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Chapter 1

Introduction

Opening motif of Beethoven’s 5th

Gravity has been one of the earliest known forces of nature, formulated as an

inverse square law by Newton circa 1687. Yet to this day, it remains one of the most

mysterious. It was only with the advent of Einstein’s general theory of relativity in

1915, that a concrete mathematical foundation was laid for classical gravity. About the

same time, in the early nineteen hundreds came the quantum revolution, lead by the

likes of Schroedinger, Heisenberg and Dirac. Now quantum mechanics is a theory of

microscopic particles and their interactions. These are objects typically characterized

as small in size and light in weight. Classical gravity, on the other hand, is a theory

of macroscopic bodies, which are typically large in size and heavy in weight. So the

question is, how should one describe the physics of objects, which are small in size, yet

huge in mass? Black holes are classic examples in this category and the rest of this

thesis shall be devoted to that cause. To describe the these, a quantum description

of gravity becomes pertinent. It was Einstein’s dream to find a unified description of

gravity that reconciled the classical and quantum paradigms. A promising candidate

in this direction emerges in the form of string theory. In addition to unifying Einstein’s

theory to quantum mechanics, string theory seeks to go even further and unify all the

forces of nature in such a way that they can be understood through a common set of

fundamental principles.

Now how does one put together the pieces of this jig-saw? Let us start by laying
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2 CHAPTER 1. INTRODUCTION

out the fundamental ingredients of our universe. The physical universe is comprised

of matter, radiation and their interactions. The fundamental building blocks of mat-

ter are particles called fermions. The building blocks of radiation are bosons. The

fundamental interactions are electromagnetic, strong nuclear force, weak nuclear force

and gravity. Before the advent of quantum mechanics and Einstein’s special relativ-

ity, much of physics was based on Newtonian dynamics. Quantum theory shook the

very foundations of the Newtonian paradigm and presented before us a whole new

world which behaves very differently at microscopic scales, yet at large distances ag-

gregates to classical laws. Moreover quantum mechanics and special relativity easily

gelled together to give rise to what we now call relativistic quantum field theories.

However general relativity as a classical theory of gravity remained evasive to any such

“quantization”.

Let us briefly see how fundamental interactions can be described in the language of

quantum field theories. From this perspective a force between two fermions is mediated

via the exchange of a specific boson. And these processes lend themselves to some of

the most precise perturbative computations known. The predictions of field theory for

each of these 3 forces (sans gravity) confer amazingly with experiment. Put together,

this is what we call the standard model of particle physics. On the other hand, in

general relativity, gravity is a property of space-time. From this point of view, space-

time is a dynamic rather than static, whose geometry is responsible for the gravitational

attraction between massive bodies. The presence of matter has the effect of distorting

the ’shape’ of the space-time around it. However, the standard model does not seem

to incorporate gravity or the dynamism of space-time. Apparently there is no natural

way to extend quantum field theories to include gravity. In field theory, an interaction

is mediated via an exchange boson. The carriers of gravity are spin-2 bosons called

gravitons. However, gravitons cannot be found in the spectrum of any conventional

quantum field theory. A full description of quantum gravity should reconcile these two

notions of force, one as an exchange of gravitons at microscopic scales and the other

as a manifestation of space-time geometry at macroscopic scales. String theory is one

such attempt to answer these questions.

The fundamental ingredients of string theory are not particles, but one dimensional
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objects called strings. These come in 2 types : open and closed. Analogous to the

chords of a musical instrument, a string of a given length and fixed tension has a discrete

range of vibrating frequencies, thus characterizing its energy spectrum. The idea now

is that each vibrating mode represents a particle of nature. Low energy vibrations

correspond to light particles, high energy modes to massive particles. It is indeed

remarkable that the spectrum of these vibrations includes matter, radiation and gravity

all in one package. Moreover strings interact with each other: closed strings intersect

each other at a point, where they open up to form another closed string. Similarly

open strings interact with other open strings by gluing at one of their ends once again

resulting in an open string. Now this is a consistent interacting perturbative quantum

field theory, not of particles but of strings. Subsequently non-perturbative techniques

were also developed and higher dimensional objects called D-branes were included into

the machinery. And as we shall soon see, the latter will play a very important role

in the duality relating gravity to a gauge theory. The world is then fundamentally

comprised of such quantum strings and branes; and the particles we observe around us

are simply manifestations of their vibrations. Mathematical consistency requires that

the theory be defined in 10 space-time dimensions, six of which are compactified on an

internal manifold. In this thesis, we shall often encounter string theory compactified on

a Calabi-Yau space, with D-branes wrapping internal cycles and thus resulting in black

hole solutions in 4 dimensions. For practical purposes, we shall be interested in the low-

energy effective theory in the bulk space-time, which turns out to be supergravity in 4

or 5D. Thus we now have a rigorous mathematical framework to compute observables

involving graviton exchange such as correlation functions, scattering amplitudes, etc.

Before seeing how black holes enter the picture, let us briefly discuss the interplay

between length and energy scales. This is crucial for understanding when stringy effects

will be of relevance and also for subsequent unification of forces. A string length is typ-

ically of the order of 10−33 cm, called the Planck length. In physics, the scale of length

is inversely proportional of that of energy, meaning that shorter distance interactions

occur at higher energies and vice-versa. By the same logic, energies of dynamical pro-

cesses that directly involve string interactions are of the order of cataclysmic explosions

such as the big bang itself. In contrast, the shortest distance scales that present day
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technology can probe lie in giga electron volts, corresponding to sub-nuclear processes;

the mass of the top quark is 174 GeV; and the LHC, when fully functional is anticipated

to achieve energies of up to 7000 GeV. Now the energies at which stringy interactions

can be probed are around 1019 GeV. This is called the Planck Scale. Unfortunately

this far far beyond the reach of current laboratory technology. But these are precisely

the scales relevant for processes that occurred during the early history of the universe.

Moreover, this is the scale at which a fully quantum description of gravity becomes

relevant. The reason is simply because the strength of the fundamental forces is not

the same at every energy scale. It in fact varies as we probe physical processes at

different energies. This running of coupling constants with energy is what eventually

enables the unification of the fundamental interactions at the Planck scale. String the-

ory offers a fully quantum description of Planck scale physics with the string coupling

as the only free parameter in the theory and all other interactions described in terms

of this parameter.

Having motivated why a quantum description of gravity is necessary for probing

Planck scale physics, we now turn our attention to black holes. These are precisely

the objects, whose underlying microscopics take us to the Planck scale, and that is

how string theory enters the picture. Black holes thus serve as the test-beds of any

theory of quantum gravity. Then in 1972 Bekenstein discovered that black holes are

much more than mere voids in space-time, bound by event horizons: rather they be-

have like thermodynamic objects that carry a temperature and entropy! Putting these

ideas on a firmer footing, Hawking later showed that black holes aren’t really black

when treated (semi-)quantum mechanically; they emit thermal radiation, later called

Hawking radiation. In a sharp twist of ideas, black holes could now shrink and evap-

orate! Such an underlying thermodynamic association comes with its fair share of

implications. Now a thermodynamic system can be can be formulated in terms of a

statistical ensemble of an underlying structure that constitutes the microscopic degrees

of freedom of the system. For instance, the temperature of a gas is a measure of the

average kinetic energy of its molecules. However temperature is not a notion that can

be assigned to an individual molecule of a gas; it is a meaningful concept only for the

gas as a whole. Thus its origin lies in microscopic degrees of freedom of the gas as a
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whole. Similarly, the entropy of a thermodynamic system is precisely a measure of its

underlying microstates.

The immediate question ensuing from this chain of ideas is what then are the mi-

crostates of a black hole and how do they interact? Since general relativity breaks

down beyond the horizon, it is not suited to answer this question. One now needs

to go beyond Hawking’s approximate calculation and requires a full-fledged theory of

quantum gravity, which probes physics at the smallest of length scales. And this is

where string theory sheds some light into the picture. At large distances, string theory

adequately reproduces Einstein’s classical gravity, but at short distances it significantly

modifies the latter - indicating that space-time geometry itself is not fundamental, but

emerges as a macroscopic average. In string theory, a black hole is then described as a

bound state of D-branes with stringy excitations. Hawking radiation is then the pro-

cess of emission of closed strings from this ensemble. Within this one can now perform

bulk computations via a low-energy effective analysis to compute say the leading-order

result of several black holes. However, in general, such strongly gravitating systems

will carry higher order curvature corrections, that can be difficult to compute using

only low-energy effective techniques. This is where holography enters as a power-

ful new tool. ’t Hooft’s holographic principle is a statement about quantum gravity

relating the degrees of freedom of a bulk gravitating system to those encoded in a holo-

graphically dual boundary quantum field theory without gravity. In string theory, this

bulk/boundary correspondence manifests itself as Maldacena’s gauge/gravity duality -

also known as the AdS/CFT correspondence. What makes this correspondence useful

is its realization as a strong/weak coupling duality - meaning that a strongly coupled

gravitating system in the bulk maps to a weakly coupled gauge theory on the boundary

and vice-versa. This is a remarkable feature of the correspondence that now permits

us to perform strongly coupled and hence non-perturbative bulk computations simply

via a perturbative analysis on a dual gauge theory living on the boundary. Indeed a

lot of current research on black holes in string theory, including the work presented in

this thesis, is focussed along this direction.

The starting point of the research in this thesis has been a recent conjecture in string

theory due to Ooguri, Strominger and Vafa (OSV) relating a type of string theory in
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six dimensions to a supersymmetric black hole in four dimensions. The former known

as topological string theory is defined on a six dimensional Calabi-Yau target space en-

dowed with D-branes wrapped along homology cycles. In the bulk this corresponds to

a four dimensional black hole, whose microstates can be accounted for by counting su-

persymmetric (known as BPS in this context) states on the world-volume theory of the

bound state of branes. Topological string theory has deep mathematical connections

to the field of algebraic geometry and in that context is concerned with the counting of

algebraic invariants, known as Gromov-Witten invariants. However topological string

theory is mostly understood only in the perturbative limit of a small string coupling

constant. The reason why the OSV conjecture has managed to captivate so much at-

tention is that it offers a rare glimpse into a non-perturbative definition of topological

strings. The catch of course lies in the fact that in order to capture non-perturbative

features in this theory, one has to know its equivalent in terms of corresponding black

hole states, and as things turn out, neither is the latter fully understood. A modest

approach might then be to look for specific limits of topological string theory by prob-

ing corresponding states of the associated black hole; and even this turns out to be

rather difficult. This is the point at which it is useful to invoke the AdS/CFT duality.

This opens out a new angle for making progress on the above-mentioned issues. In its

manifestation as a strong/weak coupling duality, the strongly coupled regime of grav-

ity in the bulk corresponds to the weakly coupled sector of the holographically dual

gauge theory (without gravity) and vice-versa. This way computing observables of a

quantum field theory on the boundary not only helps probe black holes in the bulk,

but coupled with the OSV correspondence, it reveals hitherto unknown sectors in the

spectrum of topological string theory. Now consider the scenario in which the brane

system we are investigating, possesses a gauge theory which is exactly solvable. In rare

cases when this does happen, one can carry out non-perturbative analysis and get a

handle of the corresponding non-perturbative features in both, the bulk gravitational

system as well as the associated string theory. The D0-D2-D4 BPS black hole that

we have extensively investigated in this thesis, precisely allows for such a possibility,

with the gauge theory being localized to a q-deformed version of 2D Yang-Mills on a

Riemann surface with gauge group U(N).
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Putting these links together is part of an extensive on-going research program within

the string theory community. The work presented in this thesis will focus on the

gauge/gravity side of these connections. Within this backdrop, some of the research

questions we pose in this thesis concern precision black hole entropy counting in 4D

or 5D; observable charge shifts for these gravitational systems; the role of multi-center

configurations as fragments of a single black hole geometry; and how one may probe the

phase space of the holographically dual Yang-Mills theory. In this thesis we investigate

these questions from several angles, incorporating new related developments such as

the discovery of black rings in five dimensions; the 4D/5D connection relating black

holes in four dimensions to those in five dimensions, and subsequently a multi-center

extension of this connection along with the inclusion of extended black objects; the for-

mulation of an entropy function technique that is well suited for computations involving

higher order corrections due to the remarkable feature that within this formalism, all

equations of motion straightforwardly reduce to algebraic equations; gauge theories

dual to multi-center black hole configurations, necessary for a holographic understand-

ing of microstates. A lot of the pieces of this jig-saw in fact compliment each other

and thus a parallel rather than serial approach towards investigating these questions

indeed leads to an integration of ideas and emergence of new insights. Nevertheless,

the underlying theme behind all of this work shall still be the gravity/gauge duality

connecting the macroscopic to the microscopic. In order to modestly achieve some of

the above objectives, a large part of this work shall be devoted towards developing

methodology and interpreting underlying mechanisms.

We begin our investigations in chapter 3 with macroscopic gravity calculations and

further build up on the entropy function formalism of Sen. Our goal in this chapter

is to develop an entropy function formalism for any extremal 5D black object, whose

action contains what are called Chern-Simons terms. This is because Sen’s original

formulation was not incorporated to include such terms in the action owing to problems

with manifest gauge invariance under large gauge transformations. We shall solve the

problem and show that our 5D entropy function works for both black holes as well as

black rings. With this 5D technology, it is now possible to correctly identify the physical

charges in 5D black holes/rings. These are conserved Page charges, which are shifted



8 CHAPTER 1. INTRODUCTION

relative to their 4D counterparts due to large gauge transformations originating from

Chern-Simons terms. Here we shall interpret these charge shifts as what are known

as spectral flow shifts and have also shown how spectral flow can be incorporated into

the 5D entropy formalism, which at the same time remains gauge invariant and has

an explicit dependence only on physical charges. Moreover, our 5D analysis enables

us to fix a mismatch that arose in the electric charges of Goldstein and Jena’s prior

calculation. The utility of these techniques is that they now allow a thorough precision

entropy counting in 5D with higher curvature corrections.

Then in chapter 4, we turned our attention to the 4D/5D conjecture. The question

we investigate in this chapter is how should the 4D/5D connection work for these

multi-center configurations? More specifically, we explicitly set-up a 5D construction

of AdS-fragmentation, whereby a single black ring splits-up into a multi-black ring

configuration. Furthermore it is shown that these fragmented rings are equivalent to a

direct 5D lift of 4D multi-center black holes. In this way the 5D duals of these baby

universes turn out to be a configuration of non-concentric multi-black rings. Once

again we are faced with Chern-Simons induced charge shifts, but now for multi-center

5D systems. For single center configurations, the tools developed in chapter 3 gave us

a geometric interpretation of these shifts as spectral flow. Even in the case of multi-

center systems, we can show the manifestation of 4D/5D charge shifts as spectral flow,

but now using insights from AdS fragmentation. Using an independent supergravity

analysis, we also confirm that all conserved charges in 5D are once again Page charges,

as expected. As an application of these methods, we then reproduce the total angular

momentum of concentric black rings, originally due to Gauntlett and Gutowski. Finally,

through this analysis we provide a geometric description of this system of multiple black

rings, using the idea of split-spectral flows, wherein a given black ring’s observables

are influenced by fluxes generated in a background of neighboring rings. As a possible

future research direction one may incorporate these split-flows into an entropy function

so as to compute sub-leading degeneracies to multi-center systems as well.

Moving further, in chapter 5, we investigate a continuum limit of multi-center black

hole configurations. We find solutions to integrability equations for large n centers,

thus showing that such a limit indeed exists. We then construct a continuum dis-
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tribution of black holes and performed a multipole expansion to find smeared black

hole geometries with multipole moments. Using these solutions, one can now construct

geometries with test black holes in multipole background fields, and that too along

with the back-reaction. A very interesting application of precisely this is the black hole

levitron. This entails spatially stabilizing a four dimensional black hole in background

electric/magnetic fields. A stationary stable solution for this phenomenon is analyti-

cally found via the continuum multi-center limit developed in this thesis. Our levitron

consists of a black hole levitating in stable equilibrium over a magnetic dipole base.

We then go on to discuss how this construction strikes a resemblance to a mechanical

Levitron.

Finally in chapter 6, we move on to microscopics. We investigate topological strings

over a Calabi-Yau background of a Riemann surface endowed with two line bundles.

The surface in this case is an S2. Over this non-compact background, we seek to test the

validity of the OSV conjecture and in the process discover a remarkable phase transition

of the theory. We analyze this transition and comment on its implications for black

hole physics. Here we investigate the dual gauge theory of the aforementioned D0-D2-

D4 black hole, which turns out to localize to a quantum deformation of 2D Yang-Mills

theory with gauge group U(N), where N represents the magnetic D4 brane charge. In

this rare case, the microscopic theory turns out to be fully solvable and hence lends

itself as an interesting tool for non-perturbative analysis. For our analysis, the Yang-

Mills gauge theory is most effectively studied using an equivalent matrix model in the

large N limit, which in this case was derived from Chern-Simons theory. In this work

we discover that an analogous phase transition occurring in two dimensional QCD

on a sphere is replicated in its q-deformed cousin for specific values of deformation

parameter. The phase diagram of the model is determined and we show that the

theory exhibits a phase transition only for small values of the deformation parameter,

whereas for large values of the deformation parameter the phase transition is absent.

We explicitly see how this transition is triggered by instanton effects. Finally, we

presented the solution of the model in the strongly coupled phase. Our analysis suggests

that, on certain backgrounds, non-perturbative topological string theory has a new

phase transitions at small radius. From the point of view of gauge theory, it suggests a
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mechanism to smooth out such phase transitions. One implication of our result is that

for certain backgrounds, the usual geometric description of topological strings does not

hold in the small area phase of the gauge theory and this has bearing on the validity of

OSV itself in that regime. A likely scenario suggested by this work is that sub-leading

contributions to the gauge theory partition sum are associated to AdS-fragmentation

of black holes.



Chapter 2

A Brief History of Black Holes in String

Theory

Life is complex - it has both real and imaginary parts

- Anonymous

2.1 From Information to Thermodynamics

From an empirical perspective, a classical black hole may be defined as a region of

space, causally disconnected from its surroundings, such that no signal can convey

information about its state to the outside world. The emphasis on the notion of infor-

mation in this context was first put forth by Wheeler in [1]. Structurally, black holes

are believed to be remnants of gravitational collapse, often formed in the aftermath

of giant supernovae explosions. Not all stars, however, end up as black holes, only

those with initial mass about twice the mass of the sun or greater. The ones below

this critical bound either end up as brown dwarfs, white dwarfs, neutron stars or the

hypothesized quark/strange matter stars [2], [3]. Gravitational collapse is thus respon-

sible for formation of exotic states of matter that define these remnants. White dwarfs

essentially constitute a degenerate Fermi gas of electrons, when the mass of the parent

star is below a critical limit - known as the Chandrashekar limit. Beyond that limit,

neutron stars are formed when atoms are crushed into each other overcoming the elec-

tron degeneracy pressure such that the atomic electrons are squeezed into the nucleus

to combine with protons to form a degenerate Fermi gas of neutrons. In this case, the

critical mass limit is the Tolman-Oppenheimer-Volkov limit. Going further, squeezing

11
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beyond the neutron degeneracy pressure one supposedly arrives at the regime of the

quark-gluon plasma. Note that the more massive the collapse, the shorter are the dis-

tance scales corresponding to the state of matter constituting that remnant. The most

massive collapses result in black holes, and string scale physics is believed to provide a

microscopic description of these remnants. If so, one may be tempted to ask whether

a black hole can be thought of as a “gas” of string and brane excitations.

Now, unlike stars and other astrophysical objects, black holes as such do not reveal

their initial chemical composition. No matter what type of object collapsed to form

a black hole, in 4 dimensional general relativity, all stationary, charged and rotating

black hole solutions form a single 3-parameter family of Kerr-Neumann solutions. Con-

sequently, all observables of such a system only depend on its mass, angular momentum

and electric charge. This is the so-called “no-hair principle”. So what this mean in

terms of information ? The lack of knowledge of initial composition leading to the

no-hair theorem coupled with the lack of correlation of any signal from the inside of a

black hole to an observer outside implies that a black hole represents a large amount

of missing information. Possibly the maximum there can be in that region of space.

From an information theoretic setting, a way to quantify the information of a system

is using the measure of entropy, which is defined as the average number of bits needed

for storage or communication of information, pertaining to a random variable X. It

relates to the uncertainty encountered in this variable and is expressed as

S(X) = −
∑

x∈M
p(x) log p(x) (2.1.1)

where p(x) is the probability of X for a given bit x and M is the set of all bits. But

what does this mean for a black hole? First let us contrast this to a star such as the

sun. Albeit, the entropy of a star is usually much less than that of a black hole. In this

case though, the entropy has a clear physical interpretation in terms of the underlying

microstates of the relativistic gas. Thermodynamic variables can then be computed in

the hydrodynamic limit. On the other hand, if we believe that a black hole is basically

a singularity (shielded or otherwise) of space-time, then implicitly it lacks any compo-

sition, which makes it inconceivable to think of it in terms of statistical microstates.

Yet, from the discussion above, we see that the missing information associated to a
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black hole is far more than any stellar object. Approaching this problem from one end,

one may ask whether these bits of information carry any physical relevance. From the

other end, one may ask if the resolution of this singularity in a quantum theory of

gravity can provide a quantitative understanding of S(X) in terms of “appropriate”

microstates. The first approach is what will lead us to gravitational thermodynam-

ics, while the second will take us to statistical mechanics in a quantum field theory.

And the bridge between the two lies at the heart of a deeper holographic duality of

quantum gravity. It still remains a hard problem to understand what these black hole

microstates are. Presumably these are relevant up to the Planck scale if we believe that

nothing collapses beyond the stage of a black hole (within a finite volume of space).

For instance, microstates which describe the sun or a neutron star certainly can not be

the right description of states of the ensemble after one crosses the critical limit of the

corresponding degeneracy pressure beyond which black hole formation occurs.

Above, we motivated a statistical mechanic framework for accounting the informa-

tion bits of a black hole. Now we may ask how one might see the underlying thermo-

dynamics from such an ensemble? Thermodynamic observables of the black hole, if

they do exist, should be easier to study as they would not require all the microscopic

knowledge of the ensemble, but would be related only to macroscopic variables of the

black hole solution - in this case the mass, charge and angular momentum. Though

we have not said much about the role of gravity in this discussion so far, only having

considered a system with maximum missing information content, the link with gravity

will enter the discussion via the holographic bound - in the sense that gravity sets the

bound on the maximum amount of information that can be stored in a given region of

space. Just from the information perspective, we have motivated the possibility of an

underlying statistical description. If in addition, there is an exists emergent thermo-

dynamics from this ensemble, what is the gravitational interpretation of that ? In a

sense, the Einstein equations inherently “know” about that. This is most easily seen

by comparing the law of black hole mechanics to the first law of thermodynamics as

follows : Consider an electrically charges Reissner-Nordstrom black hole with charge

Q. This is a solution to Einstein-Maxwell gravity with action

S =
1

16πG

∫
d4x
√

|g|(R− FµνF
µν) (2.1.2)
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The metric gµν is then given by

ds2 = −
(

1 − 2M

r
+
Q2

r2

)
dt2 +

(
1 − 2M

r
+
Q2

r2

)−1

dr2 + r2(dθ2 + sin2θdφ2) (2.1.3)

Setting gtt = 0 determines the radial position of the horizon. In this case, there are

two horizons located at r+ and r− respectively. The topology of both horizons is a

2-sphere. Now consider the area of the outer horizon. This is given by

A = 4π
(
M +

√
M2 −Q2

)2

(2.1.4)

which is only valid when M2 ≥ Q2 is satisfied. For later reference, let us also mention

how M and Q relate to the actual mass and charge m respectively q. Upon restoring

constants and dimensions, we get M ≡ Gm
c2

and Q ≡
√
Gq
c2

.

Now taking differentials on both sides of eq.(2.1.4) gives the law of black hole

mechanics

d
(
mc2

)
=

κ

8π
dA+ ΦdQ (2.1.5)

where

κ =
4πc4

√
M2 −Q2

GA
(2.1.6)

is the surface gravity and

Φ =
q

r+
(2.1.7)

is the electric potential on the hole’s horizon. Comparing the above to the first law of

thermodynamics yields

U ↔ mc2 (2.1.8)

TdS ↔ κ

8π
dA (2.1.9)

V dQ ↔ ΦdQ (2.1.10)

This observation together with the classical area theorem [4], [5], [6] - that black holes

do not shrink and the area of the horizon cannot decrease under any circumstances -

lead Bekenstein to associate the area of a black hole’s horizon to an entropy. In general,

this takes the form

SBH = f(A) (2.1.11)

and TBH =
κ

8πf ′(A)
(2.1.12)
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To determine the function f(A) we follow Bekenstein’s gedanken experiment [7], [8].

Assume a generic power law function f(A) = Aγ , where γ can be an arbitrary positive

power. Negative powers are excluded, since from eq.(2.1.11), it would imply that as

the mass of a black hole increases in any physical process, its entropy decreases - thus

violating thermodynamics. Coming back to the experiment, let us now drop some

matter adiabatically into a stationary Schwarzschild black hole with entropy SBH and

mass M . The entropy content of the external matter being denoted by Smatt and its

mass µ. As matter falls into the black hole, the latter’s horizon area must increase.

However, by the second law of thermodynamics, the growth in the black hole’s entropy

must compensate for the loss in Smatt, which is devoured by the black hole. That is,

∆SBH ≥ Smatt (2.1.13)

must be satisfied. Now from eq.(2.1.4), we may determine the increase in the black

hole’s area as

∆A = 16π
(
µ2 + 2Mµ

)
(2.1.14)

Taking differentials on both sides of eq.(2.1.11) and inserting the expressions deter-

mined above, we now have to satisfy the following inequality

∆SBH = γAγ−1 · 16π
(
µ2 + 2Mµ

)
≥ Smatt (2.1.15)

Now for γ > 1, we can always choose a small enough black hole such that the above

inequality will be violated. This forces upon us a linear dependence of the function

f(A). The classical entropy can thus be expressed upto a multiplicative constant as

follows

SBH = η
Ac3

G~
(2.1.16)

The constant η was later determined to be 1/4 in Hawking’s semi-classical calculation

of quantum fields in a curved background [9]. Furthermore, this result lends TBH the

interpretation of a physical temperature associated to thermal radiation emitted by the

black hole - the so-called Hawking radiation. Certainly, in light of this, the classical

area law lends itself to a natural generalization - the generalized second law of black

hole thermodynamics, which can be expressed as

∆Soutside + ∆SBH ≥ 0 (2.1.17)
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stating that the total sum of ordinary entropy Soutside outside the black hole and the

black hole entropy never decreases and typically increases as a consequence of generic

transformations of the system (black hole + environment).

These are the two most important laws. For completeness let us also state the zeroth

and third law of black hole thermodynamics. The former is analogous to the zeroth

law of thermodynamics, which claims that the temperature of a system in thermal

equilibrium is constant everywhere in that system. For black holes this translates to

the surface gravity being constant everywhere over the horizon of a stationary black

hole.

In thermodynamics itself, the status of the third law is somewhat ambiguous. In

its stronger version it goes as the Nernst-Simon law, which says that the entropy

of a system at absolute zero temperature either vanishes or becomes independent of

intensive thermodynamic parameters. But many condensed matter systems are known

to violate this and so do extremal black holes (due to a non-vanishing horizon area with

zero surface gravity). Hence this is not taken as a law. Instead in its weaker form, the

third law states that it is impossible for a system to reach absolute zero temperature

in any physical process in a finite amount of time. In this version the analog holds for

black holes as well. A stationary black hole with Hawking temperature TBH cannot by

any physical process transform or decay to an extremal black hole.

To summarize this section, we see starting from an information theoretic per-

spective, the underpinnings of a thermodynamic connection to gravity, which in turn

emerges from a “hidden” microscopic description of quantum gravity. Here string the-

ory enters the picture as a candidate description of quantum gravity. In string theory,

a black hole is described as a bound state of strings and branes. Gravity lives in the

bulk, microstates live in the Hilbert space of the holographically dual gauge theory. In

the special case of BPS black holes, these states are protected under deformation of the

gravitational coupling, by supersymmetry. For these black holes, the microscopics and

macroscopics yield satisfactory agreement and we shall encounter these systems later

in this thesis. However, in the case of generic black holes, many of these questions still

remain open.
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2.2 BPS Black Holes

As a precursor to black hole solutions of four dimensional supergravity, we consider

extremal Reissner-Nordstrom black holes with electric charge Q ≡
√
Gq/c2 (as above).

These are solutions to Einstein-Maxwell gravity, as we have seen above. In addition,

they satisfy the extremality condition M = |Q|. Using this in eq.(2.1.4) for the area

and inserting the resulting expression in eq.(2.1.16) gives the entropy of an extremal

Reissner-Nordstrom black hole as

SRN =
π|q|2
c~

(2.2.18)

Note that this result now only depends on the black hole’s charge and is completely

independent of the gravitational constant G or any other moduli. This turns out to be

an extremely useful property of extremal black holes as one can now tune the couplings

to a regime of the theory that lends itself to say perturbative computations without

changing the number of black hole microstates. More precisely, since G ∼ g2
s l

8
s (with

ls as the string length), we shall see within the context of the gauge/gravity duality

that while the value of the string coupling gs is tuned up in the gravity regime, it

is more convenient to count black hole microstates in the gauge theory for a smaller

value of gs. The independence of the entropy on G is in some sense the reason why the

gauge/gravity duality works.

In the near-horizon limit, the metric for the extremal Reissner-Nordstrom black

hole can be derived from eq.(2.1.3) to be

ds2 = − r2

|Q|2dt
2 +

|Q|2
r2

dr2 + |Q|2(dθ2 + sin2θdφ2) (2.2.19)

which refers to an AdS2 × S2 geometry.

Now let us see how extremal black holes emerge in string theory/supergravity.

In string theory/supergravity compactified to four dimensions, there also exist such

black hole solutions with AdS2 ×S2 geometry, where the above-mentioned extremality

condition generalizes to the BPS condition M = |Z| for central charge Z. These are

called BPS black holes. The low energy effective description of Type II A/B string

theory is Type II A/B supergravity in ten dimensions. Compactifying this on a six

dimensional Calabi-Yau gives N = 2 supergravity in 4D. This theory has an SU(2)R
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R-symmetry and the massless fields fall into the gravity multiplet, vector multiplets or

hypermultiplets.

For black hole entropy only the vector multiplets will concern us. Besides the

gauge field FA
µν , a vector multiplet contains a complex scalar field XA. The number of

(dynamical) vector multiplets is denoted by hV . The scalars represent the moduli of

the theory. Supersymmetry requires this moduli space to be a special Kahler manifold,

with Kahler potential K. The kinetic terms will be determined from the holomorphic

prepotential F (X) of the theory, which is determined from the Calabi-Yau geometry

and can be computed from string theory. The scalars fields XA together with FA

are projective coordinates on the vector multiplet moduli space. This gives rise to the

“special geometry” of N = 2 supergravity. Besides the hV vector multiplets, the theory

contains an auxiliary vector multiplet, also called the gravity multiplet, whose gauge

field is the graviphoton. The expectation value of the scalar in the gravity multiplet

is fixed in terms of the scalars in the dynamical multiplets. The same holds for the

graviphoton and the gauge fields. The index A then runs from 0 to hV .

We can then write the four dimensional bosonic two-derivative supergravity action

as follows (with c = ~ = 1)

Ssugra =
1

16πG

∫
d4x
√

|g|
(
R + 2GAB(X, X̄)∂µXA∂µX̄

B

+
i

4
NABF

+A
µν F

+Bµν − i

4
N̄ABF

−A
µν F

−Bµν
)

(2.2.20)

where F±A = 1
2

(
FA ± i ∗ FA

)
are the self-dual and anti-self-dual parts of the gauge

field FA. The scalar fields are constrained by

NABX
AX̄B = −1 (2.2.21)

with the metric on the kinetic terms given by

GAB(X, X̄) = NAB +NACX
CNBDX̄

D (2.2.22)

where NAB and NAB are given by

NAB = 2ImFAB (2.2.23)

NAB = F̄AB +
iNACX

CNBDX
D

NIJXIXJ
(2.2.24)
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where we have

FA = ∂AF (X) (2.2.25)

FAB = ∂A∂BF (X) (2.2.26)

with F (X) as the holomorphic prepotential of the theory. In terms of these, the Kahler

potential of the vector multiplet moduli space can then be written as

e−K(X,X̄) = i
(
X̄AFA −XAF̄A

)
(2.2.27)

The gauge fields are sourced by electric and magnetic charges qA respectively pA as

follows

pA =
1

2π
Re

∫

S2

F+A (2.2.28)

qA =
1

2π
Re

∫

S2

NABF
+B (2.2.29)

The central charge function associated to this theory takes the form

Z = eK/2
(
XAqA − FAp

A
)

(2.2.30)

Black hole solutions to 4D N = 2 supergravity are parametrized by the ADM mass M

and graviphoton charge of the theory. The latter is exactly the central charge Z given

above. Black hole solutions exist when M ≥ |Z|, where the equality refers to the BPS

bound that characterizes a stable extremal black hole in supergravity. The BPS case

is what shall concern us in what follows. This solution preserves half of the original

8 supersymmetries. This holds as long as there exists a covariantly constant spinor,

which is obtained via setting the fermionic variations to vanish.

The metric for a 4D N = 2 BPS black hole is then given by

ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + r2(dθ2 + sin2θdφ2)

)
(2.2.31)

where

e−U(r) = 1 +
|Z|
r

(2.2.32)

In the near-horizon limit, this exactly reproduces the extremal Reissner-Nordstrom

metric of eq.(2.2.19) with the replacement Q → Z, thus giving back an AdS2 × S2

near-horizon geometry. The entropy, obtained via the area law, then takes the form

SBH(p, q) = π|Z|2|horizon (2.2.33)
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where the function Z is evaluated at the horizon. Once again the entropy will be

independent of any moduli or coupling and will only be a function of the charges

measured at infinity. In the next subsection we shall see how such macroscopic entropy

computations can be performed.

