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Chapter 1

Introduction
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Opening motif of Beethoven’s 5t

Gravity has been one of the earliest known forces of nature, formulated as an
inverse square law by Newton circa 1687. Yet to this day, it remains one of the most
mysterious. It was only with the advent of Einstein’s general theory of relativity in
1915, that a concrete mathematical foundation was laid for classical gravity. About the
same time, in the early nineteen hundreds came the quantum revolution, lead by the
likes of Schroedinger, Heisenberg and Dirac. Now quantum mechanics is a theory of
microscopic particles and their interactions. These are objects typically characterized
as small in size and light in weight. Classical gravity, on the other hand, is a theory
of macroscopic bodies, which are typically large in size and heavy in weight. So the
question is, how should one describe the physics of objects, which are small in size, yet
huge in mass? Black holes are classic examples in this category and the rest of this
thesis shall be devoted to that cause. To describe the these, a quantum description
of gravity becomes pertinent. It was Einstein’s dream to find a unified description of
gravity that reconciled the classical and quantum paradigms. A promising candidate
in this direction emerges in the form of string theory. In addition to unifying Einstein’s
theory to quantum mechanics, string theory seeks to go even further and unify all the
forces of nature in such a way that they can be understood through a common set of

fundamental principles.

Now how does one put together the pieces of this jig-saw? Let us start by laying
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out the fundamental ingredients of our universe. The physical universe is comprised
of matter, radiation and their interactions. The fundamental building blocks of mat-
ter are particles called fermions. The building blocks of radiation are bosons. The
fundamental interactions are electromagnetic, strong nuclear force, weak nuclear force
and gravity. Before the advent of quantum mechanics and Einstein’s special relativ-
ity, much of physics was based on Newtonian dynamics. Quantum theory shook the
very foundations of the Newtonian paradigm and presented before us a whole new
world which behaves very differently at microscopic scales, yet at large distances ag-
gregates to classical laws. Moreover quantum mechanics and special relativity easily
gelled together to give rise to what we now call relativistic quantum field theories.
However general relativity as a classical theory of gravity remained evasive to any such

“quantization”.

Let us briefly see how fundamental interactions can be described in the language of
quantum field theories. From this perspective a force between two fermions is mediated
via the exchange of a specific boson. And these processes lend themselves to some of
the most precise perturbative computations known. The predictions of field theory for
each of these 3 forces (sans gravity) confer amazingly with experiment. Put together,
this is what we call the standard model of particle physics. On the other hand, in
general relativity, gravity is a property of space-time. From this point of view, space-
time is a dynamic rather than static, whose geometry is responsible for the gravitational
attraction between massive bodies. The presence of matter has the effect of distorting
the 'shape’ of the space-time around it. However, the standard model does not seem
to incorporate gravity or the dynamism of space-time. Apparently there is no natural
way to extend quantum field theories to include gravity. In field theory, an interaction
is mediated via an exchange boson. The carriers of gravity are spin-2 bosons called
gravitons. However, gravitons cannot be found in the spectrum of any conventional
quantum field theory. A full description of quantum gravity should reconcile these two
notions of force, one as an exchange of gravitons at microscopic scales and the other
as a manifestation of space-time geometry at macroscopic scales. String theory is one

such attempt to answer these questions.

The fundamental ingredients of string theory are not particles, but one dimensional



objects called strings. These come in 2 types : open and closed. Analogous to the
chords of a musical instrument, a string of a given length and fixed tension has a discrete
range of vibrating frequencies, thus characterizing its energy spectrum. The idea now
is that each vibrating mode represents a particle of nature. Low energy vibrations
correspond to light particles, high energy modes to massive particles. It is indeed
remarkable that the spectrum of these vibrations includes matter, radiation and gravity
all in one package. Moreover strings interact with each other: closed strings intersect
each other at a point, where they open up to form another closed string. Similarly
open strings interact with other open strings by gluing at one of their ends once again
resulting in an open string. Now this is a consistent interacting perturbative quantum
field theory, not of particles but of strings. Subsequently non-perturbative techniques
were also developed and higher dimensional objects called D-branes were included into
the machinery. And as we shall soon see, the latter will play a very important role
in the duality relating gravity to a gauge theory. The world is then fundamentally
comprised of such quantum strings and branes; and the particles we observe around us
are simply manifestations of their vibrations. Mathematical consistency requires that
the theory be defined in 10 space-time dimensions, six of which are compactified on an
internal manifold. In this thesis, we shall often encounter string theory compactified on
a Calabi-Yau space, with D-branes wrapping internal cycles and thus resulting in black
hole solutions in 4 dimensions. For practical purposes, we shall be interested in the low-
energy effective theory in the bulk space-time, which turns out to be supergravity in 4
or 5D. Thus we now have a rigorous mathematical framework to compute observables

involving graviton exchange such as correlation functions, scattering amplitudes, etc.

Before seeing how black holes enter the picture, let us briefly discuss the interplay
between length and energy scales. This is crucial for understanding when stringy effects
will be of relevance and also for subsequent unification of forces. A string length is typ-
ically of the order of 10733 cm, called the Planck length. In physics, the scale of length
is inversely proportional of that of energy, meaning that shorter distance interactions
occur at higher energies and vice-versa. By the same logic, energies of dynamical pro-
cesses that directly involve string interactions are of the order of cataclysmic explosions

such as the big bang itself. In contrast, the shortest distance scales that present day
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technology can probe lie in giga electron volts, corresponding to sub-nuclear processes;
the mass of the top quark is 174 GeV; and the LHC, when fully functional is anticipated
to achieve energies of up to 7000 GeV. Now the energies at which stringy interactions
can be probed are around 10'® GeV. This is called the Planck Scale. Unfortunately
this far far beyond the reach of current laboratory technology. But these are precisely
the scales relevant for processes that occurred during the early history of the universe.
Moreover, this is the scale at which a fully quantum description of gravity becomes
relevant. The reason is simply because the strength of the fundamental forces is not
the same at every energy scale. It in fact varies as we probe physical processes at
different energies. This running of coupling constants with energy is what eventually
enables the unification of the fundamental interactions at the Planck scale. String the-
ory offers a fully quantum description of Planck scale physics with the string coupling
as the only free parameter in the theory and all other interactions described in terms

of this parameter.

Having motivated why a quantum description of gravity is necessary for probing
Planck scale physics, we now turn our attention to black holes. These are precisely
the objects, whose underlying microscopics take us to the Planck scale, and that is
how string theory enters the picture. Black holes thus serve as the test-beds of any
theory of quantum gravity. Then in 1972 Bekenstein discovered that black holes are
much more than mere voids in space-time, bound by event horizons: rather they be-
have like thermodynamic objects that carry a temperature and entropy! Putting these
ideas on a firmer footing, Hawking later showed that black holes aren’t really black
when treated (semi-)quantum mechanically; they emit thermal radiation, later called
Hawking radiation. In a sharp twist of ideas, black holes could now shrink and evap-
orate! Such an underlying thermodynamic association comes with its fair share of
implications. Now a thermodynamic system can be can be formulated in terms of a
statistical ensemble of an underlying structure that constitutes the microscopic degrees
of freedom of the system. For instance, the temperature of a gas is a measure of the
average kinetic energy of its molecules. However temperature is not a notion that can
be assigned to an individual molecule of a gas; it is a meaningful concept only for the

gas as a whole. Thus its origin lies in microscopic degrees of freedom of the gas as a



whole. Similarly, the entropy of a thermodynamic system is precisely a measure of its

underlying microstates.

The immediate question ensuing from this chain of ideas is what then are the mi-
crostates of a black hole and how do they interact? Since general relativity breaks
down beyond the horizon, it is not suited to answer this question. One now needs
to go beyond Hawking’s approximate calculation and requires a full-fledged theory of
quantum gravity, which probes physics at the smallest of length scales. And this is
where string theory sheds some light into the picture. At large distances, string theory
adequately reproduces Einstein’s classical gravity, but at short distances it significantly
modifies the latter - indicating that space-time geometry itself is not fundamental, but
emerges as a macroscopic average. In string theory, a black hole is then described as a
bound state of D-branes with stringy excitations. Hawking radiation is then the pro-
cess of emission of closed strings from this ensemble. Within this one can now perform
bulk computations via a low-energy effective analysis to compute say the leading-order
result of several black holes. However, in general, such strongly gravitating systems
will carry higher order curvature corrections, that can be difficult to compute using
only low-energy effective techniques. This is where holography enters as a power-
ful new tool. ’t Hooft’s holographic principle is a statement about quantum gravity
relating the degrees of freedom of a bulk gravitating system to those encoded in a holo-
graphically dual boundary quantum field theory without gravity. In string theory, this
bulk/boundary correspondence manifests itself as Maldacena’s gauge/gravity duality -
also known as the AdS/CFT correspondence. What makes this correspondence useful
is its realization as a strong/weak coupling duality - meaning that a strongly coupled
gravitating system in the bulk maps to a weakly coupled gauge theory on the boundary
and vice-versa. This is a remarkable feature of the correspondence that now permits
us to perform strongly coupled and hence non-perturbative bulk computations simply
via a perturbative analysis on a dual gauge theory living on the boundary. Indeed a
lot of current research on black holes in string theory, including the work presented in

this thesis, is focussed along this direction.

The starting point of the research in this thesis has been a recent conjecture in string

theory due to Ooguri, Strominger and Vafa (OSV) relating a type of string theory in
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six dimensions to a supersymmetric black hole in four dimensions. The former known
as topological string theory is defined on a six dimensional Calabi-Yau target space en-
dowed with D-branes wrapped along homology cycles. In the bulk this corresponds to
a four dimensional black hole, whose microstates can be accounted for by counting su-
persymmetric (known as BPS in this context) states on the world-volume theory of the
bound state of branes. Topological string theory has deep mathematical connections
to the field of algebraic geometry and in that context is concerned with the counting of
algebraic invariants, known as Gromov-Witten invariants. However topological string
theory is mostly understood only in the perturbative limit of a small string coupling
constant. The reason why the OSV conjecture has managed to captivate so much at-
tention is that it offers a rare glimpse into a non-perturbative definition of topological
strings. The catch of course lies in the fact that in order to capture non-perturbative
features in this theory, one has to know its equivalent in terms of corresponding black
hole states, and as things turn out, neither is the latter fully understood. A modest
approach might then be to look for specific limits of topological string theory by prob-
ing corresponding states of the associated black hole; and even this turns out to be
rather difficult. This is the point at which it is useful to invoke the AdS/CFT duality.
This opens out a new angle for making progress on the above-mentioned issues. In its
manifestation as a strong/weak coupling duality, the strongly coupled regime of grav-
ity in the bulk corresponds to the weakly coupled sector of the holographically dual
gauge theory (without gravity) and vice-versa. This way computing observables of a
quantum field theory on the boundary not only helps probe black holes in the bulk,
but coupled with the OSV correspondence, it reveals hitherto unknown sectors in the
spectrum of topological string theory. Now consider the scenario in which the brane
system we are investigating, possesses a gauge theory which is exactly solvable. In rare
cases when this does happen, one can carry out non-perturbative analysis and get a
handle of the corresponding non-perturbative features in both, the bulk gravitational
system as well as the associated string theory. The D0-D2-D4 BPS black hole that
we have extensively investigated in this thesis, precisely allows for such a possibility,
with the gauge theory being localized to a g-deformed version of 2D Yang-Mills on a
Riemann surface with gauge group U(N).



Putting these links together is part of an extensive on-going research program within
the string theory community. The work presented in this thesis will focus on the
gauge/gravity side of these connections. Within this backdrop, some of the research
questions we pose in this thesis concern precision black hole entropy counting in 4D
or 5D; observable charge shifts for these gravitational systems; the role of multi-center
configurations as fragments of a single black hole geometry; and how one may probe the
phase space of the holographically dual Yang-Mills theory. In this thesis we investigate
these questions from several angles, incorporating new related developments such as
the discovery of black rings in five dimensions; the 4D /5D connection relating black
holes in four dimensions to those in five dimensions, and subsequently a multi-center
extension of this connection along with the inclusion of extended black objects; the for-
mulation of an entropy function technique that is well suited for computations involving
higher order corrections due to the remarkable feature that within this formalism, all
equations of motion straightforwardly reduce to algebraic equations; gauge theories
dual to multi-center black hole configurations, necessary for a holographic understand-
ing of microstates. A lot of the pieces of this jig-saw in fact compliment each other
and thus a parallel rather than serial approach towards investigating these questions
indeed leads to an integration of ideas and emergence of new insights. Nevertheless,
the underlying theme behind all of this work shall still be the gravity /gauge duality
connecting the macroscopic to the microscopic. In order to modestly achieve some of
the above objectives, a large part of this work shall be devoted towards developing

methodology and interpreting underlying mechanisms.

We begin our investigations in chapter 3 with macroscopic gravity calculations and
further build up on the entropy function formalism of Sen. Our goal in this chapter
is to develop an entropy function formalism for any extremal 5D black object, whose
action contains what are called Chern-Simons terms. This is because Sen’s original
formulation was not incorporated to include such terms in the action owing to problems
with manifest gauge invariance under large gauge transformations. We shall solve the
problem and show that our 5D entropy function works for both black holes as well as
black rings. With this 5D technology, it is now possible to correctly identify the physical

charges in 5D black holes/rings. These are conserved Page charges, which are shifted
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relative to their 4D counterparts due to large gauge transformations originating from
Chern-Simons terms. Here we shall interpret these charge shifts as what are known
as spectral flow shifts and have also shown how spectral flow can be incorporated into
the 5D entropy formalism, which at the same time remains gauge invariant and has
an explicit dependence only on physical charges. Moreover, our 5D analysis enables
us to fix a mismatch that arose in the electric charges of Goldstein and Jena’s prior
calculation. The utility of these techniques is that they now allow a thorough precision

entropy counting in 5D with higher curvature corrections.

Then in chapter 4, we turned our attention to the 4D /5D conjecture. The question
we investigate in this chapter is how should the 4D/5D connection work for these
multi-center configurations? More specifically, we explicitly set-up a 5D construction
of AdS-fragmentation, whereby a single black ring splits-up into a multi-black ring
configuration. Furthermore it is shown that these fragmented rings are equivalent to a
direct 5D lift of 4D multi-center black holes. In this way the 5D duals of these baby
universes turn out to be a configuration of non-concentric multi-black rings. Once
again we are faced with Chern-Simons induced charge shifts, but now for multi-center
5D systems. For single center configurations, the tools developed in chapter 3 gave us
a geometric interpretation of these shifts as spectral flow. Even in the case of multi-
center systems, we can show the manifestation of 4D /5D charge shifts as spectral flow,
but now using insights from AdS fragmentation. Using an independent supergravity
analysis, we also confirm that all conserved charges in 5D are once again Page charges,
as expected. As an application of these methods, we then reproduce the total angular
momentum of concentric black rings, originally due to Gauntlett and Gutowski. Finally,
through this analysis we provide a geometric description of this system of multiple black
rings, using the idea of split-spectral flows, wherein a given black ring’s observables
are influenced by fluxes generated in a background of neighboring rings. As a possible
future research direction one may incorporate these split-flows into an entropy function

so as to compute sub-leading degeneracies to multi-center systems as well.

Moving further, in chapter 5, we investigate a continuum limit of multi-center black
hole configurations. We find solutions to integrability equations for large n centers,

thus showing that such a limit indeed exists. We then construct a continuum dis-



tribution of black holes and performed a multipole expansion to find smeared black
hole geometries with multipole moments. Using these solutions, one can now construct
geometries with test black holes in multipole background fields, and that too along
with the back-reaction. A very interesting application of precisely this is the black hole
levitron. This entails spatially stabilizing a four dimensional black hole in background
electric/magnetic fields. A stationary stable solution for this phenomenon is analyti-
cally found via the continuum multi-center limit developed in this thesis. Our levitron
consists of a black hole levitating in stable equilibrium over a magnetic dipole base.
We then go on to discuss how this construction strikes a resemblance to a mechanical

Levitron.

Finally in chapter 6, we move on to microscopics. We investigate topological strings
over a Calabi-Yau background of a Riemann surface endowed with two line bundles.
The surface in this case is an S?. Over this non-compact background, we seek to test the
validity of the OSV conjecture and in the process discover a remarkable phase transition
of the theory. We analyze this transition and comment on its implications for black
hole physics. Here we investigate the dual gauge theory of the aforementioned D0O-D2-
D4 black hole, which turns out to localize to a quantum deformation of 2D Yang-Mills
theory with gauge group U(N), where N represents the magnetic D4 brane charge. In
this rare case, the microscopic theory turns out to be fully solvable and hence lends
itself as an interesting tool for non-perturbative analysis. For our analysis, the Yang-
Mills gauge theory is most effectively studied using an equivalent matrix model in the
large N limit, which in this case was derived from Chern-Simons theory. In this work
we discover that an analogous phase transition occurring in two dimensional QCD
on a sphere is replicated in its g-deformed cousin for specific values of deformation
parameter. The phase diagram of the model is determined and we show that the
theory exhibits a phase transition only for small values of the deformation parameter,
whereas for large values of the deformation parameter the phase transition is absent.
We explicitly see how this transition is triggered by instanton effects. Finally, we
presented the solution of the model in the strongly coupled phase. Our analysis suggests
that, on certain backgrounds, non-perturbative topological string theory has a new

phase transitions at small radius. From the point of view of gauge theory, it suggests a
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mechanism to smooth out such phase transitions. One implication of our result is that
for certain backgrounds, the usual geometric description of topological strings does not
hold in the small area phase of the gauge theory and this has bearing on the validity of
OSV itself in that regime. A likely scenario suggested by this work is that sub-leading
contributions to the gauge theory partition sum are associated to AdS-fragmentation

of black holes.



Chapter 2

A Brief History of Black Holes in String
Theory

Life is complex - it has both real and imaginary parts

- Anonymous

2.1 From Information to Thermodynamics

From an empirical perspective, a classical black hole may be defined as a region of
space, causally disconnected from its surroundings, such that no signal can convey
information about its state to the outside world. The emphasis on the notion of infor-
mation in this context was first put forth by Wheeler in [I]. Structurally, black holes
are believed to be remnants of gravitational collapse, often formed in the aftermath
of giant supernovae explosions. Not all stars, however, end up as black holes, only
those with initial mass about twice the mass of the sun or greater. The ones below
this critical bound either end up as brown dwarfs, white dwarfs, neutron stars or the
hypothesized quark/strange matter stars [2], [3]. Gravitational collapse is thus respon-
sible for formation of exotic states of matter that define these remnants. White dwarfs
essentially constitute a degenerate Fermi gas of electrons, when the mass of the parent
star is below a critical limit - known as the Chandrashekar limit. Beyond that limit,
neutron stars are formed when atoms are crushed into each other overcoming the elec-
tron degeneracy pressure such that the atomic electrons are squeezed into the nucleus
to combine with protons to form a degenerate Fermi gas of neutrons. In this case, the

critical mass limit is the Tolman-Oppenheimer-Volkov limit. Going further, squeezing

11
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beyond the neutron degeneracy pressure one supposedly arrives at the regime of the
quark-gluon plasma. Note that the more massive the collapse, the shorter are the dis-
tance scales corresponding to the state of matter constituting that remnant. The most
massive collapses result in black holes, and string scale physics is believed to provide a
microscopic description of these remnants. If so, one may be tempted to ask whether

a black hole can be thought of as a “gas” of string and brane excitations.

Now, unlike stars and other astrophysical objects, black holes as such do not reveal
their initial chemical composition. No matter what type of object collapsed to form
a black hole, in 4 dimensional general relativity, all stationary, charged and rotating
black hole solutions form a single 3-parameter family of Kerr-Neumann solutions. Con-
sequently, all observables of such a system only depend on its mass, angular momentum
and electric charge. This is the so-called “no-hair principle”. So what this mean in
terms of information ? The lack of knowledge of initial composition leading to the
no-hair theorem coupled with the lack of correlation of any signal from the inside of a
black hole to an observer outside implies that a black hole represents a large amount
of missing information. Possibly the maximum there can be in that region of space.
From an information theoretic setting, a way to quantify the information of a system
is using the measure of entropy, which is defined as the average number of bits needed
for storage or communication of information, pertaining to a random variable X. It

relates to the uncertainty encountered in this variable and is expressed as

S(X) == p(x)log p(x) (2.1.1)

reM

where p(z) is the probability of X for a given bit z and M is the set of all bits. But
what does this mean for a black hole? First let us contrast this to a star such as the
sun. Albeit, the entropy of a star is usually much less than that of a black hole. In this
case though, the entropy has a clear physical interpretation in terms of the underlying
microstates of the relativistic gas. Thermodynamic variables can then be computed in
the hydrodynamic limit. On the other hand, if we believe that a black hole is basically
a singularity (shielded or otherwise) of space-time, then implicitly it lacks any compo-
sition, which makes it inconceivable to think of it in terms of statistical microstates.

Yet, from the discussion above, we see that the missing information associated to a
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black hole is far more than any stellar object. Approaching this problem from one end,
one may ask whether these bits of information carry any physical relevance. From the
other end, one may ask if the resolution of this singularity in a quantum theory of
gravity can provide a quantitative understanding of S(X) in terms of “appropriate”
microstates. The first approach is what will lead us to gravitational thermodynam-
ics, while the second will take us to statistical mechanics in a quantum field theory.
And the bridge between the two lies at the heart of a deeper holographic duality of
quantum gravity. It still remains a hard problem to understand what these black hole
microstates are. Presumably these are relevant up to the Planck scale if we believe that
nothing collapses beyond the stage of a black hole (within a finite volume of space).
For instance, microstates which describe the sun or a neutron star certainly can not be
the right description of states of the ensemble after one crosses the critical limit of the

corresponding degeneracy pressure beyond which black hole formation occurs.

Above, we motivated a statistical mechanic framework for accounting the informa-
tion bits of a black hole. Now we may ask how one might see the underlying thermo-
dynamics from such an ensemble? Thermodynamic observables of the black hole, if
they do exist, should be easier to study as they would not require all the microscopic
knowledge of the ensemble, but would be related only to macroscopic variables of the
black hole solution - in this case the mass, charge and angular momentum. Though
we have not said much about the role of gravity in this discussion so far, only having
considered a system with maximum missing information content, the link with gravity
will enter the discussion via the holographic bound - in the sense that gravity sets the
bound on the maximum amount of information that can be stored in a given region of
space. Just from the information perspective, we have motivated the possibility of an
underlying statistical description. If in addition, there is an exists emergent thermo-
dynamics from this ensemble, what is the gravitational interpretation of that ? In a
sense, the Einstein equations inherently “know” about that. This is most easily seen
by comparing the law of black hole mechanics to the first law of thermodynamics as
follows : Consider an electrically charges Reissner-Nordstrom black hole with charge
(). This is a solution to Einstein-Maxwell gravity with action

1

— 4 - v
e d*z+/|g|(R — F,,F") (2.1.2)
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The metric g, is then given by

oM Q? oM Q*\ !
ds? = — (1 - 4 Q—) dt® + (1 S—— Q—) dr? +r*(df? + sin®0d¢?) (2.1.3)
T

r r2 r2
Setting g; = 0 determines the radial position of the horizon. In this case, there are
two horizons located at r, and r_ respectively. The topology of both horizons is a

2-sphere. Now consider the area of the outer horizon. This is given by

A=dn <M+\/m>2 (2.1.4)

which is only valid when M? > Q? is satisfied. For later reference, let us also mention

how M and @ relate to the actual mass and charge m respectively ¢q. Upon restoring

constants and dimensions, we get M = Ci—zm and @ = \/5 )

Now taking differentials on both sides of eq.([ZI4l) gives the law of black hole
mechanics

d (mc?) = 8idA + ®dQ (2.1.5)
s

where

Arcty/M? — Q2
o Arcy/M? - Q (2.1.6)
GA
is the surface gravity and

=1 (2.1.7)

T+

is the electric potential on the hole’s horizon. Comparing the above to the first law of

thermodynamics yields

U < mc (2.1.8)
K

TdS < o—dA (2.1.9)

VdQ — ®dQ (2.1.10)

This observation together with the classical area theorem [], [B], [6] - that black holes
do not shrink and the area of the horizon cannot decrease under any circumstances -
lead Bekenstein to associate the area of a black hole’s horizon to an entropy. In general,

this takes the form

Spr = [f(A) (2.1.11)

and  Tpy = 87Tf’f(A> (2.1.12)
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To determine the function f(A) we follow Bekenstein’s gedanken experiment [7], [§].
Assume a generic power law function f(A) = A7, where v can be an arbitrary positive
power. Negative powers are excluded, since from eq.([ZTTIT), it would imply that as
the mass of a black hole increases in any physical process, its entropy decreases - thus
violating thermodynamics. Coming back to the experiment, let us now drop some
matter adiabatically into a stationary Schwarzschild black hole with entropy Spy and
mass M. The entropy content of the external matter being denoted by S, and its
mass 4. As matter falls into the black hole, the latter’s horizon area must increase.
However, by the second law of thermodynamics, the growth in the black hole’s entropy

must compensate for the loss in 5,4, which is devoured by the black hole. That is,
ASpr > Smart (2.1.13)

must be satisfied. Now from eq.([ZIT4l), we may determine the increase in the black
hole’s area as

AA =167 (u° +2Mp) (2.1.14)

Taking differentials on both sides of eq.([ZIT1l) and inserting the expressions deter-

mined above, we now have to satisfy the following inequality
ASpy = YA 167 (W2 4+ 2Mp) > Span (2.1.15)

Now for v > 1, we can always choose a small enough black hole such that the above
inequality will be violated. This forces upon us a linear dependence of the function
f(A). The classical entropy can thus be expressed upto a multiplicative constant as

follows
A

The constant 7 was later determined to be 1/4 in Hawking’s semi-classical calculation

Sp (2.1.16)

of quantum fields in a curved background [d]. Furthermore, this result lends Ty the
interpretation of a physical temperature associated to thermal radiation emitted by the
black hole - the so-called Hawking radiation. Certainly, in light of this, the classical
area law lends itself to a natural generalization - the generalized second law of black

hole thermodynamics, which can be expressed as

ASoutside + ASBH 2 0 (2117)
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stating that the total sum of ordinary entropy S,usige Outside the black hole and the
black hole entropy never decreases and typically increases as a consequence of generic

transformations of the system (black hole + environment).

These are the two most important laws. For completeness let us also state the zeroth
and third law of black hole thermodynamics. The former is analogous to the zeroth
law of thermodynamics, which claims that the temperature of a system in thermal
equilibrium is constant everywhere in that system. For black holes this translates to

the surface gravity being constant everywhere over the horizon of a stationary black

hole.

In thermodynamics itself, the status of the third law is somewhat ambiguous. In
its stronger version it goes as the Nernst-Simon law, which says that the entropy
of a system at absolute zero temperature either vanishes or becomes independent of
intensive thermodynamic parameters. But many condensed matter systems are known
to violate this and so do extremal black holes (due to a non-vanishing horizon area with
zero surface gravity). Hence this is not taken as a law. Instead in its weaker form, the
third law states that it is impossible for a system to reach absolute zero temperature
in any physical process in a finite amount of time. In this version the analog holds for
black holes as well. A stationary black hole with Hawking temperature Ty cannot by

any physical process transform or decay to an extremal black hole.

To summarize this section, we see starting from an information theoretic per-
spective, the underpinnings of a thermodynamic connection to gravity, which in turn
emerges from a “hidden” microscopic description of quantum gravity. Here string the-
ory enters the picture as a candidate description of quantum gravity. In string theory,
a black hole is described as a bound state of strings and branes. Gravity lives in the
bulk, microstates live in the Hilbert space of the holographically dual gauge theory. In
the special case of BPS black holes, these states are protected under deformation of the
gravitational coupling, by supersymmetry. For these black holes, the microscopics and
macroscopics yield satisfactory agreement and we shall encounter these systems later
in this thesis. However, in the case of generic black holes, many of these questions still

remain open.
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2.2 BPS Black Holes

As a precursor to black hole solutions of four dimensional supergravity, we consider
extremal Reissner-Nordstrom black holes with electric charge Q = v/Gq/c? (as above).
These are solutions to Einstein-Maxwell gravity, as we have seen above. In addition,
they satisfy the extremality condition M = |@|. Using this in eq.([ZIZ) for the area
and inserting the resulting expression in eq.(ZIT6]) gives the entropy of an extremal

Reissner-Nordstrom black hole as

Say = (2.2.18)

Note that this result now only depends on the black hole’s charge and is completely
independent of the gravitational constant G' or any other moduli. This turns out to be
an extremely useful property of extremal black holes as one can now tune the couplings
to a regime of the theory that lends itself to say perturbative computations without
changing the number of black hole microstates. More precisely, since G ~ ¢2I% (with
ls as the string length), we shall see within the context of the gauge/gravity duality
that while the value of the string coupling g, is tuned up in the gravity regime, it
is more convenient to count black hole microstates in the gauge theory for a smaller
value of g;. The independence of the entropy on G is in some sense the reason why the

gauge/gravity duality works.

In the near-horizon limit, the metric for the extremal Reissner-Nordstrom black

hole can be derived from eq.[ZI3)) to be

2 2
2 T ., 19
ds® = —|Q\2dt +—r2

which refers to an AdS, x S? geometry.

dr® + |QJ*(d6* + sin*0d¢?) (2.2.19)

Now let us see how extremal black holes emerge in string theory/supergravity.
In string theory/supergravity compactified to four dimensions, there also exist such
black hole solutions with AdS, x S? geometry, where the above-mentioned extremality
condition generalizes to the BPS condition M = |Z| for central charge Z. These are
called BPS black holes. The low energy effective description of Type II A/B string
theory is Type II A/B supergravity in ten dimensions. Compactifying this on a six
dimensional Calabi-Yau gives N' = 2 supergravity in 4D. This theory has an SU(2)r
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R-symmetry and the massless fields fall into the gravity multiplet, vector multiplets or

hypermultiplets.

For black hole entropy only the vector multiplets will concern us. Besides the
gauge field F ;},, a vector multiplet contains a complex scalar field X4. The number of
(dynamical) vector multiplets is denoted by hy. The scalars represent the moduli of
the theory. Supersymmetry requires this moduli space to be a special Kahler manifold,
with Kahler potential /IC. The kinetic terms will be determined from the holomorphic
prepotential F'(X) of the theory, which is determined from the Calabi-Yau geometry
and can be computed from string theory. The scalars fields X4 together with Fy4
are projective coordinates on the vector multiplet moduli space. This gives rise to the
“special geometry” of N = 2 supergravity. Besides the hy vector multiplets, the theory
contains an auxiliary vector multiplet, also called the gravity multiplet, whose gauge
field is the graviphoton. The expectation value of the scalar in the gravity multiplet
is fixed in terms of the scalars in the dynamical multiplets. The same holds for the

graviphoton and the gauge fields. The index A then runs from 0 to hy .

