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Abstract: The classification of exact solutions of Maxwell vacuum equations for the case where
the electromagnetic fields and metrics of homogeneous spaces are invariant with respect to the
motion group G3(VII) was completed. All non-equivalent exact solutions of Maxwell vacuum
equations for electromagnetic fields and spaces with such symmetry were obtained. The vectors of
the canonical frame of a homogeneous space of type VII according to the Bianchi classification and
the electromagnetic field potentials were found.
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1. Introduction

A special place in mathematical physics is occupied by the problem of the exact
integration of the field equations for electromagnetic and gravitational fields. The problem
can be successful solved if the space and the electromagnetic fields possess some symmetry.
Homogeneous spaces are one of the important examples of the space manifolds with
symmetry. Stackel spaces are another example of such spaces. Both of these sets of spaces
are applied in the theory of electromagnetism and gravitation due to the fact that, in these
spaces, methods of commutative and noncommutative integration of equations of motion
of single test particles can be applied.

The methods of commutative integration is based on the use of a commutative algebra
of symmetry operators (integrals of motion) that form a complete set. The complete set
includes first- and second-degree linear operators in momentum formed from complete
sets of geometric objects consisting of vector and tensor Killing fields. The method is
known as the method of the complete separation of variables. The theory of the complete
separation of variables was mainly constructed in the works [1-7]. A description of the
theory and detailed bibliography can be found in [8-10] Examples of applications of the
theory of complete separation of variables in the theory of gravitation can be found in
the works [11-16]. The methods of non-commutative integration is based on the use
of the algebra of symmetry operators, which are linear in momenta and constructed
using noncommutative Killing vector fields forming noncommutative groups of motion
of spacetime G3. Among these spacetime manifolds, the homogeneous spaces are of
greatest interest for the theory of gravity (see, for example, [17-27]). The theory of the
noncommutative integration method and development of the theory can be found in the
works [28-33].

Thus, these two methods are essentially complementary and have similar classification
problems (by solving a classification problem, we mean enumerating all metrics of the
corresponding spaces that are not equivalent in terms of admissible transformations of
privileged coordinate systems; likewise, all electromagnetic potentials of admissible elec-
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tromagnetic fields that are not equivalent in terms of admissible gradient transformations).
Among these classification problems, the most important are the following.

The classification of all metrics of the Stackel and homogeneous spaces in privileged
coordinate systems. For Stackel spaces, this problem was solved in the papers cited above.
For homogeneous spaces, this problem was solved in the work of Petrov (see [34]).

The classification of all (admissible) electromagnetic fields to which these methods can
be applied. For the Hamilton-Jacobi and Klein—-Gordon-Fock equations, this problem is
completely solved in homogeneous spaces (see [30-32]). In Stackel spaces, it is completely
solved for the Hamilton-Jacobi equation (see [8-10]) and partially solved for the Klein—
Gordon-Fock equation.

The classification of all vacuum and electrovacuum solutions of the Einstein equations
with metrics of Stackel and homogeneous spaces in admissible electromagnetic fields.
This problem is completely solved for the Stackel metric (see, for example, [5,12,13] and
bibliography in [8-10]). For homogeneous spaces, this classification problem has not yet
been studied.

Thus, for the complete solution of the problem of uniform classification, it remains to
integrate the Einstein-Maxwell vacuum equations using the previously found potentials
of admissible electromagnetic fields and the known metrics of homogeneous spaces in
privileged (canonical) coordinate systems. This problem can also be divided into two stages.
In the first stage, all solutions of Maxwell vacuum equations for the potentials of admissible
electromagnetic fields should be found.

In the paper [33], the first problem was decided for the case where there exist groups
G3(II-VI) in the homogeneous spaces. The present work is devoted to the homogeneous
spaces with groups of motion G3(VII). Thus, the classification problem for solvable groups
of motions will be solved.