In this sense, supersymmetric black holes are good analogs of extremal Einstein-

Maxwell black holes and also serve as powerful test-beds for ideas of quantum gravity

emerging in string theory.

2.2.1 The Entropy Function Formalism

For actions such as in eq.(2.2.20) and also others which include higher derivative cor-

rections, there are several ways to compute the macroscopic black hole entropy. Two

methods that will concern us in this thesis are the attractor mechanism (about which

we will have more to say later) and the Sen entropy function formalism [29]. Moreover,

since the latter of these will play a more crucial role in the research developed in this

thesis, let us lay out its framework at this point. The entropy function method works

for any black hole having SO(2, 1) × SO(d − 1) near-horizon isometry in arbitrary

space-time dimension d. In recent works, it was also shown that the said isometry,

ensures extremality.

Though the entropy function formalism is essentially a reformulation of Wald’s

formalism, for computational purposes it is far less tedious than the former, in the

sense that the equations of motion elegantly reduce to algebraic equations. This is

because this method only concerns itself with the near-horizon isometries and does not

take into account whether the full global solution exists or not. Nevertheless it has

served as a useful tool for higher derivative theories with local Lagrangian densities.

It can be applied to non-SUSY extremal black holes and to higher dimensional black

objects as well. Another reason why the entropy function formalism is a more reliable

method than techniques emanating from topological string methods is that unlike the

latter, which only takes into account holomorphic contributions to the prepotential,

the former also works with non-holomorphic terms in the Lagrangian.

However one of the shortcomings of this formalism in its its original form, was that
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it was only applicable to reparametrization invariant and gauge invariant Lagrangians.

The means we have a problem when considering theories of gravity with Chern-Simons

type of terms. Black rings become a prominent example of this class. In this thesis,

we will present a resolution to this problem.

Let us first demonstrate how this formalism works for the simple case of an ex-

tremal Reissner-Nordstrom black hole. The entropy of such an object is computed by

extremising the Sen function defined as follows

E(v1, v2, q) = 2π

(
e
∂F
∂e

− F
)

(2.2.34)

The above is a Legendre transform of the reduced action defined as

F(v1, v2, q) =

∫
dθdφ

√−gL (2.2.35)

corresponding to an AdS2×S2 near-horizon geometry parametrized through the metric

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2(dθ

2 + sin2θdφ2) (2.2.36)

L denotes the Lagrangian density. The near-horizon geometry is parametrised by a

constant electric field e and constant scalar moduliX. v1 and v2 respectively denote the

radius of AdS2 and S2, which shall be determined through their equations of motion.

The electric charge q is conjugate to the field e and is determined via

q =
∂F
∂e

(2.2.37)

The remaining equations of motion are given by extremising the entropy function

∂E
∂v1

=
∂E
∂v2

= 0 (2.2.38)

Solving these algebraic equations and eliminating v1, v2 and e in the entropy function

gives the black hole entropy

SBH = πq2 (2.2.39)

In later chapters, we shall exploit the power of this formalism for extended black objects

such as rings and develop the necessary systematics in the case when the associated

actions carry Chern-Simons terms.
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2.3 Holography

2.3.1 A Principle of Quantum Gravity

The idea of holography has been a powerful tool in quantum gravity research. Stated

in its most general form it can be expressed as follows :

Physical processes in the bulk space-time of a d-dimensional theory are reflected in

processes occurring in a different d − 1 dimensional theory living on the boundary of

that space-time.

The motivation underlying this proposal, due to Gerard ’t Hooft [10] as a quantum

gravitational principle arose from insights in black hole physics; namely Bekenstein’s

entropic or holographic bound [11]. The latter can be construed via the following

gedanken experiment proposed by Susskind in [12]. Consider a neutral non-rotating

spherical body, which fits entirely in a region of space bounded by area A. Let S denote

the entropy of this object. Now allow this mass to collapse, forming a black hole, in

this case of the Schwarzschild type. Clearly the black hole’s horizon area ABH ≤ A.

But, by the second law of black hole thermodynamics, the black hole entropy must

satisfy SBH ≥ S. Therefore (with c = ~ = 1), we have

S ≤ SBH =
ABH
4G

≤ A
4G

(2.3.40)

Now in conventional QFT lore, the degrees of freedom scale as the volume V of a given

region and not the area. So why does the boundary capture information of physics in

the bulk ? The answer is that gravity imposes a cut-off on the number of states that

a system can occupy within a given volume. As in Bekenstein’s gedanken experiment

discussed above, if all the quantum states within a given volume were occupied by

throwing in more and more matter (so as to match the apparent QFT measure of

entropy), it would soon result in black hole whose horizon exceeds the volume V .

Thus the entropy in a region of space is bound by its area and a black hole within

that entire region carries the maximum possible energy, saturating the bound. Owing

to the connection between entropy and information, as discussed above, the holographic

bound suggests that information of a system in the bulk is somehow bound by what

would be a natural measure of information on the boundary. This led ’t Hooft to go
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a step further and and propose the holographic principle as a principle of any theory

including gravity. Note that while the holographic bound is only applicable to an

isolated system confined to a finite region, the holographic principle is a statement

for the entire universe within which a system is contained. The latter thus has to be

appropriately regularized, as is implemented via the UV/IR regulator in AdS/CFT.

That the degrees of freedom of a gravitational system scale as the area of its bound-

ary (when it exists) rather than its volume is certainly intriguing considering that one

would never arrive at such a premise in standard quantum field theories. But then

again, field theoretic quantization procedures for gravity lead to non-renormalizable

theories. What is remarkable though, about this proposal, is that observables of a

gravitating system in the bulk are fully encoded in a theory on the boundary, which it-

self has no gravity at all and may well be a standard quantum field theory. In an earlier

section, we have seen how gravitational quantities in the bulk carry a thermodynamic

interpretation, which in turn is associated to an underlying statistical description of

microstates. If, via the holographic principle, the boundary theory indeed captures the

full quantum description of dynamics in the bulk, it should also be able to provide a

microscopic calculation of quantities such as entropy, temperature and free energy of

the gravitational system. As we shall soon see, the real utility of this prescription will

emerge from the fact that it facilitates microscopic calculations of observables on the

boundary, that are strongly coupled and therefore unfeasible to perform in the bulk.

2.3.2 The Maldacena Conjecture

So how does one realize this bulk/boundary duality? Within the context of string the-

ory, the AdS/CFT correspondence serves as a realization of the holographic principle,

in the form of a gauge/gravity duality [13], [14] (see also [15] for an excellent review).

In its original form the AdS/CFT correspondence was conjectured as a duality between

N = 4 supersymmetric Yang-Mills theory in 3+1 dimensions with gauge group U(N)

and Type IIB superstring theory on an AdS5 × S5 background. On the string theory

side, the parameter N denotes the 5-form RR flux through the S5. Consequently, the

radius of S5 is given by R4 = 4πgsNα
′2. This is equal to the radius of AdS5. Further-
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more, the string coupling gs is related to the Yang-Mills coupling gYM by gs = g2
YM .

The radial direction in the bulk plays the role of an energy scale in the field theory,

such that going to the boundary of AdS corresponds to going into the UV regime of

the field theory. As per the equivalence goes, the claim is that observables, states and

correlation functions of the two theories are equivalent to one another.

More precisely, we have

〈
e

R

d4xφ0(~x)O(~x)
〉
CFT

= ZAdS [φ(~x, z)|z=0 = φ0(~x)] (2.3.41)

where ~x are coordinates on the boundary and z denotes the radial variable. The left

hand side of the above relation is the generating function of correlation functions in

the field theory. The right hand side is the full partition function of string theory with

the boundary condition that the field φ attains the value φ0 on the boundary of AdS.

Armed with this, we can calculate correlation functions of the operator O by taking

functional derivatives with respect to φ0 and then setting φ0 to zero, since the latter is

an arbitrary function.

An analogous relation is valid for other fields too. The above equation was written

for massless fields. With massive fields involved, the only subtlety is that the z = 0 limit

has to be taken with an appropriate regulator. The gauge theory above, N = 4 SYM,

lives on the world-volume of a parallel stack of N D3-branes placed in 10 dimensional

flat space. In the near-horizon limit, the metric of these branes reduces to that of

AdS5 × S5, giving a string theory on a curved background. In its original form, this

statement was made for the low-energy effective lagrangian, wherein only massless

string states and their excitations contribute. This is achieved by sending α′ → 0

and consequently the string length ls → 0, whilst keeping energies and dimensionless

parameters fixed. This is known as the decoupling limit, wherein gravity becomes free

in the bulk and decouples from the brane theory. A striking feature of the AdS/CFT

correspondence is that the conjectured equivalence is a strong-weak duality. When the

AdS radius of curvature is small compared to the string length

R4

l4s
<< 1 ⇒ g2

YMN << 1 (2.3.42)

wherein the gauge theory lies in the perturbative regime (gs is taken smaller than 1), but

gravity is strongly coupled. On the other hand, when the supergravity approximation
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is valid, we have that

R4

l4s
>> 1 ⇒ g2

YMN >> 1 (2.3.43)

which refers to a strongly coupled field theory. The supergravity approximation is

particularly useful for many applications of the correspondence. In this regime the

string theory partition function takes the form e−Isugra, where Isugra is the supergravity

action evaluated on-shell on AdS5 × S5. On the gauge theory side, this corresponds to

taking both large N and large ’t Hooft coupling g2
YMN . This yields

Wgauge[φ0] ≈ extremum Isugra[φ(~x, z)|z=0 = φ0(~x)] (2.3.44)

where Wgauge is the generator of connected Green’s functions in the gauge theory.

Though the discussion above was specified to the particular context of AdS5, the

conjecture has subsequently been proposed for arbitrary dimension d as anAdSd/CFTd−1

correspondence.

2.3.3 AdS/CFT for Other Compactifications

The realization of AdS/CFT as a holographic principle of quantum gravity, being a

powerful tool for probing microscopics of a gravitational system, has found application

in a wide variety of problems, some of the most prominent being in the area of black

hole physics. The fact that the near-horizon geometry of a black hole contains an

AdS factor, facilitates the application of the correspondence, allowing for a counting

of microscopic degrees of freedom via the dual gauge theory, which resides on the

world-volume of D-branes wrapping compact cycles.

As an application of AdS/CFT to other black hole systems and for different com-

pactifications, let us demonstrate the D1-D5-P system, which realises an extremal black

hole in five dimensions from Type IIB string theory compactified on a five dimensional

manifold M4 × S1, where M4 can either be K3 or T 4. The microscopic entropy of this

black hole was first computed by Strominger and Vafa in [16] and this was shown to be

in agreement with the macroscopic gravity calculation. The gravity set-up is as follows

: a set of D5-branes with charge Q5 wrap along M4×S1 and D1-branes carrying charge
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Q1 wrap along the same S1. There are N units of momentum excitations along the S1.

This configuration preserves 1/8 of the supersymmetries and gives a 5D black hole in

the non-compact directions at the location of the branes. In the decoupling limit, the

solution in the string frame is given by

ds2 =
1√
f1f5

(
−dt2 + dz2 +

N

r2
(dz − dt)2

)
+
√
f1f5dx

idxi +

√
f1

f5
ds2(M4) (2.3.45)

Here fi = 1+Qi/r
2, z denotes the coordinate along the S1, xi denote the transverse non-

compact directions and ds2(M4) is the metric on the compact space. The supergravity

description of this system is valid in the large charge limit. From the metric, the leading

order entropy can be obtained as the classical area law given by

S5D =
A5

4G5

= 2π
√
Q1Q5N (2.3.46)

The dual CFT to this gravity is the world-volume theory living on the D1-D5 system.

Since the volume of M4 is taken to be of string scale, the low energy effective theory is

a 1+1 dimensional CFT. More precisely, this is a deformation of the N = (4, 4) sigma

model on the orbifold MQ1Q5

4 /SQ1Q5
n , which is a symmetric product of the compact

manifold modded by the permutation group. In [16] this microscopic entropy counting

was performed in the perturbative regime of the orbifold CFT. For an extremal black

hole, microstates pertain to the BPS sector of the CFT, and these can be counted by

a supersymmetrically protected index such as the helicity supertrace. Since this index

remains invariant under deformation of continuous parameters in the theory, counting

of BPS states in the CFT can be related to the supergravity result. At leading order,

this was shown to yield an exact match [16]. Much of this discussion is valid for four

dimensional black holes as well. In the next subsection, we shall discuss another tool for

probing dual CFT’s of four dimensional black holes with Calabi-Yau compactifications.

2.3.4 The OSV Conjecture

In this thesis, we shall mostly be interested in N = 2 supersymmetric black holes

obtained by Calabi-Yau compactification. As a recurring theme in string theory, de-

scriptions of many gravitational systems are encoded in holographically dual gauge

theories. In this regard, a recent conjecture by Ooguri, Strominger and Vafa (OSV)
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[129] relating black holes to topological strings and how that relates to a brane-world

theory which reduces to a deformed version of 2D Yang Mills [94], will concern part of

the work we present here [17].

Let us briefly lay out the framework of this machinery. In its original form, the

conjectured equality goes as follows

ZBH = |Ztop|2 (2.3.47)

where the left-hand side denotes a black hole partition sum defined as follows

ZBH(p, φ) ≡ eF(p,φ) =
∑

{qA}
Ωp({qA})eπφ

AqA (2.3.48)

where the weight Ωp({qA}) is a measure of black hole microstates and F is the free

energy associated to the black hole ensemble. The latter is typically an inverse Legendre

transform of the entropy. Using the N = 2 expression for entropy in eq.(2.2.33) with

eq.(2.2.30) and the black hole attractor equations

Re[CXA] = pA Re[CFA] = qA (2.3.49)

relates the free energy F to the holomorphic prepotential F as follows

F = −πIm F (2.3.50)

where C is a complex constant. The black hole partition sum above is a mixed ensemble

that sums over all D2 and D0 branes (taken to be electrically charged) with fixed

chemical potentials thereby treating them canonically while keeping D4 and D6 branes

(magnetically charged) fixed, thus treating the latter micro-canonically. The string

coupling gs as well as the Kahler modulus ts attain a specific functional dependence on

the magnetic charges and electric chemical potentials of the black hole ensemble. An

ingredient implicitly used in the construction of this conjecture is the N = 2 attractor

mechanism of [18], [19], [20] (see [25] for an excellent review). Solving the resulting

quantum corrected attractor equations, the authors of [22] obtain the R2-corrected

quantum black hole entropy SBH , which was shown in [129] to simply be the Legendre

transform of the holomorphic part of the topological string free energy Ftop including

genus g corrections :

SBH(q, p) = F(p, φ) − φAqA (2.3.51)
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where the electric charges are conjugate variables to the chemical potential

qA =
∂F(p, φ)

∂φA
(2.3.52)

and the topological string free energy Ftop(t) with complex Kahler modulus t enters

via

F(p, φ) = Ftop(t) + Ftop(t) (2.3.53)

meaning just the holomorphic part. Topological strings basically count holomorphic

maps from string world-sheets to a target Calabi-Yau space. Genus g coefficients Fg in

the perturbative expansion of the topological free energy

Ftop =

∞∑

g=0

g2g−2
top Fg (2.3.54)

precisely compute the scattering amplitude of 2 gravitons and 2g − 2 graviphotons in

the physical string theory. These processes manifest as higher order corrections to the

low energy effective action. Subsequently in the 4D N = 2 supergravity action these

higher curvature corrections are encoded by extending the holomorphic prepotential

to also be a function of the chiral multiplet W 2, which derives itself from the Weyl

multiplet. The supergravity prepotential can then be expanded as

F (CXA,W 2) =

∞∑

g=0

Fg(CX
A)W 2g (2.3.55)

where F0(CX
A) denotes the tree level prepotential and the constant C may be de-

termined as a normalization factor. Indeed the expansion coefficients in the two ex-

pansions in eq.(2.3.54) and eq.(2.3.55) are related. The equivalence between the free

energies was demonstrated in [129] (building up on earlier work in [21], [22], [23], [24])

as follows

F (CXA, 256) = −2i

π
Ftop(t

A, gtop) (2.3.56)

where the following identifications are made

CXA = pA + i
φA

π
(2.3.57)

tA =
XA

X0
(2.3.58)

gtop = ± 4πi

CX0
(2.3.59)
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with C2W 2 fixed to a constant value of 256. Hence eq.(2.3.56) together with the

above identifications, when inserted in eq.(2.3.50) gives eq.(2.3.53) and that leads to

the conjecture in eq.(2.3.47) including quantum corrections.

The immediate question that one may now ask is how can this conjecture be tested

for any given compact or non-compact Calabi-Yau geometry ? and how effective is

that as a tool for computing higher derivative corrections to black hole entropy if

we knew the corresponding worldsheet instanton corrections to the topological string

prepotential ? Even though, for a lot of interesting cases the OSV statement itself

falls short of these aims, it nevertheless motivated developments that enabled a more

computable approach to black holes and black rings including single and multi-center

solutions in four and higher dimensions; as well as the question of precision entropy

counting for these objects.

In the aftermath of the OSV result, developments in [132], [94] whilst attempting to

verify the validity of the conjecture, found interesting non-perturbative gauge theories,

which serve as gravitational duals for specific Calabi-Yau geometries. The case in point

here is 2D q-deformed Yang-Mills theory, which is not only dual to a bound state of D0-

D2-D4 BPS black holes, but its chiral sector is also touted to capture non-perturbative

dynamics of topological strings on non-compact Calabi-Yau backgrounds, constituting

a Riemann surface endowed with two line bundles, with −p respectively p + 2g − 2

as the degrees of the line bundles and g as the genus of the Riemann surface over

which the bundles are endowed. In some sense, this can be thought of as zooming

onto a local section of an otherwise compact geometry. The gauge theory is localized

on the world-volume of the branes. For the most part here, we shall be interested

inthe case g = 0, where the surface is a sphere. 2D Yang-Mills on an S2 can also be

studied using the equivalent matrix model technology, in this case the Chern-Simons or

Stieltjes-Wigert matrix model as it is known. In this thesis we describe the work in [17]

where the large N Douglaas-Kazakov phase transition of 2D QCD on a sphere [109] is

replicated in its q-deformed cousin for specific values of deformation parameter p > 2.

Moreover, like in the original Douglaas-Kazakov theory, on the q-deformed case as well,

the transition is trigerred via instanton effects. Geometrically p relates to degrees of

the Calabi-Yau line bundles. One implication of this result is that for backgrounds with
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p > 2, the usual geometric description of topological strings does not hold in the small

area phase of the gauge theory and this has bearing on the validity of OSV itself in

that regime. Moreover, knowledge of a dual non-perturbative gauge theory, whenever

possible, potentially facilitates instanton weight computations as a tool to extract black

hole degeneracies. On the other hand a precise gravitational interpretation of this

transition is not fully understood. A possible gravitational interpretation of this phase

transition is that it signals the onset of topology change, much like the baby universe

scenario in [107] which result from AdS-fragmentation of black holes. We describe the

above results in detail in chapter 6 of this thesis.

2.4 Higher Dimensions & Multiple Centers

2.4.1 Black Rings & Chern-Simons Charge Shifts

Unlike 4D, where uniqueness theorems prohibit black hole solutions with topologies

other than spherical (when non-rotating) or oblate (rotating Kerr), in 5D a toroidal

black hole solution was recently discovered [31]. These supersymmetric black rings

have S2 × S1 spatial horizons. Moreover, these rings also carry a dipole charge, which

adds “hair” to the ring. For our purposes, we shall discuss BPS black rings. These are

characterized by an AdS3 × S2 near-horizon geometry. Hence, interest in this object

was also generated due to the prospect of having a 2D CFT as the microscopic dual of

AdS3 gravity. In fact in [54] this CFT was claimed to be the same as that of the MSW

theory [53] for black strings in 5D. However, before testing the correspondence between

gravity and the field theory, it is important to have a rigourous understanding of the

physically relevant quantities on both sides of the correspondence. In this respect, there

have been some subtleties concerning the treatment of charges in the bulk theory. Part

of the research in this thesis attempts to clarify these issues [26], [65] (discussed in

chapters 3 and 4).

In any computation of macroscopic observables such as the entropy or conserved

currents, it is necessary to identify the physically relevant charges and express observ-

ables only in terms of those, if one wants to make a meaningful comparison of bulk
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to boundary observables. In most theories, this is straightforward; exceptions being

actions which include Chern-Simons terms. Since these terms do not leave the action

invariant under large gauge transformations, they affect the definition of charges in the

theory. The right prescription is to express observables via what are called Page charges

(the different notions of charge in Chern-Simons type of theories has been elegantly

described in [59]).

In the case of black rings, the details of the above implementation shall be demon-

strated in chapter 3 first within the context of the entropy function for a single black

ring and then in chapter 4 within the context of AdS fragmentation for multi-ring

geometries. We then verify that this implementation yields correct observables, by

comparing expressions to the literature wherever possible.

With regards to the first of the above implementations, a crucial step was to develop

an explicit 5D entropy function formalism that works for both 5D extremal black holes

and black rings. The problem with Sen’s original formulation in [29] was that it was

not suited to include terms in the action that are not manifestly gauge invariant, such

as Chern-Simons terms. Hence prior computations involving 5D black objects, relied

on an ad hoc recipe of reducing the action to 4D and adding a total derivative term

by hand to restore gauge invariance. The trouble with this make-shift approach is

that it does not correctly identify physical 5D observables. This refers to conserved

charges in 5D which are shifted relative to their 4D counterparts due to large gauge

transformations originating from Chern-Simons terms. This feature is also referred

to as spectral flow (the phrase being coined due to an analogous shift in Virasoro

generators of its dual CFT). We solve the problem by showing how spectral flow can

be incorporated into a 5D entropy formalism, which at the same time remains gauge

invariant and has an explicit dependence only on physical charges.

2.4.2 4D/5D Connection & Multi-Center Geometries

A closely related issue to the above is the 4D/5D connection [42]. Stating it rather

generally, from an OSV perspective, it can be expressed as [43]

ZBH
4D = ZBH

5D = |Ztop|2 (2.4.60)
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Of course, this way of writing it is highly oversimplified. More so since such black hole

partition sums, not only include single center states, but also multi-center configura-

tions. A more refined form of the conjecture is to match a specific gravity solution in

5D to the corresponding one in 4D (which may in general be comprised of a different

number of centers than the 5D solution to which it is being associated) and compare

how observables relate. For our purposes, an interesting configuration is the supersym-

metric black ring, whose 4D counterpart is given by a particular 4D 2-center solution.

From the full string theory point of view, such a 4D/5D map is reminiscent of the M-

theory/Type IIA correspondence. Now from the discussion we had above, let us recall

that unlike in 4D, the 5D action is not explicitly gauge invariant. This immediately

creates a puzzle over how we should match the 4D charges, angular momentum and

entropy to the corresponding quantities in 5D, where physical charges are in fact not

gauge invariant. The correct dictionary has to take into account these Chern-Simons

induced charge shifts in 5D. In this thesis in chapters 3 and 4, we shall provide a

resolution of this puzzle for the single-center as well as the multi-center geometry and

furthermore provide an interpretation of these charge shifts as spectral flow in the

gravity theory.

For multi-center geometries, we shall set-up an explicit 5D construction of AdS-

fragmentation and show that the 5D duals of the baby universes in [107] turn out to

be a configuration of non-concentric multi-black rings in Taub-NUT space. Here too,

we encounter Chern-Simons induced charge shifts. After presenting how the 4D/5D

multi-center charges transform we confirm that all conserved charges here are Page

charges. Finally a geometric description is given to this system of rings using the idea

of split-spectral flows, wherein a given black ring’s observables are influenced by fluxes

generated in a background of neighboring rings.

As an aside, let us also remark on a spin-off that resulted from our investigation

of Denef’s multi-center geometries. It is known that a sub-set of these going by the

name of scaling solutions [27] are known to play a role in the problem of black hole

microstates. However even for the simplest configurations with more than two cen-

ters, solving integrability constraints to determine the full metric becomes a highly

formidable task. Interestingly enough, we find that in the limit of large N number of
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centers, the integrability constraints are solvable [28]. We can then construct a contin-

uum distribution of black holes and obtain the metric. Upon this continuum system we

perform a multipole expansion to find smeared black hole geometries with multipole

moments. As an interesting application of these methods, we then construct a black

hole levitron in chapter 5. Presumably, all this carries over to 5D as well.
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Chapter 3

5D Entropy Functions with Chern-Simons

Terms

Hell, there are no rules here– we’re trying to accomplish something

- Thomas Edison

In this chapter we begin our investigations concerning BPS black holes by start-

ing with macroscopic entropy calculations. The development of precision macroscopic

techniques are necessary if one is to later compare results to holographically dual

microscopic theories, or for that matter even for validating other manifestations of

gauge/gravity conjectures such as the OSV conjecture. While in four dimensions, for

most cases of interest, such macroscopic entropy computations are fairly straightfor-

ward (provided all the relevant higher order terms in the action have been satisfactorily

determined); the five dimensional set-up however has proven to be more subtle. This is

mainly due to the inclusion of Chern-Simons terms in the action and associated charge

shifts in 5D as compared to 4D. In the current chapter of this thesis, we tackle these

issues and in the process develop a 5D entropy function technology that builds over

Sen’s entropy formalism [29].

The entropy function formalism of Sen [29], [30] allows for a very systematic ap-

proach to computing black hole entropy inD dimensions with AdS2×SD−2 near-horizon

geometry, especially including higher derivative corrections. Subsequently this formal-

ism has also found application to other extremal black objects such as black rings and

even black holes with reduced near-horizon isometry groups [39], [40]. However, in odd

dimensions, the presence of Chern-Simons terms in the supergravity action no longer

35
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leaves the latter invariant under large gauge transformations; whereas Sen’s original

construction was formulated for gauge as well as reparametrization invariant actions.

To overcome this hurdle, it was proposed in [41] to perform a dimensional reduction

in order to bring the Lagrangian density into a gauge invariant form and then apply

the entropy function method. Therefore whilst computing the black ring entropy func-

tion, the authors of [39] first perform a dimensional reduction of the 5D supergravity

Lagrangian into a gauge invariant 4D Lagrangian, upon which the standard entropy

function method can then be applied.

In this work we revisit the black ring and 5D static black hole entropy functions.

Instead of taking recourse to a dimensional reduction, we propose that a meaningful

5D computation of the entropy function with Chern-Simons terms is possible1. While

performing such a 5D analysis, a key issue which requires careful consideration is

how we should treat charges in 5D and their corresponding spectral flows. For the

benefit of our esteemed reader, let us recall that these are also the same questions that

have been at the center of much debate [37], [38], [55], [84], [56] with regards to the

4D/5D conjecture for black holes and black rings [42], [43]. It is not surprising that

those subtleties also come into play when trying to perform an intrinsic 5D analysis

of the entropy function formalism. And that happens because the introduction of

Chern-Simons terms brings in three different notions of charge : Brane-source charge,

Maxwell charge and Page charge [59]. Which one is more relevant depends very much

on the details of the geometric configuration one is interested in. Then expressing the

entropy function in terms of the correct 5D charges will turn out to be the crucial step

towards resolving its apparent lack of gauge invariance. We do this explicitly first for

the black ring and then for the black hole.

In case of the black ring, even though we find that the reduced action is no longer

invariant under large gauge transformations, it nevertheless turns out that the entropy

function itself does remains gauge invariant. Furthermore we show that this invariance

is no coincidence, but stems from an underlying spectral flow symmetry of the theory,

which leaves the entropy function invariant under spectral flow transformations. In

1 In this paper we only consider gauge-type Chern-Simons terms. Presumably our considerations

are valid for gravitational or mixed gauge-gravitational Chern-Simons terms as well.
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order to achieve this, we have to first demonstrate how the relevant spectral flow

relations emerge within the 5D computation whilst solving the equations of motion in

the presence of Chern-Simons terms. Through this we shall also be able to identify

the 4D/5D dictionary, using which the 4D-reduced computation of Goldstein and Jena

[39] can be recovered - except for one subtle issue on which our 5D computation differs

from their 4D computation for reasons that will become clear in the calculations that

follow.

In this context it is worth pointing out to the work of [45] on AdS5 black holes

in gauged supergravity where it was also suggested that Chern-Simons terms would

somehow facilitate charge shifts of the form qI → qI+cI . However these authors propose

a modified Sen’s formalism with shifted charges directly implemented and the cI being

undetermined shift parameters. Then in [46] this issue was pushed further ( see also [47]

for work in a related context ), where they propose a new entropy function for rotating

5D black holes in order to extract asymptotic charges from near horizon data. However

the above attempts do not work for black ring type geometries. The philosophy we

adopt in this work is that it is not necessary to modify Sen’s formalism by imposing

charge redefinitions ad hoc, but rather a consistent 5D evaluation of Sen’s functional

is possible and from which these charge shifts can be seen to emerge in a natural

way. We will see that this is indeed the case and such charge shifts carry a natural

interpretation as spectral flow shifts in 5D. This way we are able to uniquely determine

the shift parameters and unlike previous attempts our procedure works simultaneously

for both AdS2 as well as AdS3 near horizon factors.

After having treated the black ring, we proceed to check gauge invariance of the

5D black hole entropy function. Here again we see that a 5D calculation shows some

interesting differences when compared to the 4D calculation of [39]. This will have

something to do with the xµ-dependence of the moduli aI ( which are ψ-components of

the 5D gauge fields AI ). In the calculation of [39], the xµ-dependence of aI are retained

throughout dimensional reduction of Chern-Simons terms to 4D and only then are they

set to be constants. Apparently this is what seems to create a seemingly incorrect shift

in electric charges when comparing their result for the black hole entropy to that of

[48]. Here we claim that the way out is not to assume such a coordinate dependence (
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which would even be incompatible with the isometries of the 5D near-horizon geometry

) in a 5D calculation. In addition to finding an agreement with the result of [48], our

claim also leads to the correct 5D electric charges which are seen to perfectly tally with

recent results of [61], who perform an explicit near-horizon analysis pertaining to 5D

supergravity.

The outline of this paper is as follows - In section 2 we compute the black ring

entropy function without dimensional reduction. The 5D charges turn out to be Page

charges, which exhibit spectral flow behaviour. The entropy function however is shown

to be spectral flow invariant. Section 3 concerns gauge invariance of the 5D black hole

entropy function. For both black objects, we compare the 5D charges computed here

via the 5D entropy formalism to those computed in the supergravity analysis of [61].

In section 4 we clarify the subtleties in charges arising between explicit 4D and 5D

applications of the entropy function. Then in section 5 we provide an interpretation

for the e0 ↔ p0 switch within the entropy formalism as corresponding to a black hole

↔ black ring interpolation in supergravity. Finally in section 6 we conclude with some

discussions.

3.1 The Black Ring Entropy Function & Spectral

Flow

Let us now perform a 5D computation of the black ring entropy function and derive

the associated spectral flow relations from the equations of motion therein.

Consider the action of 5D minimal ungauged two-derivative supergravity theory

coupled to N − 1 abelian vector multiplets. Writing only the bosonic fields, we have

S5 =
1

16πG5

∫
R ∗ 1 −GIJdX

I ∧ ∗dXJ − 1

2
GIJF

I ∧ ∗F J − CIJKA
I ∧ F J ∧ FK (3.1.1)

where XI are massless scalars parameterizing the five dimensional “very special geom-

etry”. These scalars define the compactification volume V via the relation

CIJKX
IXJXK = V (3.1.2)
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The couplings GIJ are functions of the scalar moduli and are defined as

GIJ = −1

2

∂

∂XI

∂

∂XJ
lnV

∣∣∣∣
V=1

(3.1.3)

The indices I, J , K run from 1 to N while CIJK is a completely symmetric tensor and

F I = dAI are N U(1) gauge fields.

Now let us consider the effect of large gauge transformations to the action in

eq.(3.1.1). These transformations can be parametrised as

AI −→ AI + ΛI (3.1.4)

where ΛI are one-forms whose components we shall shortly specify. Clearly the Chern-

Simons term in the action is not invariant under large gauge transformations2. In fact

large gauge transformations introduce integral shifts of the action that pick up a phase

in the path integral. In this section, we revisit the black ring entropy function and show

that instead of the 4D approach followed by [39], one can also perform an alternate

well-defined 5D calculation. Consequently, we need to directly tackle the problematic

Chern-Simons terms above; which we do so by invoking spectral flow shifts.

To begin with, the 5D geometry is expressed via a Kaluza-Klein ansatz for an

AdS2 × S2 × S1 topology ( metric in eq.(3.1.8) below ). Eventually of course, when

one extremises the entropy function, the S1 fibres over the AdS2 ( see [39] ) precisely

recovering the known near-horizon AdS3 × S2 metric ( [31], [32], [34], [35] ) of a su-

persymmetric black ring. Also the 5D gauge potential AI is expressed in terms of the

aforementioned Kaluza-Klein decomposition as follows

AI = AIµdx
µ + aI

(
dψ + A0

µdx
µ
)

(3.1.5)

where ψ parametrises the S1 circle with a periodicity of 4π; the A0
µ are off-diagonal

entries in the 5D Kaluza-Klein metric ( which we shall write down shortly ); the

2Small gauge transformations pose no problems in this case. This is because the extra gauge

terms in the action can be expressed as an integral of a total derivative which is then evaluated as

a surface term at infinity, where the gauge parameters asymptotically vanish. However, with large

gauge transformations this is not so. The latter are not obtained as continuous transformations from

the identity element and hence cannot be expressed as exact forms that could be partially integrated

and evaluated as surface terms.
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scalars aI , which are ψ-components of the 5D gauge potential AI , are interpreted

as axions in 4D; while AIµ would just be the usual gauge potential in the four non-

compact dimensions. Typically a large gauge transformation applied to an on-shell

gauge potential can be implemented by choosing ΛI = kIdψ where kI are integral

constants. Note however that AI in eq.(3.1.5) is not yet on-shell since we have still to

insert the values of aI , AIµ and A0
µ after solving their respective equations of motion.