We can then write the four dimensional bosonic two-derivative supergravity action

as follows (with ¢ = h =1)
1 4 v Aq B
Ssugra - m /d xXr ‘g| <R+ QQAB(X,X)aMX OMX
+%NABFLAF+BW — %J\_/ABFM‘VAF‘BW) (2.2.20)

where F¥4 = % (F AtixF A) are the self-dual and anti-self-dual parts of the gauge
field F4. The scalar fields are constrained by

NapX“4XB =1 (2.2.21)
with the metric on the kinetic terms given by
Gap(X,X) = Nap + NacX“NppXP” (2.2.22)
where Nyp and Nyp are given by
Nap = 2ImFyup (2.2.23)

iNAcXCNBDXD
Ny X1X7

Nag = Fap+ (2.2.24)
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where we have

Fy = 0uF(X) (2.2.25)

Fap = 0405F(X) (2.2.26)

with F'(X) as the holomorphic prepotential of the theory. In terms of these, the Kahler

potential of the vector multiplet moduli space can then be written as
e XX = (XAF, — XAF,) (2.2.27)

The gauge fields are sourced by electric and magnetic charges ¢4 respectively p? as

follows

1

A +A

= —R F 2.2.28

p 271’ 6/52 ( )
1

g2 = g-Re | NapF™” (2.2.29)
T S2

The central charge function associated to this theory takes the form
Z = (XAqq — Fap™) (2.2.30)

Black hole solutions to 4D N = 2 supergravity are parametrized by the ADM mass M
and graviphoton charge of the theory. The latter is exactly the central charge Z given
above. Black hole solutions exist when M > |Z|, where the equality refers to the BPS
bound that characterizes a stable extremal black hole in supergravity. The BPS case
is what shall concern us in what follows. This solution preserves half of the original
8 supersymmetries. This holds as long as there exists a covariantly constant spinor,

which is obtained via setting the fermionic variations to vanish.

The metric for a 4D A = 2 BPS black hole is then given by

ds® = =2V dt? + 720 (dr? + 12 (d6* + sin*0d¢?)) (2.2.31)
where
eV =14 ] (2.2.32)
T

In the near-horizon limit, this exactly reproduces the extremal Reissner-Nordstrom
metric of eq.(ZZIJ) with the replacement Q — Z, thus giving back an AdSy x S?

near-horizon geometry. The entropy, obtained via the area law, then takes the form

SBH(p> q) = W‘ZP‘horizon (2233)
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where the function Z is evaluated at the horizon. Once again the entropy will be
independent of any moduli or coupling and will only be a function of the charges
measured at infinity. In the next subsection we shall see how such macroscopic entropy

computations can be performed.

In this sense, supersymmetric black holes are good analogs of extremal Einstein-
Maxwell black holes and also serve as powerful test-beds for ideas of quantum gravity

emerging in string theory.

2.2.1 The Entropy Function Formalism

For actions such as in eq.[22220) and also others which include higher derivative cor-
rections, there are several ways to compute the macroscopic black hole entropy. Two
methods that will concern us in this thesis are the attractor mechanism (about which
we will have more to say later) and the Sen entropy function formalism [29]. Moreover,
since the latter of these will play a more crucial role in the research developed in this
thesis, let us lay out its framework at this point. The entropy function method works
for any black hole having SO(2,1) x SO(d — 1) near-horizon isometry in arbitrary
space-time dimension d. In recent works, it was also shown that the said isometry,

ensures extremality.

Though the entropy function formalism is essentially a reformulation of Wald’s
formalism, for computational purposes it is far less tedious than the former, in the
sense that the equations of motion elegantly reduce to algebraic equations. This is
because this method only concerns itself with the near-horizon isometries and does not
take into account whether the full global solution exists or not. Nevertheless it has
served as a useful tool for higher derivative theories with local Lagrangian densities.
It can be applied to non-SUSY extremal black holes and to higher dimensional black
objects as well. Another reason why the entropy function formalism is a more reliable
method than techniques emanating from topological string methods is that unlike the
latter, which only takes into account holomorphic contributions to the prepotential,

the former also works with non-holomorphic terms in the Lagrangian.

However one of the shortcomings of this formalism in its its original form, was that
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it was only applicable to reparametrization invariant and gauge invariant Lagrangians.
The means we have a problem when considering theories of gravity with Chern-Simons
type of terms. Black rings become a prominent example of this class. In this thesis,

we will present a resolution to this problem.

Let us first demonstrate how this formalism works for the simple case of an ex-
tremal Reissner-Nordstrom black hole. The entropy of such an object is computed by
extremising the Sen function defined as follows

E(vy,v9,q) = 2m (eaa;: — .7:) (2.2.34)

The above is a Legendre transform of the reduced action defined as

Flon, v, q) = / 0/ —GL (2.2.35)

corresponding to an AdS, x S? near-horizon geometry parametrized through the metric

2
ds® = v, (—ertQ + %) + v (dO? + sin®0dg?) (2.2.36)

L denotes the Lagrangian density. The near-horizon geometry is parametrised by a
constant electric field e and constant scalar moduli X. v; and v, respectively denote the
radius of AdS, and S2, which shall be determined through their equations of motion.
The electric charge ¢ is conjugate to the field e and is determined via

_OF

== (2.2.37)

q

The remaining equations of motion are given by extremising the entropy function

06 OE

5o = 0. =" (2.2.38)

Solving these algebraic equations and eliminating v;, v9 and e in the entropy function
gives the black hole entropy
Spy = T (2.2.39)

In later chapters, we shall exploit the power of this formalism for extended black objects
such as rings and develop the necessary systematics in the case when the associated

actions carry Chern-Simons terms.
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2.3 Holography

2.3.1 A Principle of Quantum Gravity

The idea of holography has been a powerful tool in quantum gravity research. Stated
in its most general form it can be expressed as follows :

Physical processes in the bulk space-time of a d-dimensional theory are reflected in
processes occurring in o different d — 1 dimensional theory living on the boundary of
that space-time.

The motivation underlying this proposal, due to Gerard 't Hooft [10] as a quantum
gravitational principle arose from insights in black hole physics; namely Bekenstein’s
entropic or holographic bound [I1]. The latter can be construed via the following
gedanken experiment proposed by Susskind in [I2]. Consider a neutral non-rotating
spherical body, which fits entirely in a region of space bounded by area A. Let S denote
the entropy of this object. Now allow this mass to collapse, forming a black hole, in
this case of the Schwarzschild type. Clearly the black hole’s horizon area Agy < A.
But, by the second law of black hole thermodynamics, the black hole entropy must
satisfy Spy > S. Therefore (with ¢ = h = 1), we have

A3H<A

SE9mT NG Sia

(2.3.40)

Now in conventional QFT lore, the degrees of freedom scale as the volume V of a given
region and not the area. So why does the boundary capture information of physics in
the bulk ? The answer is that gravity imposes a cut-off on the number of states that
a system can occupy within a given volume. As in Bekenstein’s gedanken experiment
discussed above, if all the quantum states within a given volume were occupied by
throwing in more and more matter (so as to match the apparent QFT measure of

entropy), it would soon result in black hole whose horizon exceeds the volume V.

Thus the entropy in a region of space is bound by its area and a black hole within
that entire region carries the maximum possible energy, saturating the bound. Owing
to the connection between entropy and information, as discussed above, the holographic
bound suggests that information of a system in the bulk is somehow bound by what

would be a natural measure of information on the boundary. This led 't Hooft to go
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a step further and and propose the holographic principle as a principle of any theory
including gravity. Note that while the holographic bound is only applicable to an
isolated system confined to a finite region, the holographic principle is a statement
for the entire universe within which a system is contained. The latter thus has to be

appropriately regularized, as is implemented via the UV/IR regulator in AdS/CFT.

That the degrees of freedom of a gravitational system scale as the area of its bound-
ary (when it exists) rather than its volume is certainly intriguing considering that one
would never arrive at such a premise in standard quantum field theories. But then
again, field theoretic quantization procedures for gravity lead to non-renormalizable
theories. What is remarkable though, about this proposal, is that observables of a
gravitating system in the bulk are fully encoded in a theory on the boundary, which it-
self has no gravity at all and may well be a standard quantum field theory. In an earlier
section, we have seen how gravitational quantities in the bulk carry a thermodynamic
interpretation, which in turn is associated to an underlying statistical description of
microstates. If, via the holographic principle, the boundary theory indeed captures the
full quantum description of dynamics in the bulk, it should also be able to provide a
microscopic calculation of quantities such as entropy, temperature and free energy of
the gravitational system. As we shall soon see, the real utility of this prescription will
emerge from the fact that it facilitates microscopic calculations of observables on the

boundary, that are strongly coupled and therefore unfeasible to perform in the bulk.

2.3.2 The Maldacena Conjecture

So how does one realize this bulk/boundary duality? Within the context of string the-
ory, the AdS/CFT correspondence serves as a realization of the holographic principle,
in the form of a gauge/gravity duality [13], [T4] (see also [T5] for an excellent review).
In its original form the AdS/CFT correspondence was conjectured as a duality between
N = 4 supersymmetric Yang-Mills theory in 3+1 dimensions with gauge group U(N)
and Type IIB superstring theory on an AdSs x S° background. On the string theory
side, the parameter N denotes the 5-form RR flux through the S°. Consequently, the
radius of S? is given by R* = 4rg,Na/?. This is equal to the radius of AdSs. Further-
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more, the string coupling g, is related to the Yang-Mills coupling gy by gs = g%,
The radial direction in the bulk plays the role of an energy scale in the field theory,
such that going to the boundary of AdS corresponds to going into the UV regime of
the field theory. As per the equivalence goes, the claim is that observables, states and

correlation functions of the two theories are equivalent to one another.

More precisely, we have

<6fd4z¢0(f)(9(5c’)>CFT = Zaas [0(Z, 2)|.—0 = Go(T)] (2.3.41)

where & are coordinates on the boundary and z denotes the radial variable. The left
hand side of the above relation is the generating function of correlation functions in
the field theory. The right hand side is the full partition function of string theory with
the boundary condition that the field ¢ attains the value ¢y on the boundary of AdS.
Armed with this, we can calculate correlation functions of the operator O by taking
functional derivatives with respect to ¢y and then setting ¢ to zero, since the latter is

an arbitrary function.

An analogous relation is valid for other fields too. The above equation was written
for massless fields. With massive fields involved, the only subtlety is that the z = 0 limit
has to be taken with an appropriate regulator. The gauge theory above, N' =4 SYM,
lives on the world-volume of a parallel stack of N D3-branes placed in 10 dimensional
flat space. In the near-horizon limit, the metric of these branes reduces to that of
AdSs x S5, giving a string theory on a curved background. In its original form, this
statement was made for the low-energy effective lagrangian, wherein only massless
string states and their excitations contribute. This is achieved by sending o/ — 0
and consequently the string length I, — 0, whilst keeping energies and dimensionless
parameters fixed. This is known as the decoupling limit, wherein gravity becomes free
in the bulk and decouples from the brane theory. A striking feature of the AdS/CFT
correspondence is that the conjectured equivalence is a strong-weak duality. When the

AdS radius of curvature is small compared to the string length

4

o <<1 = gulN <<1 (2.3.42)

wherein the gauge theory lies in the perturbative regime (g; is taken smaller than 1), but

gravity is strongly coupled. On the other hand, when the supergravity approximation
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is valid, we have that
4

A

s

>>1 =  guN>>1 (2.3.43)

which refers to a strongly coupled field theory. The supergravity approximation is
particularly useful for many applications of the correspondence. In this regime the
string theory partition function takes the form e susrs where I, is the supergravity
action evaluated on-shell on AdSs x S°. On the gauge theory side, this corresponds to

taking both large N and large 't Hooft coupling g% ,,N. This yields
Wgauge o] = extremum Ls,g0q[0(Z, 2)| =0 = ¢o(Z)] (2.3.44)

where Wg,4e is the generator of connected Green’s functions in the gauge theory.

Though the discussion above was specified to the particular context of AdSs, the
conjecture has subsequently been proposed for arbitrary dimension d as an AdS;/CFT,_4

correspondence.

2.3.3 AdS/CFT for Other Compactifications

The realization of AdS/CFT as a holographic principle of quantum gravity, being a
powerful tool for probing microscopics of a gravitational system, has found application
in a wide variety of problems, some of the most prominent being in the area of black
hole physics. The fact that the near-horizon geometry of a black hole contains an
AdS factor, facilitates the application of the correspondence, allowing for a counting
of microscopic degrees of freedom via the dual gauge theory, which resides on the

world-volume of D-branes wrapping compact cycles.

As an application of AdS/CFT to other black hole systems and for different com-
pactifications, let us demonstrate the D1-D5-P system, which realises an extremal black
hole in five dimensions from Type IIB string theory compactified on a five dimensional
manifold My x S, where My can either be K3 or T*. The microscopic entropy of this
black hole was first computed by Strominger and Vafa in [I6] and this was shown to be
in agreement with the macroscopic gravity calculation. The gravity set-up is as follows

: a set of D5-branes with charge Qs wrap along M, x S' and D1-branes carrying charge
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Q. wrap along the same S!. There are N units of momentum excitations along the S?.
This configuration preserves 1/8 of the supersymmetries and gives a 5D black hole in
the non-compact directions at the location of the branes. In the decoupling limit, the
solution in the string frame is given by

1 N o
ds* = T (—dt2 +d2? + ﬁ(dz — dt)2) +\/ fifsdx'dx' + \/%dﬁ(]\/lgt) (2.3.45)

Here f; = 1+Q;/r?, = denotes the coordinate along the S*, z* denote the transverse non-

compact directions and ds?(My) is the metric on the compact space. The supergravity
description of this system is valid in the large charge limit. From the metric, the leading

order entropy can be obtained as the classical area law given by

A
Ssp = ﬁ = 2m/Q1Q5N (2.3.46)
5

The dual CFT to this gravity is the world-volume theory living on the D1-D5 system.
Since the volume of My is taken to be of string scale, the low energy effective theory is
a 1+1 dimensional CFT. More precisely, this is a deformation of the N' = (4,4) sigma
model on the orbifold Mfl% /59195 which is a symmetric product of the compact
manifold modded by the permutation group. In [I6] this microscopic entropy counting
was performed in the perturbative regime of the orbifold CFT. For an extremal black
hole, microstates pertain to the BPS sector of the CF'T, and these can be counted by
a supersymmetrically protected index such as the helicity supertrace. Since this index
remains invariant under deformation of continuous parameters in the theory, counting
of BPS states in the CFT can be related to the supergravity result. At leading order,
this was shown to yield an exact match [I6]. Much of this discussion is valid for four
dimensional black holes as well. In the next subsection, we shall discuss another tool for

probing dual CFT’s of four dimensional black holes with Calabi-Yau compactifications.

2.3.4 The OSV Conjecture

In this thesis, we shall mostly be interested in N' = 2 supersymmetric black holes
obtained by Calabi-Yau compactification. As a recurring theme in string theory, de-
scriptions of many gravitational systems are encoded in holographically dual gauge

theories. In this regard, a recent conjecture by Ooguri, Strominger and Vafa (OSV)
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[T29] relating black holes to topological strings and how that relates to a brane-world
theory which reduces to a deformed version of 2D Yang Mills [94], will concern part of

the work we present here [17].

Let us briefly lay out the framework of this machinery. In its original form, the

conjectured equality goes as follows
Zpr = | Ziop|? (2.3.47)
where the left-hand side denotes a black hole partition sum defined as follows

Zou(p,0) = P9 =" 0, ({ga})e™ (2.3.48)
{aa}

where the weight €,({¢a}) is a measure of black hole microstates and F is the free
energy associated to the black hole ensemble. The latter is typically an inverse Legendre
transform of the entropy. Using the N/ = 2 expression for entropy in eq.[2Z22Z33)) with
eq.(Z230) and the black hole attractor equations

Re[CX4] = p? Re[CF4]l = qa (2.3.49)
relates the free energy F to the holomorphic prepotential F' as follows
F=—-nlmF (2.3.50)

where C'is a complex constant. The black hole partition sum above is a mixed ensemble
that sums over all D2 and DO branes (taken to be electrically charged) with fixed
chemical potentials thereby treating them canonically while keeping D4 and D6 branes
(magnetically charged) fixed, thus treating the latter micro-canonically. The string
coupling g, as well as the Kahler modulus ¢, attain a specific functional dependence on
the magnetic charges and electric chemical potentials of the black hole ensemble. An
ingredient implicitly used in the construction of this conjecture is the N' = 2 attractor
mechanism of [I8], [T9], [20] (see [25] for an excellent review). Solving the resulting
quantum corrected attractor equations, the authors of [22] obtain the R2-corrected
quantum black hole entropy Spg, which was shown in [I29] to simply be the Legendre
transform of the holomorphic part of the topological string free energy Fj,, including

genus g corrections :

Spr(q,p) = F(p,¢) — ¢"qa (2.3.51)
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where the electric charges are conjugate variables to the chemical potential

OF (p, 9)

=" (2.3.52)

and the topological string free energy Fj,,(t) with complex Kahler modulus ¢ enters

via

F(p, ) = Fiop(t) + Fiop(2) (2.3.53)

meaning just the holomorphic part. Topological strings basically count holomorphic
maps from string world-sheets to a target Calabi-Yau space. Genus g coefficients Fj in

the perturbative expansion of the topological free energy
Frop = ngogp °F, (2.3.54)

precisely compute the scattering amplitude of 2 gravitons and 2g — 2 graviphotons in
the physical string theory. These processes manifest as higher order corrections to the
low energy effective action. Subsequently in the 4D N = 2 supergravity action these
higher curvature corrections are encoded by extending the holomorphic prepotential
to also be a function of the chiral multiplet W2, which derives itself from the Weyl

multiplet. The supergravity prepotential can then be expanded as
F(CX*W?) =) F(CX"W (2.3.55)
g=0

where Fy(CX#) denotes the tree level prepotential and the constant C' may be de-
termined as a normalization factor. Indeed the expansion coefficients in the two ex-
pansions in eq.(Z354) and eq.(Z35H) are related. The equivalence between the free
energies was demonstrated in [I29] (building up on earlier work in [21], [22], [23], [24])
as follows

N
F(CXA,256) = —?ZFtop(tA, Gtop) (2.3.56)

where the following identifications are made

¢A
CX4 = pA+z7 (2.3.57)
XA
41
Jtop = X0 (2359)
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with C?W? fixed to a constant value of 256. Hence eq.[Z350) together with the
above identifications, when inserted in eq.(Z3A0) gives eq.([Z303)) and that leads to

the conjecture in eq.(Z2341) including quantum corrections.

The immediate question that one may now ask is how can this conjecture be tested
for any given compact or non-compact Calabi-Yau geometry ? and how effective is
that as a tool for computing higher derivative corrections to black hole entropy if
we knew the corresponding worldsheet instanton corrections to the topological string
prepotential ? Even though, for a lot of interesting cases the OSV statement itself
falls short of these aims, it nevertheless motivated developments that enabled a more
computable approach to black holes and black rings including single and multi-center
solutions in four and higher dimensions; as well as the question of precision entropy

counting for these objects.

In the aftermath of the OSV result, developments in [I32], [94] whilst attempting to
verify the validity of the conjecture, found interesting non-perturbative gauge theories,
which serve as gravitational duals for specific Calabi-Yau geometries. The case in point
here is 2D g-deformed Yang-Mills theory, which is not only dual to a bound state of DO-
D2-D4 BPS black holes, but its chiral sector is also touted to capture non-perturbative
dynamics of topological strings on non-compact Calabi-Yau backgrounds, constituting
a Riemann surface endowed with two line bundles, with —p respectively p + 2g — 2
as the degrees of the line bundles and ¢ as the genus of the Riemann surface over
which the bundles are endowed. In some sense, this can be thought of as zooming
onto a local section of an otherwise compact geometry. The gauge theory is localized
on the world-volume of the branes. For the most part here, we shall be interested
inthe case g = 0, where the surface is a sphere. 2D Yang-Mills on an S? can also be
studied using the equivalent matrix model technology, in this case the Chern-Simons or
Stieltjes-Wigert matrix model as it is known. In this thesis we describe the work in [17]
where the large N Douglaas-Kazakov phase transition of 2D QCD on a sphere [T(09] is
replicated in its gq-deformed cousin for specific values of deformation parameter p > 2.
Moreover, like in the original Douglaas-Kazakov theory, on the g-deformed case as well,
the transition is trigerred via instanton effects. Geometrically p relates to degrees of

the Calabi-Yau line bundles. One implication of this result is that for backgrounds with
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p > 2, the usual geometric description of topological strings does not hold in the small
area phase of the gauge theory and this has bearing on the validity of OSV itself in
that regime. Moreover, knowledge of a dual non-perturbative gauge theory, whenever
possible, potentially facilitates instanton weight computations as a tool to extract black
hole degeneracies. On the other hand a precise gravitational interpretation of this
transition is not fully understood. A possible gravitational interpretation of this phase
transition is that it signals the onset of topology change, much like the baby universe
scenario in [I07] which result from AdS-fragmentation of black holes. We describe the

above results in detail in chapter 6 of this thesis.

2.4 Higher Dimensions & Multiple Centers

2.4.1 Black Rings & Chern-Simons Charge Shifts

Unlike 4D, where uniqueness theorems prohibit black hole solutions with topologies
other than spherical (when non-rotating) or oblate (rotating Kerr), in 5D a toroidal
black hole solution was recently discovered [31]. These supersymmetric black rings
have S? x S! spatial horizons. Moreover, these rings also carry a dipole charge, which
adds “hair” to the ring. For our purposes, we shall discuss BPS black rings. These are
characterized by an AdSs x S? near-horizon geometry. Hence, interest in this object
was also generated due to the prospect of having a 2D CF'T as the microscopic dual of
AdSs gravity. In fact in [54) this CF'T was claimed to be the same as that of the MSW
theory [53] for black strings in 5D. However, before testing the correspondence between
gravity and the field theory, it is important to have a rigourous understanding of the
physically relevant quantities on both sides of the correspondence. In this respect, there
have been some subtleties concerning the treatment of charges in the bulk theory. Part
of the research in this thesis attempts to clarify these issues [26], [65] (discussed in

chapters 3 and 4).

In any computation of macroscopic observables such as the entropy or conserved
currents, it is necessary to identify the physically relevant charges and express observ-

ables only in terms of those, if one wants to make a meaningful comparison of bulk



2.4. HIGHER DIMENSIONS & MULTIPLE CENTERS 31

to boundary observables. In most theories, this is straightforward; exceptions being
actions which include Chern-Simons terms. Since these terms do not leave the action
invariant under large gauge transformations, they affect the definition of charges in the
theory. The right prescription is to express observables via what are called Page charges
(the different notions of charge in Chern-Simons type of theories has been elegantly

described in [B9]).

In the case of black rings, the details of the above implementation shall be demon-
strated in chapter 3 first within the context of the entropy function for a single black
ring and then in chapter 4 within the context of AdS fragmentation for multi-ring
geometries. We then verify that this implementation yields correct observables, by

comparing expressions to the literature wherever possible.

With regards to the first of the above implementations, a crucial step was to develop
an explicit 5D entropy function formalism that works for both 5D extremal black holes
and black rings. The problem with Sen’s original formulation in [29] was that it was
not suited to include terms in the action that are not manifestly gauge invariant, such
as Chern-Simons terms. Hence prior computations involving 5D black objects, relied
on an ad hoc recipe of reducing the action to 4D and adding a total derivative term
by hand to restore gauge invariance. The trouble with this make-shift approach is
that it does not correctly identify physical 5D observables. This refers to conserved
charges in 5D which are shifted relative to their 4D counterparts due to large gauge
transformations originating from Chern-Simons terms. This feature is also referred
to as spectral flow (the phrase being coined due to an analogous shift in Virasoro
generators of its dual CFT). We solve the problem by showing how spectral flow can
be incorporated into a 5D entropy formalism, which at the same time remains gauge

invariant and has an explicit dependence only on physical charges.

2.4.2 4D/5D Connection & Multi-Center Geometries

A closely related issue to the above is the 4D/5D connection [42]. Stating it rather

generally, from an OSV perspective, it can be expressed as [43]

Zpih = zB =12, |? (2.4.60)
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Of course, this way of writing it is highly oversimplified. More so since such black hole
partition sums, not only include single center states, but also multi-center configura-
tions. A more refined form of the conjecture is to match a specific gravity solution in
5D to the corresponding one in 4D (which may in general be comprised of a different
number of centers than the 5D solution to which it is being associated) and compare
how observables relate. For our purposes, an interesting configuration is the supersym-
metric black ring, whose 4D counterpart is given by a particular 4D 2-center solution.
From the full string theory point of view, such a 4D /5D map is reminiscent of the M-
theory/Type ITA correspondence. Now from the discussion we had above, let us recall
that unlike in 4D, the 5D action is not explicitly gauge invariant. This immediately
creates a puzzle over how we should match the 4D charges, angular momentum and
entropy to the corresponding quantities in 5D, where physical charges are in fact not
gauge invariant. The correct dictionary has to take into account these Chern-Simons
induced charge shifts in 5D. In this thesis in chapters 3 and 4, we shall provide a
resolution of this puzzle for the single-center as well as the multi-center geometry and
furthermore provide an interpretation of these charge shifts as spectral flow in the

gravity theory.

For multi-center geometries, we shall set-up an explicit 5D construction of AdS-
fragmentation and show that the 5D duals of the baby universes in [I07] turn out to
be a configuration of non-concentric multi-black rings in Taub-NUT space. Here too,
we encounter Chern-Simons induced charge shifts. After presenting how the 4D /5D
multi-center charges transform we confirm that all conserved charges here are Page
charges. Finally a geometric description is given to this system of rings using the idea
of split-spectral flows, wherein a given black ring’s observables are influenced by fluxes

generated in a background of neighboring rings.

As an aside, let us also remark on a spin-off that resulted from our investigation
of Denef’s multi-center geometries. It is known that a sub-set of these going by the
name of scaling solutions [27] are known to play a role in the problem of black hole
microstates. However even for the simplest configurations with more than two cen-
ters, solving integrability constraints to determine the full metric becomes a highly

formidable task. Interestingly enough, we find that in the limit of large N number of
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centers, the integrability constraints are solvable [28]. We can then construct a contin-
uum distribution of black holes and obtain the metric. Upon this continuum system we
perform a multipole expansion to find smeared black hole geometries with multipole
moments. As an interesting application of these methods, we then construct a black

hole levitron in chapter 5. Presumably, all this carries over to 5D as well.
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Chapter 3

5D Entropy Functions with Chern-Simons
Terms

Hell, there are no rules here— we’re trying to accomplish something

- Thomas Edison

In this chapter we begin our investigations concerning BPS black holes by start-
ing with macroscopic entropy calculations. The development of precision macroscopic
techniques are necessary if one is to later compare results to holographically dual
microscopic theories, or for that matter even for validating other manifestations of
gauge/gravity conjectures such as the OSV conjecture. While in four dimensions, for
most cases of interest, such macroscopic entropy computations are fairly straightfor-
ward (provided all the relevant higher order terms in the action have been satisfactorily
determined); the five dimensional set-up however has proven to be more subtle. This is
mainly due to the inclusion of Chern-Simons terms in the action and associated charge
shifts in 5D as compared to 4D. In the current chapter of this thesis, we tackle these
issues and in the process develop a 5D entropy function technology that builds over

Sen’s entropy formalism [29].

The entropy function formalism of Sen [29], [30] allows for a very systematic ap-
proach to computing black hole entropy in D dimensions with Ad.S,x.S”~2 near-horizon
geometry, especially including higher derivative corrections. Subsequently this formal-
ism has also found application to other extremal black objects such as black rings and
even black holes with reduced near-horizon isometry groups [39], [40]. However, in odd

dimensions, the presence of Chern-Simons terms in the supergravity action no longer

35
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leaves the latter invariant under large gauge transformations; whereas Sen’s original
construction was formulated for gauge as well as reparametrization invariant actions.
To overcome this hurdle, it was proposed in [A1] to perform a dimensional reduction
in order to bring the Lagrangian density into a gauge invariant form and then apply
the entropy function method. Therefore whilst computing the black ring entropy func-
tion, the authors of [39)] first perform a dimensional reduction of the 5D supergravity
Lagrangian into a gauge invariant 4D Lagrangian, upon which the standard entropy

function method can then be applied.

In this work we revisit the black ring and 5D static black hole entropy functions.
Instead of taking recourse to a dimensional reduction, we propose that a meaningful
5D computation of the entropy function with Chern-Simons terms is possibleﬂ. While
performing such a 5D analysis, a key issue which requires careful consideration is
how we should treat charges in 5D and their corresponding spectral flows. For the
benefit of our esteemed reader, let us recall that these are also the same questions that
have been at the center of much debate [37], [38], [B5], [84], [56] with regards to the
4D /5D conjecture for black holes and black rings [42], F3]. It is not surprising that
those subtleties also come into play when trying to perform an intrinsic 5D analysis
of the entropy function formalism. And that happens because the introduction of
Chern-Simons terms brings in three different notions of charge : Brane-source charge,
Maxwell charge and Page charge [59]. Which one is more relevant depends very much
on the details of the geometric configuration one is interested in. Then expressing the
entropy function in terms of the correct 5D charges will turn out to be the crucial step
towards resolving its apparent lack of gauge invariance. We do this explicitly first for

the black ring and then for the black hole.

In case of the black ring, even though we find that the reduced action is no longer
invariant under large gauge transformations, it nevertheless turns out that the entropy
function itself does remains gauge invariant. Furthermore we show that this invariance
is no coincidence, but stems from an underlying spectral flow symmetry of the theory,

which leaves the entropy function invariant under spectral flow transformations. In

! In this paper we only consider gauge-type Chern-Simons terms. Presumably our considerations

are valid for gravitational or mixed gauge-gravitational Chern-Simons terms as well.
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order to achieve this, we have to first demonstrate how the relevant spectral flow
relations emerge within the 5D computation whilst solving the equations of motion in
the presence of Chern-Simons terms. Through this we shall also be able to identify
the 4D /5D dictionary, using which the 4D-reduced computation of Goldstein and Jena
[39] can be recovered - except for one subtle issue on which our 5D computation differs
from their 4D computation for reasons that will become clear in the calculations that

follow.

In this context it is worth pointing out to the work of [45] on AdSs black holes
in gauged supergravity where it was also suggested that Chern-Simons terms would
somehow facilitate charge shifts of the form ¢; — ¢;+c¢;. However these authors propose
a modified Sen’s formalism with shifted charges directly implemented and the ¢; being
undetermined shift parameters. Then in [46] this issue was pushed further ( see also [47]
for work in a related context ), where they propose a new entropy function for rotating
5D black holes in order to extract asymptotic charges from near horizon data. However
the above attempts do not work for black ring type geometries. The philosophy we
adopt in this work is that it is not necessary to modify Sen’s formalism by imposing
charge redefinitions ad hoc, but rather a consistent 5D evaluation of Sen’s functional
is possible and from which these charge shifts can be seen to emerge in a natural
way. We will see that this is indeed the case and such charge shifts carry a natural
interpretation as spectral flow shifts in 5D. This way we are able to uniquely determine
the shift parameters and unlike previous attempts our procedure works simultaneously

for both AdS; as well as AdS5 near horizon factors.

