, etc. These states are, however, barely relevant
for the study of low energy nuclear physics processes due to their high masses.
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must be N7 —1 massless, Nambu-Goldstone bosonic fields (one for each broken generator),
formed by colorless, bound states of quarks. Such states are interpreted as oscillations
around the quark condensate vacuum, and identified with the (pseudoscalar) mesons, as
they are the lightest of hadrons, their small mass coming only from the fact that the chiral
symmetry is explicitly broken by the quark mass term.

Therefore, the lightest degrees of freedom in the SM correspond to the only massless
gauge boson, i.e. the photon, the (almost massless) pseudo-Nambu-Goldstone bosons
associated to spontaneous chiral symmetry breaking, i.e. the mesons, and the leptons.
Of these, the only non-fundamental particles are the mesons, and, as argued, trying to
deduce their properties and interactions directly in terms of quark and gluon interac-
tions is tremendously complicated. An alternative route to describe the dynamics of
an underlying, (known or unknown) quantum field theory such as QCD in terms of the
interactions between light degrees of freedom is presented by the Effective Field The-
ory (EFT) framework, in which only the knowledge of the relevant degrees of freedom
(and the symmetries that their interactions should preserve) is needed to construct an
effective Lagrangian, valid up to a certain energy scale.

Chiral effective theories

Adopting the EFT philosophy allows to impose strong constraints on the allowed interac-
tion terms in any effective Lagrangian involving the lowest energy excitations of QCD, the
pseudoscalar mesons, as the Goldstone bosons of the approximate chiral symmetry based
on symmetry arguments alone. Such EFTs are usually called CHIRAL EFFECTIVE THE-
ORIES, in which Goldstone bosons are parametrized via the so-called coset construction
[Pic20]. Indeed, for a general spontaneous symmetry breaking of a global symmetry group
G into the subgroup H, a number N = dim(G) —dim(H ) of Goldstone bosons will be gen-
erated, which we can collect into a scalar field of N components, ¢ = (¢*(z),- -+, ¢ (x)).
The action of G over ¢ will be given by some mapping

F,:GxRY —RY
(9:9) — @& =Fy()
which satisfies the group composition law F(¢') = F (Fy(¢)) = Fy4(®), and ¢ = F.(¢),
with e € G the identity element. Then, after Spontaneous Symmetry Breaking (SSB), a

choice of vacuum ¢, is made. Since the vacuum manifold is invariant under the unbroken
subgroup, we must have ¢g = Fp,(¢pg) for all h € H, i.e.

® = Fy(¢o) = Fyn(¢o), (11)

so the Nambu Goldstone fields can be identified with the elements of the coset space G/H.
If we now choose a group representative £ € G for each (left) coset equivalence class gH
(or equivalently, for each field configuration ¢), the action of G over them is

(@) — g&(@) = &()h(g, @), (12)

hence, in general, one needs a compensating transformation by hf(g, @) to get back to the
chosen coset representative after acting with any group element.
In the case of chiral symmetry of Ny flavors, the SSB pattern is

SU(Nf)LXSU(Nf)R—>SU(Nf)L+R (13)

(10)
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so that under a gauge transformation by g = (g1, gr), each coset representative (£1 (), Er())
will transform as

(&L, €r) = (9rér, grER)NY (g, D). (14)

One can take advantage of the fact that the compensating transformation is the same in
both right and left coset representatives to define the following parametrization,

Ulp(z)] = &r€l = exp(ig”(z)T*) (15)

where we have choosen the representative such that £ = £ = u = exp(i¢®(x)T*/2), and
T, represents the generators of the broken subgroup. With this parametrization, chiral

symmetry transformations act linearly on the chiral field: U N grU gz, but nonlinearly
on the mesonic fields ¢q, a =1,--- N = N7 — 1.

Although the construction of an EFT for the mesonic fields as Goldstone bosons of
chiral symmetry can be systematically addressed, the inclusion of higher energy states
such as baryons is a more difficult task, as they are genuinely non-perturbative states.
Indeed, in the chiral limit, one should naively expect that the absence of a mass scale in
the Lagrangian implies that all states should be massless. However, the spontaneous chiral
symmetry breaking generates a nonzero quark bilinear vacuum expectation value (vev),
which in turn translates into a dynamically generated mass term for baryons of order ~
1 GeV. Hence, the spontaneous breaking of chiral symmetry, which is a purely dynamical
effect induced by the (nonperturbative) strong gluonic interactions, is responsible for
the principal mass generation mechanism of baryons. This is the main reason why the
computation of baryon properties from the first principles of the full Standard Model is
extremely difficult, and only have been possible for the lightest of them through powerful
computational techniques such as LATTICE QCD, in which space-time is discretized into
a lattice of points, and the equations of QCD are reformulated in terms of these lattice
points [Rot12]. See Sec. 17 of [Wor+22] for a technical review, and Sec. 15 of the same
reference for a state of the art review of hadron spectroscopy predictions from lattice
QCD.

Due to the complicated nature of such calculations, usually phenomenological models
are employed to describe baryons and nuclear interactions instead. In some of these
models, nucleon fields are explicitly included in the effective lagrangian, describing their
(residual) strong interactions with mesons as force carriers, whilst other models describe
the baryons and nuclei as topological solitons, i.e. semi-classical, topologically nontrivial
extended field configurations. This thesis will be mainly devoted to one of such models,
namely, the Skyrme model [Sky61] in which baryons (and heavier nuclei) are understood
as topological solitons of a nonlinear field theory of mesons, which corresponds to a
chiral EFT for low-energy QCD in the large N, (Number of colours) expansion [Wit83a].
Before introducing the model in chapter 1, let us briefly review the topological aspects of
nonlinear field theories and how the concept of topological solitons emerges from them.

Non-linear field theory, topology and solitons

Consider a nonlinear scalar field theory, in which a scalar field ¢ is defined on a d + 1 di-
mensional spacetime M with topology R x X, X being a smooth Riemannian submanifold
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equipped with a metric g, so that we can write the metric of M as
ds® = dt* — g;;da'da’. (16)

The field ¢ = ¢(t,x) takes values in a Riemannian target manifold Y, so that each field
configuration can be seen as a map

d:RxX — Y (17)
(t,x) — o(t,x),

In general, one defines a local coordinate system such that ¢(t,x) = (¢1(t,x), -+, dn(t, %)),
with n = dim Y. Many important kinds of nonlinear scalar field theories fall within the
category of the so-called Nonlinear Sigma Model (NLSM), which is described by an action
functional of the form:

Slg) = = /M ha(6)0,6° (2)0" " () d**o, (18)

2

where hgp, is the Riemannian metric of Y, whose components are in general nontrivial
functions of the fields and encode the (generically non-polynomial) interactions of these.
It transforms as a symmetric 2-tensor on Y, such that the action is invariant under
arbitrary reparametrizations ¢ — ¢'(¢) of the fields. Further symmetry properties of
the NLSM are related to the isometries of the target manifold ¥ and hence depend on
the specific model. If the target manifold Y turns to be a simple submanifold of a higher
dimensonal Euclidean space, the corresponding nonlinear theory can be written as a linear
field theory in which the fields are subject to a nonlinear constraint [MS04].

The concept of homotopy

Topology is the branch of mathematics that focuses on identifying which of the properties
of spaces are invariant under any continuous transformation, or homeomorphism. Loosely
speaking, a manifold is said to be topologically non-trivial when any of such properties
is not equivalent to that of the trivial (flat) space of the same dimension. As for a given
nonlinear field theory, whether or not the target manifold Y is topologically non-trivial
will have direct consequences in the phenomenology and spectrum of allowed states, both
in its classical and quantum versions. Indeed, at any given instant of time ¢, the field
configuration can be seen as a map

O(to,x) = ¢y, - X — Y, (19)

and, if ¢ is continuous in both space and time, there will be a continuous deformation
between the field configuration at t, and at any other instant in time, given by the
corresponding Hamiltonian evolution. We say that two maps ¢, and ¢, related by a
continuous transformation (homotopy) are homotopic, and define the HOMOTOPY CLASS
of a map ¢, as the class of equivalence defined by all mappings that are homotopic to it.

The homotopy class of ¢y, (as a map between the manifolds X and Y') will be, by def-
inition, unchanged in time. Thus, in general, we may see ¢, as an element of the space of
continuous maps Maps(X — Y'), which is generally disconnected, each connected compo-
nent corresponding to a different homotopy class of maps. In particular, any property that
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does not depend on the specific map ¢y, but only on its homotopy class will be conserved
in time. This kind of conserved magnitudes are called TOPOLOGICAL INVARIANTS.

The number of homotopy classes of maps between two manifolds X and Y depends
on the topology of the specific manifolds. In the case in which the base manifold is the
n—dimensional sphere, the number of homotopy classes of mappings from S™ to Y is given
by the n—th HOMOTOPY GROUP of Y, denoted by m,(Y).

Topological degree

In general, different solitonic configurations corresponding to different topological sectors
(i.e. homotopy equivalence classes) will be characterized by the associated topological
invariants. In particular, for any two compact, oriented manifolds X,Y of the same
dimension, dimY = dim X = d, the TOPOLOGICAL DEGREE (or Brouwer degree) of a
differentiable map W : X +— Y is defined as

deg U — Voll(Y) /X T(Q) €N, (20)

where () is a volume form on Y, i.e.

/ Q = Vol(Y), (21)

and its pullback to X by W, U*(Q), defines a volume form on X.
In terms of local coordinates, if Q = w(y®)dy* A --- A dy? and

v: X — Y

T 22)
then
U™ (Q) :w(zﬂ“(:v))gTﬁdx“l Ao A gx—ﬁdm“d = w(y*(x)) det %d%l A ANdat) =
=w (9 (1)) Jy(w)dz" A~ - A da?,
(23)

where Jy(x) is the Jacobian of U at x.

The topological degree defined as (20) is independent of the choice of €2, integer-valued
(deg ¥ € Z) and invariant under homotopy transformations. This means that its value
is the same for any other map U € Maps;y (X — Y), i.e. in the same homotopy class
as U. The independence on the choice of volume form can be seen by taking a different
volume form Q on Y, with the same normalization as €. Since both Q and Q are closed
d— forms, they may differ only by an exact d—form A, i.e. Q = Q + A. Therefore,
T*(Q) = T*(Q) + T*(A), but ¥*(A) is an exact d—form on X, which integrates to zero.

Also, the homotopy invariant property of the topological degree comes from the fact
that is an integer, thus it can not change under continuous deformations of ¥. One can

see that deg W € Z by proving the following result:

deg ¥ = ngn [jq;(l'(i))}? (24)

i=1
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where (V) € X are the pre-images of an arbitrary point of the target manifold y, € Y
under ¥, i.e. W(z®¥) = go,7 = 1,---,n. Note that deg ¥ does not depend on the
choice of yo. To prove this, take a normalized volume form €2 and let us deform it
into one concentrated in a small neighborhood of 3y, € Y (but still normalized), i
Q— Q@ (y —yo)dy* A+ - Ady?. Therefore, from the properties of the d—dimensional
delta function:

" n (25)
-3 s [Jw“’)] / 0w = o Nda Ao N da =3 sen [Ta()].
=1 i=1

The topological degree is therefore an integer that represents the number of times the
target manifold Y “wraps” around the base manifold X under the mapping of .

6 v

NIBZEANS

Figure 4: Example of topological degree for a map ¥ between 1-dimensional manifolds
(1-spheres), also known as winding number, since it counts the number of times the first
circle “winds” into the second due to W.

7

Topological Solitons

In a nonlinear field theory, a minimal energy configuration (classically stable configura-
tion) in which the energy density is smooth and localized (or concentrated) at some finite
region of space is called a SOLITON. These stable field configurations are called TOPO-
LOGICAL SOLITONS if their stability can be understood by topological arguments (for
example, they represent field configurations which are homotopically inequivalent to the
vacuum). The existence of different homotopy classes (i.e. a nontrivial homotopy group
of the target manifold) is the basis for the stability of topological solitons.

In order to find topological soliton solutions for a given field theory, it is important
to investigate whether that particular theory presents the required topological structure.
Indeed, let us consider a scalar field theory defined in flat space, namely, X = R? with no
further boundary conditions imposed. If the theory is linear, any field configuration ¢(x)
can be deformed by the homotopy (1 — 7)¢, with 7 € [0, 1], so that every configuration
is homotopic to the trivial one, ¢ = 0. Hence, linear fields with no constraints are
topologically trivial in flat space. For nonlinear fields, field configurations are mappings
from R? to Y, and, since R? is contractible to a point, the only topological invariant is the
component of Y where the field takes its value, i.e. the field configurations are clasified
by m(Y), namely, the connected components of Y.
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Hence, it turns out that classical field theories in flat space require both some form of
nonlinear interaction and some nontrivial boundary conditions for the field configurations
in order to present topological solitons. Note that, while these properties are required,
they do not imply at all the existence of (stable) topological solitons in a given theory.

Let us now focus on field configurations with localized, finite energy density, i.e. con-
figurations whose energy density decays rapidly as |x| — oo. This requirement is equiva-
lent to imposing some boundary conditions on the field configurations, which affect their
topological classification. Indeed, consider a multiplet of n scalar fields ¢ = (¢!, -+, ¢").
For time independent configurations, the total energy will be given by the static energy
functional:

B¢ = 5 [ (ha(@)00" (06" (2) + V(9. 09)] d's = [ (@) a's.  (26)

Assuming that this energy takes its minimum value on a submanifold V' C Y (the vacuum
manifold of the theory), any configuration ¢, with localized energy density must take
values on V' at spatial infinity. Also, we assume that ¢y has FINITE ENERGY, so the
field must tend to a constant value yo € V at infinity, independent of direction (to
avoid divergent gradient energy).® This boundary condition is equivalent to a topological
compactification R? — S% where S = R?U{oo} is homeomorphic to the d dimensional
sphere. Therefore, these field configurations define maps:

¢:8" —Y. (27)

Thus, the topological character of the configuration ¢(x) is determined by the homotopy
class of the map ¢, which is an element of the (d)-th homotopy group of the target
manifold, 74(Y") [MS04]. Any soliton configuration will be characterized by the topological
degree of the corresponding mapping ¢. As it is a topological invariant, the topological
degree can be associated to a conserved charge of the soliton.

In a chiral effective theory, in which mesons are parametrized as coordinates in the
chiral coset space, finite energy solitons in 3 4+ 1 dimensions are allowed, since the third
homotopy group of such space is nontrivial:

- SU(Nf)LXSU(Nf)R
’ SU(NY)diag

) — m(SU(2)) = Z. (28)

Solitons in these type of theories are usually called SKYRMIONS, after Tony R. Skyrme,
who proposed them for the first time as models for baryons even before QCD was devel-
oped [Sky61]. Hence, the associated topological charge of a Skyrmion is identified with
the baryon number. We will postpone the discussion of the model originally developed by
Skyrme, as well as the properties of its solitonic solutions (Skyrmions) to the first section
of chapter 1.

In modern theoretical physics, solitonic solutions can be found in a very wide range
of different models and theories. The topologically nontrivial, particle-like solutions first
discussed by Skyrme aroused general interest on the study of solitonic solutions in other
nonlinear models, and in the mid seventies many different solutions were found. 't Hooft

5Note that this is not necessary the case in 141 dimensional theories, since the spatial infinity consists
of two disconnected points
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[t H74] and Polyakov [Pol74] discussed magnetic monopoles, Nielsen and Olesen found
string-like solutions [NO73], and Zeldovich et al. [ZKO74] studied domain walls.

Even though they are best understood as extended solutions of a classical field the-
ory, after the discovery of INSTANTONS by Polyakov, Belavin et al. [Bel+75] and their
implications [t H76] it became clear that extended classical solutions are also important
to compute processes in quantum field theory. This idea triggered a very fruitful relation
between topology and physics, which led to many important developments in the next
decades, such as the discovery of index theorems (and the subsequent geometrical under-
standing of quantum anomalies [AGS85]), or the invention of topological quantum field
theory [Wit88].

Subsequently, many researchers found applications of topological solitons in other
areas of physics. In the context of cosmology, the possibility of formation of differ-
ent TOPOLOGICAL DEFECTS such as cosmic strings, monopoles or domain walls after
a symmetry-breaking phase transition from theories of grand unification in the early uni-
verse was proposed by Kibble [Kib76]. The formation of such defects was found to yield
specific imprints in the cosmic microwave background radiation during subsequent years.
Although most of these models were eventually ruled out by observations in favor of infla-
tionary models as candidates to explain the formation of structures in the universe, others,
such as cosmic strings are still interesting [JBR23]. Moreover, a cosmological network of
cosmic strings sources a background of Gravitational Waves (GW) in a very wide range
of frequencies, which could be observed in the near future with Earth and space-based
gravitational wave interferometers [BOS18; Auc+23].

On the other hand, topological solitons are ubiquitous in condensed matter physics.
Some examples are vortices in superconductors [Abr57], two-dimensional skyrmion-like
defects [Miith+09] and domain walls in magnetic materials [Hub75], and ferroelectrics
[TCAO1; Nah+15]. Indeed, topology plays an essential role in current condensed matter
research, with the study of TOPOLOGICALLY ORDERED states [Wen90], characterized by
the existence of topologically-protected, gapless surface states, and their classification in
terms of the symmetries of the associated Hamiltonian [Chi416]. Examples of such states
are the fractional quantum Hall states [Wen93| and other strongly correlated quantum
liquid states, as well as topological insulators or superconductors [Sch-+08].

Nuclear matter and Neutron stars

The phases of QCD matter

The terms QCD matter or strong-interaction matter are used to broadly refer to matter
governed by QCD in its various forms. In spite of the apparent simplicity of the QCD
Lagrangian (8), the theory of strong interactions presents a very rich phase structure at
finite temperatures and densities, with a plethora of phase transitions often characterized
by the breaking (or restoration) of some symmetry.

Due to quark confinement, at low energies strongly interacting matter appears only in
the form of colorless states, i.e. hadrons and their bound states, the nucleons and nuclei.
However, the asympotic freedom of QCD allows for a different phase of matter, with
quasi-free quarks and gluons, at sufficiently high energies (or, equivalently, temperatures).
This new phase of strongly interacting matter is called the Quark Gluon Plasma (QGP)
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[Shu09], and can be experimentally probed in heavy ion collision experiments, produced
in research facilities such as LHC at CERN, and the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) [Gyu04; KMR17]. These experiments
allowed to create and study the properties of QGP, which can be described as a nearly
perfect fluid made of quarks and gluons that, however, remains strongly coupled. These
experiments are able to generate conditions as they are expected to have been present
in our universe microseconds after the Big Bang, hence are relevant to cosmology. A
profound study of this phase of QCD matter is, however, very complicated in this kind of
experiments, since the QGP that is formed during the collission of heavy ions is far from
equilibrium, and only survives for a very short time. Therefore, much of our present-day
knowledge about hot QCD matter at vanishing baryon chemical potential is obtained
from lattice QCD studies. The transition from the hadronic (confined) phase to the QGP
is called the DECONFINEMENT transition, which is actually believed to be a crossover
between the two phases at a temperature at which the mean scale of momentum transfer
is of order of the characteristic QCD scale Agcp ~ 200 MeV, ie. T ~ 102 K. When
strong-interaction matter becomes deconfined, quark and gluons are not bounded to form
colorless states anymore, and the chiral condensate “melts”, resulting in the restoration
of the spontaneously-broken chiral symmetry, which is often called CHIRAL TRANSITION.

On the other hand, it is expected that deconfinement (and chiral symmetry restora-
tion) could also happen for much smaller temperatures, but sufficiently high densities.
Indeed, at asymptotically large densities, the strong interaction becomes sufficiently weak
due to asymptotic freedom, and one can study QCD at finite density perturbatively. In
this case, calculations have shown that the ground state of quarks at sufficiently small
temperature presents a Cooper pair instability, i.e. a condensate of quark pairs will become
the ground state. Since a pair of quarks cannot form a color singlet, the condensation of
quark pairs spontaneously breaks the local SU(3)s color gauge invariance, in the same
fashion as how the gauge symmetry associated to electromagnetism is broken in standard
superconductivity, producing a sort of “Meissner effect” for gluons. Such a new phase
of QCD matter is called COLOR-SUPERCONDUCTING PHASE [Alf+-08]. Moreover, the
quarks forming a Cooper pair condensate in a color-superconducting phase, as opposed
to electrons, possess color, flavor and spin degrees of freedom. As a consequence, there
will be various configurations in which two qarks can pair, resulting into different color-
superconducting phases, associated to the different color/flavor/spin index structure of
the corresponding Cooper pairs [RW00)].

At lower baryon densities, up to approximately twice the NUCLEAR SATURATION
(baryon number) density ng ~ 0.16 fm™® (or equivalently the saturation mass density
po ~ 2.7 x 10"g/cm?), strong-interaction matter in the hadronic phase can be very
successfully described by perturbative methods in the framework of chiral effective field
theory. Beyond these baryon densities, however, the exploration of the QCD phase dia-
gram becomes very challenging and our knowledge about this region is rather especulative.
The main reason is that current collider experiments cannot probe such high densities,
and lattice simulations become limited by the so-called sign problem [Goy+17]. In lat-
tice QCD simulations, Monte Carlo methods are typically used to sample the space of
possible configurations of the system. The sign problem arises when simulating systems
at finite density, where the partition function of the system becomes complex due to the
presence of a non-zero chemical potential. This leads to an oscillatory sign in the in-
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Figure 5: Schematic nuclear matter phase diagram

tegrand, making the Monte Carlo sampling difficult. This problem makes it extremely
challenging or even impossible to obtain accurate results from lattice QCD simulations
at sufficiently high densities, and we must resort to other theoretical approaches, the
most common ones being those based either on perturbative methods for chiral effective
field theories [DHW21], relativistic mean field theories (such as quantum hadro-dynamics
[SW97]), many-body quantum montecarlo simulations [Car+15; Tew+16], or holographic
methods [Jar22; Hoy+16].

The discussion above suggests that there are two fundamental parameters which de-
scribe the phase diagram of pure QCD matter at equilibrium: the temperature 7" and
the baryon number density ng (or, equivalently, the associated chemical potential up).
However, this is not the full picture, since a realistic description of matter should include
the rest of interactions in the SM, ie. the electroweak sector. Therefore, realistic nuclear
matter at equilibium is not only in thermodynamical, but also in chemical (electroweak)
equilibrium. Hence, it is the equilibrium under weak processes (such as [ decay or elec-
tron capture) which precisely dictates the amount of particles of each nature at each point
in the T'— up plane. As these processes do not preserve flavor quantum numbers, the
QCD phase diagram should be extended by including each of the different chemical po-
tentials associated to each quark flavor. In practice, it is enough to consider the 1ISOSPIN
CHEMICAL POTENTIAL, p7, which is related to the difference in number densities between
protons and neutrons (or, more generally, u and d quarks). Thus, a complete phase dia-
gram of nuclear matter at equilibrium sould be thought of as a two-dimensional surface
embedded into a three-dimensional space labelled by T, up and ;% A sketch based on
our current knowledge of such space is presented in fig. 5. In the region in which the
isospin chemical potential dominates over the other two parameters, additional, exotic
phases of matter have been proposed in which electrically charged mesons may conden-

6We leave out other parameters that are also relevant to the physics of neutron stars, such as the
external magnetic field. QCD matter in the presence of a magnetic field does also present interesting
phenomenology, such as the chiral soliton lattice [SS08].
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sate in a spontaneous symmetry breaking scenario [KT01; Man19], in order to relieve the
neutron degeneracy pressure. While the study of QCD matter at extreme temperatures
is crucial to understand the conditions of matter in the early universe, matter at ultra-
high densities (of up to several times that of nuclei) only occurs in the cores of extremely
compact stars, the NEUTRON STARS.

Neutron stars

The concept of a Neutron Star (NS) i.e. a stellar object made only by ultra-degenerate
neutrons, was proposed by Baade and Zwicky shortly after the neutron was discovered
by Chadwick. (Although L. D. Landau proposed the idea of a stellar object with nuclear
density even before the neutron was discovered). However, they remained as a theoretical
object for almost 30 years, until Hewish, Bell et al. [Hew+68] first identified a NS as a
radio PULSAR (pulsating star) in 1967. Since then, around two thousand other neutron
stars have been identified, either isolated or in a binary system, the latter usually in the
form of an z-ray pulsar. The estimated total number of neutron stars in our galaxy is of
the order of 108 [RDH21].

NS are the final product of the gravitational collapse of progenitor stars with masses
8 < M/M, < 12, Lighter stars result in the formation of white dwarfs, while with
increasing mass the formation of black holes becomes increasingly likely. Neutron stars
are the remnants of core-collapse SUPERNOVA (type II) explosions: At the end of a massive
star’s life, the “nuclear fuel” is used up until it cannot sustain the gravitational pressure
anymore, leading to a gravitational collapse of the core, which generates an outward
travelling shock wave [Bet90]. This supernova explosion expels the outer layers into space
and leaves behind a proto-neutron star. The proto-neutron star is initially hot with
temperatures up to 10 MeV, and radii of more than 20km. Within the first seconds of
its generation, the star cools down by neutrino emission , and electron-capture processes
(inverse beta decay) due to the high degeneracy of electrons lower the proton-neutron ratio
[Pon+99]. During this process, the star shrinks to its final size, until beta equilibrium
is reached. After a timescale of 100 s, the neutron star is cooled to temperatures much
smaller than the associated Fermi temperature of the degenerate matter it contains, so
temperature effects are not relevant for the description of neutron stars.

As the core of the star collapses, its rotation rate increases due to conservation of
angular momentum. Therefore, newly formed NS can reach extreme spinning rates, and
rotate at up to several hundred times per second. Some neutron stars emit beams of
electromagnetic radiation that make them detectable as pulsars. Their magnetic fields
are between 10® and 10 times stronger than Earth’s magnetic field [PMG09).

Apart from their extreme magnetic fields and rotation frequencies, NS are the densest
objects in our universe, surpassed only by black holes. The typical radii of such objects are
in the range 10 — 14 km, while the typical masses are of the order of our Suns mass, i.e.,
M ~ 1.4Mg. This can give an idea of the mean density of these stars, which can reach
more than five times that of nuclear saturation. A NS is bound by gravitation, while
the neutron degeneracy pressure as well as repulsive forces from nuclear interactions,
i.e., strong interactions, stabilize the star and prevent it from contracting further. The
requirement of local charge neutrality and p-decay equilibrium implies that the star is
composed of mostly neutron-rich nuclear matter with only a small fraction of protons and
electrons, i.e. matter inside a NS presents a high isospin asymmetry.
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Atmosphere: (~ 1cm)
/ H, He, Fe---

Outer crust: (< 0.5km)
Tons surrounded by an electron gas

Inner crust (~ 0.5 — 1km):
Lattice of (ionized) heavy nuclei and free
degenerate electrons. Nuclear pasta phases.

| | Outer core (~ 2 — 5km):
(superfluid ?) neutrons, (superconducting ?)
protons, electrons and muons (npey matter)

Inner core (~ 5 — 10km):

Exotic matter at ultra high densities. Me-
son condensates, strange matter (Hyperons),
color-superconducting phases, deconfined
quark matter

Figure 6: The general structure of a Neutron Star

Therefore, the relevant region of the QCD phase diagram for NS is precisely that of
(almost) zero T', but high pp and u; (see fig. 5), what makes these objects one of our
most valuable sources of information for determining nuclear properties in this region.

The internal structure of the NS can be described in terms of layers. The outermost
layer consists of nuclei forming a lattice, thus giving rise to a solid crust with a thickness
of 0.5 km [CHO8]. The nuclei are surrounded by a degenerate electron gas and become
increasingly more neutron-rich deeper into the crust because of the increasing density. A
liquid of free neutrons starts to form in the inner part of the crust. Eventually, the lattice
composed of nuclei vanishes and the nuclei disintegrate into homogeneous neutron-rich
matter, marking the beginning of the outer core consisting of superfluid neutrons and of
a small fraction of superconducting protons. The central densities in the inner region of
the core are conjectured to be from several up to ten times the nuclear saturation density.
Such high densities might give rise to strong-interaction matter in various forms, and novel
phases of dense baryonic matter are expected to occur in the inner core of NS, containing
additional particle species such as A isobar resonances [Gle85; DLP14; Dra+14; Cai+15;
LSW18], hyperons [Gle85], or pion or kaon condensates [HSS75; CNS77; KN88; GS99;
PBGO00]. However, as argued, the precise phase structure of cold, strongly interacting
matter at both finite baryon and isospin chemical potential is still very speculative, and
there have been theoretical proposals of even more exotic scenarios, where a transition
to deconfined, color superconducting quark matter takes place inside the core [HPS93;
BL99; Ann+20], or a new state of matter in which both hadronic and quark degrees of
freedom coexist, the so-called quarkionic matter [MP07; MR19]. Studies of the dynamical
features of compact stars, such as the occurrence of phase transitions during mergers or
the cooling rate of proto-neutron stars may produce complementary data, as they may
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strongly depend on the specific microscopic degrees of freedom as well as on the EOS.
Therefore, one of the principal challenges of current astrophysical research is to ob-
tain information about the EOS of ultra-dense matter from neutron star observations. In
particular, apart from their masses and radii, other interesting observable properties of
NS are their quadrupole moments, spin angular velocity (angular momentum), and de-
formability against tidal forces—which is encoded in the so-called Love numbers [Hin08;
PPL10]. All these properties can be constrained by their imprints into the waveform of a
gravitational wave signal emitted by an inspiraling binary neutron star system. Indeed,
binary NS systems are one of the most promising sources of GW within the detection range
for already-operating second generation observatories, such as Advanced LIGO [Aas+15],
Advanced VIRGO [HH18; Abb+18], or KAGRA [Aku+19], and future third generation
ones such as the Einstein Telescope [Mag+20], the Cosmic Explorer [Rei+19] or LISA
[Ama+17]. The observation of GW emitted during the coalescence of the stars in such
systems—especially in the last part of the merging, in which the stars are subject to
large tidal deformations due to the extremely strong gravitational fields involved—will
shed light onto the Equation of State EOS of matter at very high densities, well beyond
the nuclear saturation point. A particularly interesting property of compact stars is the
apparently universal relation between the moment of inertia, the Love numbers and the
quadrupole moment (I-Love-Q relations) of such stars. These I-Love-Q relations, firstly
proposed by K. Yagi and N. Yunes in [YY13b], when applied to NS, allow to break the
degeneracy between the quadrupole moment and the NS spins in the gravitational wave-
forms of inspiraling NS binaries. Therefore, a much more precise determination of the
(dimensionless) averaged spin can be reached in such measurements [YY13a].
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The Physics of Light Nuclei






CHAPTER 1

Articles partially reproduced in this chapter: [GHH23; Gar22]. See permissions.

Light nuclei as topological solitons

“It seems this whole subject is a monument of austere beauty... covered with
minus signs, like bird droppings”
— John Baez, on Classical Mechanics

The Skyrme model and its generalizations

The Skyrme model [Sky61] is a phenomenological, effective-field-theoretic model of inter-
acting Goldstone bosons originally proposed to describe strongly interacting matter in a
low energy regime. In this model, the fundamental degrees of freedom are a set of four
scalar fields subject to a constraint, which are more conveniently parametrized in terms of
an SU(2)-valued field. The resulting three degrees of freedom can be identified with the pi-
ons in a nonlinearly-realized chiral effective theory, much like other EFT-based approaches
to low-energy QCD, such as chiral perturbation theory. Moreover, baryons, nucleons and
nuclei, whose existence can not be inferred from QCD directly by perturbative methods,
naturally appear within the Skyrme model as (topological) solitonic configurations of the
underlying bosonic degrees of freedom, and whose existence is allowed by the topological
properties of the SU(2) group manifold, as explained in the introduction.

Although it was first proposed by Tony H. Skyrme in the sixties, it did not cause much
interest, as other alternative explanations for the structure of baryons in terms of con-
stituent particles (quarks) were also developed at the same time, which in turn led to the
establishment of the current fundamental theory of strong interactions, QCD. However,
twenty years later, it was shown by E. Witten that Skyrmions could be interpreted as a
description of baryons in the large N, limit of QCD. Such observation triggered a period
of extraordinarily high activity during the next couple of decades, in which many proper-
ties of nucleons [ANWS83b] and nuclei [BC86; WSH86; Bat+09; LM14; HKM17; NS18a;
BH18] were reproduced using this model, tipically within a 30% accuracy. Furthermore,
different generalizations of the original model proposed by Skyrme have been also pro-
posed, in order to reduce the typically quite large binding energies of Skyrmions, which
translates into unphysically large binding energies of atomic nuclei. The first addition was
the pion mass term, which explicitly breaks chiral symmetry to its diagonal subgroup.
Further generalizations include the addition of new, physically motivated terms, e.g., the
so-called sextic term [Jac+85; ASW10a], generalized potentials [GHS15; Gud16] or new
degrees of freedom, e.g., vector mesons [NS18a; Mei+86; MZ86; Mar91; ASW10a; Sut10]
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In the last years, there has been significant progress in the application of the Skyrme
model to the description of atomic nuclei. The first source of this development is the
use of the vibrational quantization. Here the Hilbert state is built not only on the zero
modes, as in the standard rigid rotor quantization [ANW83a], but also the lightest mas-
sive deformations are take into account. This approach elevated the Skyrme model to
a quantitative tool for the understanding of excitation bands of light nuclei [Bat+09;
LM14; HKM17; Man22]. In addition, it has very recently been shown how the spin-orbit
interaction leading to a phenomenologically consistent nucleon-nucleon force emerges in
the Skyrme model [HH20]. These results have contributed to establish the Skyrme model
approach as a well-motivated proposal for the description of nuclear matter.

The Generalized Skyrme Model (GSM) that we will consider is given by the following
Lagrangian density,

Lk = L+ L+ L+ L=
2 ma /7
= L b (L L) - VB T T 1), (L)

where U € SU(2) contains the fundamental mesonic degrees of freedom, parametrized as
the coordinates of the SU(2) group element

U=o0l+in,1, =197, ¢%=(0,m), To=(—il,7), (1.2)

with 7% (a = 1,2, 3) being the Pauli matrices. L, = U'9,U are the components of the
associated left-invariant Maurer-Cartan form, 1 is the 2 x 2 identity matrix, and B* is

the topological current,
oo

Bt =

Tv{L,L,L,}. (1.3)

472
Note that B%d3z is a three-form proportional to the pull-back (under the map (1.2))
of the volume form on the target space S3, i.e.

1
BOdS.’E = 2—71_2U*(d93), (14)

so that, by the definition of the topological degree of a map [MS04], the integral

1 .
B= / B'd*z = i / e9F Te{L; L, L }yd*z. (1.5)
m

will be integer-valued. The Skyrme model thus presents topological solitons (Skyrmions),
whose topological charge (1.5) is identified with the baryon number.

Although only the first two terms (namely, the quadratic and quartic terms in L)
in (1.1) were originally considered by Skyrme [Sky61], the other two terms have been
subsequently included in order to achieve a better agreement with nuclear phenomenology.
Indeed, the potential term explicitly breaks chiral symmetry and provides a mass term
for the pions. On the other hand, the sextic term in L,, first proposed in [Jac+85] (see
also [AN84]), can be seen as an effective point-like interaction that describes the repulsive
exchange of omega vector mesons, which becomes relevant at sufficiently high densities.
Such a term has recently proven to be crucial for an accurate description of the high
density equation of state of neutron stars, allowing to reach sufficiently high maximum
masses and sound velocities above the conformal limit [Ada+20; Ada+23].
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1.1. The Skyrme model and its generalizations

Obtaining classical Skyrmions

As occurs with most nonlinear field theories in three dimensions, analytical expressions
for the topologically nontrivial solutions to the equations of motion of the Skyrme model
have not been found, and even for the simplest case one needs to resort to numerical
methods. In this thesis, we will be interested in obtaining static solutions of the Skyrme
field, and for numerical purposes we adopt the usual Skyrme units of energy and length,

B - 3m? f,r’ 1

Ty = —
e s fW(?’

(1.6)

unless otherwise specified. The static energy functional in these units becomes

2
241 E :/d3x %) Tr{1 - U}

L) - iy s e (0 4 (

= /d% [(0i¢0)? + (000005 — 0;050;00)” + C6 (€aprsPadidpdadDsds)” + co(1 — o),
(1.7)

where €,4,5 is the totally antisymmetric Levi-Civita tensor with €y23 = 1 and we have
defined cg = 2)\2f2e* and ¢y = 2m2 /(fre)?.

Thus, (static) classical solutions minimize the functional (1.7), subject to the vacuum
boundary conditions. To compute such solutions numerically, one starts with an ansatz
for the fields that belongs to the same homotopy class of the wanted solution, and then
applies a gradient-descent-based algorithm (see appendix A), which smoothly transforms
the ansatz into the true solution. It is well known that the field configuration space
of the Skyrme model presents local minima and becomes very complicated in the large
baryon charge sectors, so the choice of a good initial ansatz is crucial in order to achieve
the convergence to the wanted, global minimum on each topological sector. As usual,
symmetry arguments can be a good guiding principle to find acceptable ansatze at a
given topological sector.

The full symmetry group of the massless Skyrme Lagrangian is given by the direct
product of the Poincaré and chiral groups. However, we are interested in solutions that
minimize the energy functional (measured on a given reference frame). The internal
symmetry group of such functional is the same as the Lagrangian, but the Poincaré
symmetry is broken to the Euclidean subgroup corresponding to spatial rotations and
translations, E3 = SO(3) x R3. Thus, the symmetry group of the energy functional is

G = B3 x SU(2), x SU(2)g ~ E5 X SO(4)chirar- (1.8)
The action of an element of such group on the Skyrme field is given by
U(x) = gLU(Rs - x + a)gh (1.9)

where a € R?, Rg € SO(3) represents the spatial rotations and g;/r € SU(2).,5 are the
left and right-handed chiral transformations, respectively.

Moreover, the presence of nontrivial boundary conditions imposed on the relevant field
configurations may further reduce their symmetry. Indeed, in the case of finite energy
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|x|—00

field configurations a boundary condition of the form U(x) —— 1 must be imposed (i.e.
the Skyrme field must decay to its vacuum value far from the center of the soliton). Such
boundary condition not only allows us to classify the field configurations into different
topological sectors labeled by their homotopy class within the third homotopy group of
the target space m3(SU(2)) = Z, but also reduces the symmetry of such configurations
since the vacuum is only preserved under the subgroup G = E5 x diag[SU(2), x SU(2)R] =~
Es x SU(2)y, i.e. transformations of the form (1.9) with g, = gr = g € SU(2);. The
remaining internal symmetry group is called the ISOSPIN GROUP, since it corresponds to
the isospin degrees of freedom when the solitons (Skyrmions) are identified with baryons
and nucleons of low-energy QCD and nuclear physics.

A further reduction of the symmetry group G may occur on individual configurations
minimizing the energy functional for each topological sector. For instance, the B = 1
Skyrmion does present the full group G as a symmetry of its energy density isosurfaces,
whereas the spatial rotations are broken to O(2) = SO(2) x Zs for the B = 2 Skyrmion,
which presents a toroidal shape. As B increases, the symmetry of the configurations
minimizing the static energy becomes more complicated, and for B > 3 it is given by
a point group, the B = 3 Skyrmion presenting tetrahedral symmetry, the B = 4 cubic
symmetry and so on.

It is clear then that a good initial ansatz will present the same point symmetry than
the true solution. By examining the symmetries of low baryon charge Skyrmions, and their
symmilarity to monopole solutions, Houghton, Manton and Sutcliffe proposed the RATIO-
NAL MAP approximation, [HMS98|, in which the angular profile of a B = N Skyrmion
configuration is described in terms of a map between 2-spheres,

R(z) = p(2) (1.10)

with z the coordinate of the Riemann sphere, and p(z), ¢(z) two polynomials, at least one
of them of degree N (the other can be of lower degree). A given rational map of degree
N defines then a Skyrmion field of the same degree via

U(x)=U(r,z) =explif(r)n(R(2)) - 1], (1.11)

where
n(R(2)) = %\RP@ Re(R),2Tm(R), 1 — | R?) (1.12)

is the unit vector obtained via the stereographic projection of the image of the Riemann
sphere under the rational map R, and f(r) is just a radial profile that can be obtained
by minimizing the corresponding one-dimensional problem.

The rational map idea makes it easier to construct a numerical ansatz in a given
topological sector and with a given point symmetry. In our computations, we construct a
numerical ansatz based on the rational maps proposed in [MMWO07] for each topological
sector up to B = 8, and allow this initial configuration to relax to the true minimizer via
the accelerated gradient descent algorithm described in appendix A. We remark that this
is an increasingly difficult task for values of the topological charge B 2 8, not only due
to the increase of the solution’s mean radius, which requires a numerical simulation on a
lattice with an increasing number of points, but also because of the flatness of the field
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1.2. Skyrmion quantization and light nuclei spectra

configuration landscape, which in general presents multiple local minima with very similar
energies but different symmetries and shapes, as recently shown by Gudnason and Halcrow
[GH22]. This fact points towards the failure of the rigid quantization approximation—in
which quantum effects do not modify the classical shape of the Skyrmions—for higher
baryon charges in general. We have, nevertheless, constructed also solutions with large
baryon charge and cubic symmetry, namely, the B = 32 = 4 x 23 and B = 108 = 4 x 33
Skyrmions, which are expected to not be affected by spin nor isospin quantum effects in
their ground state, and are considered to be the minimum energy configurations due to
their high degree of symmetry. These solutions are illustrated in fig. 1.1a (1 < B < 8)
and fig. 1.1 (B = 32,108) where energy density iso-surfaces are plotted. For B = 8, we
consider two energy-degenerate solutions® with different symmetries.

Skyrmion quantization and light nuclei spectra

Nucleons and nuclei are described within the Skyrme model as classical solitonic config-
urations through the identification of the Skyrmion topological charge and the baryon
number of nuclear states. However, other quantum numbers such as the spin and isospin
of quantum nuclear states are not described at the classical level. Hence, a quantization of
the Skyrmion field is needed in order to take into account the relevant quantum numbers.
This is done in the semi-classical approach by promoting the zero modes of the soliton to
dynamical degrees of freedom.

To do so, we introduce the rotational and iso-rotational degrees of freedom through a
pair of time-dependent SU(2) transformations of the classical (static) solitonic solution,
representing the iso-rotation and the spatial rotation zero modes, respectively, as well as
a time dependent vector X(t¢) representing the translational zero modes (1.9):

U(t,z) = A(t)Us(Ra(t)(z — X (1)) AN (2), (1.13)

where R = 1 Tr{r'Br/B'} € SO(3) is the corresponding rotation matrix in space.
A(t), B(t) € SU(2) and X (t) together form the COLLECTIVE COORDINATES of the soli-
ton.? The semi-classical quantization of the Skyrmion then consists of substituting (1.13)
into the Skyrme Lagrangian (1.1), which yields the Lagrangian of an effective dynamical
system in terms of the collective coordinates {A(t), B(t), X (t)}, and quantizing such a
system via standard canonical methods. Performing this substitution yields

1 > 1 1
Leot = /d317»CSK =-M+ §MX1'X¢ + éaiUijaj —a;W;;0; + Ebi‘/%jbja (1.14)

where
aj =—iTrr;A7A, by =iTrr;BB™,

2The difference in energies of both solutions is less than 1%. The precise number (and even its sign)
will depend on the parameter values.

3For spherically symmetric solutions, rotation in coordinate space can be undone by that in isospin
space, and one can devise a simpler quantization procedure without introducing the matrix B(t)
[ANWS83b]. The present treatment is more general and can be used also for non-spherical solutions
that we shall be mainly interested in.
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(a) Skyrmions with baryon number from 1 to 8, including the two energy-
degenerate solutions with different symmetries, 8a (second row) and 8b
(third row).

B9 a® ud
g X, » -

(b) The B = 32 and B = 108 Skyrmions. They present a manifest cubic
symmetry, as they can be thought of being composed of individual B = 4
“bricks”.

Figure 1.1: Energy density iso-surfaces of the classical Skyrmion configurations used in
this chapter. The surfaces are not to scale, as the relative size grows with the total baryon
charge.



1.2. Skyrmion quantization and light nuclei spectra

are the angular velocities in isospace and physical space, respectively. We have also
introduced the corresponding inertia tensors

1 . _ _
+ %Tr{?}‘[La,Lb]} Tr{zg.—[La,Lb]}}, (1.15)
1
V;‘j = Y /d?’l‘ €ilmEjnpT1Tn [ — TI‘{Lme} — TI'{[LP, Lk] [Lm, Lk]}+
+ 10 T{Ly (Lo, Lo} Tr{ L[ Lo, L}, (1.16)
1
Wi =51 / d%eﬂmxl[Tr{T;Lm} + Te{ [T, Lk [Lm, Li] } —

= ST (Lo, L]} Te{ L Ly Lol} ], (117)
given in terms of the su(2)-valued currents
Ly = UjopUy = iLy, 07", with Ly, = 20400 + €aped’ 010" (1.18)

Tfy = " 0%0ka + Orda + €11a9° '
Tk_,a = ¢b¢b5ka - ¢k¢a + Eklaﬁbogbl

For notational simplicity, here and below we do not distinguish upper (z*,7%) from lower
(x;, 7,) indices for three-dimensional vectors and tensors when we deal with purely three-
dimensional expressions.

Once we have the Lagrangian (1.14) (and thus the corresponding Hamiltonian), we
may perform the quantization of the system by finding an irreducible representation of the
algebra of observables associated to the quantum degrees of freedom defined on the Hilbert
space of states, H. We start by noting that the term quadratic in the time derivatives of
the translational coordinates X; in (1.14) is the standard kinetic term of a non-relativistic
free particle. The associated observables will be the translational coordinates X; and
momenta P, = MX;, and the corresponding quantum operators satisfy the standard
canonical commutation relations,

(1.19)

7

T = %Ug (73, Uoly, = i, 7", With{

Hence, the corresponding states associated to the translational zero modes will be those
of a quantum, non-relativistic free particle. Let H;, be the Hilbert space of such states.
A complete basis for Hs,, is given by the set of momentum eigenstates, |p).