We therefore write down a more general ansatz for the gauge parameter given by

ΛI = kI
(
dψ + A0

µdx
µ
)
. This can be implemented in eq.(3.1.5) via a simple shift

aI −→ aI + kI (3.1.6)

where the kI are again integral constants. A few comments are in order here. Though

eq.(3.1.6) still represents a shift in the ψ-component of AI , this quantity ( aI ) also

enters as a factor in the other xµ-components making it natural to allow shifts of KIA0
µ

in those respective components. Also it turns out, as will be clear in what follows, that

eq.(3.1.6) in fact denotes the most general shift that correctly generates the full 5D

spectral flow of charges. Moreover this choice of ΛI will also leave the components of

the on-shell field strength F I independent of kI once we solve the equation of motion

for aI and insert it into dAI . These will be consistency checks of eq.(3.1.6) that we

shall verify along the way.

The reduced action ( terminology not to be confused with dimensionally reduced

action ) is now defined by integrating the 5D lagrangian density over S2 × S1 - the

spatial horizon of the black ring, spanned by θ, φ and ψ

F br
5 =

1

16πG5

∫

Σ

dθdφdψ
√−g5L5 (3.1.7)

Our task then is to evaluate F br
5 in the background of the Kaluza-Klein metric for an

AdS2 × S2 × S1 near-horizon topology

ds2 = ω−1

[
v1

(
−r2dt2 +

dr2

r2

)
+ v2

(
dθ2 + sin2θdφ2

)]
+ ω2

(
dψ + A0

µdx
µ
)2

(3.1.8)

with AIµ and A0
µ specified by

AIµdx
µ = eIrdt+ pIcosθdφ A0

µdx
µ = e0rdt (3.1.9)
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Here we take ω, v1, v2, X
I , aI , eI , e0 to be constants in the near-horizon geometry.

These will eventually be fixed as functions of the black ring charges upon extremisa-

tion. ω is the radius of the Kaluza-Klein circle; v1, v2 denote the AdS2 and S2 radii

respectively; pI are magnetic charges and eI denote the corresponding electric fields

in 4D ( we shall soon write down the electric fields in 5D as well ). e0 is dual to the

magnetic field associated to a p0 charge ( or D6-brane charge ). However for rings, it

is well known that the p0 charge is absent in the immediate vicinity of the horizon. In

4D, e0 too is treated as an electric field; however in 5D it will turn out to be associated

to the angular momentum of the black ring along the S1 direction.

Putting all this together, and computing the 5D reduced action gives

F br
5 (v1, v2, ω, X

I , aI , eI , e0, pI) =

(
2π

G5

)[
v1 − v2 +

v2 ω
3 (e0)2

4 v1

− v1

v2
ω
GIJ

2
pIpJ +

v2

v1
ω
GIJ

2
(eI + ãIe0) (eJ + ãJe0)

]

+

(
24π

G5

)
CIJK

[
(eI + ãIe0) pJ ãK

]
(3.1.10)

We get the three terms in the first line of eq.(3.1.10) by computing the five dimensional

Ricci scalar; the second line comes from the 5D Yang-Mills term in the action; and the

last line is obtained from the Chern-Simons term. It is important to note that this

result here differs from that of [39] on two counts3 - Firstly we have shifts in the moduli

aI → ãI ≡ (aI + kI), which essentially encode large gauge transformations in 5D and

consequently leave F br
5 with a gauge ambiguity, which is manifest through the explicit

kI dependence. In a 4D-reduced calculation these shifts do not appear. The second

point on which F br
5 differs from its dimensionally reduced version F br

4 is a factor of 1
2

in one of the two Chern-Simons contributions to the reduced action. This can be seen

in the last line of eq.(3.7) in ref. [39] ( note that their p0 has to be set to zero when

considering black rings ). In a 5D calculation, the reduced action F br
5 does not contain

this factor. In section 4 we shall see that this difference of factors arises because of the

way the moduli aI have been treated in a 5D calculation as opposed to how they were

dealt with in the 4D case. This point will also turn out to be crucial in determining

the correct 5D charges and in the end we shall justify our results by comparing with

the analysis in [61].

3Our GIJ equals 2fIJ in the notation of [39].
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Now, the 5D entropy function is defined as the Legendre transform of F br
5 with

respect to electric charges Qbr
I , Qbr

0

E br5 = 2π
[
Qbr

0 e
0 + Qbr

I e
I − F br

5 (v1, v2, ω, X
I , ãI , eI , e0)

]
(3.1.11)

where Qbr
I and Qbr

0 are canonically conjugate to eI and e0 respectively4

Qbr
I =

∂F br
5

∂eI
Qbr

0 =
∂F br

5

∂e0
(3.1.12)

As we shall soon see, Qbr
I , Qbr

0 are 5D Page charges and are physical observables of

the black ring. These charges will differ from the 4D electric charges qI respectively q0

computed in [39].

Obtaining the entropy of a black ring then entails extremisation of the entropy

function E br5 with respect to its moduli variables

∂E br5
∂aI

=
∂E br5
∂v1

=
∂E br5
∂v2

=
∂E br5
∂ω

=
∂E br5
∂XI

= 0 (3.1.13)

But before that let us see how the gauge ambiguity in the reduced action F br
5 , and

consequently in the entropy function E br5 , can be resolved. For that purpose we will

need to know exactly how the Chern-Simons terms in F br
5 affect physical charges Qbr

I

and Qbr
0 . It turns out that they induce spectral flow shifts in these charges. And we

want to know how these shifts can be manifestly derived within the framework of the

entropy function formalism itself. Consequently we shall see how E br5 remains invariant

under these shifts.

We begin evaluating eq.(3.1.12) forQbr
I andQbr

0 by making use of F br
5 from eq.(3.1.10).

To avoid cluttering of notation let us normalise the 4π
G5

factors in front of the charges to

1. Later in the final result we shall restore these constants. We then get the following

expressions

Qbr
I =

(
v2

v1

)
ω
GIJ

2

(
eJ + e0ãJ

)
+ 6CIJKã

JpK (3.1.14)

and

Qbr
0 =

(
v2

v1

)(
1

4
ω3e0 + ω

GIJ

2
ãI
(
eJ + e0ãJ

))
+ 6CIJKã

I ãJpK (3.1.15)

4Formally the Qbr
I can be expressed as conjugates to (eI + ãIe0). However since the Jacobian

between the four and five dimensional electric variables ( eI respectively eI + ãIe0 ) is one, we end up

with the first expression in eq.(3.1.12).
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That these are in fact the correct 5D charges for a black ring can be checked by com-

paring these expressions to the 5D Page charges recently computed in the supergravity

analysis of [61], who showed that the near-horizon region of a black ring also encodes

full information of its charges measured at asymptotic infinity. The results of [61] yield

QPage
I =

1

16π2

∫

Σ

∗FI + 6CIJKA
J ∧ FK (3.1.16)

QPage
0 = − 1

16π2

∫

Σ

∗dξ + ∗(ξ · AI)FI + 6CIJK(ξ · AI)AJ ∧ FK (3.1.17)

where Σ is a 3-cycle over the spatial horizon. For the black ring Σ specialises to S2×S1.

ξ denotes the axial Killing vector with respect to the ψ-direction, while (ξ · AI) is an

inner product between a vector field and a one-form. The Killing field ξ generates

isometries along the ψ-direction; leading to a conserved charge, which is simply the

angular momentum. In fact, the right-hand side of eq.(3.1.17) is just the Noether

charge of Wald. Page charges are in fact not gauge invariant ( due to an explicit

AI-dependence in these expressions ), even though they are conserved and localised

[59]. Now in order to strike a comparison between these charges of [61] and those

computed here using the 5D entropy formalism, we will need to explicitly integrate the

right-hand sides of eqs.(3.1.16) and (3.1.17). Since these are simply local integrations,

it is sufficient to make use of only near-horizon data of the gauge fields and metric

from eqs.(3.1.5) and (3.1.8). Computing the non-vanishing components of the 5D field

strength gives F I
rt = eI + ãIe0 and F I

θφ = −pIsinθ. In the near-horizon terminology,

the axial vector ξi is found to be Ai0, with non-vanishing components At0 = ω3e0

v1r
and

Aψ0 = −1. Using this we can determine F0, which is just dξ; and by dξ we mean

∂iξj dx
i ∧ dxj . Note also that in the ξ · AI term, it makes sense to only consider the

projection of the Killing field on the physical ( on-shell sector ) gauge fields. Putting

together all these quantities and inserting them into eqs.(3.1.16) and (3.1.17) exactly

reproduces eqs.(3.1.14) and (3.1.15). Hence we see that Qbr
I and Qbr

0 obtained from

the entropy function indeed represent the correct five-dimensional supergravity Page

charges QPage
I and QPage

0 respectively.

Now in the entropy function formalism the 5D field AI in eq.(3.1.5) depends on

three different moduli eI , e0 and aI . Extremising E br5 with respect to these moduli and

plugging the extremum values of these moduli back into eq.(3.1.5) basically determines
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the near-horizon gauge fields of the black ring. AI can then be expressed purely in

terms of electric and magnetic charges. For our purposes, these three extremisation

conditions will fully determine the physical charges that source these gauge fields AI .

Hence eqs.(3.1.14) and (3.1.15) require further input from

∂E br5
∂aI

= 0 =⇒ F I
rt = 0 (3.1.18)

and this exactly corresponds to
∫
Σ

∗FI = 0 computed in [61] by explicit near-horizon

integration. Physically, eq.(3.1.18) signifies a vanishing electric flux in the near-horizon

geometry, which is simply what one would expect in the absence of a compact 3-cycle

when the topology is that of AdS3 × S2. Moreover the above result also tells us that

the only non-vanishing on-shell components of the field strength ( in this case the F I
θφ

) are all indeed gauge invariant.

We are now ready to identify the black ring spectral flow shifts that emerge from

within the structure of the entropy function formalism itself. Separating the kI depen-

dence in Qbr
I and Qbr

0 yields

Qbr
I = qI + 6CIJKk

JpK (3.1.19)

and

Qbr
0 = q0 + 2kIqI + 6CIJKk

IkJpK (3.1.20)

where qI and q0 are read-off from eqs.(3.1.14) respectively (3.1.15) after replacing ãI

by aI ; and they can indeed be identified as the four dimensional ( gauge invariant as

well ) electric charges that appeared in the calculation of [39]. In 5D however, Qbr
I and

Qbr
0 are the correct physical observables [38], [61], [65].

Let us now determine what the conserved quantities, under spectral flow shifts of

Qbr
I and Qbr

0 look like. It is easy to see that Q̂0 defined by

Q̂0 ≡ Qbr
0 − CIJQbr

I Qbr
J (3.1.21)

is left invariant under spectral flow transformations described in eqs.(3.1.19) and (3.1.20)

in the following sense

Q̂0

(
Qbr

0 , Q
br
I

)
= Q̂0 (q0, qI) (3.1.22)
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where CIJ ≡ [CIJ ]
−1 and CIJ ≡ 6CIJKp

K . Consequently the quantity Q̂0 is completely

independent of the shift parameters kI and this fact will play an important role in

maintaining invariance of the 5D black ring entropy function.

Putting together all the above ingredients into eq.(3.1.11) gives us the entropy

function in terms of 5D variables

E br5 =
4π2

G5

{
v2 − v1 +

v1

v2

[
ω
GIJ

2
pIpJ + 4ω−3

(
Q̂0

)2
]}

(3.1.23)

The first term in the square brackets in E br5 comes from the magnetic flux, while the

second term is related to the effective momentum of D0-particles5. This brings us to

the main result of this section that E br5 is indeed invariant under spectral flow transfor-

mations, once the moduli of the gauge field AI have been determined. Here we have

obtained E br5 in eq.(3.1.23) from a 5D calculation, and this agrees with the structural

form of the dimensionally reduced E br4 of [39] because of spectral flow invariance6. Note

however that while the form of the expression in eq.(3.1.23) is the same as that ob-

tained in the 4D calculation of [39], their Q̂0 differs from ours in eq.(3.1.21) obtained

above by a half in the last term. In section 4 we shall see that this is because of a

slight discrepancy that enters the charges defined in [39]. Nevertheless the final 4D and

5D entropies reconcile despite the fact that F br
5 and F br

4 differ due to explicit gauge

transformation parameters and also that the observable 5D charges are Page charges

whereas the 4D ones are Maxwell [61], [65]. This illustrates the point that for a 5D

action which includes Chern-Simons terms, there is another way besides a dimensional

reduction to 4D; a direct 5D calculation will also give the correct result once the right

5D variables have been implemented into the calculation. Note that E br5 is not yet an

entropy and here what we see is that even when E br5 is not at its stationary point, it is

still gauge invariant. Hence we get

E br5
(
Qbr

0 , Q
br
I , p

I , v1, v2, ω,X
I
)

= E br5
(
q0, qI , p

I , v1, v2, ω,X
I
)

(3.1.24)

upon inserting eqs.(3.1.19) and (3.1.20) into eq.(3.1.23). The left-hand side is what one

gets from an explicit 5D calculation, whereas the right-hand side is what results from

a dimensionally reduced computation.

5 These are precisely the left-movers of the dual (0, 4) SCFT [53].
6 The 4D/5D lift for black rings is in fact a special case of spectral flow transformations when the

value of kI is set to pI [65].
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A 5D calculation is necessary to illustrate the inherent spectral flow associated to

a black ring geometry. The physical interpretation of spectral flow for black rings has

been discussed in [65]. The 4D/5D transformations themselves are in fact a special

case of spectral flow transformations. And that is actually the reason why application

of the entropy function formalism to black rings should work well either in 4D or 5D

( even though we think that an explicit 5D computation expresses charge/geometric

data more naturally ).

For the sake of completeness, let us also extremise with respect to the remaining

moduli, as in eq.(3.1.13); and show that the resulting black ring entropy obtained from

our 5D calculation indeed gives the right answer. Solving for v1, v2, ω gives

v1 = v2 = ω
GIJ

2
pIpJ + 4ω−3(Q̂0)

2 (3.1.25)

and

ω4 =
12 (Q̂0)

2

GIJ

2
pIpJ

(3.1.26)

and upon using these values of v1, v2, ω back into E br5 yields7

E br5 =
8π2

G5

√(
2 GIJ

3
pIpJ

) 3
2

Q̂0 (3.1.27)

Of course the couplings GIJ , which are functions of the yet-to-be-extremised scalar

moduli XI , will depend on geometric data of the specific compactification space. For

our purposes we leave it with the general expression in eq.(3.1.27).

3.2 The 5D Black Hole Entropy Function

We now repeat our calculation for the 5D black hole. The near-horizon metric ansatz

is again taken to be AdS2 ×S2 ×S1. However this time round it turns out that the S1

7 In this result the charge of the Kaluza-Klein monopole p0 is taken to be unity. This corresponds

to a black ring in Taub-NUT ( or flat space whenever the Taub-NUT radius goes to infinity ). The case

p0 > 1 corresponds to taking an orbifold of the Taub-NUT and that in turn leads to a near-horizon

factor of AdS3/Zp0 for the black ring. In the notation of [39] this charge has been denoted as p̃0 and

like in that work its effect can be included by modding the S1 circle by Zp0 .
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fibres over the S2, eventually leading to an AdS2 × S3 geometry near the horizon [39].

It has been proven in [62], [63], [64] that even in the rotating case, the near-horizon

isometry of an extremal black hole contains an SO(2, 1) symmetry. Moreover, that

the entropy function formalism can also be applied to such rotating black holes having

AdS2 isometry was shown in [60]. Such a black hole in 5D carries a Kaluza-Klein

monopole charge p0, which comes from uplifting a D6-brane in Type II A theory to

M-theory and the black hole sits at the origin of the KK monopole8. Even though

this geometric configuration is different from that of a black ring, it is still reasonable

to implement the Kaluza-Klein metric ansatz of eq.(3.1.8) provided the off-diagonal

components A0
µ are suitably modified for the black hole case. We consider the same

type of black hole as in [39], so that the results of our analysis can be compared to

theirs. Hence A0
µ is taken as

A0
µdx

µ = p0 cos θ dφ (3.2.28)

where p0 denotes the Kaluza-Klein monopole charge. Note also that the quantity

e0 is absent for these black holes, which corresponds to an absence of Kaluza-Klein

momentum JKK0 . Here JKK0 = 0 is only to be thought of as vanishing of the intrinsic

angular momentum ( resulting from the absence of D0-charge in the brane bound state

). In [39] it was claimed that this black hole is static. However there is a slight subtlety

to that. The effective angular momentum is in fact non-vanishing. As a quick check

one can easily compute the integral in eq.(3.1.17) and we see that the second term in

the integrand carries a non-vanishing contribution. Nevertheless it will turn out that

this effective contribution does not enter the entropy formula ( and this last point was

presumably the reason that this black hole was viewed as a static system in [39] ).

On the other hand a black hole of the BMPV type [51], is a true rotating black hole

with an angular momentum that enters the entropy formula. Such a black hole would

be obtained had we started with a bound state of spinning M2’s in Taub-NUT ( or a

D0-D2-D6 bound state in Type II A ). Instead what we have here is a black hole more

of the type discussed in [52]. It can be conceived as a bound state of non-rotating

M2’s sitting at the tip of a Taub-NUT-flux geometry ( D2-D4-D6 in II A ), where

8 Note that when p0 > 1, the S1 circle is modded by Zp0 consequently giving an AdS2 × S3/Zp0

near-horizon geometry. This shall be appropriately implemented in what follows.
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the intrinsic angular velocity of the horizon vanishes, leaving only the flux induced

component of the angular momentum which affects the geometry but not the entropy

formula - in some sense like a static black hole in a flux background.

Within this set-up we now compute F bh
5 to get

F bh
5 (v1, v2, ω, X

I , aI , eI , pI , p0) =

(
2π

G5

)[
v1 − v2 −

v1 ω
3 (p0)2

4 v2

+
v2

v1
ω
GIJ

2
eI eJ − v1

v2
ω
GIJ

2
(pI + ãIp0) (pJ + ãJp0)

]

+

(
24π

G5

)
CIJK

[
(pI + ãIp0) eJ ãK

]
(3.2.29)

which differs from eq.(3.1.10) with the replacement pI −→ pI + ãIp0 and a (p0)2 term

in the 5D Ricci scalar that replaces the (e0)2 term in the black ring computation. Just

as in the black ring analysis before, we once again find that F bh
5 computed here is

not exactly going to be the same as F bh
4 in [39]. Firstly, in a 5D approach the gauge

parameters kI show up and secondly, the relative factors in front of the Chern-Simons

contributions will differ from those in the 4D computation of [39] ( refer to eq.(3.7) in

ref. [39] after setting e0 = 0 therein ). Once again in F bh
5 this factor does not appear. In

the next section we shall see in detail how this affects the definition of electric charges

in 5D and thereby fix a small mismatch, with respect to the definition of 5D charges,

in the result for the entropy obtained by [39] when compared to that of [48].

Having eq.(3.2.29) in hand, we are now in a position to write the 5D black hole

charges from the analog of the definition in eq.(3.1.12)

Qbh
I =

(
v2

v1

)
ω
GIJ

2
eJ + 6CIJK

(
pJ + ãJp0

)
ãK (3.2.30)

Moreover using

∂E bh5
∂aI

= 0 =⇒ pI + ãIp0 = 0 (3.2.31)

we can write eq.(3.2.30) as

Qbh
I =

1

16π2

∫

Σ

∗FI (3.2.32)

since F I
rt = eI and F I

θφ = −(pI + ãIp0) sinθ. Here Σ is now an S3, the spatial horizon of

the black hole. Eq.(3.2.31) is just the condition for vanishing of the effective magnetic
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flux

∫

S2

FI = 0 (3.2.33)

in other words suggesting the absence of a compact 2-cycle in this black hole geometry.

Eq.(3.2.31) also confirms that all the non-vanishing on-shell components of the field

strength are gauge invariant. Moreover for given magnetic charges pI and p0, the

constraint pI + ãIp0 = 0 imposes a restriction on the value of kI . Therefore for this

black hole, we cannot set-up arbitrary spectral flow shifts for the charges.

In the terminology of [59], eq.(3.2.32) implies that Qbh
I is not a Page but a Maxwell

charge9, which is gauge invariant and does not show spectral flow behaviour. Qbh
I

therefore represents the same physical observable in 5D as well as in 4D alike.

Under these considerations, the entropy function for this black hole takes the form

E bh5 =
4π2

G5

{
v2 − v1 +

v1

v2

[
1

4
ω3(p0)2 + ω−12GIJQbh

I Q
bh
J

]}
(3.2.34)

where GIJ is defined as the inverse of GIJ . Once again we have obtained a gauge

invariant entropy function from an explicit 5D calculation in terms of physical 5D

variables. Now it is straightforward to extremise E bh5 with respect to v1, v2 and ω to

get

v1 = v2 =
1

4
ω3(p0)2 + ω−12GIJQbh

I Q
bh
J (3.2.35)

and

ω4 =
8GIJQbh

I Q
bh
J

3(p0)2
(3.2.36)

Then eliminating v1, v2 and ω by way of substituting their values at the stationary

point back into E bh5 leaves us with

E bh5 =
4π2

G5

√

p0

(
8 GIJ

3
Qbh
I Q

bh
J

) 3
2

(3.2.37)

which finally gives us the entropy of this black hole. The couplings GIJ can be deter-

mined depending on the specific choice of compactification. Here Qbh
I is the observable

9 Additionally, in this case the Maxwell charge is localised within Σ and does not require integration

over all space because the source term F J ∧FK in the 5D supergravity equation of motion : d ∗FI =

−6CIJKF J ∧ FK , vanishes following eq.(3.2.31).
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electric charge in 5D and since we have shown above that this charge does not ex-

hibit any spectral flow behaviour, it exactly equals the number of M2-branes wrapping

Calabi-Yau 2-cycles. Upon shrinking the M-theory circle and reducing to Type II A,

the M2-branes directly descend to D2-branes. Then Qbh
I is also the physical charge for

a 4D black hole.

3.3 Charge Comparison: 4D & 5D Approaches

In this section we demonstrate how the charge mismatch, obtained in [39] when com-

pared to that of [48], is fixed by our 5D approach. We then provide the necessary

consistency checks. Firstly comparing eq.(3.2.37) above to the entropy obtained by

[48] ( whose computation is performed via a 5D attractor mechanism ), indeed gives

an exact agreement; thereby fixing the mismatch in the result of [39] where the charges

Qbh
I in the entropy formula were shifted by 3CIJKp

JpK/p0 ( refer eq.(3.41) in ref. [39]

where in their notation q̂I enters the entropy formula rather than qI ; then in eq.(3.65) in

the same reference they compare q̂I to the charge in [48] where the latter itself does not

contain any shift terms ). In our case, using eqs.(3.2.30) and (3.2.31) we see that the

charges entering the entropy are Qbh
I =

(
v2
v1

)
ωGIJ

2
eJ without any pI dependence. The

extra 3CIJKp
JpK/p0 terms in [39] do not enter our Qbh

I and consequently the match to

[48] is exact.

Before we delve into reasons underlying this mismatch, let us at this stage perform

a consistency check for our charges computed above. We want to see whether Qbh
I

compares to the charge integral obtained in the supergravity analysis of [61], which

would serve as an independent verification. For that purpose consider eq.(3.1.16) with

Σ taken to be an S3. Since we know the near-horizon components of AI and F I , we

insert these into eq.(3.1.16) and evaluate the integral. Because F I
θφ = 0, the

∫
Σ
AJ∧FK

part of the integral vanishes and the
∫
Σ
∗FI term precisely reproduces

(
v2
v1

)
ωGIJ

2
eJ .

That verifies that our expression for Qbh
I in eqs.(3.2.30) and (3.2.31) is indeed the

correct electric charge of the black hole.

One may now ask why the charges of [39] picked up those incorrect shifts ? Which

may be rephrased by asking what went wrong with their Chern-Simons contributions



3.3. CHARGE COMPARISON: 4D & 5D APPROACHES 51

to the 4D reduced action F bh
4 ? The Chern-Simons terms in F bh

4 were obtained from a

four dimensional reduction of the 5D supergravity action ( refer appendix A in [39] ).

This then gave rise to the above-mentioned factor of 1
2

in F bh
4 ( eq.(3.7) in [39] ), which

subsequently lead to an erroneous shift in their definition of charges. In our calculation

the factor of 1
2

did not appear in the 5D reduced action F bh
5 and that gave the correct

electric charge, which matches [48] and confers with [61]. This subtle difference in a

factor of 1
2

between the reduced actions computed in [39] and that computed here seems

to be related to how we treated the moduli aI in our calculation, as opposed to how

the same was handled in [39]. There they assume an xµ-dependence for the moduli

aI , while performing a dimensional reduction of Chern-Simons terms. These aI are set

to constants only when one arrives at the four dimensional set-up. Subsequently the

four dimensionally reduced Chern-Simons Lagrangian density ( see (A.11) in ref. [39]

) picks up a factor of half in front of the second term therein. This is how the 1
2

enters

the 4D reduced action F bh
4 and consequently the charges. On the other hand, in our

5D calculation, in the absence of any dimensional reduction there is no natural way to

assume an xµ-dependence for aI ( whilst already in the 5D near-horizon geometry ) and

then suddenly set them to constants at some other stage of the calculation. The 5D

components of the field strength Frt, Fθφ are constants in the near-horizon geometry

and giving the fields an xµ-dependence through aI would tantamount to a deformation

of the near-horizon geometry and possibly interfere with the AdS isometries which were

crucial to the formulation. Therefore in our calculations we have set all 5D near-horizon

moduli as constants ( whose values are determined upon extremisation ) throughout

the calculation and this procedure seems to give the correct answers. It would be

interesting to see if this four dimensional reduction can also be re-done keeping all the

aI constant and then check if that leads to the right charges. The focus of this paper

however was to show that an explicit five dimensional entropy function calculation also

works and provides us with consistent answers.

Finally let us remark that the much-discussed factor of 1
2

in the 4D reduced actions

affects the charge definitions of both the black ring as well as the black hole. However

in case of the black hole the effect is far more drastic. Let us clarify this point. We

start with the ring. Suppose that the factor of half had also appeared in our reduced
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action as a coefficient of the last term in eq.(3.1.10) ( multiplying CIJKe
0ãI ãJpK ).

That would only change the charge Qbr
0 in eq.(3.1.15) by replacing the ’6’ in the last

term ( CIJKe
0ãI ãJpK ) with a ’3’. The term itself does not vanish when comparing to

QPage
0 in eq.(3.1.17). Of course this changes the numerical coefficients in eqs.(3.1.20)

and (3.1.21). But eq.(3.1.22) will still be satisfied for the modified equations and a

new Q̂0 ( with a half instead of a one in the last term in eq.(3.1.21) ) will finally enter

the black ring entropy function in eq.(3.1.23). Hence the changes in this case only

show up as different coefficients of existing terms. But in the case of the black hole

the erroneous factor in the reduced action adds another term to the charge which we

clearly know does not exist. We can see this as follows. Suppose the last term in

eq.(3.2.29) ( the one with a p0 ) carried a half. This would carry forward as an extra

numerical factor in the definition of Qbh
I in eq.(3.2.30). However after using eq.(3.2.31)

( the factor half does not affect this equation because the CIJK terms do not enter E bh5
) in eq.(3.2.30), we are left with an extra 3CIJKp

JpK/p0 term in the definition of Qbh
I .

And as mentioned above, this extra term neither confers to the Page charge integrals

in [61] nor to the literature in [123]. Hence the changes are far more conspicuous in

case of the black hole.

3.4 Black Hole - Black Ring Interpolation

Earlier in section 2 we saw how the near-horizon solution of a black ring can be ex-

pressed via various moduli parameters. Among these eI and e0 are conjugate to the

electric charges and angular momentum respectively, while the magnetic flux pI is a

fixed quantity. On the other hand, the 5D black hole of section 3 only carried electric

variables eI and fixed magnetic variables pI , p0. From the perspective of the entropy

function formalism, obtaining the metric of a black hole from that of a black ring can

simply be achieved by switching off the e0 contribution to the metric and turning on

a p0 one instead ( and then extremising with respect to these new moduli ). This

assignment was first proposed in [39], where it appears as an ad hoc choice that repro-

duces the leading order entropies of the two black objects. In this section we want to

provide a physical justification for this assignment of parameters. We will soon see that
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switching the terms e0rdt ↔ p0cosθdφ among each other in the near-horizon Kaluza-

Klein metric will in fact be equivalent to changing the modulus l ( here l is the three

dimensional distance of the black ring from the origin of the Taub-NUT base space )

from a specified finite quantity to a vanishing limit in the complete 5D supergravity

solution. Gravitationally this means we are shrinking the 5D black ring to the origin of

the base space to get a 5D black hole. In this sense, we argue that the e0 ↔ p0 switch

is actually a black hole - black ring interpolation rather than some sort of black hole -

black ring duality, that was suggestively speculated in [39]. Let us now examine this

in more detail.

In section 2 we demonstrated that pI , QI and Q0 computed from a 5D entropy

function analysis, are the correct physical observables of a black ring. Moreover a

glance at the microscopic description of a black ring as a bound state of branes will

in fact reveal that the observable charges are not exactly the brane charges [36], [37].

Microscopically a black ring can be described by a Calabi-Yau compactification of M-

theory on a circle [54] with M2-M5 branes wrapping 2- respectively 4-cycles on the

Calabi-Yau. The remaining one leg of the M5-brane wraps the M-theory circle thus

giving a black string along this S1 ( as in the description of [53] ). This string is

stabilised by angular momentum modes running along the circle. The relation between

brane charges and observable charges in fact takes the form [38]

qM2
I = QI − 6CIJK pJM5 p

K
M5

pIM5 = pI

JKK0 = Q0 − pIM5 q
M2
I − 6CIJK pIM5 p

J
M5 p

K
M5 (3.4.38)

These shifts from the actual brane charges have been shown in [65] to be manifestations

of spectral flow when kI = pI . In this way the above relations also serve as a 4D/5D map

between the two-center system of a D0-D2-D4 black hole in 4D, placed in the vicinity

of a D6-charge; and a black ring in 5D. Hence when the M-theory circle shrinks to

zero size then the charge shifts due to spectral flow disappear and the brane charges

JKK0 , qM2
I , pIM5 ( which now become D0, D2, D4 charges respectively in the Type

II A description ) coincide with the observable charges. Having stated the relations

between physical and brane charges of the black ring, we can now incorporate these
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into supergravity solutions.

In order to study a supergravity construction that interpolates between 5D black

holes and black rings in its different limits, we start by considering the most general

5D N = 1 ungauged supergravity solution [49], [50] which is given by the following 5D

metric and gauge fields

ds2
5 = − f 2 ( dt + Ω )2 + f−1 ds2(M4)

F I = d
[
f XI ( dt + Ω )

]
− 2

3
f XI ( dΩ + ⋆ dΩ ) (3.4.39)

where XI are scalar fields in abelian vector multiplets. They satisfy the constraint

equation CIJKX
IXJXK = 1 and XI are defined by the condition XIXI = 1. ds2(M4)

above refers to the Gibbons-Hawking metric of a 4D hyper-Kahler base space, which

in our case is simply taken to be ds2(TN), the Taub-NUT metric ( or ds2(R4) when

considering a black ring in flat space ) having KK-monopole charge. Let r, θ, φ, ψ

denote coordinates on the 4D base space with (r, θ, φ) locally parameterising an R
3

and ψ running along a compact S1 with periodicity 4π. The Hodge dual ⋆ is taken

with respect to the 4D base space. The function f and the one-form Ω can then be

determined in terms of four harmonic functions HTN(x), KI(x), LI(x) and M(x) (

with x ∈ R3 ) in the following sense

f−1 XI =
1

4
HTN

−1 CIJKK
JKK + LI

Ω = ( −1

8
HTN

−2 CIJKK
IKJKK − HTN

−1 LI K
I + M )

× ( dψ + cos θ dφ ) + Ω̂ (3.4.40)

where Ω̂ is defined by

∇× Ω̂ = HTN ∇M − M ∇HTN + KI ∇LI − LI ∇KI (3.4.41)

Operating the gradient on both sides of this equation yields integrability conditions

HTN ∇2M − M ∇2HTN + KI ∇2LI − LI ∇2KI = 0 (3.4.42)

which are evaluated at each pole ( charge center ) in R3.

Within the above framework, a supergravity solution for any black object is now

reduced to the task of specifying four harmonic functions. Let us first write these down
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for a black ring and then we shall see how to interpolate them to a black hole solution.

For a black ring we have the following

HTN(x) =
4

R2
TN

+
p0
KK

|x| LI(x) = vI +
qM2
I

|x− l|

KI(x) =
pIM5

|x− l| M(x) = v0 +
JKK0

|x− l| (3.4.43)

Here p0
KK is the charge of the Kaluza-Klein monopole in M-theory, which reduce to

p0
KK D6-branes in Type II A. The case p0

KK = 1 corresponds to a Taub-NUT, otherwise

the 4D hyper-Kahler base space is an orbifold of Taub-NUT, such that its geometry in

the neighbourhood of the origin is of the type C2/Zp0
KK

. Let us clarify the remaining

notation as well : RTN denotes the asymptotic radius of the original Taub-NUT; x ∈ R
3

and l is a modulus in R3 which denotes the distance between the plane containing the

S1 of the ring and the origin of base space. vI is a constant determined at infinity and

v0 will soon get fixed via the integrability conditions. These harmonic functions have

been specified via brane charges in the system. The bound states of branes wrapping

Calabi-Yau cycles form BPS point particles in R3 and the poles in the above harmonic

functions are attained precisely at the location of these BPS particles. The M2-M5-

JKK particle sits at x = l, while the KK monopole is located at x = 0. From a 4D

point of view this is a 2-center black hole system, but in 5D it’s just a black ring in a

Taub-NUT orbifold [43].

Now let us evaluate eq.(3.4.42) for the above harmonics at each of the two poles.