After having treated the black ring, we proceed to check gauge invariance of the
5D black hole entropy function. Here again we see that a 5D calculation shows some
interesting differences when compared to the 4D calculation of [39]. This will have
something to do with the z#-dependence of the moduli a’ ( which are ¢-components of
the 5D gauge fields A? ). In the calculation of [39], the z#-dependence of a! are retained
throughout dimensional reduction of Chern-Simons terms to 4D and only then are they
set to be constants. Apparently this is what seems to create a seemingly incorrect shift
in electric charges when comparing their result for the black hole entropy to that of

[48]. Here we claim that the way out is not to assume such a coordinate dependence (
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which would even be incompatible with the isometries of the 5D near-horizon geometry
) in a 5D calculation. In addition to finding an agreement with the result of [4§], our
claim also leads to the correct 5D electric charges which are seen to perfectly tally with
recent results of [61], who perform an explicit near-horizon analysis pertaining to 5D

supergravity.

The outline of this paper is as follows - In section 2 we compute the black ring
entropy function without dimensional reduction. The 5D charges turn out to be Page
charges, which exhibit spectral flow behaviour. The entropy function however is shown
to be spectral flow invariant. Section 3 concerns gauge invariance of the 5D black hole
entropy function. For both black objects, we compare the 5D charges computed here
via the 5D entropy formalism to those computed in the supergravity analysis of [61].
In section 4 we clarify the subtleties in charges arising between explicit 4D and 5D
applications of the entropy function. Then in section 5 we provide an interpretation
for the e° <« p° switch within the entropy formalism as corresponding to a black hole
— black ring interpolation in supergravity. Finally in section 6 we conclude with some

discussions.

3.1 The Black Ring Entropy Function & Spectral
Flow

Let us now perform a 5D computation of the black ring entropy function and derive

the associated spectral flow relations from the equations of motion therein.

Consider the action of 5D minimal ungauged two-derivative supergravity theory

coupled to N — 1 abelian vector multiplets. Writing only the bosonic fields, we have

1
N 167TG5

Ss

1
/R *1— GrrdXT A*xdXT — §GUFI AN*F7 — Crig AP NFTANFE (3.1.1)

where X! are massless scalars parameterizing the five dimensional “very special geom-

etry”. These scalars define the compactification volume V via the relation

Crig X' X/ XK =y (3.1.2)
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The couplings G, are functions of the scalar moduli and are defined as

L 9 90 InVy (3.1.3)

Gr1 = —= 2o mos
2 0XT X7 -

The indices I, J, K run from 1 to N while Cj;k is a completely symmetric tensor and

F! = dA" are N U(1) gauge fields.

Now let us consider the effect of large gauge transformations to the action in

eq.(BI0). These transformations can be parametrised as
Al — AT 4 AT (3.1.4)

where Al are one-forms whose components we shall shortly specify. Clearly the Chern-
Simons term in the action is not invariant under large gauge transformationﬂ. In fact
large gauge transformations introduce integral shifts of the action that pick up a phase
in the path integral. In this section, we revisit the black ring entropy function and show
that instead of the 4D approach followed by [39], one can also perform an alternate
well-defined 5D calculation. Consequently, we need to directly tackle the problematic

Chern-Simons terms above; which we do so by invoking spectral flow shifts.

To begin with, the 5D geometry is expressed via a Kaluza-Klein ansatz for an
AdSy x S* x St topology ( metric in eq.([I8) below ). Eventually of course, when
one extremises the entropy function, the S* fibres over the AdS, ( see [39] ) precisely
recovering the known near-horizon AdSs x S? metric ( [31], B2, [34], [B5] ) of a su-
persymmetric black ring. Also the 5D gauge potential A’ is expressed in terms of the

aforementioned Kaluza-Klein decomposition as follows
Al = Aidm“ +a’ (dw + Agdx“) (3.1.5)

where 1) parametrises the S* circle with a periodicity of 4m; the A, are off-diagonal

entries in the 5D Kaluza-Klein metric ( which we shall write down shortly ); the

2Small gauge transformations pose no problems in this case. This is because the extra gauge
terms in the action can be expressed as an integral of a total derivative which is then evaluated as
a surface term at infinity, where the gauge parameters asymptotically vanish. However, with large
gauge transformations this is not so. The latter are not obtained as continuous transformations from
the identity element and hence cannot be expressed as exact forms that could be partially integrated

and evaluated as surface terms.
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scalars a’, which are i-components of the 5D gauge potential A, are interpreted
as axions in 4D; while A;Z would just be the usual gauge potential in the four non-
compact dimensions. Typically a large gauge transformation applied to an on-shell
gauge potential can be implemented by choosing A/ = Ek/di) where k! are integral
constants. Note however that A’ in eq.(BLH) is not yet on-shell since we have still to
insert the values of a’, Al and A after solving their respective equations of motion.
We therefore write down a more general ansatz for the gauge parameter given by

A =k (dy + Agdx“). This can be implemented in eq.([81H) via a simple shift
al —a' + K (3.1.6)

where the k! are again integral constants. A few comments are in order here. Though
eq.(BLH) still represents a shift in the ¢-component of Al this quantity ( a! ) also
enters as a factor in the other z#-components making it natural to allow shifts of K AB
in those respective components. Also it turns out, as will be clear in what follows, that
eq.(BIH) in fact denotes the most general shift that correctly generates the full 5D
spectral flow of charges. Moreover this choice of A will also leave the components of
the on-shell field strength F! independent of k! once we solve the equation of motion
for a’ and insert it into dA’. These will be consistency checks of eq.([BLH) that we

shall verify along the way:.

The reduced action ( terminology not to be confused with dimensionally reduced
action ) is now defined by integrating the 5D lagrangian density over S? x S! - the
spatial horizon of the black ring, spanned by 6, ¢ and 1

1
br = V= 1.

Our task then is to evaluate 2" in the background of the Kaluza-Klein metric for an

AdSy x S? x S' near-horizon topology
ds? -1 2 742 dr? 462 020002 2 (4 A0 gt
sS=w v | —r t+7’—2 + vy (d0? + sin*0d¢?) | + w? (dp 4+ A)dat)” (3.1.8)
with Al and A9 specified by

Aidx” = elrdt + p'cosfde Agd:ﬂ“ = erdt (3.1.9)
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Here we take w, vy, v9, X', a!, e, €® to be constants in the near-horizon geometry.
) ) ) ) ) )

These will eventually be fixed as functions of the black ring charges upon extremisa-
tion. w is the radius of the Kaluza-Klein circle; vy, vy denote the AdS, and S? radii
respectively; p! are magnetic charges and e’ denote the corresponding electric fields
in 4D ( we shall soon write down the electric fields in 5D as well ). €° is dual to the
magnetic field associated to a p® charge ( or D6-brane charge ). However for rings, it
is well known that the p° charge is absent in the immediate vicinity of the horizon. In
4D, €° too is treated as an electric field; however in 5D it will turn out to be associated

to the angular momentum of the black ring along the S* direction.

Putting all this together, and computing the 5D reduced action gives

2 3(,0\2
A s X ) = () [ 22T

G_5 41)1
G G
—Z—:w#plp‘] + Z—jw#(l%—&leo)(e‘]%—d‘]eo)
24m I =10\, J~K
ren Crix [ (e +ad'e%) p’ a"™ ] (3.1.10)
5

We get the three terms in the first line of eq.(BII0) by computing the five dimensional
Ricci scalar; the second line comes from the 5D Yang-Mills term in the action; and the
last line is obtained from the Chern-Simons term. It is important to note that this
result here differs from that of [39] on two countg - Firstly we have shifts in the moduli
a’ — a' = (a' + k'), which essentially encode large gauge transformations in 5D and
consequently leave F¢" with a gauge ambiguity, which is manifest through the explicit
k! dependence. In a 4D-reduced calculation these shifts do not appear. The second
point on which F2" differs from its dimensionally reduced version F" is a factor of 1
in one of the two Chern-Simons contributions to the reduced action. This can be seen
in the last line of eq.(3.7) in ref. [39] ( note that their p° has to be set to zero when
considering black rings ). In a 5D calculation, the reduced action FZ" does not contain
this factor. In section 4 we shall see that this difference of factors arises because of the
way the moduli a’ have been treated in a 5D calculation as opposed to how they were
dealt with in the 4D case. This point will also turn out to be crucial in determining
the correct 5D charges and in the end we shall justify our results by comparing with

the analysis in [61].

30ur Gy equals 27, in the notation of [39].
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Now, the 5D entropy function is defined as the Legendre transform of FZ" with

respect to electric charges Q%, QY

Er =2 [QY e + Qe — F(vi, v, w, X', a', €, €°) ] (3.1.11)

where Q% and Q¥ are canonically conjugate to e/ and e respectivelyH

OFy oOFL
br 5 br 5
1= 0 = e (3.1.12)

As we shall soon see, Q% , Q% are 5D Page charges and are physical observables of
the black ring. These charges will differ from the 4D electric charges q; respectively g

computed in [39)].

Obtaining the entropy of a black ring then entails extremisation of the entropy

function £ with respect to its moduli variables

ogr  ogr  ogr  ogr  ogv

dal v, v, 0w  OXI =0 (3.1.13)

But before that let us see how the gauge ambiguity in the reduced action FY", and
consequently in the entropy function £, can be resolved. For that purpose we will
need to know exactly how the Chern-Simons terms in FY" affect physical charges Q%"
and QY. Tt turns out that they induce spectral flow shifts in these charges. And we
want to know how these shifts can be manifestly derived within the framework of the
entropy function formalism itself. Consequently we shall see how £ remains invariant

under these shifts.
We begin evaluating eq.([BL12) for Q%" and QY by making use of F¢" from eq.([B110).
To avoid cluttering of notation let us normalise the é—’; factors in front of the charges to

1. Later in the final result we shall restore these constants. We then get the following

expressions

b [ V2 GIJ ~J K

r=0 e (e7 +€e%a’) + 6Cryra’p (3.1.14)

1
and
1 G
br <@) <4w360 tw 2” a' (e’ +eOaJ)) +6Cra’a’p™ (3.1.15)
U1

4Formally the QZ}T can be expressed as conjugates to (e! + ale®).

However since the Jacobian
between the four and five dimensional electric variables ( e/ respectively e/ +a’e® ) is one, we end up

with the first expression in eq.(BII2).
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That these are in fact the correct 5D charges for a black ring can be checked by com-
paring these expressions to the 5D Page charges recently computed in the supergravity
analysis of [61], who showed that the near-horizon region of a black ring also encodes

full information of its charges measured at asymptotic infinity. The results of [61] yield

age 1
fg = 1671-2/2 *FI+6C[JKAJ/\FK (3116)
1
0% = —mz/ xd€ +#(& - AFy +6C k(- ADAT AFR (3.1.17)
b

where ¥ is a 3-cycle over the spatial horizon. For the black ring 3 specialises to S? x S?.
¢ denotes the axial Killing vector with respect to the v-direction, while (£ - A?) is an
inner product between a vector field and a one-form. The Killing field £ generates
isometries along the v-direction; leading to a conserved charge, which is simply the
angular momentum. In fact, the right-hand side of eq.[BITI1) is just the Noether
charge of Wald. Page charges are in fact not gauge invariant ( due to an explicit
Al-dependence in these expressions ), even though they are conserved and localised
[9]. Now in order to strike a comparison between these charges of [61] and those
computed here using the 5D entropy formalism, we will need to explicitly integrate the
right-hand sides of eqs.([BII6) and (BIID). Since these are simply local integrations,
it is sufficient to make use of only near-horizon data of the gauge fields and metric

from eqs.(BI1H) and (BIF). Computing the non-vanishing components of the 5D field

strength gives F), = e’ +a’e® and Fj, = —p’sinf. In the near-horizon terminology,

the axial vector ¢ is found to be Aj, with non-vanishing components Ay = << and
1r

Ag = —1. Using this we can determine Fy, which is just d§; and by d¢ we mean

0;&; dx® A da?. Note also that in the & - A! term, it makes sense to only consider the
projection of the Killing field on the physical ( on-shell sector ) gauge fields. Putting
together all these quantities and inserting them into eqs.([BLI6) and BIID) exactly
reproduces eqs.([(L14) and ([BLTH). Hence we see that Q% and Q¥ obtained from
the entropy function indeed represent the correct five-dimensional supergravity Page

charges QY and Q" respectively.

Now in the entropy function formalism the 5D field A? in eq.([3IH) depends on
three different moduli e/, €® and a’. Extremising £ with respect to these moduli and

plugging the extremum values of these moduli back into eq.(BI0l) basically determines
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the near-horizon gauge fields of the black ring. A’ can then be expressed purely in
terms of electric and magnetic charges. For our purposes, these three extremisation

conditions will fully determine the physical charges that source these gauge fields A”.

Hence eqs.(B114)) and (BITH) require further input from

ok

ar =0 = FL=0 (3.1.18)

and this exactly corresponds to [, *F; = 0 computed in [61] by explicit near-horizon
integration. Physically, eq.([81I8) signifies a vanishing electric flux in the near-horizon
geometry, which is simply what one would expect in the absence of a compact 3-cycle
when the topology is that of AdS; x S?. Moreover the above result also tells us that
the only non-vanishing on-shell components of the field strength ( in this case the F91¢

) are all indeed gauge invariant.

We are now ready to identify the black ring spectral flow shifts that emerge from
within the structure of the entropy function formalism itself. Separating the k! depen-

dence in QY and Q¥ yields
QY = qr +6Cr ik’ p™ (3.1.19)
and
QY = qo + 2k"qr + 6C k" kPt (3.1.20)

where ¢; and ¢ are read-off from eqs.([BII4) respectively (BIIH) after replacing a’
by al; and they can indeed be identified as the four dimensional ( gauge invariant as

well ) electric charges that appeared in the calculation of [39]. In 5D however, Q%" and

br are the correct physical observables [38], [61], [65].

Let us now determine what the conserved quantities, under spectral flow shifts of

brand QY look like. It is easy to see that Qo defined by
Qo = QF — QU Q¥ (3.1.21)

is left invariant under spectral flow transformations described in eqs.([B-LT9) and (B120)

in the following sense

CA?o( 0, Q) = Qo (a0, ar) (3.1.22)
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where C17 = [C IJ]_l and C1; = 6Cr xp™. Consequently the quantity @0 is completely
independent of the shift parameters &’ and this fact will play an important role in

maintaining invariance of the 5D black ring entropy function.

Putting together all the above ingredients into eq.([BLII) gives us the entropy

function in terms of 5D variables

47? v G ~ 1\ 2
br o 1 Ij 1. J -3
& = a {v2 vy + o {w 5 PP + 4w <Q0> ]} (3.1.23)

The first term in the square brackets in £ comes from the magnetic flux, while the
second term is related to the effective momentum of DO—particleQ. This brings us to
the main result of this section that £" is indeed invariant under spectral flow transfor-
mations, once the moduli of the gauge field A’ have been determined. Here we have
obtained £ in eq.(BLZJ) from a 5D calculation, and this agrees with the structural
form of the dimensionally reduced £Y" of [39] because of spectral flow invarianceH. Note
however that while the form of the expression in eq.[B123) is the same as that ob-
tained in the 4D calculation of [39], their Qp differs from ours in eq.(BIZI) obtained
above by a half in the last term. In section 4 we shall see that this is because of a
slight discrepancy that enters the charges defined in [39]. Nevertheless the final 4D and
5D entropies reconcile despite the fact that Fo" and Fir differ due to explicit gauge
transformation parameters and also that the observable 5D charges are Page charges
whereas the 4D ones are Maxwell [61], [65]. This illustrates the point that for a 5D
action which includes Chern-Simons terms, there is another way besides a dimensional
reduction to 4D; a direct 5D calculation will also give the correct result once the right
5D variables have been implemented into the calculation. Note that £ is not yet an
entropy and here what we see is that even when £2" is not at its stationary point, it is

still gauge invariant. Hence we get
55bT ( 8T7 QII)T7 p17 U1, U2, W, XI) = 5? <q07 qr, p17 U1, U2, W, XI) (3124)

upon inserting eqs.[BII9) and BI20) into eq.[BI23). The left-hand side is what one

gets from an explicit 5D calculation, whereas the right-hand side is what results from

a dimensionally reduced computation.

® These are precisely the left-movers of the dual (0,4) SCFT [53].
6 The 4D/5D lift for black rings is in fact a special case of spectral flow transformations when the

value of k! is set to p! [65].
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A 5D calculation is necessary to illustrate the inherent spectral flow associated to
a black ring geometry. The physical interpretation of spectral flow for black rings has
been discussed in [65]. The 4D/5D transformations themselves are in fact a special
case of spectral flow transformations. And that is actually the reason why application
of the entropy function formalism to black rings should work well either in 4D or 5D
( even though we think that an explicit 5D computation expresses charge/geometric

data more naturally ).

For the sake of completeness, let us also extremise with respect to the remaining
moduli, as in eq.(BL13)); and show that the resulting black ring entropy obtained from

our 5D calculation indeed gives the right answer. Solving for vy, v, w gives

G N
V] = Uy = w#pfp‘]—l—llw_?’(Qo)Q (3.1.25)

and

S 2@

and upon using these values of vy, vy, w back into £ yieldﬂ
87T2 2 G[J % ~
Err = — /[ =—=pp’ | Qo (3.1.27)
Gs 3

Of course the couplings Gy, which are functions of the yet-to-be-extremised scalar
moduli X?, will depend on geometric data of the specific compactification space. For

our purposes we leave it with the general expression in eq.([BI27]).

3.2 The 5D Black Hole Entropy Function

We now repeat our calculation for the 5D black hole. The near-horizon metric ansatz

is again taken to be AdS, x S? x S1. However this time round it turns out that the S*

7 In this result the charge of the Kaluza-Klein monopole p° is taken to be unity. This corresponds
to a black ring in Taub-NUT ( or flat space whenever the Taub-NUT radius goes to infinity ). The case
p® > 1 corresponds to taking an orbifold of the Taub-NUT and that in turn leads to a near-horizon
factor of AdSs/Zyo for the black ring. In the notation of [39] this charge has been denoted as p° and

like in that work its effect can be included by modding the S* circle by Zo.
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fibres over the S?%, eventually leading to an AdS, x S* geometry near the horizon [39].
It has been proven in [62], [63], [64] that even in the rotating case, the near-horizon
isometry of an extremal black hole contains an SO(2,1) symmetry. Moreover, that
the entropy function formalism can also be applied to such rotating black holes having
AdS, isometry was shown in [60]. Such a black hole in 5D carries a Kaluza-Klein
monopole charge p°, which comes from uplifting a D6-brane in Type II A theory to
M-theory and the black hole sits at the origin of the KK monopoleH. Even though
this geometric configuration is different from that of a black ring, it is still reasonable
to implement the Kaluza-Klein metric ansatz of eq.(B8) provided the off-diagonal
components Ag are suitably modified for the black hole case. We consider the same
type of black hole as in [39], so that the results of our analysis can be compared to

theirs. Hence Ag is taken as
Agda:“ = p®cos 0 dg (3.2.28)

where p° denotes the Kaluza-Klein monopole charge. Note also that the quantity
e’ is absent for these black holes, which corresponds to an absence of Kaluza-Klein
momentum JEX. Here JIEX = 0 is only to be thought of as vanishing of the intrinsic
angular momentum ( resulting from the absence of DO-charge in the brane bound state
). In [39)] it was claimed that this black hole is static. However there is a slight subtlety
to that. The effective angular momentum is in fact non-vanishing. As a quick check
one can easily compute the integral in eq.[BIT7) and we see that the second term in
the integrand carries a non-vanishing contribution. Nevertheless it will turn out that
this effective contribution does not enter the entropy formula ( and this last point was
presumably the reason that this black hole was viewed as a static system in [39] ).
On the other hand a black hole of the BMPV type [B1], is a true rotating black hole
with an angular momentum that enters the entropy formula. Such a black hole would
be obtained had we started with a bound state of spinning M2’s in Taub-NUT ( or a
D0-D2-D6 bound state in Type II A ). Instead what we have here is a black hole more

of the type discussed in [52]. It can be conceived as a bound state of non-rotating

M2’s sitting at the tip of a Taub-NUT-flux geometry ( D2-D4-D6 in IT A ), where

® Note that when p® > 1, the S* circle is modded by Z,o consequently giving an AdSs x S®/Z,0

near-horizon geometry. This shall be appropriately implemented in what follows.
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the intrinsic angular velocity of the horizon vanishes, leaving only the flux induced
component of the angular momentum which affects the geometry but not the entropy

formula - in some sense like a static black hole in a flux background.

Within this set-up we now compute F2" to get

2 vy w3 (p¥)?
Foh (o, X ol ol pl ) = (22 o
5 (Ul Vg, W, ,a ,€e,p >p) G5 (%1 (% 4,02

v G v G . -
+U—jw#efe‘] - U—;w#(p”ra[po) (p” + a’p”)
24m I | =10\, J =K

+ & Crk [ (" +a'p’) e’ a™ ] (3.2.29)
5

which differs from eq.([B110) with the replacement p! — p’ + a’p® and a (p°)? term
in the 5D Ricci scalar that replaces the (e°)? term in the black ring computation. Just
as in the black ring analysis before, we once again find that F2* computed here is
not exactly going to be the same as F2* in [39]. Firstly, in a 5D approach the gauge
parameters k! show up and secondly, the relative factors in front of the Chern-Simons
contributions will differ from those in the 4D computation of [39] ( refer to eq.(3.7) in
ref. [39] after setting e = 0 therein ). Once again in F£" this factor does not appear. In
the next section we shall see in detail how this affects the definition of electric charges
in 5D and thereby fix a small mismatch, with respect to the definition of 5D charges,
in the result for the entropy obtained by [39] when compared to that of [48].

Having eq.(8229) in hand, we are now in a position to write the 5D black hole
charges from the analog of the definition in eq.(BI12)

G
= () @+ 6 (0 + ') (3.2.30)
1
Moreover using
oELh T, A0

we can write eq.([BZ30) as

1
=16 /E «Fy (3.2.32)
since F}, = ¢! and Fyj, = —(p’ +a'p") sinf. Here ¥ is now an 5%, the spatial horizon of

the black hole. Eq.([B23T]) is just the condition for vanishing of the effective magnetic
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flux

/ F =0 (3.2.33)
5‘2

in other words suggesting the absence of a compact 2-cycle in this black hole geometry.
Eq.(B23T) also confirms that all the non-vanishing on-shell components of the field
strength are gauge invariant. Moreover for given magnetic charges p’ and p°, the
constraint p! + @’p® = 0 imposes a restriction on the value of /. Therefore for this
black hole, we cannot set-up arbitrary spectral flow shifts for the charges.

In the terminology of B9, eq.[FZ32) implies that Q%" is not a Page but a Maxwell
bh

chargeH, which is gauge invariant and does not show spectral flow behaviour. @9

therefore represents the same physical observable in 5D as well as in 4D alike.

Under these considerations, the entropy function for this black hole takes the form
o _ AT v |15 60 —1o~IJ Abh bk
El'=——Sv—uv+— |-w(p) +w 2G"QT'Q; (3.2.34)
G5 (%) 4
where G!7 is defined as the inverse of G;;. Once again we have obtained a gauge
invariant entropy function from an explicit 5D calculation in terms of physical 5D
variables. Now it is straightforward to extremise £ with respect to v1, v and w to

get
1
V] = Vg = Zw?’(po)2+w_12G”Ql}h bh (3.2.35)

and

8GII ObhObh
4= 8¢ QA (3.2.36)

3(p°)
Then eliminating v, v, and w by way of substituting their values at the stationary

point back into £ leaves us with

3

472 8 G/ 2

et =Ty [p° <—Q?hQ?,h) (3.2.37)
Gs 3

which finally gives us the entropy of this black hole. The couplings G?7 can be deter-

mined depending on the specific choice of compactification. Here Q%" is the observable

9 Additionally, in this case the Maxwell charge is localised within ¥ and does not require integration
over all space because the source term F/ A F'X in the 5D supergravity equation of motion : d F; =

—6CT 7k F7 A FX | vanishes following eq.(@2Z31]).
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electric charge in 5D and since we have shown above that this charge does not ex-
hibit any spectral flow behaviour, it exactly equals the number of M2-branes wrapping
Calabi-Yau 2-cycles. Upon shrinking the M-theory circle and reducing to Type 1T A,
the M2-branes directly descend to D2-branes. Then Q% is also the physical charge for
a 4D black hole.

3.3 Charge Comparison: 4D & 5D Approaches

In this section we demonstrate how the charge mismatch, obtained in [39] when com-
pared to that of [8], is fixed by our 5D approach. We then provide the necessary
consistency checks. Firstly comparing eq.[B237) above to the entropy obtained by
M8 ( whose computation is performed via a 5D attractor mechanism ), indeed gives
an exact agreement; thereby fixing the mismatch in the result of [39] where the charges
Q% in the entropy formula were shifted by 3C7 p’p% /p° ( refer eq.(3.41) in ref. [39)]
where in their notation §; enters the entropy formula rather than ¢;; then in eq.(3.65) in
the same reference they compare ¢; to the charge in [A8] where the latter itself does not

contain any shift terms ). In our case, using eqs.[B2Z30) and ([BZ3T) we see that the

v2
U1

charges entering the entropy are Q%" = ( ) wEle’ without any p! dependence. The
extra 3C7yp’ p™ /p° terms in [39] do not enter our Q4" and consequently the match to

M8 is exact.

Before we delve into reasons underlying this mismatch, let us at this stage perform
a consistency check for our charges computed above. We want to see whether Q4
compares to the charge integral obtained in the supergravity analysis of [61], which
would serve as an independent verification. For that purpose consider eq.(BIId) with
¥ taken to be an S3. Since we know the near-horizon components of A7 and F’, we
insert these into eq.([BZLI6) and evaluate the integral. Because F(,I¢ =0, the [ AT NFE

2
That verifies that our expression for Q% in eqs.(BZ30) and EZ3T) is indeed the

part of the integral vanishes and the fz «F7 term precisely reproduces <z—i> wSLzel

correct electric charge of the black hole.

One may now ask why the charges of [39] picked up those incorrect shifts 7 Which

may be rephrased by asking what went wrong with their Chern-Simons contributions
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to the 4D reduced action F2" ? The Chern-Simons terms in 3" were obtained from a
four dimensional reduction of the 5D supergravity action ( refer appendix A in [39] ).
This then gave rise to the above-mentioned factor of 1 in F2" ( eq.(3.7) in [39] ), which
subsequently lead to an erroneous shift in their definition of charges. In our calculation
the factor of % did not appear in the 5D reduced action F2" and that gave the correct
electric charge, which matches 8] and confers with [61]. This subtle difference in a
factor of + between the reduced actions computed in [39] and that computed here seems
to be related to how we treated the moduli @’ in our calculation, as opposed to how
the same was handled in [39]. There they assume an x*-dependence for the moduli

I are set

a’, while performing a dimensional reduction of Chern-Simons terms. These a
to constants only when one arrives at the four dimensional set-up. Subsequently the
four dimensionally reduced Chern-Simons Lagrangian density ( see (A.11) in ref. [39)
) picks up a factor of half in front of the second term therein. This is how the % enters
the 4D reduced action F2" and consequently the charges. On the other hand, in our
5D calculation, in the absence of any dimensional reduction there is no natural way to
assume an r*-dependence for a! ( whilst already in the 5D near-horizon geometry ) and
then suddenly set them to constants at some other stage of the calculation. The 5D
components of the field strength F};, Fyp, are constants in the near-horizon geometry
and giving the fields an ##-dependence through a’ would tantamount to a deformation
of the near-horizon geometry and possibly interfere with the AdS isometries which were
crucial to the formulation. Therefore in our calculations we have set all 5D near-horizon
moduli as constants ( whose values are determined upon extremisation ) throughout
the calculation and this procedure seems to give the correct answers. It would be
interesting to see if this four dimensional reduction can also be re-done keeping all the
a’ constant and then check if that leads to the right charges. The focus of this paper
however was to show that an explicit five dimensional entropy function calculation also

works and provides us with consistent answers.

Finally let us remark that the much-discussed factor of % in the 4D reduced actions
affects the charge definitions of both the black ring as well as the black hole. However
in case of the black hole the effect is far more drastic. Let us clarify this point. We

start with the ring. Suppose that the factor of half had also appeared in our reduced
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action as a coefficient of the last term in eq.[(@II0) ( multiplying C;yrelala’p’ ).

That would only change the charge Q¥ in eq.(B.15) by replacing the '6” in the last

term ( Cryxe’a’a’p® ) with a 3. The term itself does not vanish when comparing to

09 in eq.(BIIM). Of course this changes the numerical coefficients in eqs.(BL20)
and (BIZI). But eq.BIZ2) will still be satisfied for the modified equations and a
new Qp ( with a half instead of a one in the last term in eq.(8121) ) will finally enter
the black ring entropy function in eq.[8I1.23). Hence the changes in this case only
show up as different coefficients of existing terms. But in the case of the black hole
the erroneous factor in the reduced action adds another term to the charge which we
clearly know does not exist. We can see this as follows. Suppose the last term in
eq.(BZ29) ( the one with a p® ) carried a half. This would carry forward as an extra
numerical factor in the definition of Q% in eq.(E230). However after using eq.([B2Z31])
( the factor half does not affect this equation because the C7;x terms do not enter Sé’h
) in eq.(FZ30), we are left with an extra 3Crxp’p™ /p° term in the definition of Q4.
And as mentioned above, this extra term neither confers to the Page charge integrals
in [61] nor to the literature in [I23]. Hence the changes are far more conspicuous in

case of the black hole.

3.4 Black Hole - Black Ring Interpolation

Earlier in section 2 we saw how the near-horizon solution of a black ring can be ex-
pressed via various moduli parameters. Among these e/ and ¢ are conjugate to the
electric charges and angular momentum respectively, while the magnetic flux p’ is a
fixed quantity. On the other hand, the 5D black hole of section 3 only carried electric
variables e/ and fixed magnetic variables p’, p°. From the perspective of the entropy
function formalism, obtaining the metric of a black hole from that of a black ring can
simply be achieved by switching off the e® contribution to the metric and turning on
a p° one instead ( and then extremising with respect to these new moduli ). This
assignment was first proposed in [39], where it appears as an ad hoc choice that repro-
duces the leading order entropies of the two black objects. In this section we want to

provide a physical justification for this assignment of parameters. We will soon see that
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switching the terms e’rdt < p°cosfldp among each other in the near-horizon Kaluza-
Klein metric will in fact be equivalent to changing the modulus [ ( here [ is the three
dimensional distance of the black ring from the origin of the Taub-NUT base space )
from a specified finite quantity to a vanishing limit in the complete 5D supergravity
solution. Gravitationally this means we are shrinking the 5D black ring to the origin of
the base space to get a 5D black hole. In this sense, we argue that the e < p° switch
is actually a black hole - black ring interpolation rather than some sort of black hole -
black ring duality, that was suggestively speculated in [39]. Let us now examine this

in more detail.