On the other hand, a transformation of the form (1.13) with X = 0 corresponds to
an element g = (A4, B) € SU(2) x SU(2) = G of the most general symmetry group of
the Skyrme Lagrangian. Therefore, the quantum mechanical spin and isospin states of a
Skyrmion belong to the Hilbert space Hg = L*(G, i) of square integrable functions on G
4 with the inner product

(6, ) = /G d(9)d* (9)(g), (1.21)

4Actually, on some cover of G' [Kru03].
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where du(g) is the Haar measure on G. The observables associated to these states corre-
spond to the rotational and iso-rotational collective coordinates A, B and their canonically
conjugate momenta, the body-fixed isospin and spin angular momentum operators K; and
L;, obtained in terms of the angular velocities a; and b; via the relations,

Ki = Usja; — Wijbj,

1.22
Lz’ = —Wgaj + ‘/ijbja ( )

where T denotes transpose. These operators are related to the usual space- fixed isospin
and spin angular momentum operators I; and J; via

implying I? = K? and J? = L2. The set of operators, I, J, K and L, form an irreducible
representation of the Lie algebra of O; x ® Oy, s, the symmetry group of two rigid rotators,
and obey the commutation relations

[Ii, Ij] = ieijklk, [Kw Kj] = ieiijk, [Jz, J]] = ieijkjkl, [Ll, LJ] = iei,jkLk- (124)

From these, we may produce a complete set of commuting observables to define an eigen-
state basis of Hg. We construct such a basis with states of the form

|G> - ’i7i37k3> ® ‘j7j3al3> = |i7i37k3;j7j37l3>7 (125)

where j and j3 correspond to the eigenvalues of the corresponding total angular momen-
tum and the third component of angular momentum operators. Thus the total Hilbert
space H = Hep @ He is spanned by the states |i, i3, ks; J, 73, ls; p) , where —i < i3, ks <1
and —j < j3,l3 < 7. In particular, the subspace of fixed 1,13, 7, 73 and momentum p,
labelled by the states |ks, l3), is (2¢ + 1)(2j + 1)—dimensional.

Spin and statistics of Skyrmions

Up to now, we have not taken into account the baryon quantum number in the quantiza-
tion of a Skyrmion. Indeed, if we are to identify the quantum skyrmion states to physical
nucleons and nuclear states, we need to be able to account for the fermionic character of
the nucleons and some nuclei. This character is in principle not imposed by the symme-
tries nor the classical solutions of the Skyrme Lagrangian in the SU(2) case®, but for the
topological properties of the configuration space.

A rigorous way to do this starts by noticing that the configuration space of the classical
solutions of the model is not connected, and divided into connected components @)p
labeled by the topological charge. For the vacuum boundary condition at spatial infinity,
Q3 is topologically equivalent to Mapsg(S® — S?), and it is easy to see also that all Qp
are homeomorphic to the others, and, in particular, to Q9 = ). However, it turns out
that Qp (for any B) is not simply connected. Indeed, it can be shown [Giu93] that it has
a nontrivial fundamental homotopy group

7T1(QB) = 7T4(S3) = ZQ, (126)

5in the three flavor case, the Wess-Zumino-Witten term forces the spin-statistics theorem, and the
fermionic character of a given Skyrmion is related to the baryon charge and the number of colors of the
underlying UV-theory.

10



1.2. Skyrmion quantization and light nuclei spectra

so that functions f on () are not single-valued in general. It was noted by Finkelstein
and Rubinstein that if the configuration space is not simply connected, then the wave
functions have to be defined not on configuration space, but on some covering of the
configuration space. In the case of Skyrmions, the corresponding Hilbert space H will
correspond to normalized, square integrable functions on the universal double cover of
Qp, CQp. An element [¢] € CQp is defined as a path starting in ¢y € @p and ending
in p € @p up to homotopy. Indeed, [q] # [q - a], where [a] corresponds to the loop
generating the fundamental group of (), although both project to the same point p in
Qp. Also, from eq. (1.26) it is clear that [p-a-a] = [p]. Now let 1([p]) € H, and let
[r] € CQp be the loop in configuration space corresponding to a spatial rotation of 27
of the Skyrmion solution U, € Qg around any axis. We say that the Skyrmion admits a
fermionic quantization if [r] generates the fundamental group of Qp, i.e. if [q- 7] # [q]
([r] is a non-contractible loop). Then, we may impose

U(lg-r]) = —v(la)), (1.27)

and thus the Skyrmion aqcuires a non-trivial phase under a 27 rotation. This in fact
implies, for any axis n,

™y = —1) = lis half integer. (1.28)

Although imposing this condition is a matter of choice (at least, in the SU(2) case), the
spin-statistics theorem follows from such condition. Indeed, one can show:

o In general, if B is odd, then rotation by 27 is a non-contractible loop, while if B is
even, then it is contractible. Thus, spin is half-integer if B is odd, and integer if B
is even [Giu93].

e The loop induced by the permutation of two B = 2n + 1 Skyrmions is non-
contractible [FR68]. This result links spin with statistics.

Also, the fermionic quantization of Skyrmions allows for the rigurous treatment of the
Finkelstein-Rubinstein (FR) constraints. Indeed, let H be the (possibly discrete) subgroup
of G describing the symmetry of the classical Skyrmion configuration, and let

Hy = {hy, b} = {e*%f”, e*%ﬁ"f} (1.29)

belong to the generating set of H. Then, the physical states |¥) must satisfy
GORL O WKy — e ) (1.30)
where xpr = + or — depending on whether the loop in the cover space C'QQp associated
to the symmetry generated by Hj is contractible or not. FEq. (1.30) represents the

Finkelstein-Rubinstein constraint associated with the symmetry generated by Hj, [Irw00;
Giu93|.

11
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B =1 Skyrmion. Nucleon states.

Let us now focus in the quantization of spin and isospin of the B = 1 Skyrmions. As
argued, in this case the symmetry of the classical solution implies that total spin and
isospin quantum numbers are linked, and hence the quantization procedure simplifies.
The physical Hilbert space is spanned by the basis | X) = |iizj3) of states with fixed total
spin (and isospin) and third components of spin and isospin.

We may parametrize the isospin collective coordinates as an element A € SU(2) by
A = ag + iayT, where a = (ag,a) is subject to the constraint a2 + ayar = 1. Thus,
the coordinate vector a can be thought of parametrizing a four-dimensional sphere, and
hence, in the |A) representation, the wave function of each of the basis states corresponds
to the (hyper-)spherical harmonics on S3:

W(A) = (Aliizjs) = Vi, (a), (1.31)

with
N

m,m’

(A4) = (24 + 1)/27°]12 9, 0 (A), (1.32)

where .@g%m,(A) are the Wigner’s D-functions, associated to an irreducible, spin-j repre-
sentation of the SU(2) group. Let us write its explicit expression in terms of the matrix
elements of an arbitrary 2 x 2 matrix B [BI66]:

(T ) e g B (Gl e S
B= (2 4) = PhaB) =[G+ i =ty + G = 2 3 S

(1.33)
withni+no=j—m, ns+ng=j+m, ni+n3=75+m', nyg+ny =3 —m' Indeed,
the wavefunctions (1.32) are correctly normalized under the corresponding inner produt
(1.21),

>

[ O A Y (A)) = 6581 (130
su@ e

where the Haar measure ;1(A) can be written in this case as a volume element in terms
of three angular variables parametrizing the three-sphere S3.

In particular, for describing nucleon states we are interested in the lowest, half-integer
spin and isospin states, i.e. the spin-1/2 representation of SU(2). There are four of
such states, [ANWS&3b] which are shown in table 1.1 together with their corresponding
wavefunction in the |A) representation.

|43, j3) ¥(A)
Ip 1) ‘%%> %(Ch-l-iaz)
P[5 | e =)
BED R
| T | 2 —ia)

Table 1.1: Nucleon spin and isospin quantum states for the lowest energy nucleons.

Once we have characterized all the basis states, we are ready to calculate the matrix
elements of any observable that can be expressed as an operator F'(A) over the Hilbert

12



1.2. Skyrmion quantization and light nuclei spectra

space H. Indeed, for any pair of basis sates |iisjs), |i'i5j4), we may write the matrix
element as an integral over SU(2):

(iiaa] F(A) [i}75) = / o OB AN FCAYES (A)dn(4), (1.35)
U2

Quantization of multiskyrmions (B > 1).

In general, the classical field configuration of a B > 1 Skyrmion presents a non-trivial
symmetry characterized by a finite point group H. Hence, the corresponding allowed
quantum states of spin and isospin will correspond to different linear combinations of
the basis vectors (1.25). To find these combinations explicitly, the group H has to be
known in terms of a set of generators, { Hy} that can be written as a product of a rotation
Ry and an isorotation R'y. Then, the FR constraints may be written as in eq. (1.30).
To consistently do this, as explained above, it is important to know as well whether
each of the symmetries Hj corresponds to a contractible or a non-contractible loop in
configuration space. Once all the generators Hj have been parametrized in terms of
products of rotations and isorotations, one needs to find a solution of the Finkelstein-
Rubinstein system of constraints on each subspace of fixed 7, 7. Solving the system of FR
constraints is equivalent to finding a set of common eigenvectors in this subspace of a
particular set of matrices.

Indeed, according to the general transformation law of angular momentum states under
a rotation R(«, ,7) parametrized in terms of the Euler angles «, 8,7 (in the Z —Y — Z
convention):

Ra, 8,9 ld,m) = > Dl(a, 8,7) [im') (1.36)

where Dﬁnm,(a, B,7) is the Wigner D-matrix, correponding to the irreducible, spin-j rep-
resentation of the rotation group.

Hence, for each Hy, a solution of the corresponding FR constraint is given by a state
|W) which is both an eigenstate of Ry(a, ,v) with eigenvalue Ay and of R} (¢, 5',7)
with eigenvalue )}, and such that A\ x A\, = xrr. On each subspace given by a fixed
value of total spin and isospin, this is equivalent to finding a common eigenvector of the
correponding Wigner D-matrices. The allowed (physical) states will be those which satisfy
all the FR constraints.

To conclude this section, we review the application of the above formalism to obtain
the ground states and lowest energy excitations of some simple nuclei such as the deuteron,
the tritium or the B = 6 nuclides.

Let us start by the B = 2 case. Following [MMWO7], the FR constraints associated
to the continuous axial symmetry and the discrete Zs symmetry are, respectively

(Ly+2K3) [) =0, ™1™ ) — — [y (1.37)

The minimum energy state that also solves the above constraints is the spin-1, isospin
singlet, which can be identified with the deuteron state with polarization A:

’H, \) = [1,X,0) ®10,0,0), (A=0,41). (1.38)

13
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Another example that will be interesting for us in the following chapter is the spin —,
(3H,? He) isospin doublet:

‘3H/3He,s> }27 72>|27 27 2>_|27 72>|27 /275 (1'39)

that arises as the ground state of the physical Hilbert space in the B = 3 topological
sector [MMWO07; Car91al.

Finally, we will be also interested in the low energy states of the B = 6 sector. The
lower energy states that solve the corresponding FR constraints are the spin-1, isospin 0
state |1, 73,0) |0,0,0) corresponding to the ground state of the lithium-6 nucleus °Li, and
the isospin triplet |0,0,0) |1,43,0) formed by the helium-6 and beryllium-6 ground states
plus the spin-0 excited state of 5Li.

Skyrmions from instantons

In a seminal paper [AM89], M. Atiyah and N. Manton proposed that a (static) Skyrme
field configuration U(x) with baryon number £ may be obtained as the holonomy of an
SU(2) Yang-Mills k-instanton configuration along the Euclidean time direction, formally

U(x) = Pexp (—/ Ay(x, x4)dx4>, (1.40)
with P denoting path ordering of the exponential. Such a construction is almost gauge
invariant, since the effect of a gauge transformation of A, by g(z) is just a conjugation
of U by the asymptotic values g(£oc). This can be understood as an isospin rotation of
the corresponding Skyrme field.

In order to better understand the statement above, let us quickly review the concept
of instantons of a Yang-Mills theory, for example, in the case of SU(2) gauge group in
four dimensions.

The vacuum structure of an SU(2) Yang-Mills theory in 3+ 1 dimensions is nontrivial,
in the sense that it presents a discrete set of degenerate classical minima. These minima
are associated to static (in the temporal gauge), pure gauge configurations of the form
A, = Q7 1(x)0,0(x), with SU(2) > Q(x) — 1 as |x| — co. Mathematically, these
configurations can be seen as continuous mappings R* U {oo} ~ S3 — SU(2) ~ S3, which
are classified by their third homotopy group, m3(S®) = Z. In other words, vacuum gauge
field configurations are separated in different homotopy classes, labeled by an integer n[(2],
which can be obtained as an integral

1
2472

n[Q] = — / el Tr (Q719,00719,00719,9) . (1.41)
53

Vacuum configurations with different topological degree cannot be continuously de-
formed into each other without generating non-vacuum gauge fields, so these vacua are
separated by a potential barrier in the quantum theory. The tunneling transition between
classically degenerate vacua of a quantum theory is generally described by INSTANTONS,
which are solutions of the Euclidean field equations, i.e absolute minimizers of the Eu-
clidean action

1
Se = 153 | T(FwE, V)i (1.42)

14



1.3. Skyrmions from instantons

with F, = 0,47 —0,Aj +e“bCAZAf, is the gauge field strength tensor, and A, = —ig%Az
is the Lie algebra-valued Yang-Mills field.

Instanton solutions are localised in spacetime, and can also be classified by their
homotopy class when seen as mappings on R?* that asymptote to pure gauge configurations
on its boundary, S3_ (so that their action remains finite). Therefore, we can also think of
Yang-Mills instantons as topological solitons in the Euclidean version of the theory, with
topological charge (instanton number) given by

n =

T / d'z Tr ("FM™F,,), (1.43)

where x denotes the Hodge dual of the field strength tensor: *F),, = %EWWFP".

These tunnelling solutions are usually necessary in order to understand various non-
perturbative processes in the Standard Model and other (super)Yang-Mills theories. In
particular, they play an important role in QCD, where they have been used to solve the
axial U(1) problem [t H86] or to explain chiral symmetry breaking [Dia96].

A priori, Yang-Mills instantons in a SU(2) gauge theory and solitons in the Skyrme
model are completely different objects: the former are vector(gauge) fields in an (Eu-
clidean) 4-dimensional spacetime which take values in the su(2) Lie algebra, while the
latter are scalar fields in three spatial dimensions, taking values in the SU(2) group man-
ifold. Additionally, the two types of solitons minimize very different energy functionals:
the Skyrme energy and the Euclidean Yang-Mills action, respectively. Nevertheless both
of these solitons are equivalent in terms of topology, as they are described by the same
homotopy group. Atiyah and Manton were the first to realize this, and found a topological
charge-preserving mapping between them, given by (1.40)

Moreover, the moduli space of SU(2) instanton configurations of charge k, including
the choice of gauge at infinity, is a connected manifold of dimension 8k [AHS77; JR77].
Hence, the set of Skyrme fields with B = k obtained via the Atiyah-Manton construc-
tion (1.40) will be an 8k — 1 dimensional manifold, as a global time translation of the
instanton leaves the Skyrme field unchanged. This manifold is sometimes called the mod-
uli space of B = k instanton-generated Skyrmions, since even though the Skyrme fields
so-constructed are not exact solutions to the Skyrme field equations, some are good ap-
proximations to minimal energy Skyrmions and other field configurations describing their
low energy dynamics in that topological sector. The Atiyah-Manton approximation was
further developed in [LM94; HOA91; Sut94], and it was also extended in order to in-
clude instantons at finite temperature, [Corl8; CH22| and skyrmions from gravitational
instantons [Dunl3]. Its application to describe low energy interactions between nuclei
was studied shortly after it was first proposed [AM93; HOA91], and has been put forward
recently in [HW21; HH22].

The useful idea that Skyrmions can be seen as instantons in a higher dimensional
space has been thoroughly studied in the holographic context. In Sutcliffe [Sut10], it is
explicitly shown that the Skyrme model appears, together with a Kaluza-Klein tower of
vector mesons, after a dimensional reduction of a 4 4 1 dimensional Yang-Mills theory.
This phenomenon is also realized in several holographic QCD models. In particular, the
Sakai-Sugimoto model, a holographic dual of QCD with N; massless quarks proposed in
[SS05a]. The low energy effective action of such a model consists of a five-dimensional
Yang-Mills and Chern-Simons theory on a curved background. In this model, the massless
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pion and an infinite tower of massive (axial-)vector mesons are interpreted as Kaluza-
Klein states associated with the holographic direction, and baryons are identified as D4-
branes wrapped on a non-trivial four-cycle in the D4 background. Such a D4-brane is
realized as an instanton configuration in the worldvolume gauge theory. Also, the pion
effective action obtained from the Kaluza-Klein reduction of the 4+ 1d Yang-Mills theory
is precisely that of the Skyrme model, in which baryons appear as solitons. It can be
shown that the baryon number of a Skyrmion, i.e the winding number carried by the pion
field, is equivalent to the instanton number in the Yang-Mills theory. In this way, the
Sakai-Sugimoto model presents two dual descriptions of baryons, as wrapped D-branes
(instantons) and as Skyrmions in the Kaluza-Klein-reduced theory.

Apart from QCD-like theories, instanton-mediated processes are also important in
more complicated gauge theories presenting the Higgs mechanism, such as the electroweak
sector of the Standard Model, where they are associated to the violation of baryon number
[Esp90]. Such transitions become relevant only at very high energies and have been
proposed as a plausible source of baryon number violation leading to baryogenesis in
the early universe [RS96]. However, the Higgs mechanism poses a slight complication
concerning instantons in these gauge theories. Indeed, there are no solutions to the
Euclidean field equations, i.e. no exact minima of the Euclidean action in sectors with
nonzero topological degree. The reason, as we will discuss below, is that the action for
instanton-like configurations, with a nontrivial Higgs field, depends on the instanton size
and decreases as it tends to zero. To evaluate the functional integral in that case one
introduces a constraint that fixes the size of the configuration [t H76], then minimizes the
action under this constraint and finally integrates over all possible values of the instanton
size. The constrained solutions that one uses to calculate instantonic contribution to the
path integral in the Higgs phase are called CONSTRAINED INSTANTONS.

Constrained instantons in Yang-Mills-Higgs theories

We now consider an SU(2) Yang-Mills-Higgs (YMH) theory on four dimensional Euclidean
space R*, given by the Lagrangian

11
Z = ;{ZFSVFSV + [(D;@)*Dm (60 uQ)} } (1.44)

where D, = 8, — i5 A% = 9, + A, is the associated covariant derivative, ¢ an SU(2)
Higgs doublet g and x the gauge and Higgs couplings, respectively. Finally, u? is the
vacuum expectation value of the Higgs field in the spontaneously broken phase, in which

the gauge field acquires a mass m = 4/ 52&2 due to the Higgs mechanism.

For u = 0, the (Euclidean, 4d) YMH field equations present instanton solutions which
are the same as in the pure Yang-Mills case, with ¢ = 0. In the 't Hooft gauge [t H76],
these solutions read

A(z) = %o—way log a(x), (1.45)

with a a solution of the Laplace equation in R*, 9*«a = 0, and o, the so(4) Lie algebra

16



1.3. Skyrmions from instantons

generators, defined as ©

1

O = E(a#ai — O'LO'V>, with oy = (‘7‘ 212) (1'46)

In particular, the k£ = l-instanton is given by

A2 A2

alz) =1+ T X2

with A € R, X € R* the MODULI parameters determining the size and position of the
instanton in Euclidean space, respectively, which are associated with ZERO MODES of the
soliton [Sut94].

On the other hand, for p # 0, the nontrivial vacuum expectation value of the Higgs
field breaks conformal symmetry, and there cannot exist an exact instanton solution of the
coupled field equations. This can be easily seen by applying Derrick’s scaling argument
[Aff81]. Indeed, rescaling any instanton field configuration with ¢ # 0 as

A, (z) = aA,(ax), ¢(z) = ¢lax), (1.48)

the action becomes (y = ax):

5= [y {3Frne + 5| 0wy Do + gz -

and since all terms in the integrand are positive, the action can always be made smaller by
taking the limit @ — oco. Since the expression for a4, (az) is exactly equal to A, (z) with
A replaced by A/a, we get that the action-minimizing instanton has zero size. However,
the nontrivial topology of the space of field configurations is not affected by the Higgs
mechanism, so that instanton-like field configurations with nonzero topological degree still
exist as approximate solutions of the field equations. These are the so-called constrained
instantons, and have been used to approximately calculate nonperturbative contributions
to the path integral in the standard model and (super) Yang-Mills theories at the Higgs
phase [t H76; Nie05; RS96].

The constrained instanton idea is based on the existence of a finite number of destabi-
lizing directions in the gauge field space, along which the action always decreases, so that
one introduces constraints that prevent deformations in these directions. Then, one just
minimizes the action for fields subject to such constraints. For the spontaneously broken
phase of SU(2) YMH theory, the destabilizing direction is that parametrized by the rescal-
ing parameter a (note that this would correspond to a zero mode in the pure Yang-Mills
phase), so one needs to impose a constraint that fixes the instanton size A at some value.”
The contribution to the path integral coming from these configurations is then obtained
by integration over all (fixed) values of \. Remarkably, the Higgs mechanism resolves the
infrared divergence problem due to large instantons dominating the path integral measure
on an otherwise scale-symmetric field theory such as pure Yang-Mills, since these become
suppressed on the Higgs phase [t H76; Esp90; Shi22].

6

we are using the conventions in [Esp90]
" Also, the constraint must allow finiteness of the action, which is a nontrivial demand for choosing a
valid constraint, see [NNOO].
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The YMH equations coming from the Lagrangian (1.44) are
a K N QH a
DyFy, + 5 (=id'7°0u6 — AjdTe) =0, (1.50)
D2 — 666 — ) = 0. (1.51)

One could naively try to find instantonic solutions to the YMH equations. The finite
action condition in the broken phase implies that gauge fields must become pure gauge
configurations asymptotically, and the Higgs field must tend to a point in the correspond-
ing vacuum manifold,

Au(r) = Q0,97 () = Qbyae, =00, Qx) € SU(2) (1.52)

with ¢, a general base point of the Higgs potential vacuum manifold. Without loss of
generality, we may choose ¢yac = (0, 1)7. Therefore, a general ansatz for the (spherically
symmetric) k = 1 instanton would be of the form

Ay =E@)920,07" d) = (1 = x(2))vac, (1.53)
where = z% is an element of the first nontrivial homotopy class in 73(SU(2)), and

é , X are functions of the radial Euclidean coordinate r = |z| which satisfy the conditions
£,x = 1,0 as r — oco. This ansatz corresponds to the generalization of the Belavin-
Polyakov-Schwarz-Tyupkin (BPST) instanton solution [Bel+75] in the regular gauge to
the Higgs phase, and was used in [Kli93] to find a constrained instanton solution using a
specific constraint. In particular, for u = 0, i.e. the pure Yang-Mills case, the instanton
solution is given in this gauge by & = r2/(r2 4+ A2).

However, we will find it useful to gauge-transform (1.53) into a new form, in which
¢ — ¢uac. This can be achieved with a gauge transformation by Q~!, which brings the
ansatz into the so-called singular gauge:

o,

Au(m) =

£(r) = —owova(r),  é(x) = (1 —x(2))dvac (1.54)

T2

where ¢ is a function related to the original é ,and & = a’/r. With this gauge choice,
T—r00, T—>00

the boundary conditions A,(z) —— 0, ¢(x) —— (0, )7, are satisfied, and eqgs. (1.50)
and (1.51) linearize for A,(x) and x(z) in the x — oo limit,
2 2 K
[—6,,0> + 0,0, + m*|A, =0, m= 5 (1.55)
(—=0% + )y = 0. (1.56)

Any solution of the linearized equations that satisfies the correct boundary conditions is
given by
X x G(z; ), A, x 0,,0,G(x;m), (1.57)
with N
G(zr;a) = =Ky (ar) (1.58)
r
the Green function associated to the four dimensional, Euclidean Klein-Gordon operator,
—0% + a2, and K, (z) is the modified Bessel function of degree n.
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1.3. Skyrmions from instantons

Unfortunately, as previously shown using Derrick’s argument, the boundary conditions
we have imposed are not compatible with a regular solution of the full system of YMH
equations. Nonetheless; it was argued in [Aff81] that a perturbative solution can be con-
structed if we add extra terms to the right-hand sides of such equations, with coefficients
that can be adjusted order by order in perturbation theory to obtain the desired boundary
conditions. The presence of these extra terms is equivalent to adding a constraint at the
level of the action, so the obtained solutions are constrained instantons. This procedure
was further extended in [NN0O] with the additional requirement that the perturbative so-
lution yields a finite value for the action functional, and a constrained instanton solution
in the Higgs phase of SU(2) YMH theory was calculated perturbatively in the parameter
pup to O(p). The solution looks like the standard self-dual instanton near its core, but
decays exponentially (instead of polynomially) as exp(—pur) far from the center.

The perturbative method starts with the singular gauge ansatz (1.54), defining two
real functions @ = exp(a) and f = u(1 — x) which depend on z in terms of the parameter
t= ;\—s Then, these functions are expanded as

A=Y am,  [=) famrr, (1.59)
n=0 n=0

where the subscript on each function indicates the lowest power of p appearing on it.
Introducing this ansatz into the YMH Lagrangian, the equations of motion for o and f
are (' = d/dt) [NNOO]:

3

RN 5 2 g1 N2 PN 2
I )

which can be solved by quadrature at each order. The required boundary conditions
plus finiteness of the action impose that these equations are modified order by order
by adding certain terms at the right hand side. These terms (and the corresponding
constraint) must then be computed at each order in u, and are unique up to O(u*)
[NNOO]. This can be done iteratively, starting with the zeroth-order instanton solution,
ap(t) = 1 +t, and substituting in the equation for f, which yields f; = u/+/1+t. This
solution already satisfies the boundary condition for ¢, so no modification of the equation
for f is needed at this order. In fact, the equation for f does not need to be modified at
any order [NNOO]. On the other hand, at second order, the modification of the equation
for o turns out to be unique, (i.e. the corresponding constraint is unique up to O(u?)),
and therefore, one can solve for ay unambiguously. Further details on the perturbative
construction can be found in [NNOO], in which a recurrence relation for obtaining the
leading term on each higher order component «,, was found. Moreover, it was also shown
that the leading order terms in the series of «(t) presents a convergence towards G(z,m)
at large distances (which was expected from the asymptotic linearized equations).

However, for our purposes, the perturbative solution is unsatisfactory, because it will
always diverge for some value of r at any given truncation order [Gar22]. After computing
the corresponding holonomy, this translates into a Skyrme field that does not satisfy the
correct boundary conditions at infinity. A simple way around this problem is just to
consider the asymptotic solution, namely

(a™3t3) =

2

a(z) =1+ 2K (mr), (1.61)
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which does of course yield well-behaved Skyrmions at infinity, as we show in the next
section.

Apart from the perturbative method, an alternative approach for constructing con-
strained instanton configurations in YMH theory was used in [Wan94], in which instead
of fixing the constraint and trying to solve the equation for the corresponding constrained
instanton, the reverse method is followed. One chooses a particular functional form for
the constrained instanton, and the corresponding constraint may be systematically cal-
culated afterwards due to the freedom in choosing the constraint in the first place. The
only requirement in choosing the constrained instanton shape a priori is that it satisfies
some constraint-independent boundary conditions at the origin and far from its center.
Indeed, if one considers again the BPST-like ansatz, the (dimensionless) functions &, x
can depend on r = |z| only through two dimensionless combinations, A/r and mr. We
may expand these functions both for small (r < \) and large (r > m™!) distances in
terms of these two combinations, as [Esp90; Wan94]:

E(r) = &(2) + (mr)26 (2) + - =
= ()2 (mr) + (2)*€ (mr) + -+, (1.62)

x(r) = Xo(%) + (mr)Zln(mr)Xl(%) 4=
= (3)°X"(mr) + () (mr) + -+ (1.63)

r

Thus for recovering the pure Yang-Mills solution in the m — 0 limit we require

2)\2 [ r2
Ay Ay =] g — 1.64

where o above corresponds to the scalar field profile in the instanton background without
backreaction [t H76].
On the other hand, the linearized equations at large distances impose

' (mr) = m*r* Ky(mr), X (mr) = dmr K (mr). (1.65)
A pair of functions proposed by Wang in [Wan94] satisfying eqs. (1.62) to (1.65) are

B N2m?2 Ky (mr) B r? 2
£r) = 1+ N2m2Ky(mr)/2]’ x(r) = [1 - (r2 + X2mrKk,; (mr)) ] ' (1.66)

Obviously, the expressions in eq. (1.66) are associated with a particular constraint at the
level of the action, which could be calculated, at least formally. Of course, they are not
unique, and a different pair of functions satisfying the correct boundary conditions could
have been chosen.

The constrained instanton approximation for the Skyrmion

Let us now explicitly apply the Atiyah-Manton construction to the simplest case, the
B =1 Skyrmion. Indeed, the B = 1 Skyrmion solution is well known, and can be written
using the so-called HEDGEHOG ANSATZ:

U(X) — eif(p)nao'a’ Whel"e p = |X|’ n—=— s (167)

e
P
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1.3. Skyrmions from instantons

and f(p) is the radial profile of the Skyrmion, which, for the B = 1 case, must satisfy
f(0) =mand f(co) = 0. Introducing the hedgehog ansatz into the static energy functional

(1.7) (with A = 0 for simplicity), one obtains
E=4 252 o (£ 4 1) sint £+ S o2 d 1.68
=dm [ (P f?+2(f*+1)sin® f + p2+mp(—cosf) 2 (1.68)

where we have renamed the constant ¢, = 2m? for convenience.

Hence the problem of minimizing the energy functional reduces to a one dimensional
problem, whose solution can be obtained by solving a second order differential equation
for f. These 1-instantons generate, after calculating the corresponding holonomy as in
(1.40), a seven-dimensional manifold of B = 1 Skyrme hedgehogs, the coordinates being
the position, orientation and scale size, and whose radial profile is given by

flp)=m [1 - (1 + 2—2)1/2] . (1.69)

Although instantons are scale invariant, the energy of the associated Skyrmion config-
urations depends on the particular value of the (in principle, arbitrary) parameter A.
Therefore, its value must be fixed so that the energy of the resulting Skyrme field is
minimized, which reduces the moduli space by one dimension. It turns out that, for the
massless case, the value of this scale is A = 2.11, with an energy of B\ = 1.243 x 1272,
which is only 1% above that of the true Skyrmion solution.

Despite its success in describing the moduli space of massless pion Skyrmions, the
instanton approximation does not work in the massive pion case. This can be understood
by noting that the asymptotic decay of the instanton generated profile function is f ~
A?/(2p%), which has the correct form for massless pions, but decays too slowly for the
massive pion case, ultimately generating configurations with infinite energy. Thus this
form of the instanton holonomy method is not applicable to massive pions.

However, as we have seen in the previous section, we are still able to find instanton-like
configurations in YMH theory that preserve their topological properties and nevertheless
present an exponential radial decay due to the Higgs mechanism. Hence, constrained
instantons are natural candidates for generating exponentially decaying Skyrme hedgehogs
via the Atiyah-Manton construction. Indeed, from the ansatz in the previous section we
get )

/
Ay(x,x4) = —in't, <p($121—)|\-—,02)2%)7 (1.70)
with «(t) given by (1.61). The profile function generated by the constrained instanton
approximation can therefore be written

* o pN ()
= dzy. 1.71
10 = | G e e
On the other hand, if we choose to use the nonperturbative configuration generated by

the functions (1.66) for constructing the constrained instanton, the profile function of the
corresponding Skyrmion can be directly obtained as

/°° pA2m2 Ko(my/22 + p?)
T
o0 2(x] + pP)[1 + N2 Ko (ma/af + %) /2]

flp) = (1.72)
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As pointed out in [Esp90], the Lagrangian eq. (1.44) is invariant under independent
global rotations of A, and ¢, even after substituting the ansatz (1.54). Thus, in the
constrained instanton the gauge and Higgs field orientations are not correlated. Further-
more, the Higgs field orientation is completely fixed once we choose a specific point in
the vacuum manifold, ¢ as the vacuum state in the spontaneously broken phase. On the
other hand, the orientation of A, remains a symmetry of the YMH action and therefore
has to be treated as a collective coordinate along with the position of the constrained
instanton. Of course, these collective coordinates will be inherited by the Skyrmion field
configurations generated by constrained instanton configurations, so that the structure
of the instanton-generated Skyrmion moduli space is preserved even after the addition of
the Higgs field.

Obviously, the constrained instanton solution has lost its scale invariance due to a
finite Higgs vev, so the scale parameter \ does not represent a zero mode anymore, but
a quasi-zero mode, since it parametrizes a family of local minima of the action when the
constraint is imposed. Therefore, we still have the freedom of choosing the value that
better fits the true Skyrmion energy. Also, even for a given, specific constraint, its value
will not be unique, but will depend on the value of the other free parameter, namely, the
gauge field mass m, which coincides with the (dimensionless) pion mass parameter of the
Skyrme field. Therefore, there’s a one parameter family of Skyrmion solutions, each with
different values of m, and the best value of A for each one can be understood as a function
A(m).

At the end of the day, constrained instantons also generate a seven dimensional
Skyrmion moduli space, as fixing the Higgs vev at infinity does not break translation
invariance, nor global gauge symmetry of the gauge field solution.

3.0\
fexact (T)
>3] fc. i. (7’)
2.0 A
1.54 \
\

1.0 \‘
7 k
0.0 - . . i - - - E—

0 2 4 6 8 10 12 14 16

Figure 1.2: Solution of the Skyrme field profile for m = 0.5, and its corresponding best
approximation using a constrained instanton

As we can see from fig. 1.2, the similarity between the true solution in the massive
pion case and the constrained instanton approximation is astounding, and even better
than the regular instanton approximation in the massless case. Indeed, the difference in
energies between both cases is smaller than 1%, for instance, E,,—y5 = 1.433 x 1272 and
ESinst. = 1.438 x 1272, In this case, we have A?(m = 0.5) = 1.47. In table 1.2 we show
the energies for each case in units of 127.
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1.3. Skyrmions from instantons

m | 0 | 05 | 3
Frem | 1.2327]1.433 ] 2.170
EPt 1 1.243 | 1.438 | 2.250

inst

EMP 11943 | 1.435 | 2.224

inst

Table 1.2: Energies of B = 1 hedgehog obtained by numerically solving the Skyrme
field equations (FEyea) and by the constrained instanton approximation, both using the
n.pert

perturbative configuration (EP%") and Wang’s proposal (EP).

inst

Now an interesting question is whether we can say anything about higher baryon
number skyrmions. In the pure Yang-Mills case, the self duality of instantons allows for
the construction of the most general k£ instanton configuration via the powerful method
of Atiyah-Drinfeld-Hitchin-Manin (ADHM) local data [Ati478]. In [CH22|, this method
was used to describe multi-Skyrmion moduli spaces in terms of the ADHM data of the
corresponding instanton approximation.

In our case, however, self duality is broken, and the problem of finding expressions
for £k > 1 constrained instantons, considerably harder. We could try to construct a
k constrained instanton as a superposition of k individual 1-instantons, with arbitrary
widths and positions, using a generalization of the 't Hooft ansatz to our case, i.e. taking

a(z) = 1+Z;i—mm<m|x—xi|>, (1.73)

where \;, X; correspond to the sizes and Euclidean positions of each constrained instan-
ton. Unfortunately, this ansatz does not reproduce the full picture, as it does not allow for
different orientations of the individual instantons. A modification of the 't Hooft ansatz
that includes the relative orientation between instantons and does not modify the topo-
logical degree was proposed in [Par+02]. It’s based on the introduction of 3k additional
parameters, namely, the Euler angles of a SU(2) rotation matrix R,. Then, the fourth
component of the gauge field is given by

Ay(x,x4) = —Z—ZRTa a[ X Ki(m|z — X;|)| R, (1.74)

which yields the correct number of collective coordinates on each topological sector. To
what extent the gauge field configuration given in eq. (1.74) does actually reproduce the
moduli space of multi-Skyrmions in the massive pion case after calculating its holonomy
along x4 is out of the scope of this paper. Nevertheless, it is an interesting calculation
that may allow us to study the effect of a nonzero pion mass in the Skyrmion-Skyrmion
interactions. Such configuration, in the £ — oo limit could be used as well to approximate
the (half-)Skyrmion crystals, since it is the constrained-instanton version of that proposed
in [Par+02]. Indeed, a nonzero pion mass provides a natural cutoff for the individual in-
stantons, which decay exponentially, and the holonomy can be calculated directly without
needing to impose an artificial cutoff on instanton tails.
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Final remarks

In this first chapter, we have reviewed the basic procedure to obtain nuclear states as
quantized Skyrmions from a (generalized) Skyrme model. It starts by computing the
corresponding energy minimizing-configuration at each topological sector, which required
of numerical methods. Then, the canonical quantization method is applied to zero-mode
degrees of freedom (given by rotations in space, or spin, rotations in flavor space (isospin)
and translations in three dimensional space) of each solution, which yields a well-defined
Hilbert space for semi-classical, nonrelativistic nuclear states. As we will show in the
next chapter, some of these states will be relevant for the computation of diverse nuclear
properties that involve the matrix elements of nuclear currents.

We remark that the above procedure of soliton quantization is of very general nature,
and does not depend on the specific model that one is considering. Indeed, the link
between spin and statistics of quantized solitons is well established also outside of the
Skyrme model. For example, the same topological principle applied in lower dimensional
examples gives place to particle-like solitons with fractional spin and exotic statistics
[WZ83].

Finally, after explaining the Atiyah-Manton construction of approximate Skyrmions
from the holonomy of Yang-Mills instantons, we have presented a slight improvement on
the instanton approximation of the B = 1 skyrmion with nonzero pion mass. It is given by
a (relatively) simple analytic expression based on the concept of constrained instantons.
Obviously, having a short, semi-analytical approximation to the £k = 1 Skyrmion with
massive pions can also be useful to study some dynamical aspects of the model without
the need to rely in numerical methods to solve the corresponding Euler Lagrange equation.
We would like to remark that a different method of generating Skyrmions with massive
pions via computing the holonomy of instantons along circles in R* was proposed in
[AS05]. The field configurations obtained this way correspond to Skyrmions with massless
pions in hyperbolic space, which are shown to be a good approximation to Skyrmions in
flat space with a nonzero pion mass, when the curvature parameter is related to the
pion mass in a certain way. This idea results also in a very good approximation to the
real solutions, but a drawback of this method is that the moduli space structure is not
preserved, since the position of the skyrmion is related to a fixed point in the base manifold
and it is not a free parameter (as there is not translation symmetry in hyperbolic space).
However, the instanton approximation is most useful for studying low energy dynamical
processes involving two or more Skyrmions, since it allows to (approximately) describe
the corresponding moduli space. In principle, the extension of our approach to describe a
multi-skyrmion moduli space is possible, although not straightforward. A first step would
be to find constrained multi-instanton solutions, and study the corresponding moduli
space.
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CHAPTER 2

Articles partially reproduced in this chapter: [GHH23|. See permissions.

The inner structure of light nuclei

“The Weak or the Strong,
Who got it goin’ on?”
— Biggie Smalls, Dead Wrong

Introduction

Due to the color confinement phenomenon, it is difficult to probe the dynamics of quarks
and gluons directly in experiments. Instead, we can learn about their dynamics by scatter-
ing leptons off hadrons, or by scattering hadrons on other hadrons, which in turn reveals
information on how hadrons interact with the force carrying particles in the standard
model, i.e. the gauge vector bosons (photons, W and Z bosons) and also with mesons
(e.g. pions), which mediate the (residual) strong force between hadrons. Some of the
relevant processes involving the nucleon are shown in fig. 2.1, for example, the electron
scattering (which probes the electromagnetic interaction), the neutrino scattering (much
weaker, mediated by a neutral current), the 8 decay which produces an (e, 7,) pair and
is mediated by a charged weak boson, or the nucleon-nucleon interaction via a pion ex-
change.

The study of such processes reveals information of the internal structure of nucleons
and nuclei, encoded into the so called FORM FACTORS: scalar, Lorentz-invariant quantities
that determine the strength of a given interaction channel as a function of the momentum

transfer.
N N N N’ N’ N N
& o s om
70 v w- K
|
Ve Ve € e ‘ N N

Figure 2.1: Feynman diagrams of nuclear scattering processes at tree level.
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Despite this variety of processes, their corresponding scattering amplitudes all share
a very simple structure at tree level, in terms of two fermionic (each either hadronic or
leptonic) currents and a propagator. For instance, for a massive vector boson exchange
interaction, the corresponding matrix element will be

M = ()] 1) (= + @ /MT) (N'(P3)] T} [N (p2)) . (2.1)

i
¢* — My

where quantities of the form
(N()] T2 [A(p)) (2.2)

denote CURRENT MATRIX ELEMENTS, i.e. the interaction vertex between the one-
particle states A and )\, with respective momenta p and p’. These currents are operators
which can, in general, present any Lorentz index structure (they can be either scalar,
pseudoscalar, vector, axial-vector or even tensors), and also additional index structures
representing, for example, flavor degrees of freedom. Since leptons are fundamental parti-
cles, their currents can be easily deduced via the Feynman rules from the SM Lagrangian.

For example, the electron-photon vertex is given by the Feynman rules of Quantum Elec-
trodynamics (QED) [DGH23]:

(D) Il le(p)) = —ietie(p )" uc(p), (2.3)

with v# the gamma matrices, u. is a Dirac spinor representing the electron state, and e
is its charge. On the other hand, the equivalent current for the nucleon-photon vertex
can not be read straightforwardly from the Lagrangian, due to their composite nature.
Instead, one can define an effective vertex I'* such that

(N"(D)| T} e IN (D)) = —ietin: (p )TH(p', p)un (p). (2.4)

This effective vertex (denoted by a “blob” in the second diagram of fig. 2.1) is not known a
priori, but its tensorial structure can be determined by imposing the symmetries it should
satisfy. Indeed, in the electromagnetic case, I'* should transform like a vector. Also, it
can only depend on the four vectors p,p’ and +#*, as well as on scalar functions of the
MOMENTUM TRANSFER t? = —¢?, to preserve Lorentz invariance. Thus, in general, we
will have

' =~"A+q¢"B+ k'C, (2.5)

with ¢ = p' —p, k = p' +p and A, B,C are arbitrary scalar functions of t?. Current
conservation implies the Ward identity ¢,I'* = 0, which further imposes C' = 0 2. Then,
Gordon’s identity

E* o iotq,

v (p')y"v(p) = v (p') { } v(p) (2.6)

2m 2m

allows us to write the general expression for the (spin %) nucleon electromagnetic current
matrix element as

whq,
2M N

(N T2 IN () = ax(0) {wm) T ﬁg(t)} un(p). (2.7)

2While g, k" vanishes identically, the v* term only vanishes on-shell.
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2.1. Introduction

where 20 = i[y*,~"], My is the nucleon mass and F} » are the so-called Pauli and Dirac
form factors.

An analogue reasoning could be done for the charged weak currents, which can be
readily obtained from the SM coupling between weak isospin lepton doublets ¢, = (u;, u,,)
to the charged weak bosons [GMO09],

£y = G (Wt With) — 1 = (0| W) = (L= )7t (28)
0~1~2-3

where 7 = (17 & i12)/2, and 75 = i7"y'y*y°. Particularized to the electron and neu-
trino fields, the weak leptonic current reads (* = u,v*(1 — 75)u.. We observe that the
weak charged currents are composed of both vector (vf = 1@7“%7@1) and axial-vector
(aff = 1/;57”75%%-@0;) fermion bilinears. Hence, the associated hadronic currents will also be
composed of a vector and an axial-vector part, each with different form factors. For in-
stance, the nucleon’s axial current will also be characterized by two form factors (assuming
isospin symmetry):

(V)| A2 ING) = v () |7Calt) + 5eGrnlt) psunle), (29)

where G 4(t) and Gp(t) are the axial and the induced pseudoscalar form factors, respec-
tively.

The Breit frame. Form factor phenomenology

In general, a free Dirac spinor can be decomposed into two two-component Pauli spinors,

. o -
un = /Ep + My(¢n €n), with &y = ﬁ%m, and  E? = M2 +p?. (2.10)
p

Such a decomposition breaks Lorentz invariace, i.e. it is frame dependent. We may thus
choose a particularly useful reference frame, the so-called BREIT FRAME, in which the
initial and final momenta of the nucleus are equal in magnitude and with opposite sign:
p; = —ps = q/2. The vector q is therefore the momentum transferred to/by the lepton
pair after the interaction, and there is no energy transfer, ¢" = p;y — p}’ = (0, q)

In the Breit frame, the following relations hold :

un(—p)uy(p) =2E, yn(—p)ysun(p) = oo - qoy, (2.11)
an(—p) un(p) = 2M, an(—p)y'un(p) = ic*¢" ¢\ 0l pw, (2.12)
un(—p)y sun(P) =0, an(—p)Y'sun(p) = ¢ (2Edh + 2Ma} )pn, (2.13)

where we have defined

o =o' —¢ ot =¢' : (2.14)
Then, we may write the electromagnetic and axial current off-forward nucleon matrix
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elements in the Breit frame as

(N@)| J§ e IN (D)) = e2MNnGE(t)d\ o, (2.15)
(NW)| Jh o IN()) = ieGrr(t) e * ¢l ol b, (2.16)
(N'(p) A2 IN(p)) = 0, (2.17)

NG AN D) = ok [2EGa(0at+ 201 (Gal0) + 51, Gol) )t o, (219

where
t

4M?
are the electric and magnetic (Sachs) form factors [Sac62]. The values of these Form
Factors (FFs) at zero momentum transfer are fixed by gauge and Lorentz symmetry to
the electric charges and magnetic moments of the corresponding nucleon

Gg(t) = Fi(t) +

F5(t), Gu(t) = Fi(t) + Fa(t) (2.19)

Gh0) =1, G3(0) = . (2.20)
Gp(0) =0,  G(0) = un, (2.21)

with p, = 2.79 and p, = —1.91 in units of the nuclear magneton (u = 2‘:51))

Electromagnetic form factors of nucleons and nuclei have been measured over the last
decades to an impressive level of precision in nuclear scattering experiments such as those
at JLab [Pun+15; Cam+14; Arr+23]. The same form factors have been obtained for
nucleons and small nuclei using the formalism of chiral perturbation theory [Pia+13] and
functional methods [Eic+16].