This yields the following two integrability conditions

v0 = −J
KK
0

|l| (3.4.44)

JKK0 = vI p
I
M5

(
p0
KK

|l| +
4

R2
TN

)−1

(3.4.45)

Physically this implies that JKK0 ; which contributes part of the angular momentum

along the ψ-direction of the ring; cannot be arbitrarily chosen, but is fixed for a given

configuration. The above conditions can then be inserted back into eq.(3.4.43) and

thereafter implementing the charge transformations in eq.(3.4.38) ( which were ob-

tained as spectral flow shifts from the supergravity action ), essentially lays down the

complete black ring solution. This compares to the standard solutions of [31], [32],
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[34], [35], [38] when expressed in more convenient coordinates - but we will not require

that here.

Now let us study the behavior of this black ring in the limit l → 0. From [33] we

already know that we should recover a 5D black hole in this limit. However the purpose

of our presentation is to make a clear distinction between branes that constitute a black

ring bound state from those that constitute a black hole bound state when the modulus

l is driven to zero. Then we want to relate these brane charges to the spectral flow of

those respective black objects in order to determine the physical charges.

Let us begin with eqs.(3.4.44) and (3.4.45). When l → 0, they reduce to

JKK0 = 0 (3.4.46)

v0 = −vI p
I
M5

p0
KK

(3.4.47)

and the harmonics in eq.(3.4.43) become

HTN(x) =
4

R2
TN

+
p0
KK

|x| LI(x) = vI +
qM2
I

|x|

KI(x) =
pIM5

|x| M(x) = −vI pIM5 (3.4.48)

after having used eqs.(3.4.46) and (3.4.47) therein. What we have now is a BPS con-

figuration in which there is not only a KK monopole at the origin of the Taub-NUT

orbifold, but also the M5-M2 charge is now bound to this monopole. Moreover these

bound states of branes have vanishing JKK0 charge. This is a 5D black hole ( or a

D2-D4-D6 black hole from the point of view of a 4D reduction ). Furthermore from

the analysis in section 3 we saw that in the case of the 5D black hole, there are no

spectral flow shifts. Therefore for this configuration, the brane charges p0
KK , pIM5 and

qM2
I respectively correspond to the following physical charges

p0
KK = p0

pIM5 = pI

qM2
I = QI (3.4.49)

Now recalling the entropy function formalism, these charges are precisely associated to

the following near-horizon variables : p0, pI , eI . To sum up the contents of this section,
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we find that the physical interpretation of switching e0 with p0 in the entropy formal-

ism’s near-horizon ansatz corresponds to interpolating between limits of the modulus l

on a Taub-NUT orbifold, which in supergravity yields an interpolation between black

hole/black ring geometries. Moreover building this association to supergravity also

serves the purpose of providing a justification for the specific choice of moduli in the

Kaluza-Klein metric ansatz of [39], for each of the two geometries.

3.5 Conclusions and Discussion

The inclusion of Chern-Simons terms in the entropy function formalism has rather

been a bit of a puzzle due to its apparent lack of gauge invariance under large gauge

transformations. This being because Sen’s original derivation [29] was based on the

premise of gauge and reparametrisation invariant lagrangian densities. The dimensional

reduction approach was proposed [41] in order to rectify this. In view of the proposed

4D/5D connection [42], [43], that such a recipe works might not come as a total surprise

though. However even in those developments several contentious subtleties stood out

as regards the correct physical notion of charge in 4D and 5D [37], [38], [55], [84],

[56]. In this note we have argued that there is no fundamental obstruction to a well-

defined 5D treatment of entropy functions with Chern-Simons terms, provided one

implements the correct physical 5D charges into the calculations. In general these 5D

charges differ from those used in the dimensionally reduced approach due to spectral

flow shifts. However to fully specify a charge, one needs to obtain the equation of

motion of the corresponding gauge field which is sourced by that charge. Within

the setting of the entropy formalism, these gauge fields are determined via moduli

eI , e0 and aI . Therefore upon extremising F5 with respect to these moduli one can

determine the electric charges. On the other hand the magnetic charges are pre-fixed

from the beginning. Our calculations demonstrate that once the physical 5D charges are

made manifest in the entropy function, it immediately falls into a 5D gauge invariant

expression, even without requiring to fix all the remaining moduli v1, v2, ω,XI . In other

words we do not need to modify Sen’s formalism, but only correctly identify the physical

5D charges and perform computations manifestly in terms of these charges. Moreover
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because of the fact that gauge fields and consequently charges of 5D geometries with

different near-horizon topologies will in general be quite different, we find that one

cannot construct a universal entropy function that describes any 5D geometry in the

presence of Chern-Simons terms and which is also gauge invariant. In reference [39],

they do manage to write down a unified entropy function, however that can only be

expressed in terms of off-shell charges and it is in fact not invariant under spectral flow

transformations. Therefore in order to check 5D gauge invariance, we had to treat the

AdS2 ×S2 ×S1 black ring topology and the AdS2 ×S3 black hole topology separately.

As is well-known, Chern-Simons terms in odd dimensions induce spectral flow shifts

in the supergravity action, which also reflect in the defining notion of charges in these

theories [59]. In our analysis for the black ring, we have seen that these spectral

flow equations also arise in a natural way out of Sen’s formalism in 5D. Consequently

the 5D electric charges were no longer gauge invariant and neither was the reduced

action F br
5 . Nonetheless the entropy function E br5 itself turned out to remain invariant

under gauge/spectral flow transformations if it is expressed as a function of the correct

physical charges. We have also verified that the electric charges computed here from

Sen’s approach are identical to the Page charges expected from 5D supergravity : our

charges calculations for the black ring give a precise match with the charge integrals

recently computed by [61] on the basis of near-horizon data.

On the other hand, whilst computing for the 5D black hole we found that the electric

charges turned out not to be Page but simply 5D Maxwell charges with no spectral

flow shifts. This was because a vanishing magnetic flux in an AdS2 × S3 geometry

suppresses all spectral flow shifts. As a consequence, the 5D charges of this black hole

exactly match those of its 4D counterpart upon compactification of the fifth dimension.

This corroborates with the 4D/5D lift of [42]. Within this set-up, gauge invariance of

the entropy function thereon follows in a straightforward manner. Then extremising

E bh5 to compute the black hole entropy indeed gave us an exact match with the result

of [48], where the latter was obtained via an attractor mechanism calculation. This

resolves the slight discrepancy in the result of [39] where their entropy did not quite

match [48] : because their electric charges did not agree with those of [48]. Besides

the comparison to [48], we have also provided additional evidence to support the claim
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that Qbh
I computed here are the correct charges to work with by showing that they also

match exactly with the charges of [61], which were obtained from a 5D supergravity

approach. The discrepancy in the charges of [39] arise whilst dimensionally reducing the

Chern-Simons terms to 4D : namely, they assume an xµ-dependence for the moduli aI ;

and only set the aI to constants in the final step. Consequently this introduces terms in

L4D
CS, which incorrectly shift their electric charges, thereby causing a mismatch with the

entropy of [48]. However from the point of view of a manifestly 5D calculation, there

was no natural way to assume such an xµ-dependence ( whilst already in the 5D near-

horizon geometry ) and then abruptly deem them constants later in the calculation.

The 5D components of the field strength Frt, Fθφ are constants in the near-horizon

geometry and giving the fields an xµ-dependence through aI would seem to come in

conflict with the isometries of the near-horizon geometry. Moreover from the result

of [61] given in eq.(3.1.16), the
∫
Σ

6CIJKA
J ∧ FK term vanishes for this black hole in

the absence of an effective magnetic flux ( pI + ãIp0 ). It is only the
∫
Σ
∗FI term that

contributes to the charge. Inserting the expression for the near-horizon field strength

into the integral of eq.(3.1.16), exactly reproduces our expression for Qbh
I . The extra

terms in the charges of [39] would simply not agree with the integral of [61]. This seems

to suggest that assuming an xµ-dependence on any of the moduli in the near-horizon

geometry and then setting them to constants after dimensional reduction might be

suspect. Within the entropy formalism, the isometries of the geometry are crucial to

the analysis and all physical quantities ought to obey these. This imposes restrictions

on the moduli, which works well when the latter are deemed constants in this geometry

at any stage of the analysis.

A related line of interest which we have investigated in this chapter concerns black

ring ↔ black hole interpolation in the context of Sen’s formalism. The idea behind

such an interpolation between geometries has been familiar since the work of [33],

where it was shown using black ring solutions from [31], [32]. For what we had in

mind here, it was more convenient to reformulate this interpolation using the most

general 5D N = 1 ungauged supergravity solution of [49], [50] and varying the Taub-

NUT modulus l from a specified point to a vanishing limit. This way the structure

of harmonic functions and brane wrappings associated to the two geometries is more
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readily manifest. The supergravity solution of course captures the global structure of

the geometry, whereas the entropy formalism is only a near-horizon analysis. Therefore

in principle it is not possible to construct a full-fledged interpolation of solutions using

the latter. However we have still managed to show within the Sen formalism that

upon interchanging off-diagonal entries in the Kaluza-Klein metric bearing e0 terms

with those bearing p0 ones, yields algebraic data that can be compared to the limiting

supergravity solutions in such a way that parameters in the Kaluza-Klein metric can

be specifically associated to brane wrappings in the supergravity solution for both the

black ring and black hole. In retrospect, this also lends some physical intuition to the ad

hoc assignment of variables made in the black hole/black ring metric ansatz proposed

in [39]. Our original motivation in studying this e0 ↔ p0 exchange was in the hope of

finding some sort of black ring/black hole duality loosely speculated by [39]. However

within the context of our analysis, the e0 ↔ p0 exchange seems to relate more with

the idea of a geometric interpolation rather than any string or gravitational duality.

There is though an interesting work by [66] which might be more in the direction of

seeking such a string duality between 5D black holes and black rings. In that work, the

authors propose a duality between microstate degeneracies of a D0-D2-D4 system with

those of a D0-D2-D6 system on the same Calabi-Yau via a Fourier-Mukai transform.

From a 5D perspective, this would lift to a black hole/black string duality. From our

discussion in section 4, we have seen that the M-theory lift of a D2-D4-D6 system gives

a 5D black hole, whereas a D0-D2-D4 system in the vicinity of a D6 charge, lifts to a

black ring. It would therefore be quite interesting to see if a microscopic duality along

the lines of [66] can also be constructed for this black hole/black ring system.

Let us now briefly summarize our results with an outlook of what is to follow in

subsequent chapters. We took-off by considering Sen’s entropy function analysis in this

chapter, for the case of 5D supergravity actions containing Chern-Simons terms. The

key result of this work has been to develop an explicit 5D entropy function formalism

that works for both 5D extremal black holes and black rings. The issue with Sen’s

original formulation [29] was that it was not suited to include terms in the action

that are not manifestly gauge invariant, such as Chern-Simons terms. Hence prior

computations involving 5D black objects, relied on an ad hoc recipe of reducing the
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action to 4D and adding a total derivative term by hand to restore gauge invariance.

The trouble with this make-shift approach is that it does not correctly identify physical

5D observables. This refers to conserved charges in 5D which are shifted relative to their

4D counterparts due to large gauge transformations originating from Chern-Simons

terms. This feature is also referred to as spectral flow (the phrase being coined due to

an analogous shift in Virasoro generators of its dual CFT). Here we have solved the

problem by showing how spectral flow can be incorporated into a 5D entropy formalism,

which at the same time remains gauge invariant and has an explicit dependence only

on physical charges. In particular, we have performed explicit calculations for the black

ring and 5D black hole. In the black ring analysis, we found Chern-Simons induced

spectral flow shifts emerging in a natural way out of the entropy function formalism.

The entropy function nevertheless was seen to remain gauge invariant and the resulting

electric charges were identified as Page charges. For the black hole too, 5D gauge

invariance was confirmed. Our 5D analysis enabled us to fix a mismatch that arose in

the electric charges of Goldstein and Jena’s 4D-reduced calculation. Additionally, we

have also provided an interpretation for the e0 ↔ p0 exchange in the entropy function

as being associated to an interpolation between black hole and black ring geometries

in Taub-NUT.

One of the reasons the entropy function is a more powerful tool than OSV is because

the latter only takes into account holomorphic contributions to the prepotential. The

entropy function method can be applied to non-SUSY extremal black holes and also

to higher dimensional black objects. A future goal would be to extend this formula-

tion to multi-center as well as non-extremal black holes if possible, and that promises

interesting applications.

As further outlook in this program, one could consider using the 5D formulation

developed here for the purpose of computing higher derivative corrections. More specif-

ically, the case in point would be for geometries having an AdS3 component in its near-

horizon region. Using anomaly cancellation arguments, Kraus and Larsen [67] have

demonstrated that the only supersymmetric higher derivative terms of the 5D low en-

ergy effective action that contribute to Wald’s entropy in AdS3, result from one-loop

worldsheet instanton contributions, that is mixed gauge-gravitational Chern-Simons
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terms and its supersymmetric completion. Previous attempts at computing R2 correc-

tions to black ring entropy have failed to match exact microscopic results because the

explicit supersymmetric completion of the above mixed Chern-Simons term was not

known until recently in the work of Hanaki, Ohashi and Tachikawa [68], who make use

of a 5D off-shell superconformal formalism. Since the 5D entropy function formula-

tion presented in this thesis is well-suited to deal with Chern-Simons type corrections,

a possible computation using the above technology would be to obtain one-loop cor-

rected charge shifts for black rings as well as the exact higher derivative entropy for

black rings from a macroscopic calculation. For 5D AdS2 black holes the problem gets

much harder as there are no anomaly cancellations and therefore all higher-loop effects

have to be considered. Part of that has been attempted for spinning black holes using

a supergravity analysis in [134].



Chapter 4

The 4D/5D Map and Multi-Center

Geometries

Everything happens to everybody sooner or later if there’s time enough

- George Bernard Shaw

In the previous chapter we have investigated Chern-Simons induced charge shifts

for a black ring/black hole in 5D. These effects are certainly crucial for constructing

a precise mapping between black objects in four and five dimensions. In this chapter,

we want to construct a 4D/5D map for multi-center geometries, which in our case are

taken to be multiple non-concentric black rings in Taub-NUT. These rings themselves

are seen to emerge from AdS fragmentation of a single black ring. This picture is the

5D version of 4D fragmentation into baby universes, which in turn are related to finite

N contributions to the OSV conjecture, thus bringing together different pieces of the

puzzle for the case of multi-center geometries.

Starting from recent work in [42] and [43], a considerable interest has been gen-

erated in understanding 5D BPS degeneracies by constructing dualities to the better

understood 4D sector [38], [56], [54], [84]. Matter of fact, this 4D/5D relation was put

forth by [42] as a 5D version of the OSV conjecture [129]

Z5D
BH = Z4D

BH = |Ztop|2 (4.0.1)

Evidence for this proposal was sought for by matching the entropy of the 5D BMPV

[51] black hole in Taub-NUT space, to the entropy of a 4D Calabi-Yau black hole while

making use of the M-theory ↔ Type II A correspondence. Moreover, since Z4D
BH counts

63
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degeneracies of single as well as multi-center black holes, it was pointed out by [43] that

Z5D
BH must also account for equivalent multi-black objects in 5D, assuming eq.(4.0.1)

holds. While a single-center BPS black hole in 4D just lifts to a 5D BMPV black

hole; in [43] a rather interesting result was demonstrated : a 4D two-center charge

configuration consisting of a D6 charged point-particle at the origin ( of R
3 ) and a

D4-D2-D0 charge at a distance |~L| from it, will in fact lift to a supersymmetric black

ring in 5D Taub-NUT space. |~L| now becomes a modulus on Taub-NUT denoting the

distance of the ring from the origin.

On a rather different footing, yet another offshoot of the OSV bandwagon was the

work of [107], conceiving baby universes as finite ( but still relatively large ) N non-

perturbative corrections to the OSV conjecture. These corrections go like e−N and

are realised as instanton effects in the holographically dual gauge theory. In turn, the

holomorphic sector of the gauge theory is dual to the topological string partition sum

Ztop. The gravitational realisation of these corrections were proposed as 4D multi-

center black hole configurations, which can be generated via the mechanism of AdS

fragmentation [73], [74] of a single black hole at x0 ∈ R3 into multiple black holes at

{xi ∈ R3}. These multi-AdS throats are associated to a gravitational instanton action

which describes the amplitude for tunneling, in Euclidean time, of a single black hole

to multi-black holes. Based on that, [107] forward the idea of a third quantized Hilbert

space of baby universes.

One of the motivations driving this note was to reconcile the two aforementioned

streams of thought. We try and address some questions regarding the fragmentation

of black rings in 5D. Analogous to the 4D case, where we saw how to split D4-D2-D0

charges, here we start with a black ring in Taub-NUT, since this is the pertinent 5D

lift of a D4-D2-D0 black hole placed at a distance |~L| from a single D6 charge ( the

sole D6 here does not participate in fragmentation ). We then set up a fragmentation

ansatz for this single ring and see that it splits up into non-concentric multiple black

rings ( in general ). This construction is subject to charge splitting constraints, which

as we shall soon see will turn out to be more subtle in the 5D case that they were in 4D

due to the presence of cross-terms between multiple centers that must now be carefully

tendered.
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On the other hand, one might fairly well ask whether the fragmented multi-rings

constructed in this manner could as well have been obtained from a direct 5D lift of

the 4D multi-center solution. The answer turns out to be in the affirmative; and to

do so we shall first require to construct the 4D/5D dictionary for multi-center charges.

Compared to the 4D/5D map of [42] for a single black object, the analogous one for

multi-centers will turn out a bit more involved again due to the relentless cross-terms.

Nevertheless with such a map in hand, transforming amongst 4D/5D multi-center

charges, we verify that our fragmented harmonic functions are indeed direct 5D lifts of

4D multi-center solutions. This enables us to confirm commutativity of the following

box diagram.

4D

Black Hole

Fragmentation
//

4D/5D Map

��

4D Multi-

Black Holes

4D/5D Map

��

5D

Black Ring
Fragmentation

//
5D Multi-

Black Rings

(4.0.2)

As had already been hinted by in [107] in context to the 4D set-up; eq.(4.0.2) seems to

predicate the suggestion in 5D, that fragmentation might be thought of as a possible

recipe for generating classes of multi-center configurations once given corresponding

single-center ones. Of course the multi-rings that we generate in this note by these

methods, are by no means any new solutions which had previously been unheard of.

For that matter, we point to some of the extensive literature, where several classes

of 5D multi-center solutions have been worked out : [36], [77], [78], [79], [80], [81].

The focus in this note is based more in the spirit of the box diagram in eq.(4.0.2) and

studying the details therein.

Whilst meandering amidst this impending scheme of things, we are duly confronted

with issues concerning the physically meaningful definition of charges in 4D and 5D.

We begin with an apprehension of the single black hole/ black ring duality by match-

ing 4D two-center harmonics to 5D black ring harmonics. Such a comparison invokes
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symplectic charge transformations going from 4D to 5D. Additionally these 4D/5D

transformations also make way for an alternative derivation of black ring angular mo-

menta. A clear notion of single-center 4D/5D mapping, now equips us to move on to

study the interpretation of 5D multi-center charges. First we procure the 5D charge

splitting equations via implementation of the 4D charge splitting equations as well as

the single-center 4D/5D lift. The 5D equations so obtained definitely carry the bag-

gage of cross-terms, due to the fact that the 4D/5D transformations are non-linear in

the dipole fields. Moreover we shall see that it now becomes relevant to identify which

of these charges is of Maxwell type and which of Page type. This discussion picks up

from [61] and continues further for the case of fragmented charges. In fact we shall

see that in 5D the charges QAi(5D) which actually engage in fragmentation are Page

charges. These are really the physical multi-ring charges and not the charges Q̃Ai (5D)

in terms of which the multi-black ring metric is usually expressed. We also write down

an explicit expression transforming between these two types of charges. In due course

the multi-center 4D/5D dictionary falls in place.

As an application of charge fragmentation methods described here, we derive the

total angular momentum of a system of non-concentric multi-black rings by simply

starting from the angular momentum of a single black ring and making use of 5D

charge splitting equations. As a check for our answer, we reduce to the special case of

concentric black rings in order to compare the our result with the well-known expression

of Gauntlett and Gutowski [82], [83]; and yes, their result is correctly reproduced !

The alluring calls for a geometric interpretation of these fragmented rings under-

score the final act. In a multi-ring background, individual rings receive multiple spectral

flow shifts due to fluxes emanating from split-charge centers; thus coining the notion

of ’split-spectral flows’. Each ring may be thought of as sourcing a Dirac string gen-

erated due to its magnetic flux. In a Taub-NUT base, these rings are stacked in order

of increasing radius. Hence, say the ith-ring; in addition to its own Dirac string; also

encircles Dirac strings sourced by each of the (i − 1) rings of smaller radius in the

Taub-NUT base. And going around Dirac strings is by no means a free ride. It costs

large gauge transformations, which can have long-term consequences if Chern-Simons

terms are involved as well. This is how spectral flows arise. Therefore the case of our
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ith-ring multi-timing that many Dirac strings will face a horde of spectral flow shifts to

its initial brane charges. This will completely account for the physical split-charges of

fragmented rings. Moreover, adding up all the split-spectral flows of all of our wander-

ing fragmented rings correctly gives back the spectral flow of an unfragmented single

black ring system, as it should. This sheds light on a geometrical view of the origin

of multi-ring Page charges and their cross terms. In fact such split-spectral flows di-

vide the geometry into patches with locally defined gauge field potentials, such that

adjacent patches are related up to gauge transformations.

The organization of this chapter is as follows : Section 2 provides a lay-out of the

4D multi-center black hole technology and comments on its physical interpretation as

baby universes. Section 3 handles harmonics, charges and angular momenta of a single

black ring in Taub-NUT from a 4D/5D map. Section 4 is where 5D fragmentation takes

shape. We set-up conditions for black ring fragmentation and provide an interpretation

for multi-center 5D charges. This follows by writing down a multi-center 4D/5D charge

dictionary and also deriving the angular momenta of (non-)concentric multi-black rings.

Section 5 seeks to unfold a geometric perspective on the above via the notion of split-

spectral flows. Alas, we must wind up..... that’s why there’s section 6, concluding and

throwing pointers at further directions.

4.1 A Glance at 4D Black Hole Fragmentation

In this section we briefly sketch the set-up of 4D black hole fragmentation and its

interpretation of baby universes following the approach of [107]. The conceptual basis

behind the idea of baby universes lies in the phenomenon of AdS fragmentation [73],

[74], which was proposed as an instanton process wherein a single black hole, seen as an

excitation in one vacuum configuration, tunnels to a multi-black hole state appearing

as an excitation in another vacuum. The two vacua lie in the asymptotic limits of a

“Euclidean time” co-ordinate, which is defined by an entropy functional S(x). From

the Euclidean metric (obtained after a Wick rotation) the AdS2 × S2 geometry is seen

to flow to a product geometry of ⊗n
i=1AdS

i
2 × S2

i ( to leading approximation ).

As an explicit representation of multi-black hole configurations, the authors of [107]
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make use of the well-known multi-center solutions of N = 2 supergravity from [69],

[70], [71], [72]. The idea behind the fragmentation procedure is that the black hole

harmonic functions interpolate between the single-center harmonics; at asymptotic

infinity x→ ∞; and the multi-center harmonics; which are achieved upon approaching

the near-horizon limit. In fact, near the ith-horizon when x → xi, the ith-black hole

dominates the solution. Therefore given a single-center solution and implementing the

above idea, one can set up an ansatz for harmonic functions of fragmented black holes.

Additionally charge conservation constrains the distribution of charges at fragmented

centers. In [107] it was shown that the supergravity configuration of [69], [70], [71],

[72] can indeed be realised in this way via AdS fragmentation of a single black hole.

For the sake of setting up notation as well as later reference, let us flash a quick glance

at how this works.

Consider the harmonic functions of a single black hole in 4D with magnetic charges

pI and electric charges qI placed at the spatial origin in R
3

U I(x) =
pI

|x| + uI VI(x) =
qI
|x| + vI (4.1.3)

here I = 0, 1, ..... denotes vector multiplet indices; x ∈ R3; and uI , vI are constants

determined at infinity. In these co-ordinates the pole at x = 0 is the location of

the horizon which has the topology of a two-sphere S2. Another ingredient we will

require is the entropy functional S(x) ≡ S
[
U I(x), VI(x)

]
. This is a specific polynomial

function of the harmonics and only at the horizon does it attain the value of the entropy.

Elsewhere S(x) freely flows between its asymptotic limits. This flow in S(x) will induce

the harmonic functions U I(x), VI(x) to interpolate between single-center and multi-

center solutions. At asymptotic infinity with x → ∞, a single black hole geometry

with charges pI , qI placed at the origin and harmonics given by eq.(4.1.3) leads to

S(x) → c ( a finite number ). When these harmonics are inserted in the metric we

get the well-known topology of AdS2 × S2 and S(x) enters this near-horizon Bertotti-

Robinson metric as the square of the AdS2 radius. The idea of AdS fragmentation now

proposes treating S(x) as a Euclidean time direction. Then the S(x) → ∞ asymptote

serves as another vacuum into which there exists a finite probability amplitude for a

single black hole system to tunnel into a system of multi-black holes. The most general

solution for harmonic functions, which interpolate between these asymptotic vacua,
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looks like

U I(x) =

n∑

i=1

pIi
|x− xi|

+ uI VI(x) =

n∑

i=1

qI i
|x− xi|

+ vI (4.1.4)

where U I(x), VI(x) now describe a multi-black hole system with n horizons located at

centers {xi}. Charge splitting is subject to the following constraints
n∑

i=1

pIi = pI and
n∑

i=1

qI i = qI (4.1.5)

To fully specify the solution additional integrability conditions are also required

(
pIiVI(x) − qI iU

I(x)
) ∣∣∣∣

x=xi

= 0 (4.1.6)

which have to be evaluated at each horizon. Now we can see how the above har-

monic functions interpolate between single and multi-center geometries as follows :

at asymptotic infinity x → ∞, the harmonics in eq.(4.1.4) reduce to eq.(4.1.3) ( by

using the constraints in eq.(4.1.5) ) and S(x) → c; whereas at each x → xi, only

the ith-summands in eq.(4.1.4) dominate, describing multiple black holes located at

{xi} respectively and consequently giving S(x) → ∞. Hence flowing S(x) from c

to ∞ describes an AdS geometry fragmenting into a multi-AdS geometry. Eqs.(4.1.4),

(4.1.5) and (4.1.6) were originally derived as part of the multi-center N = 2 supergrav-

ity solution of [69]. In [107] this solution has been interpreted as remnants of an AdS

fragmentation process.

4.2 Black Ring from 4D/5D Duality

In this section we demonstrate how charges, harmonics and angular momenta of a black

ring can be determined purely in terms of a 4D/5D duality. While the charges and

harmonics are straightforward to get; an explicit expression for ring angular momenta

obtained from 4D/5D lifting will serve to compliment the usual supergravity derivations

discussed in the literature.

We start by considering the following two-center system in 4D :

U0(x) =
1

|x| + u0 VA(x) =
qA(4D)

|x− x0|
+ vA

UA(x) =
pA(4D)

|x− x0|
+ uA V0(x) =

q0(4D)

|x− x0|
+ v0 (4.2.7)
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which consists of a single D6 charge ( p0
(4D) = 1 ) at the origin x = 0 ( in R3 ); and

pA(4D), qA(4D) and q0(4D) respectively D4, D2, D0 charges, which form a 4D black hole at

x = x0. In [43], the 4D metric of this system is decompactified to yield a 5D black ring

in Taub-NUT. Instead of doing that, here we go for a more direct comparison; namely,

showing that the 4D harmonics above will be identical to 5D black ring harmonics

once they are expressed via 5D charges. For this we will require the 4D/5D charge

transformations

pA(4D) = pA(5D) (4.2.8)

qA(4D) =
(
QA(5D) − 3DABCp

B
(5D)p

C
(5D)

)
(4.2.9)

where QA(5D) and pA(5D) respectively will turn out to be black ring electric and magnetic

charges. We shall soon comment on their interpretation. An additional ingredient

required to specify eq.(4.2.7) are the integrability conditions, which yield

v0 = −q0(4D)

L
(4.2.10)

q0(4D) = vAp
A
(4D)

(
1

L
+

4

R2
TN

)−1

(4.2.11)

here L denotes the radial distance |x0|. The presence of a D6-brane leads to a geometric

transition when lifting to M-theory, giving a Taub-NUT space in the uncompactified

directions. Therefore U0(x) becomes a harmonic function in Taub-NUT with u0 = 4
R2

TN

( with RTN as the asymptotic radius of Taub-NUT ). uA remains arbitrary and can be

set to zero. Putting all this together, the 4D harmonics above can indeed be compared

to the known Taub-NUT-black ring harmonics in the literature [38]1 ( see also [33] )

HTN(x) =
4

R2
TN

+
1

|x| LA(x) = vA +
QA(5D) − 3DABCp

B
(5D)p

C
(5D)

|x− x0|

KA(x) =
pA(5D)

|x− x0|
M(x) =

Jtube
L

+
−Jtube
|x− x0|

(4.2.12)

where Jtube ≡ −q0(4D), which is determined from eq.(4.2.11), is indeed the intrinsic (

not total ) angular momentum of the ring along the S1 circle and is the M-theory lift

of the D0-charge. Thus the harmonic functions of the 4D two-center system under

consideration are exactly equivalent to those of a 5D black ring in Taub-NUT2.

1 Compared to [38] we have scaled the pA
5D charge by a factor of (−1).

2 A black ring in R4 ( see [31], [32], [34], [35] ) can be extracted as a special case of eq.(4.2.12) by
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Note that these functions in eq.(4.2.12) ( along with integrability conditions ) com-

pletely specify the black ring solution. For the sake of completeness, let us quickly

demonstrate how this comes about. Consider the most general 5D N = 1 ungauged

supergravity solution [49], [50] which is given by the following 5D metric and gauge

fields

ds2
5 = − f 2 ( dt + ω )2 + f−1 ds2(M4)

FA = d
[
f XA ( dt + ω )

]
− 2

3
f XA ( dω + ⋆dω ) (4.2.13)

where XA are scalar fields in abelian vector multiplets; they satisfy the constraint

equation DABCX
AXBXC = 1 and XA are defined by the condition XAXA = 1.

ds2(M4) in the equation above refers to the Gibbons-Hawking metric of a 4D hyper-

Kahler base space, which in our case is simply taken to be ds2(TN), the Taub-NUT

metric ( or ds2(R4) when considering a black ring in flat space ). Let r, θ, φ, ψ de-

note coordinates on the 4D base space with (r, θ, φ) locally parameterising an R3 and

ψ running along a compact S1 with periodicity 4π. The Hodge dual ⋆ is taken with

respect to the 4D base space. The function f and one-form ω are fully nailed down in

terms of four yet-to-be-specified harmonic functions as follows

f−1 XA =
1

4
HTN

−1 DABCK
BKC + LA

ω = ( −1

8
HTN

−2 DABCK
AKBKC − 3

4
HTN

−1 KA LA + M )

× ( dψ + cos θ dφ ) + ω̂ (4.2.14)

The notation used in this equation is intentionally suggestive. Furthermore, ω̂ is defined

by

∇× ω̂ = HTN ∇M − M ∇HTN +
3

4

(
LA ∇KA − KA ∇LA

)
(4.2.15)

Now inserting the explicit form of the harmonic functions of eq.(4.2.12) into eqs.(4.2.13),

(4.2.14) and (4.2.15) simply reproduces the complete black ring solution of [38] in Taub-

NUT ( or [33] in R4 ). Moreover, operating the gradient on both sides of eq.(4.2.15)

and evaluating at the poles, exactly recovers the integrability conditions of eq.(4.1.6),

taking the limit RTN → ∞. The conventions of [31], [32] differ from [38] by rescaling of charges; in

this note we continue using the latter.
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which are subsequently solved to get eqs.(4.2.10) and (4.2.11). This prescription goes

through for multi-rings as well. Inserting appropriate multi-ring harmonics into the

same 5D supergravity metric given above, one can recover the multi-black ring solu-

tion [82], [83]. In this sense, the harmonics and integrability conditions can be said

to be sufficiently representative of the solutions of single as well as multi-black rings.

For what follows here, we shall adopt this stance as well. Therefore the focus in this

note shall not be on solving supergravity equations themselves, but rather on obtain-

ing quantities such as multi-ring harmonics, charges and angular momenta from ring

fragmentation and spectral flows.

Now coming back to the 4D/5D transformations, a comment on eqs.(4.2.8) and

(4.2.9) is due. These equations were derived in [42] by considering symplectic shifts

in electric charges due the presence of a magnetic flux such that the degeneracy of

microstates remains invariant. Subsequently this leads to matching of leading order

entropies for 4D and 5D black holes. Also, the authors of [38], [37], [76] further clarify

these transformations when interpolating from a 4D black hole to a 5D black ring.

While qA(4D) is the observable in 4D, from the 5D perspective it is QA(5D) which is the

observed charge. Let us point out to yet another interpretation of these transformations

coming from spectral flow shifts ( as in [57] ) associated to the 5D Chern-Simons term.

In a later section, we pursue this last observation further.

Much like the above-mentioned D2 charges, there also occurs a shift for D0 charges

( again due to [42] )

q0(5D) = q0(4D) − (pA(4D)qA(4D) +DABCp
A
(4D)p

B
(4D)p

C
(4D)) (4.2.16)

Starting from this relation we now obtain an independent identification of the total

black ring angular momenta. Simply using eqs.(4.2.8), (4.2.9), (4.2.10) and (4.2.11)

into eq.(4.2.16) yields

q0(5D) = vAp
A
(5D)

(
1

L
+

4

R2
TN

)−1

− pA(5D)(QA(5D) − 2DABCp
B
(5D)p

C
(5D)) (4.2.17)

Now let us denote q0(5D) ≡ − G
3π
Jψ, where G is the 5D Newton’s constant. Then Jψ

exactly compares to the total angular momentum of the ring along the S1 circle as

given in [38] ( or [31] on reducing to R4 ). The first term of Jψ is the intrinsic angular
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momentum arising via the presence of D0 charges along the S1 circle ( ψ-direction );

the second component describes the angular momentum induced in the presence of a

magnetic flux. In addition there is yet another angular momentum characterising the

ring; one associated to the φ-circle along the S2, perpendicular to the ψ-circle. In the

absence of D0 charges along the φ-circle, with only flux going through it, the angular

momentum contribution ( denote as Jφ ) is solely flux-induced, thus giving

Jφ = Jψ − 3π

G
Jtube (4.2.18)

Thus far we conclude that explicit application of the 4D/5D correspondence correctly

identifies the charge prescription, harmonic functions as well as angular momenta of

a black ring. Proceeding this way the leading order black ring entropy too can be

obtained, as well as its one-loop correction. Since the references [37], [76], [43], [54]

do justice to the former and [56] to the latter, we shall have no more to say on that.