In section 2 we demonstrated that p’, @Q; and @, computed from a 5D entropy
function analysis, are the correct physical observables of a black ring. Moreover a
glance at the microscopic description of a black ring as a bound state of branes will
in fact reveal that the observable charges are not exactly the brane charges [36], [31].
Microscopically a black ring can be described by a Calabi-Yau compactification of M-
theory on a circle [54] with M2-M5 branes wrapping 2- respectively 4-cycles on the
Calabi-Yau. The remaining one leg of the M5-brane wraps the M-theory circle thus
giving a black string along this S' ( as in the description of [53] ). This string is
stabilised by angular momentum modes running along the circle. The relation between

brane charges and observable charges in fact takes the form [3§]

Q}W 2 = Qr —6Crikx pJMs pﬁs
Pus = D'
JEE = Qo — phys 7" — 6Cryx Phss Pigs Phrs (3.4.38)

These shifts from the actual brane charges have been shown in [65] to be manifestations
of spectral flow when k! = p!. In this way the above relations also serve as a 4D /5D map
between the two-center system of a D0-D2-D4 black hole in 4D, placed in the vicinity
of a D6-charge; and a black ring in 5D. Hence when the M-theory circle shrinks to
zero size then the charge shifts due to spectral flow disappear and the brane charges
JEE ¢M2 ) ple ( which now become D0, D2, D4 charges respectively in the Type
IT A description ) coincide with the observable charges. Having stated the relations

between physical and brane charges of the black ring, we can now incorporate these
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into supergravity solutions.

In order to study a supergravity construction that interpolates between 5D black
holes and black rings in its different limits, we start by considering the most general
5D N = 1 ungauged supergravity solution [49], [50] which is given by the following 5D

metric and gauge fields

ds: = — f2(dt + Q)* + fds*(My)
Flo= d[fX"(dt + Q)] - %fX’(dQJr*dQ) (3.4.39)

where X! are scalar fields in abelian vector multiplets. They satisfy the constraint
equation Cryjr X X7 X% =1 and X7 are defined by the condition X! X; = 1. ds?(M,)
above refers to the Gibbons-Hawking metric of a 4D hyper-Kahler base space, which
in our case is simply taken to be ds*(T'N), the Taub-NUT metric ( or ds*(R*) when
considering a black ring in flat space ) having KK-monopole charge. Let r, 0, ¢, ¢
denote coordinates on the 4D base space with (7,6, ¢) locally parameterising an R3
and v running along a compact S! with periodicity 47. The Hodge dual x is taken
with respect to the 4D base space. The function f and the one-form €2 can then be
determined in terms of four harmonic functions Hpy(z), K!(x), L;(x) and M(x) (

with z € R? ) in the following sense

71X = iHTN_l Crix K'K® + L;
Q = (—é Hrny 2 Cryg K'K7K® — Hyy 'Ly KT + M)
x (d + cos0dp) + Q (3.4.40)
where () is defined by
VxQ = Hy VM — MVHpy + K'VL — L VK! (3.4.41)

Operating the gradient on both sides of this equation yields integrability conditions
Hry VPM — M V?Hpy + K!' V2L, — Ly VPK! = 0 (3.4.42)

which are evaluated at each pole ( charge center ) in R3.

Within the above framework, a supergravity solution for any black object is now

reduced to the task of specifying four harmonic functions. Let us first write these down
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for a black ring and then we shall see how to interpolate them to a black hole solution.

For a black ring we have the following

How(e) = —— 4 P Liw) = o+ -0
" Rzy ' 4l ! " e
pI JKK

K'(z) = M5 M(z) = vy+ 2 (3.4.43)
|z — | |z — |

Here p% is the charge of the Kaluza-Klein monopole in M-theory, which reduce to
p% x D6-branes in Type IT A. The case p% , = 1 corresponds to a Taub-NUT, otherwise
the 4D hyper-Kahler base space is an orbifold of Taub-NUT, such that its geometry in
the neighbourhood of the origin is of the type C?/ Ly . Let us clarify the remaining
notation as well : Ryy denotes the asymptotic radius of the original Taub-NUT; 2 € R3
and [ is a modulus in R? which denotes the distance between the plane containing the
S1 of the ring and the origin of base space. v; is a constant determined at infinity and
vo will soon get fixed via the integrability conditions. These harmonic functions have
been specified via brane charges in the system. The bound states of branes wrapping
Calabi-Yau cycles form BPS point particles in R and the poles in the above harmonic
functions are attained precisely at the location of these BPS particles. The M2-M5-
JEK particle sits at « = [, while the KK monopole is located at = 0. From a 4D
point of view this is a 2-center black hole system, but in 5D it’s just a black ring in a

Taub-NUT orbifold [A3].

Now let us evaluate eq.(BZZ2) for the above harmonics at each of the two poles.
This yields the following two integrability conditions
JEK

]

Pi 4\
JEE = wrphs (% + 2 ) (3.4.45)
TN

JEX: which contributes part of the angular momentum

Physically this implies that
along the -direction of the ring; cannot be arbitrarily chosen, but is fixed for a given
configuration. The above conditions can then be inserted back into eq.[BZZ3) and
thereafter implementing the charge transformations in eq.[BZ38) ( which were ob-

tained as spectral flow shifts from the supergravity action ), essentially lays down the

complete black ring solution. This compares to the standard solutions of [31], [32],
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[34], [35], B8] when expressed in more convenient coordinates - but we will not require

that here.

Now let us study the behavior of this black ring in the limit [ — 0. From [33] we
already know that we should recover a 5D black hole in this limit. However the purpose
of our presentation is to make a clear distinction between branes that constitute a black
ring bound state from those that constitute a black hole bound state when the modulus
[ is driven to zero. Then we want to relate these brane charges to the spectral flow of

those respective black objects in order to determine the physical charges.

Let us begin with eqs.(BZ44) and BZZH). When [ — 0, they reduce to

JEE =0 (3.4.46)
I
vy = ——LDPMs (3.4.47)
Pkk
and the harmonics in eq.([BZZ3) become
4 Pk qr"
HTN [E) = + — L[(Qf) = Vs + —
@ Ry T E
I
P
K'(z) = ﬁ M(z) = —v; phys (3.4.48)

after having used egs.(B240) and [BZ27) therein. What we have now is a BPS con-
figuration in which there is not only a KK monopole at the origin of the Taub-NUT
orbifold, but also the M5-M2 charge is now bound to this monopole. Moreover these
bound states of branes have vanishing JE® charge. This is a 5D black hole ( or a
D2-D4-D6 black hole from the point of view of a 4D reduction ). Furthermore from
the analysis in section 3 we saw that in the case of the 5D black hole, there are no
spectral flow shifts. Therefore for this configuration, the brane charges p% ., pl,s and

qM? respectively correspond to the following physical charges

Prx = 1°
Phs = P
o = Q (3.4.49)

Now recalling the entropy function formalism, these charges are precisely associated to

the following near-horizon variables : p°, p’, e/. To sum up the contents of this section,
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we find that the physical interpretation of switching ¢ with p® in the entropy formal-
ism’s near-horizon ansatz corresponds to interpolating between limits of the modulus [
on a Taub-NUT orbifold, which in supergravity yields an interpolation between black
hole/black ring geometries. Moreover building this association to supergravity also
serves the purpose of providing a justification for the specific choice of moduli in the

Kaluza-Klein metric ansatz of [39], for each of the two geometries.

3.5 Conclusions and Discussion

The inclusion of Chern-Simons terms in the entropy function formalism has rather
been a bit of a puzzle due to its apparent lack of gauge invariance under large gauge
transformations. This being because Sen’s original derivation [29] was based on the
premise of gauge and reparametrisation invariant lagrangian densities. The dimensional
reduction approach was proposed 1] in order to rectify this. In view of the proposed
4D /5D connection [42], [43], that such a recipe works might not come as a total surprise
though. However even in those developments several contentious subtleties stood out
as regards the correct physical notion of charge in 4D and 5D [37], B8], 53], [§4],
[56]. In this note we have argued that there is no fundamental obstruction to a well-
defined 5D treatment of entropy functions with Chern-Simons terms, provided one
implements the correct physical 5D charges into the calculations. In general these 5D
charges differ from those used in the dimensionally reduced approach due to spectral
flow shifts. However to fully specify a charge, one needs to obtain the equation of
motion of the corresponding gauge field which is sourced by that charge. Within
the setting of the entropy formalism, these gauge fields are determined via moduli
el, €% and a’. Therefore upon extremising F5 with respect to these moduli one can
determine the electric charges. On the other hand the magnetic charges are pre-fixed
from the beginning. Our calculations demonstrate that once the physical 5D charges are
made manifest in the entropy function, it immediately falls into a 5D gauge invariant
expression, even without requiring to fix all the remaining moduli vy, vo, w, X’. In other
words we do not need to modify Sen’s formalism, but only correctly identify the physical

5D charges and perform computations manifestly in terms of these charges. Moreover
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because of the fact that gauge fields and consequently charges of 5D geometries with
different near-horizon topologies will in general be quite different, we find that one
cannot construct a universal entropy function that describes any 5D geometry in the
presence of Chern-Simons terms and which is also gauge invariant. In reference [39],
they do manage to write down a unified entropy function, however that can only be
expressed in terms of off-shell charges and it is in fact not invariant under spectral flow
transformations. Therefore in order to check 5D gauge invariance, we had to treat the

AdSs x S? x St black ring topology and the AdS, x S? black hole topology separately.

As is well-known, Chern-Simons terms in odd dimensions induce spectral flow shifts
in the supergravity action, which also reflect in the defining notion of charges in these
theories [09]. In our analysis for the black ring, we have seen that these spectral
flow equations also arise in a natural way out of Sen’s formalism in 5D. Consequently
the 5D electric charges were no longer gauge invariant and neither was the reduced
action F¢". Nonetheless the entropy function " itself turned out to remain invariant
under gauge/spectral flow transformations if it is expressed as a function of the correct
physical charges. We have also verified that the electric charges computed here from
Sen’s approach are identical to the Page charges expected from 5D supergravity : our
charges calculations for the black ring give a precise match with the charge integrals

recently computed by [61] on the basis of near-horizon data.

On the other hand, whilst computing for the 5D black hole we found that the electric
charges turned out not to be Page but simply 5D Maxwell charges with no spectral
flow shifts. This was because a vanishing magnetic flux in an AdS, x S® geometry
suppresses all spectral flow shifts. As a consequence, the 5D charges of this black hole
exactly match those of its 4D counterpart upon compactification of the fifth dimension.
This corroborates with the 4D /5D lift of [42]. Within this set-up, gauge invariance of
the entropy function thereon follows in a straightforward manner. Then extremising
EM to compute the black hole entropy indeed gave us an exact match with the result
of H8], where the latter was obtained via an attractor mechanism calculation. This
resolves the slight discrepancy in the result of [39] where their entropy did not quite
match H8] : because their electric charges did not agree with those of [8]. Besides

the comparison to [48], we have also provided additional evidence to support the claim
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that Q%" computed here are the correct charges to work with by showing that they also
match exactly with the charges of [61], which were obtained from a 5D supergravity
approach. The discrepancy in the charges of [39] arise whilst dimensionally reducing the
Chern-Simons terms to 4D : namely, they assume an z#-dependence for the moduli a/;
and only set the a! to constants in the final step. Consequently this introduces terms in
LR, which incorrectly shift their electric charges, thereby causing a mismatch with the
entropy of [8]. However from the point of view of a manifestly 5D calculation, there
was no natural way to assume such an z#-dependence ( whilst already in the 5D near-
horizon geometry ) and then abruptly deem them constants later in the calculation.
The 5D components of the field strength F,,, Fy, are constants in the near-horizon
geometry and giving the fields an x#-dependence through a! would seem to come in
conflict with the isometries of the near-horizon geometry. Moreover from the result
of [61] given in eq.[BIIA), the [, 6C kA7 A F¥ term vanishes for this black hole in
the absence of an effective magnetic flux ( p! +alp® ). It is only the fz «xF7 term that
contributes to the charge. Inserting the expression for the near-horizon field strength
into the integral of eq.([BIH), exactly reproduces our expression for Q4. The extra
terms in the charges of [39] would simply not agree with the integral of [61]. This seems
to suggest that assuming an z*-dependence on any of the moduli in the near-horizon
geometry and then setting them to constants after dimensional reduction might be
suspect. Within the entropy formalism, the isometries of the geometry are crucial to
the analysis and all physical quantities ought to obey these. This imposes restrictions
on the moduli, which works well when the latter are deemed constants in this geometry

at any stage of the analysis.

A related line of interest which we have investigated in this chapter concerns black
ring <> black hole interpolation in the context of Sen’s formalism. The idea behind
such an interpolation between geometries has been familiar since the work of [33],
where it was shown using black ring solutions from [31], [32]. For what we had in
mind here, it was more convenient to reformulate this interpolation using the most
general 5D N = 1 ungauged supergravity solution of [49], [50] and varying the Taub-
NUT modulus ! from a specified point to a vanishing limit. This way the structure

of harmonic functions and brane wrappings associated to the two geometries is more
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readily manifest. The supergravity solution of course captures the global structure of
the geometry, whereas the entropy formalism is only a near-horizon analysis. Therefore
in principle it is not possible to construct a full-fledged interpolation of solutions using
the latter. However we have still managed to show within the Sen formalism that
upon interchanging off-diagonal entries in the Kaluza-Klein metric bearing €° terms
with those bearing p° ones, yields algebraic data that can be compared to the limiting
supergravity solutions in such a way that parameters in the Kaluza-Klein metric can
be specifically associated to brane wrappings in the supergravity solution for both the
black ring and black hole. In retrospect, this also lends some physical intuition to the ad
hoc assignment of variables made in the black hole/black ring metric ansatz proposed
n [39]. Our original motivation in studying this €® <+ p® exchange was in the hope of
finding some sort of black ring/black hole duality loosely speculated by [B9]. However
within the context of our analysis, the ¢ < p° exchange seems to relate more with
the idea of a geometric interpolation rather than any string or gravitational duality.
There is though an interesting work by [66] which might be more in the direction of
seeking such a string duality between 5D black holes and black rings. In that work, the
authors propose a duality between microstate degeneracies of a DO-D2-D4 system with
those of a D0-D2-D6 system on the same Calabi-Yau via a Fourier-Mukai transform.
From a 5D perspective, this would lift to a black hole/black string duality. From our
discussion in section 4, we have seen that the M-theory lift of a D2-D4-D6 system gives
a bD black hole, whereas a D0-D2-D4 system in the vicinity of a D6 charge, lifts to a
black ring. It would therefore be quite interesting to see if a microscopic duality along

the lines of [66] can also be constructed for this black hole/black ring system.

Let us now briefly summarize our results with an outlook of what is to follow in
subsequent chapters. We took-off by considering Sen’s entropy function analysis in this
chapter, for the case of 5D supergravity actions containing Chern-Simons terms. The
key result of this work has been to develop an explicit 5D entropy function formalism
that works for both 5D extremal black holes and black rings. The issue with Sen’s
original formulation [29] was that it was not suited to include terms in the action
that are not manifestly gauge invariant, such as Chern-Simons terms. Hence prior

computations involving 5D black objects, relied on an ad hoc recipe of reducing the
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action to 4D and adding a total derivative term by hand to restore gauge invariance.
The trouble with this make-shift approach is that it does not correctly identify physical
5D observables. This refers to conserved charges in 5D which are shifted relative to their
4D counterparts due to large gauge transformations originating from Chern-Simons
terms. This feature is also referred to as spectral flow (the phrase being coined due to
an analogous shift in Virasoro generators of its dual CFT). Here we have solved the
problem by showing how spectral flow can be incorporated into a 5D entropy formalism,
which at the same time remains gauge invariant and has an explicit dependence only
on physical charges. In particular, we have performed explicit calculations for the black
ring and 5D black hole. In the black ring analysis, we found Chern-Simons induced
spectral flow shifts emerging in a natural way out of the entropy function formalism.
The entropy function nevertheless was seen to remain gauge invariant and the resulting
electric charges were identified as Page charges. For the black hole too, 5D gauge
invariance was confirmed. Our 5D analysis enabled us to fix a mismatch that arose in
the electric charges of Goldstein and Jena’s 4D-reduced calculation. Additionally, we
have also provided an interpretation for the ¢® <+ p° exchange in the entropy function
as being associated to an interpolation between black hole and black ring geometries

in Taub-NUT.

One of the reasons the entropy function is a more powerful tool than OSV is because
the latter only takes into account holomorphic contributions to the prepotential. The
entropy function method can be applied to non-SUSY extremal black holes and also
to higher dimensional black objects. A future goal would be to extend this formula-
tion to multi-center as well as non-extremal black holes if possible, and that promises

interesting applications.

As further outlook in this program, one could consider using the 5D formulation
developed here for the purpose of computing higher derivative corrections. More specif-
ically, the case in point would be for geometries having an AdS; component in its near-
horizon region. Using anomaly cancellation arguments, Kraus and Larsen [67] have
demonstrated that the only supersymmetric higher derivative terms of the 5D low en-
ergy effective action that contribute to Wald’s entropy in AdSs, result from one-loop

worldsheet instanton contributions, that is mixed gauge-gravitational Chern-Simons
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terms and its supersymmetric completion. Previous attempts at computing R? correc-
tions to black ring entropy have failed to match exact microscopic results because the
explicit supersymmetric completion of the above mixed Chern-Simons term was not
known until recently in the work of Hanaki, Ohashi and Tachikawa [68], who make use
of a 5D off-shell superconformal formalism. Since the 5D entropy function formula-
tion presented in this thesis is well-suited to deal with Chern-Simons type corrections,
a possible computation using the above technology would be to obtain one-loop cor-
rected charge shifts for black rings as well as the exact higher derivative entropy for
black rings from a macroscopic calculation. For 5D Ad.S; black holes the problem gets
much harder as there are no anomaly cancellations and therefore all higher-loop effects
have to be considered. Part of that has been attempted for spinning black holes using

a supergravity analysis in [T134].



Chapter 4

The 4D /5D Map and Multi-Center
Geometries

FEverything happens to everybody sooner or later if there’s time enough

- George Bernard Shaw

In the previous chapter we have investigated Chern-Simons induced charge shifts
for a black ring/black hole in 5D. These effects are certainly crucial for constructing
a precise mapping between black objects in four and five dimensions. In this chapter,
we want to construct a 4D /5D map for multi-center geometries, which in our case are
taken to be multiple non-concentric black rings in Taub-NUT. These rings themselves
are seen to emerge from AdS fragmentation of a single black ring. This picture is the
5D version of 4D fragmentation into baby universes, which in turn are related to finite
N contributions to the OSV conjecture, thus bringing together different pieces of the

puzzle for the case of multi-center geometries.

Starting from recent work in 2] and [43], a considerable interest has been gen-
erated in understanding 5D BPS degeneracies by constructing dualities to the better
understood 4D sector [38], [B6], [B4], [84]. Matter of fact, this 4D /5D relation was put

forth by [42] as a 5D version of the OSV conjecture [129)]
Z5n = Zgn = | Ziopl” (4.0.1)

Evidence for this proposal was sought for by matching the entropy of the 5D BMPV
[51] black hole in Taub-NUT space, to the entropy of a 4D Calabi-Yau black hole while

making use of the M-theory «» Type II A correspondence. Moreover, since Z &% counts

63
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degeneracies of single as well as multi-center black holes, it was pointed out by [43] that
Z3, must also account for equivalent multi-black objects in 5D, assuming eq.(EELT)
holds. While a single-center BPS black hole in 4D just lifts to a 5D BMPV black
hole; in [A3] a rather interesting result was demonstrated : a 4D two-center charge
configuration consisting of a D6 charged point-particle at the origin ( of R? ) and a
D4-D2-D0 charge at a distance |L| from it, will in fact lift to a supersymmetric black
ring in 5D Taub-NUT space. \E\ now becomes a modulus on Taub-NUT denoting the

distance of the ring from the origin.

On a rather different footing, yet another offshoot of the OSV bandwagon was the
work of [I(07], conceiving baby universes as finite ( but still relatively large ) N non-

N and

perturbative corrections to the OSV conjecture. These corrections go like e~
are realised as instanton effects in the holographically dual gauge theory. In turn, the
holomorphic sector of the gauge theory is dual to the topological string partition sum
Ziop- The gravitational realisation of these corrections were proposed as 4D multi-
center black hole configurations, which can be generated via the mechanism of AdS
fragmentation [73], [74] of a single black hole at zy € R?® into multiple black holes at
{z; € R?}. These multi-AdS throats are associated to a gravitational instanton action
which describes the amplitude for tunneling, in Euclidean time, of a single black hole

to multi-black holes. Based on that, [I07] forward the idea of a third quantized Hilbert

space of baby universes.

One of the motivations driving this note was to reconcile the two aforementioned
streams of thought. We try and address some questions regarding the fragmentation
of black rings in 5D. Analogous to the 4D case, where we saw how to split D4-D2-D0
charges, here we start with a black ring in Taub-NUT, since this is the pertinent 5D
lift of a D4-D2-DO0 black hole placed at a distance |L| from a single D6 charge ( the
sole D6 here does not participate in fragmentation ). We then set up a fragmentation
ansatz for this single ring and see that it splits up into non-concentric multiple black
rings ( in general ). This construction is subject to charge splitting constraints, which
as we shall soon see will turn out to be more subtle in the 5D case that they were in 4D
due to the presence of cross-terms between multiple centers that must now be carefully

tendered.



65

On the other hand, one might fairly well ask whether the fragmented multi-rings
constructed in this manner could as well have been obtained from a direct 5D lift of
the 4D multi-center solution. The answer turns out to be in the affirmative; and to
do so we shall first require to construct the 4D /5D dictionary for multi-center charges.
Compared to the 4D/5D map of [42] for a single black object, the analogous one for
multi-centers will turn out a bit more involved again due to the relentless cross-terms.
Nevertheless with such a map in hand, transforming amongst 4D/5D multi-center
charges, we verify that our fragmented harmonic functions are indeed direct 5D lifts of
4D multi-center solutions. This enables us to confirm commutativity of the following

box diagram.

4D ragmentation 4D Multi-
fragmentat (4.0.2)
Black Hole Black Holes
4D /5D Map 4D /5D Map
5D 5D Multi-
Black Ring Fragmentation Black Rings

As had already been hinted by in [I07] in context to the 4D set-up; eq.(EILZ) seems to
predicate the suggestion in 5D, that fragmentation might be thought of as a possible
recipe for generating classes of multi-center configurations once given corresponding
single-center ones. Of course the multi-rings that we generate in this note by these
methods, are by no means any new solutions which had previously been unheard of.
For that matter, we point to some of the extensive literature, where several classes
of 5D multi-center solutions have been worked out : [B6], [7], [78], [[9], [80], [§1].
The focus in this note is based more in the spirit of the box diagram in eq.(EL2) and
studying the details therein.

Whilst meandering amidst this impending scheme of things, we are duly confronted
with issues concerning the physically meaningful definition of charges in 4D and 5D.
We begin with an apprehension of the single black hole/ black ring duality by match-

ing 4D two-center harmonics to 5D black ring harmonics. Such a comparison invokes
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symplectic charge transformations going from 4D to 5D. Additionally these 4D/5D
transformations also make way for an alternative derivation of black ring angular mo-
menta. A clear notion of single-center 4D /5D mapping, now equips us to move on to
study the interpretation of 5D multi-center charges. First we procure the 5D charge
splitting equations via implementation of the 4D charge splitting equations as well as
the single-center 4D /5D lift. The 5D equations so obtained definitely carry the bag-
gage of cross-terms, due to the fact that the 4D /5D transformations are non-linear in
the dipole fields. Moreover we shall see that it now becomes relevant to identify which
of these charges is of Maxwell type and which of Page type. This discussion picks up
from [61] and continues further for the case of fragmented charges. In fact we shall
see that in 5D the charges @) Ai(5D) which actually engage in fragmentation are Page
charges. These are really the physical multi-ring charges and not the charges @ Ay
in terms of which the multi-black ring metric is usually expressed. We also write down

an explicit expression transforming between these two types of charges. In due course

the multi-center 4D /5D dictionary falls in place.

As an application of charge fragmentation methods described here, we derive the
total angular momentum of a system of non-concentric multi-black rings by simply
starting from the angular momentum of a single black ring and making use of 5D
charge splitting equations. As a check for our answer, we reduce to the special case of
concentric black rings in order to compare the our result with the well-known expression

of Gauntlett and Gutowski [82], [R3]; and yes, their result is correctly reproduced !

The alluring calls for a geometric interpretation of these fragmented rings under-
score the final act. In a multi-ring background, individual rings receive multiple spectral
flow shifts due to fluxes emanating from split-charge centers; thus coining the notion
of ’split-spectral flows’. Each ring may be thought of as sourcing a Dirac string gen-
erated due to its magnetic flux. In a Taub-NUT base, these rings are stacked in order
of increasing radius. Hence, say the i*-ring; in addition to its own Dirac string; also
encircles Dirac strings sourced by each of the (i — 1) rings of smaller radius in the
Taub-NUT base. And going around Dirac strings is by no means a free ride. It costs
large gauge transformations, which can have long-term consequences if Chern-Simons

terms are involved as well. This is how spectral flows arise. Therefore the case of our
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i*"-ring multi-timing that many Dirac strings will face a horde of spectral flow shifts to

its initial brane charges. This will completely account for the physical split-charges of
fragmented rings. Moreover, adding up all the split-spectral flows of all of our wander-
ing fragmented rings correctly gives back the spectral flow of an unfragmented single
black ring system, as it should. This sheds light on a geometrical view of the origin
of multi-ring Page charges and their cross terms. In fact such split-spectral flows di-
vide the geometry into patches with locally defined gauge field potentials, such that

adjacent patches are related up to gauge transformations.

The organization of this chapter is as follows : Section 2 provides a lay-out of the
4D multi-center black hole technology and comments on its physical interpretation as
baby universes. Section 3 handles harmonics, charges and angular momenta of a single
black ring in Taub-NUT from a 4D /5D map. Section 4 is where 5D fragmentation takes
shape. We set-up conditions for black ring fragmentation and provide an interpretation
for multi-center 5D charges. This follows by writing down a multi-center 4D /5D charge
dictionary and also deriving the angular momenta of (non-)concentric multi-black rings.
Section 5 seeks to unfold a geometric perspective on the above via the notion of split-
spectral flows. Alas, we must wind up..... that’s why there’s section 6, concluding and

throwing pointers at further directions.

4.1 A Glance at 4D Black Hole Fragmentation

In this section we briefly sketch the set-up of 4D black hole fragmentation and its
interpretation of baby universes following the approach of [I(7]. The conceptual basis
behind the idea of baby universes lies in the phenomenon of AdS fragmentation [73],
[74], which was proposed as an instanton process wherein a single black hole, seen as an
excitation in one vacuum configuration, tunnels to a multi-black hole state appearing
as an excitation in another vacuum. The two vacua lie in the asymptotic limits of a
“Buclidean time” co-ordinate, which is defined by an entropy functional S(x). From
the Euclidean metric (obtained after a Wick rotation) the AdS, x S? geometry is seen

to flow to a product geometry of @, AdSs x S? ( to leading approximation ).

As an explicit representation of multi-black hole configurations, the authors of [T(07]
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make use of the well-known multi-center solutions of N' = 2 supergravity from [69],
[0], [T, [72]. The idea behind the fragmentation procedure is that the black hole
harmonic functions interpolate between the single-center harmonics; at asymptotic
infinity * — oo; and the multi-center harmonics; which are achieved upon approaching
the near-horizon limit. In fact, near the i*"-horizon when = — x;, the i*"-black hole
dominates the solution. Therefore given a single-center solution and implementing the
above idea, one can set up an ansatz for harmonic functions of fragmented black holes.
Additionally charge conservation constrains the distribution of charges at fragmented
centers. In [I07] it was shown that the supergravity configuration of [69], [Z0], [Z1],
[72] can indeed be realised in this way via AdS fragmentation of a single black hole.
For the sake of setting up notation as well as later reference, let us flash a quick glance

at how this works.

Consider the harmonic functions of a single black hole in 4D with magnetic charges

p! and electric charges ¢; placed at the spatial origin in R?
I

Ul(z) = L Vi(z) = ar vy (4.1.3)
|| ||
here I = 0,1, ..... denotes vector multiplet indices; # € R3; and u!, v; are constants

determined at infinity. In these co-ordinates the pole at x = 0 is the location of
the horizon which has the topology of a two-sphere S?. Another ingredient we will
require is the entropy functional S(z) = S [U'(z), V;(z)]. This is a specific polynomial
function of the harmonics and only at the horizon does it attain the value of the entropy.
Elsewhere S(x) freely flows between its asymptotic limits. This flow in S(z) will induce
the harmonic functions U’(z), Vi(x) to interpolate between single-center and multi-
center solutions. At asymptotic infinity with x — oo, a single black hole geometry
with charges p, qr placed at the origin and harmonics given by eq.[@I3) leads to
S(x) — c ( a finite number ). When these harmonics are inserted in the metric we
get the well-known topology of AdS, x S? and S(x) enters this near-horizon Bertotti-
Robinson metric as the square of the AdS; radius. The idea of AdS fragmentation now
proposes treating S(x) as a Euclidean time direction. Then the S(z) — oo asymptote
serves as another vacuum into which there exists a finite probability amplitude for a
single black hole system to tunnel into a system of multi-black holes. The most general

solution for harmonic functions, which interpolate between these asymptotic vacua,
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looks like

n n

Ule) =Y Py Vi) =" iy (4.1.4)

= |z — =il

where U’ (), V;(z) now describe a multi-black hole system with n horizons located at

centers {x;}. Charge splitting is subject to the following constraints
pr =p' and Z qr; = qr (4.1.5)
i=1 =1

To fully specify the solution additional integrability conditions are also required

(pVi(z) — qr,U'(2)) | =0 (4.1.6)

Tr=x;

which have to be evaluated at each horizon. Now we can see how the above har-
monic functions interpolate between single and multi-center geometries as follows :
at asymptotic infinity * — oo, the harmonics in eq.([@I4]) reduce to eq.( @13 ( by
using the constraints in eq.[@LH) ) and S(x) — ¢; whereas at each x — x;, only
the i""-summands in eq.([ET4) dominate, describing multiple black holes located at
{z;} respectively and consequently giving S(z) — oo. Hence flowing S(z) from c
to oo describes an AdS geometry fragmenting into a multi-AdS geometry. Eqs.({E14),
(ETH) and ([ETH) were originally derived as part of the multi-center N' = 2 supergrav-
ity solution of [69]. In [T(07] this solution has been interpreted as remnants of an AdS

fragmentation process.

4.2 Black Ring from 4D /5D Duality

In this section we demonstrate how charges, harmonics and angular momenta of a black
ring can be determined purely in terms of a 4D /5D duality. While the charges and
harmonics are straightforward to get; an explicit expression for ring angular momenta
obtained from 4D /5D lifting will serve to compliment the usual supergravity derivations

discussed in the literature.