On the other hand, the computation of the electromagnetic FFs of the nucleon in the
Skyrme model was first carried out by Braaten et al. [BTW86]. The same computations
for other chiral-soliton models have been carried out several times in the literature, in-
cluding vector meson contributions as well as in the three-flavour case (see [Wei08] for a
pedagogical review). Nevertheless, not much has been done concerning the electromag-
netic FFs of light nuclei in the Skyrme model (or any similar solitonic approach to nuclei).
Indeed, subsequent papers by Braaten and Carson [BC89] and Carson [Car91b] worked
out the formalism to compute FFs of the non spherically-symmetric B = 2 (Deuteron)
and B = 3 (Tritium-Helium) ground states. Almost two decades later, Manton and Wood
[MWO08] and later Karliner et al. [KKM16] computed the form factors of zero isospin nu-
clei (in the B = 4N) sector. However, a systematic analysis of these FFs still remains to
be done for multi-Skyrmions.

Here, we will not be interested in repeating these analyses, but we will adapt some of
these methods to the computation of other form factors that, to our knowledge, have not
been studied within the Skyrme model, namely, the weak decay multipolar form factors
and the gravitational form factors.

Electroweak form factors of Skyrmions

As reviewed in section 1.2, quantized Skyrmions can be interpreted as models for light
nuclei. An important question is then how well does the Skyrme model predict not only
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2.2. Electroweak form factors of Skyrmions

the quantum states and energies of light nuclei, but all other properties concerning their
structure and interactions. In particular, information about the inner structure of hadrons
can be obtained from the study of form factors

Hadronic currents

In order to compute form factors from the Skyrme model, we first need to identify in the
chiral theory the hadronic current operators that couple to electromagnetic and charged
weak bosons. Let us consider for instance the electromagnetic current of the first two
quark flavors from the interaction terms of the SM:

_ - - 1

Jemag = sQy* s = s (305 + Gy = o + Sof. (2.22)
In other words, the photon couples to hadrons via the third isospin vector current and the
baryon current, so that the associated charges satisfy the Gell-Mann-Nishijima relation:

1
Q=3B+ (2.23)

The baryon number current has been already defined in eq. (1.3). On the other hand, an
explicit expression for (the classical version of) the vector and axial-vector currents can
be obtained from Noether’s theorem, given that the infinitesimal version of vector and
axial vector tranformations yield

l

U—=U'=U+eoU, a0 =3

[Tk, U],(+), (2.24)

and from the definition of the corresponding Noether current,

I = ——— [ Te{L'T } + Tx{[L,, L"] [L", T} ] }], (2.25)

2472

Af = ——— [Te{L'T,[ } + Te{[L,, L"] [L",T;}] }]. (2.26)

2472
where T;- are the su(2) currents defined in eq. (1.19).

These currents depend non-trivially on the Skyrme field U(x). As we are interested
in the emission of a gauge boson from a nucleus, we first need to find the correct classi-
cal solution within the desired baryon charge sector. Even when the classical Skyrmion
configuration is found, the task is not finished yet, since there is no distinction between
protons and neutrons in the Skyrme model at the classical level. The current that couples
to the weak bosons can be understood as describing a classical source for the charged
bosons, but it does not correspond to quantum current operator appearing in the Hamil-
tonian. To be able to describe such a transition, one must introduce the quantum spin
and isospin degrees of freedom. This is usually done within the semi-classical approach
to the quantization of Skyrmions. Basically, we introduce time-dependent collective coor-
dinates for the zero modes associated to isospin rotations (A € SU(2);), spatial rotations
(B € SU(2)s) and translations (X € R?) as explained in section 1.2 .

We are now interested in writing the corresponding quantum operator associated to
the isoscalar, vector and axial-vector Noether currents, egs. (1.3), (2.25) and (2.26). To
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simplify the calculations, let us split the hadronic currents into their timelike and space-
like components: I = (I§,1%), A, = (A§, A?). The associated quantum operators may
be obtained by substituting the Skyrme field with collective coordinates (1.13) into the
classical expressions. Following the notation in [Car91b], we have:

I§ = —=R™(A) [upe (x")a" — wp(x )07,

!\3
[\]
3

It = R*(A)RL(B)I(x"),

Do
[\
00

Af = —R™(A)[tpr(x")a" — wer (x )17,

~—~~ o~~~
[\
DO
=)

~—  ~— ~—

A¢ = RMA)RY(B)AL(x).

N
%)
S

where x’ = R(B)(x — X), and we have used ATr%A = R, (A)7°, with R (A) =
LTr{7* AT A} the SO(3) rotation matrix representing the SU(2) element A.

Although their classical expressions are written in a covariant form, the canonical
quantization procedure implies the choice of a reference frame, so quantized Skyrmions
are nonrelativistic objects in nature. It is therefore natural to choose the Breit frame
when computing the form factors. Let us first consider the matrix element of the current
operators between two spatial momentum eigenstates. For an arbitrary hadronic operator,
its partial matrix element with respect to momenta in the Breit frame can be written

(—q/2| FIR(B)(x — X)]|q/2) = €' / &’z exp{—iq- R(B)"x'} F(x/). (2.31)

The exponential inside the integral in the rhs of eq. (2.31) can be expanded in partial
waves:

exp{—iq- R(B)"x'} = 47rz —i)'5(qr) Z Yim (@)Y, (R(B)Tx"), (2.32)

m=—1

being j;(x) the spherical Bessel functions, and Y}, (X) the spherical harmonics.

Thus, when computing matrix elements with respect to the other part of the quantum
states (namely, the spin and isospin part), one can just truncate the above expression
and compute only the matrix elements of the terms that will be relevant to the process
at hand. For illustrative purposes, let us first quickly review the computation of the
electromagnetic form factors in the simplest case, the nucleons.

Example: Nucleon form factors

In the B = 1 sector, the classical configuration that minimizes the energy can be written
in the hedgehogh form (1.67), in terms of a scalar function f(r) (with r = |x|). Further,
as argued in chapter 1, the FR constraints associated to its spherical symmetry reduce
the allowed states to those with equal total spin and isospin, hence only one of such
transformations is really independent. The above arguments allow to write the hadronic
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currents for the B = 1 sector as

18(0) = — (X206, — X' XV) h(f) (K", RV (A)]+ +O(P), (2.33)
19(0) = —e7* XIh(X?)R*(A), (2.34)
Bo(0) = b(X?), (2.35)
B;(0) = [’(TXQ)E"J"U(J'K”c +0(PY), (2.36)

where h(z) and b(z) are two scalar functions given by (in Skyrme units) [BTWS86]:

) .92 2 .. 9
=g T () ) e
. 2 d
b(r) = —;?Zréd—‘f, (2.38)

u is the spin moment of inertia, |q| = ¢ and we have ommited the part of the operators
that’s linear in the center of mass momentum P, whose contribution will vanish in the
Breit frame. Indeed, for instance the nucleon matrix elements of the isospin charge in the
Breit frame are

<_q/27 Zé‘)? k;‘)| jg |q/27 i37 k3> =
h(X?)

= — (/2 (x20, — XXM g o) i ) 1 R L)
1 . . .
=3 h(r)r?jo(qr)d®z (is] 73 |is) Ok ks (2.39)

and the rest of the current matrix elements can also be readily computed:

~ 2 L ]
(—a/2, 85, 5| 17 /2., k) = —iiacq] / )y B sl o ). (2.40)
q
<—Q/2>i§,k§‘BO‘Q/Q,is,k3> = /b(r)jﬂ(qr)dgzdié,isdké,ka7 (2-41)
~ 1 .., . ]
(—a/2, 85, k5| Byla/2, s, ks) = —iz -7t / D)y B (il o 1) (2.42)
u q

In the above calculations, we have made use of the following useful identities [BTW86]:

(—a/2 f (X?) |a/2) = / Pajolar)f (r) (2.43)
(~a/2| f (X*) X |q/2) = —gqf / iy (qr)rf (r). (2.44)

(/20 () (X'XT = 13309) lay2) = = ('’ — do") [ @200 25)
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Figure 2.2: Electric (left) and magnetic (right) Sachs form factors of the nucleons, nor-
malized to the dipole parametrization.

as well as the isospin matrix element:
. i ai . 1 ii /- al-
(/2 i, k| 5 [K, RYL /2, s, k) = — 0% (i5] 7% [is) (Rs|ks) (2.46)

We can now identify the Sachs form factors of the nucleons by noting that the electro-
magnetic current can be written J£ = %B“ + 1%

Gplis, q) = / {b(r)Jr;z'g@} jo(qr)d®z, (2.47)
Galis, q) = My / {% + gz‘gh(r)] #rd?’x. (2.48)

Experimentally, it turns out that these form factors can be well approximated, for momen-
tum transfers of order —¢*> < 10 GeV, by the following dipole parametrization, [Pun-+15]

Gp(t) = (1+t/Mp)~2, Mp =~ 0.84GeV . (2.49)

We show in fig. 2.2 our results for the electromagnetic FFs of the nucleons in the
Skyrme model with the Adkins-Nappi-Witten choice of parameter values, (see table 2.1)
that fit the masses of the proton and the A resonance [ANW83a]. Unless otherwise stated,
we shall make use of this choice of parameter values for the rest of this chapter.

label fr e 22| m.,
value | 133.71 | 4.628 | 0 | 138

Table 2.1: Parameter values that fit to the proton and A masses.
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2.2. Electroweak form factors of Skyrmions

Application to nuclear beta decay

For larger baryon number (hence larger total spin/isospin states) the decomposition of
the hadron currents in terms of form factors becomes more involved. In general, one
is interested in extracting from the hadronic current, the relevant multipolar operators
that participate in a particular electromagnetic or weak interaction process. Let us now
focus on a particularly interesting application, the determination of the matrix elements
of operators involved in the [-decay process of nuclei. Let us first consider the case
of the nucleon § decay, in which a neutron becomes a proton after the emission of an
electron-antineutrino pair. This process is mediated by a charged weak boson (see the
third diagram in fig. 2.1). As we are interested in energy scales way lower than the weak
boson masses, the weak boson can be integrated out from the lagrangian to obtain an
effective four fermion interaction term,

G
Lt = 7 [T +hee], (2.50)

where G = ¢?/(4v/2M3,) is the effective coupling constant, g is the weak gauge field
coupling, My is the W boson mass, and [§; and J;} correspond to the leptonic and hadronic
currents, respectively.

The corresponding matrix element will thus have the form

M= ‘% e (N'(p)) | 14, [N (p)) (2.51)

The hadronic current matrix element for a nucleon is usually written in its non rela-
tivistic form in terms of the nucleon fields and two experimentally determined coupling
constants, namely, the vector and axial-vector couplings, which describe the Fermi and
Gamow-Teller transitions, respectively. Indeed, consider the simplest case of the neutron
decay. Then, the effective hadronic current can be written

JH =, (x)y*(Cy + Cays)un (). (2.52)

As we saw, a Dirac spinor can be decomposed into two two-component bispinors, u! =
(¢,€) (2.10). In the non-relativistic limit, the components of the bispinor ¢ are much

larger than those of &, and the latter can be neglected. Then:

{ﬂpfyoun,'ap'yiun} — {¢L¢na O}, Fermi transition (2.53)
{ﬂpfyofyg,un,ap'yi’yg)un} — {0, ¢Lai¢n}, Gamow-Teller transition (2.54)

We see that the vector part of the hadron current only contributes to the temporal com-
ponent, and yields the Fermi-like matrix elements. On the other hand, the only contri-
bution to the spatial components of the current comes from the axial part, and yields the
Gamow-Teller matrix elements.

Also, we can easily write the generalization of the above matrix elements to the case
of a nuclear transition from the initial state |i) to the final state |f) as

Fermi: (f| T, |i), Gamow-Teller: (f|oT, |i), (2.55)
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where 7', is the isospin-raising operator, and o is the vector of Pauli matrices. Therefore,
assuming the nonrelativistic approximation and a negligible momentum transfer to the
nucleus, the transition matrix element takes the form:

Sy~ 2mB(E. + B = AEg) % [Cy (11T 0500) + Ca (o2 1) 510)]. (256)
The matrix element (2.56) describes the so called allowed  decays, in which leptons are
produced with zero spatial angular momentum. Forbidden transitions can be described
but the full spatial and momentum dependence of the transition operator must be taken
into account as well.

In general, the problem of calculating the 8 decay of an arbitrary unstable nucleus
is reduced in the first approximation to the calculation of the Fermi and Gamow-Teller
matrix elements for allowed decays. However, due to the non-perturbative nature of low-
energy QCD, calculating these matrix elements from first principles becomes impossible,
and one needs to develop a model for the nucleus that can be used to calculate the nuclear
wavefunctions. In the following, we will derive the form of these matrix elements from
the Skyrme model.

Calculating relevant matrix elements

Now the first issue we need to address is to identify the hadronic current entering the
effective Fermi interaction term (2.50) within the Skyrme model. A natural course of
action would be to construct a current that presents the same tensorial structure as that
for elemental particles, which is given by the standard model Feynman rules. Indeed, for
fundamental leptons and quarks, the weak charged currents present both a vector and
an axial-vector parts, in the combination v, — a,. Further, the isospin index structure is
determined by the fact that the current must connect the two states of an isospin doublet,
hence it must be proportional to 7 (see eq. (2.8)). We thus conclude that the hadronic
charged weak current that enters the Fermi contact interaction term must be of the form

J =T — A (2.57)

This is consistent with the so-called CONSERVED VECTOR CURRENT HYPOTHESIS, which
states that the isovector components of the electromagnetic and weak currents are only
different components of the same, conserved isospin vector current, [*.

We also remark that the same result could be obtained by promoting the (global)
SU(2) x U(1) chiral symmetry to a local one, and introducing an external gauge field that
represents the electroweak gauge bosons. The interaction between the Skyrme field and
the charged weak fields can thus be introduced through the following covariant derivative

[SS05b; KCPO5]:

. g - —

o,U — D, U+ iUW,, W, = —E(W:T+ +W,or ) =Wit,, a={+,—} (2.58)
which must substitute the partial derivatives in the Skyrme action. Then, the corre-
sponding current operator can be computed as the functional derivative of the effective
action with respect to the external current, j# = 05/0W/. This is a well-known “trick”
to compute hadronic currents in chiral effective theories, see e.g. [Pic95].
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2.2. Electroweak form factors of Skyrmions

Once the hadronic weak current operator has been identified, the next step is to
compute its matrix elements connecting different nuclear momentum, spin and isospin
eigenstates. In the first approximation, we can truncate the expansion of eq. (2.32) at
the zero-th term, which is equivalent to the zero momentum transfer approximation in
the Breit frame. As we have commented above, this is sufficient to describe ALLOWED
B decays. Moreover, we can in principle calculate also matrix elements corresponding to
FORBIDDEN decays, which are however less likely to occur and thus have much longer
half-lives. The degree to which a transition is forbidden depends on how far we must
take the partial wave expansion to find a nonzero matrix element. The first term beyond
the zero term opens the J = 1 channel, and yields first-forbidden decays, the next gives
second-forbidden, etc [KHSS8S].

After the partial matrix elements of the relevant operators with respect to momentum
eigenstates are computed (which is trivial in the Breit frame for the zero-momentum
transfer approximation), it remains to compute the matrix elements between spin and
isospin states of the initial and final nuclear wavefunctions. This task cannot be fulfilled
in general, and we need specific examples in order to make explicit calculations.

Gamow-Teller matrix element for neutron and tritium decay

In general, the spin and isospin part of the nuclear wavefunction in the Skyrme model is
constrained by the symmetries of the classical configuration. A review of the quantization
procedure of a classical multi-Skyrmion configuration, and some examples of the quantum
states associated to the lowest topological sectors (B = 1 —8) can be found in [MMWO07],
or chapter 1.

The simplest cases of 8 decay whose matrix elements we can try to calculate are those
for the neutron (B = 1) and tritium (B = 3). The total spin and isospin quantum
numbers of the initial and final wavefunctions are the same in both cases,

i:j:k:l:%, (2.59)
i.e. the neutron and proton form an isospin doublet, as the wavefunctions for *He and *H.
We are interested in calculating the matrix element between such states of the (spatial
part of the) axial current part of the Weak decay current, since it yields the Gamow-Teller
matrix element in the forward limit, as argued above.
Spherical symmetry (in the B = 1 case) and tetrahedral symmetry (in the B = 3
case) makes the classical current A%(x) proportional to the identity, so that

(—q/2| A% |q/2) = / R(A)RE(B) A (x)d*s = R™(A)RL(B)a, / A )Pz = ad.

(2.60)

We can label states within the fixed total spin and isospin subspace by their third com-

ponents of spin and isospin. The matrix element of (2.60) between states with arbitrary
i3, j3 within the multiplet are given by [Car91b]

g . o 1
(i3, J3| Rap(A) Rei(B) li, j3) = —§(Ta)igi3(0i)jgj37 (2.61)
and therefore 5
<Zg7jé7 _q/2’ A;l ‘Z'37j37 q/2> = _g(Ta/2)2’313 <O-Z>Jé.73a (262)
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Remembering that the axial part of the weak hadronic current actually involves the com-
bination A = A} + iA?, we have

g AL 2 A )
<Zgaj§,’)a _q/2| A:— |Z37.]37 q/2> = _ga <f| T+0i |Z> ) (263)

where T+ = %(Tl + i73) is the isospin raising operator. Comparing with eq. (2.56), we
may identify C'y = —%oz. This result was first obtained in [Car91b] for the tritium decay.
The axial coupling he obtained is roughly half of the experimental value, although it may
be improved with the sextic term and a different calibration of the parameters.

Computation of general multipolar matrix elements

We are ultimately interested in the computation of the hadronic current matrix elements
that are relevant for the S-decay process of an arbitrary nucleus, i.e.

72X = 5 X +e+7, (2.64)

without assuming the zero momentum transfer limit. The most general expression for the
matrix element (2.51) in the Skyrme model is

G : . 5 .
M = — E d3x€71k-x <23 + %7 Jf7 Mf7 —Q/Q} luj‘ifA(X) ’237 J’i: Mi7 q/2> =
G
== % d3relak) f|/d3 e BN g (X)) |i) = (2.65)
G

~ = Ssda =R U] [ e Xy (BB -x) = FREB)R 4(R(B) - )]0,

where we have defined the initial and final eigenstates

and we have relabelled the third component of isospin by the proton number of the nucleus.
We now proceed to rewrite the exponential in a suitable multipolar expansion. Following
[Wal04], we decompose the spatial part of the leptonic current in a spherical vector basis,
l=&lls+ > N é:f\l A, Where we define the following orthonormal unit vectors:

/{37 +1 = \/§

being €y, two arbitrary, unitary vectors that are orthogonal between them and with &.
Taking into account the following identities (k = |k|):

8l emikx Z\/Qﬁ (2 + 1)(—i)” {Njs(k2) Y77 (%) +

8o = 81, = iy, ), (2.67)

J>1
1
+ 2 Vo k)Y (268)
A==+1
8l e X = Z VAT (2T + 1) (=0)'V [ (kx)Yie(X)] (2.69)
J>0
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2.2. Electroweak form factors of Skyrmions

in terms of the spherical Bessel functions j;(x), the spherical harmonics Y, and vector
spherical harmonics Y’ ;, defined as [Wal04]:

Vi) = > (LIM'N[TM) Yiréiy, (2.70)
M N
one can show that the matrix element can be rewritten as

M=—— f\ { D> V22T + 1)(=i) Y I [AM (k) + E5n (k)]

J>1 A==+1

‘I’Z \ 47T 2J + l3£]0 ) loCJ()(k?))} |’L>, (271)

J=0

in terms of four different types of multipole Irreducible Tensor Operator (ITO) [Wal04;
Kin+23]

Cru(k) = / d*xj;(kr)Yon (%) JO_4(R(B) - x), (2.72)
Lon(k) = ¢ / &2V [ (kr)Your (%)) - BT (B) - J,_y(R(B)-x), (2.73)
Epm(k) = /d?’xv x [Js(kr) YTy (%)) - RY(B) - Jy_4(R(B) - x), (2.74)
M (k) = %/d% [jJ(k?T)y% (&)] 'RT(B) -Jy_(R(B) - x). (2.75)

Therefore, the amplitude of any process of the form (2.64) will depend on the relevant
matrix elements of the above multipole operators. Furthermore, since these are irreducible
tensor operators, the matrix elements of a generic multipole 7;,; between initial and final
nuclear states can be written in terms of the Reduced Matrix Element (RME) (J¢||7;||J;)
by virtue of the Wigner-Eckart theorem:

<f f|T]M| > \/m

(Tl T3l i) (2.76)

Example: Multipole operators of ‘He beta decay

Once we have shown that the weak Hamiltonian can be expanded in an infinite sum of mul-
tipole operators with definite total angular momentum J and parity, let us now focus on
a particular example: the pure Gamow-Teller transition ‘He(0+) — Li(1+), which only
receives contributions from operators with J = 1 between the initial state [He, 00) and
the final state |°Li, 10). This transition has been measured with extraordinary accuracy
[Cir+19], and the prediction of the contribution from each of the relevant multipolar terms
has became a benchmark for many different theoretical approaches [Kin+23; VBG09]

The simplest of these operators is C1(k) = (1||C1(k)||0), which can be computed using
the Wigner-Eckart theorem (2.76),

<1? 0| Clﬁ(k> |07 O)

Cilk) = (0100]10)

= (1,0[C10(k)0,0) . (2.77)
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We will now go through the step by step computation of such matrix element to demon-
strate the power of this formalism in the Skyrme model. We start by extracting the
explicit dependence of the multipole operator Cjy(k) on the zero mode collective coor-
dinate operators. We first note that the dependence on the spin rotation matrix can be
factorized from (2.72) by changing the integration variable, to get

Crai(k) =3 Zyan(BY) / @ (k) Yonp (%) T4 (%), (2.78)

where we have taken into account that the spherical harmonics of degree [ transform in
the (2] + 1)dimensional IRREDUCIBLE REPRESENTATION (irrep) of the rotation group.
We remark that this transformation property is in fact a characteristic shared by all four
operators in egs. (2.72) to (2.75), due to their I'TO nature. On the other hand, the weak
hadronic current operator can be written in terms of the vector and axial-vector isospin
currents as

A

Jy_a(x) = 1(x) - AL (x) =

=g [M[me 0]+ LB ) 1,

S Y Gl Ky [ B

2 u
N=0+1
1 i
SR O R R R 2.79)
M,o=0,+1 U

In the second step we have made use of the fact that for the B = 6 Skyrmion, the sphericity
condition (2.133) is very well satisfied, and we have also made the approximations

wW— W), U — U)q
W<, ( )b<<( )ab
v u

(2.80)

which are also very good for the case at hand(indeed, the neglected terms amount up to
a few percent of the leading terms).
Combining egs. (2.78) and (2.79), we have

1 y s a ~a - UWaq
Conuk) = D2 Dinn(BN3(2(4). K7L, / d s (k) Yonp (%) € {—(“b jbﬂ")}e
M’ N ,0=0,+1
1 ,
= -@J}4M’(BT>§[@11X(A%KJ]+F§1\(}'U‘7)- (2.81)

In the last step of (2.81), we have ommited the summation symbol and adopted Einstein’s
summation convention also for repeated spherical indices (M’, \'). This factorized expres-
sion allows us to compute the matrix element between the desired nuclear states, which,
using the notation of eq. (1.25), are given by

°He; 0,0) = [1,—1,0;0,0,0), °Li; 1,0) = [0,0,0;1,0,0) . (2.82)
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2.2. Electroweak form factors of Skyrmions

Hence we have

(°Li; 1,0/ C1o(k) |°He; 0,0) =
1
= (1,0,0[ Z)(B")10,0,0) {0,0,0] 570 (A), K7L 1, = L,0) Py (k) =

(1,0,0] Z33,+(B1)10,0,0) | = (0,0,0] 2Ly, (A) 1, =1, 1) T3k (k) +

l\DIH

+(0,0,0/ 2L (A) |1, =1, ~) T ()], (2:83)

where we have used the following relation between the angular momentum operators in
the spherical basis and the ladder operators:

1

K_
Ko='= — (K® —iKY) = —,
A )=
KU:O — KZ,
1 K
Ko™l = —— (K® +iKY) = ——*. (2.84)

V2 V2

The matrix element of a Wigner D-function between angular momentum eigenstates
can be straightforwardly calculated in terms of Clebsch-Gordan coefficients. We define
the coefficients

XCm b (o, o, ) = (1, i, mi | D2 (A) |js, ma, mh) =

(2j 1 (2] t1 1% 2 3

_ V2 2732 3+ 1) / WA 7 (D2 (AT (A) =
273+1 .. , o

— ij—l-l <]2]3m2m3|J1TrL1> <]2]3m2m3|j1m1>’ (2.85)

where we have used the property 27* (A) = 27, (A') and the SU(2) integration formula
[BC89:
; , 2 iy
/du(B)@ (B) sy, 27 (B) gy, 2 (BT)mémS = i1 (igmyma|kms) (igmims|km}) .
(2.86)

Note that the integral above does not depend on the SU(2) elements, and neither do
the coefficients defined in (2.85). We thus arrive to our final result:

Ci(k) = (°Li; 1,0| C1o(k) |°He; 0,0) =

0,0,0 I 0,0,0 '
Z X 1 0, M") [X§1,—1?—1)(1a LX) (B) — XEl,—l?l)(L LX) (F)| =

M/ )\/7

1 1 1
= (-Ti0 () + Dig (k) = 3T (R)ef'el)y = i IV (k) =

/31(]%”); (Uzy — Uay)(X) = (Uye — Uy )(X) B (2.87)

u

7
B 4+/3m
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If we take into account that, for the decay we are considering, the momentum transfer is
of order ¢/m, < 0.03, the spherical Bessel functions can be approximated by

.l’l

jj(x) ~ [OES (2.88)

and thus, at the first nontrivial order in the momentum transfer expansion [Kin+23] we

find:

i ko) 9 (1) _ _Ma (U[ry] — Uly))(X)
E) ~ —— k d 2.
Cy(k) S C +(9( /m2), C Wer ” x  (2.89)

numerically, we obtain C’fl) ~ 1074, i.e. this multipole contribution is very supressed in
the beta decay of *He.

Indeed, the multipole operators that will be most relevant will be those that are of
order O(kY) in the momentum transfer, which will in general yield the leading contribution
to Fermi and Gamow-Teller allowed transitions. Let us consider for example the leading
Gamow-Teller multipole, £1p. In the low momentum transfer approximation,

: . k o X .
¥ [ja (k) Vi (%)) = 5 (YlM (%) + rw,m(x)) + O(kr). (2.90)
Also, as in the previous case, a change of variables in (2.73) allows us to write
. 1
L£10(0) ~ > Dy (B / Aoz (Y (®)% + VY1 (%)) Jy-a(x). (2.91)
M/

and we have

- <6Li§ 1, 0‘ Elo(O) |6He; 0, O> —

Z X (1,0, M)y P00, (1,1,)\)/(Y1M, +rVY1M,)(I§/—A§/)d3:c:

M/ )\lf

- _%\/g / [13(x) — Ad(x)|d*z = ?L?), (2.92)

from which an effective value for the axial coupling constant can be extracted [Kin+23].
Numerically, we obtain L§°) ~ 0.19, which is a 20% of its measured value, too small even

for the Skyrme model standards.

Gravitational form factors

The Gravitational Form Factors (GFFESs) of a nucleon describe the scattering of a graviton
with a nucleon, or, equivalently, the response of a nucleon to the passing of a (quantized)
gravitational wave. Obviously, a direct measurement of such quantity is not available,
as this would require a controlled experimental setup to scatter a nucleon from isolated
gravitons. However, indirect ways to measure these form factors in lepton-nucleon scat-
tering experiments have been proposed, such as in the Deeply Virtual Compton Scat-
tering (DVCS) process, in which a high-energy electron is scattered off a nucleon by
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2.3. Gravitational form factors

exchanging a virtual photon. Then, a highly energetic real photon is emitted from one
of the quarks inside the nucleon, which carries information on the quark’s transverse
position and longitudinal momentum. This can be seen as an effective, two-photon inter-
action with the nucleus, which can thus probe spin-2 correlation functions such as those
appearing in the GFFs.

N N’

Figure 2.3: Hypothetical graviton emission process from a nucleon (left) and Deeply
Virtual Compton Scattering (right)

The GFFs are form factors associated with the QCD Energy Momentum Tensor
(EMT) T, [KO62; Pag66]. Much like the electromagnetic form factors, they contain
a wealth of information about the structure of the nucleons, or more generally hadrons
and nuclei. However, unlike the latter which have enjoyed more than 70 years of continual
theoretical and experimental efforts, it was not until recently that GFFs started to attract
community-wide attention [PS18]. A major catalyst is the Electron Ion Collider (EIC)
project [Abd+22] poised to uncover the mass and spin structure of the nucleons and nu-
clei. Since the EMT encodes mechanical properties such as mass, angular momentum,
internal forces and their distribution, the study of GFFs is perfectly aligned with the
core missions of the EIC. In a sense, the GFFs are more ‘quintessentially QCD’ than the
electromagnetic form factors, since they can be defined without reference to QED.

Indeed, the off-forward nucleon matrix element of the QCD EMT can be parameterized
as

iP00)p0" Qv — M’
—— Bt =Dt 2.93

where P, = (p, +p},)/2 and ¢ = p' — p is the momentum transfer with t = ¢*. A, B,) =

¥ Tulp) = 5(0') [P A() +

% denotes symmetrization. u(p) is the nucleon spinor normalized as @(p)u(p) =
2My with My being the mass of the nucleon. The same formula applies to all the
spin-1/2 nuclei with trivial changes. The gravitational form factors A, B, D are scalar,
renormalization-group invariant functions of ¢. In the zero momentum transfer limit,
ie. t = 0, the values of A(t = 0) and B(t = 0) are constrained to 1 and 0 due to
momentum and angular momentum conservation, respectively. However, the so-called
D-term D = D(t = 0) is not constrained by any symmetry, and this is our main object
of interest, as it is related to the ‘pressure’ distribution inside hadrons and nuclei [PS18].
Its value at vanishing momentum transfer D(¢ = 0), often referred to as the D-term, is
a fundamental constant similar to the magnetic moment. While the value is presently
unknown, even for the nucleons, in principle the form factor D(t) can be experimentally
accessed in DVCS [AT07] and near-threshold quarkonium photo- and electro-production
in electron-nucleon scattering [HY18; BH20; HS21; GJL21; MZ22]. The same methods
could be used to measure the D(t) of light nuclei at the EIC.

41



Alberto Garcia Martin-Caro

The application of the Skyrme model to GFFs has been so far limited to the B = 1
sector (nucleons and their excited states) [Ceb+07; PPS16; KS21] which is relatively
tractable due to the spherical symmetry of the classical solution. In fact, all the known
Skyrmion solutions with B > 1 are not spherically symmetric. Yet, each solution possesses
a (discrete) symmetry group, and techniques from group theory can greatly facilitate the
extraction of form factors as we have illustrated in the previous sections in the context of
the electromagnetic and weak form factors. In this section, we shall adapt this method
to the computation of GFFs.

It should be mentioned that the form factor D(¢) for nuclei has been calculated in
other models [Pol03; LT05; GS06] and its dependence on the atomic number has been
studied. We shall compare our result with these previous calculations at the end of the
next sextion.

The EMT of the model can be obtained via the Hilbert prescription, i.e. minimally
coupling the scalar chiral field to a nontrivial background metric g,,, and vary the action
with respect to this metric. For our sign convention this can be written:

2 88 _ 2 ALV=9) 2,00

vV — g 59/111 B vV — 9 ag,uu
The minimal coupling to a gravitational field is a trivial task for all terms in the GSM
lagrangian but the sextic. Indeed, the sextic term contribution to the action in a gravi-
tational field is

T =

B*BY
S = —/d4x\/—g)\27r4gw, —

Note that the definition of B* involves a Levi-Civita tensor, hence it transforms as a

(2.95)

1
tensor density of rank one and each must include a factor of |g|™2 [Ada+15c|. Then, we
have

1
2 4L\ — 2 B*BY dlgl 2 B*BY my
_ ( 9) — A2t + gasB°B? 9] — 92t _ 9
V=9  0Guw V=9 | V-9 09w lgl  2lg]

(2.96)
and 7% has overall positive sign. To compute Ty with the Hilbert prescription one should
also take into account that B, = g,, B".

Therefore, the full Skyrme EMT for our sign convention is given by

1 1
Ty D) Tr{—2L,L, + 1, L,L"} — 4 Tr{_4[Lua L)Ly, LP] + 0y [ L, LU]2}
+ 87tcs B, B, — 47 c6 B,B 1, + co(1 — o)1 (2.97)

We shall be mainly interested in the uv = i,j (spatial) components. The relevant
traces we need to compute are:

Tr{—L;L;} = Tr{o;U'0;U} = 20;¢*0;¢°, (2.98)
Tr{L;,L;LyLi} = Te{0,U0,U0,U QU } =

= 20;0°0;6" 01" 06° (200505 + Sar 085 — 0as0py — €apys) (2.99)

and contractions of these. We have used the properties of the 7, (see e.g. appendix D in

[Esp90]).
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2.3. Gravitational form factors

The D term

In this section, we outline our strategy to compute the D(t) form factor for the B =1
(nucleons), B = 2 (deuteron) and B = 3 (helium-3 and triton) solutions. These three
examples are representative of different situations one encounters in the computations of
D(t) in the Skyrme model. Despite the differences, however, under certain assumptions
we shall arrive at the same formula in all cases. This motivates us to extrapolate our
discussion to solutions with arbitrary values of B. The actual computation of the form
factor is carried out in the next section.

B = 1: the nucleons

The D(t) form factor can be isolated by working in the Breit frame (p’ = —p = ¢q/2,
t = —q?) and taking the spatial i, j = 1,2, 3 components:
D(t D(t

W1Tslp) = 202D (0 — @) ~ P g0, — 5, (2.100)

AMN 2

where we used the nonrelativistic approximation in the last expression. Classically, in the
Skyrme model, D(t) can be obtained by simply Fourier-transforming the classical EMT
Tl (2.97). For spherically symmetric configurations such as the B = 1 solution, the EMT
can be written in terms of the ‘shear’ and ‘pressure’ distributions

‘ r;x; 1
Te (%) = ( x2] _ 5&7)5(:6) + p(x)di;. (2.101)
(Below we shall write |x| = z and |g| = ¢ for simplicity.) It then follows that
1,.J 1 ij ]Q(QI) cl
D(t) = —6MN/d33: (x x) — 56’302) (g2 T (x). (2.102)

In particular,

D(t:O) = —%/d;’l‘ (.’IZ‘,LIJ 3 2(5”) Td< )

4 .
= —%/d%x%(m). (2.103)

We see that the D-term is related to the distribution of shear forces inside the nucleon,
parametrized in the spherically symmetric case by the function s(z). It is interesting to
note that in the so-called BPS Skyrme model, a solution that saturates the Bogomolny
bound exists [ASW10b]. For this particular solution, the EMT is that of a perfect fluid
[Ada+15al, that is, the shear force vanishes. Therefore, the D-term is exactly zero in this
limit. From physical point of view, the passing of a gravitational wave causes a volume
preserving deformation of the nucleon, which is precisely a symmetry in the BPS model
[ASW10b]. Therefore, in this limit, nucleons are transparent to gravitons.

Returning to general situations with s(x) # 0, we now consider the effect of quantiza-
tion (1.13) and write the matrix element between momentum eigenstates as

(a2 T U(R(B)x- X)) ~a/2) = e T*RL(B)RY(B) [ ' explig - R (B)x'} Tunlx
(2.104)
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where
Top(x) = T3 [Us(x)] + O(12, J?). (2.105)

Both R and T, in (2.104) are operators which act on spin and isospin eigenstates (1.25).
In general, the calculation of their matrix elements is a complicated task. However, since
our main objective is to evaluate the D(t)-form factor for a wide variety of nuclei with
different spin/isospin quantum numbers rather than focusing on a particular nucleus, we
neglect the O(I%, J?) terms in (2.104). This may be partially justified by the large-N.
approximation.

Even after this approximation, (2.104) still contains the spatial rotation matrix RT
which acts on external spin states. To deal with it, we expand the exponential on the
right hand side in partial waves [ =0,1,2,---

. . _ 371(qx
exp{ig- R"(B)x} = jo(qz) +iq. Rl (B)x; ‘hq(j ) (2.106)
1 1 1 1572 (qz)
—5 (chd - §5cdq2) RZ;C(B)RQ(B) (xkxz - §5k1$2) (qu)Q

In order to extract the D(t)-form factor, it suffices to focus on the [ = 2 tensor term and
read off the coefficient of ¢;q;. One then needs to evaluate the integral

1 1572(qx
Tapkr = /dSX (xkxl — géklxj) %T;ﬁ(x) (2.107)

For a spherically symmetric solution, the tensorial structure is completely fixed by sym-
metry

1 2
Topkr = 0 (5ak5bl + 0k — §5ij5k-z) Teded- (2.108)

Note that the trace part T ~ §,, does not contribute to the integral (2.107). Substituting
(2.108) into (2.104), we see that the RT matrices disappear due to the orthogonality
relation RRT =1 and we recover the formula (2.102).

One might wonder that, since we have neglected the O(J?, I?) terms in (2.105), what
the effects of quantization are in the present calculation. The point is that if the classical
solution is not spherically symmetric, the tensor T, does not have the canonical form
(2.108) in general. The introduction of the R-matrix then becomes crucial to restore the
symmetry. We shall see examples of this below.

B = 2: the deuteron

We now turn to the B = 2 sector, the ‘deuteron’, with spin J = 1. For spin-1 nuclei,
there are in general six independent gravitational form factors [Hol06] related to the fact
that the nuclear wavefunction is not spherically symmetric. In particular, it is well-known
that the deuteron wavefunction has quadrupole deformation. In terms of the EMT matrix
element, this is most clearly shown by the following multipole expansion in the Breit frame
in the nonrelativistic limit [PS19]

1 *
(p'o’|Tij|po) 25(%% — 05" )Di(t)ess - €0 + (4 Qik + GarQjk — Qi — 053060 @n1) ., Da(t)

1
+ — (@105 — 050°) @@ Q00 D3 () + - - - (2.109)
e
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2.3. Gravitational form factors

where Mp is the deuteron mass. €, are the polarization vectors of the deuteron with
spin 0 = £1,0 measured along the z*-direction (not helicity). Qyjo.0 = (0/|Qijl0) is the
matrix element of the quadrupole operator

R 1 4
where J; is the spin-1 operator with matrix elements (o’|J;|o) = — 1€k € €0k While
the quadrupole part is of interest in its own right (see recent extractions for the p-meson

[FC19; PHS22]), we will only focus on the monopole part D;. The Q)-dependent terms
can be eliminated by averaging over the three spin states thanks to the identity

+,0
> Qijor = 0. (2.111)
Restricting ourselves to this simpler situation, we write
< Z Po|Tylpo) = <q1qj 5,%)D(t), (2.112)

where we renamed D(t) = D;(t) to emphasize the correspondence with (2.100).
Turning now to the Skryme model, we recall that the classical B = 2 solution has
toroidal symmetry [BC88] and is mainly characterized by a c-number quadrupole tensor

Qij [PS19]

Td = Yy s(x) + p(x)dy; + 26 (x) (Qz‘kyzkj +QinYs — 5ianszab) + 9/ (2)Qi5

1 o i
_M_%leakal (p" ()0 + 5" (2)Y,7) | (2.113)
where we abbreviated Y;j = % — % In principle, @;; can be numerically extracted

from a given Skyrmion configuration. But in parallel with the spin-averaging procedure
above, we eliminate it by forming the moment (2.102) and using the integrals

[eavi—o [ @ovy (Quy+ Quyd - 5,0u15") =0
Q™ / d*QYy 0,0, (8" (2)Yy’) = 0, (2.114)

where we used the traceless property Q; = 0. We thus see that the D(t) form factor
as defined in (2.112) can be calculated via the same formula (2.102) with the trivial
replacement My — Mp even if the classical solution is not spherical.

B =3 and beyond

Next we turn to the B = 3 sector relevant to the helium-3 nucleus (*He) and the triton
(3H). Since they have spin 1/2, GFFs are parameterized by the same formula (2.93) as
in the nucleon case. However, in the Skyrme model, the B = 3 classical solutions are
not spherically symmetric, but rather has the shape of a tetrahedron [Car9la]. Tt is then
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not obvious how one can recover the same set of form factors in the present semiclassical
approach.

In order to answer this question, we need some elements of group theory. The tetra-
hedral group 7, [Tin64] consists of 24 discrete transformations such as a 120° rotation
around one of the four vertices of a tetrahedron. It turns out that this symmetry imposes
strong constraints on various moments of classical configurations [Car91b]. For example,
consider the following integral

Ay = / BrTC (x)j0(qx), (2.115)

which appears in the [ = 0 partial wave in (2.107). Let g be an element of the tetrahedral
group. Changing variables as * — ga, we find

A =gty [ TS Oar') = ghaly A (2.116)

where we used TZ’]CZ = Tff due to symmetry. This means that A, o d4. Mathematically,
the integral transforms as the singlet (A;) representation contained in the product of two
vector representations (77) of the tetrahedral group

T1 XT1:A1+E+T1+T2, (2117)

along with the two-dimensional (F) and axial vector (T5) representations [Tin64].

Consider, then, the transformation properties of the tensor Ty defined in (2.107)
under the tetrahedral group. Since the trace part of the EMT T does not play a role,
T.pr can be viewed as the product of two symmetric and traceless tensors formed by T}
vectors

(Ty x T1) x (Th x Ty), (2.118)

where (77 x T1) = E+ T denotes the traceless part. We are interested in the components
that transform as the irreducible, singlet representation A;. There are two such structures?
which can be rearranged in the form [Car91b]

1 2
Topkl = 10 (5ak5bz + 01Ok — §5ab5kz) Teacd + Capii- (2.119)

The first structure is the same as before (2.108). The second tensor C' is symmetric and
traceless in any pair of indices (a, b, k,[) (see [Car91b] for the details). Plugging (2.119)
into (2.104), we obtain

52" Tc C
(/2 Ty RX) 10/ = ~ (g~ ) o = 2.120)

1 1
5 (0= 30 ) R B (5) R () Can

The operator in the second term is totally symmetric and traceless in the four indices
i,7,¢,d. It is thus a spin-4 operator whose matrix element between spin-1/2 states van-
ishes. The first term then leads to the same formula (2.102) for the D-form factor. We

30ne coming from E x E = A; + Ay + E, the other from T} x T} = A; + E 4T, +T5. The cross term
E x Ty =Ty + 15 does not contribute to the trivial representation.
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2.3. Gravitational form factors

now appreciate the effect of the rotation matrix R in the present calculation. Had we
neglected R’s, namely, RL, — 4, etc. in (2.120), the second term would have contributed
extra terms quadratic in ¢;, in contradiction with the unique tensor structure (2.100) for
a spin-1/2 nucleus. By introducing R’s, we have minimally included quantum effects in
order to restore the original spherical symmetry of the problem.

The above argument can be broadly generalized. Each Skyrmion solution possesses a
symmetry group [BHI8]. For B > 3, the group consists of discrete symmetry transfor-
mations and this puts strong constraints on the possible tensor structures of the integral
(2.107). For example, the B = 4 solution (the helium-4 nucleus, or the ‘alpha’ particle)
has cubic symmetry [BTC90]. The associated octahedral group Oy, has irreducible repre-
sentations which correspond to those of the tetrahedral group A; — Ayy, T — Thy, etc.
We can then immediately conclude that the D-form factor is again given by (2.102).* A
similar argument can be repeated for larger-B solutions. (Spin-averaging is understood
for spin > 1 nuclei.) We thus use (2.102) as a working definition for all nuclei in the
Skyrme model.

Angular momentum form factor J(t)

Our approach can be straightforwardly generalized to the other GFFs. As an example,
let us consider the angular momentum form factor
J(t) = %(A(t) + B()) (2.122)

for spin-1/2 nuclei, where A(t), B(t) are defined in (2.93). Physically, J(t) represents the
form factor associated with the total angular momentum of the system. The forward value
J(0) = 1/2 is constrained by angular momentum conservation. In the Skyrme model, J(t)
has been computed for the B = 1 solutions [Ceb+07; KS21|. Here, for the first time, we
compute it for the B = 3 (helium-3, triton) solution.