Equipped with these tools, we shall next test their application for the case of multi-

center black holes/rings.

4.3 Black Ring Fragmentation & Charge Splitting

in 5D

As seen in section 2, 4D charge fragmentation is given by simple linear relations in

terms of fragmented charges. For D4, D2, D0 branes respectively, we denote these

splittings as

n∑

i=1

pAi (4D) = pA(4D)

n∑

i=1

qAi(4D) = qA(4D)

n∑

i=1

q0i(4D) = q0(4D) (4.3.19)

Let us note that in 4D these are also the physically observed charges. We would now

like to construct the analog of these equations in 5D. In that case, as we shall soon see,

the charge fragmentation equations are not only non-linear (in the dipole charges) but

also involve cross-term contributions arising from multiple charge centers.
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4.3.1 Charges & Harmonic Functions of Fragmenting Black

Rings

Owing to the trivial 4D/5D relation for magnetic charges pA(5D) ( as in eq.(4.2.8) ),

their splitting into 5D components is straightforward.

pA(5D) =
n∑

i=1

pAi (5D) (4.3.20)

The more interesting case is that of the electric charge QA(5D) of a single black ring.

Since this charge differs from the corresponding 4D charge qA(4D) by large gauge trans-

formations induced via the Chern-Simons term in the 5D action, therefore the 5D

splitting for QA(5D) will turn out to be more involved. Analogous to the 4D case, let

us define the fragmentation of this charge to be

QA(5D) ≡
n∑

i=1

QAi(5D) (4.3.21)

where we now have to determine QAi(5D) and then provide it with a physical interpre-

tation. To do this, we substitute the conditions given in eq.(4.3.19) into eqs.(4.2.8) and

(4.2.9). Upon further rearranging we get

QA(5D) =

{
n∑

i=1

qAi(4D) +

n∑

i=1

n∑

j=1

3DABCp
B
i (4D)p

C
j (4D)

}
(4.3.22)

=

n∑

i=1

{(
Q̃Ai (5D)

− 3DABCp
B
i (5D)p

C
i (5D)

)
+

n∑

j=1

3DABCp
B
i (5D)p

C
j (5D)

}
(4.3.23)

where the last line has been converted to 5D quantities with the intent of extracting 5D

charge fragments. Q̃Ai (5D)
is introduced as a new 5D variable defined by the following

4D/5D transformation

Q̃Ai (5D)
= qAi(4D) + 3DABCp

B
i (4D)p

C
i (4D) (4.3.24)

Notice that the right-hand side of eq.(4.3.23) has been expressed in a way that facilitates

comparison to the literature. Q̃Ai (5D)
is actually a 5D charge associated to the ith black

ring and is the one that appears in the usual 5D multi-ring supergravity solutions (

for instance see [82], [83] ). In this way, eq.(4.3.23) is simply the ADM mass3 of [82],

3 Even though [82], [83] only refer to concentric rings, the above comparison is still meaningful

because effects due to non-concentricity only start showing up for quantities involving the position

vector ~L, such as angular momentum, entropy, etc.
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[83]. Note that because these references dwell in conventions different from ours, the

following rescaling of charges must be used : pAi (5D) −→
√

2pAi (5D). Also they use CABC

as the intersection number, which relates to the one used here via CABC = 6DABC .

Despite the above comparison, let us remark that in our case eq.(4.3.23) is obtained

as a result of 5D fragmentation. Therefore it is clear that summing all the Q̃Ai (5D)
’s

over all i would not conserve QA(5D). The charges that are actually involved in 5D

fragmentation are clearly the QAi(5D)’s and not Q̃Ai (5D)
’s. So the question arises, which

of these two is the correct physical observable ? In order to answer this, we shall

take a closer look at the interpretation of each of these charges via their integral

representations. It will turn out that it is in fact the QAi(5D)’s that are the physically

observable quantities and not the Q̃Ai (5D)
’s. The subtlety between QAi(5D) and Q̃Ai (5D)

arises precisely due to the presence of cross-terms relating different charge centers. The

consequences of these cross-terms will also be evident in other quantities such as multi-

ring angular momenta. For later reference, let us note down the relation between the

two charges

QAi(5D) = Q̃Ai (5D)
+

i−1∑

j=1

3DABC

(
pBi (5D)p

C
j (5D)

+ pBj (5D)
pCi (5D)

)
(4.3.25)

Whilst plucking this expression from eq.(4.3.23) one has also to keep in mind that

QAi(5D) should be independent of how the cycles B and C have been labelled. Therefore

the resulting expression for QAi(5D) has to be symmetrised as done above.

Now let us try to understand the various 5D charges discussed above in the form of

integrals over near-horizon patches. In [61] it was shown that in terms of purely near-

horizon fields (and not requiring data from the complete solution) of a single black

ring, the charge QA(5D) can be understood as a Page charge rather than a Maxwell

charge ( see also [59] for a clear exposition on the different notions of charge )

QA(5D) =

∫

Σ

(
⋆aABF

B + 3DABCA
B ∧ FC

)
(4.3.26)

where the range of integration, denoted by Σ, is a spatial 3-cycle in the vicinity of

the black ring horizon. The aAB, which is a function of the scalar moduli, serve the

usual purpose of lowering vector multiplet indices. AB denote near-horizon U(1) gauge

fields around the black ring. A Page charge is conserved, localized and quantized, but
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not gauge invariant. The near-horizon integral on the right-hand side of eq.(4.3.26)

implicitly represents a Page charge. In [61], they explicitly compute this integral and

show that it indeed results in the black ring charge QA(5D).

Adapting the results of [61] to the present context of fragmented rings, we now argue

that the QAi(5D)’s are also Page charges. This is consistent with the role of eq.(4.3.21)

as a charge conservation equation. Then QAi(5D) should also have an expression as a

localized charge resulting from a near-horizon integral

QAi(5D)

?
=

∫

Σi

(
⋆aABF

B
i + 3DABCA

B
i ∧ FC

i

)
(4.3.27)

for ABi as U(1) gauge fields locally defined in the neighborhood of the ith-ring horizon.

Σi denotes a 3-cycle enclosing the ith-horizon and FB
i = dABi . So the question then is :

does this integral in eq.(4.3.27) work out to give QAi(5D) ? Upon inserting the following

expression for the gauge field :

ABi = −
[(

DBC
(
Q̃Ai (5D)

− 3DCDEp
D
i (5D)p

E
i (5D)

)
+ 2

n∑

j=1

pBj (5D)

)
dψ

+

(
pBi (5D)(1 + x) + 2

n∑

j=i+1

pBj (5D)

)
dχ

]
(4.3.28)

into the integral in eq.(4.3.27), the authors of [61] indeed do obtain the expression4

we had in eq.(4.3.25). In eq.(4.3.28), the variables ψ, χ and x are the usual ring-

coordinates ( notation follows from [31] ). (ψ + χ/2) and x parametrise the S2, while

(ψ − χ/2) runs along the S1 near the horizon of the ith-black ring. The gauge fields

ABi are locally defined patch-wise. Gluing of adjacent patches is achieved via gauge

transformations. In eq.(4.3.28), i = 1 refers to the innermost ring ( smallest radius )

and the radial parameter monotonically increases with increasing i. The expression for

ABi used in [61] was extracted from the supergravity solution of [82], [83] for concentric

black rings. The same is reliable for non-concentric rings too, since restrictions to

concentricity mainly become relevant when evaluating integrability conditions ( and

those bear consequences for multi-ring angular momenta ).

From the expression for ABi above, we see that the gauge field around the ith-ring

also feels the back-reaction due to dipole fields from neighboring rings. It is precisely

4 In [61] the computation was first done for the special case of only one vector field, and then it

was generalized to n U(1) fields by simply carrying through the same calculation with vector indices.
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this dipole field back-reaction that leads to cross-terms in the computation of QAi(5D).

In our case we tried to derive these terms from the construction of 5D fragmentation.

It is gratifying to note that they exactly compare with those coming from the integral

of [61]. As we shall see that fragmentation of a single ring indeed does reproduce the

correct multi-ring charges.

Now turning our attention to Q̃Ai (5D)
, let us see why this is in fact not a physical

charge. From the definition of Q̃Ai (5D)
in eq.(4.3.24), its 4D/5D transformation is

identical to that of a single black ring system with electric charge Q̃Ai (5D)
and magnetic

charge pAi (5D). This is in stark contrast to the analogous transformation of QAi(5D) (

which can be read-off from eq.(4.3.22) ). Unlike QAi(5D), we see that Q̃Ai (5D)
clearly

does not sense the background reaction due to neighboring rings. Hence such a charge

cannot be given a global physical meaning in a multi-ring geometry. Its presence is

at best only a local approximation. Therefore its integral representation is trivially

identical to eq.(4.3.26) after all charges ( which enter into the explicit expressions for

the gauge potentials ) have been replaced by those at the ith-center.

Eqs.(4.3.22) and (4.3.24) essentially describe the multi-center 4D/5D dictionary for

electric charges. As expected the physical multi-center Page charge QAi(5D) trans-

forms in a more complicated way than QA(5D) (eq.(4.2.9)), due to the multi-black

ring background. On the other hand, the charges Q̃Ai (5D)
, though unphysical, re-

tain manifest symplectic invariance of the original single-center solution. Each of the(
pAi (5D) , Q̃Ai (5D)

)
manifestly transform as a symplectic pair. This underlying property

often makes it convenient to express multi-black ring solutions in terms of these charges

( as has been usual practice in the literature ).

Having explicitly constructed the 5D charge fragmentation equations for mag-

netic and electric charges
(
pA(5D) , QA(5D)

)
along with the relevant multi-center

4D/5D transformations, we are now equipped to derive two of the multi-ring harmonic

functions
(
KA(x), LA(x)

)
multi

from the single-ring harmonics
(
KA(x), LA(x)

)
single

by

merely implementing the fragmentation recipe of section 2. As in eqs.(4.1.4) and (4.1.5)
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we have

LA(x)

∣∣∣∣
single

= vA +
QA(5D) − 3DABCp

B
(5D)p

C
(5D)

|x− x0|

−→ vA +

n∑

i=1

Q•
Ai(5D) − 3DABCp

•B
i (5D)p

•C
i (5D)

|x− xi|
= LA(x)

∣∣∣∣
multi

(4.3.29)

which is subject to the constraint

QA(5D) − 3DABCp
B

(5D)p
C

(5D) =

n∑

i=1

(
Q•
Ai(5D) − 3DABCp

•B
i (5D)p

•C
i (5D)

)
(4.3.30)

Eqs.(4.3.29) and (4.3.30) constitute a natural 5D fragmentation ansatz with newly-

defined charges Q•
Ai(5D)

and p•Ai (5D) such that at x → ∞ one recovers LA(x)

∣∣∣∣
single

while at x → xi the solution (at leading approximation) appears like a single black

ring at the ith location. Now the constraint in eq.(4.3.30) above is identical in form to

the charge splitting eq.(4.3.23), which suggests the identification

Q•
Ai(5D) ≡ Q̃Ai (5D)

p•Ai (5D) ≡ pAi (5D) (4.3.31)

From this we also see how the charges Q̃Ai (5D)
enter into the 5D harmonics and subse-

quently into the metric. Of course the above harmonic function could also have been

written in terms of QAi(5D), but then the expressions would only get a little messy as

we proceed.

Another remark that we can make at this stage is that eq.(4.3.29) ( along with the

conditions in eqs.(4.3.30) and (4.3.31) ) could also have been obtained via a different

route; namely, by direct use of the multi-ring 4D/5D transformation ( eq.(4.3.24) )

into eqs.(4.1.4) and (4.1.5). This is consistent with the commutativity of the diagram

in eq.(4.0.2), which suggests that fragmenting a single black ring into multiple black

rings reproduces the same configuration as that obtained by a direct 5D lift of the

appropriate 4D multi-center black holes.

Dealing with the harmonic function KA(x) for magnetic charges is now straightfor-

ward :

KA(x)

∣∣∣∣
single

=
pA(5D)

|x− x0|

−→
n∑

i=1

pAi (5D)

|x− xi|
= KA(x)

∣∣∣∣
multi

(4.3.32)
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which is again subject to

pA(5D) =
n∑

i=1

pAi (5D) (4.3.33)

As per the other two black ring harmonic functions HTN(x) and M(x) : the former

remains unchanged under fragmentation as our brane configuration includes only a

single D6 charge ( which lifts to a Kaluza-Klein monopole in 5D ); while fragmentation

of the latter comes up in the following sub-section.

4.3.2 Angular Momenta from Black Ring Fragmentation

We are now ready to derive the expressions for angular momenta of a multi-black

ring system from 5D fragmentation techniques. Our starting point is eq.(4.2.17) : the

angular momentum of a single black ring along the ψ-direction

Jψ =
3π

G
Jtube +

3π

G
pA(5D)(QA(5D) − 2DABCp

B
(5D)p

C
(5D)) (4.3.34)

Inserting the 5D charge splitting eqs.(4.3.20) and (4.3.23) into the above we readily

obtain

Jψ =
3π

G

n∑

i=1

J itube +
3π

G

[
n∑

i,j=1

pAi (5D)

(
Q̃Aj (5D)

− 3DABCp
B
j (5D)

pCj (5D)

)

+

n∑

i,j,k=1

DABCp
A
i (5D)p

B
j (5D)

pCk (5D)

]
(4.3.35)

where the quantities J itube have yet to be determined from integrability conditions. As

a special case of our result in eq.(4.3.35), we shall be able to reproduce the expression

for angular momentum of concentric black rings which was first derived by Gauntlett

and Gutowski in [82], [83] in the context of 5D supergravity. In order to obtain J itube,

we will first have to determine the multi-ring harmonic function M(x), from where

J itube can be extracted. Therefore, fragmenting the function M(x) yields

M(x)

∣∣∣∣
single

= v0 +
−Jtube
|x− x0|

−→ v0 +
n∑

i=1

−J itube
|x− xi|

= M(x)

∣∣∣∣
multi

(4.3.36)
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subject to

Jtube =

n∑

i=1

J itube (4.3.37)

Additionally, the multi-ring harmonics (HTN(x), KA(x), LA(x),M(x))multi above also

have to satisfy integrability conditions as in eq.(4.1.6). These are to be evaluated at

each horizon. Starting with x = 0, we get

v0 =

n∑

i=1

J itube
Li

(4.3.38)

This determines the constant v0 in terms of J itube ( which we still have to fix in terms

of electric and magnetic charges ) and Li ( which is the radial distance in R3 of the ith

pole from the origin ). However, as discussed earlier, v0 is a constant predetermined at

infinity and should not be affected by the process of fragmentation. As a consistency

check we shall see in what follows that eq.(4.3.38) is indeed identical to eq.(4.2.10)

obtained earlier in section 3. Before that we will require to compute the remaining n

conditions at the horizons {xi}. This yields

− J itube =

(
4

R2
TN

+
1

Li

)−1




pAi (5D)vA +
n∑

j = 1

j 6= i

pAi (5D)

(
Q̃Aj (5D)

− 3DABCp
B
j (5D)

pCj (5D)

)

√
L2
i − 2LiLjcosθij + L2

j

−
n∑

j = 1

j 6= i

(
Q̃Ai (5D)

− 3DABCp
B
i (5D)p

C
i (5D)

)
pAj (5D)√

L2
i − 2LiLjcosθij + L2

j




(4.3.39)

where θij is the angle between ~Li, ~Lj ∈ R
3. Now rearranging eq.(4.3.39) for

Ji
tube

Li
and

then inserting back into eq.(4.3.38) produces

v0 = −4 Jtube
R2
TN

− vAp
A

(5D) (4.3.40)

after also using eqs.(4.3.20) and (4.3.37). Indeed eq.(4.3.40) is precisely the value of v0

obtained earlier by inserting eq.(4.2.11) into eq.(4.2.10).
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Now with eqs.(4.3.39) and (4.3.40) the function M(x)

∣∣∣∣
multi

is fully specified. Thus

simply from 5D black ring fragmentation we were able to construct all of the multi-

black ring harmonic functions. Moreover inserting eq.(4.3.39) for J itube into eq.(4.3.35)

results in the complete expression for the total multi-black ring angular momentum in

the ψ-direction : Jψ. Also the angular momentum in the φ-direction : Jφ, can then be

read-off from Jψ since

Jφ = Jψ − 3π

G

n∑

i=1

J itube (4.3.41)

still continues to hold.

An additional comment on eq.(4.3.39) is due. Let us take a closer look at the last

two terms on the right-hand side of this equation. As long as the multi-center charges

are constrained to remain mutually non-local, then ~Li 6= ~Lj will hold and that avoids

any potential singularity in eq.(4.3.39). Hence the sum of the two numerators ( within

the summation symbols ) is allowed to assume any non-zero value. From the 4D point

of view, this is precisely the condition for the dual 4D charges (pAi (4D), qAi(4D)) to be

non-parallel ( on the charge lattice ). This was the interesting new feature in the multi-

center solution of [69], [70], [71], [72]. On the other hand, if the condition ~Li 6= ~Lj were

to be relaxed; then we would be required to impose

pAi (5D)

(
Q̃Aj (5D)

− 3DABCp
B
j (5D)

pCj (5D)

)
−
(
Q̃Ai (5D)

− 3DABCp
B
i (5D)p

C
i (5D)

)
pAj (5D)

= 0 (4.3.42)

for all i 6= j, thereby eliminating the last two terms in eq.(4.3.39). The corresponding

4D charge vectors (pAi (4D), qAi(4D)) are now parallel-aligned on the charge lattice5. The

reason we made the above comment is because the construction in [82], [83] does restrict

to eq.(4.3.42) and hence we too will need to make use of it whenever comparing to their

results. For all other purposes, our results continue to hold for non-parallel charges in

general.

Eq.(4.3.35) along with eq.(4.3.39) gave us the most general result for the angular

momentum ( along the ψ-coordinate ) of non-concentric multi-black rings. We would

5Note that being parallel on the charge lattice should not be confused with co-linearity of the poles

in R3. Even for parallel charges the multi-center poles are still free to remain non-colinear. From a

4D/5D perspective, non-colinear D4-D2-D0 poles in 4D lift to non-concentric rings in 5D.
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now like to reduce our result to the case of concentric rings so as to compare it with the

well-known answer of [82], [83], which was derived using 5D supergravity techniques

of [49] and [50]. First we set all angles θij between the poles to zero. The co-linear

alignment of poles in R3 translates to concentric rings in 5D. In order to eliminate

Dirac-Misner strings, [82], [83] choose to impose eq.(4.3.42), which can be interpreted

as a restriction to parallel 4D charge vectors6. From our discussion above, we see that

it is still possible to continue with non-parallel charges by trading-off mutual locality of

charges. Nevertheless to make contact with [82], [83]; we use eq.(4.3.42) in eq.(4.3.39)

with all angles θij = 0 and thus arrive at the desired result upon plugging everything

back into eq.(4.3.35). To facilitate a direct comparison, let us also connect with the

notation of [82], [83]; which is achieved via simple charge redefinitions. Firstly we note

that the 4D/5D transformations - eqs.(4.2.9) and (4.2.16) - match their counterparts

in [82], [83] after the following two redefinitions : q0(5D) −→ (q0(5D) + pA(4D)qA(4D))/2

and pA(4D) −→
√

2pA(4D). We have already seen how the latter conformed to 5D split-

charges and played a role in matching eq.(4.3.23) to the above literature. Now coming

to the multi-ring angular momentum in eq.(4.3.35), it can be seen after some algebra

that the first of the above two redefinitions simply gives a factor of 2 to the last term

of eq.(4.3.35). Then making use of the second redefinition in the form pAi (5D) −→
√

2pAi (5D) produces

Jψ = −6
√

2π

G

n∑

i=1

Lip
A
i (5D)vA +

√
2π

G

[
3

n∑

i,j=1

pAi (5D)

(
Q̃Aj (5D)

− CABCp
B
j (5D)

pCj (5D)

)

+ 2

n∑

i,j,k=1

CABCp
A
i (5D)p

B
j (5D)

pCk (5D)

]
(4.3.43)

which exactly agrees ( upto an overall factor which we leave to one’s taste ) with [82],

[83] as the total angular momentum of concentric black rings in R4.

Finally let us remark that writing the 5D charge q0(5D) in the form

q0(5D) =

n∑

i=1

q0i(5D) (4.3.44)

6 In fact this is not the most general way to eliminate Dirac-Misner strings and admittedly ends

up making the solution of [82], [83] highly restrictive. In general it suffices to impose the integrability

conditions as we have done in this note. The difference with [82], [83] is that those authors impose

eq.(4.3.39) in a very special way.
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its fragments can be easily read-off from eq.(4.3.35) above. Just as was the case earlier

with the QAi(5D) charge, we see again that the multi-ring 4D/5D transformations for

q0i(5D) are more complicated due to the presence of cross-terms which must be carefully

taken into account while performing a 4D/5D lift. In the next section, we proceed to

discuss the physical origin of these cross-terms and their geometric interpretation.

4.4 Geometric Interpretation using Split-Spectral

Flows

In this section we try to provide a geometric understanding of multi-black rings, based

on successive application of spectral flow transformations. Such split-spectral flows

now assume relevance in the presence of multiple AdS3 ×S2 horizons. This generalizes

the spectral flow discussions of [57], [58] to a multi-center setting.

Let us first consider a single black ring, whose near-horizon geometry is AdS3 ×S2.

This will be seen to fit exactly within the considerations of [57], [58]. In this background

geometry, the 5D supergravity action contains a Chern-Simons term

SCS =

∫

AdS3×S2

DABCA
A ∧ FB ∧ FC (4.4.45)

which is not invariant under large gauge transformations. FA = dAA is the usual

two-form U(1) magnetic flux passing through the S2. The electric charge is obtained

by varying the 5D action with respect to the field strength FA. Due to the presence

of the above-mentioned Chern-Simons term, the electric charge so obtained also varies

under large gauge transformations

qA =

∫

S2×S1

(
⋆ FA + 3DABCA

B ∧ FC

)
(4.4.46)

Since the 5D supergravity action can be obtained from a Calabi-Yau compactifica-

tion of M-theory, the electric charge qA is the M2-brane charge from a 11-dimensional

perspective ( or D2 charge in Type II A ) and the magnetic charge pA defined as

pA =

∫

S2

FA (4.4.47)
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is the M5-brane charge7 ( or D4 in 10 dimensions ).

It can be seen by inspection that the second term in the integrand in eq.(4.4.46)

will decay rapidly when evaluated over a homologous 3-surface sufficiently distant from

the horizon, leaving only the first term to contribute. However, prior to integration,

let us consider the effect of a large gauge transformation of AA, of the type

AA −→ AA + kA d (ψ/2π) (4.4.48)

with kA an integer and 0 ≤ ψ ≤ 2π a coordinate running along the S1. This leaves us

with AA-independent terms that do not vanish at infinity, thereby producing shifts in

the electric charge qA of the type

qA −→ qA + 3DABCk
BpC (4.4.49)

This charge is clearly not gauge invariant and the physical explanation shall soon follow.

For now, let us note that this equation compares to the 4D/5D charge transformation

that we encountered earlier in eq.(4.2.9), since it is the lack of gauge invariance of

the 5D Chern-Simons term in the action that is responsible for inducing shifts in the

original gauge invariant 4D charges.

Similarly the M-theory angular momentum q0 ( or D0 charge in Type II A ) is

again not a gauge invariant quantity and we now proceed to derive its charge shifts,

obtained via gauge transforming an integral representation of angular momentum. For

a 5D supergravity action ( to be thought of as a semi-classical reduction of M-theory

in our context ), such an integral can be extracted from appropriate contributions to

the gauge field energy-momentum tensor. For the aforesaid 5D action, this has been

derived in [61] making use of Wald’s method [85]

q0 = −
∫

S2×S1

(
⋆ dξ + ⋆(ξ ·AA)FA + DABC (ξ · AA)AB ∧ FC

)
(4.4.50)

Here ξ denotes the axial Killing vector with respect to the ψ-direction, while (ξ ·AA) is

an interior product between a vector field and a one-form. The Killing field ξ generates

isometries along the ψ-direction; leading to a conserved charge, which is the angular

7 Strictly speaking, this definition remains valid so long as the NUT charge ( the KK monopole at

the origin ) is not encompassed by the S2.
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momentum. In fact, the right-hand side of eq.(4.4.50) is simply the Noether charge of

Wald. Asymptotically, the AA dependent terms in the integrand ( in eq.(4.4.50) ) drop

off and the integral reduces to Komar’s formula for the angular momentum. However,

large gauge transforming with eq.(4.4.48) yields precisely two more asymptotically non-

vanishing remnants. Recognizing the asymptotic form of eq.(4.4.46) and eq.(4.4.47)

leads to the following charge shifts in angular momentum

q0 −→ q0 − kAqA − DABCk
AkBpC (4.4.51)

This again can be compared to the 4D/5D transformation in eq.(4.2.16).

Now eqs.(4.4.49), (4.4.51) are in fact the spectral flow transformations in question.

The name spectral flow arises due to the fact that in the dual (0, 4) SCFT these

transformations correspond to automorphisms of the conformal algebra. Moreover

spectral flow is a symmetry of the theory as it leaves the generalized elliptic genus

of the CFT invariant. Note that such flows are characteristic of an odd dimensional

theory. For a 4D black hole with AdS2 × S2 horizon, the supergravity action is gauge

invariant. Therefore the electric charge equals the actual number of D2 branes wrapped

on Calabi-Yau 2-cycles; while the D0 charge counts the physical D0 branes. Because

of this we can also interpret eqs.(4.4.49), (4.4.51) as a 5D lift of 4D charges.

The gauge transformation in eq.(4.4.48) is picked up upon going around ( perpen-

dicular to the ψ-direction ) the ring with a probe particle; which has been given the

interpretation of M5-anti-M5 branes being pair-produced, going around the ring in

opposite directions and mutually annihilating ( see fig. 1 in [57] ). More precisely, this

can be visualized as follows. The spatial near-horizon geometry of a bound state of

M5-M2 branes ( with angular momentum ) is a product of Euclidean AdS2 and S2 (

refer to fig. 4.1 (a) below ). On the AdS2 disc, the black ring is depicted as a circle

along the ψ-direction. The radial coordinate on the disc is the same as the Taub-NUT

radial direction. Now consider the pair-production of kA M5-anti-M5 pairs. These

wrap 4-cycles on the Calabi-Yau, while the fifth direction goes around the equator of

an S2. This S2 is a point on the AdS2 disc, located on the inside of the circle represent-

ing the black ring. The M5-anti-M5 rings along the S2 equator move apart in opposite

directions towards the poles, where they self-annihilate leaving behind a Dirac surface
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on the S2. Since the location of the Dirac surface is unphysical, it can be moved away

to spatial infinity. Upon crossing the ring, it causes a shift of gauge potential by an

amount kA d (ψ/2π). Thus the presence of a magnetic flux kA shifts the gauge poten-

tial AA and consequently the charges qA, q0. For the case of the single ring described

above, this flux is the dipole flux passing through the ring and is generated by its own

M5 charges. Hence kA = pA here, which leads to eqs.(4.4.49), (4.4.51).

(a)

AdS2

Black Ring

M5

M5

S2

(b)

AdS2

Multi-Rings

M5
M5

S2

M5
M5

S2

Figure 4.1: Visualising the spectral flow for black rings : (a) Nucleation of an M5-

anti-M5 pair around a single black ring leading to a large gauge transformation. (b)

The same idea now extended to a multi-black ring background leads to multiple gauge

transformations in a geometrically ordered way.

4.4.1 Electric Charges and Split-Spectral Flows

Now extending the above discussion, we shall systematically derive multi-black ring

electric charges and angular momenta as a split-spectral flow argument. We begin

with electric charges. Let us label the n rings with an index i, in increasing order of

radius. The innermost ring is labeled i = 1. Its brane charges are pA1 , qA1 , q01 . Here

pA1 exhibits a dipole behavior, generating a magnetic flux kA = pA1 . This in turn shifts

qA1 by spectral flow as in eq.(4.4.49). Indeed this innermost ring behaves just like the
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single ring case encountered in the previous discussion above. Moving onto the next

ring, this has brane charges pA2 , qA2 , q02 . As depicted in fig. 4.2 below, the total flux

passing through this ring is not only that generated by its own charge pA2 , but also that

emanating from the inner ring. These distinct fluxes give rise to the following spectral

flows :

δ = 2, γ = 2

with kB = pB2

qA2 −→ qA2 + 3 DABC pBδ pCγ

66mmmmmmmmmmmmmmmmmmmmmm

//

((QQQQQQQQQQQQQQQQQQQQQQ

δ = 1, γ = 2

with kB = pB1

δ = 2, γ = 1

with kC = pC1

(4.4.52)

where the last transformation occurs due to the fact that the flux has also to be

symmetrised with respect to the cycles. The physical electric charge of this ring is

then obtained by adding up all these shifts to the original brane charge.

Taub-NUT

Black Rings

Figure 4.2: A Taub-NUT perspective of the influence of magnetic flux generated by

individual black rings upon neighbouring black rings.

From the point of view of fig. 4.1 (b), multi-rings are depicted as n-circles on
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the disc, one inside the other. Nucleation of an M5-anti-M5 pair now occurs in the

vicinity of each of the n rings, creating n Dirac surfaces. Upon moving these surfaces

to infinity, the ith-ring is crossed by i Dirac surfaces each with flux pAj , giving in total

a flux kAtot =
∑i

j=1 p
A
j passing through this ring. This is the origin of multiple spectral

flows for a multi-ring system.

We can now directly write down the result for the ith-ring with all the spectral flows

put together : those resulting from the intrinsic ( due to ring’s own magnetic charge

) flux as well as those from background ( generated by those rings which are encircled

by the ith one ) flux, we get

qAi
−→ qAi

+ 3DABCp
B
i p

C
i + 3DABC

i−1∑

j=1

(pBi p
C
j + pBj p

C
i ) (4.4.53)

Much like the analogy in electrostatics, the fluxes due to rings which encircle the ith-

ring from the outside, do not affect it. With respect to fig. 4.1 (b), each ring acts as

a source, emanating flux; while the sink is at infinity. Hence only those rings placed

to the exterior of the source ring will lie in its flux field. Eq.(4.4.53) gives us the

physical charge of the ith-ring from a spectral flow analysis. This can be compared to

eq.(4.3.25), where the same quantity emerged from a fragmentation analysis.

Furthermore upon adding up the split-spectral flow shifts of all of the n rings leads

to the total spectral flow shift of the full multi-ring configuration

Qtotal
A ≡

n∑

i=1

qAi
+ 3DABC

n∑

i=1

pBi p
C
i + 3DABC

n∑

i=1

i−1∑

j=1

(pBi p
C
j + pBj p

C
i )

=
n∑

i=1

qAi
+ 3DABC

n∑

i,j=1

pBi p
C
j (4.4.54)

where in the last step, the identity

n∑

i=1

i−1∑

j=1

(Aij + Aji) =

n∑

i=1

n∑

j=1

Aij −
n∑

i=1

Aii (4.4.55)

has been used. Indeed Qtotal
A exactly equates to QA(5D) in eq.(4.3.22), which is simply

the electric charge of a single black-ring system. Therefore, adding up all the spectral

flow shifts as well as the total brane charge gets us back to the geometry of a single

black ring. In this sense the spectral flow transforms of a multi-ring system are really

split-spectral flows of a single ring system.
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4.4.2 Angular Momenta and Split-Spectral Flows

The multi-ring angular momentum can now be obtained in a similar fashion. Once

again consider the ith-ring with brane charges pAi , qAi
, q0i

. The relevant angular mo-

mentum spectral flows for this ring are

q0i
−→ q0i

− pAi

i∑

j=1

qAj
−DABCp

A
i p

B
i p

C
i (4.4.56)

q0i
−→ q0i

−
i−1∑

j=1

pAj qAi
−DABC

i−1∑

j=1

p

(
A

j

i−1∑

k=1

pBk p
C
)

i (4.4.57)

In the above flow equations, firstly we have the intrinsic magnetic flux kAi = pAi ,

generated by M5 charges on the ith-ring itself. This flux interacts with M2 charges as

well as M5 charges ( carried on other Calabi-Yau cycles ), both on the ith-ring. Then

there is the background magnetic flux kAback =
∑i−1

j=1 p
A
j because this ring is placed in the

background fields generated by the i−1 rings to its interior. Now a new addition to the

above is a background electric flux
∑i−1

j=1 qAj
, which also interacts with electric charges

on the ith-ring. That explains the second term on the right-hand side of eq.(4.4.56).

And eq.(4.4.57) then accounts for interactions of the magnetic background with the

ith-brane charges in the usual way. The last term there has to be symmetrised and

therefore the brackets in superscripts denote a sum over all symmetric permutations

of cycles. Then adding up all these contributions will result in the angular momentum

of the ith-ring.

To get the total angular momentum of the multi-ring system we add up those of

each of the rings

J total ≡
n∑

i=1

q0i
−

n∑

i=1

i−1∑

j=1

(pAi qAj
+ pAj qAi

) −
n∑

i=1

pAi qAi
−DABC

n∑

i=1

pAi p
B
i p

C
i

− DABC

n∑

i=1

i−1∑

j=1

p

(
A

j

i−1∑

k=1

pBk p
C
)

i

=

n∑

i=1

q0i
−

n∑

i,j=1

pAi qAj
−DABC

n∑

i,j,k=1

pAi p
B
j p

C
k (4.4.58)

Upon substituting qAj
in the last equality above with Q̃Ai (5D)

via eq.(4.3.24), we see that

eq.(4.4.58) indeed compares8 to eq.(4.3.35) leading to J total = − G
3π
Jψ. A split-spectral

8 Of course spectral flow does not determine q0i
as a function of Li. That input still relies on the
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flow analysis thus provides us with a physical understanding of where all the different

multi-ring angular momentum contributions actually come from. In particular, it gives

a clear description of how individual rings behave in the background of other rings.