We start by considering the following two-center system in 4D :

1

V) = — +u° Va(z) = ;"‘_(%HA
qo(4D)
|z — 2]

+ Vo (427)
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which consists of a single D6 charge ( p?w) = 1) at the origin z = 0 ( in R? ); and
paD), qap)y and qoup) respectively D4, D2, DO charges, which form a 4D black hole at
x = xo. In [A3], the 4D metric of this system is decompactified to yield a 5D black ring
in Taub-NUT. Instead of doing that, here we go for a more direct comparison; namely,
showing that the 4D harmonics above will be identical to 5D black ring harmonics

once they are expressed via 5D charges. For this we will require the 4D/5D charge

transformations
Pap) = DPp) (4.2.8)
qa4p) = (QA(SD)_3DABCP(35D)]9(%D)) (4.2.9)

where @) 45p) and pé D) respectively will turn out to be black ring electric and magnetic
charges. We shall soon comment on their interpretation. An additional ingredient

required to specify eq.(L2ZT) are the integrability conditions, which yield

qo(4D)
= - 4.2.10
v 4 (4.2.10)
1 4\
do(4D) = UApaD) (Z+RT) (4.2.11)
TN

here L denotes the radial distance |xg|. The presence of a D6-brane leads to a geometric

transition when lifting to M-theory, giving a Taub-NUT space in the uncompactified

directions. Therefore U O(x) becomes a harmonic function in Taub-NUT with u° = 324
TN

( with Rpy as the asymptotic radius of Taub-NUT ). u” remains arbitrary and can be

set to zero. Putting all this together, the 4D harmonics above can indeed be compared

to the known Taub-NUT-black ring harmonics in the literature [Z%?%]H ( see also [33] )

4 1 Qo) — 3D ascp® 500 50
HTN(J;> —R%N —}-m LA(J;) = vy + (5D) |x_x0| (5D) (5D)
A
P 5D Jtube _Jtube
Kz) = - { xi| M(z) = =4 P (4.2.12)

where Jype = —qo@p), which is determined from eq.([@ZTTl), is indeed the intrinsic (
not total ) angular momentum of the ring along the S' circle and is the M-theory lift
of the DO-charge. Thus the harmonic functions of the 4D two-center system under

consideration are exactly equivalent to those of a 5D black ring in Taub-NUTH.

! Compared to [38] we have scaled the pZ,, charge by a factor of (—1).
2 A black ring in R* ( see [31], [32], [34], [35] ) can be extracted as a special case of eq.([@mZI2) by



4.2. BLACK RING FROM 4D/5D DUALITY 71

Note that these functions in eq.([LZI2) ( along with integrability conditions ) com-
pletely specify the black ring solution. For the sake of completeness, let us quickly
demonstrate how this comes about. Consider the most general 5D N = 1 ungauged

supergravity solution [A9], [50] which is given by the following 5D metric and gauge
fields

dsz = — f2(dt + w)* + f1ds*(M,)
FY = dlfXY(dt +w)] — %fXA(dw+*dw) (4.2.13)

where X4 are scalar fields in abelian vector multiplets; they satisfy the constraint
equation DapcXAXBXC = 1 and X4 are defined by the condition X4X, = 1.
ds*(M,) in the equation above refers to the Gibbons-Hawking metric of a 4D hyper-
Kahler base space, which in our case is simply taken to be ds*(T'N), the Taub-NUT
metric ( or ds?(R*) when considering a black ring in flat space ). Let 7, 6, ¢, ¢ de-
note coordinates on the 4D base space with (7,0, ¢) locally parameterising an R3 and
@ running along a compact S' with periodicity 47. The Hodge dual % is taken with
respect to the 4D base space. The function f and one-form w are fully nailed down in

terms of four yet-to-be-specified harmonic functions as follows

1
71Xy = 1 Hrn ' DapcKPKC + Ly
1 _ 3 B
wo = (—g Hrn ? Dapc KAKPKC® — ZHTN VKA L, + M)
X (dy + cosfdp) + © (4.2.14)

The notation used in this equation is intentionally suggestive. Furthermore, & is defined

by
" 3
Vx® = Hry VM — M VHry + 5 (La VK* — K*VL,)  (4.2.15)

Now inserting the explicit form of the harmonic functions of eq. [EZT2]) into eqs. ([{E2T3),
(EZTA) and (EZTH) simply reproduces the complete black ring solution of [38] in Taub-
NUT (or [33] in R* ). Moreover, operating the gradient on both sides of eq.(EEZTH)

and evaluating at the poles, exactly recovers the integrability conditions of eq.( {16,

taking the limit Ry — oo. The conventions of [B1], [32] differ from [38] by rescaling of charges; in

this note we continue using the latter.



72 CHAPTER 4. THE 4D/5D MAP AND MULTI-CENTER GEOMETRIES

which are subsequently solved to get eqs.([ZI0) and ([@2ZIT). This prescription goes
through for multi-rings as well. Inserting appropriate multi-ring harmonics into the
same 5D supergravity metric given above, one can recover the multi-black ring solu-
tion [82], [83]. In this sense, the harmonics and integrability conditions can be said
to be sufficiently representative of the solutions of single as well as multi-black rings.
For what follows here, we shall adopt this stance as well. Therefore the focus in this
note shall not be on solving supergravity equations themselves, but rather on obtain-
ing quantities such as multi-ring harmonics, charges and angular momenta from ring

fragmentation and spectral flows.

Now coming back to the 4D/5D transformations, a comment on eqs.[@Z8) and
EZ3) is due. These equations were derived in 2] by considering symplectic shifts
in electric charges due the presence of a magnetic flux such that the degeneracy of
microstates remains invariant. Subsequently this leads to matching of leading order
entropies for 4D and 5D black holes. Also, the authors of [38], [37], [76] further clarify
these transformations when interpolating from a 4D black hole to a 5D black ring.
While g44p) is the observable in 4D, from the 5D perspective it is () 4spy which is the
observed charge. Let us point out to yet another interpretation of these transformations
coming from spectral flow shifts ( as in [57] ) associated to the 5D Chern-Simons term.

In a later section, we pursue this last observation further.

Much like the above-mentioned D2 charges, there also occurs a shift for DO charges

( again due to [42] )

do(sD) = qo(4D) — (pé;D)CIA(4D) + DABCpaD)pﬁD)p(C:LD)) (4.2.16)

Starting from this relation we now obtain an independent identification of the total

black ring angular momenta. Simply using eqs.(TZ8), @ZY), EZI0) and EZT)
into eq.([@ZTH) yields
A 1 4\ A B . C
Gos0) = VaPip) \ T T 12 — P50y (Qaip) — 2DABCPEp)PisD)) (4.2.17)
TN
Now let us denote gysp) = —%Jw where G is the 5D Newton’s constant. Then J,
exactly compares to the total angular momentum of the ring along the S! circle as

given in B8] (or BI] on reducing to R* ). The first term of .J, is the intrinsic angular
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momentum arising via the presence of D0 charges along the S! circle ( 1)-direction );
the second component describes the angular momentum induced in the presence of a
magnetic flux. In addition there is yet another angular momentum characterising the
ring; one associated to the ¢-circle along the S?, perpendicular to the 1-circle. In the
absence of DO charges along the ¢-circle, with only flux going through it, the angular
momentum contribution ( denote as .J, ) is solely flux-induced, thus giving

Jo = Ty — %mee (4.2.18)
Thus far we conclude that explicit application of the 4D /5D correspondence correctly
identifies the charge prescription, harmonic functions as well as angular momenta of
a black ring. Proceeding this way the leading order black ring entropy too can be
obtained, as well as its one-loop correction. Since the references [37], [76], 43|, [24]
do justice to the former and [56] to the latter, we shall have no more to say on that.
Equipped with these tools, we shall next test their application for the case of multi-

center black holes/rings.

4.3 Black Ring Fragmentation & Charge Splitting
in 5D

As seen in section 2, 4D charge fragmentation is given by simple linear relations in
terms of fragmented charges. For D4, D2, DO branes respectively, we denote these

splittings as

A
sz‘ (4D) — pA(4D) Z 4Ai(ap) = 4A(4D) Z q0i(apy = 40(4D) (4.3.19)
i=1 i=1 i=1
Let us note that in 4D these are also the physically observed charges. We would now
like to construct the analog of these equations in 5D. In that case, as we shall soon see,
the charge fragmentation equations are not only non-linear (in the dipole charges) but

also involve cross-term contributions arising from multiple charge centers.
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4.3.1 Charges & Harmonic Functions of Fragmenting Black
Rings

Owing to the trivial 4D /5D relation for magnetic charges pA(5 py (as in eq.({ZZE) ),

their splitting into 5D components is straightforward.

pA(5D) = Zp?(SD) (4.3.20)
=1

The more interesting case is that of the electric charge Q) 4;py of a single black ring.
Since this charge differs from the corresponding 4D charge gapy by large gauge trans-
formations induced via the Chern-Simons term in the 5D action, therefore the 5D
splitting for Qa(py will turn out to be more involved. Analogous to the 4D case, let

us define the fragmentation of this charge to be

n
Qaip) = ZQAi(SD) (4.3.21)
i=1
where we now have to determine () Ai(5D) and then provide it with a physical interpre-
tation. To do this, we substitute the conditions given in eq.[EZTY) into eqs.([EZH) and
#@Z3). Upon further rearranging we get

_ B C
QA(5D) = {Z; qAi4D) + Z Z 3D apcp; aD)P; (4D)} (4.3.22)

i=1 j=1
A B c B c

= Z { <QAZ~ 0y — 3DaBcp; (50)Pi (5D)> + Z3DABCP¢ (5D0)Pj (5D)} (4.3.23)

i=1 j=1

where the last line has been converted to 5D quantities with the intent of extracting 5D

charge fragments. QV A; sy 18 Introduced as a new 5D variable defined by the following

4D /5D transformation

Qa, 60y — 4Aiap) T 3DABCPZB(4D)piC(4D) (4.3.24)

Notice that the right-hand side of eq.([{3:23)) has been expressed in a way that facilitates
comparison to the literature. @ A; sy 18 actually a 5D charge associated to the it" black
ring and is the one that appears in the usual 5D multi-ring supergravity solutions (

for instance see [82], [83] ). In this way, eq.[(@mZ323) is simply the ADM masd] of [82],

3 Even though [82], [83] only refer to concentric rings, the above comparison is still meaningful
because effects due to non-concentricity only start showing up for quantities involving the position

vector L, such as angular momentum, entropy, etc.
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[83]. Note that because these references dwell in conventions different from ours, the
following rescaling of charges must be used : p{‘(S py — \/§pf‘(5 D)- Also they use Cape

as the intersection number, which relates to the one used here via Cypc = 6D apc.

Despite the above comparison, let us remark that in our case eq.([=323)) is obtained
as a result of 5D fragmentation. Therefore it is clear that summing all the @ Aispy S
over all ¢ would not conserve Q4;;py. The charges that are actually involved in 5D
fragmentation are clearly the ) Aispy S and not @ Aispy S-S0 the question arises, which
of these two is the correct physical observable ? In order to answer this, we shall
take a closer look at the interpretation of each of these charges via their integral
representations. It will turn out that it is in fact the Qa;;p)’s that are the physically
observable quantities and not the @ A;spy 8- The subtlety between Q Ai(5D) and @ Ai sy
arises precisely due to the presence of cross-terms relating different charge centers. The
consequences of these cross-terms will also be evident in other quantities such as multi-

ring angular momenta. For later reference, let us note down the relation between the

two charges

i—1

A c c
Qaispy = Qa, py T+ Z 3D apc <pz‘B(5D)pj (5D) +pf(5D)pi (5D)> (4.3.25)
j=1

Whilst plucking this expression from eq.([@323)) one has also to keep in mind that
Q Ai(5D) should be independent of how the cycles B and C' have been labelled. Therefore

the resulting expression for @) A;(3p) has to be symmetrised as done above.

Now let us try to understand the various 5D charges discussed above in the form of
integrals over near-horizon patches. In [61] it was shown that in terms of purely near-
horizon fields (and not requiring data from the complete solution) of a single black
ring, the charge Qa(sp) can be understood as a Page charge rather than a Maxwell

charge ( see also [0Y] for a clear exposition on the different notions of charge )
Qasp) = / (xaapFP +3Dapc A" N F©) (4.3.26)
b

where the range of integration, denoted by X, is a spatial 3-cycle in the vicinity of
the black ring horizon. The asp, which is a function of the scalar moduli, serve the
usual purpose of lowering vector multiplet indices. AP denote near-horizon U(1) gauge

fields around the black ring. A Page charge is conserved, localized and quantized, but
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not gauge invariant. The near-horizon integral on the right-hand side of eq.(EE3.26])
implicitly represents a Page charge. In [61], they explicitly compute this integral and

show that it indeed results in the black ring charge Q4p)-

Adapting the results of [61] to the present context of fragmented rings, we now argue
that the Qa;(5p)’s are also Page charges. This is consistent with the role of eq.([ 32T
as a charge conservation equation. Then ) Ai(5D) should also have an expression as a

localized charge resulting from a near-horizon integral

QAi(SD) < / (*QABF¢B+3DABCAZB/\F¢C) (4.3.27)
Z.

k3

for AP as U(1) gauge fields locally defined in the neighborhood of the i**-ring horizon.
¥; denotes a 3-cycle enclosing the i*-horizon and F? = dAP. So the question then is :
does this integral in eq.([L3.27) work out to give Qa;;;p) ? Upon inserting the following
expression for the gauge field :

AP = — [(DBC (QAZ- T 3DCDEP?(5D)2%E(5D)> + 2229}3(513)) di

j=1

- <p?(5p)(1 +a)+2 > pf (5D)> dX] (4.3.28)

j=it+1

into the integral in eq.[@32M), the authors of [61] indeed do obtain the expressionH
we had in eq.[(@Z32H). In eq.(@32¥), the variables ¢, y and z are the usual ring-
coordinates ( notation follows from [31] ). (¢ + x/2) and x parametrise the S?, while
(¢ — x/2) runs along the S! near the horizon of the i*"-black ring. The gauge fields
AB are locally defined patch-wise. Gluing of adjacent patches is achieved via gauge
transformations. In eq.[Z328), i = 1 refers to the innermost ring ( smallest radius )
and the radial parameter monotonically increases with increasing ¢. The expression for
AB used in [61] was extracted from the supergravity solution of [82], [83] for concentric
black rings. The same is reliable for non-concentric rings too, since restrictions to
concentricity mainly become relevant when evaluating integrability conditions ( and

those bear consequences for multi-ring angular momenta ).

From the expression for A? above, we see that the gauge field around the i*"-ring

also feels the back-reaction due to dipole fields from neighboring rings. It is precisely

4 In [61] the computation was first done for the special case of only one vector field, and then it

was generalized to n U(1) fields by simply carrying through the same calculation with vector indices.
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this dipole field back-reaction that leads to cross-terms in the computation of Q) 4;p)-
In our case we tried to derive these terms from the construction of 5D fragmentation.
It is gratifying to note that they exactly compare with those coming from the integral
of [61]. As we shall see that fragmentation of a single ring indeed does reproduce the

correct multi-ring charges.

Now turning our attention to @ A; sy 16t us see why this is in fact not a physical
charge. From the definition of Q Aispy 0 eq. (32D, its 4D/5D transformation is
identical to that of a single black ring system with electric charge @ A, 5py and magnetic
charge pg‘l(s D) This is in stark contrast to the analogous transformation of () Ai(5D) (
which can be read-off from eq.([@322) ). Unlike Qa;(spy, We see that @Ai spy Clearly
does not sense the background reaction due to neighboring rings. Hence such a charge
cannot be given a global physical meaning in a multi-ring geometry. Its presence is
at best only a local approximation. Therefore its integral representation is trivially
identical to eq.([@320]) after all charges ( which enter into the explicit expressions for

the gauge potentials ) have been replaced by those at the i'"-center.

Eqgs. @322) and {324) essentially describe the multi-center 4D /5D dictionary for
electric charges. As expected the physical multi-center Page charge @) Ai(sp) trans-
forms in a more complicated way than Qa;p) (eq.EZH)), due to the multi-black
ring background. On the other hand, the charges @ A;spy» though unphysical, re-
tain manifest symplectic invariance of the original single-center solution. Each of the
<pg4 (5D) » @ Ais D)> manifestly transform as a symplectic pair. This underlying property
often makes it convenient to express multi-black ring solutions in terms of these charges

( as has been usual practice in the literature ).

Having explicitly constructed the 5D charge fragmentation equations for mag-
netic and electric charges ( pA(5D), QA(5D)) along with the relevant multi-center
4D /5D transformations, we are now equipped to derive two of the multi-ring harmonic

functions (K% (), LA(a:))multi from the single-ring harmonics (K*(z), La(x)) by

single

merely implementing the fragmentation recipe of section 2. As in eqs.([@I4]) and [ETH)
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we have
—3D B ¢
La(z) I QA(5D) ABCP (5D)P (5D)
single ‘3? - [E0|
" Q% — 3Dapcp* S spp°Y 5p
— Uy + o |z — x4 e oL ):LA(x) (4.3.29)
i=1 ¢ multi

which is subject to the constraint

n

Qap) — 3DABC’pB(5D)pC(5D) = Z (Q;;Z-(g,p) - 3DABcp'f(5D)p'iC(5D)> (4.3.30)
=1

Eqgs.(E329) and ([E330) constitute a natural 5D fragmentation ansatz with newly-

defined charges Q%; ) and p'f‘(w) such that at © — oo one recovers La(x) »
single
while at © — x; the solution (at leading approximation) appears like a single black
ring at the i" location. Now the constraint in eq.([@330) above is identical in form to

the charge splitting eq.(E323)), which suggests the identification

. — N oA
Qaisp) = Qaigon) i (5D) = =p; (5D) (4.3.31)

From this we also see how the charges @ A, 5py €nter into the 5D harmonics and subse-
quently into the metric. Of course the above harmonic function could also have been
written in terms of () Ai3p)» but then the expressions would only get a little messy as

we proceed.

Another remark that we can make at this stage is that eq.[@329) ( along with the
conditions in eqs.([@330) and [33T]) ) could also have been obtained via a different
route; namely, by direct use of the multi-ring 4D /5D transformation ( eq.([@324) )
into eqs.([@I4l) and ([EIH). This is consistent with the commutativity of the diagram
in eq.(@12)), which suggests that fragmenting a single black ring into multiple black
rings reproduces the same configuration as that obtained by a direct 5D lift of the

appropriate 4D multi-center black holes.

Dealing with the harmonic function K“(x) for magnetic charges is now straightfor-

ward :

pA(sD)

|z — x|

Z |pz 6D — KA(x) (4.3.32)

T — xl multi

K4 (x)

single
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which is again subject to
P60y =D _Pien) (4.3.33)

As per the other two black ring harmonic functions Hry(x) and M(zx) : the former
remains unchanged under fragmentation as our brane configuration includes only a
single D6 charge ( which lifts to a Kaluza-Klein monopole in 5D ); while fragmentation

of the latter comes up in the following sub-section.

4.3.2 Angular Momenta from Black Ring Fragmentation

We are now ready to derive the expressions for angular momenta of a multi-black
ring system from 5D fragmentation techniques. Our starting point is eq.[[EZI1) : the

angular momentum of a single black ring along the v-direction

3 3
Jy = ﬁl]tube + ﬁpéD)(QA(SD) — 2D ABCP ()P (4.3.34)

Inserting the 5D charge splitting eqs.([E320) and [E32Z3)) into the above we readily

obtain

3T = 3
‘]1/1 = ZZ‘]tube + 6
=1

B .C
Z Pi (5D (QA spy — 3DaBeD; 5p\P; (5D)>

2,7=1

+ > Dascri ooy} (5D)pg(5D)] (4.3.35)

i,5,k=1

where the quantities J; , have yet to be determined from integrability conditions. As

a special case of our result in eq.(E330]), we shall be able to reproduce the expression

for angular momentum of concentric black rings which was first derived by Gauntlett

and Gutowski in [82], [83] in the context of 5D supergravity. In order to obtain J;,,,

we will first have to determine the multi-ring harmonic function M(z), from where
! b Can be extracted. Therefore, fragmenting the function M (x) yields

_Jtube
|z — xo\

M (z) = Y+

single

. UO+Z|$ e () (4.3.36)

- xl multi
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subject to
Jtube - Z tiube (4337)
i=1

Additionally, the multi-ring harmonics (Hpy(z), K4(x), La(z), M(2))mus above also
have to satisfy integrability conditions as in eq.[EL0). These are to be evaluated at
each horizon. Starting with = = 0, we get

Vo ::jgj-f%%é (4.3.38)

i=1

This determines the constant vy in terms of J/, ( which we still have to fix in terms
of electric and magnetic charges ) and L; ( which is the radial distance in R? of the i
pole from the origin ). However, as discussed earlier, vy is a constant predetermined at
infinity and should not be affected by the process of fragmentation. As a consistency
check we shall see in what follows that eq.([L338) is indeed identical to eq.(EZI0)
obtained earlier in section 3. Before that we will require to compute the remaining n

conditions at the horizons {z;}. This yields

_ n A N _ B c
; 4 1 ! A Pi (5D) (QAj (5D) 3D apcp; D)Pi (5D)>
e = | @ + I Pi spyva T Z

TN i \/Lf —2L;L;cos0;; + L?
J=1

J#i

" <QAi (D) 3DABCPZB(5D)piC(5D)> paA(sD)

_ jXZ:l \/LZ2 — 2L;L;cos0;; + L?

JF#

(4.3.39)

where 0;; is the angle between L, LZ € R3. Now rearranging eq.(E3:39) for % and
then inserting back into eq.[@338) produces

4 Jrupe
1m::-—_R§b —vap™5) (4.3.40)
TN

after also using eqs.([@320) and [E337). Indeed eq.[E3A0) is precisely the value of vy
obtained earlier by inserting eq.(EZ11]) into eq.(E2ZI0).
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Now with eqs.([E339) and ([E3Z0) the function M (x) is fully specified. Thus
simply from 5D black ring fragmentation we were able tomcuzgilstruct all of the multi-
black ring harmonic functions. Moreover inserting eq.[{E3.39) for J/ ,. into eq.([EE335)
results in the complete expression for the total multi-black ring angular momentum in

the 1)-direction : Jy. Also the angular momentum in the ¢-direction : Jy, can then be

read-off from Jy, since

3T =
‘]¢ = ‘]7/1 - 5 Z tube (4341)
=1

still continues to hold.

An additional comment on eq.[Z339) is due. Let us take a closer look at the last
two terms on the right-hand side of this equation. As long as the multi-center charges
are constrained to remain mutually non-local, then L, =+ I:; will hold and that avoids
any potential singularity in eq.([@339). Hence the sum of the two numerators ( within
the summation symbols ) is allowed to assume any non-zero value. From the 4D point
of view, this is precisely the condition for the dual 4D charges (pf‘(w), qAi D)) to be
non-parallel ( on the charge lattice ). This was the interesting new feature in the multi-
center solution of [69], [70], [71], [72]. On the other hand, if the condition L; # 17] were

to be relaxed; then we would be required to impose

~ ~ A
pfl(SD) <QAj (5D) 3DABCP;3(5D)ij(5D)) - <QAi (D) 3DABCP?(5D)piC(5D)) Pj spy = 0 (4.342)

for all ¢ # j, thereby eliminating the last two terms in eq.[Z339). The corresponding
4D charge vectors (pf(w), in(4D)) are now parallel-aligned on the charge latticel. The
reason we made the above comment is because the construction in [82], [83] does restrict
to eq.[E3Z2) and hence we too will need to make use of it whenever comparing to their
results. For all other purposes, our results continue to hold for non-parallel charges in

general.

Eq.[£334) along with eq.([@339) gave us the most general result for the angular

momentum ( along the -coordinate ) of non-concentric multi-black rings. We would

5Note that being parallel on the charge lattice should not be confused with co-linearity of the poles
in R3. Even for parallel charges the multi-center poles are still free to remain non-colinear. From a

4D /5D perspective, non-colinear D4-D2-D0 poles in 4D lift to non-concentric rings in 5D.
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now like to reduce our result to the case of concentric rings so as to compare it with the
well-known answer of [82], [83], which was derived using 5D supergravity techniques
of [A9] and [B0]. First we set all angles 6;; between the poles to zero. The co-linear
alignment of poles in R3 translates to concentric rings in 5D. In order to eliminate
Dirac-Misner strings, [82], [83] choose to impose eq.([@322)), which can be interpreted
as a restriction to parallel 4D charge vectord]. From our discussion above, we see that
it is still possible to continue with non-parallel charges by trading-off mutual locality of
charges. Nevertheless to make contact with [82], [83]; we use eq.[E3Z2) in eq.([E339)
with all angles 6;; = 0 and thus arrive at the desired result upon plugging everything
back into eq.([@33H). To facilitate a direct comparison, let us also connect with the
notation of [82], [83]; which is achieved via simple charge redefinitions. Firstly we note
that the 4D/5D transformations - eqs.(@2Z9) and (E2I0) - match their counterparts
in [82], [83] after the following two redefinitions : qo;p) — (qo0(sp) —i—paD)qA(w))/Z
and péu:)) — ﬂpép). We have already seen how the latter conformed to 5D split-
charges and played a role in matching eq.([@323]) to the above literature. Now coming
to the multi-ring angular momentum in eq.([@33H), it can be seen after some algebra
that the first of the above two redefinitions simply gives a factor of 2 to the last term
of eq.(E33H). Then making use of the second redefinition in the form pf‘(w) —

\/ipiA (5D) produces

621 — V2
Jyp = — G ZLip;‘(SD)UA + el

i=1

A A B C
3 Z b; (5D) <QAj (D) OABcpj (5D)pj (5D))

1,j=1

+ 2 Z CABCpf(5D)ij(5D)pg(5D)] (4343)

i,5,k=1
which exactly agrees (upto an overall factor which we leave to one’s taste ) with [82],

[83] as the total angular momentum of concentric black rings in R*.

Finally let us remark that writing the 5D charge go(;p) in the form

qosp) = Z q0i(5D) (4.3.44)
i=1

6 In fact this is not the most general way to eliminate Dirac-Misner strings and admittedly ends
up making the solution of [82], [83] highly restrictive. In general it suffices to impose the integrability

conditions as we have done in this note. The difference with [82], [83] is that those authors impose

eq.[@339) in a very special way.
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its fragments can be easily read-off from eq.([@330]) above. Just as was the case earlier
with the Qa;;p) charge, we see again that the multi-ring 4D /5D transformations for
qo;(5p)y are more complicated due to the presence of cross-terms which must be carefully
taken into account while performing a 4D /5D lift. In the next section, we proceed to

discuss the physical origin of these cross-terms and their geometric interpretation.

4.4 Geometric Interpretation using Split-Spectral

Flows

In this section we try to provide a geometric understanding of multi-black rings, based
on successive application of spectral flow transformations. Such split-spectral flows
now assume relevance in the presence of multiple AdS; x S? horizons. This generalizes

the spectral flow discussions of [07], [58] to a multi-center setting.

Let us first consider a single black ring, whose near-horizon geometry is AdSs x S2.
This will be seen to fit exactly within the considerations of [57], [58]. In this background

geometry, the 5D supergravity action contains a Chern-Simons term
Sos = / Dapc A NFB A FC (4.4.45)
Ad53X52

which is not invariant under large gauge transformations. F4 = dA4 is the usual
two-form U(1) magnetic flux passing through the S?. The electric charge is obtained
by varying the 5D action with respect to the field strength 4. Due to the presence
of the above-mentioned Chern-Simons term, the electric charge so obtained also varies

under large gauge transformations

qa = / (* Fy + 3DapcA® A FC) (4.4.46)
S2x 81

Since the 5D supergravity action can be obtained from a Calabi-Yau compactifica-
tion of M-theory, the electric charge g4 is the M2-brane charge from a 11-dimensional

perspective ( or D2 charge in Type II A ) and the magnetic charge p* defined as

pt = / FA (4.4.47)
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is the M5-brane chargeH (or D4 in 10 dimensions ).

It can be seen by inspection that the second term in the integrand in eq.(ELZ46])
will decay rapidly when evaluated over a homologous 3-surface sufficiently distant from
the horizon, leaving only the first term to contribute. However, prior to integration,

let us consider the effect of a large gauge transformation of A4, of the type
AY — AN 4 kAN d () 2n) (4.4.48)

with k4 an integer and 0 < 7 < 27 a coordinate running along the S*!. This leaves us
with A4-independent terms that do not vanish at infinity, thereby producing shifts in
the electric charge g4 of the type

ga — qa + 3Dapck®p” (4.4.49)

This charge is clearly not gauge invariant and the physical explanation shall soon follow.
For now, let us note that this equation compares to the 4D /5D charge transformation
that we encountered earlier in eq.([Z), since it is the lack of gauge invariance of
the 5D Chern-Simons term in the action that is responsible for inducing shifts in the

original gauge invariant 4D charges.

Similarly the M-theory angular momentum ¢y ( or DO charge in Type II A ) is
again not a gauge invariant quantity and we now proceed to derive its charge shifts,
obtained via gauge transforming an integral representation of angular momentum. For
a 5D supergravity action ( to be thought of as a semi-classical reduction of M-theory
in our context ), such an integral can be extracted from appropriate contributions to
the gauge field energy-momentum tensor. For the aforesaid 5D action, this has been

derived in [6I] making use of Wald’s method [85]
Qo = _/ (*df + *(E-AY Fy + Dape (€-AY) AB A FC) (4.4.50)
S52x 81

Here ¢ denotes the axial Killing vector with respect to the v-direction, while (£ - A4) is
an interior product between a vector field and a one-form. The Killing field £ generates

isometries along the v-direction; leading to a conserved charge, which is the angular

7 Strictly speaking, this definition remains valid so long as the NUT charge ( the KK monopole at

the origin ) is not encompassed by the S2.
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momentum. In fact, the right-hand side of eq.(@ZA50) is simply the Noether charge of
Wald. Asymptotically, the A4 dependent terms in the integrand ( in eq.(EZ50) ) drop
off and the integral reduces to Komar’s formula for the angular momentum. However,
large gauge transforming with eq.([@Z48) yields precisely two more asymptotically non-
vanishing remnants. Recognizing the asymptotic form of eq.[zZZ40) and eq.([@Z27)

leads to the following charge shifts in angular momentum
@ — @ — k*qa — Dapck™k"p° (4.4.51)

This again can be compared to the 4D /5D transformation in eq.(L2ZT0).

Now eqs.([ZZ9), (LRI are in fact the spectral flow transformations in question.
The name spectral flow arises due to the fact that in the dual (0,4) SCFT these
transformations correspond to automorphisms of the conformal algebra. Moreover
spectral flow is a symmetry of the theory as it leaves the generalized elliptic genus
of the CFT invariant. Note that such flows are characteristic of an odd dimensional
theory. For a 4D black hole with AdS, x S? horizon, the supergravity action is gauge
invariant. Therefore the electric charge equals the actual number of D2 branes wrapped
on Calabi-Yau 2-cycles; while the D0 charge counts the physical DO branes. Because
of this we can also interpret eqs.([@Z49), AT as a 5D lift of 4D charges.

The gauge transformation in eq.(EZ4Y) is picked up upon going around ( perpen-
dicular to the v-direction ) the ring with a probe particle; which has been given the
interpretation of Mb5-anti-M5 branes being pair-produced, going around the ring in
opposite directions and mutually annihilating ( see fig. 1 in [57] ). More precisely, this
can be visualized as follows. The spatial near-horizon geometry of a bound state of
M5-M2 branes ( with angular momentum ) is a product of Euclidean AdS; and S? (
refer to fig. 4.1 (a) below ). On the AdS; disc, the black ring is depicted as a circle
along the 1-direction. The radial coordinate on the disc is the same as the Taub-NUT
radial direction. Now consider the pair-production of k4 M5-anti-M5 pairs. These
wrap 4-cycles on the Calabi-Yau, while the fifth direction goes around the equator of
an S2%. This S? is a point on the AdS, disc, located on the inside of the circle represent-
ing the black ring. The M5-anti-M5 rings along the S? equator move apart in opposite

directions towards the poles, where they self-annihilate leaving behind a Dirac surface
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on the S2. Since the location of the Dirac surface is unphysical, it can be moved away
to spatial infinity. Upon crossing the ring, it causes a shift of gauge potential by an
amount k* d (¢/27). Thus the presence of a magnetic flux k% shifts the gauge poten-
tial A4 and consequently the charges ¢4, go. For the case of the single ring described
above, this flux is the dipole flux passing through the ring and is generated by its own

M5 charges. Hence k4 = p? here, which leads to eqs.(EZZ4Y), @EZLT).
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Figure 4.1: Visualising the spectral flow for black rings : (a) Nucleation of an M5-
anti-Mb pair around a single black ring leading to a large gauge transformation. (b)
The same idea now extended to a multi-black ring background leads to multiple gauge

transformations in a geometrically ordered way.