In the Breit frame, the J-form factor appears in the following components of the EMT
matrix element: (2.93)

<p/7 S,‘ TOO(()) |p7 S> t

o = M | A() — i [A) = 27(2) + D(1)]) | G, (2.123)
(p', s'| Toi(0) |p, ) T

Note that the mixed (timelike-spacelike) components vanish in the classical limit which
corresponds to a static configuration. Once the quantization of the Skyrmion is taken
into account, we find a nonzero, operator-valued result

Toi = Lija’ — Jib/, (2.125)
4For a spinless nucleus such as the helium-4, there are only two GFFs which we parameterize as
D(t
(V| Tuwlp) = 2A(t) PP, + #(q,iqy — D). (2.121)
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where

ILj=—

Te{ LT3} + Te{[ L, L) (L T (2.126)

2472

Jij €@ [Tr{ L; Ly} + Tr{[La, L] [La, L] }]- (2.127)

1
~ 24n?
Both of the above tensor densities transform as the product of a vector and an axial
vector, i.e., they belong to the T, x T} representation which does not contain an irreducible
trivial component A;. Therefore, their contribution must vanish at first order (I = 0) in
the partial wave expansion (2.107). At the next order [ = 1, we find

(@/2Ti(~Fx)| = a/2)|, = F(B) [ dvesplia- R (Byx}To(x

3
—iR%(B)RL(B)¢" / & ‘71;;”6) Lima™ — Jymb™zt. (2.128)
Defining the currents

L) = [ @220 ok g = [ @22 g (2.129)
qx qr

we can identify their irreducible component that transforms as A; € Ty x T7 x 17, which
is totally antisymmetric in the three indices [Car91b]:

Lijw = epnZ(q),  Ji = €T (@), (2.130)
where . X
I(Q) - gGabc-[abC(q>) j(Q) - geabcjabc<q)- (2131)

Substituting (2.130) into (2.128), we get
(@/2|Toi(~RX)| - q/2) = iRj;(B)Riy(B)¢"€¢jmlZ(q)a™ — T (q)b"]
—iegsa B (B)T(g)a™ — T (g)b"). (2.132)

At this point, we need to invert the relations in (1.22) between the spin and isospin
velocities in terms of the associated angular momentum operators. This is a complicated
task in general, but for the specific B = 3 solution at hand, the tensors defined in
egs. (1.15) to (1.17) are proportional to the identity, i.e.,

Uij = udyj, Vij =vdij, Wi = wdy;. (2.133)
In that case, we have [Car91b]:

_va—l—wLm _me+uLm

= W (2.134)
and we may write
Ry, (B)[Z(g)a™ — T (q)b™] = (2.135)
o i —{[Z(@)(w —v) + T (@) (w = W] Ry, (B)L™ + [vI(g) — wT (@)] Rim(B)M ™},
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2.4. Numerical results

where we have defined the operator M = K + L. Also, taking into account (1.23) and

the fact that the B = 3 ground states are M = 0 singlets [Car9la], we find our final

result

Z(q)(w —v) + T (¢)(w — u)
uv — w?

Comparing the definitions in egs. (2.126), (2.127) and (2.131) with egs. (1.16) and (1.17),

we get the following relations

J(t) =

. (2.136)

1 1 1 1
limZ(q) = —éVVii = 5w, lim J(q) = —éVii =—5Y (2.137)

q—0 q—0

and thus J(¢ = 0) = 3 as required by Lorentz invariance.

Numerical results

In order to compute the gravitational form factors of light nuclei, we start by generating
the static energy-minimizing classical field configuration corresponding to each of the
topological sectors.

After obtaining the classical solutions, we used the formula (2.102) (with My replaced
by the respective nuclear masses) to compute the D-form factor for the first eight topo-
logical sectors, for which the ground state is well known, as well as for the B = 32 and
B = 108 cubic Skyrmions. The results for the first three Skyrmions are shown in fig. 2.4.
We have used the same values for the parameters in the Lagrangian as in [Ceb+07]. Thus
the B = 1 result is in agreement with [Ceb+07], while the B = 2,3 results are new. In
the same plot, we also show the results obtained with a second set of parameters which
includes a nonzero value of the sextic coupling constant \> = 3MeV fm®. This choice is
motivated by some previous studies on the symmetry energy of infinite nuclear matter
within the same model [Ada+22b], as well as the EOS of neutron stars [Ada+23|. Finding
classical solutions with nonzero A via gradient-descent based algorithms becomes numer-
ically more challenging for arbitrarily large values of this parameter. With our choice of
A2 = 3MeV fm?®, we have been able to obtain trustable solutions only up to B = 32. We
find that the main effect of the sextic interaction is to increase the magnitude (in absolute
value) of the D-term D(0). This can be traced back to the fact that the sextic term repre-
sents a repulsive interaction, which makes the size of the soliton to grow to pick up more
contributions from the large-radius region in the integral (2.102). However, apparently
it contradicts with the recent observation [Fuj+22] in the Sakai-Sugimoto model [SS05a]
that the repulsive interaction due to the omega meson exchange decreases the magnitude
of the D-term. Unlike in [Fuj+22], in the present model the omega meson is treated as
a static field represented by the sextic coupling [Jac+85], and induces only a diagonal
term T;; o cgd;; in the EMT (2.97) which does not directly contribute to the D-form
factor. Thus the value of the D-term seems to be rather sensitive to different (static or
dynamical) treatments for the omega meson field. This point deserves further study.

The results for the B > 3 solutions with A = 0 are plotted in fig. 2.5 and fig. 2.6. All
the curves start with a negative value, with their absolute value increasing with B, and
cross zero at least once for some value of |¢t|. The number of nodes increases with B, and
they appear earlier for higher values of B. The oscillation is caused by the spherical Bessel
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Figure 2.4: The D gravitational form factor of the Skyrmions with B = 1,2, 3, normalized
by B, for A = 0 (solid) and A2 = 3 MeV fm® (dashed).
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Figure 2.5: The D gravitational form factor of the Skyrmions with B = 4,5,6 and 7,
normalized by B, for the A = 0 case.
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Figure 2.6: The D gravitational form factor (absolute value, not normalized by B) of the
Skyrmions with B = 8,32,108, also for A = 0. Cusps mean that the form factor flips
signs and oscillates around zero.
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Dg(0)/D1(0)

Figure 2.7: Dependence of the D term on the baryon charge B for Skyrmions with B < 8,
B =32 and B = 108. The cases \?> = 0 (dark blue) and A\* = 3 MeV fm® (light blue) are

shown.
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Figure 2.8: Left: Values of the functions Z(q) and J(q) for the B =1 and B = 3 cases.
Right: The gravitational form factor J(¢?) for the same nuclei.

function js in (2.102) convoluted with the increasingly flatter density profile of larger-B
solutions.

The particular values of the Dp(0) for each topological sector will depend strongly
on the specific values of the parameters of the model. However, their scaling with the
topological charge, or atomic number, of the nuclei is a genuine prediction of the Skyrme
model. , and will only depend on the different terms included in the Lagrangian. We
have found that the B-dependence is very well fitted by a simple power-law Dg(0) oc B?,

or equivalently,
Dg(0)
D1(0)

logB ’
is a constant as demonstrated in fig. 2.7. The value of 3 is found to be 8 ~ 1.8 for A2 = 0
and 8 ~ 1.7 for A2 = 3MeV fm®. In comparison, we note that the liquid drop model of
nuclei predicts 8 = 7/3 [Pol03] which is consistent with the result in the Walecka model
f ~ 2.26 [GS06]. On the other hand, a microscopic approach using the nonrelativisitic
nuclear spectral function predicts § = 1 [LT05].

Finally, in fig. 2.8 we show the results for the angular momentum form factor J(¢?)
together with the isospin Z and rotation J currents defined in (2.130) for the B =
1,3 solutions. For B = 1, Z and J are equal due to the symmetry of the hedgehog
configuration. The total J-form factor agrees with [Ceb+07]. For B = 3, we see that
the angular momentum distribution is more localized at small momentum transfer, or at
larger radius in position space.

log

8= (2.138)

Other probes of the nuclear structure

Charge density of nuclei

As argued in the previous section, electromagnetic FFs describe how the nucleon target re-
acts in an elastic scattering with a leptonic probe, and contain therefore information about
the internal distribution of charge and magnetization. Since they were first measured, it
has been customary to interpret FFs as Fourier transforms of charge and magnetization
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2.5. Other probes of the nuclear structure

spatial distributions. However, relativistic wave functions are frame dependent, hence
such an interpretation is often restricted to the Breit frame [Sac62] (in the nonrelativistic
case). Recently, the generalization of this interpretation to an arbitrary, relativistic ref-
erence frame was proposed in [Lor20] by introducing an appropriate kinematic factor in
the Fourier integral,

_ d*q p—iaT (P A J8.0) P, ) g _ d*q ol G (—q9°)
PC(T) - / (27‘()3 QPg - / (27T)3 \/1 +q2/ (4M2) (2-139)

which also resolves the apparent contradiction between the same magnitude obtained in
the Breit and infinite momentum frames [Mil07].

Although, the issue of wether it makes sense to define a localized charge density for
quantum objects such as nucleons has recentily been subject to some debate [Jaf21], this
ambiguity was recently resolved in [Epe+22], where a redefinition of the charge density
in terms of a new integral involving the electric form factor is shown to not depend on
the particular wavefunction, as long as one can assume its spherical symmetry, i.e. in the
rest frame of the system.

Furthermore, an accurate description of the charge densities of nucleons, and especially
of the proton, has become one of the principal goals of theoretical nuclear physicists, as
it is not only essential to the knowledge of strong forces in the non-perturbative regime

but also to the understanding of other precission observables in quantum electrodynamics
[GV22].

The electric charge density of Skyrmions

In the Skyrme approach, nucleons are semi-classical objects: one starts with a classical,
localized soliton solution (the Skyrmion), and first quantize the zero-modes to find a
quantum state. This is the so-called RIGID ROTOR QUANTIZATION. Further corrections
to the wave function are expected to arise from vibrational modes, as well as from loop
corrections from the meson fields. However, a natural starting point to compute local
densities associated to any magnitude for Skyrmion solutions is to employ the rigid rotor
approximation. Then, the task becomes fairly straightforward once the classical solutions
are computed numerically, as it can be done directly without taking any intermediate
steps involving the associated form factors. Indeed, the Gell-Mann-Nishijima formula
tells us how to obtain the charge density of a Skyrmion field configuration,

1 1
Z=5B+I — p= 5BO +(13), (2.140)

where Y is the time-like component of the third isospin Noether current, and the brackets
represent the expectation value on the quantum state of the Skyrmion. An explicit ex-
pression for (the classical version of) this current can be obtained from Noether’s theorem,
given that an infinitesimal isospin transformation

U—sU =U-+éoU,  0U = %[T’f, U, (2.141)

generates the Noether current (2.25). In particular, we have already written up the isospin
charge current in eq. (2.27).
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The quantum version of I can be obtained by substituting the classical variable a;
with the corresponding quantum operators and Weyl ordering the products of two or more
non-commuting operators. In the case of the angular velocity, we will use the quantum
(body-fixed) angular momentum operators i.e. we need to invert (1.22). If we assume
that the moment of inertia tensors satisfy the sphericity condition (2.133), the expectation
value of I{ in the isospin state |1) is given by

(I3) = - (uv i w?) (| [Raguan(vK® + wL’) = Ryqwap (WK +uL’)] . [9) =
_ % <77Z)| (U _ Uﬁ(“ijl;t(:jz)_ UJ)'anb [RgaKb]+ + %[R?ﬂu Mb]+ |¢>
(2.142)

where we have used the relation between the body-fixed and space-fixed angular momenta
(1.23), and defined the grand spin operator M; = K; + L;. Therefore, one just needs to
compute the matrix elements

Mal9) = 3 (01 (Row Kol 19, Male) = 5 @l 1R ML 1) (2143)

in order to obtain the charge density of the skyrmion in any given quantum state |¢).
In the case of nucleons, spherical symmetry implies u = v = w in eq. (2.142), so this
expression is undefined. To get rid of the apparent divergence can rewrite the denominator
as
lim ww —w? = (u+u)(u —u) (2.144)

VWU

and the term (u—u) cancels with the same term in the denominator, once take into account
the fact that nucleons are grand spin singlets, i.e. satisfy L|¢) = —K|¢). Therefore, we
have, for nucleon states |¢) = {%, ig,j3> [BTWS6]:

(W] I3)Y) = —Z—Z (3,15, j3| [Ra; Kl 1 |3, 43, J3) = —%W (i3] 7|i5) (j3]js) (2.145)
and thus the charge density of quantized B = 1 Skyrmions in the ground state is given
by y
PR Y, - 0% ug(r)
p(x;i3) = §B (r) — =g~ (2.146)

which, of course, presents spherical symmetry.

In fig. 2.9 we plot the radial profile of the charge densities for protons and neutrons as
predicted by the Skyrme model. The dotted line data has been obtained from [Epe+22].

Indeed, this can be generalized to higher baryon charges. Another simple example is
the B = 3 ground state |¢) (1.39), which corresponds to the (*H,® He) isospin doublet.
We start by noting that it is a grand spin singlet, so ]\;[ij will vanish, and we have

(U — 0)Ugp(X) + (U — W) wep(X)

(U] I3(x) [v) = —Map(¥)) (w0 — 07 . (2.147)
Pl ) = 5 Ba(x) + (] 196x) 1) = 5 Ba(x) — a2 (o lal),

(2.148)
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2.5. Other probes of the nuclear structure
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Figure 2.9: Radial profile of the electric charge density of nucleons

The charge densities of *H and *He ground states in the Skyrme model are not spherically
symmetric, but preserve the symmetry of the classical solution (as required by the FR
constraints). We plot a two-dimensional projection of these densities in fig. 2.10.

' 0.8
»

0.4

0.2

(a) *°H (b) 3He
Figure 2.10: Charge densities of helium and tritium ground states (in units of e)

Electromagnetic charge densities are a valuable source of information about the inter-
nal structure of nuclei and the strong force. Indeed, the distribution of charges inside a
nucleus can reveal information about the isospin-asymmetric nuclear forces. In turn, we
will see in subsequent sections how these are crucial to the understanding of matter inside
compact stars.
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Neutron skin thickness of Skyrmions

In standard nuclear physics, the Neutron Skin Thickness (NST) AR, of a nucleus is
defined as the difference between the mean square radius of neutrons and that of protons,
ie.
5 [ puridix [ ppr2dix

ARnp( X) - Rn - Rp, Rn - W, Rp - T (2149)
In the Skyrme model, nuclei are not described in terms of bound states of neutrons and
protons, but, as shown in the last section, one can still compute an associated charge
density to each quantum state. This can be identified with an effective “proton density”.
Furthermore, the neutron density will be given by

pn = Bo— py = 5 Bo — (13) (2.150)
so we can, in principle, compute the NST of a given nucleus once we know its associated
quantum state in the Skyrme model.

For example, consider the B = 3 ground state [¢) (1.39), which corresponds to the
(*H,® He) isospin doublet. We start by noting that it is a grand spin singlet, so M;; will
vanish, and we have

R2(¢) = %/ BBOH + <I§>7‘2} dr = (2.151)
= % E / Bor*d*z — —(Qj\f]_(gz;) [(v - w)ug) + (u— w)wg)H ;
where we have defined
ug) = /uij(x)r2d3x, wg) = /wij(x)TZd?’x. (2.152)
Further, by the tetrahedral symmetry of the B = 3:
ul(f) = u?s;, wg) = w@g,; (2.153)

so that

R§(¢) = l |:1B(2) + (’U — w)u(2) + (u _ ’LU)"LU(Z) 2.3} |

Z |2 (uv — w?)

where we have defined B® = Br2 _ r? belng the root mean square matter radius, and

used that M;; = (Y| Rs; K; [¢) = — (Y| I3 |¢) =

(2.154)

Equivalently,
RA) = o0 EB@) o wﬁ(f;t (;2)_ e 23} (2.155)

Hence, we have
¢ B e R
\/ % BO) w)léi:: (;‘2)_ “’)w(z)] — R,(H). (2.157)
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2.5. Other probes of the nuclear structure

For our choice of parameters f, = 131.3MeV, e = 4.628 and the physical value of the
pion mass, we get

AR,,(*H) = 0.6fm = —R,,,(*He). (2.158)

The measured charge radii of *He and 3H are 1.959 £ 0.03 fm and 1.755 £ 0.086 fm, re-
spectively [SicO1]. Their difference measures the NST, Aan(3H)‘ ~ 0.2fm. For our

exp
choice of values of parameters, the predicted difference in charge radii of the H —3 He

isodoublet comes out almost three times bigger than the experimentally measured value.

Now we turn to the question of whether we can compute the NST for larger nuclei,
without the need to deal with the specific details of their quantization. From numerical
simulations of a large set of solutions up to B = 16 [BH18|, we see that the spherical
symmetry approximation eq. (2.133) is very well satisfied (up to approximately a 7%),
and also w < u, v, so we may neglect its value. Taking these approximations, eqs. (2.154)
and (2.155) become

1 u®? 1 u®
R%(B,i3) = B® 4 o= .| = LA — 2.159
P( al3) B+ 2is |: + U (] 1—6 Trms u ) ( )
1 e 1 u®
2(B i) — B® _9 P 2 — 2.1
Rn( 723) B— 223 u 3 1+ 5 Trms + u ) ( 60)
where 0 N7
13 —
=22 — 2.161
B B ( )

is the ISOSPIN ASYMMETRY, with N and Z the corresponding numbers of neutrons and
protons in the nucleus. Given egs. (2.159) and (2.160), we can get a rough estimate for
the NST of any nucleus from the Skyrme model, just by computing the corresponding
classical solution.

To understand the basic physics controlling the neutron skin, we can simplify further
by assuming that B >> i3 (or, equivalently, § < 1. We insert this identity and remove a
factor of B/B, to rearrange the radii as

(2) 5/ u®
Rixr?, 0 (“_ - Tfms) — Ry A Tyms [1 - 5( A 1)] (2.162)

2
u TrmsU

Hence the NST is given by

u®
AR,, ~ 0 ( — 1) Froms - (2.163)

urzms
The quantity u(® /u measures the root-mean-squared radius associated to the isospin
density. Hence, the sign and magnitude of the neutron skin depends on the difference
between the matter and isospin charge radii, u® /u — 72, .
Experimentally, the NST is measured to depend linearly on the isospin asymmetry,
with a slope that seems to be independent on the baryon number in the range 16 < B <

238 (see fig. 2 in [Nov+23]) and parametrized by

AR,, =1.324 —0.024 £ 0.026 fm. (2.164)
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This linear behavior is expected to break up for smaller nuclei, in which few body inter-
actions may be dominating over bulk effects [Nov+423]. It is precisely in this range of the
baryon charge where the solutions of the Skyrme model have been extensively studied,
including a recent exhaustive description of the landscape of all known local minima in
the Skyrmion configuration space up to B = 16 [GH22].

Nevertheless, we are able to generate (classical) Skyrmions with B > 16, thus can in
principle compute the NST of these large B configurations and compare to the experi-
mental results.

B |Z| & |AR, (lm)| Exp (£0.026) (fm)
S | 34 |16 | 0.059 0.067 0.0536
108Cd | 108 | 48 | 0.111 0.261 0.122

Table 2.2: NST of 34S and '®Cd from the Skyrme model and the corresponding data from
the experimental relation (2.164)

Mass and scalar radii

In its classical version, the total EMT of QCD [HRT18§]

o 1 v - v
TI?VCD = —n*f :a 35 + 177“ F? 4 iy DY) (2.165)
should be traceless in the chiral limit, i.e. TﬁCDn“V o« my,. However, the (renormalized)
quantum operator associated to this observable is given by

= DR, + (14 2 9) Sty (2,160

where ((g) is the beta function of QCD S(g) = dg/0log i, which governs the renormal-
ization group running of the QCD coupling constant g with the scale y, and ~,,, are the
anomalous quark mass dimensions. The fact that (2.166) does not vanish for m; — 0
implies that the approximate conformal symmetry of the classical QCD Lagrangian (8)
is broken by the quantum effects, giving rise to the so-called TRACE ANOMALY of QCD.
In the chiral limit, the trace of the renormalized EMT operator contains only the glounic
self-interaction term, which is also known to be the major contribution to the total nu-
cleon mass. Indeed, taking the matrix element of the EMT trace operator in the rest
frame of the nucleon, and the zero momentum transfer (forward) limit, we get®

(p'=0|T¢|p=0)=(p'=0/T"|p=0) =2M> (2.167)

as can be seen from taking the forward limit in eq. (2.123).

Now, in analogy with the electromagnetic charge, a natural question that arises is how
to determine the nucleon mass density of a nucleon. Theoretically, as we have seen, the
various density distributions within a nucleon correspond to the Fourier transforms of the
associated form factors as a function of momentum transfer (¢), which are experimentally

Swe remind the reader that the nucleon spinors are being normalized to 2P.
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2.5. Other probes of the nuclear structure

measured in elastic scattering processes. Furthermore, the root-mean-squared radius as-
sociated to these distributions can be directly read from the first derivative of these form
factors.

However, the definition of the proton mass radius [Kha21] is the subject of heated
discussions in the nuclear physics community. This mass radius characterizes how the
mass is distributed inside the proton, namely the mass density distribution, so it makes
sense to define it from the form factor associated to the 7% component of the EMT.

1
r2 = i /T‘QTOO(X)d3ZL‘. (2.168)

On the other hand, such operator is not a Lorentz scalar, and thus it will be in general a
frame-dependent quantity. By virtue of (2.167), one could also define the mass radius of a
hadron in terms of the scalar (gravitational) form factor G(t), the form factor associated
to the nucleon matrix element of the QCD EMT trace operator [Kha21],

M 2
PoPh

(' T! p) = u(p')G(t)u(p), (2.169)

i.e.
1
2= / P20 () d (2.170)

is also known as the SCALAR RADIUS of the nucleus. We may also define AR,,, as the
difference between their root-mean-squared scalar and mass radii:

ARgp =T — Ty (2.171)

We can compute the scalar and mass radii (eqgs. (2.168) and (2.170)) from the classical
solutions in the Skyrme model. Their values for the B =1 — 6 and B = 32, 108 cases are
shown in table 2.3. The associated ARy, is shown in fig. 2.11, together with a simple
fitting function.

B | 1 | 2 | 3 | 4 | 5 | 6 | 32 | 108
re (fm) | 1.0036 | 1.359 [ 1.3936 | 1.4395 | 1.5235 | 1.5807 | 2.7445 | 4.0558
rm (fm) | 0.7803 | 1.0606 | 1.157 | 1.2444 | 1.3601 | 1.4487 | 2.6842 | 4.005

Table 2.3: Gravitational scalar and mass radii of the lightest nuclei from the Skyrme
model.

The values of the parameters have been chosen to fit the charge radius and mass of
the B = 1 Skyrmion to the proton values. If we compare the values of the scalar and
mass radii of the nucleon with those given in [Dur+23], we see a perfect agreement (see
table 2.4).

Furthermore, in the Skyrme model approach, it is easy to obtain the radial profile of
the mass and EMT trace densities, as shown in fig. 2.12 for the nucleon.
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Figure 2.11: Difference between the mean scalar and mass radius of nuclei in the Skyrme
model
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Figure 2.12: Radial profile of the mass and trace of the EMT densities for the nucleons
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2.6. Final remarks

B | our work | [Dur+23] (Holographic QCD) | [Dur+23] (Lattice)
s (fm) 1.0036 1.069 £ 0.056 1.073 £ 0.066
rm (fm) | 0.7803 0.755 £ 0.035 0.7464 £ 0.025

Table 2.4: Comparison of mass and scalar radii of nucleons.

Final remarks

The Skyrme model, and most generally, chiral soliton models, constitute a versatile frame-
work to study several properties of nucleons and light nuclei. Traditionally, these analysis
mostly focused on global properties, such as total energies; or electromagnetic form fac-
tors. In this chapter we have shown that not only one can study these, but lots of other
different properties, such as local charge and mass densities, neutron skin thickness and
beta-decay multipole form factors. One of the main results of this part has been to
adapt the formalism of multipolar expansion of weak hadronic currents, which has been
well-known in the nuclear physics literature for a while, to the Skyrme model. We have
illustrated this by computing a simple example of such multipoles in the beta decay of
lithium-6. On the other hand, we have also presented the results of the computation of
the D-term for several light nuclei, as well as other quantities related to the EMT form
factors. Most of these properties are the object of intense active research, both from the
experimental and theoretical ends. With our results, we demonstrate the feasibility of
computing all of these low-energy nuclear properties within the Skyrme model, although
only a qualitative agreement with experimental quantities can be achieved in some cases
(especially for multi-Skyrmions).

A key feature that we have exploited in the computations mentioned above is the
semi-classical nature of nuclei from the solitonic point of view, which makes the task of
computing local densities of nuclei remarkably simple, as it does not involve the defini-
tion of a spatial, many-body wavefunction (at least in the rigid rotor approximation).
Indeed, the spatial structure is determined, in the first semiclassical approximation, by
the classical soliton solution alone. In practice, this facilitates the task of obtaining some
properties of nuclei, such as charge densities and form factors, which are very difficult to
obtain via other approaches like chiral effective theories or quantum montecarlo methods.

On the other hand, the main drawback of this method is the vast landscape of almost-
degenerate, local minima in the configuration space of classical Skyrmions for sufficiently
large baryon charge. This implies that the semi-classical rigid-rotor approximation must
break down at some point, and more complex spatial wavefunctions involving superpo-
sitions of different classical configurations are probably a better way to describe such
nuclei.

We would like to conclude with a comment about the open problems that we have not
addressed in our analysis throughout this chapter. The first, most obvious one involves the
quantum corrections to the binding energies of nuclei beyond the rigid rotor quantization,
and its possible effects in other properties such as form factors. Indeed, it has been known
from almost a decade that the zero mode quantization alone does not correctly reproduce
even the ground state quantum numbers of some light nuclei (eg the B =5 and B = 7).

When computing the gravitational form factors, we have neglected the quantum cor-
rections from isospin and spin degrees of freedom, invoking their higher order nature in
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the large N, expansion. However, It would be interesting to compute such corrections for
the different gravitational form factors, in order to check whether this approximation is
consistent.

Finally, we have shown that the computation of beta decay multipolar operators of
Skyrmions is a ponderous, but straightforward calculation once the relevant quantum
states are known. In spite of our promising results, the analysis carried out in the thesis
is a rather superficial one, and of course the subject of beta decay of intermediate-mass
nuclei deserves a more profound study.
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Dense Nuclear Matter and Neutron
Stars
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CHAPTER 3

Skyrmion crystals and the Equation of State of dense
Nuclear Matter

Articles partially reproduced in this chapter: [Ada+22b; Ada+23]. See permissions.

“Brednia. A w dodatku nie do rymu. Wszystkie przyzwoite przepowiednie sg
do rymu”
— Geralt z Rivii, in Ostatnie Zyczenie (The Last Wish), by A. Sapkowski

The EOS of dense nuclear matter

A unified theoretical understanding of the structure and interactions of nuclei, as well as
the phenomenology of neutron stars and supernova explosions, requires a deep knowledge
of the EOS of strong-interaction matter at saturation and supra-saturation densities and
at large isospin chemical potential. Indeed, realistic models of nuclear matter inside
neutron stars do not predict an isospin-symmetric state at all. Due to electromagnetic
repulsion, a system with a large number of protons rapidly becomes unstable. On the
other hand, for large neutron excess nuclear matter becomes unstable against [S-decay.
Therefore, only a small fraction of protons over total nucleons is generally allowed for big
stable nuclei. For a nuclear system with total number of baryons A = N + Z, where N is
the number of neutrons and Z the number of protons, and defining the isospin asymmetry
parameter as § = (N — Z)/A = (1 — 2v), with « the proton fraction or ratio between Z
and A, the binding energy is usually defined as a function of both the baryon density and
the asymmetry parameter,

%(TLB, 0) = Ex(np) + Sn(np)d® + O(5%), (3.1)

where the term Ey(npg) would be the binding energy of isospin-symmetric nuclear matter,
and Sy (np) is the so-called SYMMETRY ENERGY. The energy of symmetric nuclear matter
is usually constrained around SATURATION DENSITY, ng, which is the typical density of
nucleons and nuclei. The dependence of the nuclear matter energy with density is thus
described in terms of the first coefficients in a Taylor expansion around saturation,

1
EN(HB) = E() + EK@EQ —+ .. (32)
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with € = (n — ng)/ng, Fo the energy of symmetric, infinite nuclear matter at saturation,
and
O*En

2
an n=ng

Ko = 9n§ (3.3)
is the COMPRESSION MODULUS (or incompressibility) of nuclear matter at saturation
[Bur+21].

Different measurements of nuclear masses and density distributions have allowed to
precisely constrain the value of ng = 0.16 + 1fm™> and Ey = —16 + 1 MeV, while the
value of K can be extracted from the analysis of isoscalar giant monopole resonances in
heavy nuclei. For the latter, results suggest Ky ~ 240 MeV [SSM14] thus pointing to a
rather soft EOS, as confirmed by heavy ion collider experiments [Sor+23].

On the other hand, the symmetry energy is a measure of the change in the binding
energy of the system as the neutron-to-proton ratio is changed at a fixed value of the total
baryon number, and its knowledge is essential to determine the composition of nuclear
matter at high densities. However, its dependence on the density has proven difficult to
measure experimentally, and usually it is parametrized as an expansion in powers of the
baryon density around nuclear saturation ny,

1 1
SN(HB) = S() + —Le + — sym€2 + - (34)
3 18
and ,
(9SN a SN
L=3 Ky = 9n2— 3.5
o on n:no’ Yy Un) an2 — ( )

the slope and curvature of the symmetry energy at saturation, respectively. The symmetry
energy at saturation is well constrained (Sp ~ 30 MeV) by nuclear experiments [FF18],
but the values of the slope and higher order coefficients are still very uncertain. However,
recent efforts on the analysis of up to date combined astrophysical and nuclear observations
have allowed to constrain the value of these quantities with reasonable uncertainty above
nuclear saturation [Ess+21; Tan+21; TFP21; GPH22; Li+21].

Skyrmion crystals and their quantization

The classical Skyrme crystal

One of the main features of the Skyrme model is that, being an intrinsically non-perturbative
approach, we can in principle use the same effective lagrangian to describe in a unified
manner the physics of nuclear matter at zero and non-zero densities. In our approach,
infinite skyrmionic matter is described by a field configuration on a finite cell of fixed size
and baryon number, which minimizes the static energy functional (1.7) after imposing
periodic boundary conditions. Hence, the only difference between isolated Skyrmions and
crystalline configurations comes from the fact that the boundary conditions imposed on
the Skyrme field are of different nature: instead of imposing the vacuum at large distances,
one must impose periodicity conditions on the boundary of a compact space region- the
UNIT CELL- and hence these solutions do not yield a finite value when its energy density
is integrated over all space. Instead, this requirement is relaxed to yield a finite value
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3.2. Skyrmion crystals and their quantization

of the energy over the unit cell, or, equivalently, a finite energy per baryon. We would
like to remark that, although the boundary conditions imposed on the Skyrme fields are
different from those of regular solitonic solutions, the topological properties of the field
configurations remain the same. Indeed, a cubic, three-dimensional lattice with periodic
boundary conditions is topologically equivalent to a three torus, 72, so that crystalline
configurations are described by maps Ueystal : 17° — S®. As T? is still a compact and
oriented manifold, mappings from T2 to S® are still characterized by their topological de-
gree, as ensured by Hopf’s degree theorem?. Due to these periodic boundary conditions,
such configurations are usually referred to as SKYRME CRYSTALS.

Skyrmion crystals were first proposed as models of infinite nuclear matter by Klebanov
in [Kle85], and the exploration of the different crystals was further developed in [KS89;
Cas+89]. Let us now shortly review some properties of these crystalline configurations.

As in the non-periodic case, Skyrme units are adopted for numerical purposes, in which
energy and length are measured in units of 372 f; /e and h/(fre), respectively. Obviously,
the total energy of the crystal will diverge, as so does its total volume, but the energy per
baryon number remains finite,

E o Ncells Ecell - Ecell
B N, cells Bcell Bcell

(3.6)

Here, Nius is the number of cells and E.q, B are the energy and baryon charge in a
single, periodic cell. The energy of the unit cell strongly depends on the assumed geometry
and its size, characterized by the length parameter L, as well as on the total baryon charge
that the cell contains. Concretely, L is the distance between nearest-neighbor skyrmions
in the maximally attractive channel. As a consequence, the resulting field configuration
is not periodic in L. The period length and the size of the unit cell is 2L, instead.

As with isolated Skyrmions, the symmetry group of a crystalline configuration is
reduced from the total symmetry group of the Lagrangian G (1.8) due to these periodicity
conditions, which in turn result in a particular point group symmetry for the full crystal.
However, it is well known that there is no unique crystalline solution, but there are
different local minima of the energy functional with periodic boundary conditions at a
given density. All these local minima present different crystalline structures, i.e. different
point symmetries, although all of them are based on a simple cubic group.

By studying all possible geometries of the unit cell, i.e., types of crystals, at a par-
ticular volume of the cell, one could find the ground state crystalline solution (global
minimizer) at any given density (Note that a particular geometry of the crystal translates
into particular point symmetries of the chiral fields). For the purposes of this thesis, we
will restrict ourselves to the study of cubic crystals, which present a unit cell of cubic
shape and the chiral fields satisfy cubic symmetries, i.e. they obey the following relations:

Al . (%%2) — (_Ihy?Z)?
(0,71, 9, m3) = (0, =71, T2, T3), (3.7)
A2 : (.T,y,Z) — (y,z,x),

(0,71, ma,73) — (0, o, T3, 71). (3.8)

2In fact, the theorem asserts that the topological degree is the only homotopy invariant in such
situations
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These are the simple cubic and Face Centered Cubic (FCC) crystals of Skyrmions as
well as the Body-Centered Cubic (BCC) and FCC crystals of half-Skyrmions.

In this work we will focus on the FCC crystal of half-skyrmions, which has two addi-
tional symmetries,

Cs : (:lr,y,z) — (:E,Z, _y)>

(07 T, T2, 7T3) — (07 —T1, T3, _7T2>7 (39)
D4: (I,y,Z) —>(l’+L,y,Z), (310)
(0,71, 9, 3) — (—0, —T1, o, T3). (3.11)

A more detailed description of the construction of the Skyrme crystal and the com-
parison of different symmetries can be found in [Ada+22a], and we have kept the same
notation for this work. As in that previous work, the unit cell has size 2L and a baryon
content of B.y = 4. Then, for each value of L we obtain the minimum of energy as
explained in [Ada+22a]. It turns out that the energy-size curve, E.(L), is a convex
function which has a minimum at a certain L,.

RSN
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\\ ) i
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Figure 3.1: Energy density iso-contour for the Half-Skyrmion FCC crystal

The Skyrme crystal EoS for symmetric nuclear matter

For the crystal solutions one can define the relevant thermodynamical quantities in the
usual way, that is, energy density p, pressure p and baryon charge density ng

E Ecell
= _ = 3.12
==L (3.12)

oF 8Eﬁcell

= = _ 3.13

B Bcell
- = ) 3.14
TV Ve (3.14)
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3.2. Skyrmion crystals and their quantization

Again they are functions of L or, in other words, the volume of the unit cell V.

At the point where L = L,, the given crystal solution describes skyrmionic matter
at equilibrium, i.e., at zero pressure. We may thus identify such a minimum with the
saturation point, and the associated baryon density value should be identified with the
nuclear saturation density, ng. This will allow us to find a point with respect to which we
shall fit all the calculated observables.

In the region where L < L, the volume of the cell decreases, which corresponds to
a squeezed crystal, i.e. n > ng. This translates into growing pressure and density. The
remaining region L > L., where the volume increases in comparison to the equilibrium,
is thermodynamically unstable. Indeed, it formally gives negative pressure. Due to that,
the low density regime cannot be described by any of the previously mentioned crys-
tals. On the contrary, it is expected that the crystal is replaced by an inhomogeneous
phase, where lumps of nontrivial energy density are surrounded by regions of void. In
fact, the correct ground state solution for the L > L, region in the Skyrme model is a
very difficult open problem, as it most probably requires obtaining periodic solutions with
larger baryon number per unit cell and/or different symmetries. Indeed, different inho-
mogeneous configurations with lower classical energies than the FCC crystal have been
proposed [Ada+22a; HLLS23| which point towards this fact.

A related problem is the fact that the ratio between the compressibility K, (as defined
in (3.3)) and the energy per baryon of Skyrmion crystals at saturation is overestimated
by a factor of 4 or larger, independently of the values of the parameters. This implies that
the Skyrme model (with and without sextic term), implies that nuclear matter is too stiff
around saturation (provided the Skyrmion crystal solution is assumed to be the correct
ground state). This is also an open problem that deserves further study. However, we
will not address such problem in this thesis, as it may require a further generalization of
the Skyrme model, possibly via the inclusion of additional degrees of freedom such as p
vector mesons. Therefore, in what follows we shall ignore the compressibility and try to
compute other nuclear observables at saturation.

On the other hand, in the absence of the sextic term, the landscape of the crystal
energy minimizers at high densities is very well understood. Namely, for L < L, the
ground state is formed by the FCC half-Skyrmion phase, which at extremely high density
is replaced by the BCC half-Skyrmions. This phase transition occurs at densities much
beyond the values expected at the cores of neutron stars. It has been recently shown
[Ada+22a] that this picture is significantly modified if the sextic term is added. First of all,
the FCC to BCC phase transition moves towards much smaller densities, approximately
4 — 5 times saturation density, which can be easily found in the center of heavy NS. In
addition, the appearance of the sextic term introduces a fluidity into the model which
mathematically results from the volume diffeomorphism invariance of this part of the
action. Such a fluidity translates into an almost homogenous distribution of the energy
density as the pressure increases, which is a characteristic trait of the pure-BPS Skyrmions.

However, perhaps the most crucial result is that the equation of state, which relates
energy density and pressure, stiffens in the GSM. Indeed, the sextic term alone leads to
the maximally stiff EOS, p = p. In the full, generalized model it occurs asymptotically
at high density. In any case, this stiffening is responsible for a significant rising of the
maximal masses of NS to values which are in accordance with current observations (as
we will extensively discuss in the next chapter).
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Up to this point, we have referred to the classical regime of the Skyrme model, which,
as we already underlined, corresponds to symmetric nuclear matter. However, it is of vital
importance to semiclassically quantize the isospin degrees of freedom of the skyrmionic
crystal as a first step to describe (isospin asymmetric) nuclear matter, which is known to
be the ground state of the matter in the core of NS.

Quantization of the Skyrme crystal

It is well known that the largest quantum correction to the classical energy of Skyrmion
configurations comes from the contribution of the isospin degrees of freedom, which are
usually quantized as zero-modes via some collective coordinate parametrization. However,
it is not straightforward to define the isospin subgroup SU(2); in such configurations, since
the vacuum value is no longer imposed at the boundaries. Instead, one should in principle
consider internal rotations of the full chiral group SO(4)cpniral, since there is not a natural
way to select the diagonal subgroup corresponding to isospin.

The problem of defining the isospin group in crystal configurations is treated in [Bas96].
As explained there, the procedure of defining the isospin subgroup in crystalline configu-
rations is subject to some ambiguities, but the energy per baryon spectrum in the infinite
crystal limit is unique. Indeed, it turns out that the 4-dimensional representation of the
cubic point group of minimal energy crystals is reducible into the trivial 1-D irrep and a
3-D irrep, which singles out one direction in isospin space. We may then choose the o
field to transform in the trivial irrep, and then to define the isospin group as the subgroup
of isorotations within the 3-D irrep, i.e. rotations between the three pion fields.

In the rest of this work, we will use this definition of isospin in crystals, as it is also
the natural choice if a symmetry-breaking potential (such a mass term for the pions) is
added to the Skyrme Lagrangian.

To add the contribution of the quantization of the global isospin zero modes to the
total energy, we need to know the quantum isospin state of the full crystal. This task,
however, becomes impossible in the thermodynamic limit in which the number of particles
forming the crystal goes to infinity. Instead, we can make the following assumptions on
the quantum wavefuntion of the full crystal:

 The isospin wavefuntion of the total crystal |¥) can be written as a superposition of
states constructed from the (infinite) product of isospin wavefuntions of individual

unit cells, |¥) = @ [¢). In other words, as a first approximation we will not
cells
consider the quantum correlation on the isospin state between cells.

e The symmetry of the classical crystal configuration is inherited by the total wave-
function, and shared with the wavefunction of each of the unit cells, i.e. both |¥)
and |¢) share the same point symmetry group.

These two assumptions imply that finding the quantum states of the total crystal is
equivalent to finding the state of each unit cell. The latter is in fact a more plausible task
as we may use the tools developed for the quantization of multi-skyrmion configurations.
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3.2. Skyrmion crystals and their quantization

Quantum isospin states and Hilbert space

As discussed in section 3.2.1, On each subspace given by a fixed value of total spin and
isospin, the allowed (physical) states will be those which retain the same point symmetries
as the corresponding classical solution. This is imposed via the FR constraints, which
relate the values of third component of the body-fixed spin and isospin eigenvalues.

In the case of a Skyrmion crystal, the unit cell presents a concrete set of symmetries,
some of which relate rotations both in space and isospace, and hence we should consider
as physical states only those that are compatible with such symmetries. Let us now
proceed to calculate the FR constraints in order to obtain the corresponding quantum
states of the Skyrme crystal. The relevant symmetries of the FCC half-skyrmion crystal
linking rotations and isorotations are As and C3, which are represented by the following
operators,

exp{ig%(Kl—i—KQ—l—Kg)} =R'(0,—-7/2,—7/2), (3.15)
exp{igKl} = R (12, —7/2,7)2). (3.16)

We only write the operators that correspond to isospin transformations, since the rotations
in the real space are the same. Recall that we are using the Euler angles representation
for the rotation and isorotation operators in the ZY Z convention,

R (o, B,7) = Rz (@) Ry (B) R= (7) - (3.17)

From (1.36) we know how these operators act on a state |j,l3) ® |7, k3) (again we will only
consider the isospin part, the quantum numbers resulting from the spin quantization are
the same),

R(e, 8,7) i, ks) = > Dy g (o, 8,7) li KS) (3.18)
kg

where D,ﬁ& ky, ATC the Wigner D-matrices. Then we can consider this as a problem of finding
the eigenvalues and eigenvectors of the Wigner D-matrices, and the quantum states will be
the combination of J, Ls, I, K3 that satisfy the FR constraints (1.30). In our case, we will
consider the possible quantum states of a unit cell, which carries a baryon number Boy =
4. We will not prove here that the transformations (1.30) with the corresponding spatial
rotations (3.16) correspond to contractible loops on the configuration space. Instead, we
will assume that this is indeed the case, i.e. xpr = +1, as tends to be the case for B = 0
mod 4 Skyrmions [Kru06]. Also, we will consider all the possible values of i, namely
i = 0,1,2 (eigenvalue of the isospin moment of inertia) and show the (unnormalized)
eigenvectors for each symmetry.

Ay symmetry: R(0, —7/2, —7/2)
o Fori=0, D), =1 and there is only one state |i = 0,43 = 0).

e For i =1, we have
i/2  —1/v/2 —i/2
Diw=1/vV2 0 i/V2]|. (3.19)
i/2  1/V2  —i/2
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This matrix has three different eigenvalues and corresponding eigenstates

A\ =1,
1) = —i[1,=1) + (1 +1)/v/2|1,0) + |1, 1)
Xy = —1/2 —/3/2i,

YY) = (2 — V3)i |1, —1) — /2 — V3(1 +4)[1,0) +1,1)
A3 = —1/2 4+ /3/2i,

08) = (24 V3)i |1, —=1) + /2 + V3(1+14) [1,0) + |1, 1)
e For i =2, we have

—1/4  —1/2i V6/4 1/2i —1/4
—1/2 —1/2i 0 —1/2i 1/2
Diw=1|-v6/4 0 -12 0 —V6/4
-1/2  1/2 0 1/2i  1/2
—1/4  1/2i 6/4 —1/2i —1/4

(3.20)

(3.21)

which shares the same eigenvalues as the corresponding ¢ = 1 case, but this time A,

and A3 present multiplicity two. The corresponding eigenstates are

A =1,

Ao = —1/2 —/3/2i,
[¥5a) = 12, -2) = V2i]2,0) +12,2), (3.23)
1 3 3—1
i) = -2 - SV 0y B0y 2,
A3 = —1/2+/3/2i,
|05.) = [2,—2) + V2i[2,0) + [2,2), (3.24)
3—-1 1 3
) = — 2+ D0y - Yy oy,
Cy symmetry: R’ (7/2,—mw/2,7/2)
o Again, for i = 0, the only state is |0, 0).
e For ¢ =1, the corresponding Wigner matrix
~1/2 i/vV2  1)2
Dy, = | —i/V2 0 —i/V2 (3.25)

/2 i/vV2 —1/2
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3.2. Skyrmion crystals and their quantization

has two eigenvalues, with multiplicity 2 and 1, respectively. The associated eigen-

states are
)\1 - —
|¢1a> = —|1,-1) +]1,1), (3.26)
|61s) = [1,—1) + V23 [1,0) + |1, 1)
Ay =1,
|¢3) = |1, —1) — V2i |1,0) +[1,1) (3.27)
o =2,

/4 —i/2 —6/4 /2  1/4

1/2i  1/2 0 /2 —i/2
Diw=1-V6/4 0 —1/2 0 —6/4 (3.28)

—i/2  1/2 0 /2 /2

/4  i/2 —V/6/4 —i/2 1/4

A= —1, (3.29)
|03.) = —12,-2) +i[2,-1) —i[2,1) +[2,2),
|6%) = [2,-2) +v62,0) + [2,2)
Ao =1, (3.30)
‘¢2a> 2 _1> + |2 1>
|03,) = —12,—2) — 2|2, -1) +2,2),

‘¢20> = ‘2? _2 - \/7‘2’(» + ‘272> .

Physical states with fixed ¢ will correspond to mutual eigenstates of both spin-i Wigner
matrices corresponding to the two symmetries, As and C3. For each value of total isospin,
we have been able to find a unique state that satisfies this property,

i=0-—0,0),
i=1—= ) =1+10)/2|o1,)+ (1 —14)/2]|1), (3.31)
1 =2 ‘¢1> = ’¢2b> (1+414) ‘¢2a>7

and the corresponding normalized states will be denoted by [¢?). Note that each [")
corresponds to an isospin multiplet with degeneracy i, since the i3 quantum number is
not restricted by the FR constraints (and the same happens to the corresponding spin
states, in which j3 is not constrained either).