2. Maxwell Equations in the Homogeneous Spaces
Homogeneous Spaces

By definition, a space—time manifold V, is a homogeneous space if a three-parameter
group of motions acts on it whose transitivity hypersurface V3 is endowed with the Eu-
clidean space signature. A semi-geodesic coordinate system [u'] is used. The metric V has
the form:

ds? = gi]»duiduj — —du® +g,xlgdu"‘du’5, det|gap| > 0. (1)

Coordinate indices of the variables of the semi-geodesic coordinate system are denoted
by lower-case Latin letters: i,7,... = 0,1...3. The coordinate indices of the variables of the
local coordinate system on the hypersurface V3 are denoted by lower-case Greek letters:
«,B,7,...=1,...3. The temporal variable is indexed by 0. Group indices and indices of a
non-holonomic frame are denoted by a,d,c... =1,...3. The letters p, q denote the indices
varying from 2 to 3. Summation is performed over repeated upper and lower indices within
the index range.

Another definition of a homogeneous space exists, according to which, the spacetime
V4 is homogeneous if its subspace V3, endowed with the Euclidean space signature, admits
a set of coordinate transformations (the group Gs of motions spaces V;) that allow us to
connect any two points in V3 (see, e.g., [35]). This definition directly implies that the metric
tensor of the V3 space can be represented as follows:

Sup = eaehnap(u0), €l =0, 1y = (). @

while the form
wt = eldu®
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is invariant with respect to transformations of the group G3. The vectors of the frame e}
define a non-holonomic coordinate system in V3. The dual triplet of vectors e (e%e! =

oL, ef{e% = (Sg) constructs the operators of the G3 algebra group:
Yo =%, [Yo, V3] =C5Ye. 3)

In the following, this definition of homogeneous spaces is used. The electromagnetic
field is invariant with respect to transformations of the group acting in the space. It has the
form:

Ai=1lag 0y = txﬂ(uo). 4)

3. Maxwell Equations
We consider the Maxwell equations with zero sources for electromagnetic potential (4):

1 y
ﬁ(\/‘gpj),j =0. 5)
In the case where i = 0, from the system (5), it follows that: Answer: “Approved”.
xp 1 o ab n l|ﬂ ﬁa a ab_,
\/ $8"PFop) a 7(” n74p) 0 = (loy + T); (B" = n""nay). (6)

Notation used:

fla=lifar 8= —det|gapl = —(y1)?, (* = det|nup|, 1= det]|lg]).

The dots denote the time derivatives. Then, we have the first equation in the form:

(loa +1a)B" = 0. @)

If i = «, from Equation (5), it follows that:

1 1 1 o b
018" Fop)o = 1188 ) = - (1™ lade) o = L UL B Fyy ) = (8)
. 1 -
B = UL By ™ ©)

Fyp can be found using the relations (2)—(4):

P,xﬁ:(zgra—lgra)aa:1;13121;(1@/,,—13”)%:zﬁZﬂZC(ltj‘b b‘a) = IgliChac = (10)

(IF*F) 5 = 5™ C g (112 5 + 15T ). (11)

Structural constants of a group G3 can be represent in the form:

& = Cipel2 + Cozel?, (12)
where
= o505 — o767
From the relations:
(S?EBﬂaﬁﬂbb) _ (UuAan _ naBnbA)’ (13)

it follows that

71231277ac77bd (7733312+’723531 + 1113€53),
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2.31 ac, bd __ ab ab ab
noea ™™ = (1122631 + 12313 + 112€%3),
2.23_ac, bd __ ab ab ab
noeqn " = (m13€1y + 112831 + 1M11€%3)-

Equations (5) take the form:
1" = 87 (1Ciy — 12(Chy + @3) +73(Cyy + w2)) + 83 (11(Co + w3 )+ (14)
12CE = 13(Ch + w1)) + 85 (=71(C33 + w2) +72(Ch5 + wi) +713C31),
NaoB’ = Nita, (15)
waf" =0, wa=1Ig,+1,/1, (16)

where
Y1 = 0111 + 0212 + 03413, Y2 = 0112 + 02122 + 03123,

a a a
Y1 = 0113 + 02123 + 031133, 01 = Cyzatg, 02 = Czy, 03 = Cira,.

Let us find sets of the Maxwell Equations (14)—(16) for all solvable groups.