Consequently a geometric picture of this multi-black ring configuration emerges

from such split-spectral flow considerations. In fact what these split-flows are really

doing is to break up the global multi-ring geometry into patches with locally defined

gauge potentials; such that gauge fields in neighboring patches are related up to large

gauge transformations. In fig. 4.1 (b) these patches can be identified as follows : first

there’s the innermost disc inside the first ring, defining a patch with gauge potential AA1 ;

then there are the annular regions all around it, with gauge potentials AA2 , AA3 ,.........

respectively. This defines a chain of potentials spanning the entire geometry

A1
β1−→ A2

β2−→ A3 · · · · · · · · · · · · βn−1−→ An
βn−→ An + βn (4.4.59)

( suppressed vector indices may be readily reinstated here ) the βi are large gauge

transformations between Ai and Ai+1. In fact these local regions emerging here due to

split-spectral flow considerations might provide a conceptual basis for the analysis of

[61] where the authors compute localised charge integrals for black rings by dividing

the geometry into local patches which are all glued together. The existence of such

patches enable near-horizon integrals such as those in eqs.(4.3.26), (4.3.27) to capture

all the data normally extracted from the full geometry.

4.5 Conclusions and Discussion

Two remarkable set of ideas pertaining to string theoretic descriptions of black holes,

that have generated lots of excitement in the aftermath of the OSV conjecture are : (1)

the 4D/5D connection between black holes/rings [42], [43]; and (2) multi-center black

holes as non-perturbative corrections to the black hole partition function [107]. In this

note we have sought for a modest attempt at combining these two, in the sense of the

commutative box diagram of eq.(4.0.2).

We have approached the problem by setting-up an explicit 5D construction of black

integrability conditions.
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ring fragmentation and thereafter also show that fragmented black rings are equivalent

to a direct 5D lift of 4D multi-black holes. For the purposes of the latter, we determine

the multi-center 4D/5D charge transformations as well. Related to these issues is the

important issue of interpretation of charges in 5D, especially for our multi-center split

charges. In [61] it was shown that the electric charge ( and angular momentum )

of a single black ring could be expressed purely in terms of near-horizon data as a

Page charge. In our analysis we see that the 5D charges QAi(5D) which participate in

fragmentation are in fact also Page charges ( as opposed to being Maxwell charges

) and in that sense these are the physical charges of the system. Whereas the multi-

center charges Q̃Ai (5D)
that usually appear in the supergravity multi-ring metric are not

physical charges. Even though the latter-mentioned charges can be algebraically related

to the former ones, we find it nevertheless important to distinguish the physically

relevant ones for the multi-ring configuration.

Another rather interesting application of the 5D fragmentation methods developed

in this chapter is an alternative derivation of the angular momenta of concentric black

rings. It is indeed gratifying to note that we are able to exactly reproduce the results

of Gauntlett and Gutowski.

Lastly, we saw how the introduction of split-spectral flows lends a geometric per-

spective to shifts in brane charges of fragmented black rings by accounting how a Dirac

string generated by a given ring influences other rings in such a multi-ring background.

This serves as yet another derivation for the total angular momentum of a multi-ring

system. Moreover summing up all the split-spectral flow shifted charges of all the

fragmented rings exactly gives back the observed electric charge of a single black ring.

The split-spectral flows basically divide the geometry into patches with locally de-

fined gauge fields. The significance of these patches becomes relevant when computing

near-horizon integrals.

From a broader perspective, one might contemplate over the role of fragmented

configurations on the black hole/ring partition function. In [107], each fragmented

configuration is viewed as a multi-AdS throat geometry; and further following [73],

[74], each such geometry is associated to some saddle point of the partition function.

In that sense ZBH is presumed to sum over all possible geometries subject to charge
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conservation constraints. Fragmentation is thus a euclidean tunneling process from one

minima to another. These leading order contributions therefore dominate the multi-

AdS partition sum of [107]. However there ought to be further sub-leading corrections

to each multi-center configuration that should be computable from any complete par-

tition sum. At this stage, it would be very tempting to think that the black hole farey

tail partition function of [75], [57], [58] might be precisely the object that captures the

multi-center saddle points as well as its sub-leading corrections. Whether or not these

multi-center geometries lend a physical description to the farey tail story remains to

be seen.

Let us make a few more remarks with a view towards subsequently outlook for

these results. Ever since investigations into non-perturbative corrections to the OSV

conjecture began, one of the earliest applications of Denef et al’s multi-center black hole

solutions [69] was its realization as a gravity dual to finite N effects of a 2D q-deformed

U(N) Yang-Mills gauge theory localized on the world-volume of branes wrapping a non-

compact Calabi-Yau constituted by a Riemann surface endowed with two line bundles.

These gravity duals have been interpreted as 4D baby universes [107], being viewed as

end-products of AdS-fragmentation. The question investigated in this chapter was how

does the 4D↔5D connection of [42] work for these multi-center configurations? More

specifically, after having explicitly set-up a 5D construction of AdS-fragmentation,

whereby a single black ring splits-up into a multi-black ring configuration, it was shown

that these fragmented rings are equivalent to a direct 5D lift of 4D multi-center black

holes. In this sense, the 5D duals of these baby universes are simply a configuration of

non-concentric multi-black rings in Taub-NUT space. However Chern-Simons induced

charge shifts once again appeared in this context. Therefore after having motivated

the 4D/5D charge transformations for multi-center configurations, we have confirmed

that all conserved charges are in fact Page charges arising due to 5D Chern-Simons

terms and provide a geometric interpretation for this system of rings using the idea of

split-spectral flows, wherein a given black ring’s observables are influenced by fluxes

generated in a background of neighboring rings. A future research direction is to

incorporate these split-flows into an entropy function so as to compute sub-leading

degeneracies to multi-center systems.



Chapter 5

Continuum Solutions & Black Hole

Levitrons

Gravity cannot be held responsible for people falling in love;

nor levitrons, for those rising above it

- with apologies to Albert Einstein

Continuing our investigation into multi-center geometries, in this chapter of the

thesis we look for limiting cases where one still has some analytic control on the solu-

tion. This becomes a relevant issue because whilst performing calculations involving

multi-center geometries, it soon becomes apparent that even for the simplest config-

urations with more than two centers, solving integrability constraints to determine

the full metric becomes highly formidable. Therefore in this chapter, as a curiosity

we probe the other extreme, namely the continuum limit of multi-center black holes

in 4D and look for solutions. It turns out that that regime is indeed amenable to

analytic results. Furthermore as an interesting application of these solutions, we in-

vestigate the problem of spatially stabilizing four dimensional extremal black holes in

background electric/magnetic fields. This construction of black holes levitating over

external magnetic fields strikes a close resemblance to a mechanical Levitron.

Moreover in the light of on-going interest in questions concerning black hole pro-

duction; it is interesting to consider how one could go about stabilizing such a black

hole using external fields, thus leading to a black hole analog of a particle-trap or rather

as we shall see that of a Levitron. However unlike the more familiar subatomic particle

traps or even Millikan’s famous oil drop experiment [86], the effects of general relativity

93
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give rise to interesting new features. We shall describe how this idea can in fact be

materialized by writing down solutions for black holes levitating in electromagnetic as

well as constant gravitational fields.

For our purposes in this chapter, we shall consider four dimensional extremal black

holes as solutions to minimal N = 2 SUGRA ([72], [71], [69]). Furthermore, let us

confine these configurations to only include electric and magnetic charges q and p

respectively. These extremal black holes are known to satisfy the BPS constraint. The

most general metric ansatz consistent with supersymmetry can then be written as

ds2 = − π

S(~x)
(dt+ ωidx

i)2 +
S(~x)

π
dxidxi

with S(~x)/π = P2(~x) + Q2(~x)

and A = 2πQ(~x)
(
dt+ ωidx

i
)

+ Θ (5.0.1)

is the four dimensional gauge field. P(~x), Q(~x) are harmonic functions associated to

charges p and q respectively. Θ is the Dirac part of the vector potential satisfying

dΘ = ∗dP(~x) with the Hodge star ∗ defined on R3. For a single spherically symmetric

black hole in vacuum, it holds that ~ω = 0. However for our considerations, we shall be

looking for solutions when the black hole is placed in external electric and magnetic

fields. There is now a non-zero Poynting vector corresponding to a rotating geometry.

We first look for levitating solutions in constant background fields. It turns out these

are inadequate for stabilization in all three directions. Then we look for more non-

trivial backgrounds obtained using a continuum limit of Denef et al’s [72], [71], [69]

multi-center solutions and find that turning on dipole fields achieves the desired result.

5.1 Black Hole Levitation in Constant External Fields

Given the metric ansatz in eq.(5.0.1), we begin by looking for stationary solutions of

a black hole placed in constant electric, magnetic and gravitational fields. In order to

achieve this we have to specify explicit harmonic functions describing this configura-

tion, then compute the off-diagonal elements ~ω and solve the associated integrability

equations. We claim that the desired harmonic functions describing this configuration
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are

P(~x) = u+
p

|~x−~l|
+Bz Q(~x) = v +

q

|~x−~l|
+ Ez (5.1.2)

where B and E are constant magnetic respectively electric fields oriented along the

z-direction and z denotes the z-coordinate. ~l marks the position of the black hole’s

horizon, which we determine via integrability conditions. u, v are constants. In prin-

ciple, we can absorb u and v via a shift in the z-coordinate. This point will be made

clear when we solve for ~l. The Bz and Ez in eq.(5.1.2) are linear terms that satisfy

Laplace’s equation and can be recognized as the usual electro/magneto-static poten-

tials associated to constant fields. Note that extremality implies the above linear terms

also source constant gravitational fields.

A nice way to motivate the expressions for P(~x) and Q(~x) is to extract them via a

special limit of Denef et al’s multi-center solutions [72], [71], [69]. More specifically, let

us consider the two-center solution. This is a regular BPS solution of four dimensional

N = 2 supergravity. It is stationary but non-static and hence caries an intrinsic angular

momentum. Moreover the black holes comprising this bound state possess mutually

non-local charges. Let us denote the corresponding two charge vectors as Γ = (p, q) and

Γ̃ = (p̃, q̃). The idea is now to carry the charge Γ̃ all the way to infinity while scaling

(p̃, q̃) and the radial coordinate of the charges in such a way that the magnitudes of the

electric/magnetic fields themselves are held fixed. Applying this limit to the expressions

for electro/magneto-static fields of point charges indeed leaves us with constant fields

oriented opposite to the direction of the source charges Γ̃. Without loss of generality,

the z-axis can then be chosen to point in the direction of the sources. Integrating these

fields along the line element, precisely yields the linear potential terms in eq.(5.1.2).

In fact we may also use this limiting two-center system to captures other features

of our original configuration of a black hole in constant external fields. Following [72],

[71], [69], we can determine the off-diagonal terms in the metric using

∇× ~ω = P(~x)∇Q(~x) −Q(~x)∇P(~x) (5.1.3)

Below we shall solve ~ω for a class of non-static solutions. Furthermore operating a

gradient on both sides of eq.(5.1.3) leads to the following integrability equation

P(~x)∇2Q(~x) −Q(~x)∇2P(~x) = 0 (5.1.4)
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which we evaluate at ~x = ~l to get

l =
qu− pv

pE − qB
(5.1.5)

This gives us the position of the black hole. Here ~l = (0, 0, l) can be chosen on grounds

of symmetry. One can also perform a shift of coordinates, so as to place the black hole

at the origin. This can be achieved by setting constants u = v = 0. Note however that

(pE − qB) 6= 0 is required in order to preserve mutual non-locality.

Eq.(5.1.3) can be conveniently solved using spherical coordinates (r, θ, φ). And that

leads to a system of coupled differential equations

(∇× ~ω)r =
2 cos θ (pE − qB)

r

(∇× ~ω)θ = − sin θ (pE − qB)

r
(5.1.6)

while (∇× ~ω)φ = 0 due to φ-independence on the right-hand side. Our objective is

now to seek out a non-trivial solution which confers to the description of a black hole

rotating in the presence of external electromagnetic fields. We find that there exists

such a simple solution with azimuthal symmetry

ωφ = sin θ (pE − qB) (5.1.7)

while ωr = ωθ = 0. For completeness let us also mention that the solution presented

in eq.(5.1.7) is certainly not the most general. For instance, we also find that solutions

with harmonic variations such as ∂ωθ

∂φ
= cosφ also exist and very likely one may well

find a more general class of these. But we shall not require that for our purposes.

The solution above allows us to levitate a black hole at a fixed height on the xy-

plane owing to the balancing act between gravitational attraction and electro/magneto-

static repulsion. However it is not stable in all three directions and can move about the

surface of the plane. To localise the black hole in all three directions we need a more

complicated background field where the black hole can be held at a local minimum of

an effective potential.
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5.2 Continuum Limit of Multi-Center Solutions

In this section we start looking for extremal stationary solutions to Einstein-Maxwell

gravity that admit backgrounds with multipole electromagnetic fields. As before, we

work with four dimensional gravity with just one gauge field. Generalizations to n− 1

vector fields or inclusion of other charges such as D0 and/or D6 in Type II A are

rather straightforward. Let us now see how taking a continuum limit of Denef et al’s

multi-center solutions yields the desired backgrounds. In order to write down harmonic

functions for such a smeared distribution of black holes, we define density functions

ρe(~x
′), ρm(~x′) via

∫

V

ρe(~x
′)dτ ′ = Q and

∫

V

ρm(~x′)dτ ′ = P (5.2.8)

where dτ ′ is a volume element within a compact support V , that covers the distribution.

In the continuum limit, harmonic functions for multiple black holes take the form

Q(~x) = v +

∫

V

ρe(~x
′)

|~x− ~x′|dτ
′ P(~x) = u+

∫

V

ρm(~x′)

|~x− ~x′|dτ
′ (5.2.9)

To these harmonics one may also add linear terms Ez and Bz corresponding to con-

stant fields, whenever required. From a computational point of view, the real utility

of the above-mentioned smeared distributions shows up in their respective multipole

expansions. Expressing this in the regime that |~x| >> |~x′| holds, we have

Q(~x) = v +
Q

|~x| +
xi∆

i
e

|~x|3 +
1

2

xixjT
ij
e

|~x|5 + · · · · · ·

P(~x) = u+
P

|~x| +
xi∆

i
m

|~x|3 +
1

2

xixjT
ij
m

|~x|5 + · · · · · · (5.2.10)

where Q, P are electric respectively magnetic monopole moments; ∆e, ∆m are electric

and magnetic dipole moment vectors; and Te, Tm are respectively electric and mag-

netic quadrupole moment tensors - all defined in the usual way. We employ boldface

characters to denote vectors as well as tensors. The “· · · · · · ” in eq.(5.2.10) denote

terms with higher order moments. When |~x| >> |~x′|, the series is convergent and

these functions can be used to describe supergravity solutions associated to any spe-

cific multi-moment source, provided all lower moments vanish for that distribution. As

an illustrative example, we analyze the solution for a charge distribution with dipole

order corrections.
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First let us check that the functions in eq.(5.2.9) yield meaningful expressions for

continuum black hole configurations. Evaluating eq.(5.1.4) for these harmonics gives

ρe(~x)P(~x) − ρm(~x)Q(~x) = 0 (5.2.11)

Outside the support V , this expression vanishes identically; whereas points within the

support region ought to satisfy

uρe(~x) + ρe(~x)

∫

V

ρm(~x′)

|~x− ~x′|dτ
′ − vρm(~x) − ρm(~x)

∫

V

ρe(~x
′)

|~x− ~x′|dτ
′ = 0 (5.2.12)

After performing the relevant integrals, the above expression can be evaluated for all

points ~x ∈ V , and that defines the locus of solutions for the black hole distribution. In

following sections, we will solve this condition for specific distribution functions. At the

moment though, as a consistency check, let us confirm that, analogous to any multi-

center configuration, asymptotically the above continuum configurations also behave

like a single-center black hole with total charge P and Q. This can be done by seeing

how the constants u and v (which themselves are asymptotically defined) relate to the

total monopole charges Q and P , and if this relation is the same as that obtained for a

single-center black hole with the same monopole charges. In order to do this we simply

integrate both sides of eq.(5.2.12) over all ~x ∈ V . This yields

uQ− vP = 0 (5.2.13)

which is precisely what one obtains for a single-center solution with charges Q and P ;

thereby confirming the asymptotic dependence of u and v for an arbitrary continuum

configuration having fixed total (monopole) charges Q and P .

Having checked consistency of integrability conditions, we next compute the off-

diagonal elements ~ω in the metric via

∇× ~ω = −P(~x)E(~x) + Q(~x)B(~x) (5.2.14)

where E(~x) and B(~x) refer to exact electric and magnetic fields corresponding to distri-

butions ρe(~x) and ρm(~x) respectively. In this sense the continuum limit described here

is much simpler than a finite N many body black hole system for which integrability

equations turn out to be quite hard to solve in full generality.
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For our objectives, it will suffice to solve eq.(5.2.14) using its multipole expansion.

As an illustration, we consider a smeared distribution where the monopole contributions

to ~ω get magnetic dipole corrections coming from ∆m, which is aligned along the z-axis.

In spherical coordinates, eq.(5.2.14) takes the form

(∇× ~ω)r =
2 v∆m cos θ

r3
+
Q∆m cos θ

r4

(∇× ~ω)θ =
v∆m sin θ

r3
+
Q∆m sin θ

r4
(5.2.15)

while (∇× ~ω)φ = 0 due to symmetry in the φ-direction. Note that whilst writing down

eq.(5.2.15), we make use of the integrability constraint eq.(5.2.13) ( inserting it into

eq.(5.2.14) ). As before, we seek solutions characterised by azimuthal symmetry. The

ensuing result is

ωφ =
v∆m sin θ

r2
+
Q∆m sin θ

2 r3
(5.2.16)

and ωr = ωθ = 0. At large distances away from the smeared sources, eq.(5.2.16)

gives dipole corrections to leading order contributions in the metric. In fact these

constitute sub-leading contributions to the geometry. It is these multipole corrections

that distinguish a true one-centered black hole from a multi-center distribution of black

holes, when viewed at asymptotic infinity. For a pure one-center solution, ~ω identically

vanishes. While for the multi-center case, it is non-trivial but quite difficult to compute

for any given discrete configuration. The continuum limit, on the other hand, facilitates

viable computations, at least order by order in a multipole series expansion.

5.3 Towards a Black Hole Levitron

We are now ready to combine results of the last two sections to construct stable lev-

itating black hole solutions and realize a Levitron-like construction. We perturb the

constant background fields of section 5.1 with a magnetic dipole field and over this

perturbed background solve for a black hole held at a fixed height. The dipole fields

are produced by the smeared distribution discussed in section 5.2. For simplicity we

consider a black hole with only electric charge q ( a dyonic generalization is also straight-
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forward ). This construction is captured by the following harmonics

Q(~x) = v +
q

|~x−~l|
+ Ez P(~x) = u+

∆m cos θ

|~x|2 +Bz (5.3.17)

The dipole moment is aligned parallel to the z-axis and carries a magnitude ∆m. While

θ is a coordinate denoting the angle that the position vector ~x makes with the z-axis.

Below we shall see, how solving integrability conditions for these harmonics constrains

allowed solutions for |~l| and θ, where a black hole with charge q is held stable in the

vicinity of a continuum distribution with dipole charge ∆m.

For the rest of the computation however, it will suffice to turn off the constant

fields E and B. This is because a dipole background will turn out to be sufficient hold

the black hole at a fixed height and keep it stable in all three directions. Superposing

constant fields do not affect stability of the solution but ultimately we will need the

constant fields for giving an interpretation of black hole levitation in a constant grav-

itational field ( as would be the case if we were ever to trap a small black hole in a

laboratory somewhere on Earth ! ).

Continuing with the calculation, the position of the black hole ~l is determined by

evaluating eq.(5.1.4) at the location of the pole ~x = ~l using harmonics in eq.(5.3.17)

with E = B = 0. This gives

|~l | =

√
−∆m cos θ

u
(5.3.18)

This gives us a locus of solutions |~l|, θ for the black hole configuration described in

eq.(5.3.17) (with E = B = 0). Before discussing further reality constraints on these

solutions, let us also evaluate the integrability equation at the other pole ~x = 0. This

then determines the constant v as

v = − q

|~l |
(5.3.19)

Note that physical solutions only exist l (≡ |~l |) real and non-negative and this restricts

the values that the angle θ can assume. For instance, let us first consider the case when

u > 0. Then θ can attain values only from 0 to π
2

provided the dipole is directed along

the negative z-axis, while the φ co-ordinate remains unconstrained. On the other hand,

for a dipole pointing in the positive z-direction, the angle θ can only span the range
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π
2

to π (as shown in fig. 5.1 below). In the other case, when u < 0, then the signs

appropriately reverse, namely when the dipole is directed along the negative z-axis,

then θ goes from π
2

to π; whereas with a dipole along the positive z-orientation, θ spans

values from 0 to π
2
. The solution space of the black hole is now confined to a restricted

parameter space. More precisely these are circular orbits corresponding to given values

of θ on an equipotential surface of a dipole field. And in turn each orbit refers to

a solution with a specified radial distance l. We plot the solution space for physical

values of (l, θ, φ) in fig. 5.1 below. The dipole surface in the figure represents locations

where a single black hole with a point charge can be stabilized in the gravitational and

magnetic field of a continuum black hole distribution centered around the origin and

carrying a magnetic dipole moment.

-0.5
0.0

0.5

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.5

1.0

Figure 5.1: Here we make a 3D plot of eq.(5.3.18) for the solution space of ~l for positive

as well as negative dipole orientations. Points on the upper globular surface correspond

to (l, θ, φ) for ∆m < 0 and u > 0. Points on the lower globular surface correspond to

those with ∆m > 0 when u > 0.

In fig. 5.1 above, we plot eq.(5.3.18). At θ = 0 the black hole sits at a fixed height

on the z-axis; at θ = π
2

it falls into the origin; while the case 0 < θ < π
2

corresponds
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to the black hole being located anywhere on a circular orbit centered at height l cos θ

and having radius l sin θ. Solutions on the positive z-axis correspond to the case when

∆m < 0 (for u > 0), while those on the negative axis refer to ∆m > 0. For each value

of θ in eq.(5.3.18) there exists a solution for ~ω. At θ = 0 the solution space is just a

single point and that is when the black hole achieves stability in all three directions at

a fixed height on the z-axis.

For completeness we first compute ~ω when the black hole is still sitting at the

origin, that is when ~l = 0. After that we shall determine the modification in ~ω required

to achieve stable levitation at a fixed height on the z-axis. In fact the solution at

~l = 0. can simply be borrowed from our calculation in eq.(5.2.16) once we make the

substitutions Q→ q and P → 0.

On the other hand, when the black hole is made to levitate at a fixed height l on

the z-axis we have to solve the following system of equations

(∇× ~ω)r = − q u (r − l cos θ)

(r2 + l2 − 2rl cos θ)
3
2

− 2 q∆m cos θ

l r3
− q∆m cos θ (r − l cos θ)

r2 (r2 + l2 − 2rl cos θ)
3
2

+
2 q∆m cos θ

r3 (r2 + l2 − 2 r l cos θ)
1
2

(∇× ~ω)θ = − q u l sin θ

(r2 + l2 − 2rl cos θ)
3
2

− q∆m sin θ

l r3
− q l∆m sin θ cos θ

r2 (r2 + l2 − 2rl cos θ)
3
2

+
q∆m sin θ

r3 (r2 + l2 − 2 r l cos θ)
1
2

(5.3.20)

and again (∇× ~ω)φ = 0. Also ~l = (0, 0, l). This now becomes fairly more compli-

cated compared to the non-levitating case. The modification in the metric reflects a

modification to the geometry of the system. If we restrict to azimuthally symmetric

cases, we find that eq.(5.3.20) has a solution only for small heights of levitation, that is

when l << r. This can be understood in the following way. In this set-up the system

consists of the black hole plus the source of the dipole field. Let us call the latter

the base. The levitating we are looking for requires that the base be rigid against the

gravitational pull of the black hole, that is the center of mass of the whole system be

as close to the base as possible. For very large charges, corresponding to large values

of l, a stable symmetric levitating solution does not seem to exist ( we see this from

numerical checks ). In that case more complicated non-symmetric solutions may be
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sought for, but we would hardly call those levitating.

Narrowing down to our regime of interest, we expand around l << r and solve

eq.(5.3.20) order by order in l. Truncating up to second order terms we get

ωφ = −q u (1 − cos θ)

r sin θ
− q∆m sin θ

l r2
+

q∆m sin θ

2 r3
−
{
q u sin θ

r2

}
· l

+

{
−3q u cos θ sin θ

2 r3
− q∆m (1 + 3 cos2 θ) sin θ

8 r5

}
· l2 + O(l3) (5.3.21)

while ωr = ωθ = 0. This solution enables us to write down the full metric for a

stationary system of a black hole levitating in equilibrium above a magnetic dipole

field. Also this calculation easily extends to the case of a dyonic black hole.

5.3.1 Comparison to a Levitron

We now compare the levitation of black holes discussed above with that of a Levitron[89].

The latter is a spin stabilized magnetic levitation device first invented by Roy Harrigan[88].

It basically consists of a permanent base magnet above which a spinning top with a

magnetic dipole moment levitates mid-air and is stable in all three directions. This

gives rise to an apparent paradox due to Earnshaw’s theorem [90] which states that

no stationary configuration composed of electric/magnetic charges and masses can be

held in stable equilibrium purely by static forces. And the reason for this is simply that

all static potentials satisfy Laplace’s equation whose solutions only exhibit saddles at

critical points : there are neither any maxima nor minima. It was Sir Michael Berry’s

[91] (see also [92]) remarkable insight invoking adiabatic averaging that helped resolve

the apparent paradox. He showed that a slow precession mode (when averaged over

the fast rotation mode) was responsible for creating an effective stationary potential

with a stable minimum. This is the same principle used in neutron traps as well as

other particles carrying magnetic dipole moment.

A natural question which arises is whether our black hole construction also mimics

the physics of the Levitron and how it overcomes Earnshaw’s theorem. The latter

it already seems to evade since it is based on Einstein’s gravity rather than New-

ton’s. However the gravitational interpretation of our Black Hole Levitron′s balancing

mechanism admittedly requires further investigation. Nevertheless a naive classical
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intuition can be obtained from the fact that a non-vanishing Poynting vector gives rise

to a rotating black hole geometry and in turn a rotating electric distribution induces a

magnetic field that repels the base magnet. It is the ~ω in the metric that is responsible

for inducing this balancing force. On the other hand the gauge theoretic interpretation

of this multi-center balancing has been better understood in terms of Denef’s quiver

quantum mechanics [87] wherein the distance between centers is determined via an

effective potential whose minima determine the stability loci ~l.

5.4 Conclusions and Discussion

As we have seen from the discussion in earlier chapters, multi-center solutions are also

interesting for the role they play in the problem of black hole microstate counting

[27]. However even for the simplest configurations with more than two centers, solving

integrability constraints to determine the full metric becomes a highly formidable task.

Hence, in this chapter, as a curiosity, we asked ourselves the question whether analytic

results could be obtained in some limiting cases of these geometries? And indeed

we found that such a limit exists in the form of a large n number of centers. In

this work we have constructed a continuum distribution of black holes and solved

integrability conditions towards obtaining the metric. Upon this continuum system

we have performed a multipole expansion to find smeared black hole geometries with

multipole moments.

Furthermore, as an interesting application of these continuum solutions, we have

constructed a levitating black hole solution. Our Black Hole Levitron stabilizes an

extremal black hole at a fixed location in an electromagnetic field produced by a con-

tinuous distribution. Our work is built-up using Denef et al’s multi-center solutions,

which by themselves are stable, stationary BPS solutions with non-local charges. Our

harmonic functions and integrability conditions can all be retrieved as special limits of

the discrete multi-center case. Therefore our levitating solutions also describe stable,

stationary configurations. This black hole construction very much resembles a mechan-

ical Levitron and it would be interesting to investigate if Berry’s mechanism can be

proven to apply to this set-up as well. And finally it would be of practical relevance
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(in future!) to construct solutions for non-extremal Black Hole Levitrons!

Other interesting directions might be further investigation into other applications

of the continuum limit of multi-center solutions. Compared to discrete-centered config-

urations, the smeared distribution lends itself to more viable computations. One may

ask what role these distributions play in microstate counting of multiple-black hole

geometries.
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Chapter 6

Testing OSV on a 2D q-Yang-Mills Dual

Life is what happens, while you’re busy making other plans

- John Lennon

Finally in this chapter, we arrive at the gauge theoretic side of the OSV conjec-

ture. The world-volume theory on the D-brane ensemble, comprising the black hole

bound state, localizes to a two dimensional q-deformed Yang-Mills theory on specific

Calabi-Yau backgrounds to be described below. An exactly solvable dual gauge theory

can serve as a useful tool for comparing with results in the bulk, thereby enabling a

check of the gauge/gravity correspondence itself. Moreover in certain cases, nonpertur-

bative completions of string theory too can be obtained by considering a holographic

description in terms of a D-brane gauge theory. In this chapter we conduct a through

investigation of this theory and its implications for string theory. In the process we dis-

cover a large N phase transition in the theory and also discuss its possible gravitational

interpretations.

In the case of topological strings, the OSV [129] proposal for a non-perturbative

completion was based on the connection to the black hole attractor mechanism. Ac-

cording to [129], the nonperturbative description of topological string theory on a

Calabi-Yau background is encoded in a D-brane gauge theory living on some appropri-

ate cycles of the manifold.

In [132, 94] this proposal was made more concrete by considering Calabi-Yau back-

grounds of the form

L1 ⊕ L2 → Σg, (6.0.1)

107
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where Σg is a Riemann surface of genus g and L1, L2 are line bundles such that deg(L1)+

deg(L2) = 2g − 2. In this case, the relevant D-brane gauge theory reduces to a q-

deformed version of two-dimensional Yang-Mills (YM) theory on the Riemann surface

Σg. q-deformed 2d YM can be regarded as a one-parameter deformation of the standard

2d YM theory. As we will explain below, the deformation can be parametrized by a real,

positive number p, in such a way that as p→ ∞ one recovers the standard YM theory.

The q-deformed theory is exactly solvable and one can compute its partition function

on any Riemann surface. This partition function has a strong coupling expansion as a

sum over representations of the gauge group, which can be written, following [113], in

terms of a product of a chiral and an antichiral sector. The perturbative topological

string partition function, which was computed in [101] for this class of geometries,

is given by a certain limit of this expansion in which the antichiral sector decouples.

Once we have a nonperturbative description of the theory, it is natural to ask what

new phenomena emerge in this description and what their implications are for string

theory. For example, in [107] the fermionic description of 2d YM on the torus was used

to study baby universes in string theory.

2d YM theory on the sphere exhibits an interesting phenomenon: as shown by

Douglas and Kazakov [109], there is a large N , third order phase transition at a critical

value of the area A = π2 between a large area phase and a small area phase. From the

point of view of the small area/weak coupling phase, the phase transition is triggered

by instantons [112]. From the point of view of the large area/strong coupling phase

and its string description in terms of branched coverings [111, 113], the transition

is triggered by the entropy of branch-point singularities [130]. Due to the Douglas-

Kazakov transition, the large area expansion of 2d YM theory on the sphere has a

finite radius of convergence [130].

In this project we study the possibility of large N phase transitions in q-deformed

2d YM. Since as the deformation parameter p goes to infinity we recover the usual

theory, it is natural to expect the transition to occur at large enough values of p. In

fact, our result show that the transition persists for all p > 2, and we find a critical line

smoothly connected to the Douglas-Kazakov transition of the standard 2d YM theory.

We also show that for p ≤ 2, in the regime of strong q-deformation, the phase transition
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does not occur. We also perform a detailed instanton analysis which shows that, as in

the standard YM case studied in [112], the transition is triggered by instanton effects.

Most of the analysis here is done in the small area phase. In 2d YM theory this

phase is described by a Gaussian matrix model. In the q-deformed case, this phase is

essentially described by the Chern-Simons or Stieltjes-Wigert matrix model introduced

in [125] and studied in [93, 130, 126]1. This model, albeit complicated, is exactly

solvable (in terms of, for example, orthogonal polynomials), and this is the underlying

reason that we can make exact statements about the location of the critical line and

the instanton contributions. The large area phase turns out to be more difficult to

handle. In this paper we present some preliminary results and derive the equations that

determine the full solution (including an explicit expression for the two-cut resolvent).

We expect the phase transition of the q-deformed theory to be of third order for p > 2,

since it is smoothly connected to the transition of Douglas and Kazakov, and indeed

we give indirect evidence that this is so.

As in the standard 2d YM, the existence of the phase transition in the q-deformed

version indicates that the large area expansion has a finite radius of convergence. Ac-

cording to [130, 94], this theory provides a nonperturbative description of topological

string theory on certain Calabi-Yau backgrounds. This suggests that the large area

expansion breaks down in the full topological string theory, and there is a phase tran-

sition between a small area phase and a large area phase. From the gauge theory point

of view, our analysis shows that when the q-deformation is strong enough, the model

exhibits a single phase. This suggests that q-deformations give a mechanism to smooth

out large N phase transitions.