4.4.1 Electric Charges and Split-Spectral Flows

Now extending the above discussion, we shall systematically derive multi-black ring
electric charges and angular momenta as a split-spectral flow argument. We begin
with electric charges. Let us label the n rings with an index ¢, in increasing order of
radius. The innermost ring is labeled i = 1. Its brane charges are pf!, qa,, qo,. Here
pit exhibits a dipole behavior, generating a magnetic flux k4 = p?'. This in turn shifts

qa, by spectral flow as in eq.([@ZZY). Indeed this innermost ring behaves just like the
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single ring case encountered in the previous discussion above. Moving onto the next
ring, this has brane charges p3, qa,, qo,. As depicted in fig. 4.2 below, the total flux
passing through this ring is not only that generated by its own charge ps, but also that

emanating from the inner ring. These distinct fluxes give rise to the following spectral

flows :
§=2 ~=2
! (4.4.52)
with kB = pJ
0=1~v=2
qay, — Qa, + 3Dapc p§ P —
with kP = pP
0=2 ~v=1
with k¢ = p¢

where the last transformation occurs due to the fact that the flux has also to be
symmetrised with respect to the cycles. The physical electric charge of this ring is

then obtained by adding up all these shifts to the original brane charge.

| I Taub-NUT

—_— - = - -~

—_—— =

- -~

__________ Black Rings

Figure 4.2: A Taub-NUT perspective of the influence of magnetic flux generated by

individual black rings upon neighbouring black rings.

From the point of view of fig. 4.1 (b), multi-rings are depicted as n-circles on
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the disc, one inside the other. Nucleation of an Mb5-anti-M5 pair now occurs in the
vicinity of each of the n rings, creating n Dirac surfaces. Upon moving these surfaces
to infinity, the i*"-ring is crossed by ¢ Dirac surfaces each with flux p;‘, giving in total
a flux k2, = 2321 pf passing through this ring. This is the origin of multiple spectral

flows for a multi-ring system.

We can now directly write down the result for the i*"-ring with all the spectral flows
put together : those resulting from the intrinsic ( due to ring’s own magnetic charge
) flux as well as those from background ( generated by those rings which are encircled
by the i one ) flux, we get

i—1

qa, — qa, + 3Dapcplp +3Dapc Y _(0Pp§ + ppf) (4.4.53)
7j=1

Much like the analogy in electrostatics, the fluxes due to rings which encircle the i*"-
ring from the outside, do not affect it. With respect to fig. 4.1 (b), each ring acts as
a source, emanating flux; while the sink is at infinity. Hence only those rings placed
to the exterior of the source ring will lie in its flux field. Eq.(@Z53) gives us the
physical charge of the i""-ring from a spectral flow analysis. This can be compared to

eq.([E32H), where the same quantity emerged from a fragmentation analysis.

Furthermore upon adding up the split-spectral flow shifts of all of the n rings leads
to the total spectral flow shift of the full multi-ring configuration

n n n -1
el = Z qa; +3Dapc prpic +3Dapc Z Z(pfpjc +p7pf)
=1 i=1 i=1 j=1
= Z qa; +3Dapc Z plv§ (4.4.54)
i=1 ij=1
where in the last step, the identity
n  i—1 n n n
D Ag+An) = D D) Ay — D As (4.4.55)
i=1 j=1 i=1 j=1 i=1

has been used. Indeed Q' exactly equates to Qap) in eq.([E32D), which is simply
the electric charge of a single black-ring system. Therefore, adding up all the spectral
flow shifts as well as the total brane charge gets us back to the geometry of a single
black ring. In this sense the spectral flow transforms of a multi-ring system are really

split-spectral flows of a single ring system.
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4.4.2 Angular Momenta and Split-Spectral Flows

The multi-ring angular momentum can now be obtained in a similar fashion. Once
again consider the i"*-ring with brane charges p:', q4,, qo,. The relevant angular mo-

mentum spectral flows for this ring are

4
G, — do,— P> aa, — Dancp'vlp (4.4.56)
j=1
i—1 i—1 (A i—1 C)
o, — do; — ZPJAQAZ- — Dapc ij ZpkB D; (4.4.57)
Jj=1 j=1 k=1

In the above flow equations, firstly we have the intrinsic magnetic flux k% = p2,

generated by M5 charges on the i*"-ring itself. This flux interacts with M2 charges as
well as M5 charges ( carried on other Calabi-Yau cycles ), both on the i"*-ring. Then
there is the background magnetic flux k., = 23—211 pf because this ring is placed in the
background fields generated by the ¢ —1 rings to its interior. Now a new addition to the
above is a background electric flux Z;_:ll q4,, which also interacts with electric charges
on the i-ring. That explains the second term on the right-hand side of eq.(EEZSG).
And eq.([EZRD) then accounts for interactions of the magnetic background with the
i'"-brane charges in the usual way. The last term there has to be symmetrised and
therefore the brackets in superscripts denote a sum over all symmetric permutations
of cycles. Then adding up all these contributions will result in the angular momentum

of the #*"-ring.

To get the total angular momentum of the multi-ring system we add up those of

each of the rings

n n i—1 n n
Jrerh = Z do, — Z Z(pf‘CIAj +P}4QAZ-) - ZP?C]AZ- — Dagpc ZP?P?]%’C
i=1 i=1 j=1 i=1 i=1
n i—1 (A i—1 C)
= Dapc) D v D0 P
i=1 j=1 k=1
n n n
= Y a0 — > plaa, — Dasc Y pipipf (4.4.58)
i=1 i,j=1 i,5,k=1

Upon substituting ¢4, in the last equality above with Q A spy Via eq. (32, we see that
eq.(Z5R) indeed compared] to eq. @33 leading to J*! = —£ ], A split-spectral

8 Of course spectral flow does not determine qo, as a function of L;. That input still relies on the
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flow analysis thus provides us with a physical understanding of where all the different
multi-ring angular momentum contributions actually come from. In particular, it gives

a clear description of how individual rings behave in the background of other rings.

Consequently a geometric picture of this multi-black ring configuration emerges
from such split-spectral flow considerations. In fact what these split-flows are really
doing is to break up the global multi-ring geometry into patches with locally defined
gauge potentials; such that gauge fields in neighboring patches are related up to large
gauge transformations. In fig. 4.1 (b) these patches can be identified as follows : first
there’s the innermost disc inside the first ring, defining a patch with gauge potential Af};
then there are the annular regions all around it, with gauge potentials A3, AZ,.........

respectively. This defines a chain of potentials spanning the entire geometry

A DA, Py Iotoa, PoAL 48, (4.4.59)

( suppressed vector indices may be readily reinstated here ) the f3; are large gauge
transformations between A; and A; ;1. In fact these local regions emerging here due to
split-spectral flow considerations might provide a conceptual basis for the analysis of
[61] where the authors compute localised charge integrals for black rings by dividing
the geometry into local patches which are all glued together. The existence of such
patches enable near-horizon integrals such as those in eqs.([E320), ([EE3217) to capture

all the data normally extracted from the full geometry.

4.5 Conclusions and Discussion

Two remarkable set of ideas pertaining to string theoretic descriptions of black holes,
that have generated lots of excitement in the aftermath of the OSV conjecture are : (1)
the 4D /5D connection between black holes/rings 2], [43]; and (2) multi-center black
holes as non-perturbative corrections to the black hole partition function [T07]. In this
note we have sought for a modest attempt at combining these two, in the sense of the

commutative box diagram of eq.([ ILZ).

We have approached the problem by setting-up an explicit 5D construction of black

integrability conditions.
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ring fragmentation and thereafter also show that fragmented black rings are equivalent
to a direct 5D lift of 4D multi-black holes. For the purposes of the latter, we determine
the multi-center 4D /5D charge transformations as well. Related to these issues is the
important issue of interpretation of charges in 5D, especially for our multi-center split
charges. In [61] it was shown that the electric charge ( and angular momentum )
of a single black ring could be expressed purely in terms of near-horizon data as a
Page charge. In our analysis we see that the 5D charges @) Ai(5D) which participate in
fragmentation are in fact also Page charges ( as opposed to being Maxwell charges
) and in that sense these are the physical charges of the system. Whereas the multi-
center charges @ A, spy that usually appear in the supergravity multi-ring metric are not
physical charges. Even though the latter-mentioned charges can be algebraically related
to the former ones, we find it nevertheless important to distinguish the physically

relevant ones for the multi-ring configuration.

Another rather interesting application of the 5D fragmentation methods developed
in this chapter is an alternative derivation of the angular momenta of concentric black
rings. It is indeed gratifying to note that we are able to exactly reproduce the results

of Gauntlett and Gutowski.

Lastly, we saw how the introduction of split-spectral flows lends a geometric per-
spective to shifts in brane charges of fragmented black rings by accounting how a Dirac
string generated by a given ring influences other rings in such a multi-ring background.
This serves as yet another derivation for the total angular momentum of a multi-ring
system. Moreover summing up all the split-spectral flow shifted charges of all the
fragmented rings exactly gives back the observed electric charge of a single black ring.
The split-spectral flows basically divide the geometry into patches with locally de-
fined gauge fields. The significance of these patches becomes relevant when computing

near-horizon integrals.

From a broader perspective, one might contemplate over the role of fragmented
configurations on the black hole/ring partition function. In [I07], each fragmented
configuration is viewed as a multi-AdS throat geometry; and further following [73],
[74], each such geometry is associated to some saddle point of the partition function.

In that sense Zgy is presumed to sum over all possible geometries subject to charge
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conservation constraints. Fragmentation is thus a euclidean tunneling process from one
minima to another. These leading order contributions therefore dominate the multi-
AdS partition sum of [T07]. However there ought to be further sub-leading corrections
to each multi-center configuration that should be computable from any complete par-
tition sum. At this stage, it would be very tempting to think that the black hole farey
tail partition function of [75], [27], [68] might be precisely the object that captures the
multi-center saddle points as well as its sub-leading corrections. Whether or not these
multi-center geometries lend a physical description to the farey tail story remains to

be seen.

Let us make a few more remarks with a view towards subsequently outlook for
these results. Ever since investigations into non-perturbative corrections to the OSV
conjecture began, one of the earliest applications of Denef et al’s multi-center black hole
solutions [69] was its realization as a gravity dual to finite N effects of a 2D g-deformed
U(N) Yang-Mills gauge theory localized on the world-volume of branes wrapping a non-
compact Calabi-Yau constituted by a Riemann surface endowed with two line bundles.
These gravity duals have been interpreted as 4D baby universes [I07], being viewed as
end-products of AdS-fragmentation. The question investigated in this chapter was how
does the 4D«+5D connection of [42] work for these multi-center configurations? More
specifically, after having explicitly set-up a 5D construction of AdS-fragmentation,
whereby a single black ring splits-up into a multi-black ring configuration, it was shown
that these fragmented rings are equivalent to a direct 5D lift of 4D multi-center black
holes. In this sense, the 5D duals of these baby universes are simply a configuration of
non-concentric multi-black rings in Taub-NUT space. However Chern-Simons induced
charge shifts once again appeared in this context. Therefore after having motivated
the 4D /5D charge transformations for multi-center configurations, we have confirmed
that all conserved charges are in fact Page charges arising due to 5D Chern-Simons
terms and provide a geometric interpretation for this system of rings using the idea of
split-spectral flows, wherein a given black ring’s observables are influenced by fluxes
generated in a background of neighboring rings. A future research direction is to
incorporate these split-flows into an entropy function so as to compute sub-leading

degeneracies to multi-center systems.



Chapter 5

Continuum Solutions & Black Hole

Levitrons

Gravity cannot be held responsible for people falling in love;
nor levitrons, for those rising above it

- with apologies to Albert Einstein

Continuing our investigation into multi-center geometries, in this chapter of the
thesis we look for limiting cases where one still has some analytic control on the solu-
tion. This becomes a relevant issue because whilst performing calculations involving
multi-center geometries, it soon becomes apparent that even for the simplest config-
urations with more than two centers, solving integrability constraints to determine
the full metric becomes highly formidable. Therefore in this chapter, as a curiosity
we probe the other extreme, namely the continuum limit of multi-center black holes
in 4D and look for solutions. It turns out that that regime is indeed amenable to
analytic results. Furthermore as an interesting application of these solutions, we in-
vestigate the problem of spatially stabilizing four dimensional extremal black holes in
background electric/magnetic fields. This construction of black holes levitating over

external magnetic fields strikes a close resemblance to a mechanical Levitron.

Moreover in the light of on-going interest in questions concerning black hole pro-
duction; it is interesting to consider how one could go about stabilizing such a black
hole using external fields, thus leading to a black hole analog of a particle-trap or rather
as we shall see that of a Levitron. However unlike the more familiar subatomic particle

traps or even Millikan’s famous oil drop experiment [86], the effects of general relativity

93
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give rise to interesting new features. We shall describe how this idea can in fact be
materialized by writing down solutions for black holes levitating in electromagnetic as

well as constant gravitational fields.

For our purposes in this chapter, we shall consider four dimensional extremal black
holes as solutions to minimal N' = 2 SUGRA ([72], [71], [69]). Furthermore, let us
confine these configurations to only include electric and magnetic charges ¢ and p
respectively. These extremal black holes are known to satisfy the BPS constraint. The

most general metric ansatz consistent with supersymmetry can then be written as

2 T 302 @ i g
ds® = S(f)(dt—l—wzdx) + - dx'dx
with S(Z)/7 = P(&)+ Q*(¥)
and A = 27Q(Z) (dt +w;dz') + O (5.0.1)

is the four dimensional gauge field. P(Z), Q(Z) are harmonic functions associated to
charges p and ¢ respectively. © is the Dirac part of the vector potential satisfying
d® = xdP(Z) with the Hodge star * defined on R3. For a single spherically symmetric
black hole in vacuum, it holds that & = 0. However for our considerations, we shall be
looking for solutions when the black hole is placed in external electric and magnetic
fields. There is now a non-zero Poynting vector corresponding to a rotating geometry.
We first look for levitating solutions in constant background fields. It turns out these
are inadequate for stabilization in all three directions. Then we look for more non-
trivial backgrounds obtained using a continuum limit of Denef et al’s [72], [71], [69]

multi-center solutions and find that turning on dipole fields achieves the desired result.

5.1 Black Hole Levitation in Constant External Fields

Given the metric ansatz in eq.(.LTl), we begin by looking for stationary solutions of
a black hole placed in constant electric, magnetic and gravitational fields. In order to
achieve this we have to specify explicit harmonic functions describing this configura-
tion, then compute the off-diagonal elements & and solve the associated integrability

equations. We claim that the desired harmonic functions describing this configuration
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are

_+B: Q@) =v+—L_ B (5.1.2)
7 — ] 7 — ]

where B and F are constant magnetic respectively electric fields oriented along the

P(@)=u+

z-direction and z denotes the z-coordinate. [ marks the position of the black hole’s
horizon, which we determine via integrability conditions. u, v are constants. In prin-
ciple, we can absorb u and v via a shift in the z-coordinate. This point will be made
clear when we solve for [. The Bz and Ez in eq.(BI2) are linear terms that satisfy
Laplace’s equation and can be recognized as the usual electro/magneto-static poten-
tials associated to constant fields. Note that extremality implies the above linear terms

also source constant gravitational fields.

A nice way to motivate the expressions for P(Z) and Q(Z) is to extract them via a
special limit of Denef et al’s multi-center solutions [72], [71], [69]. More specifically, let
us consider the two-center solution. This is a regular BPS solution of four dimensional
N = 2 supergravity. It is stationary but non-static and hence caries an intrinsic angular
momentum. Moreover the black holes comprising this bound state possess mutually
non-local charges. Let us denote the corresponding two charge vectors as I' = (p, ¢) and
T = (p,§). The idea is now to carry the charge ' all the way to infinity while scaling
(P, ) and the radial coordinate of the charges in such a way that the magnitudes of the
electric/magnetic fields themselves are held fixed. Applying this limit to the expressions
for electro/magneto-static fields of point charges indeed leaves us with constant fields
oriented opposite to the direction of the source charges . Without loss of generality,
the z-axis can then be chosen to point in the direction of the sources. Integrating these

fields along the line element, precisely yields the linear potential terms in eq.([E12).

In fact we may also use this limiting two-center system to captures other features
of our original configuration of a black hole in constant external fields. Following [72],

[71], [69], we can determine the off-diagonal terms in the metric using
V x&d=P@&VIZ) — QX)VP(Z) (5.1.3)

Below we shall solve @ for a class of non-static solutions. Furthermore operating a

gradient on both sides of eq.([I3)) leads to the following integrability equation

P(F)V?Q(F) — Q(F)V*P(¥) =0 (5.1.4)
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which we evaluate at Z = [ to get

qu — pv
= ——— 5.1.5
This gives us the position of the black hole. Here [ = (0,0,1) can be chosen on grounds
of symmetry. One can also perform a shift of coordinates, so as to place the black hole

at the origin. This can be achieved by setting constants u = v = 0. Note however that

(pE — gB) # 0 is required in order to preserve mutual non-locality.

Eq.(5I3) can be conveniently solved using spherical coordinates (r, 6, ¢). And that

leads to a system of coupled differential equations

2 cosf (pE — gB)
r

(Vxd), = — Sme(pf —4B) (5.1.6)

(Vxd), =

while (V x &), = 0 due to ¢-independence on the right-hand side. Our objective is
now to seek out a non-trivial solution which confers to the description of a black hole
rotating in the presence of external electromagnetic fields. We find that there exists

such a simple solution with azimuthal symmetry

wy = sinb (pE — ¢B) (5.1.7)

while w, = wy = 0. For completeness let us also mention that the solution presented
in eq.(IT) is certainly not the most general. For instance, we also find that solutions
8w3 —

with harmonic variations such as ¥ cos ¢ also exist and very likely one may well

find a more general class of these. But we shall not require that for our purposes.
The solution above allows us to levitate a black hole at a fixed height on the xy-
plane owing to the balancing act between gravitational attraction and electro/magneto-
static repulsion. However it is not stable in all three directions and can move about the
surface of the plane. To localise the black hole in all three directions we need a more
complicated background field where the black hole can be held at a local minimum of

an effective potential.
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5.2 Continuum Limit of Multi-Center Solutions

In this section we start looking for extremal stationary solutions to Einstein-Maxwell
gravity that admit backgrounds with multipole electromagnetic fields. As before, we
work with four dimensional gravity with just one gauge field. Generalizations to n — 1
vector fields or inclusion of other charges such as DO and/or D6 in Type II A are
rather straightforward. Let us now see how taking a continuum limit of Denef et al’s
multi-center solutions yields the desired backgrounds. In order to write down harmonic

functions for such a smeared distribution of black holes, we define density functions

Pe(T), pm(2') via
/ pe(Z)dr =@  and / pm(Z)dr = P (5.2.8)
v v

where d7’ is a volume element within a compact support V', that covers the distribution.

In the continuum limit, harmonic functions for multiple black holes take the form

Q(f):w/v PT) P(f):qu/v Pn@) o (5.2.9)

|7 — 7| |7 — 2|
To these harmonics one may also add linear terms Fz and Bz corresponding to con-
stant fields, whenever required. From a computational point of view, the real utility
of the above-mentioned smeared distributions shows up in their respective multipole
expansions. Expressing this in the regime that |Z] >> |7’| holds, we have

— Q ,IZA; 1l’i$jTéj
CEA=vr@H T TZP T2 ar

P x: A 1x,x: T

73 2\ — - (2 m - ]I m
@O=utFZ @ T2 P

SRR (5.2.10)

where (), P are electric respectively magnetic monopole moments; Ae, Ay, are electric
and magnetic dipole moment vectors; and T, Ty, are respectively electric and mag-
netic quadrupole moment tensors - all defined in the usual way. We employ boldface
characters to denote vectors as well as tensors. The “..... 7 in eq.(ZI0) denote
terms with higher order moments. When |Z| >> |7’|, the series is convergent and
these functions can be used to describe supergravity solutions associated to any spe-
cific multi-moment source, provided all lower moments vanish for that distribution. As
an illustrative example, we analyze the solution for a charge distribution with dipole

order corrections.
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First let us check that the functions in eq.([B29) yield meaningful expressions for

continuum black hole configurations. Evaluating eq.(T4l) for these harmonics gives
pe(Z)P(L) = pm(Z) Q) = 0 (5.2.11)

Outside the support V, this expression vanishes identically; whereas points within the

support region ought to satisfy

upe(T) + /)e(f)/v Pm(T) dr’ — vp,(T) — pm(f)/v Pe(T) dr' =0  (5.2.12)

|7 — 2| |7 — 2|
After performing the relevant integrals, the above expression can be evaluated for all
points ¥ € V', and that defines the locus of solutions for the black hole distribution. In
following sections, we will solve this condition for specific distribution functions. At the
moment though, as a consistency check, let us confirm that, analogous to any multi-
center configuration, asymptotically the above continuum configurations also behave
like a single-center black hole with total charge P and (). This can be done by seeing
how the constants u and v (which themselves are asymptotically defined) relate to the
total monopole charges () and P, and if this relation is the same as that obtained for a

single-center black hole with the same monopole charges. In order to do this we simply

integrate both sides of eq.(BZI2) over all £ € V. This yields
u@ —vP =0 (5.2.13)

which is precisely what one obtains for a single-center solution with charges () and P;
thereby confirming the asymptotic dependence of u and v for an arbitrary continuum

configuration having fixed total (monopole) charges @ and P.

Having checked consistency of integrability conditions, we next compute the off-

diagonal elements & in the metric via
V xd =—-P(@)E(Z) + Q(7)B(7) (5.2.14)

where E(7) and B(¥) refer to exact electric and magnetic fields corresponding to distri-
butions p.(Z) and p,,(¥) respectively. In this sense the continuum limit described here
is much simpler than a finite N many body black hole system for which integrability

equations turn out to be quite hard to solve in full generality.
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For our objectives, it will suffice to solve eq.(iZI4l) using its multipole expansion.
As an illustration, we consider a smeared distribution where the monopole contributions
to & get magnetic dipole corrections coming from A, which is aligned along the z-axis.

In spherical coordinates, eq.([B2ZI4) takes the form

20A,, cosf  QA,, cost
3 + 4
r r
v/, sinf N QA,, sinf

4

(Vxa), =

(Vxa@), = (5.2.15)

73 r

while (V x &), = 0 due to symmetry in the ¢-direction. Note that whilst writing down
eq.(B2Z1H), we make use of the integrability constraint eq.(ZI3)) ( inserting it into
eq.(RZT4) ). As before, we seek solutions characterised by azimuthal symmetry. The
ensuing result is

_ v\, sin 0 N QA,,sinf

72 273

(5.2.16)

Wo

and w, = wy = 0. At large distances away from the smeared sources, eq.(2T6l)
gives dipole corrections to leading order contributions in the metric. In fact these
constitute sub-leading contributions to the geometry. It is these multipole corrections
that distinguish a true one-centered black hole from a multi-center distribution of black
holes, when viewed at asymptotic infinity. For a pure one-center solution, & identically
vanishes. While for the multi-center case, it is non-trivial but quite difficult to compute
for any given discrete configuration. The continuum limit, on the other hand, facilitates

viable computations, at least order by order in a multipole series expansion.

5.3 Towards a Black Hole Levitron

We are now ready to combine results of the last two sections to construct stable lev-
itating black hole solutions and realize a Levitron-like construction. We perturb the
constant background fields of section 5.1 with a magnetic dipole field and over this
perturbed background solve for a black hole held at a fixed height. The dipole fields
are produced by the smeared distribution discussed in section 5.2. For simplicity we

consider a black hole with only electric charge ¢ ( a dyonic generalization is also straight-
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forward ). This construction is captured by the following harmonics

Q(f):v_‘_‘_'q Z—‘,—FEZ /P(f):U—FW—FBZ (5317)
x_

The dipole moment is aligned parallel to the z-axis and carries a magnitude A,,,. While
0 is a coordinate denoting the angle that the position vector ¥ makes with the z-axis.
Below we shall see, how solving integrability conditions for these harmonics constrains
allowed solutions for \ﬂ and 6, where a black hole with charge ¢ is held stable in the

vicinity of a continuum distribution with dipole charge A,,.

For the rest of the computation however, it will suffice to turn off the constant
fields £ and B. This is because a dipole background will turn out to be sufficient hold
the black hole at a fixed height and keep it stable in all three directions. Superposing
constant fields do not affect stability of the solution but ultimately we will need the
constant fields for giving an interpretation of black hole levitation in a constant grav-
itational field ( as would be the case if we were ever to trap a small black hole in a

laboratory somewhere on Earth ! ).

Continuing with the calculation, the position of the black hole ['is determined by

evaluating eq.(514) at the location of the pole Z = [ using harmonics in eq.([5317)

with ' = B = 0. This gives
- —A,, cosf
17 = ,/% (5.3.18)

This gives us a locus of solutions m , 0 for the black hole configuration described in
eq.(BE3TD) (with £ = B = 0). Before discussing further reality constraints on these
solutions, let us also evaluate the integrability equation at the other pole ¥ = 0. This
then determines the constant v as

4

T (5.3.19)

v=—

Note that physical solutions only exist [ (= | []) real and non-negative and this restricts
the values that the angle 6 can assume. For instance, let us first consider the case when
u > 0. Then ¢ can attain values only from 0 to § provided the dipole is directed along
the negative z-axis, while the ¢ co-ordinate remains unconstrained. On the other hand,

for a dipole pointing in the positive z-direction, the angle # can only span the range
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5 to 7 (as shown in fig. 5.1 below). In the other case, when u < 0, then the signs
appropriately reverse, namely when the dipole is directed along the negative z-axis,
then 6 goes from 7 to 7; whereas with a dipole along the positive z-orientation, ¢ spans
values from 0 to 5. The solution space of the black hole is now confined to a restricted
parameter space. More precisely these are circular orbits corresponding to given values
of # on an equipotential surface of a dipole field. And in turn each orbit refers to
a solution with a specified radial distance [. We plot the solution space for physical
values of ([, 6, ¢) in fig. 5.1 below. The dipole surface in the figure represents locations
where a single black hole with a point charge can be stabilized in the gravitational and
magnetic field of a continuum black hole distribution centered around the origin and

carrying a magnetic dipole moment.

Figure 5.1: Here we make a 3D plot of eq.([3I8) for the solution space of [ for positive
as well as negative dipole orientations. Points on the upper globular surface correspond
to (1,0, ¢) for A,, <0 and u > 0. Points on the lower globular surface correspond to

those with A,,, > 0 when u > 0.

In fig. 5.1 above, we plot eq.([Z3I8). At # = 0 the black hole sits at a fixed height

on the z-axis; at § = 7 it falls into the origin; while the case 0 < < § corresponds
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to the black hole being located anywhere on a circular orbit centered at height [ cos#
and having radius [ sin . Solutions on the positive z-axis correspond to the case when
A,, <0 (for uw > 0), while those on the negative axis refer to A,, > 0. For each value
of 6 in eq.(B3IY) there exists a solution for . At § = 0 the solution space is just a
single point and that is when the black hole achieves stability in all three directions at

a fixed height on the z-axis.

For completeness we first compute & when the black hole is still sitting at the
origin, that is when I'= 0. After that we shall determine the modification in & required
to achieve stable levitation at a fixed height on the z-axis. In fact the solution at
I'= 0. can simply be borrowed from our calculation in eq.(BZI0) once we make the

substitutions () — ¢ and P — 0.

On the other hand, when the black hole is made to levitate at a fixed height [ on

the z-axis we have to solve the following system of equations

(Vxd), = — qu(r —1 cosf) _Qqu cos@_qucosﬁ(r—lcosﬁ)
' (r2 412 —2rl COSG)g Lr? r2(r2 + 12 — 2rl cosH)g
2qA,, cosb
r3(r2+l2—2rlcose)%
(Vxd), = — qul sinf _qusiné’_ qlA,, siné cosf
’ (r2 412 —2rl cos@)% br r2(r2 + 12 — 2rl cosé’)%
A,, sinf
+ 4 =m =0 (5.3.20)

(NI

r3(r2+12—2rl cost)

and again (V x o), = 0. Also I'= (0,0,1). This now becomes fairly more compli-
cated compared to the non-levitating case. The modification in the metric reflects a
modification to the geometry of the system. If we restrict to azimuthally symmetric
cases, we find that eq.([B320) has a solution only for small heights of levitation, that is
when [ << r. This can be understood in the following way. In this set-up the system
consists of the black hole plus the source of the dipole field. Let us call the latter
the base. The levitating we are looking for requires that the base be rigid against the
gravitational pull of the black hole, that is the center of mass of the whole system be
as close to the base as possible. For very large charges, corresponding to large values
of [, a stable symmetric levitating solution does not seem to exist ( we see this from

numerical checks ). In that case more complicated non-symmetric solutions may be
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sought for, but we would hardly call those levitating.

Narrowing down to our regime of interest, we expand around [ << 7 and solve

eq.([>320) order by order in [. Truncating up to second order terms we get

N _qu(l — cosf) _ qA, sind qAy sind  [qusind ;
¢ = r sin 6 [r? 273 r?
3qucosfsind  qA,, (1 + 3 cos?f)sinf) , 5
— — . .3.21
+{ o = 24 o) (5321)

while w, = wy = 0. This solution enables us to write down the full metric for a
stationary system of a black hole levitating in equilibrium above a magnetic dipole

field. Also this calculation easily extends to the case of a dyonic black hole.

5.3.1 Comparison to a Levitron

We now compare the levitation of black holes discussed above with that of a Levitron|89).
The latter is a spin stabilized magnetic levitation device first invented by Roy Harrigan[88].
It basically consists of a permanent base magnet above which a spinning top with a
magnetic dipole moment levitates mid-air and is stable in all three directions. This
gives rise to an apparent paradox due to Earnshaw’s theorem [90] which states that
no stationary configuration composed of electric/magnetic charges and masses can be
held in stable equilibrium purely by static forces. And the reason for this is simply that
all static potentials satisfy Laplace’s equation whose solutions only exhibit saddles at
critical points : there are neither any maxima nor minima. It was Sir Michael Berry’s
[9T] (see also [92]) remarkable insight invoking adiabatic averaging that helped resolve
the apparent paradox. He showed that a slow precession mode (when averaged over
the fast rotation mode) was responsible for creating an effective stationary potential
with a stable minimum. This is the same principle used in neutron traps as well as

other particles carrying magnetic dipole moment.