Then, we just find the quantum ground state of the crystal as the state with lower total
energy. Naively, one would think that it corresponds to the |¢°) = |0,0,0) state, as the
isospin contribution vanishes. However, this would result in a non-vanishing total electric
charge of each unit cell, so the crystal will be unstable due to an infinite contribution of
the Coulomb energy, as was already noticed in [Kle85]. Thus, electrical neutrality implies
that the true ground state of pure skyrmion matter corresponds to the i3 = —2 state in
the multiplet [1?).
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Following the previous reasoning we have obtained the allowed quantum states for a
single unit cell. On the other hand, we have assumed that a basis for the Hilbert space
of the total crystal isospin state can be constructed from the direct product of states
of individual cells. We are now in a position to be more specific about this statement.
Indeed, consider the quantum state of two unit cells with ¢ = {i, 42} and i3 = {my, mo}.
The allowed values of {ij,is} are {0,1,2} , and —i, < m, < i,, a = 1,2. The total
quantum state will be an eigenstate of the total isospin, so it will be better described
in the coupled angular momenta basis. Indeed, from representation theory, the tensor
product of two spin j, representations may be decomposed as a direct sum as

Jo+i1
DreD"= @ D" (3.32)

k=|j2—j1|

Thus, the basis of states for the two-cell system will be |I,I3,iq,1s), with |j; — jo| <
I < j1 + jo the total isospin number and —I < I3 < [ the third component of total
isospin. Therefore, to find a general basis state for an arbitrary number of unit cells, we
should just need to generalize the previous construction to the coupling of an arbitrary
number of different angular momenta. There are arbitrarily many ways to do it, which
should be equivalent up to a unitary transformation (at least, for an arbitrary, but finite,
number of unit cells). An important final remark is that, following such construction, the
total isospin and third component of isospin of the full crystal will remain good quantum
numbers, independently of the quantum state, so they will correspond to well defined
observables in the quantum theory, as opposed to the isospin of each of the individual
cells.

Isospin correction to the energy per baryon

Let us rewrite the Skyrme Lagrangian (1.1) as

1
L= Y laTr{L,L"} + bTx{[L,, L,)*} + ¢ B,B" + dTx(U — I)]. (3.33)
The values of a, b, ¢, d are easily obtained from (1.7),
1 1 o 4 f2e m?
= —— = — = — s = us . . 4
a 5 b i 8\ el 22 (3.34)

We now consider a (time-dependent) isospin transformation of a static Skyrme field con-
figuration,

Ux) = U(x,t) = g(t)U(x)g(t). (3.35)
The Maurer-Cartan (M-C) form transforms as (¢ = dg/dt)
S Uto,Ugt (n=1i=1,2,3)
Uto, 0 =4 9 09 o 3.36
z { 9(UTlg'3,UDg", (1 =0). (3:36)

We now define the isospin angular velocity w as gfg = %wara. Then, we may write the

time component of the Maurer-Cartan current as U T80U = ¢T,g'w,, where T, is the
su(2)-valued current,

T, = %UT (70, U] = i(mamp — TeTeOap + O elape) T = 115 T, (3.37)
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3.2. Skyrmion crystals and their quantization

where we have made use of the parametrization (1.2). Moreover, the spatial components
of the M-C form can be written in terms of the sigma and pion fields as well,

Ly, =(0 — im,7,) (0o + i0kmpTp) = (3.38)

=i(00kTe — TORO + TaOkTpEabe)Te = LiTe.

The time dependence of the new Skyrme field induces a kinetic term in the energy
functional, given by ?

1 i 3
SYPs / {a Tr{LoLo} — 2 Te{[Lo, Li[Lo, L]} — ¢ B'B}d’z,  (3.39)

with B the spatial components of the topological current:

. 1 )
B = — " Tr{L,LgL,} =

= 513 e9* Te{LoL;Ly}. (3.40)

2472

We may rewrite the kinetic isorotational energy in the standard way as a quadratic form
acting on the components of the isospin angular velocity,

1

where A;; is the isospin inertia tensor, given by

5= 5 / 'z {2a Te{ T;T;} — AbTe{[T;, Ly][T, Li]} (3.42)

abc
e T{TLLe}ears Tr{TjLTLS}} .
The high degree of symmetry of the fields inside the unit cell implies that the complete
isospin inertia tensor for the unit cell of a cubic crystal will be proportional to the identity,
and its eigenvalue (the isospin moment of inertia) will be given by

2aA® — 4pA@ — _C_AO] | (3.43)

A =
2472 3274

The numerical results for A for the Loy, and the full Lo460 cases are plotted as a
function of the lattice parameter in fig. 3.2, for different values of the sextic term coupling
constant A?. The A curve for %, was obtained by Baskerville in [Bas96] so it has been
helpful to check our results. The value of A becomes smaller at high densities both without
sextic or with a small value of A2, hence the isospin correction to the energy will grow
with ng. However the increase of the sextic coupling constant produces a final increase
of A at high densities (at which the sextic term becomes more relevant), so a non-trivial
behavior will be found in the symmetry energy. Therefore, the result for Lo440 diverges
from that for Lo40 at high densities, whereas both join in the opposite, low density limit.
Note that the pion mass potential term does not directly contribute to the value of A,
but it does so indirectly because it modifies the classical solution.

3Remember that we are using the mostly minus convention for the metric signature.
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Figure 3.2: The eigenvalue A of the isospin inertia tensor is displayed against the lattice
length parameter in Skyrme units.

The kinetic term in the Lagrangian of an isospinning cubic crystal with a number
Nees = N of unit cells can thus be written in terms of the isospin moment of inertia A

(3.43) as
1 1
T = iwiAijo = N§Awawa, (344)
and, by defining the corresponding canonical momentum J, = 0L/0w® = NAw,, we may

write it in Hamiltonian form,

1 a
H — mJaJ . (345)

Now, following the standard canonical quantization procedure, we promote the isospin
angular momentum variables to operators, so that we may diagonalise the Hamiltonian
in a basis of eigenstates with a definite value of the total isospin angular momentum,

2

~ ONA

H JOH(T 4 1) (3.46)
The total isospin angular momentum of the full crystal will be given by the product of the
total number of unit cells times the total isospin of each unit cell, which can be obtained
by composing the isospin of each of the cells. In the charge neutral case, all cells will have
the highest possible value of isospin angular momentum, so that in each unit cell with
baryon number B, the total isospin will be %Bcella and hence the total isospin of the
full crystal will be J%©* = %N Beop.

Therefore, the quantum correction to the energy (per unit cell) due to the isospin
degrees of freedom will be given by (assuming N — co)
R _,

EiSO — 8_ABcell (347)
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3.2. Skyrmion crystals and their quantization

For example, for the unit cell of the FCC half-Skyrmion lattice, the isospin contribution
to the energy per baryon is

Eiso o hg
Bcell B 2A
FCC

(3.48)

The value of A in Skyrme units is important to calculate the contribution of the isospin
energy, however for our choice of the parameters i = e*/(37%) =~ 1.

The classical Skyrmion crystal configurations can be understood as models for isospin-
symmetric nuclear matter, i.e. nuclear matter with zero total isospin. Indeed, since the
Skyrme Lagrangian is symmetric under isospin rotations of the chiral fields, in principle
there is no distinction between nucleons in classical configurations. However, as we have
seen, the quantum isospin correction to the crystal energy per baryon does depend on the
difference between protons and neutrons through the total isospin number per unit cell.
Hence, by considering the effect of iso-rotations over classical solutions we are effectively
breaking the isospin symmetry of the static energy functional by adding a correction
of quantum origin that explicitly breaks it. Moreover, such correction could also have
been obtained through the inclusion of an isospin chemical potential. Indeed, we may
introduce a nonzero isospin chemical potential p; in any chiral effective theory (and the
Skyrme model in particular) in terms of a covariant derivative of the chiral fields of the
form [SS01]

0,U — DU = d,U — %5@[73, U, (3.49)

so that, if U is a static configuration, the time component of the Maurer-Cartan form
becomes

i
Lo = —EWUT[TS, Ul = —u;Ts. (3.50)

Comparing with eq. (3.36), one sees that this expression is equivalent to that of an iso-
rotating field with angular velocity w, = —pusd3,. Thus, it is straightforward to obtain the
isospin chemical potential for the Skyrmion crystal using its thermodynamical definition

i = —g—fl, where n; is the (third component of) the isospin number density. Given that

(Jo9)2 = J2 4+ J2 + J2 and n; = J3/N, we may write the isospin energy per unit cell as

R, JE T
Eiso = 2A (TLI + N2 + NQ) (351)
and then 5 2
Eiso
- _ = _"n, .52
HI 8%[ A i <3 g )

As we have seen in the previous subsection, the ground state of the Skyrme crystal is
forced by the charge neutrality condition to have

(J*)* = J35, (3.53)

and for a unit cell of B baryon number, the chemical potential is simply p7(L) = —h?Been/(2A).
This indeed coincides with the expression of w, in terms of the isospin angular momentum
and the isospin moment of inertia. As a final comment, we remark that the inclusion of
isospin may have non-trivial effects on the geometry of classical solitonic solutions. In
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particular, it was shown in [LMRO06] that the isospin chemical potential may alter the sta-
bility of classical Skyrmion configurations. Hence, a thorough analysis of dense Skyrmion
matter at finite isospin chemical potential should focus on its effects on the classical crys-
tal configuration. However, as the contribution to the isospin energy per unit cell Eis,(L)
is never dominating for any L, we may neglect the backreaction of the isospin term into
the background and consider it simply as a (quantum) correction to the energy.

Symmetry energy

Let us consider a finite Skyrme crystal of N unit cells, and let B = N X By, where Beep
is the baryon number of a unit cell. We do not enforce charge neutrality at this step, and
further leave unknown the quantum state |¥) of the crystal. We have seen that the total
charge of this system is

Q= <e/d3x{B0/2 +1§}> =eN

Bcell <f[gd3$>
SRR ] (3.54)

As argued at the end of section 3.2.1, the total third component of isospin is a good
quantum number for the total quantum state of the crystal, although this is not true for
individual unit cells. In other words, the expectation value

(1) = (1] / 1 |v) (3.55)

is well defined in an arbitrary quantum state, but [ (I9) d®z is not. Since we are seeking
for a definition of the isospin density in the quantum theory, we may perform a mean
field approximation and consider that the isospin density in an arbitrary skyrmion crystal
quantum state is approximately uniform so that

I3) (Is) . ng
%) = s = = 3.56
< 3> fd?’l' NLcell LceH’ ( )

where n; is the effective isospin charge per unit cell in this arbitrary quantum state. We
also notice that, for a fixed value of total I3, the quantum state |¥) will satisfy condition
(3.53) in order to minimize the total isospin energy (3.51). We may further consider the
effective proton fraction that would yield such an isospin charge per unit cell with baryon

number B to write

1 Bcell
= ——(1—=2v)Been = —
nr 2( 7¥) Been 9

Hence, we may write the isospin energy per unit cell of the Skyrmion crystal in such a
state in terms of the asymmetry parameter

5. (3.57)

h? B2
By = S—Aceu(s?, (3.58)

and thus the symmetry energy for Skyrme crystals is given by

h2 L3
A

SN<TLB) == ng. (359)
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Figure 3.3: Symmetry energy of Skyrme crystals as a function of the density for different
values of \. Constraints of the symmetry energy at sub-saturation densities from isobaric
analog states [DL14] are plotted in red. The grey region corresponds to recent constraints
from the analysis of neutron star observations [Li+21]

In fig. 3.3 we plot the symmetry energy of Skyrmion crystals for the generalized Skyrme
model with different values of the sextic coupling constant.

We can observe that, for this choice of parameters, the symmetry energy of the crys-
tal in the Ly submodel (A\? = 0) comes out too big with respect to the constraints at
saturation density ng, while the inclusion the sextic term reduces the value. We found
that a value of A\ ~ 1.5MeV fm? fits to the correct value at saturation. Moreover, we
may also compute the slope and curvature parameters at saturation for all cases, shown
in table 3.1. Interestingly, for values of A? between 1.5 — 3 MeV fm™ we find that both
the saturation density and the symmetry energy parameters agree quite well with the
most up-to-date experimental values. Here we have defined the saturation density as the
density where the energy per baryon of the skyrmion crystal takes its minimum value.
Hence, the constraints on the symmetry energy yield rather stringent bounds on the value

A (MeV fm?) | ng (fm™?) | So (MeV) | L (MeV) | Kqym (MeV)
0 0.33 444 72.9 -143
1.5 0.22 31.9 46.4 -130
3 0.18 26.4 35.4 -118
) 0.15 22.2 27.5 -105
Exp. 0.16 £0.01 | 31.7 £ 3.2 | 57.7 £ 19 | -107£ 88

Table 3.1: Symmetry energy coefficients in the Skyrme model with different sextic cou-
plings. In the last row, we show the most up-to-date fiducial values of ng, Sy, L and Ky,
[Li+21]

of A2, where the precise numerical values of these bounds will, of course, depend on the
choices made for the other model parameters f, and e. We remark that a lower bound
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for this constant can also be obtained from the maximum mass requirement of neutron
star EoS [Ada+21].

We end our discussion on the Symmetry energy of Skyrme crystals by pointing out
the absence of the cusp structure predicted by Lee et al. [LPR11] in our results of S.
Their argument (recently reviewed in [Lee+21]) for the appearance of a minimum in the
symmetry energy at a given density n;/, > ng is based on the Skyrmion to half-Skyrmion
transition, which is proposed to happen at nj; ~ 2 — 3ng. In our pure Skyrme model
setting, however, such a transition has been shown to occur in a thermodynamically
unstable branch of the Skyrmion crystal phase diagram once the pion mass is taken
into account (see, eg. [PV10; Ada+22a]). Therefore, we do not find such a transition,
as we consider a crystal of (nearly) half-Skyrmions to be the correct ground state for
densities n > ng. The ground state of the Skyrme model for densities n < ng is still not
well understood, and some inhomogeneous configurations have been proposed [PPV19;
Ada+22a] that point towards a complicated phase structure predicted by the Skyrme
model near saturation. In particular, the transition from regular nuclear matter to a
crystal of half-Skyrmions should take place in such a range of densities.

Particle fractions of npey matter in S-equilibrium

As previously argued, any quantum state that deviates from the ground state in pure
skyrme matter would lead to a divergence in the Coulomb energy in the infinite crystal
limit. Indeed, an isolated system of positively charged matter is unstable due to Coulomb
repulsion. Therefore, it is assumed that there exists a neutralizing background of nega-
tively charged leptons (electrons and possibly muons), such that this Coulomb repulsion
is compensated. Such a system of nuclear matter plus leptons is characterized in the
equilibrium phase by two equilibrium conditions, namely the charge neutrality condition

ny, = é =ne +ny, (3.60)
i.e., the densities of positively charged nucleons (protons) and negatively charged leptons
(electrons and muons) are equal, and the S-equilibrium condition

fn =iy + 0 = pr=p, l=ep, (3.61)

i.e., the isospin chemical potential must equal that of charged leptons, such that the
neutron decay and electron capture processes

n—p+l+y , p+l—=n+y (3.62)

take place at the same rate. Moreover, leptons inside a neutron star are usually described
as a non-interacting, highly degenerate fermi gas, so that the chemical potential for each
type of leptons can be written

= 1/ (hkp)? +m2, (3.63)

where kr = (372n;)'/? is the corresponding Fermi momentum, and m; is the mass of
the corresponding lepton. Indeed, for sufficiently large densities the electron chemical
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potential will be larger than the muon mass, p. > m,, and the appearance of muons in
the system will be energetically favorable. We may now estimate the total proton fraction
by enforcing both charge neutrality and beta equilibrium. Let us start by neglecting the
contribution of muons to the charge density. Then, from the charge neutrality condition
(3.60), we relate the electron density to the proton fraction parameter, n. = vBen/(2L)3,
and the § equilibrium condition yields an equation that implicitly defines v as a function
of the lattice length parameter,

hL 3r2\ /2
La-m-(5) (3.64)
A Bgell

where we have also made the ultrarelativistic electron approximation, i.e. m;/kr ~ 0.
Including the muon contribution to the charge density yields a slightly more compli-
cated expression for the S-equilibrium condition, given by

1
thell o 2 '7Bce11 3
oA (1—2v) = [?m ( o )| (3.65)

where

N

1

372

n, =

(ﬁBceu(l - 27))2 _ (ﬂf] , (3.66)
2A h
On the other hand, the proton fraction inside the beta-equilibrated matter also deter-
mines whether a proto-neutron star will go through a cooling epoch via neutrino emission
through the Direct Urca (DU) process n — p + e + 1., which is expected to occur if the
proton fraction reaches a critical value, 7, > zpy, the so-called DU-threshold [Lat+91;
Kla+06]. As the DU process allows for an enhanced cooling rate of NS, whether it takes
place or not in the hot core of proto-neutron stars or during the merge of binary NS
systems [Alf+21] would determine the proton fraction (hence, the symmetry energy) of
matter at ultra-high densities. However, it is not clear whether such enhanced cooling
actually takes place, although there is recent evidence that supports it [Bro+18].
In npep matter, the DU threshold is given by [Kla+06]

1
VT TR (L4 (2 )R

Ne+ny,

(3.67)

Once the proton fraction and the asymmetry parameter are obtained, the total energy
of the system may be also calculated as

E = Eeass + Eiso(0) + Ee(v) + Eu(7), (3.68)

where Eq,s is the classical energy of the Skyrme field, Ei, is given by eq. (3.58) and Eje,
is the energy density of a relativistic lepton gas with mass m; at zero temperature

ky k’2dk’ 4
Elep:/ /k;2+ml2:%[mr(l—i—%tf)\/l—l—x%—lnmr—l— 1+x%}, (3.69)
0

2

where z, = kp/m;. For densities n > ng, the electrons become ultra-relativistic, i.e.
m. < kpe and the corresponding energy becomes

3
E, ~ kaene. (3.70)
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B

Figure 3.4: Fraction density ~; for each particle as a function of the baryon density for
A% = 0 (solid) and A\? = 1.5 (dashed). The corresponding DU threshold is also shown in
black.

The particle populations ~; in the beta-equilibrated Skyrmion matter are shown in
fig. 3.4 for the cases A2 = 0,1.5 MeV fm?.

In both cases, a persistent population of protons and leptons with increasing nucleon
density is expected, although in the case with sextic term we see that the fraction of
charged particles is smaller. This is the impact of the sextic term, since it is much easier
to convert protons into neutrons due to the lower symmetry energy. Finally, the DU-
threshold is not reached in any case for the values of the parameters (f,,e, A?) that we
have chosen. However, one should not take this fact as a prediction of the Skyrme model,
as it strongly depends on the parameter values. Also, it is generally assumed that around
2 —3 times the nuclear saturation density, additional degrees of freedom (strange baryons)
become important for the description of nuclear matter, which in particular may affect
the proton fraction at such densities.

Strangeness and Kaon condensation

In QCD with three quark flavors (up,down, strange), there are 3> — 1 = 8 (pseudo)
Goldstone bosons after SSB of the chiral symetry 4, which can be compactly collected in
terms of the SU(3)-valued chiral field

0

T + +
BT T K
U =M where O,\, = T -5 \/ig K% . (3.71)

K~ K° —\/577

“There is actually nine, as the complete spontaneously broken subgroup includes the axial U(1)4.
However, the associated pseudo-Goldstone, 7', is much more massive beacuse of the anomalous breaking
of such symmetry, which is known as the chiral anomaly of QCD.

82



3.4. Strangeness and Kaon condensation

where A\, (A =1,---8) are the Gell-Mann matrices (see (5)).

Apart from the three pion fields that we have already worked with, there are other
pseudoscalar mesons with nonzero STRANGENESS, the quantum number associated with
the presence of the s quark, within the same multiplet. These are the 1 meson and the
KAONS (see fig. 3) The latter come in four different types, two electrically charged with
opposite charges and two neutral, with opposite strangeness content. The masses of the
three types of kaons differ only in less than 1%. As with the pions, this fact reflects the
approximate charge symmetry in nuclear physics. The mass of kaons (mg ~ 495 MeV)
are almost four times bigger than that of pions. Therefore, at the energy scales we will
be mostly interested, we may assume that the light quark masses are degenerate, and
thus isospin symmetry is preserved, while the s quark mass is different, so that, in a good
approximation, we have the following (explicit) symmetry breaking pattern

X558, SU(3)y

Ms>My d

Many calculations for the EoS in dense matter predict that strangeness degrees of
freedom may become important in the interior of compact stars, in the form of hyperons
(strange baryons) or a Bose-Einstein condensate of negatively charged kaons, for densities
just a few times nuclear saturation [TF20]. Indeed, hyperons may become stable at
sufficiently high isospin chemical potential, where the decay of neutrons relieve the Fermi
pressure exerted by the nucleons. On the other hand, the strong attraction between K~
mesons and baryons increases with density and lowers the energy of the zero momentum
state. A condensate is formed when this energy equals the kaon chemical potential, since
kaons are favored over negatively charged fermions for achieving charge neutrality, as they
are bosons and can condense in the lowest energy state.

It is generally assumed that strange degrees of freedom should become relevant at
densities above ~ 2 — 3 times the nuclear saturation density ng, whereas the critical
density for kaon condensation is usually predicted to be a bit larger, around ~ (3 — 4)ny
(although the specific values are of course model and parameter dependent). A density
of this order is smaller than the central density of a typical NS, so a kaon condensate
could be present in its core. The possibility of kaon condensates in the core of neutron
stars has been extensively investigated in the literature, using different approaches. Its
appearance tends to soften the EoS, producing smaller values for the allowed maximum
masses. Therefore, the presence of hyperons at too low densities is not compatible with
the stiffness required by the existence of such massive stars. This is the so-called Hyperon
puzzle, presently a subject of very active research [Bom17; Vid16].

Having obtained the proton fraction (hence the electron chemical potential) in npep-
matter as a function of density in the last chapter, we can now turn to the question of
whether kaon fields may condense inside a Skyrme crystal for a sufficiently high density,
and, if so, whether this critical density value is relevant for the description of matter inside
compact stars.

Kaon fluctuations in the Skyrme model

Following the bound-state approach first proposed in [CK85] we may include strange
degrees of freedom in the Skyrme model by extending the skyrmion field to a SU(3)-valued
field U through modelling kaon fluctuations on top of a SU(2) skyrmion-like background
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u With the only requirement that unitarity must be preserved, different ansétze have
been proposed in the literature for the total SU(3) field describing both pions and kaons
[K1e90]. In this work, we choose the ansatz proposed by Blom et al in [BDR89]:

U = UgUUg. (3.73)

In this ansatz U, represents the SU(3) embedding of the purely pionic part w, and the
field Uk are the fluctuations in the strange directions. It can be shown that this ansatz is
equivalent to the one first proposed by Callan and Klebanov in [CK85] when computing
static properties of hyperons, although both may differ in other predictions of the model
[INRIO].

In the simplest SU(3) embedding, the SU(2) field u is extended to U, by filling the
rest of entries with ones in the diagonal and zeros outside. On the other hand, the kaon
ansatz is modelled by a su(3) -valued matrix D which is non trivial in the off-diagonal
elements:

0 1

. : K
U =0 +1TqTg = MNaTa, D:(O ),

U = (u 0) Uy = ei%l)7
(3.74)

K" 0

where a = 1,2,3, « = 0,1,2,3, 7, = (—il,7), and K consists of a scalar doublet of
complex fields representing charged and neutral kaons:

K = 50 ) K'= (K" ,K"). (3.75)
The extension of the GSM Lagrangian (1.1) to include strange degrees of freedom in a

way consistent with the symmetry group (3.72) consists in the replacement of the pion
mass term % by [NR9O:

new fT%
L =05 (m2 +2m%) Te{U + U" — 2} +

V3

VP (2 =) Te{As (U + U}, (3.76)

with mg the vacuum kaon mass. The kaon mass differs from that of pions because
kaons involve a strange mass. Moreover, as it is well known in the three-flavor case one
needs to additionally include the Wess-Zumino-Witten (WZW) term, which accounts for
intrinsic parity-violating processes, such as the scattering of two kaons to three pions
KTK~ — 77~ 7% or the decay of 7% to two photons. It can be expressed in terms of a
5-dimensional action integral [Wit83b]:

. N,
Swz = —

i3 dx P Tr{L,L,LoLsL}. (3.77)

The onset of kaon condensation in the Skyrme model takes place at a critical density
Neona @t which p,. becomes greater than the energy of the kaon zero-momentum mode
(s-wave condensate). Thus, for baryon densities n > nconq, the macroscopic contribution
of the kaon condensate to the energy must be taken into account when obtaining the EoS
of dense matter. To do so, we follow the standard procedure to describe Bose-Einstein
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condensation of a (complex) scalar field (see eg [Sch10]) in which the field condensates
correspond to the non-zero vacuum expectation values (vev), (K*), which are assumed
to be constant in space and whose time dependence is given by:

(KT) = geFint (3.78)

The real constant ¢ corresponds to the zero-momentum component of the fields, which
acquires a nonvanishing, macroscopic value after the condensation. Its exact value is
determined from the minimization of the corresponding effective potential, to whose cal-
culation we will dedicate the rest of this section. On the other hand, the phase ug is
nothing but the corresponding kaon chemical potential. First, we will need an explicit
form of the SU(3) Skyrme field in the kaon condensed phase. Assuming the charged kaons
will be the first mesons to condense °, we can safely drop the neutral kaon contribution,
and define the following matrix

) 0 0 geinnt
P=| o o o | (3.79)
pe it () 0

which results from substituting the kaon fields in D as defined in (3.74) by their cor-
responding vev in the kaon condensed phase. Also, taking advantage of the property
D? = ¢$*D, we may write the SU(3) element generated by D explicitly in matrix form:

Vi cos ¢ 0 ie<sin ¢
N=ef = 0o 1 0o, (3.80)
ie Mrtsing 0 cos ¢

where qg = }/—fgzﬁ is the dimensionless condensate amplitude.

Furthermore, assuming the backreaction from the kaon condensate to the skyrmion
crystal is negligible, and thus the classically obtained crystal configuration will be the
physically correct background even in the kaon condensed phase, we may write the SU(3)
field in this phase as U = XU, X, where U, is the SU(3) embedding of the SU(2) skyrmion
background as in (3.74). Introducing this U in the total action yields the standard Skyrme
action for the SU(2) field plus an effective potential term for the kaon condensate:

Sse(U) + Swaw(U) = Ssi(Ux) — / dtVi (9), (3.81)
where
Vi =5, / Ca [V + v+ v VO] 4 v, (3.82)

Let us now calculate the contribution to the effective potential Vi of each term in the
action:

®Actually, that the charged (in particular, the negatively charged) kaons will condense first is true in
our approach (whenever . > 0), since the chemical potential associated to neutral kaons is zero, so that
the onset of neutral kaon condensation is given by mj, = 0.
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o Quadratic term: Given that the crystal background is static and the kaon conden-
sate does not depend on spatial coordinates, the kaon part of the quadratic term
may be written as

Tr{L3} = —[Tx{0,X'0,2} + Tr{X19,2U/ £, 51U, }. (3.83)
Introducing the explicit expression for ¥, (3.80), yields

VI((Q) = p2-sin? ¢[(1 4 0 + 72) sin® ¢ — 2(1 4 o cos® §)]. (3.84)

e Quartic term: In the quartic term, the kaon effective potential comes from the terms
with time derivatives of the total field,

Tr{[Lo, Li]*} = 2[Tx{0,U0,U8,UO;U’} — Tr{o,U'6,Ud;U"9,U}],
which, after substitution of the expression for ¥, gives
V[(f) = —2u73 sin’ qg{ (14 0)(0ing)? cos® o+ (3.85)

+2[0;0%(1 — 72) + 0;ma(1 — %) + 207m30;00;m3) sin® gzg}

o Mass term: The kaon part associated to the mass term gives the following contri-
bution,
mic

f2€2

o Wess-Zumino-Witten term: The WZW term is written as a 5-form integrated over
an auxiliar 5-dimensional disk D whose boundary is the spacetime manifold M, but
in appendix C we show that the variation after the kaon fluctuations of the pion
background yields a local term which may be written as an effective four-dimensional
lagrangian. Indeed, we show that

Vi2(¢) = 2—E (1 4 o) sin? §. (3.86)

Swzw(U) = Swazw(Ux) — % / B° Tr{ (102 8) (Zo,x +U;2TatzUﬂ)} —
M
— _Ng / 11 Been sin® (¢)dt = / VIVEW) () dt. (3.87)

o Sextic term: The contribution from the sextic term is also obtained in appendix C

to be
)\2]02 4

VY = -2 T{[Ry, Ril& ), (3.88)

where ¢, = U,30,X1Uf — ET(‘?ME. Once the traces are evaluated, we end up with

V1(< — N2f2et 2 sint()(0;m30;0 — 0,00;73)*. (3.89)

In the above calculations, we have taken separately the contributions of a kaon conden-
sate and an isospin angular momentum of the skyrmion crystal, and the kaon condensate
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interacts with the skyrmion isospin only indirectly via the charge neutrality and £ equi-
librium conditions, which relate their corresponding chemical potentials. However, since
kaons possess an isospin quantum number, we should consider a (time-dependent) isospin
transformation of the full Skyrme field + kaon condensate configuration U = XU, 3:

U— U= A UAN (), (3.90)
where A is an element of SU(3) modelling an isospin rotation,
A= (g g) 0 € SUQ). (3.91)

The Maurer-Cartan form transforms as (A = dA/dt)
. AUTQUAT, (p=1i=1,2,3),
W@U:{ ( )

AUtOU AT + A(UTATA, U AT, (u=0).
We now define the isospin angular velocity w as ATA = %wa)\a (a =1,2,3), with A\, the
Gell-Mann matrices generating SU(3) for A = 1,---8. Notice that w is a three-vector,
since AT A belongs to the isospin su(2) subalgebra of su(3) Then, we may write the time
component of the Maurer-Cartan current as UtdyU = AL At + AT, Atw,, where T, is the
su(3)-valued current:

(3.92)

T, = %UT[)\a, U] = iT Ay, (3.93)

where now we have used the parametrization (3.74).
The time dependence of the new Skyrme field induces the existence of a kinetic term
in the energy functional, given by ©

- / {a(Te{LoLo} + 2 Te{LoT, Y + Te{T, T b

(3.94)
—2b( TI'{[(L() + Tawa), Lk][<LO + wab); Lk]}> —C Bsz}d3$,
with B® the spatial components of the topological current (1.3), which now read:
i 3 i
B = mejkTr{(Lo + Towa)LiLy} (3.95)

We may rewrite the kinetic isorotational energy in the standard way as a quadratic form
acting on the components of the isospin angular velocity,

1
T = §waAabwb + Aywg — Vi, (3.96)

where Ay, is the isospin inertia tensor and A, is the kaon condensate isospin current,
given by

Ay — / {20 LT3} — 0 T{(To, T[Ty, L)} — o™ Te{Tu L Lo beues TH{T Lo L} ) &,
e

(3.97)
A, = / {2a Te{LoT,} — 4bTe{[T,, Ly [Lo, Ly} — 32—6451"”” Te{LoLy Ly }eirs Tr{TaLTLS}} &z,
T
(3.98)

SRemember that we are using the mostly minus convention for the metric signature.
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where a,b and ¢ are those in eq. (3.34).

The symmetries of the crystalline configuration that we consider in this work, con-
cretely the S; and S transformations, imply that the isospin inertia tensor becomes
proportional to the identity, i.e. Azzyswl = Ady,. However, the presence of a kaon con-
densate breaks this symmetry to a U(1) subgroup, so that A, presents two different
eigenvalues in the condensate phase, Acong = diag(A, A, Az). Similarly, A, = 0 in the
purely barionic phase, and its third component acquires a non-zero value in the conden-
sate phase, Acona = (0,0,A). The explicit expressions for Az and A in the condensed
phase are written in appendix C. One can easily check that in the non-condensed phase,
¢ = 0 and the results of the previous section are recovered, namely, A3 = A, A = 0.

The quantization procedure now goes along the same lines as in the first section.
However, the isospin breaking due to the kaon condensate implies that the canonical
momentum associated to the third component of the isospin angular velocity will now be
different, and given by I3 = Asws + A.

Thus, after a Legendre transformation to rewrite (3.96) in Hamiltonian form, and
making the N — oo approximation, one can write the quantum energy correction per
unit cell of the crystal in the kaon condensed phase as

1
Eouont = 2—/\3(1; — A?). (3.99)

The first term on the right hand side above is just the isospin correction, while now there
is an additional second term due to the isospin of the kaons. Indeed, since the kaon field
enters also in the expression of the isospin moment of inertia As, both terms will depend
nontrivially on the kaon vacuum expectation value (vev). When the kaon field develops
a nonzero vev, apart from the neutron decay and lepton capture processes, additional
processes involving kaons may occur:

nep+ K, 1o K 4, (3.100)

such that the chemical equilibrium conditions

fin = flp + K, J = K (3.101)

are satisfied. The last expressions are the extension of eq. (3.61) to the condensate phase.
The total energy within the unit cell may be obtained as the sum of the baryon, lepton
and kaon contributions:

E = Eguss + Bio(7,0) + Exc (11, ) + Ee(ne) + O (u2 —mp)Epu(ny,). (3.102)
where the kaon contribution is the effective potential energy given by

AQ

E h) = Vi — —— 1
K (K, ) = Vi Ay’ (3.103)

which depends on the condensate gg and on the kaon chemical potential through the
explicit dependence on g of both Vi and A.

In order to determine whether or not a condensate of kaons will appear at some point
in the interior of NS, one needs to obtain the values of the proton fraction v, kaon vev
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¢ and electron chemical potential u. that minimize the total energy for a given baryon
density np (or equivalently, fixed L) under the constraints of charge neutrality and beta
equilibrium. Thermodynamically, this can be achieved by minimizing the grand potential

Q= B~ juo(N. + 02— m2)N, ~B) (3.104)

with respect to its variables, i.e. ¢ and p. (the equilibrium conditions (3.101) implying
pr = px = ftu = e are already imposed)

o0
Olhe

~ o)
nid)a :ue) - a_qg

Indeed, the thermodynamical conditions (3.105) in turn translate into a system of (dif-
ferential) equations for p. and ®, which can be solved for each value of the lattice length
L. A detailed description of the minimization process can be found in [Ada+23].

In particular, at a given THRESHOLD DENSITY N, the kaon vev will acquire a
nonzero value, and a phase transition will take place towards a new phase of the system,
which we will call npep K. We show in the table below the density at which kaons condense
for a choice of values of the parameters as well as the values of some nuclear observables
this choice yields. All the values are given in units of MeV or fm, respectively.

(6, pe) = 0. (3.105)

nB

label fﬂ— e )\2 E() Un) SQ Lsym ncond/no
values | 133.71 | 5.72 | 5 | 920 | 0.165 | 23.5 | 29.1 2.3

Table 3.2: Parameter values and observables at nuclear saturation

We choose some representative parameter values such that the energy per baryon and
baryon density at saturation are reasonably close to their experimental values. However,
it is indeed possible to choose other set of values that better adjust the symmetry energy
and slope at saturation [Ada+23].

In fig. 3.5 we show the resulting particle fractions for our choice of parameter values.
When the kaon condensate phase is taken into account, we observe that ) the electric
charge neutralization is almost exclusively provided by the negatively charged kaons, with
a small contribution of electrons and a negligible contribution of muons, and that i) the
proton fraction gets rather close to the neutron fraction for large densities. In fig. 3.6
we plot the symmetry energy as a function of ng. One can clearly appreciate that the
contribution of the kaon condensate enhances the symmetry energy.

Effects on the EoS for (a-)symmetric nuclear matter.

As we have shown, the SU(3) version of the Skyrme model (in the Callan-Klebanov ap-
proach) predicts the phase transition from the standard npep matter to a kaon-condensed
phase, npepf, at a threshold density of n.nq ~ 2 — 3ng. Further, the kaon vev has a
nontrivial effect in symmetry energy (and thus the particle fractions) of the system, which
directly translates into the EOS.

On the other hand, the main ingredient to obtain the EOS for the Skyrme crystal is
the dependence of the total energy on the unit cell size, and the relevant thermodynamical
variables can be obtained from this relation as explained at the beginning of this chapter.
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Figure 3.5: Particle fractions as a function of baryon density, both with (solid lines) and
without (discontinuous lines) kaon condensate. For the case with kaon condensate, the
contribution of muons is negligible.

-

1 2 3 4 5 6
ng / N
Figure 3.6: Symmetry energy of nuclear matter as a function of baryon density for the

values of parameters considered. The thick line represents the symmetry energy when
kaons are considered in the system and the dashed line does not include kaons.
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Figure 3.7: Energy per baryon against the baryon density of the crystal and their inter-
polations in the npeu and npeuK phases.

In the npep phase, this is a straightforward task: one just finds the minimum energy
configuration for different values of L, and then the S—equilibrium and charge neutrality
conditions must be solved for «(L). Such a relation contains all the needed information
to compute particle fractions as a function of density (see the previous section). However,
once we include kaons, the change in the energy curve displayed (in red) in fig. 3.7 leads to
a first order phase transition. Indeed, one concludes that the kaon condensation produces
a first order phase transition for our choice of parameters after analyzing the dependence of
the energy density with the pressure. It was shown in [Ada+23] that there is a non-physical
region in the p—p relation which must be bridged by a first order phase transition. Similar
results, indicating a first-order transition, are found for the other parameter sets used in
that work. The phase transition to kaon condensation has been investigated previously,
e.g., within a relativistic mean field theory framework [GS99; Pon+00]. The kaon optical
potential, which is the relevant parameter for the phase transition, was allowed to vary
within a rather large range in these investigations. This lead to a large variety of possible
situations, from a second order phase transition for a weak optical potential to a strongly
first-order transition for a strong one, where the number of protons outweighs the number
of neutrons at sufficiently high density. For intermediate optical potentials, their results
are similar to ours.

In the presence of a first order transition, constructing the equation of state of the
system requires a nontrivial step which allows to take into account the possibility of a
MIXED PHASE, i.e. a region of the phase diagram in which two (or more) different phases
coexist. Formally, this can be achieved by means of the so-called GIBBS CONSTRUCTION
[Gle92; GS99]. The Gibbs construction is based on a mixed phase of constant pressure
which connects the two solutions, in which the chemical potential is also enforced to be
common for both phases in the mixed phase [Gle92]. In other words, in the mixed phase
the Gibbs conditions for the phase equilibrium,

p'=p", =, i=Byq (3.106)
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must be satisfied. In the last expression pup and p, represent the chemical potentials
associated to the conserved baryon and electric charges, respectively. We note that, within
this mixed phase, charge neutrality does not necessarily hold on each phase individually,
as long as the total mixed phase is charge neutral.

Although we will not be interested in the details on the Gibbs construction between the
two phases at hand (they can be found in [Ada+23]), it is remarkable that allowing for a
mixed phase implies that the effect of kaons on the nucelar matter EOS become noticeable
much earlier (even around nuclear saturation) [Ada+23]. This is a direct consequence of
the presence of a first order phase transition at the kaon condensation threshold, which is a
genuine prediction of the Skyrme model for a wide range of physically-relevant parameters.

Of course, this fact will be directly reflected on the properties of the NS that can be
obtained from such EOS, as we will discuss in the next chapter.

Final remarks

The description of the nuclear EOS at saturation and supra-saturation densities is a
challenging task that nonetheless any serious candidate to a nuclear matter model must
confront. In this chapter, we push forward this goal from the Skyrme model approach,
focusing on the computation of the relevant physical magnitudes that have been (or could
be) measured and constrained from laboratory experiments and astrophysical observa-
tions, such as the binding energy or symmetry energy at saturation. In particular, first
the procedure to obtain an EOS from the (classical) crystalline solutions of the Skyrme
model is reviewed. Then, we show how the effects of isospin can be included by means of
canonical quantization, which, together with a mean field approximation, yields a well-
defined procedure to compute observables such as the symmetry energy (as a function
of density) and the associated particle fractions, i.e. the equation of state of asymmetric
nuclear matter in the npep phase.

Finally, we address the possibility of the appearance of a charged kaon condensate in
neutron star cores described within a GSM. Our treatment of strange degrees of freedom
is based on the bound state approach by Callan and Klebanov, which allows to obtain an
in-medium effective potential for the s-wave kaon condensate. One of the main results
in this chapter is the prediction of the kaon condensation onset at a certain threshold
density—whose value depends on the parameters of the model, and ranges between 1.5
and 2.5 times saturation density—, and how it affects the particle fractions and equation
of state for dense matter in the kaon condensed phase, npeulS. Moreover, we observe
that the transition between the npey matter and kaon-condensate phases is of first order,
which has tremendous impact on the resulting EOS.

Let us end with a final comment about some of the natural ways of extending the re-
sults presented in this chapter. The generalization of the Skyrme model to the three flavor
chiral symmetry, in which the whole SU(3) group is quantized, is a fascinating endeavor
that, however, has been mostly limited to obtaining properties of SU(3) hyperons in the
B =1 sector. On the other hand, the Callan-Klebanov approach has also been extended
to include additional exotic degrees of freedom coming from even heavier quarks (such as
charm or bottom). It would be interesting to explore all these scenarios, focusing on the
periodic solutions, in order to provide an understanding of the role that heavy baryons
(those with nonzero strange, bottom or charm quantum numbers) play in the EOS of
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ultra-dense matter. In particular, this is related to the very relevant hyperon problem,
in which the appearance of strange baryons has been argued to bring maximum neutron
star masses towards rather small, unphysical values.
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CHAPTER 4

Neutron stars within the Skyrme model

Articles partially reproduced in this chapter: [Ada+21]. See permissions.

“Episodios gravitatorios con los folios,
un laboratorio es mi escritorio ”
— Javier Ibarra (Kase.O), Booty song

Neutron stars (NS) constitute perfect laboratories for exploring the properties of
strongly interacting matter at the most extreme range of densities that are allowed by
the laws of Physics. Indeed, NS are the densest known compact objects that lack an
event horizon (as opposed to black holes), and repulsive forces originating from strong
interaction effects are the only responsible for avoiding their gravitational self-collapse.

Unfortunately, it is precisely the fact that they are so compact what makes it difficult
to make accurate observations of their properties, such as their masses and/or radii, due
to their small size (~ 10km) relative to their mean distance to the Earth (the closest
detected neutron stars are several hundred light years away). Nevertheless, the relation
between the masses and radii of neutron stars imposes very strong constraints on the
possible Equations of state (EOS) of nuclear matter at high densities, as there exists a
one-to-one correspondence between the EOS and the M — R curve of NS.

There are several methods for measuring masses and radii of NS. While masses are
relatively easy to measure by studying the orbits of NS in binary systems, their radii are
more difficult to measure in general. The radius of a NS can be estimated from its thermal
emission under some assumptions, as well as from the gravitational redshift of absorbed
lines in gamma-ray burst from the stars’s surface, as well as x-ray bursts from binary
systems. A more recent alternative method is that used by the NASA instrument Neutron
star Interior Composition ExploreR (NICER) [GAO12], which exploits relativistic effects
on X-rays emitted from milisecond pulsars, and relies in the high-precision timing of X-
rays to detect their variation as the star rotates, which allows to determine the mass
and radius of the star [Ril+21]. The NICER experiment has allowed to measure the
mass-radius relation of multiple pulsars, such as PSR J00304+-0451 [Mil+19] and PSR
JO740+6620 [Mil+21].

Finally, the most recent way of measuring NS properties comes from the observation
of the gravitational waves emitted during the inspiral (and merging) phases of binary
NS-NS or black hole-NS mergers. These are cataclysmic events in spacetime that release
an enormous amount of energy in the form of gravitational waves, whose waveform codifies
the information abut the parent objects before the merger. Such information, including
the stars’ masses, radiii and deformabilities, can the be extracted after measuring the
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gravitational waves in observatories such as Laser Interferometer Gravitational-wave Ob-
servatory (LIGO) [Aas+15], Advanced Virgo [Ace+15] or KAGRA [Som12]. A the time of
writing this thesis, only a few of such events have been detected that involve neutron star-
like compact objects: The first one was GW170817 [Abb+17], originated from a binary
NS merger, was also observed electromagnetically, providing the first multi-messenger
observation of this type. A couple of years later, another binary NS merger candidate
event (GW190425) was detected in 2020 at LIGO-Virgo [Abb+20a]. Furthermore, two
events corresponding to a black-hole-neutron star merger have been detected [Abb+21],
although the properties of the parent neutron stars could not be well determined due to
the absence of electromagnetic counterpart signals. Furthermore, a third event was de-
tected, GW190814 [Abb+20b], from the coalescence of a 23 M, black hole with a compact
object of around 2.6 solar masses. Such an object poses a challenge to the current theories
of NS and black hole formation, as it lies precisely in the so-called MASS GAP [Sie+22]:
it is either too light to be a black hole (which are expected to be at least of 5M,) or too
heavy to be a neutron star. Furthermore, a recent measurement of the mass of the pulsar
PSR J0952-0607 using Saphiro-delay technique gave the value of M = 2.35 4+ 0.17 M,
[Rom+-22], making it the most massive neutron star known to date.

Therefore, combined observations from pulsars and GW observatories have made it
clear that neutron star masses can pass the limit of 2 M, that was previously expected,
and the maximum mass constraint has been lifted to around 2.6 solar masses for non-
rotating NS. This fact implied a revision of the known, microscopically obtained EOS
that did not allow for such big masses, while the ones that reached them were favored. As
we will show in the following sections, the NS obtained from different approaches based
on Skyrme models will generally allow for maximum masses of 2.5 or higher solar masses,
and hence they are very interesting as models for studying the phenomenology of highly
compact and dense stars.

Early attempts. BPS neutron stars

In order to determine whether the Skyrme model and its generalizations are able to
describe the properties of matter inside NS, there are two main approaches that one may
take. The first one is based in obtaining self-gravitating, star like solutions of the coupled
Einstein-Skyrme system. In the second one, the matter that conforms the star is modelled
as a perfect fluid, whose EOS is obtained directly from the Skyrme model. While the latter
approach is almost straightforward once the EOS is known (to which we have devoted
the previous chapter), the former is much more difficult to take in practice, not only due
to the complicated structure of such a differential equation system, but also because the
required solution should have B ~ 1057 —the estimated number of baryons in a regular
NS— for which a stable ansatz is not known. Therefore, additional approximations must
be taken into account if one is to take this route.