The structure of this chapter is as follows: in section 3.1 we briefly review the

Douglas-Kazakov transition in 2d YM theory. In section 3.2 we determine the phase

diagram of the q-deformed theory and we find a line of critical points parametrized by

p, for p > 2. In section 3.3 we adapt the analysis of [112] and study the phase transition

of the q-deformed theory in terms of instantons in the weakly coupled phase. We find

an explicit expression for the one-instanton suppression factor which indicates that,

1Connections between Chern-Simons theory and q-deformed 2d Yang-Mills theory have been made,

from a different perspective, in [94] and [116].
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indeed, the transition is triggered by instanton effects. In section 3.4 we analyze the

large area phase, which can be encoded by standard techniques in a two-cut solution

to an auxiliary matrix model. Finally, in section 3.5, we discuss the implications of

our results for topological string theory and outline some problems opened by this

investigation.

6.1 The Douglas-Kazakov Transition

2d YM theory is an exactly solvable model. In particular, the partition function of the

U(N) theory on the sphere is given by a sum over representations of U(N) (see [105]

and references therein)

Z =
∑

R

(
dimR

)2
e−AC2(R)/2NeiθC1(R), (6.1.1)

where dimR is the dimension of the representation R, A is a real and positive parameter

that can be identified with the area of the sphere, and C1(R), C2(R) are the first and

second Casimir of R. We will represent R by a set of integers {l1, l2, · · · , lN} satisfying

the inequality

∞ ≥ l1 ≥ l2 ≥ · · · ≥ lN ≥ −∞. (6.1.2)

In terms of these integers, the Casimirs have the expression

C1(R) =

N∑

i=1

li,

C2(R) =
N∑

i=1

li(li − 2i+N + 1).

(6.1.3)

Although the above partition function looks rather simple, this theory turns out to

have a very rich structure. In [111, 113] it was shown that at large area the partition

function (6.1.1) admits a string representation in terms of branched coverings of Rie-

mann surfaces (see [105] for an excellent review). Douglas and Kazakov found that the

planar free energy on the sphere exhibits a third order phase transition at the critical

value

A∗ = π2. (6.1.4)
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This large N transition is a continuum analogue of the Gross-Witten-Wadia phase

transition for 2d YM theory on the lattice [114, 133]. Since in this paper we will be

considering a generalization of the Douglas-Kazakov phase transition, we will briefly

review how this transition is found. For the rest of this section we will set θ = 0.

At large N it is natural to introduce a distribution of Young tableaux

n(x) =
li
N
, x =

i

N
. (6.1.5)

Defining the shifted distribution

h(x) = −n(x) + x− 1

2
, (6.1.6)

one finds that the planar free energy is given by

F0(A) = −SG[h], (6.1.7)

where the functional SG[h] reads

SG[h] = −
∫ 1

0

dx

∫ 1

0

dy log |h(x) − h(y)| + A

2

∫ 1

0

dxh(x)2 − A

24
− 3

2
. (6.1.8)

Let us now introduce the density function

ρ(h) =
dx

dh
, (6.1.9)

which is normalized to unity, ∫
dh ρ(h) = 1. (6.1.10)

One crucial observation of [109] is that, because of the inequality (6.1.2), this density

has to satisfy

ρ(h) ≤ 1 (6.1.11)

for all h. We can now write (6.1.8) as

SG[ρ] = −
∫
dh

∫
dh′ ρ(h)ρ(h′) log |h− h′| + A

2

∫
dhρ(h)h2 − A

24
− 3

2
. (6.1.12)

This is (up to the ρ-independent terms) the saddle-point functional for a Gaussian

matrix model with ’t Hooft parameter t = 1/A. It then follows that the density ρ(h)

is given by Wigner’s semicircle law,

ρG(λ, t) =
1

2πt

√
4t− λ2, (6.1.13)
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and we find

ρ(h) = ρG(h, 1/A). (6.1.14)

However, it is clear that this solution can be valid only for A ≤ π2, since after this

point the inequality (6.1.11) is violated. This indicates that there is a phase transition

at the critical value (6.1.4).

−a a −a a−b b

A < π2 A > π2

11

Figure 6.1: This figure shows the density ρ(h) before and after the Douglas-Kazakov

transition. The solution for A ≥ π2 can be interpreted as a two-cut solution of an

auxiliary matrix model.

For A ≥ π2 the Gaussian solution is no longer valid, and Douglas and Kazakov

argued that one could obtain a solution for the large area phase by considering a a

density of eigenvalues of the form,

ρ(h) =






ρ̃(h), −a ≤ h ≤ −b, b ≤ h ≤ a,

1, −b ≤ h ≤ b,

(6.1.15)

where b < a are points in the real positive axis. From the point of view of the density

ρ(h), the Douglas-Kazakov transition can be represented as in Fig. 6.1: for A < π2 the

Gaussian density gives a good description, but as A ≥ π2 one finds a new density of the

form (6.1.15). It is easy to see that finding ρ̃(h) amounts to finding a two-cut solution

for a modified matrix model with a logarithmic potential. The explicit solution to

this problem was worked out in [109], and this allowed them to verify that the phase

transition at A = π2 is of third order. It was also verified that the large area solution

agrees with the string expansion of [113].

The mechanism behind the Douglas-Kazakov phase transition was further eluci-

dated in [127, 112, 104]. In particular, it was shown by Gross and Matytsin in [112]
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that the Douglas-Kazakov phase transition is driven by instantons. The small area

phase is dominated by the perturbative vacuum, and instantons are suppressed with

an exp(−N) factor. The one-instanton suppression factor at leading order in N was

computed in [112] to be given by

exp

[
−N
A
γGM(A)

]
, (6.1.16)

where

γGM(A) = 2π
√
π2 − A− A log

[
(π +

√
π2 −A)2

A

]
. (6.1.17)

Since γGM(A = π2) = 0, as we reach the critical point instantons are not anymore sup-

pressed and they trigger the phase transition, which is then a consequence of exp(−N)

effects which are not visible in the 1/N expansion.

6.2 The Phase Diagram of q-Deformed 2D YM

The q-deformed two-dimensional Yang-Mills theory arises as a natural deformation of

the usual model. This model has been considered in [102, 121] and more recently, in the

context of topological string theory, in [94]. The partition function of the q-deformed

theory on the sphere can be obtained by replacing the dimensions of representations

in (6.1.1) by their quantum counterpart, in the sense of quantum group theory. The

resulting partition function depends on the rank N of the gauge group, two real pa-

rameters, p, gs, and an angle θ. It reads,

Zq =
∑

R

(
dimqR

)2
qpC2(R)/2eiθC1(R), (6.2.1)

where the quantum dimension of R is given by

dimqR =
∏

1≤i<j≤N

[li − lj + j − i]

[j − i]
, (6.2.2)

and the q-numbers appearing here are defined as

[x] = q
x
2 − q−

x
2 , q = e−gs. (6.2.3)

The free energy of the model is defined as

F q =
1

N2
log Zq. (6.2.4)
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It is convenient to define the parameter A as

p gs =
A

N
. (6.2.5)

As we will see in a moment, A corresponds to the area of the sphere in (6.1.1). As in 2d

YM, we will require A to be positive. Notice that the q-deformed theory is symmetric

under p, gs → −p,−gs. Therefore, we can restrict ourselves to the range of parameters

p > 0, gs > 0.

An important property of the q-deformed theory is that in a suitable double-scaling

limit, one recovers ordinary 2D YM. This limit is defined as follows:

p −→ ∞, gs −→ 0, A, N fixed. (6.2.6)

As gs → 0 with N fixed, the quantum dimension becomes the classical dimension:

dimqR −→ dimR, (6.2.7)

and

qpC2(R)/2 −→ exp

(
−AC2(R)

2N

)
, (6.2.8)

which is the standard weight factor for 2d YM. We then recover the partition function

(6.1.1) for a sphere of area A. The q-deformed theory can then be regarded as a

one-parameter deformation of 2d YM.

In this paper we will be interested in the large N dynamics of the deformed theory.

It is useful to introduce the ’t Hooft parameter, which is defined as

t = Ngs, (6.2.9)

and we will consider the ’t Hooft large N limit in which N → ∞ and t and p are fixed.

The planar free energy

F q
0 (t, p) = lim

N→∞
F q (6.2.10)

will then be a function of t and p. Notice that the limit (6.2.6) that gives ordinary

Yang-Mills theory can be implemented order by order in the 1/N expansion by taking

p −→ ∞, t −→ 0, pt = A fixed. (6.2.11)
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In this way, we recover planar 2d YM on the sphere. We will check many of our results

for the q-deformed theory, by verifying that in the limit (6.2.11) one recovers the known

results in 2d YM.

In order to compute the planar free energy, we follow the steps outlined in the

previous section for the undeformed theory and represent the planar free energy in

terms of a functional of a distribution h(x), which is defined as in (6.1.6). It is easy to

see that in the large N limit the planar free energy derived from (6.2.1) is given by

F q
0 (t, p) = −S[h], (6.2.12)

where the functional S[h] reads

S[h] = −
∫ 1

0

dx

∫ 1

0

dy log |2 sinh
t

2
(h(x) − h(y))| + pt

2

∫ 1

0

dxh(x)2

+ iθ

∫ 1

0

dxh(x) − pt

24
+

∫ 1

0

dx

∫ 1

0

dy log |2 sinh
t

2
(x− y)|,

(6.2.13)

and in (6.2.12) S[h] is evaluated on the configuration h(x) which minimizes the above

functional. The last term in (6.2.13) comes from the denominator of the quantum

dimension and it is given by

∫ 1

0

dx

∫ 1

0

dy log |2 sinh
t

2
(x− y)| =

2

t2
FCS

0 (t), (6.2.14)

where

FCS
0 (t) =

t3

12
− π2t

6
− Li3(e

−t) + ζ(3). (6.2.15)

This function is the planar free energy of Chern-Simons theory [110], and we recall

that the polylogarithm of order n is given by

Lin(x) =

∞∑

k=1

xk

kn
. (6.2.16)

If we redefine

h(x) → h(x) +
iθ

tp
, (6.2.17)

the functional (6.2.13) becomes

S[h] = −
∫ 1

0

dx

∫ 1

0

dy log |2 sinh
t

2
(h(x) − h(y))| + pt

2

∫ 1

0

dxh(x)2

− pt

24
+

θ2

2pt
+

2

t2
FCS

0 (t).

(6.2.18)
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Since the inclusion of θ only leads to an additive term in the planar free energy, we

will set θ = 0 from now on. After introducing a density function ρ(h) as in (6.1.9), the

ρ-dependent part of the effective action can be written (6.2.13) as

S[ρ] = −
∫
dh

∫
dh′ ρ(h)ρ(h′) log |2 sinh

t

2
(h− h′)| + pt

2

∫
dhρ(h)h2. (6.2.19)

As explained in the previous section, to see if there is a phase transition one first

solves for the ρ(h) that extremizes (6.2.19), assuming a one-cut structure. In order to

compute ρ(h), we have to solve the integral equation derived from (6.2.19),

ph = P

∫
dh′ρ(h′) coth

t

2
(h− h′), (6.2.20)

where P denotes principal value. The density ρ(h) is supported on a symmetric interval

(−a, a). A similar integral equation appears in the saddle-point analysis of the Chern-

Simons matrix model on the three-sphere [125, 93, 126]. In fact, after the change of

variables β = th, (6.2.19) becomes the planar functional for the Chern-Simons matrix

model

ZN =

∫ N∏

i=1

dβi
2π

∏

i<j

(
2 sinh

βi − βj
2

)2

exp
{
−N

2ξ

N∑

i=1

β2
i

}
, (6.2.21)

with ’t Hooft parameter ξ = t/p. This connection suggests an effective way of solving

(6.2.20). As in [93, 131, 126], we change variables

λ = eth+t/p, (6.2.22)

and we introduce the density for the new variable λ,

ρ(λ) =
dh

dλ
ρ(h) =

1

tλ
ρ(h). (6.2.23)

The integral equation (6.2.20) becomes

1

2

p

t

log λ

λ
= P

∫
dλ′

ρ(λ′)

λ− λ′
. (6.2.24)

This is exactly the saddle-point equation for the Chern-Simons/Stieltjes-Wigert matrix

model, and we can solve it in a variety of ways [93, 115, 126]. The direct computation

performed in [126] is the most convenient one in view of the two-cut solution that we

will introduce later, so let us briefly review it. As usual, we introduce a resolvent

ω0(λ) =

∫
dλ′

ρ(λ′)

λ− λ′
, (6.2.25)
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which due to the normalization (6.1.10) and the redefinition (6.2.23), satisfies the

following asymptotic behaviour

ω0(λ) =
1

λ
+ O(λ−2), (6.2.26)

as λ→ ∞. The density ρ(λ) is recovered from the resolvent ω0(λ) through the standard

equation

ρ(λ) = − 1

2πi

(
ω0(λ+ iǫ) − ω0(λ− iǫ)

)
. (6.2.27)

We are looking for a one-cut solution to the problem, therefore we assume that the

density of eigenvalues is supported in the interval (a−, a+), where

a± = e±ta+t/p. (6.2.28)

It is well known that ω0(λ) can be computed as [128]

ω0(λ) = r(λ)

∮

C

dz

2πi

g(z)

(λ− z)r(z)
, (6.2.29)

where C is a contour around the cut (a−, a+), and

g(λ) =
p

2t

log λ

λ
, r(λ) =

√
(λ− a−)(λ− a+). (6.2.30)

+aa−

Figure 6.2: This figure shows the deformation of the contour needed to compute the

resolvent in (6.2.29). We pick a residue at z = p, and we have to encircle the singularity

at the origin as well as the branch cut of the logarithm, which on the left hand side is

represented by the dashed lines.

The standard way to compute an integral like (6.2.29) is to deform the contour.

Since the logarithm has a branch cut, we cannot push the contour to infinity. Instead,
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we deform the contour as indicated in Fig. 6.2. We pick a pole at z = λ, and then we

surround the cut of the logarithm along the negative real axis and the singularity at

z = 0 with a small circle Cǫ of radius ǫ. A similar situation appears in, for example,

[119]. The final formula for the resolvent is

ω0(λ) =
p

2t

log λ

λ
− p

2t
r(λ) lim

ǫ→0

{
−
∫ −ǫ

−∞

dz

z(z − λ)r(z)
+

∮

Cǫ

dz

2πi

log z

z(z − λ)r(z)

}
. (6.2.31)

The integrals in the second line have log ǫ singularities as ǫ → 0, but they cancel each

other, and after some computations one finds for the resolvent:

ω0(λ) = − p

2tλ
log

[
(
√
a−

√
λ− a+ −

√
a+

√
λ− a−)2

(
√
λ− a− −

√
λ− a+)2λ2

]

+
p

2tλ
r(λ)

1√
a−a+

log

[
4a−a+

2
√
a−a+ + a− + a+

]
.

(6.2.32)

In order to satisfy the asymptotics (6.2.26) the second term must vanish, and the first

one must go like 1/λ. This implies

4a−a+ =2
√
a−a+ + a− + a+,

√
a− +

√
a+ =2et/p,

(6.2.33)

and from here we obtain the positions of the endpoints of the cut a−, a+ as a function

of t/p:

a− =2e2t/p − et/p − 2e
3t
2p

√
et/p − 1,

a+ =2e2t/p − et/p + 2e
3t
2p

√
et/p − 1.

(6.2.34)

The final expression for the resolvent is then

ω0(λ) = − p

tλ
log

[
1 + e−t/pλ+

√
(1 + e−t/pλ)2 − 4λ

2λ

]
, (6.2.35)

and from here we easily find the density of eigenvalues

ρ(λ) =
p

πtλ
tan−1

[√
4λ− (1 + e−t/pλ)2

1 + e−t/pλ

]
. (6.2.36)

We can now go back to the original variable h, to find

ρ(h) =
p

π
tan−1

[
√
eA/p2 − cosh2(Ah/(2p))

cosh(Ah/(2p))

]
, (6.2.37)
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which has its support on (−a, a) with

a =
2p

A
cosh−1(eA/(2p

2)). (6.2.38)

As a test of this result, notice that in the double-scaling limit (6.2.11) one finds

ρ(h) = ρG(h, 1/A) + O(1/p2), (6.2.39)

therefore the leading term is exactly the Wigner semi-circle distribution obtained by

[109].

In order to assess the possibility of phase transitions, we have to verify the condition

(6.1.11). Notice first that | tan−1(x)| ≤ π
2
, therefore

ρ(h) ≤ p/2 (6.2.40)

for all h. A first conclusion is that there is no phase transition for p ≤ 2. For p > 2

there is indeed a phase transition which occurs when the value of A is such that the

maximum of the distribution reaches the value 1. Since the maximum occurs at h = 0,

we immediately find the following line of critical points:

A∗(p) = p2 log

(
1 + tan2

(π
p

))
, p > 2. (6.2.41)

As p→ ∞,

A∗(p) → π2, (6.2.42)

in agreement with the result of Douglas and Kazakov (6.1.4). Notice that A∗(p) is a

decreasing function of p for p > 2, and as p→ 2+, the critical area increases to infinity.

For a given p, the small area phase occurs for A ≤ A∗(p), and in this phase the planar

free energy is well described by the distribution (6.2.37).

We then have the phase diagram represented in Fig. 6.3. The horizontal axis rep-

resents the parameter p, while the vertical axis represents A. The critical line, de-

scribed by the function (6.2.41), has two asymptotes, represented by dashed lines: as

p → ∞ it approaches the horizontal dashed line A = π2, which corresponds to the

Douglas-Kazakov phase transition. As p → 2+ it approaches the vertical asymptote.

For p ∈ (0, 2] there is no phase transition. Notice that, if we parametrize the planar

q-deformed theory in terms of p and A, the region p → ∞ corresponds to a small
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Figure 6.3: This figure represents the phase diagram of q-deformed 2d YM theory. The

horizontal axis represents the parameter p, while the vertical axis represents A. The

curve shown in the figure is the critical line (6.2.41), which separates the phases of

small and large area. The horizontal dashed line, which is the asymptote of the curve

as p→ ∞, represents the A = π2 critical point of Douglas and Kazakov.

deformation, while the region p < 2 corresponds to a large deformation. We then see

that, if we start with ordinary 2d YM and we turn on the deformation parameter 1/p,

the Douglas-Kazakov phase transition persists although the critical area increases. At

p = 2 there is a “barrier” where the critical area becomes infinite. Therefore, when the

deformation parameter is large enough, the large N phase transition is smoothed out.

To find the free energy in the small area phase, we have to compute the functional

(6.2.19) evaluated on the density (6.2.37). Since this functional is closely related to

the functional describing the planar Chern-Simons matrix model, we can borrow the

results from [110, 126]. From [126] it follows that, at large N , the matrix integral

(6.2.21) is given by

exp
(
N2F0(ξ)

)
, (6.2.43)

with

F0(ξ) =
1

ξ2
FCS

0 (ξ) +
ξ

12
. (6.2.44)

Since ξ = t/p in our example, we finally obtain

F q
0 (t, p) =

1

t2

(
p2FCS

0 (t/p) − 2FCS
0 (t)

)
+

t

12p
+
pt

24
. (6.2.45)
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As a further check of this expression, notice that, after using the expansion,

Li3(e
−t) = ζ(3) − π2

6
t+
(3

4
− 1

2
log t

)
t2 + O(t3), (6.2.46)

one finds in the double-scaling limit (6.2.11)

F q
0 (t, p) → A

24
− 1

2
log A+

3

4
, (6.2.47)

which indeed is the free energy of the usual 2d YM theory in the small area phase.

6.3 Instanton Analysis

Since q-deformed 2d YM theory is a one-parameter deformation of the standard one,

we expect the phase transition discovered in the previous section to be triggered by

instantons as well. In this section we will verify this by computing the one-instanton

suppression factor in the q-deformed case. This will also give an intuitive explanation

of why the phase transition is absent for p ≤ 2.

The starting point of the discussion is to write the partition function of the theory

in a way that makes manifest the instanton content of the model. Since q-deformed 2d

YM theory has the same action as standard 2d YM, but differs in the measure [94], we

expect the partition function to be expressed in terms of a sum over instantons,

Zq =
∑

nj

w(nj) exp

(
−2π2N

A

N∑

j=1

n2
j

)
, (6.3.1)

where nj , j = 1, · · · , N , are the instanton numbers characterizing a classical solution

[112], and w(ni) is the weight of such a configuration in the semiclassical expansion.

In order to compute the weights w(nj), we follow the technique used by Minahan and

Polychronakos [127] in standard 2d YM and perform a Poisson resummation of the

original expression (6.2.1). This can be regarded as a duality transformation which

takes us from the large A phase where the expansion (6.2.1) is valid, to the small area

phase where the semiclassical expansion (6.3.1) is valid. The partition function can

then be written as

Zq = C
∑

nj

F2(2πnj), (6.3.2)
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where F2(xj) is a Fourier transform with respect to the variables pj = lj − j + 1/2:

F2(xj) =

∫ ∏

j

dpje
−i

P

j xjpj

∏

j<k

(
2 sinh

t

N
(pj − pk)

)2

exp
(
− A

2N

∑

j

p2
j

)
, (6.3.3)

and we are setting the θ angle to zero. This transform can be performed by first

computing

F1(xj) =

∫ ∏

j

dpje
−i

P

j xjpj

∏

j<k

(
2 sinh

t

N
(pj − pk)

)
exp
(
− A

2N

∑

j

p2
j

)
, (6.3.4)

and then doing a convolution. The integral (6.3.4) reduces to a Gaussian after using

Weyl’s denominator formula for a general Lie algebra,

∑

w∈W
ǫ(w)ew(ρ)·u =

∏

α>0

2 sinh
α · u

2
, (6.3.5)

where α are the positive roots, w ∈ W are the elements of the Weyl group, and ǫ(w)

is the parity of w. We find, up to a multiplicative constant,

F1(xj) = exp
(
− N

2A

N∑

j=1

x2
j

)∏

j<k

2 sin
t

2A
(xj − xk), (6.3.6)

and using convolution we finally obtain

F2(xj) = exp
(
− N

2A

N∑

j=1

x2
j

)

×
∫ N∏

j=1

dyj
∏

j<k

(
4 sin

t

2A
(xjk + yjk) sin

t

2A
(xjk − yjk)

)
exp
(
− N

2A

N∑

j=1

y2
j

)
,

(6.3.7)

where we introduced the notation xjk = xj − xk. The instanton weight has then the

expression

w(nj) =

∫ N∏

j=1

dyj
∏

j<k

(
4 sin

t

2A
(2πnjk + yjk) sin

t

2A
(2πnjk − yjk)

)
exp
(
− N

2A

N∑

j=1

y2
j

)
,

(6.3.8)

which is a q-deformed version of the result in [127] for standard 2d YM.

As it was pointed out in [112], a precise way to evaluate the importance of in-

stanton contributions to the partition function is to compare the contribution of the

one-instanton term in the semiclassical expansion (6.3.1) to the contribution of the
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perturbative vacuum. The relative weight of these contributions defines a function

γ(A, p) as follows

exp
[
−N
A
γ(A, p)

]
= exp

(
−N 2π2

A

)
w1

w0

, (6.3.9)

where the exponent in the right hand side involves the instanton action for n1 =

1, ni>1 = 0, and we have denoted

w1

w0
=
w(1, 0, · · · , 0)

w(0, · · · , 0)
. (6.3.10)

We call the function in (6.3.9) the one-instanton suppression factor. Notice that, as

long as γ(A, p) is different from zero, instantons will be suppressed in the large N limit.

The suppression is bigger the larger γ(A, p) is. In the remaining of this section, we will

compute γ(A, p) in the small area phase of q-deformed 2d YM, and we will study its

properties.

Let us first define the partition function

ZN =

∫ N∏

j=1

dyj
∏

j<k

(
2 sin

t

2A
(yj − yk)

)2

exp
(
− N

2A

N∑

j=1

y2
j

)
. (6.3.11)

This is very close to the partition function of the Chern-Simons matrix model, although

it has a sin interaction between eigenvalues instead of a sinh interaction. We can then

use the results of the previous section after changing

p→ −i p
A
, A→ 1

A
, (6.3.12)

and doing carefully the analytic continuation of p to the imaginary axis. Equivalently,

we can change variables y = −iAβ/t in (6.3.11) to obtain the matrix model (6.2.21)

with ξ = −A/p2. One can then see from the formulae presented in the last section

that the planar limit of (6.3.11) is controlled by the following density of eigenvalues,

ζ(y) =
p

πA
tanh−1

[√
cos2(y/(2p)) − e−A/p2

cos(y/(2p))

]
, (6.3.13)

with endpoints located at

Y = 2p cos−1(e−A/(2p
2)). (6.3.14)

As p→ ∞, one can easily check that ζ(y) → ρG(y, A).
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We can now evaluate (6.3.10). Notice first that w0 = ZN . On the other hand, as in

[112], one has

w1 =

ZN−1

∫ ∞

−∞
dy1e

− N
2A
y21

〈 N∏

j=2

(
4 sin

1

2p

(
2π + (yj − y1)

)
sin

1

2p

(
2π − (yj − y1)

))〉
N−1

,

(6.3.15)

where the correlator is computed in the model (6.3.11) with N − 1 variables. Since we

are interested in the large N behavior of the one-instanton suppression factor, we can

compute the different integrals in the saddle-point approximation. This in particular

means that we can set y1 = 0 inside the correlator in (6.3.15). We find,

w1

w0

=

(
2πA

N

)1/2
ZN−1

ZN
exp

{
(N − 1)

∫
dyζ(y) log

(
4 sin

1

2p
(2π + y) sin

1

2p
(2π − y)

)}
.

(6.3.16)

We have first to evaluate the quotient ZN−1/ZN in the large N limit. It is easy to see

that, at leading order in N , this quotient is

exp
{
−N(2F0(ξ) + ξF ′

0(ξ))
}
, (6.3.17)

where F0(ξ) is given in (6.2.44). Here, ξ = −A/p2, and after an analytic continuation

ξ → −ξ we find,

2F0(ξ) + ξF ′
0(ξ) =

p2

A

(
Li2(e

−A/p2) − π2

6

)
, (6.3.18)

up to an overall sign (−1)N in ZN−1/ZN . Putting everything together, we obtain the

following formula for the function γ(A, p) defined in (6.3.9):

γ(A, p) =2π2 + p2
(
Li2(e

−A/p2) − π2

6

)

−A

∫
dyζ(y) log

(
4 sin

1

2p
(2π + y) sin

1

2p
(2π − y)

)
.

(6.3.19)

The integral in (6.3.19) can be evaluated analytically. Notice first that in any matrix

model one has

F (v) ≡
∫
dλρ(λ) log

(
1 − λ/v

)
=

∫ v

∞
dv′
(
ω0(v

′) − 1/v′
)
. (6.3.20)

This follows directly from the definition of the resolvent in (6.2.25). Taking into account

the redefinition (6.3.12), we find that the integral in (6.3.19) is given by

2ReF (e−A/p
2+2πi/p), (6.3.21)
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where F (v) is obtained as in (6.3.20), and the relevant resolvent is (6.2.35). After

some work, and using standard identities for the dilogarithm, one finds the following

expression:

γ(A, p) =2π2 − p2
(
Li2(e

−A/p2) +
π2

6

)
+ 2p2ReG(f+(p, A), f−(p, A)), (6.3.22)

where

G(x, y) =
1

2
(log x)2 + log x log (1 − y) + Li2(1 − x) + Li2(y),

f±(p, A) = exp
(
±A/(2p2) + i(ϕ− π/p)

)
,

ϕ = tan−1

(√
e−A/p2 − cos2(π/p)

cos(π/p)

)
.

(6.3.23)

5 10 15 20

2.5

5

7.5

10

12.5

15

17.5

20

Figure 6.4: This figure shows the function γ(A, p) appearing in the one-instanton

suppression factor, plotted as a function of A, and for the values p = 2.1, 3,∞, from

top to bottom. For each p it is a decreasing function of the area and vanishes at the

critical value A∗(p).

In order to understand the properties of the instanton suppression factor, we have

studied (analytically and numerically) the properties of (6.3.22) as a function of A and

p for p > 2, A ≤ A∗(p). The main results of this analysis are the following:

1. As p → ∞, the function γ(A, p) becomes the function γGM(A) introduced in

(6.1.17). This is a consistency check of the solution.

2. For any fixed p > 2, γ(A, p) takes the value 2π2 at A = 0 and then it decreases
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monotonically as the area is increased. At the critical area (6.2.41) one has

γ(A∗(p), p) = 0. (6.3.24)

The vanishing of γ(A, p) at the critical area can be proved analytically, since at A =

A∗(p),

f±(p, A∗(p)) =
(
cos(π/p)

)∓1

e−iπ/p. (6.3.25)

For arguments of this form (which are algebraic numbers) the dilogarithm satisfies

nontrivial identities [120] that can be easily shown to lead to (6.3.24).

3. For p < p′, one has that γ(A, p) > γ(A, p′) in their common range A ≤ A∗(p
′).

These properties are illustrated in Fig. 6.4, which shows the function γ(A, p) as a

function of the area for the values p = 2.1, 3,∞, from top to bottom. The above prop-

erties show that the one-instanton suppression factor in the small area phase decreases

as the area grows, until it vanishes at A∗(p). Therefore, at the line of critical points

found in section 3, the instantons are not suppressed anymore and they become favor-

able configurations. This shows that the phase transition for the q-deformed theory is

indeed triggered by instantons, and follows a mechanism similar to the one studied in

[112]: for A > A∗(p), the entropy of the instantons dominates over their Boltzmann

weight. The above analysis also shows that, as p decreases, the instanton suppression

factor becomes bigger and bigger, pushing the critical value of the area to ever larger

values. This indicates that the smoothing out of the phase transition for p ≤ 2 is due

to the fact that the instantons are suppressed for all values of A and we only have one

phase dominated by the perturbative vacuum ni = 0.

6.4 The Two-Cut Solution

In this section we give some preliminary results about the large area phase of the

theory. After the phase transition found in section 3, we expect a distribution ρ(h) a

la Douglas-Kazakov, with the shape shown in the r.h.s. of Fig. 6.1 and characterized

by two points â, b̂. The distribution governing the large area distribution is then of the
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form

ρ(h) =





ρ̃(h), −â ≤ h ≤ −b̂, b̂ ≤ h ≤ â,

1, −b̂ ≤ h ≤ b̂.

(6.4.1)

After changing variables λ = exp(th+ t/p) as in the previous section, the new density

of eigenvalues ρ̃(λ) = 1/(tλ)ρ̃(h) has support on the two intervals (a−, b−), (b+, a+),

where

a± = et/p±tâ, b± = et/p±tb̂. (6.4.2)

This density satisfies the following integral equation,

g(λ) ≡ p

2t

log λ

λ
+

1

tλ
log

λ/b+ − 1

λ/b− − 1
= P

∫
ρ̃(λ′)

λ− λ′
dλ′ (6.4.3)

a− b− b+ a+
b− b+

Figure 6.5: This figure shows the deformation of the contour needed to compute the

resolvent in the two-cut solution. We have to encircle the singularity at the origin, and

the two branch cuts denoted by thick lines on the left.

As in the one-cut case, we introduce a resolvent

ω̃0(λ) =

∫
ρ̃(λ′)

λ− λ′
dλ′. (6.4.4)

This can be again computed by the contour integral (6.2.29), but now

r(z) =
√

(z − a−)(z − a+)(z − b−)(z − b+). (6.4.5)

and C is the union of the contours surrounding the cuts (a−, b−), (a+, b+). To perform

the integral (6.2.29) we deform the contours in the way shown in Fig. 6.5: we now

encircle the branch cut along (−∞, 0), coming from logλ, and the branch cut of the
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integrand along (b−, b+). The answer for the resolvent is

ω̃0(λ) =
p

2t

log λ

λ
+

1

tλ
log

λ/b+ − 1

λ/b− − 1

− r(λ)
p

2t
lim
ǫ→0

{
−
∫ −ǫ

−∞

dz

z(z − λ)r(z)
+

∮

Cǫ

dz

2πi

log z

z(z − λ)r(z)

}

+
r(λ)

t

∫ b+

b−

dz

z(z − λ)r(z)
.

(6.4.6)

The above integrals can be expressed in terms of elliptic functions. We will change

notation a−, b−, b+, a+ to d, c, b, a. Define

I(λ, u) ≡
∫ d

u

dz

(z − λ)r(z)

=
2

(λ− c)(λ− d)
√

(a− c)(b− d)

{
(c− d)Π(φ, n, k) + (d− λ)F (φ, k)

}
,

(6.4.7)

where Π(φ, n, k) and F (φ, k) are incomplete elliptic integrals of the third and the first

kind, respectively, and

sin2 φ =
(a− c)(d− u)

(a− d)(c− u)
, n =

(a− d)(λ− c)

(a− c)(λ− d)
, k2 =

(b− c)(a− d)

(a− c)(b− d)
. (6.4.8)

In what follows it will be convenient to introduce the following angles φ1, φ2 and

variables n1 and n2:

sin2 φ1 =
a− c

a− d
, sin2 φ2 =

d

c

a− c

a− d
,

n1 =
a− d

a− c
, n2 =

c

d

a− d

a− c
.

(6.4.9)

In terms of these variables one finds,

I(λ,−∞) =
2

(λ− c)(λ− d)
√

(a− c)(b− d)

{
(c− d)Π(φ1, n, k) + (d− λ)F (φ1, k)

}
,

I(λ, 0) =
2

(λ− c)(λ− d)
√

(a− c)(b− d)

{
(c− d)Π(φ2, n, k) + (d− λ)F (φ2, k)

}
,

I(0,−∞) =
2

cd
√

(a− c)(b− d)

{
(c− d)Π(φ1, n2, k) + dF (φ1, k)

}
.