Groups G3(I-V1I)

The components of the metric tensor and structural constants C;, were found by
Petrov (see [28]). The components of the vector I were found in our work [35]:

et = 510% exp(—ku®) + 62 (o5 eu> exp(—ku?) + 65 exp(—nu?)) + 6552, (17)

e? = 0451 exp(ku?) 4 62 (6%eu’ exp nu® + 65 exp nu’)) + 5362,
o = kofeg, + (e0f + nds)en. (18)

Let us consider Maxwell Equations (14)—(16).
I. For the groups G(I-VI), the equations can be presented in the form:
(1) For the group Gi(I)(k=n=¢=0):

. 1
B*=0,a, = *Uabﬁb =
U
Solution of the Maxwell Equations (14)—(16) has the form:
a p 1 0
B =const, a; =P / ﬁ’?ahd” ; (19)
(2) For the group G1(II) (k=n=0, e=1):
0 a ; 1 b
B* = —djann, & = ﬁnahﬁ ; (20)
(3) For the group Gy (III) (k=1, n=e=0):
. 1
B = —dfainn, B =04 = ﬁabﬁb; (21)
(4) For the group G1(IV) (k=n=¢e=1):

B = =67 ((a1 + a2) 11 + anetary — aqnpm) + 65((aq + a2) 111 — an12); (22)

. 1
B =0k = muif
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(5) For the group G1(V) (k=n=1, e=0)
Bt = 0f(—aomia + ainn) + 03 (apa — o), B =0, o= ;Wubﬁb; (23)
(6) For the group G1(VI) (k=1, n=2, e=0):
B" = =61 (2mom12 — a17722) + 63 (20011 — aymr2), PP =0, &= ;’hbﬁb- (24)

Equations (20) and (24) were integrated into our work [35]. In the present paper,
the solutions for the group G(VII) were found.

IL. Group G(VII).

When obtaining the Maxwell equations for the groups G3(I-VI), the components of
vector fields Ijj could be constructed directly from the components of the metric tensor
(see [35]). For the group G(VII), this cannot be performed. Therefore, the vectors /5 must
be found directly from the conditions (2). Consider these conditions for the structural
constants of the group G3(VII):

C33 = —01 + 205 cosa, C%3 =1, a = const.

By coordinate transformation of the form #* = #*(uf) the vector field I5 can be
diagonalized:
15 = 55.

From the commutation relations, it follows that:
Xi3=—Xp; Xo3=X;—2Xpcosa =15 =—I{3, Ilys3+2lf3cosa+If =0 (25
Solution of the Equation (25) has the form:
1 = exp (—g3)(a1 (u”) sin p3 + bf (u”) cos p3),

18 = — exp (—43) (a5 (u?) sin (p3 — o) + B (u”) cos (p3 — a)),

where p,g = 1,2,93 = u cosa, p3 = u3sina. Since the operators X, commute, the vec-
tors ag , ag can be simultaneously diagonalized by coordinate transformations of the form
b =P (uf):

P__ P P _ P
ag =0y, by =0y,

From the commutation relations it follows that: ag =0, bg =0.
Thus, the vectors of the frame of the homogeneous space of type VII according to
Bianchi can be represented in the form:

1 = exp (—q3)(Y sin p3 + & cos p3), (26)

1§ = exp (—q3) (8% sin (ps — ) + 5 cos (p — ), 1% = 5.
The Maxwell Equations will take the form:

1B = 61(n —2m2c084)) +8372, = 72 =1fa, 11 = n(p1+2hzc0sa).  (27)
The system of Maxwell’s equations can be represented in the form:
on — a2f12 = Y1, 0712 — dolf2 = 12(0 = 2ap cosa — ay); (28)

Bini1 + Bariz = niy,  Binia + Batiz = nén, Bz = 0; (29)
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~ +
nis = Pimz +Pois = a3 = /ﬁmmﬂﬁz;mduo. (30)
From Equations (28) and (29), it follows that:

11 (@i — oiey) (a1 + 0P2) = y1Ba(aais — oity) — aoda (B171 + B272)- (1)

adp (17 (aady — oiy) + B171 + Pay2) = 0. (32)
When solving the system of Equations (31) and (32), the variants that need to be considered
are:
A. ap # 0. From the system of Equation (29), it follows:
. . 1 . 1, 3 .
mi(azf1 +0pB2) = n(diaz + p1B2), 12 = 072(01’711 VP p((fl m1 —17(e1p1 + a2p2))- (33)
2

When solving the set of Equations (31) and (33), the following variants must be
consider:

L (apiy —od1) #0 = 511 = n% We consider Equation (32):

We will use the following notations:

ap = \/psin(w/2), ay=/pcos(w/2), Q= (2faf1cosa+ B1f1+Pfah2), w=w(u’),
(1) Let a3 # 0. Then the Equation (34) can be reduced to the form:

20y cosa — a1y — oy = 2B B1 cosa + B1B1 + Baf2- (34)

(a) w # 0. In this case, we take the function w as a new time variable and denote
by the point the derivative on this variable. The functions f,, 0 depend on w. Then the
Equation (34) can be reduced to the form:

p(cosasinw — 1)+ cosa(1l+ cosw)p = 2Q). (35)

The function p can be represented in the form: p = R(w)t(w), where

dw,

/coszx (14 cosw)
R =
1 —cosasinw

The function 7 has the form:

Q
= d
’ (C+2/9‘i(1—coszxsinw) w),

(b)w:a:constép:(c—Zf#duo),

s o sinw)

2.00=0, qy =nEL, iy = —ﬂ’ifr = P2 g — i (B! 4 2.cos ap?)

The final solutions are represented in Solutions.

3. apB1 + 0By = 0,711 is an arbitrary function of u. In this case, there are two
variants to consider:

(a) a1 = 0 = function 77,4 can be found from (33).

(b) a1 # 0 = dqap + ,Bﬁz = &y + ,82,32 =0= arir + ﬁzﬁz = O(,B = 2By cosa + ,31)

From the last equation it follows that:

ay = csinwpPy = ccosw.

B. ay = 0. In this case, from the set of Equations (28) and (29), it follows that:

w10y + B1f1 +2cosaPfifr =0, ay = /c— (B!)?2 —4coszx/ﬁ1[%2du0.
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The functions #,;, are determined from Equations (28) and (29). The results are given in the
Solutions.

4. Solutions

In this section, all solutions of Maxwell’s vacuum equations for homogeneous Bianchi
type VII spaces and electromagnetic fields invariant with respect to the groups of motions
G3(VII) are given. For all solutions, the functions a3 and #33 have the form:

n? — 2112113123 + 7711’723 + 77227713
M2 — ’713

a3 = / (3B +n3p?)du’, 133 =

Other functions that specify solutions are shown below.

4.1. ay 75 0
The functions 71, 1722 have the form:

1 . 1 : .
Mz = (e = np), 1= ;(012'711 —n(ip! +wp)), o1 =2acosu—ay, p=2p"cosa+p.

2
(1) Bz + Pacy # 0,1 = a2l e, 0 = (BB + B242) + 264 cosan
(@)a; = /psinc a; = /pcosc, p=[ Cosng‘fl’fc I .
(b)a; = /psing, ar=,/pcosy, w= wu®), BF=pP(w), BP=0B"/0w,

B R (C_Z/Q(l—cosasinw)  ex / cos wdw
p_l—coszxsinw R p 1 — cosasinw

2 1z
@1 =0, g = y5E, 2= —5E, = —yP2esaip HCMﬁ BB = (In( +2cosap?)) .
(2) 711 is an arbitrary function of u°.
2;Scosuc+,5

(@) ay =0, 1112 = 21 cosa — 17,1722 = 411 cos” & — 1 =—1
(b) a1y = acsinw, ap = csinw, B = ccosw, B1 = c(a —2cosa) cosw. ¢,a = const

2

M2 = (2cosw — a)yu +ay, 1 = (2cosa — a)’yu +y(a(2cosw —a) +1).

42. 04y =0
1. ay = \/cf (B1)2 —4cosa [ B1A2du0. 11 = —ni(zcosﬁﬁﬁl), M2 = *77%, 2 =
Bap
" Byar

2. B2 =0,a1 = csinw, B1 = ccosw.yy,w are arbitrary functions of u°.

. &
2 =0, 71 =-Nw, n3z= 77*3-
B1

All functions included in these expressions that are not additionally described (for
example, 77,73, and so on) are arbitrary functions of ul,

5. Conclusions

In the paper, the classification of solutions of vacuum Maxwell equations for the case
where the electromagnetic fields and the metrics of homogeneous spaces are invariant
with respect to solvable groups of motions was completed (for the groups G3(I-V1I),
classification was carried out in the paper [35]). Since this classification was carried out in
the canonical frame (2), it allows one to proceed with the classification of exact solutions of
the vacuum Einstein-Maxwell equations for the found fields. This will be of interest for the
study of the early stages of the evolution of the Universe.

Funding: The work is supported by Russian Science Foundation, project number N 23-21-00275.
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