A first attempt to compute these kind of solutions was made in [NP12], in which
they use nested rational maps of increasingly high baryon charge in order to find star-
like configurations. However, such method does not yield phenomenologically satisfactory
solutions that may be identified with neutron stars, as the maximal mass of these solu-
tions (i.e., the maximum mass these solutions can reach before becoming unstable under
gravitational collapse) was too small.
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A clever way around this problem comes from the BPS Skyrme model, proposed by
Adam et al. in [ASW10b]. The BPS Skyrme model can be thought of as a submodel of
the GSM, which can be reached if one makes the (inverse of the) Skyrme parameter e~
and the pion decay constant fr go to zero in eq. (1.1). Although it represents a limiting
case of the generalized model, the BPS model and its solutions present several attractive
mathematical features. One of the most important, after which the model receives its
name, is that the total energy of field configurations presents a TOPOLOGICAL BOUND
that can be saturated. Solutions that saturate this bound are called BPS SKYRMIONS.
Another very interesting property of the BPS model is that the associated EMT is of
perfect fluid form, which in turn facilitates the solution of the self-gravitating skyrmions
[Ada+15d; Ada+15b].

As it turns out, solutions of such model, when coupled to gravity, can reach maximum
masses of several times the mass of the Sun [Nay19], which indicates that the associated
EOS of such stars is very stiff, i.e. speeds of sound close to that of light. Further studies
of neutron stars within this model suggest that it could be a great candidate to describe
matter at extreme densities, such as the innner core of neutron stars.

In the following sections, we shall review the properties of the BPS-Skyrme model
coupled to gravity, and describe the self-gravitating solutions obtained from such model,
that we call BPS stars. It will be also interesting to compare the properties of the self-
gravitating BPS star solutions to other star solutions obtained via the first approach,
namely, as gravitating perfect fluids with an EOS given by the same BPS model, as well
as the generalized model.

Stress-energy tensor and energetics of the BPS model

Let us first consider the BPS submodel coupled to gravity. We start from the following

action functional
/\/_(XBPS - m) d4x (41)

where R is the Ricci scalar of the spacetime metric, G is the gravitational constant, g is
the determinant of the tensor metric and it is defined as its absolute value (g := |g|) and
now Zgps corresponds to the minimally coupled BPS Skyrme Lagrangian, which reads

prS = —/\27T4g_lgWB“B” - ,u2L{(U) (42)

Note that in the presence of a non-trivial spacetime metric, the topological current cor-
responds to the following tensor density of weight +1:

1
B' = 55" T{L,L,Ls} = /gB". (4.3)

so that the topological charge enclosed in an arbitrary (spacelike) hypersurface ¥ with
volume element dS,, is given by

B = / B*dS,. (4.4)
b

For the special case of a hypersurface of constant time, we have dS,, = k,d*z, with k = 9,
the Killing vector field corresponding to the time coordinate and d3z the natural volume
element of the spatial sections at a given time.
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We now consider the stress-energy tensor for the Skyrme field:
Ty = 2X°7*B*B" — (Nng,, B’ B’ — 1i*U) g™, (4.5)

which can be brought into the form of a perfect fluid stress-energy tensor, Thre = (p +
p)utu” — pg"”, with the following definitions:
eB*

NI
p= )\27T4gpaB”B" — ,u21/{,
p=p+2°U.

ut =

(4.6)

where € = 1 or —1. Since both of these values represent the same model, we will always
choose ¢ = 1 unless otherwise specified. Thus, the BPS Skyrme model behaves as a
perfect fluid whose four-velocity, baryon number, pressure, and mass densities are related
through (4.6). Note that this perfect fluid would be non-barotropic, since the potential
term introduces in both the pressure and mass densities a non-trivial dependence on the
Skyrme field, so that no closed relation can be found between p and p alone.

Topological energy bound

Consider the proper energy-momentum density of the BPS Skyrme field, which is given by
P, = T,,u".? Let the energy functional Fy, be defined as the integral of P, on a spacelike
hypersurface with volume form dS,,:

By, = / THu’dS,,. (4.7)
P

We thus may obtain the energy of the field as measured by an observer comoving with
the fluid at any given value of its proper time, writing dS,, = u,d>S, so that

E = / THuu,d*S = / (N1 BB + 1i°U)d*S, (4.8)

where d*S = /gd*z is the volume element of the spacelike hypersurfaces defined by
7 = const, and 7 is the proper time parameter of the comoving observer. We will now
show that the value of this proper energy is bounded from below, in other words, the
model presents a BPS bound [Bog76; ASW10a].

Indeed, define the following vectors:
WE = Ar2B* + U = (gm% /9, BPB7 + WE) . (4.9)

so that we may write the proper energy as

E = / (gWWi‘W’i’ F €2Au7r2\/ngBPBU\/27> d>S. (4.10)

2Note that P, is not a conserved quantity in general, since u* will not be in general a Killing field.
However, for static and stationary configurations, it will.
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Since u* is a timelike vector, we have g, WEWY > 0, with the equality reached only when
W =0, ie.
W =0 = e r®\/9,s BPB° £+ upvVU = 0, (4.11)

which is the BPS condition. Note that W{ = 0 is satisfied only if ¢ = F1. This is an
important property that allows us to write

E > 2 \un? / V9,0 BPB°VUA®S = Epps, (4.12)

where Eppg is the proper energy of the lowest energy configurations, which are called
BPS configurations, since they satisfy the BPS equation (4.11), and therefore

E > Eppg = 244° / UdS. (4.13)

Energy conditions

Even though the stress-energy tensor of the BPS Skyrme model presents the structure of
a perfect fluid, one can ask whether it satisfies the energy conditions for being a consistent
model for a realistic description of gravitating matter even at extreme density regimes
such as that present at neutron star cores. It is easy to see that the EMT of this model
satisfies the Dominant Energy Condition (DEC), as defined in [HE73]: T,,u*u” > 0 and
Tyu" is causal for any timelike vector u*. This is equivalent to the statement that all
observers measure a positive energy density and causal energy fluxes, and, in particular,
for a perfect fluid stress-energy tensor, the DEC implies [HE73; MV17]:

p=lpl, p=0, (4.14)

which is satisfied by construction for the BPS Skyrme model for any positive potential
U > 0. Indeed, by definition, (A = N*7*g~'g,, BPB° > 0)

Ipl = |A— p’U| < |A+ U] = A+ pPU = p > 0. (4.15)

As a matter of fact, the potential terms usually chosen in the literature are always positive
(see e.g. [Ada+15d]), so that the DEC is satisfied at all of those cases.

Another energy condition present in the literature, which is not implied by the DEC,
is the Strong Energy Condition (SEC), which states that the gravitational field generated
by a stress-energy tensor 7T}, will be attractive as measured by an arbitrary observer with
4-velocity u# if [VBO0O]:

(T, — %ngo‘a)u“u” >0, V timelike vector u”. (4.16)
It is easy to see that for any static configurations of a minimally coupled scalar field with an
arbitrary positive potential (and canonical kinetic term) without topological energy terms,
it is violated (See [VB00]). However, the nontrivial topological structure of the model
at hand may allow to overcome this issue, so that static configurations with nontrivial
topology which do not violate any energy condition may be found. For the standard
Skyrme model (without potential term) it was shown by Gibbons that both DEC and
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SEC are satisfied [Gib03]. In the case of the BPS Skyrme model, it is interesting to
analyze whether the SEC is satisfied for the usually chosen potentials in the literature.
Substituting (4.5) into (4.16), we find the following conditions [MV17]:

p+p=24>0; p+3p>0 = 4A —21°U >0 = 24 > 1°U. (4.17)
The first condition is satisfied trivially, and, since both terms at each side of the last
inequality are definite positive, (assuming a positive potential), we may write it as

2 / Ad*S > / pUPPS = 2E > 3u° / UdS, (4.18)

where E is the energy functional, which, as we have seen, is topologically bounded from
below, i.e. F > Eppg with Egpg corresponding to the energy of the BPS configurations,
so that

2F > 2Epps = 44° / UdPS > 37 / Ud*S, (4.19)

from where we conclude that the SEC is satisfied in the BPS Skyrme model for any
positive potential term.

Mean field approximation

As we have stated before, the BPS skyrme model can be seen as a non-barotropic fluid, for
which the thermodynamical energy and pressure densities may be found exactly without
further approximations. Nevertheless, one may still perform a mean-field approximation
in order to obtain an effective, barotropic equation of state for the BPS Skyrme fluid.
This will allow for a direct comparison between the results obtained within the exact and
the mean-field approaches.

In order to perform the mean-field approximation, consider a static BPS fluid element
) with finite volume V = fQ d®z (as measured by an observer comoving with the fluid
element). The volume V' must be small enough that we can neglect the effects of the
gravitational field (and assume g,, = 7,,) on it, but large enough that the topological
charge enclosed by its boundary does not vanish. For static BPS configurations in flat
space, the conservation of the stress-energy tensor implies that the pressure of these
configurations must be constant, and related with the baryon number density via

N71iBE — 1i*U = P = const. (4.20)

Thus, the baryon density can be written By = £V U + P, with /ﬂf’ = P, the plus
(minus) sign corresponding to baryon (antibaryon) configurations. For simplicity, we shall

assume By > 0 in the following.
On the other hand, from (1.4), we have

1 A d23 B dds
v:/ U*(d§ :—/U* | === == 4.21
q 2m*By () 2p Jo (\/U+P> 21 Jss U+ P 2
whereas the total energy of the fluid element will be given by

B\ oU + P
E— / pdbe = / (P + 2tutydie = B [ UL 4o (4.22)
Q Q

2 Jss U+ P
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Therefore, we are able to define the mean-field energy and baryon densities as functions
of pressure on (2 as the averages of the total energy and baryon number on V:

p(P) = —5 pp(P) = ——:. (4.23)

Since the above quantities do not depend on the particular size of €2, the mean-field
approximation consists on promoting them to local relations between the pressure, energy
and baryon number densities (i.e, making the limit V' — 0). In particular, within this
approximation, one obtains a barotropic equation of state p(p), whose particular form
will depend on the specific potential.

Static NS solutions

Here and in the following sections, we will obtain solutions to the Einstein equations that
describe NS within the different Skyrme models presented above. As a first step, we
will consider static, spherically symmetric configurations, which is usually done following
the Tolman-Oppenheimer-Volkoff (TOV) approach, in which the Einstein equations are
solved using the stress-energy tensor of a perfect fluid. Thus, we suppose the spherically
symmetric (Schwarzschild) ansatz for the metric,

ds? = —e*Mdt? + PO dr? + r2(dh? + sin® 6dp?). (4.24)

We extract from the Einstein equations
1
R, — éRgW = 8nT,, (4.25)

and the conservation of the stress-energy tensor of the perfect fluid type (V,7T} = 0) the
following system of Ordinary Differential Equations (ODEs), also known as the TOV
system,

do 4rr3p + M

— =2 4.26
dr r(r—2M) ( a)
dM
== 412 p (4.26b)
dp (p+p)da
o e 4.2
dr 2 dr’ (4.26¢)
where we have made the usual definition
exp(—0) =1—-2M/r, (4.27)

so that the value M, = M(R,) of the function M = M(r) coincides with the (static)
Arnowitt-Desser-Misner (ADM) mass of the star [ADM59] when evaluated at its radius
r=R,.

To close the system (4.26), we have to know the relations between the pressure and
the energy density, i.e., an EOS. It is at this point where the classical Skyrmion solutions
with a very large value of the topological charge become relevant.
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Skyrme neutron stars

Next, we briefly review the current status of the description of static properties of neutron
stars from the Skyrme model perspective.

The BPS Skyrme neutron stars

In the case of the BPS Skyrme submodel .Z5pg, which is a genuine perfect fluid theory
for any potential U, one can find lowest energy Skyrmions for any value of the topological
charge B in an exact form. There are, in fact, infinitely many solutions for a given B
related via volume-preserving diffeomorphisms, which corresponds very well with the fluid
nature of the BPS Skyrmions. Interestingly, the perfect fluid form of the action allows to
obtain the mean field EOS in an exact form without solving the field equations [Ada+15c;
Ada~+15b]. This occurs because the pressure enters as an integration constant into the
generalized Bogomolny equation. As a consequence, the pressure dependence of both the
energy F(p) and the volume V' (p) of BPS Skyrmions can be found as target space integrals
(averages). The details of the resulting EOS obviously depend on the particular choice
of the potential (but, of course, do not depend on a particular solution). On the other
hand, since the sextic term provides the leading behavior in the high pressure limit, the
EOS tends to the maximally stiff equation of state as the pressure increases

prrs(p) = p. (4.28)

As a consequence of this stiffness, it is not surprising that the neutron stars provided by
the BPS Skyrme model have rather big maximal masses, easily exceeding 3M,—see Fig.
4.1, black, purple and blue curves which correspond to three of the different potentials
introduced in [Ada+15¢; Ada+15b], namely the f-potential Uy = O(Tr{l — U}), the
standard pion mass potential U, = 1/2Tr{l — U}, and the pion mass potential squared
U?. The first one corresponds to the constant density compacton limit for BPS Skyrmions
in flat space. The motivation for choosing the other two potentials comes from nuclear
phenomenology [Ada+15b]

Owing to its perfect fluid nature, the BPS model offers the possibility to close the
TOV system without any mean-field approximation. In this case, referred to as the exact
case, the pressure and energy densities p,p can already be read from the stress-energy
tensor (4.5), as we have shown in the previous section. Furthermore, one can see from
(4.6) that they are related in a non-algebraic way, by construction, as the potential & may
have an arbitrary spatial dependence. This also means that the obtained matter is an
example of a NON-BAROTROPIC FLUID where constant pressure does not correspond to
constant energy density in general. Hence, this exact approach may serve as a laboratory
where the impact of non-barotropic EOS on properties of NS can be studied. Further,
the different BPS models provide a wealth of new and different EOS which will allow us
to test the universal, EOS-independent character of certain universal relations, like the
I-Love-(@) relations (see next section), in new environments not considered previously.

More precisely, in the exact case the Skyrme field U enters in the Einstein equations
as an additional degree of freedom, so that we have to obtain its own differential equation
in order to close the TOV system. To do this, we choose the hedgehog ansatz for the
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Skyrme field,
Ulz) = ci€ma00)-~
(0, ») = (sinf cos (B¢),sin dsin (B¢), cos ), (4.29)

which is compatible with the chosen ansatz of the metric, since it yields a spherically sym-
metric energy density, which is relevant for static NS. Here 7 are the Pauli matrices and
(r,0, ¢) are spherical coordinates. The only degree of freedom in this ansatz corresponds
to the radial profile £(r), and inserting the hedgehog ansatz into the definition of p it can
be shown that this function satisfies the differential equation

4B2)\%"%sinte
p = 6,87,4 - /,L u, (430>

which is added to (4.26) to close the system. For simplicity, when solving the TOV system
we will define the new variable y := sin®(£/2), which satisfies

dxy e [p+ U
dr— 2BX \| x(1—x)’

(4.31)

Once the system of ODEs is closed, only a set of initial conditions are needed as an input
in order to obtain a particular solution. However, in the exact case, the baryon number
B of the star is an additional input parameter, and the value of the pressure at the center
of the star (po) that yields the input value must be found via a shooting method, with
initial conditions

a(0) = ag, M(0) =0, x(0) = 1, p(0) = po, (4.32)

requiring that the pressure vanishes at some finite value p(r = R,) = 0. This value R,
is precisely the radius of the star. The value of oy is not needed to solve the system.
However, only one value is correct, and it can be obtained by imposing continuity of the
metric at the radius of the star, R,, for which, and onwards, the metric is given by the
Schwarzschild solution:

2M,

=P =1- , >R, whereM, = M(R,). (4.33)
T

Also, the central value of the energy density pg is determined from (4.30) using the BPS
relations (4.6).

On the other hand, in the Skyrme crystal and the mean-field version of the BPS sub-
models, we do have a barotropic EOS p(p), so that the energy density only depends on the
pressure. In these cases, the equation (4.31) is no longer needed and the input parameter
is the pressure in the center of the star pg, along with the rest of initial conditions for «
and M. The system of differential equations is then solved up to the star radius (R,), in
that point the static ADM mass of the star M, = M (R,) is also obtained.

In Fig. 4.1 mass-radius curves for the exact case are presented - see black, blue and
purple stars. For the f-potential the mean field and exact computations obviously coin-
cide. Therefore, for relatively flat potentials (e.g., the pion mass potential) the difference
between the mean field and exact approach is rather small, while it strongly increases for
more peaked potentials (e.g., the pion mass potential squared).
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Neutron stars in the GSM

The GSM given by (1.1) is a field theory whose energy-momentum tensor does not have
a perfect fluid form. Therefore, a suitable mean-field approximation has to be performed.
In practice, it means a spatial averaging. For any given set of values for e, f,, A, the
ground state is a crystal with a given lattice structure and lattice spacing [y (we assume
the isotropic case). Obviously, the energy per baryon E(I) has a minimum at [ = . As
explained in chapter 3, this minimum may be identified with the nuclear saturation point.
We thus choose the values of parameters that best fit some nuclear physics observables
at saturation density. The solution at the minimum (saturation) is also a zero-pressure
(equilibrium) solution, because

oF
oV’
where V' = [ is the volume of the cell. Diminishing the lattice spacing [ is equivalent
to imposing a nonzero pressure. Finally, as the pressure and the energy density are both
functions of [, we can find the corresponding EOS, pasy = pasa(p)-

An interesting observation is that, if inserted into the TOV system, the crystal EOS
with zero sextic term coupling constant amounts to neutron stars with rather small max-
imal masses, significantly below the observed NS masses. For example, for the cubic,
face-centered lattice of B = 4 Skyrmions (« particles) M., ~ 1.49M; [NP12; Nay19].
The corresponding mass-radius curve is presented in Fig. 4.1, with a golden dashed line.
The corresponding parameter values are those that fit the energy per baryon and baryon
density at the minimum with their values at nuclear saturation. Therefore, the standard
Skyrme model crystal and the BPS Skyrme fluid result in too small or too large maximal
masses of neutron stars, respectively. It can be expected that these two extremal cases
can be balanced in the full GSM, i.e. when including a nonzero value of the sextic term.
In Fig. 4.1 we show the mass-radius curve for the EOS from the generalized model - see
the orange line. As expected, the maximal mass of NS is between the two previously
discussed versions of the Skyrme model and reads M., ~ 2.55M;. The values of the
parameters are chosen to be those of set 1 in table 3.2.

p=— (4.34)

Neutron star crusts and the hybrid EoS

By construction, the generalized Skyrme model contains only pionic degrees of freedom
(with some other heavier mesons effectively also taken into account). This means that it
is relevant for describing nuclear matter above the saturation density. For lower densi-
ties, the electromagnetic interaction starts to have a nontrivial impact on the properties
of nuclear matter, leading to the appearance of inhomogeneous phases (usually called
NUCLEAR PASTA phases [CHO8]). Although the Skyrme model can be coupled with the
electromagnetic U (1) gauge field, which in principle may allow to study such phases within
the framework of the Skyrme model, the resulting theory is very complicated and cur-
rently no large B Skyrmions are known. However, it is possible to take into account this
low density regime, relevant for the crust region of NS, by assuming a transition of the
generalized Skyrme EOS to a more standard nuclear EOS obtained by other techniques.
Concretely, we choose the Barcelona-Catania-Paris-Madrid (BCPM) equation of state, de-
veloped in [Bal+10]. The BCPM is based on a semi-phenomenological energy functional,
obtained via microscopic many-body calculations in the Bruekner-Hartree-Fock approach,
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including two and three-body interaction potentials between nuclei (see [Sha+15] for a
detailed review). Within this EOS, the outer crust is modelled as a regular lattice of
neutron-rich nuclei in the Wigner-Seitz approxiation, whilst the outer crust presents the
so-called nuclear pasta phases of different shapes. At some point close to nuclear satura-
tion, the crust-core transition takes place, and the pasta phases gradually become nepu
matter. We model the crust-core transition with a hybrid EOS that smoothly interpolates
between thr crust EOS (BCPM) and the Skyrme model-based EOS for the inner core:

piyb(p) = (1 — a(p))pecem + a(p) (pasm(p)), (4.35)

where the interpolating function

<7%> (4.36)

v (5)

tends from 0 for p/ppr — 0 to 1 for p/ppr — oco. The parameter ppr can be identified
with the position of the crust-core transition, whereas 5 measures how rapid the transition

occurs. The resulting mass-radius curve is presented in Fig. 4.1, in dark red (for g = 2,
and ppr = 25 MeV frn_?’).

(p pPT7

4.04 —
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Figure 4.1: Mass-Radius diagram for the different EoS within the Skyrme model.

In the mass-radius diagram of fig. 4.1 one can observe two different qualitative behav-
iors. Indeed, those curves with a finite energy density at zero pressure present a minimum
energy density, and thus they are characterized by the absence of a crust. The radii of
these stars will grow monotonically with their masses, up until some value close to the
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maximum mass in which the radius (as a function of mass) presents a maxium value, close
to the maximum mass point. For larger masses, the radius decreases, and the maximum
mass is reached. Other curves present a crust (which is related to the property of van-
ishing energy density at zero pressure). The radii of such stars grows decreases rapidly
with mass for very small values until it stabilizes at around 12 — 14 km when the masses
reach ~ 0.5My In general, for M < M., there are two branches of solutions on the
mass-radius curves. The equilibrium states on the decreasing (right) branch are stable,
while the equilibrium states on the increasing (left) branch are unstable.

NS phenomenology with Skyrme-based EOS

In this section we will show that star-like solitonic solutions of different Skyrme-type mod-
els not only exist, but also reproduce to a good extent some of the currently best known
properties of NS—Ilike the typical values of mass, radius, moment of inertia, Love num-
bers, etc—coming from astrophysical measurements, GW observations and/or computer
simulations.

We also address the issue of whether the compact star solutions obtained within dif-
ferent Skyrme-based models and the corresponding EOS satisfy the I-Love-@Q relations,
and find that they indeed do satisfy them, even though the equations of state for different
models present big differences. The Skyrme model, being relatively simpler than other
phenomenological or first-principle based relativistic field theories describing nuclear mat-
ter, therefore not only stands as an excellent candidate to describe nuclear matter at very
high densities such as those inside NS. In addition, it provides a simple toolkit for the
construction of a wide range of models of nuclear matter and their corresponding EOS
which allow to investigate the resulting NS properties and universal relations in environ-
ments not considered previously—Ilike, e.g., for non-barotropic EOS, as we will argue in
the next section.

Slowly rotating stars: Hartle-Thorne formalism

To analyze the properties of rotating Skyrmion stars, we will make use of the Hartle-
Thorne formalism for slowly rotating stars, introduced in [Har67]. This formalism estab-
lishes a perturbative framework which consists in an expansion of the metric in powers of
a perturbation parameter—related with the rotational frequency—and solving the Ein-
stein equations order by order in this parameter. This perturbative expansion has proven
particularly useful in the literature since it allows to obtain approximate solutions to
the Einstein equations both for the interior and exterior of the star, hence, it enables to
retrieve information about the equation of state for the matter inside the star from the
multipolar expansion of the external solution. We will now review the procedure to obtain
the solution in this approximation for the metric in the interior of a compact star, and
in the following sections we will do the same for the exterior solution and the matching
between both solutions at the star surface.

The starting point of the slow rotation approximation is to consider a static solution
for the metric of a non-rotating configuration, and subsequently add perturbation terms
up to a given order in a suitable parameter related to the spin of the star. In our case, we
will start from the static metric with line element (4.24) and, as in [Ber+05], defining the
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4.2. NS phenomenology with Skyrme-based EOS

spin parameter € = ), /Q in terms of 2,—the angular velocity of the star as measured by
an external, static observer located at spatial infinity—and the characteristic frequency
Qi = \/My/R3, where My and Ry are the non-spinning mass and radius of the star. The
characteristic frequency €2 corresponds to the Keplerian orbital period of a test particle
at a radius Ry around a mass M, and thus can be thought of as the rotational frequency
for which the mass shedding occurs, i.e., an upper limit for the rotational frequency of
the star [Bau+13]. For spin frequencies much smaller than this characteristic frequency,
the parameter € serves as a suitable small parameter about which we can expand the
metric. On the other hand, for spin frequencies near the Keplerian limit, ¢ ~ 1 and the
Hartle-Thorne approximation is no longer valid. Despite the dependence of the Keplerian
frequency on the EOS, the slow-rotation approximation is valid for even the most rapidly
spinning neutron stars observed to date [Ber+05].

Therefore, let us consider the background spacetime whose metric is given by the
static line element (4.24). We now extend this metric by defining a one-parameter family
of metrics g(¢) whose components may be expanded in powers of ¢, g(e) = g + g™ +
1e2g@ +... with g given by (4.24). Note that this construction introduces an inherent
gauge freedom (for details see, for example, [SBG04; RV15]) Thereby, following [YY13b],
up to second order in €, we may write the metric of a slowly rotating star in the Regge-
Wheeler gauge as:

ds® = —(1 4 2€°h)edt? + (14 2€°
s (14 2€h)e +(+Er—2M

_m )eBdTQ—i—
+(1 4 26%k)r? [d6” + sin®*(0)(do + ewdt)?], (4.37)
where @ = @(0,7), h = h(0,r), m = m(0,r), k = k(0,r), and M(r) is related to B(r) in

the same form as in (4.27). Comparing with the general expansion of g(e€), we find:
g = 212w sin? Odtdo, (4.38)

m

mdﬁ + 4r°k(d6? + sin® 0d¢?).  (4.39)

g = — (465‘71 + 2r? sin? 8@2) dt* + 4eﬁr

Note that the metric perturbation function @ enters at first order in the spin pa-
rameter, whereas h, m and k correspond to second order perturbations. This can be
easily understood with the following argument [Har67]: a transformation of the metric
for a stationary and axially symmetric rotating spacetime of the form 2 — —€ should
be equivalent to t — —t. This, in particular, implies that an expansion of the diagonal
components of the metric in powers of ¢ must contain only even powers (since they are
unchanged under time reversal), whilst an expansion of the go3 term will only contain
odd powers of €. Furthermore, since w corresponds essentially with the go3 term of the
metric, it is responsible for the dragging of inertial frames. In other words, it measures
the rate of rotation that a freely falling observer would undergo with respect to a static
one (Lense-Thirring effect).

Due to these perturbation terms in the spacetime metric, both the Einstein tensor
for the metric and the stress-energy tensor for the matter field will develop perturbation
terms, as well. Indeed, just as with the metric tensor, we may define the one-parameter
families of perturbed quantities G, (¢) and T}, (¢), expand them in powers of ¢ and im-
pose that Einstein equations are satisfied order by order in the expansion parameter. In
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particular, both the pressure and mass densities of the matter field will be perturbed,
acquiring an angular dependence, i.e.

p(&r,0) = po(r) + epi(r,0) + %62])2(7“, 0) + O(e*), (4.40)
p(e:7,0) = po(r) + epr(r, 0) + %Eng(T, 0) + O(c%), (4.41)

as well as the fluid four-velocity, u(e). For this latter quantity, we further impose the
normalization condition g(e),,u*(€)u”’(e) = 1. Also, stationarity, axial symmetry and
rigidity of the fluid flow requires u(e) to be proportional to both killing vectors, i.e.
u(e) = fi1(e)(Or + f2(€)0s). The fi function is obtained by the normalization condition
at each order, and, since the background configuration corresponds to a static fluid,
fa(€) = eC + O(e?). We therefore have

u(e)* = (u'(€),0,0,eCu’(e)), (4.42)

thus the constant C' corresponds to the angular velocity of the fluid as measured within
the inner coordinate system. Note also that only odd powers of € enter the expansion of
fa, for the same symmetry arguments as for w.

It is important to notice that all these (one-parameter families of) objects so defined
are gauge-dependent, although the Einstein equations themselves do not depend on the
gauge (i.e, they must be fulfilled in any gauge). We thus may take advantage of this gauge
freedom to choose the most convenient form of the metric functions. In particular, we
may choose C' = Q in (4.42), so that the coordinate system in the interior of the star is
taken to be that of a static observer which measures the angular velocity of the fluid to
be du® Jdut = Qg = Q.. It can be shown that any other choice of the constant C' = Cj
is equivalent to a gauge transformation of the first order metric perturbation defined by
the vector V = (Qx — Cy)t0,[RV15].

On the other hand, the coordinate system we have chosen so far is not quite well
suited to perform the integration of the Einstein field equations from the inside of the
star, for the following reason: in order to find a numerical solution for the interior metric,
we will have to solve Einstein equations with a non-vanishing stress-energy tensor up
to the surface of the star, which is usually defined by the surface of vanishing pressure.
While in the spherically symmetric case the surfaces of constant density (or pressure) are
trivially those of constant radial coordinate, this is no longer the case once the second
order perturbations of the metric due to rotation are taken into account. Indeed, the
(perturbed) pressure and mass densities (4.41) will depend both on r and 6, so that the
surface of the star will be deformed with respect to the static case.

Therefore, we will consider a choice of gauge in which the surfaces of constant pressure
(density) of the perturbed configuration are those of constant radial coordinate. This is in
fact equivalent to a change of coordinates in the perturbed configuration from the original
(background) coordinate system {¢,r,6, ¢} to another, {t, 7,0, ¢}, in which the new radial
coordinate is defined by

ple;r,0) = po(7), r=r(er,0) =7+ (7, 0) +O(), (4.43)

so that r coincides with 7 in the background configuration (e = 0), whilst the function
¢(7,0) measures the deviation from spherical symmetry of the perturbed configurations.
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The new radial coordinate 7 is defined so that po(7) = const defines the isobaric surfaces
of the rotating star.

Strictly speaking, one could think that, in the exact case, also the perturbations of
the Skyrme profile function x must be taken into account. However, these will be by
construction directly related to the energy and pressure perturbations, and, since we will
get rid of these perturbations by a suitable radial coordinate change, also the perturbation
on the radial Skyrme profile will disappear. We have checked that this is in fact the case,
and that no extra degrees of freedom appear in the perturbative formalism for the exact
BPS Skyrme case up to second order in e.

In the new coordinate system, the metric (4.37) is rewritten, up to second order in €:

ds® = — (1+26h) (1 + €2a’¢)edt® + 2¢*eP 9y drdf+

+ [1 + 2¢ (% + a,-()} (1+ B¢’ di*+ (4.44)

+(1 4 26%k) (7 + 2€*7C) [d0” + sin® 0(d¢ + ewdt)?],

where all the metric functions are written as functions of 7 (and possibly ), and the ’
denotes a derivative with respect to 7.

The metric (4.44) has a rather complicated form. However, we may simplify it by
redefining, the metric functions:

e(7) = ™) =M1 4 2/ (7)((F,0) + O(€%)),
A = = PO+ TR0 + O)) s
w(r,0) = w(F,0), M(r)= M), '
k(r,0) = k(7,0), m(r,0) = m(r,0), h(r,0) = h(7,0),
so that the new metric
ds® = —(1 4 2€%h)e™dt*+
2 m g B =2 2 8 _
+ {1 + 2¢ (f o + @C)]e dr< + 2ee” 0p(drdh+ (4.46)

+ (7% 4 2677 (k4 /7)) [467 + sin’® 0(do + eaot)?]

coincides with (4.44) up to second order in e. Although both metrics (4.46) and (4.37)
are different, they are related through a gauge transformation, so that both must satisfy
Einstein equations, and the gauge-independent results obtained in both approaches must
be the same (at least, up to second order in €). Note that these metrics are compatible
with the general form for the Hartle-Thorne metric in an arbitrary gauge, obtained in
[RV15], which have two commuting killing vector fields k() = 04 and k) = 0;.
Although a priori the metric perturbation functions can have an arbitrary dependence
on r and 6, an expansion of these functions is always possible in spherical harmonics
[Har67]. Moreover, the angular dependence of the perturbation functions may be further
reduced by additional arguments. For example, axial and reflection symmetry in the
equatorial plane implies that the m (axial) number in the spherical harmonic expansion
does not play any role, so that it may be reduced to an expansion in terms of Legendre
polynomials. Therefore, we may expand the metric perturbation functions into a series of
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Legendre polynomials or their derivatives, depending on the parity of the corresponding
perturbation function (see eg [MPO05] or appendix B for details). Thus, for the odd parity
perturbation function w(7, §), we have

(7, 0) =Y @(r) dcis 5 Pi(cos0), (4.47)

whereas for the even parity functions h, m and k:

h(r,0) = h(F)P(cos ),
m(7,0) = Z my(7) Py(cos 0), (4.48)

k(r,0) =Y " ki(F)Pi(cosb),

and the same holds for ((7,0). Furthermore, one can show that the requirements of
asymptotic flatness and regularity of the metric at the center of the star impose that only
the [ = 0 term of (4.47) survives, and similar arguments can be made for the second
order perturbation functions, in which case only the [ = 0,2 terms are non vanishing
[Har67]. Thus, the spacetime metric is reduced to (4.46), where w(7, 8) = w, (7) = w(7F),
h(7,0) = ho(T) + ho(7) P2(cos #), and so forth. Also, in the following, it will become useful
to work with the shifted function w(7) defined by

w(F) = (Vg — w(F)). (4.49)

Furthermore, we can make use of the residual gauge freedom of reparametrizations of the
radial coordinate to set ko(7) = 0 in the expansion.
On the other hand, with these gauge choices, the stress-energy tensor of the system
will be given by
T} = (p(r) + p(7))u"u, + p(r)dy, (4.50)

where, from the normalization condition for the four-velocity, we have u* = u*(1,0, 0, €2,),
and

1
ut = : (4.51)
\/_gtt — 20,016 — Q2940
which, up to second order in €, reads
e 772 3o
ut =e"2 4 € <5w2 sin? @ — [ho + hyPs(cos 9)]@“) e 2. (4.52)

To sum up, we have described the metric of spacetime associated to a slowly rotating
perfect fluid star up to second order in the spin parameter. To do so, a perturbative
expansion must be performed from a spherically symmetric, non-rotating metric in terms
of a certain set of perturbation functions. We have chosen a particular coordinate system
in which the surfaces of constant pressure coincide with those of constant radial coordinate,
and written the stress-energy tensor of the rotating fluid in these coordinates. Therefore,
we are now ready to obtain the Einstein equations for the system.
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Interior Einstein equations

Let us now consider the Einstein equations (4.25), which can be written as £ = 0 with
E := G — 87T, for the interior metric (4.46). The Einstein equations imply different
equations for the perturbation functions, at each order in e. Indeed, we may write

1
E(e) =B + EWe 4 §E(2)€2 4. (4.53)

where E(Y) = 0,E|.—y, and so forth, so that all terms in this expansion must vanish. For

example, the zeroth-order equations correspond to the TOV system of equations (4.26).
At first order in €, the only nontrivial equation is obtained from the first-order Einstein

equation EM = 0, and corresponds to the (t,¢) component, EW?, = 0, which yields

1
W= 4(7rfeﬂ(p +p) — :>u/ + 167’ (p + p)w. (4.54)
T

The second order Einstein equations are given by E®®) = 0. As we have seen, the
second order perturbation functions can be divided into two sectors, corresponding to the
[ =0 and [ = 2 terms in the Legendre expansion. Furthermore, these sectors appear
uncoupled in the Einstein equations, so that we may separate these into different sets of
equations for each sector. At quadratic order in €, it will also be useful to consider, apart
from the Einstein equations, the stress-energy tensor conservation equation. In particular,
from the [ = 0 sector of VMT@)ﬁ = 0, one finds

1 /
hy = 3 (TQwQe’fB)/ 3 CO e*(2M + 8m7?p) | . (4.55)

This equation can be integrated to yield an algebraic equation for (; in terms of hg and
its initial condition, h(o) which is in a priori unknown and will be determined once the

(2)u

system is solved by matching with the exterior solutions. Further, from V,1T"") = 0, we

have
(PP =27 M)[Pe w? + 3 hy
G2 = 3(47p+ M) ’

where we have used the zeroth order TOV equations. The last two equations are only valid
inside the star since we are supposing p, p # 0. In particular, as they both correspond to
algebraic instead of differential equations, the variable (5 will not appear in the second-
order system of differential equations since we can substitute directly by (4.56), and the
same will happen to hy,.

Let us now obtain the dlfferentlal equations for the rest of metric perturbation func-

(4.56)

tions. The [ = 0 contribution of E®), = 0 gives
8 1
my = §7TF4e_aw2(p +p) + D e @A (W2 — 4%y . (4.57)

For the [ = 2 sector, E(Q)g B ) =0 and E 9 = ( yield, respectively,

8 =5
me= |3 —nrPePw(p 4 p) + 7;5 (W2 — FelatPp, | e~ (@t28), (4.58)

r—3M — 47rpf3eﬁh N T — M + 4mpr®
T T

ky = —hy + e*my. (4.59)
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On the other hand, the Einstein equation E(Q)Z = 0 yields two independent equations
which must be satisfied separately, namely, one for the | = 2 sector (obtained from
the terms proportional to Py(cosf)), and other for the [ = 0 sector (from the terms
independent of the Legendre polynomial). The equation for the [ = 2 sector can be
written

F— M + Ampr 3-4 2
py = M AT gy | 3D e
2 1+ 8mpi? 3
b 2Py 4 O s T e (W) - (4.60)
T 72 12
Ao+ PP i
3r ’

whereas for the | = 0 sector we have

(4.61)

Substitution of eq. (4.55) into (4.61) yields a differential equation for ¢y, which, together
with eq. (4.57), constitutes a system of two ODEs independent of hy. Thus, once this
system is solved, hy can be found algebraically using the integrated version of (4.55) up
to an arbitrary constant.

Exterior equations and solutions

Following [Har67; YY13b], we may take (4.37) as an ansatz for the metric of spacetime
in the star exterior. We can indeed do this, since ((r,#) is defined only inside the star,
and taken to be constant outside. This means that the exterior metric in terms of r and
7 will be the same, where now the radial coordinate r goes from a finite value in the
star surface R., —corresponding to the star radius at zeroth-order— to infinity. Following
the same steps as in the previous section, the Einstein equations in the exterior of the
star can be obtained at each order in € simply by setting p = p = 0 in Equations (4.54)
and (4.58) to (4.60), with the exterior solution of the zeroth-order equations (TOV system)
corresponding to the Schwarzschild solution by virtue of Birkhoft’s theorem. Hence, to
first order in €, we have: ew®™ = K; — K, /r3 where K; and K, are two integration
constants which can be related to the total spin velocity and angular momentum of the
star. Indeed, at r — oo, the metric function ew®™*' must approach the angular velocity of
the star as measured by an static observer, so that K; = €2,. On the other hand, we may
calculate the conserved total angular momentum J of the star by integrating the angular
momentum density current J* = T“l,k@) over a spacelike hypersurface >:

J = / T, k"dS, = /Té]g[lﬂdrdﬁd(b =Ky/2+ 0(62), (4.62)
b
from where it is straightforward to see that
Gwewt — Q* _ =Y

(4.63)
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On the other hand, at second order in ¢, the system given by eqs. (4.58) to (4.60) must
be solved with vanishing p and p. Using the expressions for the exterior solution of the
first and zeroth-order metric functions, and imposing asymptotic flatness of the metric,
one finds the analytic expressions [Har67; YY13b]:

J2
met = oM — 5 (4.64)
oM J?
ext _ 4.
g (7"—2M)+7“3(r—2]\/[)’ (4.65)
1 M T
ext __ * 2 2 o
5 o (12 gy (). o0
1 2M. 2AM r r
keXt - - 1 * 2 —* 1 o 1 o A 2 o 1
(4.67)
1 M M?
ext __ _ * . 2
my = M*TQ(l 7T+1Or2>J+
3Ar? M, AM?2  2M3 r
1-3—+-——= === 2]
YA { T3 3 T/t nf(r)}’
(4.68)

being f(r) = (1 — 2M,/r), and where § M and A are integration constants. As we will see,
0M corresponds to the correction of the gravitational mass, whereas A will be associated
to the Love numbers.

Numerical solution for the interior and matching

Once we have obtained the system of differential equations for the metric functions, we
need now the initial conditions in order to solve it. In this section we will explain how to
obtain them and also how to solve the system numerically.

At this point there are no differences between how to solve the exact case and the
mean-field case since the shooting method for the exact case is required only for the
zeroth-order equations and those have already been solved. Thus we do know which value
of the pressure in the center of the star corresponds to a given baryon number.

To obtain the initial conditions, as before, we expand our metric functions in powers of
the radial coordinate and insert them in the differential equations to obtain the relations
between the coefficients. In the zeroth-order (non-rotating) problem it is enough to expand
until the zeroth order coefficient (in powers of 7), however when dealing with the second-
order functions we need to expand them to the first nontrivial order (with nonvanishing
coefficients). The reason is that the metric functions hy and ko vanish at the center of the
star. Furthermore, for the next term of the expansions we find that they are equal and
opposite, thus cancelling each other when substituting into their equations. This implies
that: 1. We need a really good accuracy in the step of the numerical integration and
2. We cannot obtain the value of the first nontrivial coefficient of ho, in its expansion
in powers of 7. To solve both problems, we follow [Yag+13] and start the integration in
some small radius R, (instead of 7 = 0) such that the expansions (4.69) are sufficiently
accurate and the integration does not depend on the value of R.. The expansions of the

113



Alberto Garcia Martin-Caro

metric functions, with the nontrivial coefficients expressed in terms of the functions in
7 =0 are

o= an+ %ﬁ (po + 3po) 7>+ O (), (4.69a)
M = %por + %pgr‘r’ +0 (), (4.69b)
P=Dpo— 2? (po + po) (po + 3po) 7> + O (77) (4.69¢)
p=po+ pai> + O (7)), (4.69d)
x=1- %X@)r2 + O () (Exact case), (4.69¢)
w=wy+ 8% (po + po) wor + O (7°) (4.69f)
ha = W72 + O (7) (4.69g)
mo = 86;0 W2 25 (200 + 3po) — gﬁ P4+ 0 (%), (4.69h)
Co = Suge ™ 7+ O (7)), (4.691)

87 (po + 3po)

where wp, as pp, is an input parameter when it comes to solve the system. This
parameter will determine the angular velocity of the star €),, as can be seen from the
matching condition of w with the exterior solution, w®®*, obtained in the previous section.
This matching condition is simply given by imposing that the metric function w and its
first derivative are continuous throughout the star surface [YY13b], i.e

w(R,) = w™(R,), (R, = W YR,). (4.70)

Therefore, in the rotating case, the stars are identified by a two-parameter family (wy,
po). The values of py and N; are easily obtained from the EOS (p(p), n(p)), and h® is
obtained from (4.31). The functions ks and my are found to satisfy k§2) =my) = —h§2 :
around the center. As we have said, the odd powers in 7 of almost all the metric functions
are null, however the definitions of M (4.27), m and (; (4.46) lead to the expansions given
n (4.69).

Now we start the integration with a non-zero, but still unknown, seed for the second-
order functions he and ks. To solve the unknown initial condition issue we will follow the
approach given in [Yag+13; Har67]. First we must obtain a particular solution for hy and
ky (hy, k) by solving the equations (4.60) and (4.59) for an arbitrary initial value (that
must satisfy the regularity conditions given in (4.69)). Next, we obtain a homogeneus
solution (hy, kp,) again for an arbitrary initial condition, using the same equations but
with vanishing source terms. With these two functions we can construct the solution

ho(T) = hy(T) + Bhy(7),  ko(T) = ky(T) + Bkp(7). (4.71)

In these expressions B is a constant that can be obtained by matching the functions
hy and ko at the surface of the star with their corresponding exterior solutions. This
matching condition is simply given by continuity of both functions at R,, i.e.

ho(R.) = hSY(R,),  ka(R.) = ESU(R,). (4.72)
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By doing this we are introducing the integration constant that appears in (4.68), hence
we have an algebraic system of two equations that can be solved for A and B.

On the other hand, to solve the [ = 0 sector of the second order system, we first solve
the coupled ODEs for {, and mg as explained in the previous section, and then we obtain
the solution for hg up to a constant h{ whose value is determined from the matching
conditions

mg“(R,) — 4m Rip(R.)Go(R.) = mg™(R.), (4.73a)
he'(R.) = hi™(R.), (4.73b)

where the constant term in (4.73a) is due to a nonvanishing energy density at the surface
of the star, as pointed out in [RV15; Rei+17]. To obtain this constant term we can
integrate (4.93) in the interval [R, — €, R, + €] and take ¢ — 0. By doing this we have
that all terms in the surface of the star vanish but the term dp/dr, which is unbounded at
R, and contributes with a constant term. From (4.73a) we can obtain the value of § M,

which reads )

SM =m"™(R,) + % — 47 R?p(R,)Co(Ry). (4.74)
We would also like to remark a subtle detail concerning the second-order equations.
When solving the TOV numerically, the metric function « is not fixed to its correct initial
value since it does not affect the observables of the star. However, for solving the second
order problem it is necessary to find the correct initial value of this function since the
second order perturbation functions depend directly on «(0) and an incorrect value will
affect the values of the quadrupole moment and gravitational mass correction of the star.
This can be done by first solving the TOV system, finding the correct initial value of
a using the matching condition (4.33) and then solving both zeroth and second order
systems.

Global properties of compact stars

A key feature of the Hartle-Thorne perturbative formalism is that it allows us to obtain
the values of these observable parameters from the solutions of the Einstein equations
for the interior of the star at each order in the expansion parameter. Indeed, once these
solutions have been obtained, they can be matched to the exterior solutions, from which
observational parameters such as the quadrupole moment can be obtained systematically.