(6.4.10)

The first integral in the second line of (6.4.6) is given by

1

λ

(
I(λ,−∞) − I(λ, 0) − I(0,−∞) + I(0,−ǫ)

)
. (6.4.11)
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The second integral in the second line is simply a residue and it can be computed

immediately:

−1

λ

1√
abcd

log ǫ. (6.4.12)

We now compute I(0,−ǫ) at next-to-leading order in ǫ. This will have a logarithmic

singularity which will cancel (6.4.12). In order to do that, we need the following identity

[100]:

Π(φ, n, k) = δ(n)

{
1

2
log

ϑ1(v + β)

ϑ1(v − β)
− ϑ′4(β)

ϑ4(β)
v

}
, (6.4.13)

where

δ(n) =

(
n

(1 − n)(k2 − n)

) 1
2

, v =
F (φ, k)

2K(k)
, β =

F (sin−1(n− 1
2 ), k)

2K(k)
, (6.4.14)

and the τ parameter in the theta functions is given as usual by

q = e2πiτ = exp(−πK ′(k)/K(k)). (6.4.15)

Notice that, when

sin2 φ =
1

n
(6.4.16)

we have a logarithmic singularity in the elliptic integral Π(φ, n, k). This is immediately

checked in the integral representation of the elliptic function2. We can now use (6.4.13)

to extract the next-to-leading behavior. Since

sin2 φ =
a− c

a− d

d+ ǫ

c + ǫ
, n = n2, (6.4.17)

the leading behaviour of Π(φ, k, n2) is given by

δ(n2)

(
−β2

ϑ′4(β2)

ϑ4(β2)
+

1

2
log

ϑ1(2β2)

ϑ′1(0)
− 1

2
log
(c− d

4cd
δ(n2)

)
+

1

2
log K(k)

)

− δ(n2)

2
log ǫ+ O(ǫ),

(6.4.18)

where β2 is given by

β2 =
F (φ2, k)

2K(k)
. (6.4.19)

This leads to the following expression

I(0,−ǫ) = − 1√
abcd

log ǫ+ I(0, 0) + O(ǫ), (6.4.20)

2Notice that in the conventions we are using the n in Π(φ, n, k) corresponds to −n in the definition

given in [100].
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where

I(0, 0) =
1√
abcd

(
−2β2

ϑ′4(β2)

ϑ4(β2)
+ log

ϑ1(2β2)

ϑ′1(0)
+ log

(c− d

4cd
δ(n2)

)
− log K(k)

)

+
2

c
√

(a− c)(b− d)
F (φ2, k).

(6.4.21)

From the above result we see that the singularities as ǫ→ 0 cancel, as wished.

We now consider the remaining integral. Define

J(λ) ≡
∫ b

c

dz

(z − λ)r(z)

=
2

(λ− a)(λ− b)
√

(a− c)(b− d)

{
(a− b)Π(m, k) + (b− λ)K(k)

}
,

(6.4.22)

where

m =
(b− c)(λ− a)

(a− c)(λ− b)
. (6.4.23)

We then have, ∫ b

c

dz

(z − λ)zr(z)
=

1

λ

(
J(λ) − J(0)

)
, (6.4.24)

where J(0) is given explicitly as

J(0) =
2

ab
√

(a− c)(b− d)

{
(a− b)Π(m(0), k) + bK(k)

}
. (6.4.25)

Putting everything together, we find the following expression for the resolvent:

ω̃0(λ) =
p

2t

log λ

λ
+

1

tλ
log

λ/b− 1

λ/c− 1

+
pr(λ)

2tλ

(
I(λ,−∞) − I(λ, 0) − I(0,−∞) + I(0, 0)

)

+
r(λ)

tλ

(
J(λ) − J(0)

)
.

(6.4.26)

As λ → ∞, this is indeed a Laurent series in λ: using again (6.4.13) it is easy to see

that I(λ,−∞) contains a term of the form − log(λ)/r(λ) that cancels against the first

term in (6.4.26). In order to derive the conditions for the endpoints of the cut, we must

impose the asymptotic behaviour

ω̃0(λ) =
1 − 2b̂

λ
+ O(λ−2). (6.4.27)

We find three conditions. First of all, notice that there is a term of order λ coming

from the integrals I(0, 0), I(0,−∞), and J(0). Imposing the cancellation of this term,
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one obtains the condition

p(I(0, 0) − I(0,−∞)) − 2J(0) = 0. (6.4.28)

The vanishing of the constant term leads to the condition

p
(
F (φ2, k) − F (φ1, k)

)
= 2K(k), (6.4.29)

Finally, the fact that the 1/λ term has the coefficient 1− 2b̂ leads to a third condition,

p

(
(a + b+ d− c)(F (φ1, k) − F (φ2, k)) − 2(c− d)Π(φ2, n1, k)

+
√

(a− c)(b− d)
(
−2β1

ϑ′4(β1)

ϑ4(β1)
+ log

ϑ1(2β1)

ϑ′1(0)
− log

(c− d

4
δ(n1)

)
− log K(k)

))

+ 2(b+ d+ c− a)K(k) + 2(d− b)Π(m∞, k) = t,

(6.4.30)

where

β2 =
F (φ2, k)

2K(k)
, m∞ =

b− c

a− c
. (6.4.31)

These conditions determine the endpoints â, b̂ as functions of the parameters t, p. We

seem to have three conditions for two unknowns, but since we started with a symmetric

problem and we just changed variables, one of the conditions is redundant. This is

not easy to verify from the above expressions, but can be checked, for example, by

doing a small t expansion of the equations, and assuming a power series ansatz for the

endpoints:

â(t, A) =
∞∑

n=0

ân(A) tn, b̂(t, A) =
∞∑

n=0

b̂n(A) tn. (6.4.32)

The ansatz is justified by the fact that, as t → 0 with A fixed, we must recover the

standard YM result obtained in [109]. One can see that, at leading order in t, the three

conditions above lead to the same equation, namely

â0 + b̂0
2

A = 2K(k0), (6.4.33)

where

k2
0 =

4â0b̂0

(â0 + b̂0)2
. (6.4.34)
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Using standard properties of elliptic functions, one can easily check that this condition

becomes

A =
4

â0
K(b̂0/â0), (6.4.35)

which is precisely one of the equations found in [109]. Notice that, by making use of

(6.4.28), we can simplify the expression of the resolvent to

ω̃0(λ) =
p

2t

log λ

λ
+

1

tλ
log

λ/b− 1

λ/c− 1

+
pr(λ)

2tλ

(
I(λ,−∞) − I(λ, 0)

)
+
r(λ)

tλ
J(λ).

(6.4.36)

In principle, the above conditions for â, b̂, together with the explicit expression for the

resolvent in (6.4.36), determine completely the solution for the large area phase. These

conditions are rather intricate to be treated analytically, but one could study them

numerically.

The most important question to address is the order of the phase transition for

different values of p. This of course can be seen, as in [109], by computing the free

energy in the large area phase that we have just analyzed. Since the line of critical

points is smoothly connected to the Douglas-Kazakov transition, we should expect the

transition in the q-deformed theory to be of third order for any p > 2. Indeed, one

can find indirect evidence that this is the case by using an argument in [112] based on

double-scaling limits. If we consider a theory with a large N n-th order phase transition

at a critical area A = A∗ between phases I and II, the free energy has the following

behaviour

F I
0(A) − F II

0 (A) ∼ (A∗ − A)n. (6.4.37)

To define a double-scaling limit of such a theory, one should introduce a string coupling

constant µs through

µ−2
s = N2(A∗ −A)n. (6.4.38)

The nonperturbative effects of such a theory are expected to be of the form exp(−1/µs).

But this means that the instanton effects in the original theory should have the be-

haviour exp(−Nγ(A)), with

γ(A) ∼ (A∗ − A)n/2. (6.4.39)
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Indeed, in [112] it is found that the function (6.1.17) appearing in the instanton sup-

pression factor has exactly the behaviour (6.4.39) with n = 3 near the Douglas-Kazakov

transition point, as required for the existence of a double-scaling limit at a third order

phase transition. According to this argument, the behaviour of the instanton suppres-

sion factor near the critical point can be indeed regarded as an indirect way to probe the

order of the phase transition. We have checked numerically that the function γ(A, p)

that we found in (6.3.22) behaves indeed as

γ(A, p) ∼ (A∗(p) − A)3/2 (6.4.40)

near A∗(p), for various values of p > 2. This is indeed consistent with the large N

phase transition of the q-deformed theory being of third order for all p > 2.

We should also mention that, in [96], general criteria have been formulated to

determine the order of a phase transition for a model based on a distribution of Young

tableaux. These criteria only depend on the behavior of the density (6.2.37) in the

small area phase. It can be easily seen that according to these criteria, the phase

transition of the q-deformed theory is of third order for any p > 2.

6.5 Conclusions and Outlook

In this chapter we have shown that q-deformed 2d YM theory exhibits an interesting

phase structure, with a Douglas-Kazakov phase transition smoothly connected to that

of the standard YM theory, and a “barrier” at p = 2. One of the original motivations

of this analysis was the appearance of the q-deformed theory as a nonperturbative

completion of topological string theory on certain Calabi-Yau backgrounds. q-deformed

2d YM on the sphere has been proposed in [132, 94] as a nonperturbative, holographic

description of topological strings on the local Calabi-Yau manifold

O(−p) ⊕O(p− 2) → P1, (6.5.41)

where the integer number p > 0 corresponds to the parameter p appearing in (6.2.1).

Explicit computations in [94] show that the perturbative partition function computed in

[101] appears as a certain decoupling limit of the large area expansion of the q-deformed
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theory. However, the fact that this theory exhibits a phase transition suggests that,

for geometries of the form (6.5.41) with p > 2, the large area expansion has a finite

radius of convergence which, in terms of the ‘t Hooft parameter t, is given by t∗(p) =

A∗(p)/p. As p becomes larger, the radius of convergence becomes smaller. Therefore,

the conjecture of [129] suggests that for the geometries (6.5.41) with p > 2, there will be

a phase transition at small radius in the full, nonperturbatively completed topological

string theory. What are the possible interpretations of this phase transition in the

topological string theory context? We will mention here three possibilities, although a

better understanding of the implications of the phase transition of q-deformed YM to

nonperturbative topological strings will require a more detailed treatment:

1. A first possibility is that the phase transition in the q-deformed theory indicates

a topology change in the Calabi-Yau background. After all, the small and the large

area phases are described by different master fields of the two-dimensional theory,

corresponding to the one-cut and two-cut solutions discussed above, and it is known

that in large N dualities the master field encodes the geometry of the target [108, 93].

This topology change might be also interpreted, as in [107], in terms of a process

involving a splitting of baby universes.

2. A second possibility is that the small area phase does not have a geometric

interpretation. One indication of that is the string description of standard 2d YM:

the analysis of [111, 113] shows that the large area expansion has an interpretation

in terms of branched coverings of the sphere. However, it has been argued that the

existence of a large N phase transition suggests that this geometric picture does not

hold for the small area phase [112]. In the same vein, it is likely that the small area

phase of the q-deformed theory is not described appropriately by topological strings

with a geometric target. This is in fact very reminiscent of the analysis of [98] (see also

[99, 97]), where it was shown that the large N phase transition of the unitary matrix

model corresponds, in AdS/CFT at finite temperature, to the point where the horizon

of the small AdS black hole becomes comparable to the string scale. At this point,

the supergravity/geometry picture breaks down. The situation we are considering here

could be a topological string analogue of the large N transition of [98].

3. A more conservative possibility is that the conjecture of [129] does not fully apply
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to the local geometries (6.5.41) when p > 2, or at least does not apply to the small

area phase. The original conjecture was formulated for compact Calabi-Yau threefolds,

and there may be subtleties when applying it to the noncompact case. It turns out

that precisely for p > 2 there are obstructions for contracting the P1 inside (6.5.41) to

a point [123, 118], and because of this reason one can expect these geometries not to

arise as a decompactification limit of a compact Calabi-Yau. It is intriguing that the

“barrier” p = 2 that we found in this paper is the same that occurs in the geometric

setting.

In extracting the consequences of our analysis for the nonperturbative physics of

topological strings, there is another point that should be mentioned. In our analysis we

considered the saddle-point solution of the functional S[h], and we found that this leads

to a distribution where 〈h〉 = 0 and the dependence on the θ angle is trivial. However,

it has been argued in [117], by studying the instanton weight factors, that the presence

of a nonzero θ changes the location of the critical line. This is an interesting possibility

and deserves further study. Also, we have restricted ourselves to solutions with zero

U(1) charge. This is indeed the true vacuum of the theory [95], but one could also

consider saddle-point solutions like those in [127]: one imposes the constraint 〈h〉 = Q,

where Q is the U(1) charge, solves for the density, and then finally sums over all integer

charges with a weight exp(iQθ). It may happen that, in order to compare our results

with those of [94], one should use this prescription to include the U(1) charges.

It is also worth pointing out that the instanton weight factors considered in section

4 are closely related to the degeneracies of BPS states analyzed in [94]. It is likely that

the techniques of [112] that we used and extended to the q-deformed case in order to

compute these weights lead to a useful technique to obtain the degeneracies.

From the point of view of the two-dimensional gauge theory, the results presented

in this chapter indicate that, when the deformation parameter is sufficiently large,

the large N phase transition is smoothed out already at the planar level. This is an

interesting, new mechanism for smoothing out large N transitions which may have

implications in other contexts (the other mechanism we are aware of to smooth out

these transitions requires performing a double-scaling limit, as in [124, 98], and involves

a resummation of the 1/N expansion).
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There are also various open questions concerning the gauge theory aspects of our

analysis. Of course, the two-cut solution that we presented in this work should be

investigated in more detail. One could also investigate the phase structure and free

energy of the chiral version of the q-deformed theory (in the 2d YM case, this has

been done in [106, 122]). Since the chiral sector makes a more direct contact with

the perturbative topological string amplitudes, this may help in understanding better

the holographic description proposed in [132, 94]. It would be also very interesting to

analyze the subleading 1/N corrections to the planar result in the small area phase. In

[112] this was done for the standard YM case by using a discretized version of orthogonal

polynomials, but it is not obvious how to generalize this to a discrete model with a sinh

interaction. Such a generalization would make it also possible to define a double-scaled

theory near the critical line of the q-deformed theory, as we briefly discussed in the last

section. These are some of the open questions that would be interesting to consider

for future research.
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[98] L. Álvarez-Gaumé, C. Gómez, H. Liu and S. Wadia, “Finite temperature effective

action, AdS(5) black holes, and 1/N expansion,” Phys. Rev. D 71, 124023 (2005)

[arXiv:hep-th/0502227].

[99] P. Basu and S. R. Wadia, “R-charged AdS(5) black holes and large N unitary

matrix models,” arXiv:hep-th/0506203.

[100] H. Bateman, Higher transcendental functions, Vol. 2, McGraw Hill, New York,

1953.

[101] J. Bryan and R. Pandharipande, “The local Gromov-Witten theory of curves,”

arXiv:math.ag/0411037.

[102] E. Buffenoir and P. Roche, “Two-dimensional lattice gauge theory based on a

quantum group,” Commun. Math. Phys. 170, 669 (1995) [arXiv:hep-th/9405126].

[103] N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R. J. Szabo,

“Topological strings and large N phase transitions. I: Nonchiral expansion of q-

deformed Yang-Mills theory,” arXiv:hep-th/0509041.

[104] M. Caselle, A. D’Adda, L. Magnea and S. Panzeri, “Two-dimensional QCD on

the sphere and on the cylinder,” arXiv:hep-th/9309107.

[105] S. Cordes, G. W. Moore and S. Ramgoolam, “Lectures on 2-d Yang-Mills theory,

equivariant cohomology and topological field theories,” Nucl. Phys. Proc. Suppl.

41, 184 (1995) [arXiv:hep-th/9411210].

[106] M. J. Crescimanno and W. Taylor, “Large N phases of chiral QCD in two-

dimensions,” Nucl. Phys. B 437, 3 (1995) [arXiv:hep-th/9408115].

[107] R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, “Baby universes in string

theory,” arXiv:hep-th/0504221.

[108] R. Dijkgraaf and C. Vafa, “Matrix models, topological strings, and supersym-

metric gauge theories,” Nucl. Phys. B 644, 3 (2002) [arXiv:hep-th/0206255].

[109] M. R. Douglas and V. A. Kazakov, “Large N phase transition in continuum QCD

in two-dimensions,” Phys. Lett. B 319, 219 (1993) [arXiv:hep-th/9305047].



146 BIBLIOGRAPHY

[110] R. Gopakumar and C. Vafa, “On the gauge theory/geometry correspondence,”

Adv. Theor. Math. Phys. 3, 1415 (1999) [arXiv:hep-th/9811131].

[111] D. J. Gross, “Two-dimensional QCD as a string theory,” Nucl. Phys. B 400, 161

(1993) [arXiv:hep-th/9212149].

[112] D. J. Gross and A. Matytsin, “Instanton induced large N phase transitions

in two-dimensional and four-dimensional QCD,” Nucl. Phys. B 429, 50 (1994)

[arXiv:hep-th/9404004].

[113] D. J. Gross and W. I. Taylor, “Two-dimensional QCD is a string theory,” Nucl.

Phys. B 400, 181 (1993) [arXiv:hep-th/9301068].

[114] D. J. Gross and E. Witten, “Possible Third Order Phase Transition In The Large

N Lattice Gauge Theory,” Phys. Rev. D 21, 446 (1980).

[115] N. Halmagyi and V. Yasnov, “The spectral curve of the lens space matrix model,”

arXiv:hep-th/0311117.

[116] S. de Haro and M. Tierz, “Discrete and oscillatory matrix models in Chern-

Simons theory,” arXiv:hep-th/0501123.

[117] D. Jafferis and J. Marsano, “A Douglas-Kazakov phase transition in q-deformed

Yang-Mills on S2 and topological strings,” arXiv:hep-th/0509004.

[118] S. Katz and D. Morrison, “Gorenstein threefold singularities with small resolu-

tions via invariant theory for Weyl groups,” J. Algebraic Geom. 1 (1992) 449.

[119] V. A. Kazakov, M. Staudacher and T. Wynter, “Character expansion methods

for matrix models of dually weighted graphs,” Commun. Math. Phys. 177, 451

(1996) [arXiv:hep-th/9502132].

[120] A. N. Kirillov, “Dilogarithm identities, partitions and spectra in conformal field

theory. 1,” arXiv:hep-th/9212150.

[121] C. Klimcik, “The formulae of Kontsevich and Verlinde from the perspective

of the Drinfeld double,” Commun. Math. Phys. 217, 203 (2001) [arXiv:hep-

th/9911239].



BIBLIOGRAPHY 147

[122] I. K. Kostov, M. Staudacher and T. Wynter, “Complex matrix models and statis-

tics of branched coverings of 2D surfaces,” Commun. Math. Phys. 191, 283 (1998)

[arXiv:hep-th/9703189].

[123] H. B. Laufer, “On CP1 as an exceptional set,” in Recent developments in several

complex variables, Ann. of Math. Stud. 100 (1981) 261.

[124] H. Liu, “Fine structure of Hagedorn transitions,” arXiv:hep-th/0408001.

[125] M. Mariño, “Chern-Simons theory, matrix integrals, and perturbative three-

manifold invariants,” Commun. Math. Phys. 253, 25 (2004) [arXiv:hep-

th/0207096].

[126] M. Mariño, “Les Houches lectures on matrix models and topological strings,”

arXiv:hep-th/0410165.

[127] J. A. Minahan and A. P. Polychronakos, “Classical solutions for two-dimensional

QCD on the sphere,” Nucl. Phys. B 422, 172 (1994) [arXiv:hep-th/9309119].

[128] N. I. Muskhelishvili, Singular Integral Equations, Dover, New York, 1992.

[129] H. Ooguri, A. Strominger and C. Vafa, “Black hole attractors and the topological

string,” Phys. Rev. D 70, 106007 (2004) [arXiv:hep-th/0405146].

[130] W. Taylor, “Counting strings and phase transitions in 2-D QCD,” arXiv:hep-

th/9404175.

[131] M. Tierz, “Soft matrix models and Chern-Simons partition functions,” Mod.

Phys. Lett. A 19, 1365 (2004) [arXiv:hep-th/0212128].

[132] C. Vafa, “Two dimensional Yang-Mills, black holes and topological strings,”

arXiv:hep-th/0406058.

[133] S. R. Wadia, “N = Infinity Phase Transition In A Class Of Exactly Soluble Model

Lattice Gauge Theories,” Phys. Lett. B 93, 403 (1980).

[134] A. Castro, J. L. Davis, P. Kraus and F. Larsen, “Precision entropy of spinning

black holes,” JHEP 0709, 003 (2007) [arXiv:0705.1847 [hep-th]].



148 BIBLIOGRAPHY

[135] L. Griguolo, D. Seminara, R. J. Szabo and A. Tanzini, “Black holes, instan-

ton counting on toric singularities and q-deformed two-dimensional Yang-Mills

theory,” Nucl. Phys. B 772, 1 (2007) [arXiv:hep-th/0610155].



Summary

Our greatest glory is not in never failing, but in rising up every time we do

- adapted from Confucius

Supersymmetric Black Holes as Probes of Quantum

Gravity

The research presented in this thesis features a specific class of black holes arising in

string theory that offer a rare window towards probing quantum gravity. The driving

force behind much of this research in black hole physics lies in the idea of holography

which is a duality between a gravitational theory in a bulk space-time and a quantum

theory (without gravity) living on the boundary of that space-time. In string the-

ory this duality is famously manifest as the AdS/CFT correspondence. Macroscopic

observables refer to gravitational quantities in the bulk; whereas, microscopics corre-

sponds to the theory living on a bound state of higher dimensional objects in string

theory called branes. The black holes that we work with in this thesis are analogs

of zero temperature black holes (also known as extremal) in Einstein’s gravitational

theory with electromagnetic charge; and are obtained through compactification of a

type of closed string theory in ten dimensions, where the compactified six dimensions

are endowed with 4, 2 and 0 dimensional (spatially) branes, thus giving a black hole

solution in four non-compact dimensions. Lifting this set-up to eleven dimensions by

opening a circular spatial dimension gives a five dimensional black string in M-theory,

where the branes now lift to 5 & 2 dimensional membranes and respectively angular

momentum along the M-theory circle. Subsequent fragmentation of this system leads

to interesting multi-center configurations in 4 as well as 5 dimensions. Investigating

this specific system and its various manifestations, sheds new insights into the quantum
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field theory(gauge theory)/gravity paradigm.

An interesting recent development that initiated the research in this thesis is the

Ooguri-Strominger-Vafa (OSV) conjecture, which is a correspondence relating a class

of supersymmetric black holes to topological string theory - a lower dimensional string

theory living on a six dimensional compactification space. This conjecture has raised

several questions as well as opened up novel possibilities. Firstly, one had to verify

that it indeed held true for a range of interesting gravitational systems. Of specific

interest for this thesis was the D0-D2-D4 black hole solution from Type II A string

theory compactified on a specific Calabi-Yau background. The dual gauge theory, in

this case, turned out to be a quantum deformed version of two dimensional Yang-

Mills on a closed surface. Since the latter lends itself to non-perturbative analysis, it

opens up the interesting possibility to extract non-perturbative information from the

gauge theory and thus determine corresponding corrections to the black hole system.

Of course, as an independent check, it is still be useful to compute the black hole’s

entropy and observed charges with the inclusion of higher order corrections. To sum it

up, both microscopic as well as macroscopic computations are necessary for furthering

this research.

Besides the OSV conjecture, other developments in the direction of black holes

with non-trivial topology and their respective entropy counting issues also began to

gain momentum around the same time. At first sight, many of these apparently di-

verse developments appeared seemingly unrelated. As a case in point, we list those

developments here: solutions for multi-center supersymmetric black holes; the discov-

ery of black rings in five dimensions; the 4D/5D connection relating black holes in four

dimensions to those in five dimensions, and subsequently a multi-center extension of

this connection along with the inclusion of extended black objects; the formulation of

an entropy function technique that is well suited for computations involving higher or-

der corrections due to the remarkable feature that within this formalism, all equations

of motion straightforwardly reduce to algebraic equations; quiver3 gauge theories dual

3Literally speaking, a quiver is a case for holding arrows. In mathematics, a quiver is a directed

graph, with loops and links between vertices. For our purposes here, the vertices represent gauge

groups.
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to multi-center black hole configurations, necessary for a holographic understanding of

microstates. Our take in this work is that a lot of these themes in fact compliment

each other and thus a parallel rather than serial approach to research in this field can

in fact lead to integration of ideas and emergence of new insights therein. Nevertheless,

the underlying theme behind all of this is still the gravity/gauge duality connecting the

macroscopic to the microscopic. Therefore in order to modestly achieve some of these

objectives, a large emphasis of the work in this thesis has been placed on developing

methodology and interpreting underlying mechanisms.

Here we briefly summarize our results. In chapter 3, we began our investigations

with macroscopic gravity calculations. We developed an entropy formalism suited

for 5D black objects. This is then applied to both 5D black holes as well as black

rings. In chapter 4, we turned our attention to the 4D/5D conjecture and carefully

investigated subtle charge shifts that result in the process for black holes and black

rings. These are issues that have stirred considerable debate in the literature. For

single center configurations, the new tools developed in chapter 3 provide us with a

geometric interpretation of the above shifts via spectral flow. We then moved on to

understand this picture for multi-center geometries and interpret these results via the

corresponding split-spectral flows. To do so, insights from AdS fragmentation were

found to be extremely beneficial. In chapter 5, we investigated continuum multi-center

black hole configurations, thus finding solutions to integrability equations for large n

centers. We have subsequently used these solutions for generating interesting electro-

magneto-gravitational backgrounds. As an interesting application we then discussed

this in the context of a black hole levitron. On the microscopic side, we have studied the

dual gauge theory of the aforementioned black hole, constructed as a bound state of D-

branes. In this rare case, the microscopic theory turns out to be fully non-perturbative

and thus lends itself as a very interesting tool for instanton analysis. In order to do

this, we considered topological strings over a non-compact Calabi-Yau background,

over which we sought to test the validity of the OSV conjecture and in the process

discovered a remarkable phase transition in the theory. We analyzed this transition

and commented on its implications for black hole physics.
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Samenvatting

It is our choices, more than our abilities, that show who we truly are

- J. K. Rowling

Supersymmetrische Zwarte Gaten als Testgrond voor

Kwantumzwaartekracht4

Het onderzoek dat in dit proefschrift gepresenteerd is, behandelt een bepaalde klasse

van zwarte gaten in snaartheorie, die een zeldzame blik op kwamtumzwaartekracht

bieden. De drijvende kracht achter een groot deel van dit onderzoek naar de natu-

urkunde van zwarte gaten is het holografisch principe. Dit is een dualiteit tussen een

theorie in een bepaalde ruimtetijd waarin zwaartekracht een rol speelt aan de ene kant

en een kwantumtheorie (zonder zwaartekracht) die op de rand van eerdergenoemde

ruimtetijd leeft aan de andere kant. In snaartheorie manifesteert deze dualiteit zich als

de AdS/CFT correspondentie. Macroscopische observabelen verwijzen naar groothe-

den in de zwaartekrachtstheorie, terwijl het label microscopisch gereserveerd is voor

gebruik in de theorie die leeft op een gebonden toestand van hoger dimensionale ob-

jecten in snaartheorie, branen genaamd. De zwarte gaten waar we mee werken in dit

proefschrift zijn analoog aan nul graden zwarte gaten (de zogenaamde extremale zwarte

gaten) uit Einsteins zwaartekrachtstheorie met elektromagnetische lading. Bovendien

worden ze verkregen door middel van een compactificatie van een bepaald type ges-

loten snaartheorie in tien dimensies, waarbij een aantal van de zes gecompactificeerde

dimensies zijn gevuld met 4, 2 en 0 dimensionale (ruimtelijke) branen, hetgeen resul-

teert in een zwart gat oplossing in de vier niet compacte dimensies. Deze configuratie

4 It’s a pleasure to acknowledge Joost Hoogeveen for being so kind to provide me with the following

Dutch translation of the summary.
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kan verheven worden naar elf dimensies door een cirkelvormige ruimtelijke dimensie

te openen. Op deze wijze ontstaat een vijf dimensionale zwarte snaar in M-theorie,

waarbij de branen nu verheven zijn tot respectievelijk 5 & 2 dimensionale membranen

en impulsmoment langs de M-theorie cirkel. Verdere fragmentatie van dit systeem leidt

tot interessante “meervoudig middelpunt” configuraties in zowel 4 als 5 dimensies. On-

derzoek van dit specifieke systeem en zijn verscheidene verschijningsvormen, leidt tot

nieuwe inzichten in het kwantumveldentheorie (ijktheorie)/zwaartekracht paradigma.

Een interessante recente ontwikkeling, die de basis heeft gelegd voor het onderzoek

in dit proefschrift, is het Ooguri-Strominger-Vafa (OSV) vermoeden. Dit is een corre-

spondentie die een klasse van supersymmetrische zwarte gaten relateert aan topologis-

che snaar theorie, i.e. een lager dimensionale snaartheorie die op een zes dimensionale

compactificatieruimte leeft. Dit vermoeden heeft zowel verschillende vragen opgewekt

als de weg vrijgemaakt voor nieuwe mogelijkheden. Ten eerste moest men verifiëren dat

het vermoeden opging voor een scala aan interessante zwaartekrachtssystemen. Een

belangrijke rol in dit proefschrift is weggelegd voor de D0-D2-D4 zwarte gat oploss-

ing in type II A snaar theorie, die gecompactificeerd is op een specifieke Calabi-Yau

achtergrond. De duale ijktheorie bleek, in dit geval, een kwantum gedeformeerde versie

van twee dimensionale Yang-Mills theorie op een gesloten oppervlak te zijn. Aangezien

deze theorie ook niet perturbatief geanalyseerd kan worden, opent dit de interessante

mogelijkheid om niet perturbatieve informatie uit de ijktheorie te extraheren en ver-

volgens de corresponderende correcties van het zwarte gat systeem te bepalen. Als een

onafhankelijke controle blijft het uiteraard nuttig om de entropie van het zwarte gat

en de waargenomen ladingen direct uit te rekenen met inbegrip van hogere orde cor-

recties. Samenvattend kan gezegd worden dat zowel microscopische als macroscopische

berekeningen noodzakelijk zijn voor de vooruitgang van dit onderzoek.

In de tijd dat het OSV vermoeden werd geformuleerd, raakten ontwikkelingen op

het gebied van zwarte gaten met niet triviale topologie en het hieraan gerelateerde

probleem om hun entropie te bepalen ook in een stroomversnelling. Op het eerste

gezicht leken deze ontwikkelingen ongerelateerd. Meer specifiek zijn deze ontwikke-

lingen: oplossingen voor “meervoudig middelpunt” supersymmetrische zwarte gaten;

de ontdekking van zwarte ringen in vijf dimensies; de 4D/5D verbinding die zwarte



SAMENVATTING 155

gaten in vier dimensies relateert aan die in vijf dimensies en vervolgens een “meer-

voudig middelpunt” uitbreiding van deze verbinding alsook de generalisatie naar uitge-

breide zwarte objecten; de formulering van een entropie functie techniek, die geschikt

is voor berekeningen die hogere orde correcties meenemen vanwege de opmerkelijke

eigenschap dat binnen dit formalisme alle bewegingsvergelijkingen reduceren tot alge-

bräısche vergelijkingen; quiver5 ijktheoriën duaal aan “meervoudig middelpunt” zwart

gat configuraties, noodzakelijk voor een holografisch begrip van microtoestanden. Onze

perceptie van dit werk is dat veel van deze thema’s elkaar aanvullen en dientengevolge

kan een parallelle, in plaats van een seriële, benadering leiden tot integratie van ideeën

en het verkrijgen van nieuwe inzichten. Desalniettemin is het onderliggende thema

van dit alles nog steeds de zwaartekracht/ijk dualiteit die macroscopisch met micro-

scopisch verbindt. Teneinde sommige van deze doeleinden op een bescheiden manier

te bereiken, ligt de nadruk van dit proefschrift op het ontwikkelen van methodologie

en het interpreteren van onderliggende mechanismes.

Tenslotte vatten we onze resultaten kort samen. In hoofdstuk 3 zijn we ons on-

derzoek begonnen met macroscopische zwaartekrachtsberekeningen. We hebben een

entropie formalisme ontwikkeld dat geschikt is voor 5D zwarte objecten. Dit wordt

vervolgens toegepast op zowel 5D zwarte gaten als zwarte ringen. In hoofdstuk 4

hebben we onze aandacht gericht op het 4D/5D vermoeden en hebben we verschuivin-

gen in ladingen van zwarte gaten en zwarte ringen nauwkeurig onderzocht. Deze kwest-

ies hebben een hoop stof doen opwaaien in de wetenschappelijke literatuur. Voor

“enkelvoudig middelpunt” configuraties verschaffen de nieuwe technieken, ontwikkeld

in hoofdstuk 2, ons een meetkundige interpretatie van bovengenoemde verschuivingen

via spectrale stroom. Vervolgens hebben we de analoge stappen gezet voor “meer-

voudig middelpunt” configuraties en de resultaten gëınterpreteerd door middel van de

relevante gespleten spectrale stromen. In deze interpretatie zijn inzichten vanuit AdS

fragmentatie van grote waarde gebleken. In hoofdstuk 5 hebben we continuüm “meer-

voudig middelpunt” zwart gat configuraties onderzocht, hetgeen leidde tot oplossingen

van integreerbaarheidsvergelijkingen voor grote n middelpunten. Vervolgens hebben

5Quiver literally translates as pijlkoker in Dutch. In mathematics, a quiver is a directed graph,

with loops and links between vertices. For our purposes here, the vertices represent gauge groups.
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we deze oplossingen gebruikt om interessante achtergronden te genereren, die zowel

zwaartekrachts- als elektromagnetische velden bevatten. Als interessante toepassing

hebben we dit behandeld in de context van een zwart gat levitron. Aan de micro-

scopsiche kant hebben we de duale ijktheorie van het eerdergenoemde zwarte gat, dat

een gebonden toestand van D-branen is, bestudeerd. In dit zeldzame geval blijkt de

microscopische theorie volledig niet perturbatief te zijn en daarom is deze theorie zeer

interessant in de analyse van instantonen. Als onderdeel hiervan beschouwen we in

dit proefschrift topologische snaren op een niet compacte Calabi-Yau achtergrond en

we hebben getracht de geldigheid van het OSV vermoeden te testen. Tijdens deze

exercitie hebben we een opmerkelijke faseovergang ontdekt. We hebben deze overgang

geanalyseerd en de hieruit volgende implicaties voor de natuurkunde van zwarte gaten

becommentariëerd.
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