A natural question which arises is whether our black hole construction also mimics
the physics of the Levitron and how it overcomes Earnshaw’s theorem. The latter
it already seems to evade since it is based on Einstein’s gravity rather than New-
ton’s. However the gravitational interpretation of our Black Hole Levitron’'s balancing

mechanism admittedly requires further investigation. Nevertheless a naive classical
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intuition can be obtained from the fact that a non-vanishing Poynting vector gives rise
to a rotating black hole geometry and in turn a rotating electric distribution induces a
magnetic field that repels the base magnet. It is the & in the metric that is responsible
for inducing this balancing force. On the other hand the gauge theoretic interpretation
of this multi-center balancing has been better understood in terms of Denef’s quiver
quantum mechanics [87] wherein the distance between centers is determined via an

effective potential whose minima determine the stability loci l.

5.4 Conclusions and Discussion

As we have seen from the discussion in earlier chapters, multi-center solutions are also
interesting for the role they play in the problem of black hole microstate counting
[27]. However even for the simplest configurations with more than two centers, solving
integrability constraints to determine the full metric becomes a highly formidable task.
Hence, in this chapter, as a curiosity, we asked ourselves the question whether analytic
results could be obtained in some limiting cases of these geometries? And indeed
we found that such a limit exists in the form of a large m number of centers. In
this work we have constructed a continuum distribution of black holes and solved
integrability conditions towards obtaining the metric. Upon this continuum system
we have performed a multipole expansion to find smeared black hole geometries with

multipole moments.

Furthermore, as an interesting application of these continuum solutions, we have
constructed a levitating black hole solution. Our Black Hole Levitron stabilizes an
extremal black hole at a fixed location in an electromagnetic field produced by a con-
tinuous distribution. Our work is built-up using Denef et al’s multi-center solutions,
which by themselves are stable, stationary BPS solutions with non-local charges. Our
harmonic functions and integrability conditions can all be retrieved as special limits of
the discrete multi-center case. Therefore our levitating solutions also describe stable,
stationary configurations. This black hole construction very much resembles a mechan-
ical Levitron and it would be interesting to investigate if Berry’s mechanism can be

proven to apply to this set-up as well. And finally it would be of practical relevance
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(in future!) to construct solutions for non-extremal Black Hole Levitrons!

Other interesting directions might be further investigation into other applications
of the continuum limit of multi-center solutions. Compared to discrete-centered config-
urations, the smeared distribution lends itself to more viable computations. One may
ask what role these distributions play in microstate counting of multiple-black hole

geometries.
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Chapter 6

Testing OSV on a 2D g-Yang-Mills Dual

Life is what happens, while you’re busy making other plans

- John Lennon

Finally in this chapter, we arrive at the gauge theoretic side of the OSV conjec-
ture. The world-volume theory on the D-brane ensemble, comprising the black hole
bound state, localizes to a two dimensional g-deformed Yang-Mills theory on specific
Calabi-Yau backgrounds to be described below. An exactly solvable dual gauge theory
can serve as a useful tool for comparing with results in the bulk, thereby enabling a
check of the gauge/gravity correspondence itself. Moreover in certain cases, nonpertur-
bative completions of string theory too can be obtained by considering a holographic
description in terms of a D-brane gauge theory. In this chapter we conduct a through
investigation of this theory and its implications for string theory. In the process we dis-
cover a large N phase transition in the theory and also discuss its possible gravitational

interpretations.

In the case of topological strings, the OSV [129] proposal for a non-perturbative
completion was based on the connection to the black hole attractor mechanism. Ac-
cording to [129], the nonperturbative description of topological string theory on a
Calabi-Yau background is encoded in a D-brane gauge theory living on some appropri-

ate cycles of the manifold.

In [T32, 94] this proposal was made more concrete by considering Calabi-Yau back-

grounds of the form

L1 S L2 — Zg, (601)

107
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where ¥, is a Riemann surface of genus g and Ly, L, are line bundles such that deg(L;)+
deg(Ls) = 2g — 2. In this case, the relevant D-brane gauge theory reduces to a ¢-
deformed version of two-dimensional Yang-Mills (YM) theory on the Riemann surface
¥,. g-deformed 2d YM can be regarded as a one-parameter deformation of the standard
2d YM theory. As we will explain below, the deformation can be parametrized by a real,
positive number p, in such a way that as p — oo one recovers the standard YM theory.
The g-deformed theory is exactly solvable and one can compute its partition function
on any Riemann surface. This partition function has a strong coupling expansion as a
sum over representations of the gauge group, which can be written, following [I13], in
terms of a product of a chiral and an antichiral sector. The perturbative topological
string partition function, which was computed in [I0T] for this class of geometries,
is given by a certain limit of this expansion in which the antichiral sector decouples.
Once we have a nonperturbative description of the theory, it is natural to ask what
new phenomena emerge in this description and what their implications are for string
theory. For example, in [I07] the fermionic description of 2d YM on the torus was used

to study baby universes in string theory.

2d YM theory on the sphere exhibits an interesting phenomenon: as shown by
Douglas and Kazakov [I09], there is a large N, third order phase transition at a critical
value of the area A = 72 between a large area phase and a small area phase. From the
point of view of the small area/weak coupling phase, the phase transition is triggered
by instantons [I12]. From the point of view of the large area/strong coupling phase
and its string description in terms of branched coverings [IT1}, [[T3], the transition
is triggered by the entropy of branch-point singularities [I30]. Due to the Douglas-
Kazakov transition, the large area expansion of 2d YM theory on the sphere has a

finite radius of convergence [I30].

In this project we study the possibility of large N phase transitions in g-deformed
2d YM. Since as the deformation parameter p goes to infinity we recover the usual
theory, it is natural to expect the transition to occur at large enough values of p. In
fact, our result show that the transition persists for all p > 2, and we find a critical line
smoothly connected to the Douglas-Kazakov transition of the standard 2d YM theory.

We also show that for p < 2, in the regime of strong ¢-deformation, the phase transition
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does not occur. We also perform a detailed instanton analysis which shows that, as in

the standard YM case studied in [I12], the transition is triggered by instanton effects.

Most of the analysis here is done in the small area phase. In 2d YM theory this
phase is described by a Gaussian matrix model. In the g-deformed case, this phase is
essentially described by the Chern-Simons or Stieltjes-Wigert matrix model introduced
in [125] and studied in [93, 130, 126]E|. This model, albeit complicated, is exactly
solvable (in terms of, for example, orthogonal polynomials), and this is the underlying
reason that we can make exact statements about the location of the critical line and
the instanton contributions. The large area phase turns out to be more difficult to
handle. In this paper we present some preliminary results and derive the equations that
determine the full solution (including an explicit expression for the two-cut resolvent).
We expect the phase transition of the ¢g-deformed theory to be of third order for p > 2,
since it is smoothly connected to the transition of Douglas and Kazakov, and indeed

we give indirect evidence that this is so.

As in the standard 2d YM, the existence of the phase transition in the g-deformed
version indicates that the large area expansion has a finite radius of convergence. Ac-
cording to [I30) 94], this theory provides a nonperturbative description of topological
string theory on certain Calabi-Yau backgrounds. This suggests that the large area
expansion breaks down in the full topological string theory, and there is a phase tran-
sition between a small area phase and a large area phase. From the gauge theory point
of view, our analysis shows that when the g-deformation is strong enough, the model
exhibits a single phase. This suggests that ¢-deformations give a mechanism to smooth

out large N phase transitions.

The structure of this chapter is as follows: in section 3.1 we briefly review the
Douglas-Kazakov transition in 2d YM theory. In section 3.2 we determine the phase
diagram of the ¢-deformed theory and we find a line of critical points parametrized by
p, for p > 2. In section 3.3 we adapt the analysis of [I12] and study the phase transition
of the g-deformed theory in terms of instantons in the weakly coupled phase. We find

an explicit expression for the one-instanton suppression factor which indicates that,

! Connections between Chern-Simons theory and g-deformed 2d Yang-Mills theory have been made,

from a different perspective, in [94] and [T16].
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indeed, the transition is triggered by instanton effects. In section 3.4 we analyze the
large area phase, which can be encoded by standard techniques in a two-cut solution
to an auxiliary matrix model. Finally, in section 3.5, we discuss the implications of
our results for topological string theory and outline some problems opened by this

investigation.

6.1 The Douglas-Kazakov Transition

2d YM theory is an exactly solvable model. In particular, the partition function of the
U(N) theory on the sphere is given by a sum over representations of U(N) (see [105]

and references therein)
Z =" (dim R) e AC2(R/2N 0O (R), (6.1.1)
R

where dim R is the dimension of the representation R, A is a real and positive parameter
that can be identified with the area of the sphere, and C(R), C3(R) are the first and
second Casimir of R. We will represent R by a set of integers {l,ls, - - , Iy} satisfying
the inequality

o>l >l > >y > —o0. (6.1.2)

In terms of these integers, the Casimirs have the expression

N
Z liu
z]:Vl

Li(
i=1

C1(R)
(6.1.3)
Cy(R) = (i =20+ N +1).
Although the above partition function looks rather simple, this theory turns out to
have a very rich structure. In [IT1), I13] it was shown that at large area the partition
function (EITl) admits a string representation in terms of branched coverings of Rie-
mann surfaces (see [105] for an excellent review). Douglas and Kazakov found that the
planar free energy on the sphere exhibits a third order phase transition at the critical

value

A, =72 (6.1.4)
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This large N transition is a continuum analogue of the Gross-Witten-Wadia phase
transition for 2d YM theory on the lattice [114], [[33]. Since in this paper we will be
considering a generalization of the Douglas-Kazakov phase transition, we will briefly

review how this transition is found. For the rest of this section we will set 8 = 0.

At large N it is natural to introduce a distribution of Young tableaux

L

n(e) = 5. @ = % (6.1.5)
Defining the shifted distribution
1
h(z) = —n(z) +z — 3 (6.1.6)
one finds that the planar free energy is given by
Fo(4) = —Sg[h), (6.1.7)
where the functional S¢[h] reads
A [ A 3
d dylog |h(z — [ deh(z)* — = — . 1.
= [Car [ ayrogine) ~n+ 5 [ amnr -5 @1
Let us now introduce the density function
dx
h) = — 1.

which is normalized to unity,
/dhp(h) —1 (6.1.10)
One crucial observation of [T09] is that, because of the inequality ([EI12), this density
has to satisfy
p(h) <1 (6.1.11)
for all h. We can now write (L) as
A A 3
/dh/dh’ p(1Ylog [h — W] + 2 /dhp(h)lf—ﬁ— © (6112)
This is (up to the p-independent terms) the saddle-point functional for a Gaussian
matrix model with 't Hooft parameter ¢ = 1/A. It then follows that the density p(h)

is given by Wigner’s semicircle law,

1
pa(A 1) = — VAt — A2, (6.1.13)

2mt
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and we find

p(h) = pa(h, 1/A). (6.1.14)

2 since after this

However, it is clear that this solution can be valid only for A < 7
point the inequality (GITTl) is violated. This indicates that there is a phase transition

at the critical value ([E14).

Figure 6.1: This figure shows the density p(h) before and after the Douglas-Kazakov
transition. The solution for A > 72 can be interpreted as a two-cut solution of an

auxiliary matrix model.

For A > 7% the Gaussian solution is no longer valid, and Douglas and Kazakov
argued that one could obtain a solution for the large area phase by considering a a

density of eigenvalues of the form,

p(h), —a<h<-bb<h<a,
p(h) = (6.1.15)

1, —b < h <,
where b < a are points in the real positive axis. From the point of view of the density
p(h), the Douglas-Kazakov transition can be represented as in Fig. Bk for A < 72 the
Gaussian density gives a good description, but as A > 72 one finds a new density of the
form (EITH). It is easy to see that finding g(h) amounts to finding a two-cut solution
for a modified matrix model with a logarithmic potential. The explicit solution to
this problem was worked out in [I09], and this allowed them to verify that the phase
transition at A = 72 is of third order. It was also verified that the large area solution

agrees with the string expansion of [IT3].

The mechanism behind the Douglas-Kazakov phase transition was further eluci-

dated in [127, 12, 104]. In particular, it was shown by Gross and Matytsin in [T12]
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that the Douglas-Kazakov phase transition is driven by instantons. The small area
phase is dominated by the perturbative vacuum, and instantons are suppressed with
an exp(—N) factor. The one-instanton suppression factor at leading order in N was

computed in [T12] to be given by

exp {—%WGM(A)} | (6.1.16)

where

Yam(A) :27T\/7T2—A—A10g{(7r+ 12_14)2]. (6.1.17)

Since yam(A = m2) = 0, as we reach the critical point instantons are not anymore sup-
pressed and they trigger the phase transition, which is then a consequence of exp(—N)

effects which are not visible in the 1/N expansion.

6.2 The Phase Diagram of q-Deformed 2D YM

The g-deformed two-dimensional Yang-Mills theory arises as a natural deformation of
the usual model. This model has been considered in [I02, T21] and more recently, in the
context of topological string theory, in [94]. The partition function of the g-deformed
theory on the sphere can be obtained by replacing the dimensions of representations
in (ET1T]) by their quantum counterpart, in the sense of quantum group theory. The
resulting partition function depends on the rank N of the gauge group, two real pa-
rameters, p, gs, and an angle 6. It reads,

79 = Z(diqu)2qp02(R)/2ewCl(R), (6.2.1)
R

where the quantum dimension of R is given by

dim,R = ][ Lizliti=i (6.2.2)

1<i<j<N 7 =]

and the g-numbers appearing here are defined as

] =q? —q77, gq=e. (6.2.3)

M

The free energy of the model is defined as

1
F1= Nz log Z1. (6.2.4)
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It is convenient to define the parameter A as

A

L= 2.
P9 =y (6.2.5)

As we will see in a moment, A corresponds to the area of the sphere in (GIT]). Asin 2d
YM, we will require A to be positive. Notice that the ¢-deformed theory is symmetric
under p, gs — —p, —gs. Therefore, we can restrict ourselves to the range of parameters

p>0,gs>0.

An important property of the ¢g-deformed theory is that in a suitable double-scaling

limit, one recovers ordinary 2D YM. This limit is defined as follows:
P — 00, gs — 0, A, N fixed. (6.2.6)

As g, — 0 with V fixed, the quantum dimension becomes the classical dimension:

dim,R — dim R, (6.2.7)
and
A
PP oxp (_76;?\([]%))7 (6.2.8)

which is the standard weight factor for 2d YM. We then recover the partition function
@I for a sphere of area A. The g-deformed theory can then be regarded as a

one-parameter deformation of 2d YM.

In this paper we will be interested in the large N dynamics of the deformed theory.

It is useful to introduce the 't Hooft parameter, which is defined as
t = Ng,, (6.2.9)

and we will consider the 't Hooft large N limit in which N — oo and ¢ and p are fixed.
The planar free energy

Fi(t,p) = lim F? (6.2.10)

will then be a function of ¢ and p. Notice that the limit (G286 that gives ordinary

Yang-Mills theory can be implemented order by order in the 1/N expansion by taking

p — 00, t—0, pt = A fixed. (6.2.11)
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In this way, we recover planar 2d YM on the sphere. We will check many of our results
for the g-deformed theory, by verifying that in the limit (G2T1l) one recovers the known
results in 2d YM.

In order to compute the planar free energy, we follow the steps outlined in the
previous section for the undeformed theory and represent the planar free energy in
terms of a functional of a distribution h(z), which is defined as in ([EI). It is easy to

see that in the large N limit the planar free energy derived from (E2ZT]) is given by
Fg(t,p) = —S5[h], (6.2.12)

where the functional S[h| reads

/ dx/ dylog |2sinh L (h(a) ~ h(y))|+%t/ldxh(x)2
+z9/0 deh(z ——+/ dx/ dylog |2sinh L (x — )|,

and in (GZT2) S[h| is evaluated on the configuration h(z) which minimizes the above

(6.2.13)

functional. The last term in (GZT3) comes from the denominator of the quantum

dimension and it is given by

/dx/ dylog |2 sinh (x— y)| = —FCS() (6.2.14)

where
B 7

This function is the planar free energy of Chern-Simons theory [IT0], and we recall

F5(t) =

that the polylogarithm of order n is given by
. e
Li,(x) =) . (6.2.16)
If we redefine
h(z) — h(z) + —, (6.2.17)
the functional (EZT3) becomes

—/0 dx/ dylog |2 sinh %(h(x) —h(y))|+%t/0 dah(z)?

pt 0% 2
S AR A X
24+2t+ (1)-

(6.2.18)
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Since the inclusion of # only leads to an additive term in the planar free energy, we
will set @ = 0 from now on. After introducing a density function p(h) as in ([EI9), the
p-dependent part of the effective action can be written (EZT3) as

/dh/dh’ () log |2sinh £ (b — )| + 2 /dh (W2 (62.19)

As explained in the previous section, to see if there is a phase transition one first
solves for the p(h) that extremizes (EZZT9), assuming a one-cut structure. In order to

compute p(h), we have to solve the integral equation derived from (EZT9),
t
ph="P /dh'p(h’) coth §(h -, (6.2.20)

where P denotes principal value. The density p(h) is supported on a symmetric interval
(—a,a). A similar integral equation appears in the saddle-point analysis of the Chern-
Simons matrix model on the three-sphere [125, O3, 126]. In fact, after the change of
variables § = th, (@2ZI9) becomes the planar functional for the Chern-Simons matrix

model

ZN_/HdﬂZ | nh@)zexp{—%éﬁf}, (6.2.21)

1<J
with 't Hooft parameter £ = t/p. This connection suggests an effective way of solving

EZ20). As in [93, [T3T], T26], we change variables
A = el Ht/p, (6.2.22)

and we introduce the density for the new variable A,

p(3) = Toh) = () (6.2.23)

The integral equation (E2200) becomes

1plog)\ , P(A
=P | dN——. 6.2.24
2t A / A— X ( )

This is exactly the saddle-point equation for the Chern-Simons/Stieltjes-Wigert matrix
model, and we can solve it in a variety of ways [93, 115, [26]. The direct computation
performed in [I26] is the most convenient one in view of the two-cut solution that we

will introduce later, so let us briefly review it. As usual, we introduce a resolvent

wo(\) = / AN Ap (X;,, (6.2.25)
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which due to the normalization (EII0) and the redefinition (E223)), satisfies the

following asymptotic behaviour

wo(A) = =+ O(1\7?), (6.2.26)

1
A
as A — 00. The density p()\) is recovered from the resolvent wy(A) through the standard

equation

p(N) = — o (wo(A + i) — wolA — ic)). (6.2.27)

271

We are looking for a one-cut solution to the problem, therefore we assume that the

density of eigenvalues is supported in the interval (a~,a*), where
at = eFtatt/p, (6.2.28)
It is well known that wo(\) can be computed as [12§]

wo(N) = (V) fg ;—;(Af’(% (6.2.29)

where C is a contour around the cut (a™,a™), and

g(\) = %loiA, r(\) = VO — a ) (A — a*). (6.2.30)

N

R
)

a” a*

Figure 6.2: This figure shows the deformation of the contour needed to compute the
resolvent in (LZ29). We pick a residue at z = p, and we have to encircle the singularity
at the origin as well as the branch cut of the logarithm, which on the left hand side is

represented by the dashed lines.

The standard way to compute an integral like (G22Z29) is to deform the contour.

Since the logarithm has a branch cut, we cannot push the contour to infinity. Instead,
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we deform the contour as indicated in Fig. B2 We pick a pole at z = A, and then we
surround the cut of the logarithm along the negative real axis and the singularity at
z = 0 with a small circle C, of radius €. A similar situation appears in, for example,

[TT9]. The final formula for the resolvent is

plog\ p ) ¢ dz dz log z
wo(A) = 2 N 2_tr()\) 11—{%{_ /_Oo 2(z = Nr(z2) +j{C€ 2mi 2(z — A\)r(2) } (6:231)

The integrals in the second line have log e singularities as e — 0, but they cancel each

other, and after some computations one finds for the resolvent:

wo(N) = — 2 Og[(\/a_‘\/W—\/aTm)zl

(VA=am = vA=a®)xs (6.2.32)

D 1 4a~a*
+ —7r(\) log :
2t\ va-at 2vVa—at +a" +at

In order to satisfy the asymptotics ([E2Z20) the second term must vanish, and the first

one must go like 1/A. This implies

4a"at =2Va~at +a +at,

6.2.33
Va4 Vat =267, ( )

and from here we obtain the positions of the endpoints of the cut a—,a* as a function

of t/p:

4 =262 — P _ 235\ /etly — 1,
at =2e2/P — /P 4 263/t — 1.

The final expression for the resolvent is then

(6.2.34)

u)()()\> = ——

o log

(6.2.35)

14 e A+ /(1T + e /PA)2 — 4>\]
2\ ’

and from here we easily find the density of eigenvalues

P VA (et
p(A)—mAtan [ = : (6.2.36)

We can now go back to the original variable h, to find

{\/QA/pQ — cosh?(Ah/ (zp))] |

_ Pt
p(h) ==+t cosh(Ah/(2p))

™

(6.2.37)
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which has its support on (—a, a) with

2
a= Zp cosh™(e4/(%), (6.2.38)

As a test of this result, notice that in the double-scaling limit (G211]) one finds
p(h) = pa(h,1/A) +O(1/p?), (6.2.39)

therefore the leading term is exactly the Wigner semi-circle distribution obtained by

[T09).

In order to assess the possibility of phase transitions, we have to verify the condition

(ELTT). Notice first that |tan™'(z)| < 3, therefore
p(h) < p/2 (6.2.40)

for all h. A first conclusion is that there is no phase transition for p < 2. For p > 2
there is indeed a phase transition which occurs when the value of A is such that the
maximum of the distribution reaches the value 1. Since the maximum occurs at h = 0,

we immediately find the following line of critical points:

A.(p) = p* log<1 + tan2<f)), p>2. (6.2.41)
p

As p — o0,

Au(p) — 7, (6.2.42)

in agreement with the result of Douglas and Kazakov (GI4). Notice that A,(p) is a
decreasing function of p for p > 2, and as p — 27, the critical area increases to infinity.

For a given p, the small area phase occurs for A < A,(p), and in this phase the planar

free energy is well described by the distribution (E2Z31).

We then have the phase diagram represented in Fig. The horizontal axis rep-
resents the parameter p, while the vertical axis represents A. The critical line, de-
scribed by the function (E2ZAT]), has two asymptotes, represented by dashed lines: as
p — oo it approaches the horizontal dashed line A = 72, which corresponds to the
Douglas-Kazakov phase transition. As p — 2% it approaches the vertical asymptote.
For p € (0,2] there is no phase transition. Notice that, if we parametrize the planar

g-deformed theory in terms of p and A, the region p — oo corresponds to a small
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40
35}
30t
25t

|
|

207 |
15¢ !
|

0 — — — — — — — =

Figure 6.3: This figure represents the phase diagram of g-deformed 2d YM theory. The
horizontal axis represents the parameter p, while the vertical axis represents A. The
curve shown in the figure is the critical line (E2ZZ1]), which separates the phases of
small and large area. The horizontal dashed line, which is the asymptote of the curve

as p — oo, represents the A = 72 critical point of Douglas and Kazakov.

deformation, while the region p < 2 corresponds to a large deformation. We then see
that, if we start with ordinary 2d YM and we turn on the deformation parameter 1/p,
the Douglas-Kazakov phase transition persists although the critical area increases. At
p = 2 there is a “barrier” where the critical area becomes infinite. Therefore, when the

deformation parameter is large enough, the large N phase transition is smoothed out.

To find the free energy in the small area phase, we have to compute the functional
[EZTY) evaluated on the density ([E237). Since this functional is closely related to
the functional describing the planar Chern-Simons matrix model, we can borrow the

results from [I10, 126]. From [I26] it follows that, at large N, the matrix integral

([E2ZZT)) is given by

exp (N 2Fo(§)), (6.2.43)
with
Fy(€) = éFoCS(ﬁ) + f—Q (6.2.44)

Since £ = t/p in our example, we finally obtain

1 t pt
Fi(tp) = (P F§S(/p) = 2650 + 13+ 57 (6.2.45)
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As a further check of this expression, notice that, after using the expansion,

Liz(e™") = ((3) — %Qt + (Z — %log t)t2 + O(t%), (6.2.46)

one finds in the double-scaling limit (G2TT)

A 1 3
Fi(t,p) — 12 log A+ 7 (6.2.47)

which indeed is the free energy of the usual 2d YM theory in the small area phase.

6.3 Instanton Analysis

Since g-deformed 2d YM theory is a one-parameter deformation of the standard one,
we expect the phase transition discovered in the previous section to be triggered by
instantons as well. In this section we will verify this by computing the one-instanton
suppression factor in the g-deformed case. This will also give an intuitive explanation

of why the phase transition is absent for p < 2.

The starting point of the discussion is to write the partition function of the theory
in a way that makes manifest the instanton content of the model. Since ¢-deformed 2d
YM theory has the same action as standard 2d YM, but differs in the measure [94], we

expect the partition function to be expressed in terms of a sum over instantons,

ITIN &
79 = Zw(nj) exp(— i nf), (6.3.1)
n; 7=1
where n;, j = 1,---, N, are the instanton numbers characterizing a classical solution

[TT2], and w(n;) is the weight of such a configuration in the semiclassical expansion.
In order to compute the weights w(n;), we follow the technique used by Minahan and
Polychronakos [I27] in standard 2d YM and perform a Poisson resummation of the
original expression ([Z1l). This can be regarded as a duality transformation which
takes us from the large A phase where the expansion (G21]) is valid, to the small area
phase where the semiclassical expansion (G3]) is valid. The partition function can
then be written as

Z9=CY F(2mn;), (6.3.2)
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where Fy(z;) is a Fourier transform with respect to the variables p; =1; — j + 1/2:
—1 x : t
Fy(xj) = /Hdp o225 TiP; 11(2 sinh N(pj —pk)) exp( ij) (6.3.3)
i

and we are setting the 6 angle to zero. This transform can be performed by first
computing

Fi(z;) /Hdp =13 wips H(z Sinh%(pj — o ) exp< ij) (6.3.4)

Jj<k

and then doing a convolution. The integral (B34) reduces to a Gaussian after using

Weyl’s denominator formula for a general Lie algebra,
Z Jewp)u H 2sinh =V (6.3.5)
weWw a>0

where « are the positive roots, w € W are the elements of the Weyl group, and e(w)

is the parity of w. We find, up to a multiplicative constant,

N, ot
Fi(zj) = exp(—ﬂ xj> 112811& ﬂ(% — ), (6.3.6)
J

and using convolution we finally obtain

N N
Fy(z;) = - 2
N
X /jl:[ldyjjll(élsin Ql(xjk—iry]k) sin 22;1(93];C y]k)exp< Zy])

(6 3.7)
where we introduced the notation z;;, = x; — x;. The instanton weight has then the

expression

l .t
/H dy, ]11 <4 sin A(Qﬂnjk + y;i) sin ﬂ(%mjk — Yik ) exp< Z yj>
(6.3.8)
which is a ¢-deformed version of the result in [I27] for standard 2d YM.

As it was pointed out in [IT12], a precise way to evaluate the importance of in-
stanton contributions to the partition function is to compare the contribution of the

one-instanton term in the semiclassical expansion (B3]) to the contribution of the
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perturbative vacuum. The relative weight of these contributions defines a function

v(A, p) as follows
N 272\ w
exp [—Z'y(A,p)] = exp (_NT) —L (6.3.9)

Wo
where the exponent in the right hand side involves the instanton action for n; =

1,7n;-1 = 0, and we have denoted

wy  w(1,0,---,0)
— = 6.3.10
wo w(0,---,0) ( )

We call the function in (E33) the one-instanton suppression factor. Notice that, as
long as v(A, p) is different from zero, instantons will be suppressed in the large N limit.
The suppression is bigger the larger (A, p) is. In the remaining of this section, we will
compute (A, p) in the small area phase of g-deformed 2d YM, and we will study its

properties.

Let us first define the partition function

ZN:/ﬁ[ldyjH(zsmi( —yk)QeXp< ii: ) (6.3.11)

i<k
This is very close to the partition function of the Chern-Simons matrix model, although

it has a sin interaction between eigenvalues instead of a sinh interaction. We can then

use the results of the previous section after changing

1
p— —zfl, A=, (6.3.12)

and doing carefully the analytic continuation of p to the imaginary axis. Equivalently,
we can change variables y = —iAf/t in (E31]) to obtain the matrix model (GZZ2TI)

with € = —A/p?. One can then see from the formulae presented in the last section

that the planar limit of (E311) is controlled by the following density of eigenvalues,

¢(y) = = tanh™" 1 [/ cosiy/(2p)) — e A7 (6.3.13)
WA cos(y/ (2p)) ’ -
with endpoints located at
Y = 2pcos ! (e~ /), (6.3.14)

As p — 00, one can easily check that ((y) — pa(y, A).
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We can now evaluate ([E310). Notice first that wy = Zy. On the other hand, as in

[TT2], one has

w1 =

N

A /OO dyle‘%y%< 11 (4 sin 2% (27 + (y; — 1)) sin 2% (27 — (y; - yl)))>

’
N-1
— 00 =2

(6.3.15)
where the correlator is computed in the model (E3T1l) with N — 1 variables. Since we
are interested in the large N behavior of the one-instanton suppression factor, we can
compute the different integrals in the saddle-point approximation. This in particular

means that we can set y; = 0 inside the correlator in (E31H). We find,

%1

Wo

(Q?VA) 1/2 Zg: exp{ (N —1) / dy¢(y) log<4 sin 2ip(27r + ) sin %(% - y)(>6.}3'.16)

We have first to evaluate the quotient Zy_1/Zy in the large N limit. It is easy to see
that, at leading order in NV, this quotient is

exp{ ~N(2Fy (&) + €Fy(9)) }, (6.3.17)
where Fy(€) is given in (E2Z44). Here, £ = —A/p?, and after an analytic continuation
& — —¢ we find,

27+ €FY() = Lo (Lia(e ) = ), (6.3.18)

up to an overall sign (—1)" in Zy_1/Zy. Putting everything together, we obtain the
following formula for the function (A, p) defined in (G33):

2
1(A,p) =27 + 2 (Lig(e7") = T

— A / dy((y) log<4 sin zip(27r + ) sin 2%)(27? — y))

The integral in (E319) can be evaluated analytically. Notice first that in any matrix

(6.3.19)

model one has

Flv) = / dAp(V) log(1 — A/v) = / " (o) — 1), (6.3.20)

oo

This follows directly from the definition of the resolvent in (EZ2H). Taking into account
the redefinition (G312, we find that the integral in ([E319) is given by

9Re F (AW +2mily, (6.3.21)
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where F'(v) is obtained as in (B320), and the relevant resolvent is (GZ3H). After
some work, and using standard identities for the dilogarithm, one finds the following

expression:

2
(A, p) =272 — p? (Lig(e_A/pQ) + %) 4 2%ReG(f1(p, A), f-(p, A)),  (6.3.22)
where
G y) = (log 2)? + log log (1~ y) + Lin(1 — ) + Lin(y),

fi(p, A) = exp(£A4/ (20 + il — /D)), (6.3.23)
- (W-W - cos2<w/p>) |

cos(m/p)

20¢
17.5¢

12.5¢

Figure 6.4: This figure shows the function (A, p) appearing in the one-instanton
suppression factor, plotted as a function of A, and for the values p = 2.1, 3, 0o, from
top to bottom. For each p it is a decreasing function of the area and vanishes at the

critical value A, (p).