Take for example the moment of inertia I, which is defined as the quantity measuring
how fast a star can spin given a fixed spin angular momentum J, and is given by

I=—. 4.75
o (4.75)
To obtain the value of I for a given (interior) solution of the second-order Hartle-Thorne
equations is straightforward: we simply obtain J from (4.63), by matching the exterior
solution to the interior one at R, (4.70) and dividing by Q.. It will be convenient also to
define the dimensionless moment of inertia as

- 1

*
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On the other hand, the metric generated by an isolated, static gravitating body at a
given point sufficiently far from the source may be written using a multipolar expansion
in a system of Asymptotically Cartesian and Mass Centered coordinates [Tho80; THS85],
whose (0,0) component will be of the form

oM g 1
goo=—1+—+ 3@x’aﬂ +0(—=), (4.77)
r rd r4

where M is the gravitational mass of the star *, and Q;; is the (traceless) quadrupolar
tensor.

The induced quadrupolar deformation of the star can be described in terms of the
star’s [ = 2 sector perturbation functions in spherical coordinates. Indeed, defining z* =
rn'(6, ¢), where n’ is the unit three-vector in spherical coordinates, we may write:

2

= Qin'n? (6,0) = Y Q"Yam(6,0), (4.78)

m=—2

xial

Qij?

(where Y5, are the [ = 2 spherical harmonics). We find, in the case of an axially symmetric
deformation, that the expansion (4.77) reduces to

goo = —1+ ¥ + 7%Pg(cos ) + O(%), (4.79)
which defines the quadrupole moment of the metric, Q.

Thus, we may perform an asymptotic expansion of the Hartle-Thorne perturbative so-
lution for the exterior spacetime metric and identify the gravitational mass and quadrupole
moment as the coefficients proportional to 2/r and the P(cos®)/r3 term, respectively.
Clearly, these quantities get corrections due to the star rotation.

Indeed, for example, the gravitational mass of the star, up to second order in €, receives
a correction

M(e) = M, + E5M (4.80)

which can be obtained from the expansion of the A" perturbation function. Furthermore,
taking into account the asymptotic expansion for large r of h$** and w*™"* one finds that the
spin-induced quadrupole moment of the star, up to second order in the spin parameter,
is given by

Qrot__J_Q_ 2§AM3 (481)

=TI €z i .

For later convenience we also define the dimensionless rotationally-induced quadrupole
moment as

A M* ro
QrOt - —?Q t. (482)

Dropping the staticity assumption, nontrivial current multipole moments may appear in
the expansion of the (0, j) components of the metric,

J] Sy 1
goj = _2€jklr_§xl - 46jqkr—l5qul + O(ﬁ) (4.83)

3In stationary spacetimes, the gravitational mass is defined via a Komar surface integral [Goul0], and
coincides with the ADM mass in asymptotically flat spacetimes.
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4.3. Tidally deformed stars and Love numbers.

the first term corresponding to a non-vanishing angular momentum.

Finally, another interesting property that can be obtained from the solutions is the
binding energy, which physically corresponds to the amount of energy that keeps all the
particles (baryons) in the star from dispersing to infinity. It is defined as E; = M, — M,
where M is the gravitational (or ADM) mass (in the static case, M = M,) and M, is the
baryon mass of the star. The binding energy so defined includes both the gravitational
binding energy and the nuclear binding energy. However, we will be mostly interested in
the gravitational contribution to the total binding energy, i.e. the gravitational binding
energy, since it contains EOS-independent information about the mass distribution of the
star [JWC19]. The gravitational binding energy is defined as £, = M — M, being M,
the proper mass, given by the proper energy-momentum density, P, = T, u”, integrated
on a spacelike hypersurface with volume form dsS,:

M, = / THu”ds,,. (4.84)
Y

In a stationary spacetime, this integral does not depend on the chosen hypersurface, so
we may take dS,, = n,d*S, where d*S = /ydz is the volume element of the spacelike
hypersurfaces defined by ¢ = const, « is the determinant of the three-metric associated
with these hypersurfaces and n, = V,t//(V,tV*t) is the corresponding normal vector,
so that, for the static case,

M =

R*
» /Tfu”nudss = 47r/ Lﬁdr.
0 /1 — 2M()

(4.85)

In the slowly rotating case, the perturbed proper mass M, (¢) will also get corrections.
Expanding both v and the product u*n, in powers of €, we have, up to second order,
My(€) = M} + €20 M, where

R mg 72
oM, = 87r/0 pf4eﬁ/2{ <m) + EwQe_a/Q}dF. (4.86)

Hence, it is straightforward to obtain the second order perturbation to the gravitational
binding energy E,(e) = E, + €20 E,, with §E, = 6M — §M,,.

Tidally deformed stars and Love numbers.

Until now we have studied the deformation of stars resulting from their own rotation.
However, we can also study (non-rotating) stars which are deformed due to some external
tidal force. Tidal forces are one of the principal signatures of the presence of a nontrivial
gravitational field in spacetime. Such forces are responsible for relative acceleration among
freely falling particles. This acceleration induces, on extended gravitating bodies, a field of
strains that causes a deformation, which may be measured. By measuring the deformation
response of a body to a tidal gravitational field, we may obtain information about the kind
of matter that conforms the body, as well as its equation of state. In particular, in the case
of binary systems involving neutron stars, it is very useful to analyze the deformation of
the stars due to tidal effects, which may be measured from its gravitational wave spectrum
previous to the merging.
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On the other hand, as we have previously stated, a spherical body immersed in an
external tidal field may deform due to tidal forces. Owing to this deformation, the metric
in the exterior spacetime will develop a non trivial multipolar structure. To characterize
the tidal field generated by a given source, consider an observer immersed in a tidal field
generated by an external source. We may expand the metric of spacetime in a region
surrounding the observer’s worldline in Fermi normal coordinates, with the (0,0) and
(0, 4) component of the metric given by [TH85; PPV11],

goo = —1+ &Eja'a? + O(r?), (4.87a)

2
“ejgpBlat st + O(r?), (4.87b)

ng:3

where &;; and B;; are the (quadrupolar) tidal multipole moments of electric and magnetic
type, respectively. These two are related to the Riemann tensor through &;; = Ripjo and
Bi = 3% Ryjr [TH85]. The quadrupolar tidal moments are independent of the distance
to the source, but may depend on the time coordinate if the source is not stationary. Now,
instead of the worldline of an observer, we may consider the worldtube of an extended,
gravitating body immersed in an external tidal field. We thus may be able to write the
(0,0) component of the metric outside this body by combining both eqs. (4.77) and (4.87a),

goo——1+—+3Q” ‘ J+O( )+8,,Jxx3+(9( %), (4.88)

whereas the (0, j) component of the metric will be given by the combination of eqgs. (4.83)

and (4.87D),
k

S 1 2
= e + 015 ) + GemBlats! +O(r), (489

Note that, by writing the metric as in eqs. (4.88) and (4.89), we are assuming that
there exists a region of the exterior spacetime, called the BUFFER REGION, in which the
expansions of eqs. (4.77), (4.83) and (4.87) converge simultaneously. This will be well
justified in the limit in which the source of the external tidal field is very far away from
the body that gets deformed and does not evolve rapidly with time. It can also be shown
that, in this limit, the multipole moments appearing in (4.88) are defined unambiguously
[G1ir83).

Electric quadrupolar Love number

Since we are considering that the body gets deformed due to the external tidal field, the
quadrupole tensor );; will be a more or less complicated function of the tidal field &;;.
However, working to linear order in the tidal moment, we define the (tidal) ELECTRIC
QUADRUPOLAR DEFORMABILITY )\; as

Qij = —M&ij. (4.90)

Assuming that the terms with non-zero axial number m vanish, we may write (4.87a) in
spherical coordinates as

goo = —1+1?EPy(cos0) + O(r?), (4.91)

118



4.3. Tidally deformed stars and Love numbers.

so that the tidal electric Love number can be obtained as the ratio A, = —Q/E, where @
is the quadrupole moment of the star as defined in (4.79).

That the deformation of the star resulting from an external tidal field will be well
described by its deformability A is consistent with the assumption that the source of
this external field is far from the body, since the tidal field will be weak and the linear
approximation will be well justified.

The quadrupolar deformation of the star due to an external tidal field and to a slow
rotation can be described by a similar spacetime metric (up to second order) [Hin08;
Hin+10], hence we can take advantage of the differential equations derived above to
obtain the results for a tidally deformed star. Indeed, to describe a tidally deformed
star, one introduces the metric perturbation h,, as in appendix B. By direct comparison
between the metric (4.37) and (150), it is straightforward to see that the [ = 2 even
perturbation functions H,, M, and K5 in the tidally deformed case play a similar role as
the functions ho, mo, k9 in the slowly rotating case. Indeed, this can be seen by redefining

these functions as
mo

T —2M
In order to calculate the quadrupolar deformation of the metric due to an external grav-
itational field, the odd perturbations to the metric are not needed. Therefore, the metric
functions of non-rotating tidally deformed stars can be directly obtained from egs. (4.58)
to (4.60) by imposing w = 0. Then, these equations can be arranged into only one
equation for ho,

Hy = 2¢%hy, My = 2¢° (4.92)

2 2M _
hy = — {% + [? +47T7’<p—p)} 65}h’2
. p (4.93)
e
+ {F —4r {5p + 9p + (,o—i—p)d—ﬂ e + (0/)2} hs.
This is a second-order differential equation which can be solved as a first-order system as
in [Hin08] by defining H = hl, while H' is given by (4.93). To do this we need, again,
to expand the function hy in powers of 7 and introduce it in (4.93) to obtain the initial
condition

hy = KPP + O (7)

(4.94)
H = hy =207+ 0 (7).

Once more, the value of 2(? can not be found from the limit 7 — 0 of the field equations.
However, we will see that this is unimportant to find the correct value of the tidal de-
formability (see below), so that we can start the integration with an arbitrary value for

h§2), as long as (4.94) are satisfied.

Once the internal solution has been found numerically, we can calculate the (tidal)
Love number from the external solution of the metric after matching with the internal
solution using the matching conditions

R (R,) = RS (R,), (4.95a)
2

H™(R,) - 4#% p(R.)h3*(R.) = H™(R,). (4.95D)
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where, as in the case of (4.73a), there is a constant contribution in (4.95b) due to a
nonvanishing energy density at the surface of the star [Hin+10; Yag+13; DN09].
Hence, as before, the vacuum (p = p = 0) version of (4.93) can be analytically solved,

2
r M\ [ 2M. (r — M,) (3r> — 6M,r — 2M?) r
hgt = 1- - ) 43| ——r
5 cl(w*) ( . ){ 2 _20L) +3In ()| +

te (AZ)Z (1 - 2];4) . (4.96)

where ¢; o are constants that can be determined through the matching conditions in
terms of H™(R,), hi*(R,). Studying the behavior of this function in the buffer zone we
can extract the expression for () and £ in terms of these constants ¢; and ¢y in order to
obtain the tidal electric deformability. Indeed, in the buffer zone

16 M3 r? M:
ext __ * *
hQ = EC1F + CQME +0 (?”_4’ M*) s (497)
and comparing with eqgs. (4.79) and (4.91) we have
16 C1
A= —M— 4.98
! 15 027 ( )
and, defining the tidally induced, quadrupolar electric Love number k¥ = %%, we can
write )
8
kY = gC5<1 —20)?[2+2C(y — 1) — y]x
{2C[6 — 3y + 3C (5y — 8)] + 4C*[13 — 11y + C(3y — 2)
+202(14y)|+3(1-20)2[2—y + 2C(y—1)] In(1— 2C) } 7, (4.99)

where y = R.H™(R,)/h$*(R,) and C' = M, /R, is the compactness of the zeroth-order
solution. From the definition of y it is clear that kgtid), and hence \;, does not depend on
the value of h® chosen in the numerical integration of the interior equation. Again, for
later convenience we will define the adimensional tidal deformability as

2

A = gkgﬁd)o—? (4.100)

Magnetic quadrupolar Love number

While electric-type Love numbers measure the induction of different multipole moments
on a star due to an external gravitational field and can also be calculated in the New-
tonian limit of general relativity, the current multi-pole moments induced by an exter-
nal magnetic-type tidal field have no analogue in Newtonian gravity, and thus the mag-
netic tidal Love numbers are a genuine prediction of general relativity. In the simplest
(quadrupolar) case, the tidal magnetic deformability, in analogy with the electric case,
measures the magnitude of the quadrupolar current S;; induced in the star by an external
tidal field of magnetic type, B;;. At the linear level, the relation between both is
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4.3. Tidally deformed stars and Love numbers.

Therefore, it is interesting to study the response of a NS under a magnetic-type external
gravitational field, whose effects may be relevant for such compact objects. To do so, we
consider an axially-symmetric perturbation of the spherical metric. For the calculation
of magnetic-type Love numbers, only the odd metric perturbations are relevant. The
magnetic Love number can be obtained by assuming a perturbation of the static metric
of the form g(e) = g(® + eh°d where ¢(® is the static spherically symmetric metric (4.24),
€ here does not have to do anything with rotation, but will play the role of a bookkeeping
parameter, and h°% is the odd-parity perturbation:

odd v
hoytdatdz” = 2V (r,0)drde + 2w(r, 0)dtdg. (4.102)

In particular, for the simplest (quadrupolar) perturbations, we take into account only
[ =2in (150) and we have

V(r,0) = Va(r) sin @ 0y Pa(cos ),

w(r,0) = wo(r)sin O 9y Py(cos ). (4.103)

Notice that we have dropped the barred radial coordinate, since the star shape will not
be altered by the odd metric perturbations.

On the other hand, using the notation of appendix B, we define n’y = dan’. Then, we
can transform the (0, j) components of the metric to spherical coordinates by go; — goa =
rnilgoj, and expand into odd-parity vector harmonics (see appendix B), for instance,

Sk ‘ m=2 .
ejqk.r—éa:qxl — ny€jqpSynint = m_z_2 S X3m(0, ), (4.104)
so that eq. (4.89) is transformed into

m=2

o —4 2 m

m=—2

In particular, for the simplest case of axially symmetric perturbations, we have, for in-
stance,

—45 2
hogt = [ >+ gr?’B] sin 0y Py(cos ) + - - - | (4.106)
r
where - -+ in eqgs. (4.105) and (4.106) denotes the non-leading terms in the expansion at
the buffer zone. Hence, the magnetic tidal deformability can be obtained as the ratio
S
O = —E, (4107)

where the constants S and B will be determined from the buffer zone expansion of the
odd-parity metric perturbation functions (4.103).

To find these functions, the Einstein equations must be solved for the star interior, and
matched to a suitable exterior solution, as we have previously done for the even parity case.
However, in the case of odd-parity tidal perturbations, the energy-momentum tensor of
the fluid will also get perturbed through a perturbation of the 4-velocity, u*(e) = u*+edu,

6T", = (p + p)(u,ou” + utdu,) — pg Vo podd (4.108)

ov )
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working to first order in €, and du,, = gw, Jour + hOdd Y.

Now, in principle, the four-velocity perturbatlons are independent of the metric pertur-
bations, and the latter are only related with the former through the perturbative Einstein
equations. However, there are two simple cases for which these perturbations are closely
related to each other: the static case, in which the fluid remains static — with vanishing
spatial four-velocity components i.e. du* = 0 — even when the metric perturbations are
taken into account, and the 7rrotational fluid, which is based on the assumption that the
fluid perturbations preserve the relativistic circulation theorem [RZ13], and can be shown
to be equivalent to the condition of a vorticity-free fluid, i.e. with vanishing vorticity four-
vector w® = %eaﬁﬂ”uﬁvuuy = 0 which in turn implies du, = 0 [LP15], since the static
initial configuration is trivially vorticity-free. The latter assumption is usually considered
as more physically relevant, as the static fluid is only adequate for the non-physical case
of time-independent tidal perturbations [Pan+18]. Hence in the following we will only
consider the case of an irrotational fluid and write the four-velocity perturbation as

st = g potaya _ _ 22(r) 9P Q(Cosg)ag. (4.109)

72 sin @

Substituting this expression into the stress-energy tensor perturbation, we may expand
the Einstein equations as in (4.53) and solve the linearized equations E) = 0, which
yield V5 = 0 and the following equation:

eb
—An(p+p)re wz——(67“ AM —87(p+p)r®)ws =0, (4.110)

for the metric perturbation function wy. The above equation is numerically integrated in
the star interior starting with an initial condition

wy = W+ O(F), (4.111)

where, as in the electric case, the exact value of wés) is undetermined from the equations
but will not be needed for obtaining the corresponding Love number.

On the other hand, the exterior solution of eq. (4.110) can be written in terms of the
hypergeometric function o Fi(a, B,7; x) as [Yagl4]

2M 2M 2M
ngt( ) = dl(QM) 2F1 <—1, —4, —4; T) + d2( ’ ) Fl (17476; T)a (4112)

where d; 5 are integration constants that can be related to the interior solution through
the matching conditions

WSR,) = wa(R), W(R,) = wh(R,). (4.113)

The expansion of (4.112) in powers of r and r~! in the buffer region reads

3 M2 M3 2
WS () = < 7“) (4.114)

8 M3 3’M2

and, comparing with (4.106), we have
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4.4. Quasi-universal relations

oy = ——M?, (4.115)

so that the magnetic quadrupolar Love number k3! = 48 ZL can be written as

96505 34200y —2) — v {209 — 3y + OBy — 1)+

+20(C +y+ Cy)]}+3[3 + 2C(y — 2) — ylog(1 — 2C)} 7,

ky' =
2 (4.116)

where now y = R,w)(R.)/w2(R,), and once more it is clear from this expression that the
initial condition for wy does not enter in the expression for the magnetic Love number.

Quasi-universal relations
EWE] I-Love-Q

In their original paper [YY13b], Yagi and Yunes present a set of EOS-independent rela-
tions between the dimensionless moment of inertia, quadrupole moment and Love numbers
of slowly rotating and tidally deformed compact stars, the so-called I-Love-() relations.
Soon after these relations where proposed, in [Yag+14] two possible reasons for these
relations to exist were given. The first one relies on the fact that these relations depend
mostly on the outer core (10" < p < 510" g/cm®) of the NS, where all the EOS nuclear
experimental data follow the same behavior. The second is related to the no-hair conjec-
ture of black holes, since the three parameters (I, A and ()) must approach the limiting
values of a black hole for stars with large compactness.

In fig. 4.2 we show that these relations for the BPS (both exact and mean-field limits)
also satisfied. We also show the data for the standard Skyrme crystal, generalized and
hybrid EOS of [Ada+20] (which satisfy these relations as well) and the numerical fit
for each of these relations obtained in [YY13b] is plotted with a black line. Although
somewhat expected, this result is remarkable at least for the case of exact BPS models,
for which the I-Love-() relations are satisfied even when they present a non-barotropic
EOS which varies depending on the chosen potential. Furthermore, the relations are
satisfied for these models in the exact and mean-field cases. As we will see, this will not
be true anymore for other quasi-universal relations. This points out the universality and
EOS independence of the I-Love-(Q relations.

Additionally, more quasi-universal relations have been found between electric, mag-
netic and higher multipole Love numbers [Yagl4]. For example, in 4.3 we show how there
is as well an EOS independent relation between the (dimensionless) electric and magnetic
quadrupolar tidal deformabilities in all models considered.

:;E I-Love-C

Apart from the I-Love-() relations, there exists other set of relations between the mo-
ment of inertia, the Love numbers and the compactness of neutron stars that share some
chatracteristics with the I-Love-@Q but are accurate only up to ~ 10%. These I-Love-C
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Figure 4.2: I-Love-Q relations and relation between the rotationally induced and tidally
induced deformabilities for different Skyrme models, both the exact and mean field solu-
tions. The black line corresponds to the numerical fit obtained in [YY13b].

relations were approximately derived analytically in [JY20], as well as a possible explana-
tion for these relations, in terms of the behavior of the energy density in the star interior.
It turns out that these relations, as opposed to the I-Love-() relations, are not univer-
sally satisfied for all the models we have considered. Indeed, from fig. 4.4 it can be seen
that the relation between I,() and C' generally splits into two branches, corresponding
to usual neutron stars and incompressible stars. This is consistent with the findings of
[JY20]. However, we also find that, although the mean field version of the BPS models
does lie in the incompressible star branch, the exactly solved cases behave quite differ-
ently. Whereas the behavior of the 2y- BPS model is better adjusted by the NS branch,
the 4x?— BPS model does not fit in neither branch. This behavior can be traced back to
the radial dependence of the energy density in each model. Indeed, from fig. 4.6 we can
see that the mean field approximation is not good in order to describe the low-density
regime of neutron stars within the BPS Skyrme models in general, which translates into
very different behaviors of the I-Love-C relations for these models. Indeed, it is clear from
this figure that the mean field approach overestimates the energy density of the stars in
the outer regions.

Furthermore, the energy density profile for the different BPS models highly depends
on the chosen potential. For example, while the #-potential yields almost incompressible
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Figure 4.3: Quasi-universal relation between electric and magnetic quadrupolar deforma-
bilities.
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Figure 4.4: Relations of the dimensionless quadrupolar moment and electric quadrupolar
Love number with compactness.

stars, the 2y-potential curve can be well approximated by a quadratic function. This
quadratic behavior is in fact expected for realistic neutron stars, whilst the behavior of
the density profile for the 4y2-model is actually more similar to that of white dwarfs
[JY20]. Indeed, as we have seen in figs. 4.4 and 4.5, the (exact) 2x- BPS model I-Love-C
relations are very close to the NS fit from [JY20].
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Gravitational binding energy relations

A different set of quasi-universal relations involving the static gravitational binding energy
and other global properties of neutron star solutions have been recently proposed in
[JWC19]. For instance, we show in fig. 4.7 the universal behavior of the static gravitational
binding energy normalized to the TOV mass and plotted against the adimensional moment
of inertia. From the error plot one can see that all models follow the same universal
behavior with a deviation of < 5% (but the exact 4x* BPS model, in which case the error
is as high as ten percent) with respect to the numerical fit obtained in [JWC19]. Further,
the rotation of the star has measurable effects both in the gravitational and proper mass of
the star. Indeed, as we have seen, the gravitational mass of the star receives a correction
§M , the dimensionless version of which, M = §M x M?3/J?, was also shown in [Rei+17]
to satisfy a universal relation when plotted against the (dimensionless) tidal deformability.
We show this relation in fig. 4.8, together with the numerical fit of [Rei417] obtained for
the region \; < 10%, at which the deviation for all models is less than ten percent.

On the other hand, the gravitational binding energy will also get a second order
correction, namely, 0F,. Remarkably, as opposing to its zeroth-order counterpart, the
correction to the gravitational binding energy does not seem to follow a simple, quasi-
universal relation. Since the correction to the gravitational mass indeed does follow a
relation as shown in fig. 4.8, the non-universal nature of £, can be traced back to the
correction to the proper mass 0M,, which involves an integral over the star, see (4.86).
In fig. 4.9 we show the behavior of M, = M, x M*/J? with the proper mass of the
static solution, M. From this figure a curve describing a quasi-universal behavior may be
inferred, which corresponds to the numerical fit we have obtained. However, this behavior
has not the same universality as others previousy analyzed, as the deviation can grow up
to 30% for realistic masses.
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Figure 4.8: Quasi-universal relation for the (dimensionless) gravitational mass correction

dM, and normalized deviation from the fitted relation of [Rei+17].
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Figure 4.9: Normalized second order proper mass correction versus static proper mass
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4.5. Deformability constraints from observations

Deformability constraints from observations

In addition of constituting an outstanding experimental confirmation of the validity of
General Relativity, the direct observation of gravitational waves can be used to place direct
constraints on the neutron star EOS (see [LEC20; Gre+-20; Cha20] for a recent review of
nuclear EOS constraints from GW observations). Indeed, the waveform produced by the
coalescence of two realistic extended bodies deviates significantly from a point-particle
waveform and thus this difference can be observed with Advanced LIGO. The degree
of the deviation, in the case of binary neutron star mergers, depends on the underlying
EoS. Although the magnitude of the deviation is strongest at later times in the inspiral
and during the merger, Flanagan and Hinderer found that the early phase of the inspiral
depends mostly on the tidal Love number of the neutron stars, introducing a phase shift
with respect to the point-particle waveform [Hin+10].

However, the individual Love numbers for each component of the merger cannot be
separately distinguished in the observed gravitational waveform. Instead, what can be
sharply measured is the so-called effective tidal deformability, A a mass-weighted average
of the dimensionless deformabilities 5\1 and 5\2 of both components (with masses m; and
ms), given by

16 (my + 12ma) miA; + (ma + 12my) maAs

‘/NX 5
(m1 -+ mz)

&l

(4.117)

Similarly, the two component masses are not measured directly. Instead, it is the chirp

mass,

(m1m2)3/5 B q3/5

M= — =y,
(m1 + m2)1/5 ! (1 + Q)1/5

(4.118)
where ¢ = m;/ms is the mass ratio, what can actually be constrained. In the case of the
GW170817 event, the chirp mass was measured to be 1.18875 05 at the 90% confidence
level. Moreover, within the same confidence level, the mass ratio was found to be in the
range 0.7 — 1, and the effective tidal deformability to be smaller than 800 [Abb+17].

Such such measurements of the NS properties can be used to further reduce the set
of Skyrme models able to reproduce physically realistic NS solutions and impose some
constraints on the possible values of the free parameters of these models. Indeed, once
the equations for the tidally deformed stars of section 4.3 are solved for a specific model,
we may obtain the dimensionless tidal deformability of stars described by this model as
a function of their TOV mass, so that A may be seen as a function of both m; and ma,
or, equivalently, of M, and ¢q. On the other hand, since the chirp mass of the binary
progenitor of GW170817 is well measured, for any given EOS the effective deformability
reduces to a simple EOS-dependent function of the mass ratio.

In fig. 4.10 we show the effective tidal deformability as a function of the mass ratio for
a chirp mass of 1.19 M, for different Skyrme models, together with the constraints from
the GW170817 event. It is clear from this figure that, as we have already argued, the
mean field approximation is not suitable for describing the low energy region of BPS stars,
which makes the most relevant contribution to the deformability of the stars. Indeed, this
approximation overestimates the values of effective deformability by at least a factor of
~ 2. In addition, we see again that the exact BPS Skyrme models present very different
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behaviors —in this case, different values of A— depending on the chosen potential. For
example, the contribution from the © potential is clearly too big as compared with the GW
observation, which sets an upper value of A < 800, whereas the 2y potential yields very
large ), near the upper value, although still allowed by the bound). On the other hand, we
find that both the GSM (without crust) and the hybrid EOS provide very similar values
of the tidal deformability, which comes out a bit too big than what has been measured.
This may signal that the GSM produces an EOS that is too stiff at intermediate densities
(which could be expected from the fact that the compression modulus at saturation comes
out too big, see the discussion in chapter 3). Nevertheless, further constrains on these
properties coming from GW observations are necessary to definitively rule out these EOS.
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Figure 4.10: Effective tidal deformability versus mass ratio of the two merging stars.

Indeed, it is likely that additional observations of gravitational waves from binary NS
mergers will further constrain the tidal deformability of these compact stars. In particular,
some recently observed GW events [Abb+20a; Abb+20b] strongly suggest that highly
massive NS and compact objects within the NS-Black Hole mass gap (around 2.5 M)
could exist.

However, it is difficult to distinguish between an extremely massive neutron star and
a small black hole from the GW waveform alone with first generation GW detectors, since
the tidal deformability and quadrupole moment of such massive stars is usually very low
due to their high compactness, and almost no realistic EOS is able to produce stars with
such big mass.

In fig. 4.11, we show the dimensionless moment of inertia, quadrupolar moment and
tidal deformability of all the Skyrme models as well as for the BCPM EOS. These
plots show that not only high mass NS solutions can be found for any BPS Skyrme
model (as well as for the generalized and the hybrid EOS). We also find that, depending
on the potential, these parameters can acquire sufficiently high values to be able to be
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4.6. Final remarks
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Figure 4.11: Dimensionless moment of inertia, quadrupolar moment and tidal deforma-
bility versus mass of stars for different models and EoS

measured by current generation GW observatories. Therefore, we conclude that if the
tidal deformability of a mass-gap compact object were measured to be non-zero, it is very
likely that its EOS will be well approximated by a BPS Skyrme model and/or by the
hybrid model we have presented, which approaches the BPS behavior at high densities.

Final remarks

In this final chapter, we have solved the Einstein equations using the Hartle-Thorne per-
turbative formalism to find slowly rotating NS solutions with nuclear and Skyrme model-
based EOS. Moreover, we have presented perturbative solutions to the Einstein-BPS
Skyrme system describing slowly rotating and tidally deformed, self-gravitating solitons
which can also be considered as idealized models for Neutron Stars. For all these models,
we have computed different global properties of the corresponding star configurations,
such as the moments of inertia, quadrupole moments, gravitational masses or binding
energies, and checked whether or not all the models satisfy some (quasi-)universal rela-
tions previously proposed in the literature. As we have found, the I-Love-(@Q) relations
presented in [YY13b] are satisfied up to a ~ 2% error, even for the exact, non-barotropic

BPS Skyrme models, which reaffirms the universality of these relations. Other relations
involving the second-order correction to the gravitational mass (including the correction
proposed in [Rei+17]) and those involving the (gravitational) binding energy are also
quite well satisfied for all models at hand.

On the other hand, we have found that while the I-Love-C quasi-universal relations
still hold for the mean-field BPS and Skyrme-based EOS, these relations break up for the
exact BPS Skyrme models. This fact, as argued, can be traced back to the behavior of
the energy density profiles of the solutions for such models, which strongly depends on
the particular potential chosen due to the non-barotropic nature of these models. This
finding is consistent with the explanation given in [Yag+14] about the difference in nature
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between these relations and the I-Love-(). Furthermore, a remarkable property of the
solutions based on generalized Skyrme models is that very high masses (of approximately
2.5M) can be reached even for not too large energy densities at the center of the stars.
In other words, such massive stars can be produced from mesonic degrees of freedom
alone without the need of additional degrees of freedom such as unconfined quarks. This
is consistent with the assumption that the Skyrme model is a valid approximation for
the description of matter at the core of a NS, which, if true, implies that the pressure
and density reached at NS cores are still far from the energy density regimes in which
perturbative QCD becomes relevant.

Although some recent GW events can be seen as possible evidence that such mas-
sive stars may exist, additional observations are required to further clarify the detailed
properties of massive NS cores.

We conclude by summarizing the main results of this chapter:

o We find that a hybrid EOS, in which the generalized Skyrme model is complemented
by a standard nuclear physics EOS for low densities, is compatible with current
observational constraints of static NS observables and allows to reach maximum
masses that enter the mass gap (around 2.5 M). However, other observables such
as the tidal deformation come out a bit too big than expected, due to the big stiffness
of these EOS at intermediate densities. As argued, this is related to another one
of the main open probles in the Skyrme model approach to nuclear matter: the
compressibility problem. Nevertheless, additional GW observations are necessary to
impose further constraints on the deformability of neutron stars, which are expected
to happen in the next observing run (O4) of LIGO.

o We verify (quasi-)universal relations, like I-Love-@Q, for a broad range of models,
based on the minimal Skyrme model, the BPS Skyrme model with a variety of
potentials, the generalized Skyrme model, and the hybrid model, respectively. In
particular, the BPS Skyrme model also allows for an exact field-theoretic treatment
(beyond mean-field theory), because it represents a non-barotropic perfect fluid.

These results contribute to a deeper understanding of the range of validity of these re-
lations, because we investigate them for qualitatively different models not considered
previously in the literature.
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Summary, conclusions and outlook

In this final chapter, we briefly summarize the main results of this thesis, and state the
conclusions that we have drawn from them, as well as an overall picture of possible further
work scenarios.

Summary

This thesis is devoted to the study of the physics of strongly interacting matter, namely,
that whose dynamics is mainly governed by the strong nuclear force, albeit the effects of
other fundamental interactions such as the electromagnetic and/or weak nuclear forces
play a decisive role in some processes, such as nuclear flavor-changing decays or (-
equilibrium of nuclear matter at high densities.

Therefore, a unified description of nucleons, nuclei and nuclear matter and the strong
interactions between them, as well as the effects of other fundamental interactions over
them is crucial to the understanding of a plethora of physical processes in a very wide
range of densities. This includes not only the phenomenology of light nuclei: their ground
and excited states, as well as transitions between them, but also the shape of the equation
of state of ultra-dense matter inside neutron stars, which ultimately will determine their
properties, for instance, the relation between their mass and radius.

However, this ambitious goal gets truncated due to the properties of quantum chro-
modynamics (QCD), the quantum field theory that describes the underlying degrees of
freedom of strong interactions, i.e. quarks and gluons. Indeed, the fact that the relevant
degrees of freedom for nuclear matter (namely, baryons and mesons) appear only as a
byproduct of chiral symmetry breaking at low energies, and their dynamics is completely
governed by nonperturbative aspects of QCD, renders a first-principles description of
the dynamics of strongly interacting matter extremely hard in practice, and thus other
methods such as effective field theories or phenomenological models must be used.

Concretely, in this thesis we choose to approach the problem from the Skyrme model
perspective. The Skyrme model is a phenomenological, relativistic field theory first pro-
posed by Tony Skyrme in the 60s [Sky61], whose principal feature is that both baryonic
and mesonic degrees of freedom are described by a single SU(2)-valued field (also known
as chiral field), and its dynamics is given by a Lorentz and chirally symmetric Lagrangian
that includes a nonlinear interaction term (quartic in derivatives of the chiral field). In this
model, mesons are parametrized as the perturbative degrees of freedom, describing the
small fluctuations around the vacuum state in terms of three pseudo Nambu-Goldstone
scalar fields, the pions, originated after the spontaneous symmetry breaking of chiral
symmetry to the residual isospin symmetry. On the other hand, baryons and their bound
states (nuclei) are described as non-perturbative, solitonic states: field configurations with
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a localized energy density and a nontrivial inner structure, that minimize the energy sub-
ject to some boundary conditions. The solitons in the Skyrme model are topological: they
can be characterized in terms of the topological degree of mappings between three-spheres.
Therefore, they carry a topological charge that is conserved under evolution, which can
be identified with the baryon number. These topological solitons are called Skyrmions,
and, together with their interactions, conform the main objects of study of the present
work.

The main results of this thesis are divided into two principal categories, namely, the
physics of light nuclei, and the physics of dense nuclear matter and neutron stars, both
studied from the same starting point: the generalized Skyrme model (GSM) Lagrangian.
It generalizes the one initially introduced by Skyrme in the sense that two additional
interaction terms are included. The first one accounts for the fact that pions (the mesons
in the SU(2) effective theory) are massive. The other term is a self-interaction term wich is
of sextic order in derivatives (the only one that still allows for a well defined Hamiltonian
evolution), and can be interpreted as coming from integrating out the w mesons of an
underlying chiral effective theory, resulting in a repulsive interaction term that has been
shown to be very relevant for describing nuclear matter at high densities.

Therefore, in the first chapter of the thesis we carefully review the procedure of obtain-
ing nuclear states from the Skyrme model. To do so, in the first place one needs to obtain
classical Skyrmion configurations via the minimization of the corresponding static energy
functional. Further, one needs to identify the corresponding zero modes (each associated
to a symmetry transformation of the Skyrmion solution), and canonically-quantize them
via promoting the associated collective coordinates to quantum mechanical operators.
This is a well defined procedure, called rigid-rotor quantization, that allows to define
a physical Hilbert space of common eigenstates of spatial momentum, spin and isospin
angular momentum operators by means of the Finkelstein-Rubinstein constraints that se-
lect, among all the kinematically possible states, those which implement the symmetries
of the classical solution.

Once the physically-allowed nuclear states have been identified on each topological
sector, many different nuclear observables may be computed within the Skyrme model
approach. Apart from the quantum correction to classical energies coming from spin
and isospin quantum numbers, especially relevant are those observables that make a
direct contribution to any kind of nuclear transition matrix element. In the case of
nucleons, these are the so-called form factors, which parametrize the strength of the
coupling between the nucleon to some other external current. Indeed, we devote chapter 2
of the thesis to review and, in some cases, extend, the existent theoretical formalism for
the computation of electromagnetic, weak and gravitational form factors for nucleons but
also for nuclei.

Concretely, an interesting application is the computation of the multipolar operators
associated to the V' — A nuclear current, because they play a fundamental role in the (-
decay transition rates of nuclei. Indeed, some nuclei are stable under strong nuclear forces,
but decay via weak-mediated processes that involve the 8 -decay or electron capture of a
neutron (or proton) inside the nucleus. In section 2.2.2 we describe in detail the procedure
for obtaining explicit expressions for each of these multipole operators in terms of integrals
of local densities depending on the Skyrme field, assuming only the rigid rotor quantization
and that the decay is mediated by the emission (and decay) of a single gauge boson, at
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tree level in perturbation theory.

In addition, other properties of light nuclei are also computed in chapter 2 for the
first time in the Skyrme model. An example of these is the D term, an intrinsic property
of all nuclei that is related to the stress-energy tensor form factors, concretely, to its
traceless part, in the zero momentum transfer limit. The form factors associated to the
energy-momentum tensor are collectively known as gravitational form factors (GFFs).
Amongst all of the different interactions between nuclei and other fundamental particles,
the gravitational force is the hardest to measure as it is the weakest in nuclear processes.
For this reason, the GFFs of nuclei are poorly known experimentally as compared to the
electromagnetic or weak form factors. Nevertheless, their knowledge (even if qualitative)
is essential to uncover the distribution of pressure and energy densities inside nuclei, and,
in particular, to shed some light into the so called trace anomaly, a non-perturbative,
purely quantum effect in which the stress-energy tensor of QCD develops a non-zero trace
(even in the chiral limit of massless quarks), and which is thought to be the responsible of
generating the largest contribution to the masses of baryons (and nuclei). In the Skyrme
model, the effects of the trace anomaly are naturally implemented by construction (as
nucleons are massive also in the chiral limit), but in terms of pionic self-interactions
(instead of gluonic), and thus it can be a useful tool to study the effects induced by the
trace anomaly on the structure of nucleons and nuclei.

Finally, charge densities and radii of small nuclei are also interesting observables that
store information about the inner structure of nuclei and the distribution of strong forces
within them. These are intrinsically related to electromagnetic form factors, and, as
oposed to GFFs, they are more experimentally acessible, so they can be used to bench-
mark the predictive power of the model, or as fitting observables to fix the values of the
free parameters. In any of the cases, their computation is important, so we present the
general procedure to compute even in the nonzero isospin case, in which the details of the
particular quantum state become relevant. For larger nuclei, however, the relevant ob-
servable is the neutron skin thickness (which measures the excess density of neutrons than
that of protons, and is related to the isospin-breaking effects of nuclear strong forces). We
present an approximation to compute such observable in the Skyrme model that does not
rely on the specific quantum state but only in terms of the moments of classical currents.

On the other hand, a natural question that arises is whether the same methods that we
have made use for studying light nuclei can be applied to investigate the phenomenology of
nuclear matter at finite densities, which is much less known due to the extreme conditions
needed for its experimental study. Thus, in the third chapter of the thesis we focus on
this interesting idea, with the final goal of obtaining an Equation of State (EOS) that
effectively describes the relation between energy and density of nuclear matter.

In the Skyrme model, infinite nuclear matter can be modelled as a periodic field con-
figuration, an example of which was first found by Klebanov [Kle85]. Such configurations
are known as Skyrmion crystals, which minimize the Skyrme energy functional on a three-
torus (i.e. subject to periodic boundary conditions on the three spatial directions over
a compact, cubic spatial region —the unit cell-) of size L, for sufficiently small values of
L, and with finite baryon charge B = 4 per unit cell. In fact, the classical energy of the
crystal depends on the size of its unit cell, and the curve F(L) presents a minimum at
a given I = Lg. Hence, this minimum corresponds to the equilibrium configuration of
the crystal at zero pressure, and thus it can be identified with the saturation point of
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infinite, symmetric nuclear matter. This identification, together with the standard ther-
modynamical definitions of pressure, baryon and energy densities that can be obtained
from the E(L) curve, allow to compute several properties of the Skyrmion crystal as a
function of density (or, equivalently, the lattice length), in order to make predictions for
nuclear matter at saturation and supra-saturation densities. In order to do so, we first
fit the free parameters of the model to some observables at saturation, (for example, the
binding energy and baryon density), and then their values are completely determined at
any other (higher) density.

On the other hand, the effects of isospin asymmetry (namely, the asymmetry between
the number of protons and neutrons) must be taken into account if one is interested in
describing physically realistic nuclear matter. In the Skyrme model, this is achieved by
quantizing the isospin degrees of freedom. For the case of Skyrmion crystals, we show in
chapter 3 that canonically quantizing the isospin of each unit cell, together with a mean
field approximation of the isospin density per unit cell, yields a well defined procedure to
determine observables such as the symmetry energy or, when the effects of Coulomb and
weak interactions are taken into account, the proton fraction of S-equilibrated asymmetric
nuclear matter. Furthermore, it is expected that, at sufficiently high densities, the degen-
eracy and isospin pressures are so high that the usually stable phases of matter become
unstable, and exotic states may appear to relieve these pressures, reducing the global en-
ergy. For example, the appearance of hyperons (baryonic states with nonzero strangeness)
is expected in standard approaches to nuclear matter at around two or three times nuclear
saturation density. In order to account for this effect in the Skyrme model, one needs to
extend the SU(2) flavor group manifold into the SU(3) case. We explicitly show how to to
this in the second part of chapter 3, using the Callan-Klebanov parametrization of strange
degrees of freedom. After extending the formalism of isospin quantization to the SU(3)
case, we analyze the possibility of a phase transition to a nonzero vacuum expectation
value of kaon fields (the lightest meson states with nonzero strangeness), which is usually
called a kaon condensate. Moreover, we find that this transition does indeed take place
at around 2.3 times nuclear saturation, for a given choice of the parameters that is phys-
ically well-motivated. Taking all the above considerations into account, our analysis of
Skyrmion crystals allows to obtain a realistic EOS for isospin-asymmetric nuclear matter
at saturation and supra-saturation, and the question remains wether it reproduces any of
the known properties of neutron stars that are currently well measured.

Therefore, in chapter 4, we focus on obtaining neutron star solutions to the Einstein
field equations sourced by a perfect fluid with Skyrme model-based EOS. We consider
different cases, mainly the GSM but also the BPS submodel, due to its nice properties.
Indeed, the BPS model, which includes only the effects of the potential and sextic terms
in the GSM Lagrangian, can be understood as a non-barotropic perfect fluid, that can be
exactly solved in the spherically symmetric, static case. The use of this model is justified
as the limiting case of ultra-high density, as the sextic term becomes the most relevant
term in the GSM Lagrangian, and thus it can be understood as a model of ultracompact
neutron stars, in whose interiors matter can reach densities of several times the nuclear
saturation density.

We thus solve the Tolman-Oppenheimer-Volkov system of equations in order to obtain
the mass-radius curves associated to each one of the models we have considered, resulting
in maximal masses of 2.5 M, or even higher. We go further and study the case of slowly
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rotating stars, in order to be able to obtain additional, dynamical observables such as
quadrupole moment. This is a well known perturbative procedure, via the Hartle-Thorne
(slow rotation) approximation, in which the metric is expanded in powers of the spin
parameter, which is interpreted as the angular frequency of rotation of a distant observer.
The Einstein equations are then solved perturbatively, at each order up to second order
in the angular frequency, both in the interior and exterior of the star, and the interior and
exterior metric functions must be matched, which in turn allows to obtain information
about the interior (such as the mass, angular momentum or quadrupolar moment) of the
star from the asymptotic expansion of the exterior metric. A very similar perturbative
analysis can be made for tidally deformed stars, in which the metric perturbations now
come from an external tidal field (for example due to a companion star or black hole in
a binary system). Again, one first perturbatively solves Einstein’s equations both inside
and outside the star, which have the same form as in the slow rotation case at second
order. The quadrupolar deformation due to tidal forces can then be extracted from the
exterior solution. This determines the tidal deformability, or (quadrupolar) Love number,
as (minus) the ratio between the quadrupolar moment of the star and the quadrupolar
moment of the tidal gravitational field, A = —@Q/E. Therefore, it contains information
about the stiffness of the EOS of the star in terms of its strain response to a quadrupolar
gravitational force. Furthermore, the definition of Love numbers can be extended to other
multipoles of the gravitational field, both of electric and magnetic type.

The extension of previous works on Skyrmion stars [Nay19] to include the effects of
small rotations and tidal deformations allows to enlarge the set of observable quantities
that can be compared to actual measurements. Owing to the increasing number of ob-
served GW events in recent years (and the ones estimated to be detected in the current
observing run, with improved sensibility), those observables that can be inferred from
the waveform of a GW produced at a binary NS (or NS-Black Hole) coalescence are of
particular interest. An example is the (effective) tidal deformability of the binary, which,
together with the quasi-universal relations, allows to constrain the EOS of strongly inter-
acting matter in the extremely high density regime.

Therefore, to conclude this analysis, we study the presence of universal (and quasi-
universal) relations between different sets of observables obtained in this perturbative
approach. An example of these universal relations are the well known I — Love — @)
relations [YY13b] between the moment of inertia, quadrupole moment and tidal deforma-
bility (or Love number). Such relations are universal, in the sense that they are satisfied
independently of the particular EOS used to describe the matter content in the Einstein
equations, up to an error of ~ 1%. We also study other relations that are also universal,
such as the relation between the electric and magnetic quadrupolar Love numbers, or
that of the moment of inertia and the gravitational binding energy. These relations are
important from a phenomenological point of view, since they allow to partially break the
degeneracy between some NS properties in the waveforms of binary inspirals, but also
very interesting at a fundamental level, as the ultimate reason for their appearance is still
not well understood. Furthermore, being insensitive to the details of the matter content
of the stars, these relations may be thought of as genuine predictions for the structure of
compact stars in General Relativity, and studying deviations from them could allow to
explore other fundamental theories of gravity. With our analysis, we aim to contribute to
the understanding of such universal relations, as we show that they are also satisfied even
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in the case of non-barotropic perfect fluids, and thus the current experimental bounds on
NS deformabilities can be well accounted for within the Skyrme model.

Conclusions and outlook

The results obtained in the present thesis have allowed us to sketch a general picture of
the state of the art of theoretical nuclear physics in the solitonic approach, from which
several different conclusions may be drawn.

In the first place, the Skyrme model, understood as a very simple phenomenological
model for the description of nuclear dynamics, allows for a qualitative, and in some cases
even quantitative, understanding of a wide range of different low-energy nuclear properties
in terms of the (quantized) zero-mode degrees of freedom of topological solitons and their
interactions with external sources.

An interesting feature of this model, that is shared with other similar chiral soliton
approaches, is the fact that, when considering nuclei as semi-classical states, the spatial
(local) currents and densities are straightforwardly determined by the classical solutions
of some differential equations. These are, in general, much easier to solve numerically
than the equivalent matrix elements involving a complicated many-body wavefunction in
the fully quantum-mechanical problem. In practice, this means that some observables,
such as form factors, of large B nuclei are very easily obtained in the Skyrme model as
compared with other theoretical nuclear models. Even though these computations rely on
the semi-classical rigid rotor approximation (which is not well-justified for large baryon
number solutions), the dependence of some properties that are not even well measured (for
example, the D term computed in this thesis) with the baryon charge may be determined
as an estimation of the order of magnitude. Our principal goal in the first part of the
thesis has been to provide a broad picture of the available methods for the computation
of all the different nuclear observables mentioned above. However, once the methodology
and formalism are established, a careful analysis of these properties, trying to find a global
fitting of the parameters that provides reasonably good values for them, is in order. Due
to its striking simplicity (as compared to other nuclear phenomenological models), the
generalized Skyrme model presented in this thesis may not be able to predict the values
of the experimentally measured quantities, such as masses and charge radii of light nuclei,
as accurately as other, more involved models. Indeed, the computations performed in this
thesis, as well as previous attempts to determine some of these quantities have confirmed
that the Skyrme model, or some simple generalizations of it, cannot reliably predict the
measured properties of medium mass nuclei with high precission.

However, it is fascinating that nuclear properties, including not only nuclear states
and masses, but also charge densities and form factors of all kinds, can be computed
to a certain degree of precission from such a simple idea: a semi-classical soliton of a
nonlinear scalar field theory. Therefore, it is our hope that the results of this thesis may
further encourage the search of a soliton-based model that is able to describe nuclear
phenomenology with greater accuracy. Some natural extensions of the GSM presented in
this thesis that may help towards this goal include the explicit addition of w and/or p
vector mesons, both of which have been shown to reduce binding energies as compared to
the standard Skyrme model [GS20; NS18b]. It would be interesting to study the effects
of these additional fields on other nuclear observables, such as charge radii. Furthermore,
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the formalism developed in the first part of this thesis is of general character, and could
be in principle applied even outside of the Skyrme model, for example in the context of
Holographic QCD, in order to compute, for instance, gravitational form factors or beta
decay matrix elements in this kind of models.

On the other hand, even though we present some promising results in the Skyrmion
crystal approach to modelling neutron star matter, there are several open questions that
deserve further study. Firstly, the ground state of Skyrmionic matter at the intermediate
and low density regimes of Skyrmion matter (n < ng) is still very poorly known. As argued
in chapter 3, it is precisely in such regime where the (residual) nuclear forces become of
the same order as the Coulomb repulsive forces, and thus neglecting the latter is not a well
justified approximation anymore. Moreover, it is well known from other models of nuclear
matter that the competition of these two interactions may result in exotic arrangements
of nucleons into what is usually known as “nuclear pasta” phases. Although small, these
pasta phases have a non-negligible effect on the NS EOS, and strongly influence the
crust-core transition. Thus, a better understanding of this phenomenon is one of the
most urgent open problems in the Skyrmionic approach to nuclear matter.

An additional problem regarding the low density regime of Skyrmion crystals is the fact
that, in the Skyrme model, the nuclear incompressibility (or equivalently, the compression
modulus) is over-estimated by a factor of ~ 4, which translates into an EOS that is too
stiff around saturation as compared to experimental data. It seems that this is a feature of
the standard Skyrme model, and not of the classical solutions we are considering. Thus,
this points also to the necessity of extending the model to consider additional degrees
of freedom (for example, vector mesons) that soften the EOS around nuclear saturation.
We would like to point out here a recent approach to the description of the low-density
regime purely within the Skyrme model, based on a new ‘double sheet’ solution at low
densities [LHW23|. This would eliminate the dependence on an ad-hoc nuclear EOS for
lower densities, but the problems concerning the stiffness of the EOS around saturation
remain.

Finally, we hope that our results serve as a motivation to explore other regions of
the QCD phase diagram in terms of Skyrmion crystals. Indeed, the effects of a nonzero
magnetic field on the nuclear matter EOS could in principle follow from the coupling of
an external, nondynamical gauge field to the Skyrme field, and considering solutions of
the coupled system in the three torus, with the magnetic field strength as an external
parameter. Although there is a nontrivial complication when considering gauge fields
with periodic boundary conditions (the field configurations will be in general periodic up
to a gauge transformation), in principle the basic computational methods should follow
straightforwardly from what we have presented in this thesis.

A further generalization of our results would be to include the effect of finite temper-
atures of the Skyrme crystal, which is more complicated in practice as it becomes nec-
essary to consider the dynamics of perturbations around classical static configurations.
Although complicated, the theory of small fluctuations on top of solitonic backgrounds
is well known in the literature, and the dynamics of Skyrmion normal and quasi-normal
modes was recently studied in [BH18]. A thorough study of normal modes in Skyrmion
crystals (which, being a periodic system, should be identified with phonons) would pave
the way to the classical solid-state treatment of Skyrmion lattices, and allow the study of
phonon dispersion relations, thermal and transport properties, etc.
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Resumo en Galego

Esta tese esta adicada ao estudo da fisica da materia fortemente interaccionante, é dicir,
aquela na que a dindmica estd gobernada pola forza nuclear forte, polo que os efectos das
outras interacciéns, como a electromagnética e/ou a forza nuclear feble, xogan un papel
decisivo nalgtins procesos, tales como o decaemento nuclear por cambio de sabor ou o
equilibrio f da materia nuclear a altas densidades.

Polo tanto, unha descricion unificada dos nucleéns, nicleos, materia nuclear e as in-
teraccions fortes entre os anteriores elementos, asi como os efectos de outras interaccions
fundamentais sobre os mesmos, ¢ esencial co gallo de entender un bo feixe de procesos fisi-
cos, para un amplo abano de posibles densidades. Todo isto non inclie s6 a fenomenoloxia
dos nucleos lixeiros: os estados fundamentais e excitados, asi como as transicons entre os
mesmos, senén que tamén da conta da forma da ecuacién de estado (EOS) da materia
altamente densa no interior das estrelas de neutréns (NS), o que, en tltima instancia,
determina as propiedades das mesmas, como por exemplo, as relacions entre masas e
radios.

Con todo, esta meta tan ambiciosa vese coutada por mor das propiedades da cromod-
indmica cudntica (QQCD), a teoria cudntica de campos que describe os restantes graos de
liberdade das interaccions fortes, é dicir, quarks e gluéns. En efecto, o feito de que os
graos de liberdade relevantes para a materia (os ben conecidos bariéns e meséns) xur-
dan tan s6 como subproduto da ruptura da simetria quiral a baixas enerxias, estando a
dindmica completmante gobernada por aspectos non-perturbativos da QCD, leva de seu
unha descricion de primeiros principios da dinamica da materia fortemente interactuante,
moi complicada na practica, e polo tanto, é preciso empregar outros métodos tales como
teoreias de campo efectivas ou modelos fenomenoléxicos.

Particularmente, nesta tese, emprégase un achegamento ao problema co modelo de
Skyrme como marco de referencia. O modelo de Skyrme é unha teoria relativista e
fenomenol6xica de campos, proposta por Tony Skyrme nos anos 60 [Sky61], sendo a sua
caracteristica principal, que tanto os graos de liberdade bariéncos como os mesonicos
estan descritos por un mesmo campo de SU(2) (tamén conecido como campo quiral),
e a sua dindmica vén dada por un Lagranxiano con simetria quiral e de Lorentz, o cal
inclie un termo de interacion nonlineal (cudrtico nas derivadas do campo quiral). Neste
modelo, os meséns estan parametrizados como os graos de liberdade perturbativos, de-
scribindo pequenas flutuacions arredor do estado do baleiro en termos de tres campos
pseudo-escalares de Nambu-Goldstone, os pions, orixinados logo da ruptura espontanea
da simetria quiral, permanecendo residualmente a simtria de isoespin. Por outra banda,
os bariéns e os correspondentes estados ligados (os nicleos) estan descritos como estados
solitonicos non perturbativos: configuraciéns de campo con densidade de enerxia local-
izada e estrutura interna non trivial, o cal minimiza a enerxia suxeita a unhas certas
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condiciéns de contorno. Os soliténs no modelo de Skyrme son topoldxicos: poden ser
caracterizados en termos do grao topoldxico de mapeos entre 3—esferas. Polo tanto, estes
levan de si unha carga topoldxica que se conserva baixo evolucion, a cal pode ser identi-
ficada co niimero bariénico. Estes soliténs topoldxicos conécense co nome de Skyrmidns,
e xunto coas interaccions que levan de man, conforman o obxectivo principal de estudo
deste traballo.

Os resultados principais desta tese estan divididos en dias categorias principais, sendo
estas, a fisica dos nucleos lixeiros, e a fisica da materia nuclear densa e das estrelas
de neutréns, ambas partes estudadas dende o mesmo punto de partida: eprengando o
Lagranxiano do modelo de Skyrme xeralizado (GSM). Este, xeraliza o modelo inicialmente
introducido polo propio Skyrme no sentido de que se engaden dous termos de interaccion
adicionais. O primeiro da conta do feito de que os piéns (os mesons na teoria efetiva de
SU(2)) son masivos. O restante é un termo de auto-interaccién, séxtico nas derivadas
(o tinico que permite evolucién ben definida do Hamiltoniano), podéndose interpretar
que provén da integracion efectiva dos mesons w, resultando ser un termo de interaccion
repulsiva. Isto viuse que é importante & hora de describir a materia nuclear a altas
densidades.

Asi pois, no primeiro capitulo desta tese, farase unha revisiéon coidadosa do procede-
mento mediante o cal se obtenen os estados nucleares empregando o modelo de Skyrme.
Para facer tal cousa, en primeiro lugar, precisase obter as configuraciéns clasicas dos Skyr-
miéns, empregando unha minimizacién do funcional de enerxia correspondente. Ademais,
precisase identificar os modos cero correspondentes (cada un, vencellado a unha transfor-
macion simétrica da solucién de Skyrmién), e logo cuantizalos canonicamente por medio
da promocion das coordenadas colectivas asociadas a operadores mecano-cuanticos. Este é
un proceso ben definido, conecido como cuantizacién do rotor rixido, o que permite definir
un espazo de Hilbert fisico de autoestados comuns para os operadores momento espacial,
esipn e momento angular de isoespin, isto quere dicir que as ligaduras de Finkelstein-
Rubinstein, escollen entre todos os posibles estados cinematicos, aqueles que implementan
as simetrias da solucién clasica.

Unha vez que se identifican os estados nucleares fisicamente permitidos en cada sec-
tor topoldxico, moitos observables nucleares diferentes poden ser calculadaos no marco
do modelo de Skyrme. Ademais das correcciéons cuanticas as enerxias clasicas, proce-
dentes dos ntimeros cuanticos de espin e isoespin, son especialmente relevantes aqueles
observables que fan unha contribucién directa a calequera clase de elemento de matriz
da transicén nuclear. Para o caso dos nucledns, estes son os ben conecidos facotres de
forma, que parametrizan a forza do acoplamento entre os nucledns e calquera corrente
externa. De feito, adicamos o capitulo 2 da tese a revisar, e nalgins casos, ampliar, o
formalismo tedrico existente para a computacién de factores de forma electromagnéticos,
felbles e gravitatorios, tanto para nucleéns como tamén para ntucleos.

En concreto, unha aplicacién interesante é a computacién dos operadores multipolares
asociados & corrente nuclear V' — A posto que xogan un papel esencial nos ratios de
transicon en decaementos [ nucleares. En efecto, algins ntcleos son estables baixo a
forzas nucleare fortes, pero decaen mediante procesos mediados pola interaccién feble,
via decaemento beta ou captura dun electrén por un neutrén (ou protén) dentro do
propio ntucleo. Na seccion 2.2.2, describimos con detalle o procedemento polo cal obtemos
explicitamente as expresions para cada un dos operadores multipolares en termos de
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integrais de densidades locais, dependendo do campo de Skyrme, e asumindo tinicamente
a cuantizacion do rotor rixido e que o decamento estd mediado pola emision (e decaemento
) dun s6 boson de gauge, a nivel arbore na teorfa de perturbaciéns.

Ademais, no capitulo 4, calctlanse algunhas propiedades por vez primeira, empre-
gando o modelo de Skyrme e para os nucleos lixeiros. Exemplo disto é o D term, unha
propiedade intrinseca de todos os nicleos, relacionada cos factores de forma do tensor
enerxia-momento, concretamente, coa parte sin traza no limite de nula transferencia de
momento. Os factores de forma asociados ao tensor enerxia-momento coniécense en conx-
unto como factores de forma gravitacionais (GFFs). Entre todas as interacciéns distintas
que se dan entre nucleos e outras particulas elemnetais, a forza gravitacional é a mais
complicada de medir, por mor de ser a mais feble no eido dos procesos nucleares. E
este o motivo polo que os GFFs para os nicleos son pouco cofiecidos dende un punto de
vista experimental, en comparacion por exemplo cos seus analogos no eido das interaciéns
electromagnética ou feble. Porén, o conecemento dos mesmos (ata a nivel cualitativo) é
primordial & hora de descubrir a distribucion da presion e da densidade de enerxia dentro
dos ntcleos.

Especificamente, esto permitiria clarexar un pouco o que se cofiece como anomalia da
traza, un efecto puramente cuantico e non perturbativo, no cal o tensor enerxia-momento
de QCD, adquire un unha traza non nula (mesmo no limite quiral de quarks sen masa), do
que se pensa que é o causante de xerar as maiores contribucions 4s masas dos bariéns (e
dos ntcleos). No modelo de Skyrme, os efectos da anomalia da traza son implementados
de xeito natural por construcién (xa que os nucledéns son masivos tamén no limite quiral),
pero en termos das auto-interaciéns piénicas (no canto das gludnicas), o que pode facer
disto unha ferramenta 1util &4 hora de estudar os efectos inducidos pola anomalia da traza
nas estruturas de nucleéns e nucleos.

Finalmente, as densidades de carga e radios de nicleos pequenos, son observables moi
interesantes que agochan informacién sobre a estrutura interna dos nicleos e da distribu-
ciéns das forzas fortes entre eles. Estes estan relacionados de xeito directo cos factores
de forma electromagnéticos, que contrariamente aos GFFs, estes estan moito mellor estu-
dados experimentalmente, polo que poden ser empregados como punto de referencia en
canto ao poder preditivo do modelo, ou como observables axustables para fixar os valores
dos parametros libres. En calquera dos casos, o calculo dos mesmos é importante, polo
que presentamos o procedemento xeral para obtelos, mesmo para o caso no que o isoespin
é distinto de cero, para o cal os detalles do estado cuantico particular volvense relevantes.
Asi e todo, para niicleos maiores, o observable relevante é neutron skin thickness (esta
mide o exceso de densidade neutréonica con relaciéon & protonica, e esta relacionada cos
efectos da ruptura do isoespin da interacién nuclear forte). Presentamos unha aproxi-
macién para a computacién de tal observable, empregando o modelo de Skyrme, que no
canto de basearse nalgtin estado cuantico en especifico, fundaméntase nos momentos das
correntes clasicas.

Por outra banda, esta naturalmente xustificado por en dubida se os mesmos métodos
empregados no estudo dos ntcleos lixeiros, poden ser empregados para investigar sobre a
fenomenoloxia da materia nuclear a densidades finitas, a cal é moito menos conecida por
mor de seren extremas as condiciéns necesarias experimentais para tratala. Polo tanto,
no terceiro capitulo desta tese, centramonos nestas interesantes ideas, co gallo de obter
unha (EOS) que de xeito efectivo, describa a relacién entre a enerxia e a densidade de
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materia nuclear.

A materia nucelar infinita, no modelo de Skyrme, pode ser modelada como unha con-
figuracién periddica de campo, sendo os traballos de Klebanov os pioneiros neste eido
[Kle85]. Tales configuracions conécense como cristais de Skyrme, e minimizan o funcional
da enerxia de Skyrme nun tres-toro (o que se traduce por estar suxeitos a condiciéns de
contorno periédicas nas tres direcciéns espaciais, sobre unha rexion espacial ciibica e com-
pacta -a cela unidade-) de tamano L, sendo os valores de L pequenos, e con carga bariénica
finita B = 4 por cela unidade. De feito, a enerxia clasica do cristal, depende do tamano
da cela unidade, e a curva E(L) presenta un minimo para un certo L = L. Este min-
imo correspondese entén coa configuracion de equilibrio do cristal, a presion cero, e polo
tanto pode ser identificado co punto de saturaciéon da materia nuclear simétirca infinita.
Esta identificacién, xunto coas definiciéns termodindmicas habituais das densidades de
presién, bariéns e enerxia, que poden ser obtidas da curva E(L), permite calcular moitas
propiedades dos cristais de Skyrme como funciéon da densidade (ou equivalentemente, a
lonxitude da malla) co gallo de facer prediciéns para a materia nuclear nos réximes de
densidade de saturacion e supra saturacion. Co fin de facer isto, primeiramente axustamos
os parametros libres do modelo a algins observables no punto de saturaciéon (como por
exemplo as enerxias de enlace ou a densidade baridnica), quedando logo os seus valores
totalmente determinados para calquera outra densidade.

Doutra banda, os efectos da asimetria do isoespin (¢ dicir, a asimetria entre o niimero
de proténs e neutréns) deben ser tomados en consideracién sempre e cando se desexe
describir a realidade fisica da materia nuclear. No modelo de Skyrme, isto l6grase logo
de cuantizar os graos de liberdade do isoespin. No capitulo 3, amdsase para o caso dos
cristais de Skyrme, como a cuantizacién candnica do isoespin para cada cela, xunto coa
aproximacion de campo medio da densidade de isoespin por cela unidade, isto leva de man
un proceso ben definido para determinar tales observables como a enerxia de simetria, ou
tamén, tendo en conta efectos de Coulomb e interacions febles, permite obter a fraccion de
proténs do equilibrio beta asimétrico da materia nuclear. E mais, agardase que, para den-
sidades suficientemente altas, a dexeneracién e a presion de isoespin son tan elevadas que
as fases de materia habitualmente estables, volvense inestables, e novos e exéticos estados
poden aparecer para aliviar a presion, reducindo a enerxia global. Por exemplo, baixo
certos tratamentos estandar da materia nuclear, agardase a aparicién de hiperéns (estados
bariénicos con extraneza non nula), arredor dun valor de diias ou tres veces a densidade
de saturacién. Para dar conta deste efecto co modelo de Skyrme, precisase expandir a
variedade do grupo de sabor de SU(2) ao caso de SU(3). Amosamos explicitamente
como facer tal cousa na segunda parte do capitulo 3, empregando a parametrizaciéon de
Callan-Klebanov dos graos de liberdade con extraneza. Logo de expandir o formalismo da
cuantizacién do isoespin ao caso de SU(3), analizamos a posibilidade de que haxa unha
transiciéon de fase a un baleiro cun valor agardado non nulo para os campos kadnicos
(os estados mesénicos mais lixeiros, con extraneza), cofiecéndose isto habitualmente co
nome de condensado de kadns. Ademais, atopamos que esta transicion toma lugar para
valores arredor de 2.3 veces a saturacién nuclear, para unha certa escolla de parametros,
ben motivados fisicamente. Tendo o anterior en conta, a andlise realizada dos cristais
de Skyrmions, permite obter unha EOS realista para a materia nuclear con asimteria
de isoespin, nos puntos de saturacion e supra-saturacién, quedando a cuestién de se con
isto se poden reproducir algunhas das propiedades das estrelas de neutrons, hoxe en dia
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ben medidas e conecidas. Polo tanto, no capitulo 4, centramonos en obter solucions de
estrelas de neutréns para as ecuacions de campo de Einstein, empregando como fonte,
un fluido perfecto con EOS baseada no modelo de Skyrme. Temos en conta diferentes
casos, principalmente o GSM pero tamén o submodelo BPS, por mor de posuir este unhas
propiedades moi boas. Dende logo, o modelo BPS, o cal inclie soamente os efectos do
potencial e do termo séxtico en termos do Lagranxiano de GSM, pode ser entendido coma
un fluido perfecto non-barotrépico, que se pode resolver de xeito exacto no caso esferica-
mente simétrico e estatico. O emprego deste modelo esta xustificado como o caso limite
para densidades moi altas, xa que o termo séxtico vélvese o maéis relevante no Lagranxi-
ano GSM, e polo tanto este pddese entender como un modelo de estrelas de neutréns moi
compactas, para as cales a materia no seu interior, chega a acadar densidades varias veces
a densidade nuclear de saturacion.

Asi pois, resolvemos o sistema de ecuaciéns de Tolman-Oppenheimer-Volkov, co fin
de obter as curvas masa-radio asociadas a cada un dos modelos considerados, tendo as
masas mais maiores, valores de 2.5 M ou mesmo mais. Fomos un pouco mais alé no noso
estudo, e tratamos o formalismo de rotacion lenta para as estrelas, para asi obter observ-
ables dindmicos adicionais tales como o momento cuadrupolar. Este proceso perturbativo
é ben conecido, empregando a aproximacion de pouca rotacion de Hartle-Thorne, na cal
a métrica é expandida en potencias do parametro de espin, o cal se pode interpretar como
a frecuencia angular de rotacion vista por un observador a distancia. As ecuaciéns de
Einstein son entoén resoltas perturbativamente, orde a orde, ata a segunda orde na fre-
cuencia angular, tanto no interior coma no exterior da estrela. As funcions da métrica
tanto fora coma dentro da estrela deben empalmar na superficie da mesma, o que permite
obter infomracién sobre o interior (masa, momento angular, momento cuadrupolar) dende
a expansion asintética da métrica exterior. Unha andlise perturbativa semellante, pode
facerse para estrelas deformadas por forzas de marea, no cal as perturbaciéns da métrica
tefien agora orixe nunha forza de marea externa (por exemplo por mor dunha estrela
acompanante ou dun buraco negro nun sistema binario). De novo, resolvemos primeira-
mente as ecuacions de Einstein, tanto dentro coma féra da estrela, de igual xeito ca no
caso da rotacion lenta, e ata segunda orde. A deformacién cuadrupolar debida as forzas
de marea, pddese obter da solucién exterior. Isto determina a deformacion por marea, ou
o nimero de Love (cuadrupolar) , como (menos) o cociente entre o momento cuadrupolar
da estrela e 0 momento cuadrupolar do campo gravitacional de marea A = —@/E. Como
resultado, esto contén informacién sobre a rixidez da EOS da estrela, en termos da tension
da resposta & forza cuadrupolar gravitacional. A un tempo, a definicién dos nimeros de
Love, pode extenderse a outros multipolos do campo gravitacional, tanto de tipo eléctrico
como magnético.

A expansién de traballos anteriores a estrelas de Skyrmions [Nay19], incuindo os efectos
por rotaciéns pequenas e deformaciéns de marea, permite ampliar o nimero de cantidades
observables que poden ser medidas a dia de hoxe. Debido ao aumento de eventos observa-
dos nos tltimos anos grazas 4 tecnoloxia das ondas gravitacionais (e os que se agarda medir
nos vindeiros tempos, debido 4 mellora na sensibilidade dos detectores), estes observables
que poden ser inferidos empregando a forma da onda dunha GW producida nun sistema
binario de NS (ou tamén NS-BH) en coalescencia, son de elevado interese. Un exemplo
disto é a deformacién de marea (efectiva) dun sistema binario, a cal, en conxunto coas
relacions cuasi-universais, permite restrinxir a KOS da materia altamente interaccionante
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ao réxime de densidade extremadamente alta.

Xa para ir rematando coa andlise, estudamos a existencia de relaciéons universais (e
cuasi-universais) entre distintos conxuntos de observables, obtidos nesta aproximacién
perturbativa. Exemplo das mesmas son as conecidas relacions I — Love — @ [YY13b], en-
tre o momento de inercia, momento cuadrupolar e a deformacién de marea (ou nimeros
de Love). Tales realciéns son universais dende que se satisfan independentemente da EOS
particular que se empregue para describir o contido de materia nas ecuaciéns de Einstein,
cun marxe de erro baixo o ~ 1%. Tamén estudamos outras relaciéns que son universais,
como as que xorden entre os nimeros de Love eléctricos e magnéticos, ou as existentes
entre os momentos de inercia e as enerxias gravitacionais de enlace. Estas relacions son
importantes dende un punto de vista fenomenoldxico, xa que permiten romper parcial-
mente a dexeneracion existente entre algunhas propiedades das NS, nas formas de onda
para sistemas binarios en coalescencia. E son tamén moi importantes a nivel fundamental,
xa que a tltima razén da sta existencia, ainda non estd moi ben comprendida. E méis,
sendo insensibles con respecto a certos detalles do contido da materia das estrelas, estas
relaciéns poden ser entendidas como predicions xenuinas sobre a estrutura das estrelas
compactas na Teoria Xeral da Relatividade, e o estudo de desviaciéons das memsas, per-
mite explorar outras teorias fundamentais de gravitacién. Coa nosa analise, gustarianos
contribuir no eido da comprensién de tales relaciéns universais, xa que amosamos que as
mesmas son satisfeitas para o caso dun fluido perfecto non-barotréopico, e polo tanto, os
limites acutais experimentais para as deformabilidades das NS, poden ser ben descritos
no marco do modelo de Skyrme.
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Appendices

Gradient-based Optimization methods for functionals

The gradient flow relaxation method

Consider a general nonlinear (scalar) field theory with topologically non-trivial configura-
tions. Static solutions are given by field configurations ¢, that make the (static) energy
functional (26) stationary under first variations, i.e.

IE|[¢]
09° g,

Starting from an arbitrary initial configuration ¢ which, in general, will NOT be a static
solution of the system, we want to find a static solution within the same homotopy class as
¢, The gradient flow method allows to do so by “relaxing” the input field configuration
to the true static solution. This is achieved by locally evolving the field in the direction
of maximum (local) variation of the energy functional, i.e. the direction of the gradient
of the energy density with respect to the field variables. Indeed, let ¢ be the input
configuration. Since it will not be in general a static solution, the first variation of the
static energy density in the direction of d¢ will have the form

= 0. (119)
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where B.T. stands for boundary terms, and
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is the FUNCTIONAL DERIVATIVE of E. Expression (120) is the generalization of the
concept of directional derivative to functionals, and hence the functional derivative is the
generalization of the gradient to infinite dimensions.

Considering that the variations are taken over field configurations with fixed boundary
conditions, the boundary terms vanish identically after integration. The Gradient flow
relaxation method may then be implemented iteratively by changing at each iteration the
field configuration as:

(121)

ot = o) — yF (0], (122)
where v € R is the UPDATE PARAMETER. The previous equation is the discrete analogue
of the following flow equation in the limit v — 0:

dea(z,7)

d7 = —Fa[¢($,’y)], (123)
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where now « plays the role of an ancillary time parameter. The evolution along v describes
the relaxation of the initial configuration to a static solution, in the sense that

E[¢!"V] < Blo"]. (124)

Since the flow (123) describes a smooth transformation of the field, the final and initial
field configurations will (in principle) lay in the same homotopy class of maps. There-
fore, we may obtain solitonic solutions with different topological charge by using field
configurations with different degree as input ansatz. Of course, for the numerical imple-
mentation it is necessary to discretize such transformation, into a discontinuous change
on each iteration. One then must be careful with the values of the parameters that enter
in the discretized version of (123) so that these discrete steps do not involve a transition
between homotopy classes.

Constrained Gradient Flow

A complication that arises in multi-dimensional problems as opposed to the one dimen-
sional case is that often the fields whose minimum energy configuration we want to find
are subject to some CONSTRAINTS C,(¢) = 0, « = 1,...,m. Therefore, the problem
becomes a constrained minimization of the energy functional. The standard approach to
procede in such cases is the method of LAGRANGE MULTIPLIERS, which basically consists
on extending the energy functional (26) to include the constraints:

B¢ = 5 [(ha(@)00"(@)0'6"(a) + V(9) + X Cul)] 'z, (125)

in which case, the variation of the modified energy density under field variations from
an input configuration ¢® will be given by
0C,
ol
In particular, the (static) on-shell field configurations subject to the constraints C,[¢p] = 0
will satisfy the modified Euler-Lagrange equations:

0&[pD] = Fu[]0¢" + N> —2[9pD]6¢" 4 B. T.. (126)

o 0C,
0%
Usually, one can use the equations of motion, the constraints, and the derivatives of the
constraints to solve for the multipliers A* in terms of the original phase space variables (in

this case, the values of the fields and their time derivatives). Once the relations A*(¢, 9;¢)
are found, we will be interested in the first order (constrained) flow equation:

d¢a(x> 7)
dy

Fa[¢] =-A

[¢]. (127)

LOC,
D¢

— —F[¢(z,7)] — X =2[p(x,7)]. (128)

Numerical implementation

As previously stated, the gradient flow relaxation method can be implemented iteratively
by changing at each iteration the field configuration. In the case of three dimensions,
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one needs to discretize the space by defining a grid of N, x N, x N, sites, with h,, .
the distance between grid points in the x,y, z direction. Thus, in the n — th iteration
of the gradient flow, on each grid point, labeled by [i, 7, k], (¢, j,k € [0, Ny..]) the a—th
component of the field evolves as

o0,
0

SV 5 K] = ¢V, 5, K] — Y Fa[@ ™l 5 Kl — A S [0, 5 K (129)
As in the one dimensional case, for the flow to converge to a (possibly local) minimum,
the update parameter v must be small enough. However, too small values will slow down
the convergence.

An important difference with respect to the one dimensional problem is that the value
of the topological charge cannot be obtained simply from the value of the field at the
boundaries. Instead, the topological degree is obtained via an integral of a certain density
over the full space. As a consequence of the space discretisation, this integral will fail to
yield an integer number in general. Indeed, if the grid spacing constants h; are chosen
too big, it is likely that the topological charge of the field configuration ¢ obtained after
numerical integration over all the grid points will be less than the corresponding to such
configuration in the continuous limit A, , . — 0. Both the number of grid points in each
directions and the grid spacing constant will play a role in determining the deviation of
the numerically obtained value for the topological charge from the integer value in the
continuous limit. Such deviation can allow us to determine whether the parameters chosen
for the numerical algorithm are well suited to the problem we are trying to solve.

Accelerated Gradient Descent

An important issue when considering the gradient flow algorithm is that of convergence.
Indeed, the gradient flow method is not guaranteed to converge to a local minimum if the
configuration space is not convex (which, in general, will not be the case for a sufficiently
complex field theory), but it can converge to a metastable state (a paradigmatic example
of such states in a field theory are the SPHALERONS of an SU(2) yang mills theory).
Furthermore, the fact that the field update is proportional to the functional derivative
(129) may produce slow convergence times when the energy valley in field configuration
space is very shallow. Indeed, when the field configuration reaches a point of energy close
to the minimum, the gradient can be almost zero, making the next update step too small.

These convergence problems can be alleviated by a modification of the gradient flow
algorithm which introduces a “memory term” that favours the direction of travelling from
previous configurations. The regions with small gradient are then transited faster, like a
heavy ball would due to its own inertia. The inclusion of a momentum term in the gradient
descent algorithm is a standard strategy in functional optimization problems, which is
usually denoted as “heavy ball” method. The drawback of adding such a term appears
when the actual minimum is met, and passed by. If the momentum term dominates the
evolution, the system may not be able to come back to the desired local minimum, and
the system may even not be able to find a local minimum ever.

Using the “heavy ball” idea, Nesterov [Nes83] was able to find the optimal algorithm
that is based on single gradients of the energy functional. In such algorithm, the gradient
is no longer calculated in the current position. Instead, it is done in the position that
the configuration would arrive to with the momentum term alone. This gradient now
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favors (disfavors) the momentum direction if it was approaching to (moving away from)
the minimum This balance leads the algorithm to convergence. The iterative pattern is
then

o) = o) — AgY, (130)

where now the actualization of the field depends on the field but also on its previous value:
Ag ) =pIA6)) —yFu@ +pUAgY], AgP =0, (131)

In eq. (131) we have defined

- 0C,
Fy[¢] = Fu[] + \° 90 (], (132)
and the momentum parameter p(, given by
(i)
O N 133

with

, @ +1, if ElptY] < Elpl)],
e { 01)] < [ .

0, if E[pltV] > E[¢")],
and v = 0.
The minimization algorithm so defined is often called ACCELERATED GRADIENT FLOW.

It is accelerated in the sense that the momentum parameter grows with each iteration,
but it is brought back to its initial value (p = 0) when the energy minimum is passed by.

150



) General relativistic perturbation theory

Perturbations of arbitrary backgrounds and gauge freedom

Consider a background spacetime (M, g,, ), where M is a four dimensional differentiable
manifold and g,, is a background metric satisfying the Einstein field equations:

Eywlgl = Gulgl — 81T, g] = 0. (135)

In order to carry on a perturbation scheme over (M, g,,,), we define a 5-dimensional mani-
fold N := M x R = M(e) such that, for ecach ¢y € R, M(¢p) is a 4-dimensional embedded
submanifold —which represents a “perturbed” spacetime— and M(0) corresponds to the
background spacetime manifold. this, we need an identification map between points of
M(0) and M(e), so that we may compare the values of Q(z) and those of its extension
to the 5-D manifold, Q(e, x), at any point. Let

be: N — N

MO) = M(e) (136)

be a one-parameter family of diffeomorphisms between the background spacetime manifold
and the perturbed spacetimes, and let V' := 0, the vector field on the 5-dimensional
manifold N whose integral curves are precisely the ones defined by ¢.. Therefore, the
points at each submanifold of the family are identified through ¢, which allows us to pull
back @(e, x) onto the background spacetime, and obtain the family of tensors?

Qle.z) = 6:(Qle,2)) = explelr)Ole) = 3 EY G o) (137)

defined on M(0). For small values of the perturbation parameter €, we may Taylor-expand
the pulled-back perturbed tensor Q(¢,x), and we obtain

Qe,z) = Qz) + QWe + %Q‘W T (138)

where Q) = Ly Q(e, z) = 9"Q(e, :L‘)|E:0.
Applying the previous construction to the background spacetime metric, we obtain
the following one-parameter family of metrics,

1
G (€,2) = g () + gfa) ()€ + S g (@) + -+ (139)

such that (M(e), g(€)) defines a one-parameter family of spacetimes. Taking into account
these perturbations, the Einstein equations read (we omit the dependence on = and the
indices for clearness):

1
E[g(e)] = Elg] + eE(1>[g, g<1>] + 5E(2> g, g<1)7 g(2>] 4+ =0, (140)

2Here we use the fact that the action of the flow ¢, is generated by V, and

d
LyvQ = &éf’:(T)

e=0

is the Lie derivative of an arbitrary tensor ) with respect to the flow generated by V.
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which gives a set of equations for each order in the expansion, i.e.
EM[g, -, g™ =0, (141)

so that the metric perturbation quantities are related to each other in such a way that
(141) hold. This allows us to find explicit solutions of the Einstein equations from a
perturbed background solution to any order in the perturbation parameter.

Note that there is an inherent gauge freedom in this construction, and the perturbation
quantities Q™ are gauge-dependent, in the sense that the family ¢, is arbitrarily chosen.
Had we chosen a different family of diffeomorphisms, namely ., with generating vector
field W, we would get different perturbation quantities at each order. However, the
perturbation quantities at either gauge can be related to each other, order by order.

Indeed, let us consider the two gauge choices ¢. and .. A gauge transformation
between these two choices is given by G, = ¢! 0 1).. Therefore, we have

G = exp(eLw) exp(—eLy) = exp (Z %['Xn> : (142)
n=1 :

where the properties of the Lie derivative and the Baker-Campbell-Hausdorff formula
have been used in the last equation. The vector fields X,, can be written in terms of the

gauge generators V' and W, and their commutators, the first of them having the form
[SBGOA4]:

1
X=W-V, X =[V.W], Xy=g[V+WWV], .- (143)

Therefore, G is a mapping between the perturbed tensorial quantities in both gauges,
and expanding into powers of the perturbation parameter e gives the relation between the
perturbation quantities order by order.

As an example, consider the case of linearized gravity, in which the background metric
corresponds to that of flat spacetime, and only the first order perturbative term is taken
into account:

G (€, ) = N + €hy(x) + O(€%). (144)

Had we chose a different gauge, this expansion may be written g, (¢, ) = 7,, + Eile(x) +
O(€?), where both h,, (z) and h,,(z) are related through a gauge transformation. Indeed,
we have:

g/ﬂ/(€7 33) - G:guu(ea Z’) = my + Eﬁw/(x) = Nuv + Ehw/(x) + 6£X77}M/ + 0(62)7 (145)
or iLW(x) = hu () + 20(,&), where X = £/0, is the vector field generating this gauge
transformation.

Perturbation of spherically symmetric configurations

Consider a spherically symmetric spacetime M, whose metric is given in general by the
Schwarzschild solution. Given its spherical symmetry, the Schwarzschild spacetime mani-
fold has the topology M = N x 82, where S? is the two-sphere and A is a two-dimensional
manifold. Thus we, may write the Schwarzschild line element in a covariant form as

ds?® = gapdadz’ + r*(x*)Qapdrida®, (146)
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with lower-case latin indices running over {0, 1} and upper-case latin indices running over
{2,3}. In particular, r is a scalar function of the lower-case coordinates, the coordinates
x4 = {0, ¢} span the two-spheres 2% = const, and Q,p is the metric on the unit two-
sphere, Q4p = diag(1,sin?#). Let D4 be the covariant derivative operator compatible
with Q4p, and 45 the Levi-Civita tensor on the unit two-sphere, with 44 = sin 6.

We may now introduce the metric perturbation dg,, := h,,, which may be written

By = hapdz®dz® + hopdr®dz® + hapde?da®. (147)

Spherical symmetry of the background spacetime motivates a decomposition of h,, in
spherical harmonics. Note that the hy, transform as scalars on 82, whereas h,p and hap
transform as covariant vectors and tensors, respectively, on S2. Therefore, we should
decompose them into scalar, vector and tensor spherical harmonics, respectively.

The scalar harmonics are the usual spherical-harmonic functions Y™ (z4), which sat-
isfy the following eigenvalue equation:

QB DADp +1(1 4+ 1)]Y'™ = 0. (148)
Vectorial spherical harmonics come into two types, depending on their parity:
a Even parity: Y™ := D, Y™
b Odd parity: X4 := —ef¥DgY'™

Tensorial harmonics are also classified according to their parity:

L . [ Yino= QupY'™ (traceful, scalar degree of freedom)
a) Even parity: there are two kinds: { Yin .~ [DyDp— L1 + 1) Q5] Y™ (traceless)

b) Odd parity: Xi% :=2(e{Dp +e5Da)DcY'™

Therefore, the components of the metric perturbation (147) can be written:

The even-parity sector of the perturbation (polar perturbations) consists of the as-
sociated functions ', jim k'™ and G'™, whilst the variables h'™ and hi™ make up the
odd parity sector (axial perturbations). Up to now, the discussion of the perturbation
functions have been made in an arbitrary gauge. It is useful to fix the gauge for the metric
perturbations, in order to simplify the problem of determining their explicit expression by
solving the perturbed Einstein equations. A useful gauge choice is the so-called Regge-
Wheeler gauge [MPO05], in which

jim = Gt = pim = 0. (149)

Furthermore, for axially symmetric spacetimes, we may discard the ¢p—dependence of the
harmonics, so that the general expression for an axially symmetric metric perturbation
with these gauge choices is given by:

—H, I 0 0 0 0 0 V
om0 0 000 wl.
R = 0 0 2K, 0 Py(cosf) + 00 0 0 sin 09y P,(cos §),
0 0 0 risin?(0)K, Vi w 00
(150)

where the first term has even parity and the second term has odd parity.
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The WZW term

Derivation of the WZW and sextic terms contribution to Vi To work with
the WZW and sextic terms, it is useful to employ the formalism of Lie algebra-valued
differential forms, which we will extensively do in this appendix. Let us first review the
basic properties of such objects and establish the notation that we will follow. A g-valued
differential form o can be written in terms of the Lie algebra generators T, as o = a*®T,.
The exterior derivative is then simply obtained as da = da® ®T,. Furthermore, the wedge
product on g-valued forms is defined as

aAB=a"ABRT,T,. (151)
So that the following useful properties hold:

da A B = (do) A B+ (1)l A (dB), (152)
Tr{a A B} = (=DPI {5 A a}, (153)

where |a| denotes the degree of a. Also, by linearity of the trace, both the trace and the
exterior derivative commute, i.e.

dTr{a} = Tr{da}. (154)

To alleviate the notation, in the following we will drop the wedge product symbol and
denote the product (151) simply by af. Then, for instance, if @ and § denote two 1-forms,
we have Tr{af} = — Tr{Ba}, d(af) = daf — adf.

Let us now perform the most general chiral transformation to the Skyrme field U,
given by U = qU.g!, with (g;,9,) € SU(3); x SU(3)g and define the following su(3)-
valued differential forms,

V =U'dU, L =UldU,, a = gldg, B = g,dg]. (155)
By definition, we have the following relation between the forms above:
V = (Urgo) [ + Ur(L — BYUNUprgs. (156)

On the other hand, the WZW action is then given by the pullback of a volume 5-form 25
by an extended Skyrme field U : D5 — SU(3) ? integrated over an auxiliar 5-dimensional
disk D whose boundary is the spacetime manifold M,

. No .
The form U*(€25) can be expressed in terms of L as
Ne
L)=—i Tr{V?°} =
Swzw(L) 224O7r2 /D r{V"}
__ o / Te{ja + Uo(L — B)UTP). (158)
24072 Jp T

3The result is of course independent of such extension, because 74(SU(3)) vanishes.
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Let us denote the 1-form U, (L — B)U! by w. The exterior derivative of this form is:

dw = dU(L — B)U + Ur(dL — dB)U! — U.(L — B)dU} =

= —Ul(dL + dB + LB + BL)Uy, (159)
where we have used the fact that both S and L satisfy the Maurer-Cartan equation
dB = — 2. Moreover, one can straightforwardly see that

w? = Ul(L — B)*U, = Ul(—dB — dv — Bv — vB)Ur = dw. (160)

Knowing this, we have

. N,
Swzw(L) = — @240(;;2 /M Tr{[a + w]’}

N,

=Swzw () + Swzw(w) — 418752 / Tr{a4w +wia + oW + w?ad + awaw® + wawaQ}

M

1IN, 1

=Swzw (@) + Swzw(w) — 02 / Tr{w’a — a’w — = (aw)?},
487T OM 2

(161)

where we have used eqs. (152) to (154), the relation (160) for w, the M-C equation
for o and Stokes’ theorem in the last step. Repeating the same calculation for Swzw(w)
yields:

Swaw(w) = iy [ L A = (162)
= — Swzw(8) + Swzw(L) — % /6MTF{L35 — L - %(L5)2},

so that
Swzw (V') = Swzw (L) + Swzw () — Swzw (8)—

B iN¢

4872

/ Te{L*B — B°L — 1(116)2 +wla — a’w — 1(ozw)2}. (163)
oM 2

2

Eq.(163) shows that a chiral transformation of the SU(3) Skyrme field induces an ad-
ditional local term in the action due to the nontrivial transformation of the (nonlocal)
WZW term. Furthermore, if we fix the chiral transformation fields to only depend on
one spacetime coordinate, g;/,(z) = gi/,(t), any power of a and § will vanish in the local,
4-dimensional effective term. Taking this into account, we arrive to the final result:

1N
4872

Swzw(V) = Swzw(L) /3M TI{L?’(B + U,T.OéUW)}, (164)

from where eq. (3.87) is readily obtained.
Let us now turn to the sextic term. The coordinate free version of L4 is given by

Lo = N7 B A*B, (165)
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where * denotes the Hodge star operator, and B the 1-form in spacetime whose coordinates
in a local chart coincide with the Baryon current, B = B,dz*. We can construct such
form as the Hodge dual of the baryon number density three-form,

b= (247U (Q3) = ﬁ Tr{L,L,L,}dx" A dz" A dx”
= %bwpdx” Adx” A dx?, (166)
ie.
B =x%b= lb”’”"es,,pwd:z:“ L "P? Tr{L,L,L,} = B, dz". (167)
3! 24m2 K
Thus Lg = N7t % b A b. Expressing the sextic term in such form is most useful for

calculating its contribution to the kaon potential employing the formalism of differential
forms in the same way as for the WZW term. Indeed, we see that

b:

Tr{L’} = Tr{w® + 3ww?}, (168)

2472 2472

where we used the fact that w”™ = 0 for n > 2 because the kaon field > only depends on
time. Hence, also v" = 0 for n > 2 and vw = 0 hold, and, given that w = U/(3 — v)Uy,
we may write

+3(wUH(B —v)*Ux — )} =

T 242

+ 384 (U,wU! —v)}. (169)

~24n2

Thus, the baryon current density in the kaon condensed phase will be modified by B* =
Bt + CH, where B! is the baryon current due to the pionic background and

1
O = o5 Tr{R,R,(U,X0,XU! — ¥19,%)}. (170)

For a time independent pion background and a homogeneous kaon condensate, we have
B“C), = 0, and hence the only constribution from the sextic term (o< B,B") to Vik comes
from the additional term:

1
CuC™ = ey Te{ B, RE S0} Tr{Ra s, } =
-1
64 46’ij‘6’tlm TI'{R RkSO}TT{Rl m§0} (171)

where ¢, = U,30, XU — 319, 3.
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