In order to understand the properties of the instanton suppression factor, we have
studied (analytically and numerically) the properties of ([£3.22) as a function of A and
p for p> 2, A < A.(p). The main results of this analysis are the following:

1. As p — oo, the function v(A,p) becomes the function ygm(A) introduced in
(ETTM). This is a consistency check of the solution.

2. For any fixed p > 2, 7(A, p) takes the value 27% at A = 0 and then it decreases
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monotonically as the area is increased. At the critical area (G241l one has

7(Au(p),p) = 0. (6.3.24)

The vanishing of (A, p) at the critical area can be proved analytically, since at A =

A*(p)>

Fi(p, Au(p)) = <COS(7T/p)>:Fle_i”/p, (6.3.25)

For arguments of this form (which are algebraic numbers) the dilogarithm satisfies

nontrivial identities [I20] that can be easily shown to lead to (E3:24).
3. For p < p/, one has that y(A,p) > v(A,p’) in their common range A < A,(p').

These properties are illustrated in Fig. 4], which shows the function v(A,p) as a
function of the area for the values p = 2.1, 3, 0o, from top to bottom. The above prop-
erties show that the one-instanton suppression factor in the small area phase decreases
as the area grows, until it vanishes at A.(p). Therefore, at the line of critical points
found in section 3, the instantons are not suppressed anymore and they become favor-
able configurations. This shows that the phase transition for the ¢-deformed theory is
indeed triggered by instantons, and follows a mechanism similar to the one studied in
[12]: for A > A.(p), the entropy of the instantons dominates over their Boltzmann
weight. The above analysis also shows that, as p decreases, the instanton suppression
factor becomes bigger and bigger, pushing the critical value of the area to ever larger
values. This indicates that the smoothing out of the phase transition for p < 2 is due
to the fact that the instantons are suppressed for all values of A and we only have one

phase dominated by the perturbative vacuum n; = 0.

6.4 The Two-Cut Solution

In this section we give some preliminary results about the large area phase of the
theory. After the phase transition found in section 3, we expect a distribution p(h) a
la Douglas-Kazakov, with the shape shown in the r.h.s. of Fig. and characterized

by two points a, b. The distribution governing the large area distribution is then of the
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form
p(h) = A A (6.4.1)
1, —b<h<b
After changing variables A\ = exp(th +t/p) as in the previous section, the new density
of eigenvalues p(\) = 1/(tA)p(h) has support on the two intervals (a=,b7), (b",a™),

where

at = el/rrta pE — et/PEth. (6.4.2)

This density satisfies the following integral equation,

p logh 1 Aot —1 /ﬁ()\’) ,
_ P S g T _p
IN = T le 1 v

(6.4.3)

q

-

N
N

N
N

a_ b b b by

Figure 6.5: This figure shows the deformation of the contour needed to compute the
resolvent in the two-cut solution. We have to encircle the singularity at the origin, and

the two branch cuts denoted by thick lines on the left.

As in the one-cut case, we introduce a resolvent

Zo(\) = / f(_)\/))\/dX. (6.4.4)

This can be again computed by the contour integral (E229), but now

r(z) = (z—a)(z —at)(z — b )(z — bt). (6.4.5)

and C is the union of the contours surrounding the cuts (a=,b7), (a*,b"). To perform
the integral (EZ29) we deform the contours in the way shown in Fig. B0k we now

encircle the branch cut along (—o0,0), coming from log A, and the branch cut of the
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integrand along (b=, b"). The answer for the resolvent is

plogh 1 Aot —1
. —l -
%N TN —1

a dz

r(A)
* t /b_ 2(z = Nr(z)

The above integrals can be expressed in terms of elliptic functions. We will change

@o(A)

notation a=,b~,b",a™ to d, ¢, b, a. Define

d dz
”*“”El CEREE)

2
T =00 —dVa—00=-d {(c— (¢, n, k) + (d — N F (g, k;)},
(6.4.7)

where I1(¢, n, k) and F(¢, k) are incomplete elliptic integrals of the third and the first

kind, respectively, and

(@=od=w) | (a=dO=0) =)

In what follows it will be convenient to introduce the following angles ¢;, ¢5 and

variables n; and no:

_ da—
Sil’l2¢1 23_27 Sin2¢2:EZ—CCZ’ (649)
a—d ca—d o
ny = y Ng = — .
a—c da—c
In terms of these variables one finds,
2
I(\, —0) :()\ Y5 W o ) {(c — d)II(py1,m, k) + (d — N F (¢, k)},
2
1000) =t { (e = Mo )+ (4= VP ) |
2
1(0,200) = e {(c — d)(¢1, na, k) + dF (6, k)}.
(6.4.10)
The first integral in the second line of (EZ0) is given by
%(m, —00) — I(A, 0) — 1(0, —00) + I(0, —e)>. (6.4.11)
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The second integral in the second line is simply a residue and it can be computed

immediately:
1 1

A v abed

We now compute (0, —¢) at next-to-leading order in e. This will have a logarithmic

loge. (6.4.12)

singularity which will cancel (E4.12). In order to do that, we need the following identity

[T00]:

L th(v+p)  94(5) }
(¢, n, k) =0d(n)s =lo — v, 6.4.13
(omb) =t { gou g 15 - S (41
where
n : F(¢,k) F(sin~!(n"3), k)
5(n) = = = 4.14
o= (=)« T Ty (6419
and the 7 parameter in the theta functions is given as usual by
q=e""" =exp(—nK'(k)/K(k)). (6.4.15)
Notice that, when
1
sin® ¢ = — (6.4.16)
n

we have a logarithmic singularity in the elliptic integral H(ign, k). This is immediately

. We can now use (E413))

checked in the integral representation of the elliptic functio

to extract the next-to-leading behavior. Since

—cd
sin2(b:Z_;Cj::7 n = n, (6.4.17)

the leading behaviour of II(¢, k, ny) is given by

9i(Ba) 1. h(2B) 1. rc—d L
o) (225105 + 3108 gy o (g o) + 108 K0 (6.4.18)
- @ log e + O(e),
where (3, is given by F(éa. k)
25
5=t (6.4.19)

This leads to the following expression

loge+ 1(0,0) + O(e), (6.4.20)

2Notice that in the conventions we are using the n in I1(¢, n, k) corresponds to —n in the definition

given in [T00].



130 CHAPTER 6. TESTING OSV ON A 2D Q-YANG-MILLS DUAL

where

1(0,0) = (—2@@ +log D120) log(c - da(m)) ~log K(k))

Vabed V4(B2) v7(0) 4ded
2
F(pa, k).
+c (a—c)(b—d) (¢2,%)

(6.4.21)

From the above result we see that the singularities as e — 0 cancel, as wished.

We now consider the remaining integral. Define

b dz
W= =N
) (6.4.22)
T {(a — )T (m, k) + (b — A)K(k)},
where
_(b=c)(A—a)
e P T (6.4.23)
We then have,
b dz 1
[ = =i -0), (0429
where J(0) is given explicitly as
J(0) = 2 {(a — B)TI(m(0), k) + bK(k:)} (6.4.25)
~aby/(a—o)(b—d) ’ ‘ .

Putting everything together, we find the following expression for the resolvent:

_ plogA 11 Ab—1

@o(A) TR + Y ogm
+ p;’g\‘) ([()\, —00) — I(\,0) — (0, —o00) + (0, O)) (6.4.26)
+ % (J(A) - J(O)).

As A — o0, this is indeed a Laurent series in A: using again (GZ13) it is easy to see
that I(\, —o0) contains a term of the form —log(\)/r(A) that cancels against the first
term in (E226). In order to derive the conditions for the endpoints of the cut, we must

impose the asymptotic behaviour

Do(A) = 1_7% +O(\). (6.4.27)

We find three conditions. First of all, notice that there is a term of order A coming

from the integrals 7(0,0), 1(0, —oc), and J(0). Imposing the cancellation of this term,
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one obtains the condition

p(1(0,0) — I(0, —o0)) — 2J(0) = 0. (6.4.28)
The vanishing of the constant term leads to the condition

p(F(02, k) = F(o1,k) ) = 2K (k). (6.4.29)

Finally, the fact that the 1/X term has the coefficient 1 — 2b leads to a third condition,

p(<a bt d— ) (F (o1, k) = Fl6a, F)) — 2(c — )12, ma, k)

1%1(51) 191(251) c
A

+2(b+d+c—a)K(k)+2(d — b)II(me, k) = t,

+(a—o)b—d) (-251 < dé(m)) —log K(k)))

(6.4.30)

where
F(¢2, k’) me — b—c
2K (k) * a—c

P2 = (6.4.31)

These conditions determine the endpoints d,lA) as functions of the parameters ¢,p. We
seem to have three conditions for two unknowns, but since we started with a symmetric
problem and we just changed variables, one of the conditions is redundant. This is
not easy to verify from the above expressions, but can be checked, for example, by
doing a small ¢ expansion of the equations, and assuming a power series ansatz for the

endpoints:
a(t, A) = an(A) ", b(t, A) =D ba(A)t". (6.4.32)
n=0 n=0

The ansatz is justified by the fact that, as t — 0 with A fixed, we must recover the
standard YM result obtained in [T09]. One can see that, at leading order in ¢, the three

conditions above lead to the same equation, namely

ao + b
o ;r O A = 2K (ko), (6.4.33)
where
4dgh
J2 = 00 (6.4.34)

(o + bo)?
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Using standard properties of elliptic functions, one can easily check that this condition

becomes

4 ~
A= —K(boy/ao), (6.4.35)
agp
which is precisely one of the equations found in [I09]. Notice that, by making use of

[EZ2]), we can simplify the expression of the resolvent to

plogh 1 Ab—1
_PO8A L 2
2 A T BNje—1

p;ii) <I(>\, —o0) = I(A, o)) +

@o(A)
6.4.36
) ( )

tA

+ J(N).

In principle, the above conditions for a, l;, together with the explicit expression for the
resolvent in (E230), determine completely the solution for the large area phase. These
conditions are rather intricate to be treated analytically, but one could study them

numerically.

The most important question to address is the order of the phase transition for
different values of p. This of course can be seen, as in [I09], by computing the free
energy in the large area phase that we have just analyzed. Since the line of critical
points is smoothly connected to the Douglas-Kazakov transition, we should expect the
transition in the g-deformed theory to be of third order for any p > 2. Indeed, one
can find indirect evidence that this is the case by using an argument in [I12] based on
double-scaling limits. If we consider a theory with a large N n-th order phase transition
at a critical area A = A, between phases I and II, the free energy has the following

behaviour

Fy(A) — FY(A) ~ (A, — A)™ (6.4.37)

To define a double-scaling limit of such a theory, one should introduce a string coupling
constant g through
w2 = N*(A, — A" (6.4.38)

The nonperturbative effects of such a theory are expected to be of the form exp(—1/ps).
But this means that the instanton effects in the original theory should have the be-

haviour exp(—N~v(A)), with

Y(A) ~ (A, — A2, (6.4.39)
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Indeed, in [T12] it is found that the function (EII1) appearing in the instanton sup-
pression factor has exactly the behaviour (E2-39) with n = 3 near the Douglas-Kazakov
transition point, as required for the existence of a double-scaling limit at a third order
phase transition. According to this argument, the behaviour of the instanton suppres-
sion factor near the critical point can be indeed regarded as an indirect way to probe the
order of the phase transition. We have checked numerically that the function (A, p)
that we found in (E322) behaves indeed as

(A, p) ~ (Au(p) — A)*? (6.4.40)

near A.(p), for various values of p > 2. This is indeed consistent with the large N

phase transition of the g-deformed theory being of third order for all p > 2.

We should also mention that, in [96], general criteria have been formulated to
determine the order of a phase transition for a model based on a distribution of Young
tableaux. These criteria only depend on the behavior of the density (E2Z31) in the
small area phase. It can be easily seen that according to these criteria, the phase

transition of the ¢-deformed theory is of third order for any p > 2.

6.5 Conclusions and Outlook

In this chapter we have shown that g-deformed 2d YM theory exhibits an interesting
phase structure, with a Douglas-Kazakov phase transition smoothly connected to that
of the standard YM theory, and a “barrier” at p = 2. One of the original motivations
of this analysis was the appearance of the g-deformed theory as a nonperturbative
completion of topological string theory on certain Calabi-Yau backgrounds. g-deformed
2d YM on the sphere has been proposed in [I132, 94] as a nonperturbative, holographic

description of topological strings on the local Calabi-Yau manifold
O(-p)®O(p —2) — P, (6.5.41)

where the integer number p > 0 corresponds to the parameter p appearing in (E21).
Explicit computations in [94] show that the perturbative partition function computed in

[TOT] appears as a certain decoupling limit of the large area expansion of the g-deformed
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theory. However, the fact that this theory exhibits a phase transition suggests that,
for geometries of the form ([ERZIl) with p > 2, the large area expansion has a finite
radius of convergence which, in terms of the ‘t Hooft parameter ¢, is given by ¢.(p) =
A.(p)/p. As p becomes larger, the radius of convergence becomes smaller. Therefore,
the conjecture of [129] suggests that for the geometries ([E241l) with p > 2, there will be
a phase transition at small radius in the full, nonperturbatively completed topological
string theory. What are the possible interpretations of this phase transition in the
topological string theory context? We will mention here three possibilities, although a
better understanding of the implications of the phase transition of ¢-deformed YM to

nonperturbative topological strings will require a more detailed treatment:

1. A first possibility is that the phase transition in the g-deformed theory indicates
a topology change in the Calabi-Yau background. After all, the small and the large
area phases are described by different master fields of the two-dimensional theory,
corresponding to the one-cut and two-cut solutions discussed above, and it is known
that in large N dualities the master field encodes the geometry of the target [108, [O3].
This topology change might be also interpreted, as in [I07], in terms of a process

involving a splitting of baby universes.

2. A second possibility is that the small area phase does not have a geometric
interpretation. One indication of that is the string description of standard 2d YM:
the analysis of [IT1), MT3] shows that the large area expansion has an interpretation
in terms of branched coverings of the sphere. However, it has been argued that the
existence of a large N phase transition suggests that this geometric picture does not
hold for the small area phase [I12]. In the same vein, it is likely that the small area
phase of the g-deformed theory is not described appropriately by topological strings
with a geometric target. This is in fact very reminiscent of the analysis of [98 (see also
[99, @7]), where it was shown that the large N phase transition of the unitary matrix
model corresponds, in AdS/CFT at finite temperature, to the point where the horizon
of the small AdS black hole becomes comparable to the string scale. At this point,
the supergravity /geometry picture breaks down. The situation we are considering here

could be a topological string analogue of the large N transition of [05].

3. A more conservative possibility is that the conjecture of [129] does not fully apply
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to the local geometries (B4l when p > 2, or at least does not apply to the small
area phase. The original conjecture was formulated for compact Calabi-Yau threefolds,
and there may be subtleties when applying it to the noncompact case. It turns out
that precisely for p > 2 there are obstructions for contracting the P! inside (E5.4]) to
a point [123, T18], and because of this reason one can expect these geometries not to
arise as a decompactification limit of a compact Calabi-Yau. It is intriguing that the
“barrier” p = 2 that we found in this paper is the same that occurs in the geometric

setting.

In extracting the consequences of our analysis for the nonperturbative physics of
topological strings, there is another point that should be mentioned. In our analysis we
considered the saddle-point solution of the functional S[h], and we found that this leads
to a distribution where (h) = 0 and the dependence on the 6 angle is trivial. However,
it has been argued in [I17], by studying the instanton weight factors, that the presence
of a nonzero # changes the location of the critical line. This is an interesting possibility
and deserves further study. Also, we have restricted ourselves to solutions with zero
U(1) charge. This is indeed the true vacuum of the theory [95], but one could also
consider saddle-point solutions like those in [T27]: one imposes the constraint (h) = @,
where @ is the U(1) charge, solves for the density, and then finally sums over all integer
charges with a weight exp(i@Q#). It may happen that, in order to compare our results

with those of [94], one should use this prescription to include the U(1) charges.

It is also worth pointing out that the instanton weight factors considered in section
4 are closely related to the degeneracies of BPS states analyzed in [94]. It is likely that
the techniques of [T12] that we used and extended to the g-deformed case in order to

compute these weights lead to a useful technique to obtain the degeneracies.

From the point of view of the two-dimensional gauge theory, the results presented
in this chapter indicate that, when the deformation parameter is sufficiently large,
the large N phase transition is smoothed out already at the planar level. This is an
interesting, new mechanism for smoothing out large N transitions which may have
implications in other contexts (the other mechanism we are aware of to smooth out
these transitions requires performing a double-scaling limit, as in [124), O8], and involves

a resummation of the 1/N expansion).
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There are also various open questions concerning the gauge theory aspects of our
analysis. Of course, the two-cut solution that we presented in this work should be
investigated in more detail. One could also investigate the phase structure and free
energy of the chiral version of the g-deformed theory (in the 2d YM case, this has
been done in [T06, [22]). Since the chiral sector makes a more direct contact with
the perturbative topological string amplitudes, this may help in understanding better
the holographic description proposed in [I32, [94]. It would be also very interesting to
analyze the subleading 1/N corrections to the planar result in the small area phase. In
[TT2] this was done for the standard YM case by using a discretized version of orthogonal
polynomials, but it is not obvious how to generalize this to a discrete model with a sinh
interaction. Such a generalization would make it also possible to define a double-scaled
theory near the critical line of the g-deformed theory, as we briefly discussed in the last
section. These are some of the open questions that would be interesting to consider

for future research.
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Summary

Our greatest glory is not in never failing, but in rising up every time we do

- adapted from Confucius

Supersymmetric Black Holes as Probes of Quantum

Gravity

The research presented in this thesis features a specific class of black holes arising in
string theory that offer a rare window towards probing quantum gravity. The driving
force behind much of this research in black hole physics lies in the idea of holography
which is a duality between a gravitational theory in a bulk space-time and a quantum
theory (without gravity) living on the boundary of that space-time. In string the-
ory this duality is famously manifest as the AdS/CFT correspondence. Macroscopic
observables refer to gravitational quantities in the bulk; whereas, microscopics corre-
sponds to the theory living on a bound state of higher dimensional objects in string
theory called branes. The black holes that we work with in this thesis are analogs
of zero temperature black holes (also known as extremal) in Einstein’s gravitational
theory with electromagnetic charge; and are obtained through compactification of a
type of closed string theory in ten dimensions, where the compactified six dimensions
are endowed with 4, 2 and 0 dimensional (spatially) branes, thus giving a black hole
solution in four non-compact dimensions. Lifting this set-up to eleven dimensions by
opening a circular spatial dimension gives a five dimensional black string in M-theory,
where the branes now lift to 5 & 2 dimensional membranes and respectively angular
momentum along the M-theory circle. Subsequent fragmentation of this system leads
to interesting multi-center configurations in 4 as well as 5 dimensions. Investigating

this specific system and its various manifestations, sheds new insights into the quantum
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field theory(gauge theory)/gravity paradigm.

An interesting recent development that initiated the research in this thesis is the
Ooguri-Strominger-Vafa (OSV) conjecture, which is a correspondence relating a class
of supersymmetric black holes to topological string theory - a lower dimensional string
theory living on a six dimensional compactification space. This conjecture has raised
several questions as well as opened up novel possibilities. Firstly, one had to verify
that it indeed held true for a range of interesting gravitational systems. Of specific
interest for this thesis was the D0-D2-D4 black hole solution from Type II A string
theory compactified on a specific Calabi-Yau background. The dual gauge theory, in
this case, turned out to be a quantum deformed version of two dimensional Yang-
Mills on a closed surface. Since the latter lends itself to non-perturbative analysis, it
opens up the interesting possibility to extract non-perturbative information from the
gauge theory and thus determine corresponding corrections to the black hole system.
Of course, as an independent check, it is still be useful to compute the black hole’s
entropy and observed charges with the inclusion of higher order corrections. To sum it
up, both microscopic as well as macroscopic computations are necessary for furthering

this research.

Besides the OSV conjecture, other developments in the direction of black holes
with non-trivial topology and their respective entropy counting issues also began to
gain momentum around the same time. At first sight, many of these apparently di-
verse developments appeared seemingly unrelated. As a case in point, we list those
developments here: solutions for multi-center supersymmetric black holes; the discov-
ery of black rings in five dimensions; the 4D /5D connection relating black holes in four
dimensions to those in five dimensions, and subsequently a multi-center extension of
this connection along with the inclusion of extended black objects; the formulation of
an entropy function technique that is well suited for computations involving higher or-
der corrections due to the remarkable feature that within this formalism, all equations

of motion straightforwardly reduce to algebraic equations; quivexH gauge theories dual

3Literally speaking, a quiver is a case for holding arrows. In mathematics, a quiver is a directed
graph, with loops and links between vertices. For our purposes here, the vertices represent gauge

groups.
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to multi-center black hole configurations, necessary for a holographic understanding of
microstates. Our take in this work is that a lot of these themes in fact compliment
each other and thus a parallel rather than serial approach to research in this field can
in fact lead to integration of ideas and emergence of new insights therein. Nevertheless,
the underlying theme behind all of this is still the gravity /gauge duality connecting the
macroscopic to the microscopic. Therefore in order to modestly achieve some of these
objectives, a large emphasis of the work in this thesis has been placed on developing

methodology and interpreting underlying mechanisms.

Here we briefly summarize our results. In chapter 3, we began our investigations
with macroscopic gravity calculations. We developed an entropy formalism suited
for 5D black objects. This is then applied to both 5D black holes as well as black
rings. In chapter 4, we turned our attention to the 4D/5D conjecture and carefully
investigated subtle charge shifts that result in the process for black holes and black
rings. These are issues that have stirred considerable debate in the literature. For
single center configurations, the new tools developed in chapter 3 provide us with a
geometric interpretation of the above shifts via spectral flow. We then moved on to
understand this picture for multi-center geometries and interpret these results via the
corresponding split-spectral flows. To do so, insights from AdS fragmentation were
found to be extremely beneficial. In chapter 5, we investigated continuum multi-center
black hole configurations, thus finding solutions to integrability equations for large n
centers. We have subsequently used these solutions for generating interesting electro-
magneto-gravitational backgrounds. As an interesting application we then discussed
this in the context of a black hole levitron. On the microscopic side, we have studied the
dual gauge theory of the aforementioned black hole, constructed as a bound state of D-
branes. In this rare case, the microscopic theory turns out to be fully non-perturbative
and thus lends itself as a very interesting tool for instanton analysis. In order to do
this, we considered topological strings over a non-compact Calabi-Yau background,
over which we sought to test the validity of the OSV conjecture and in the process
discovered a remarkable phase transition in the theory. We analyzed this transition

and commented on its implications for black hole physics.
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Samenvatting

It is our choices, more than our abilities, that show who we truly are

- J. K. Rowling

Supersymmetrische Zwarte Gaten als Testgrond voor

Kwantumzwaartekrach

Het onderzoek dat in dit proefschrift gepresenteerd is, behandelt een bepaalde klasse
van zwarte gaten in snaartheorie, die een zeldzame blik op kwamtumzwaartekracht
bieden. De drijvende kracht achter een groot deel van dit onderzoek naar de natu-
urkunde van zwarte gaten is het holografisch principe. Dit is een dualiteit tussen een
theorie in een bepaalde ruimtetijd waarin zwaartekracht een rol speelt aan de ene kant
en een kwantumtheorie (zonder zwaartekracht) die op de rand van eerdergenoemde
ruimtetijd leeft aan de andere kant. In snaartheorie manifesteert deze dualiteit zich als
de AdS/CFT correspondentie. Macroscopische observabelen verwijzen naar groothe-
den in de zwaartekrachtstheorie, terwijl het label microscopisch gereserveerd is voor
gebruik in de theorie die leeft op een gebonden toestand van hoger dimensionale ob-
jecten in snaartheorie, branen genaamd. De zwarte gaten waar we mee werken in dit
proefschrift zijn analoog aan nul graden zwarte gaten (de zogenaamde extremale zwarte
gaten) uit Finsteins zwaartekrachtstheorie met elektromagnetische lading. Bovendien
worden ze verkregen door middel van een compactificatie van een bepaald type ges-
loten snaartheorie in tien dimensies, waarbij een aantal van de zes gecompactificeerde
dimensies zijn gevuld met 4, 2 en 0 dimensionale (ruimtelijke) branen, hetgeen resul-

teert in een zwart gat oplossing in de vier niet compacte dimensies. Deze configuratie

4 It’s a pleasure to acknowledge Joost Hoogeveen for being so kind to provide me with the following

Dutch translation of the summary.
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kan verheven worden naar elf dimensies door een cirkelvormige ruimtelijke dimensie
te openen. Op deze wijze ontstaat een vijf dimensionale zwarte snaar in M-theorie,
waarbij de branen nu verheven zijn tot respectievelijk 5 & 2 dimensionale membranen
en impulsmoment langs de M-theorie cirkel. Verdere fragmentatie van dit systeem leidt
tot interessante “meervoudig middelpunt” configuraties in zowel 4 als 5 dimensies. On-
derzoek van dit specifieke systeem en zijn verscheidene verschijningsvormen, leidt tot

nieuwe inzichten in het kwantumveldentheorie (ijktheorie)/zwaartekracht paradigma.

Een interessante recente ontwikkeling, die de basis heeft gelegd voor het onderzoek
in dit proefschrift, is het Ooguri-Strominger-Vafa (OSV) vermoeden. Dit is een corre-
spondentie die een klasse van supersymmetrische zwarte gaten relateert aan topologis-
che snaar theorie, i.e. een lager dimensionale snaartheorie die op een zes dimensionale
compactificatieruimte leeft. Dit vermoeden heeft zowel verschillende vragen opgewekt
als de weg vrijgemaakt voor nieuwe mogelijkheden. Ten eerste moest men verifiéren dat
het vermoeden opging voor een scala aan interessante zwaartekrachtssystemen. Een
belangrijke rol in dit proefschrift is weggelegd voor de D0-D2-D4 zwarte gat oploss-
ing in type II A snaar theorie, die gecompactificeerd is op een specifieke Calabi-Yau
achtergrond. De duale ijktheorie bleek, in dit geval, een kwantum gedeformeerde versie
van twee dimensionale Yang-Mills theorie op een gesloten oppervlak te zijn. Aangezien
deze theorie ook niet perturbatief geanalyseerd kan worden, opent dit de interessante
mogelijkheid om niet perturbatieve informatie uit de ijktheorie te extraheren en ver-
volgens de corresponderende correcties van het zwarte gat systeem te bepalen. Als een
onafhankelijke controle blijft het uiteraard nuttig om de entropie van het zwarte gat
en de waargenomen ladingen direct uit te rekenen met inbegrip van hogere orde cor-
recties. Samenvattend kan gezegd worden dat zowel microscopische als macroscopische

berekeningen noodzakelijk zijn voor de vooruitgang van dit onderzoek.

In de tijd dat het OSV vermoeden werd geformuleerd, raakten ontwikkelingen op
het gebied van zwarte gaten met niet triviale topologie en het hieraan gerelateerde
probleem om hun entropie te bepalen ook in een stroomversnelling. Op het eerste
gezicht leken deze ontwikkelingen ongerelateerd. Meer specifiek zijn deze ontwikke-
lingen: oplossingen voor “meervoudig middelpunt” supersymmetrische zwarte gaten;

de ontdekking van zwarte ringen in vijf dimensies; de 4D/5D verbinding die zwarte
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gaten in vier dimensies relateert aan die in vijf dimensies en vervolgens een “meer-
voudig middelpunt” uitbreiding van deze verbinding alsook de generalisatie naar uitge-
breide zwarte objecten; de formulering van een entropie functie techniek, die geschikt
is voor berekeningen die hogere orde correcties meenemen vanwege de opmerkelijke
eigenschap dat binnen dit formalisme alle bewegingsvergelijkingen reduceren tot alge-
braische vergelijkingen; quivert] ijktheorién duaal aan “meervoudig middelpunt” zwart
gat configuraties, noodzakelijk voor een holografisch begrip van microtoestanden. Onze
perceptie van dit werk is dat veel van deze thema’s elkaar aanvullen en dientengevolge
kan een parallelle, in plaats van een seriéle, benadering leiden tot integratie van ideeén
en het verkrijgen van nieuwe inzichten. Desalniettemin is het onderliggende thema
van dit alles nog steeds de zwaartekracht /ijk dualiteit die macroscopisch met micro-
scopisch verbindt. Teneinde sommige van deze doeleinden op een bescheiden manier
te bereiken, ligt de nadruk van dit proefschrift op het ontwikkelen van methodologie

en het interpreteren van onderliggende mechanismes.

Tenslotte vatten we onze resultaten kort samen. In hoofdstuk 3 zijn we ons on-
derzoek begonnen met macroscopische zwaartekrachtsberekeningen. We hebben een
entropie formalisme ontwikkeld dat geschikt is voor 5D zwarte objecten. Dit wordt
vervolgens toegepast op zowel 5D zwarte gaten als zwarte ringen. In hoofdstuk 4
hebben we onze aandacht gericht op het 4D /5D vermoeden en hebben we verschuivin-
gen in ladingen van zwarte gaten en zwarte ringen nauwkeurig onderzocht. Deze kwest-
ies hebben een hoop stof doen opwaaien in de wetenschappelijke literatuur. Voor
“enkelvoudig middelpunt” configuraties verschaffen de nieuwe technieken, ontwikkeld
in hoofdstuk 2, ons een meetkundige interpretatie van bovengenoemde verschuivingen
via spectrale stroom. Vervolgens hebben we de analoge stappen gezet voor “meer-
voudig middelpunt” configuraties en de resultaten geinterpreteerd door middel van de
relevante gespleten spectrale stromen. In deze interpretatie zijn inzichten vanuit AdS
fragmentatie van grote waarde gebleken. In hoofdstuk 5 hebben we continuiim “meer-

7

voudig middelpunt” zwart gat configuraties onderzocht, hetgeen leidde tot oplossingen

van integreerbaarheidsvergelijkingen voor grote n middelpunten. Vervolgens hebben

5Quiver literally translates as pijlkoker in Dutch. In mathematics, a quiver is a directed graph,

with loops and links between vertices. For our purposes here, the vertices represent gauge groups.
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we deze oplossingen gebruikt om interessante achtergronden te genereren, die zowel
zwaartekrachts- als elektromagnetische velden bevatten. Als interessante toepassing
hebben we dit behandeld in de context van een zwart gat levitron. Aan de micro-
scopsiche kant hebben we de duale ijktheorie van het eerdergenoemde zwarte gat, dat
een gebonden toestand van D-branen is, bestudeerd. In dit zeldzame geval blijkt de
microscopische theorie volledig niet perturbatief te zijn en daarom is deze theorie zeer
interessant in de analyse van instantonen. Als onderdeel hiervan beschouwen we in
dit proefschrift topologische snaren op een niet compacte Calabi-Yau achtergrond en
we hebben getracht de geldigheid van het OSV vermoeden te testen. Tijdens deze
exercitie hebben we een opmerkelijke faseovergang ontdekt. We hebben deze overgang
geanalyseerd en de hieruit volgende implicaties voor de natuurkunde van zwarte gaten

becommentariéerd.
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