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Abstract: The classification of exact solutions of Maxwell vacuum equations for the case where

the electromagnetic fields and metrics of homogeneous spaces are invariant with respect to the

motion group G3(VII) was completed. All non-equivalent exact solutions of Maxwell vacuum

equations for electromagnetic fields and spaces with such symmetry were obtained. The vectors of

the canonical frame of a homogeneous space of type VII according to the Bianchi classification and

the electromagnetic field potentials were found.
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1. Introduction

A special place in mathematical physics is occupied by the problem of the exact
integration of the field equations for electromagnetic and gravitational fields. The problem
can be successful solved if the space and the electromagnetic fields possess some symmetry.
Homogeneous spaces are one of the important examples of the space manifolds with
symmetry. Stackel spaces are another example of such spaces. Both of these sets of spaces
are applied in the theory of electromagnetism and gravitation due to the fact that, in these
spaces, methods of commutative and noncommutative integration of equations of motion
of single test particles can be applied.

The methods of commutative integration is based on the use of a commutative algebra
of symmetry operators (integrals of motion) that form a complete set. The complete set
includes first- and second-degree linear operators in momentum formed from complete
sets of geometric objects consisting of vector and tensor Killing fields. The method is
known as the method of the complete separation of variables. The theory of the complete
separation of variables was mainly constructed in the works [1–7]. A description of the
theory and detailed bibliography can be found in [8–10] Examples of applications of the
theory of complete separation of variables in the theory of gravitation can be found in
the works [11–16]. The methods of non-commutative integration is based on the use
of the algebra of symmetry operators, which are linear in momenta and constructed
using noncommutative Killing vector fields forming noncommutative groups of motion
of spacetime G3. Among these spacetime manifolds, the homogeneous spaces are of
greatest interest for the theory of gravity (see, for example, [17–27]). The theory of the
noncommutative integration method and development of the theory can be found in the
works [28–33].

Thus, these two methods are essentially complementary and have similar classification
problems (by solving a classification problem, we mean enumerating all metrics of the
corresponding spaces that are not equivalent in terms of admissible transformations of
privileged coordinate systems; likewise, all electromagnetic potentials of admissible elec-
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tromagnetic fields that are not equivalent in terms of admissible gradient transformations).
Among these classification problems, the most important are the following.

The classification of all metrics of the Stackel and homogeneous spaces in privileged
coordinate systems. For Stackel spaces, this problem was solved in the papers cited above.
For homogeneous spaces, this problem was solved in the work of Petrov (see [34]).

The classification of all (admissible) electromagnetic fields to which these methods can
be applied. For the Hamilton–Jacobi and Klein–Gordon–Fock equations, this problem is
completely solved in homogeneous spaces (see [30–32]). In Stackel spaces, it is completely
solved for the Hamilton–Jacobi equation (see [8–10]) and partially solved for the Klein–
Gordon–Fock equation.

The classification of all vacuum and electrovacuum solutions of the Einstein equations
with metrics of Stackel and homogeneous spaces in admissible electromagnetic fields.
This problem is completely solved for the Stackel metric (see, for example, [5,12,13] and
bibliography in [8–10]). For homogeneous spaces, this classification problem has not yet
been studied.

Thus, for the complete solution of the problem of uniform classification, it remains to
integrate the Einstein–Maxwell vacuum equations using the previously found potentials
of admissible electromagnetic fields and the known metrics of homogeneous spaces in
privileged (canonical) coordinate systems. This problem can also be divided into two stages.
In the first stage, all solutions of Maxwell vacuum equations for the potentials of admissible
electromagnetic fields should be found.

In the paper [33], the first problem was decided for the case where there exist groups
G3(I I–VI) in the homogeneous spaces. The present work is devoted to the homogeneous
spaces with groups of motion G3(VII). Thus, the classification problem for solvable groups
of motions will be solved.

2. Maxwell Equations in the Homogeneous Spaces

Homogeneous Spaces

By definition, a space–time manifold V4 is a homogeneous space if a three-parameter
group of motions acts on it whose transitivity hypersurface V3 is endowed with the Eu-
clidean space signature. A semi-geodesic coordinate system [ui] is used. The metric V4 has
the form:

ds2 = gijduiduj = −du02
+ gαβduαduβ, det|gαβ| > 0. (1)

Coordinate indices of the variables of the semi-geodesic coordinate system are denoted
by lower-case Latin letters: i, j, . . . = 0, 1 . . . 3. The coordinate indices of the variables of the
local coordinate system on the hypersurface V3 are denoted by lower-case Greek letters:
α, β, γ, . . . = 1, . . . 3. The temporal variable is indexed by 0. Group indices and indices of a
non-holonomic frame are denoted by a, d, c . . . = 1, . . . 3. The letters p, q denote the indices
varying from 2 to 3. Summation is performed over repeated upper and lower indices within
the index range.

Another definition of a homogeneous space exists, according to which, the spacetime
V4 is homogeneous if its subspace V3, endowed with the Euclidean space signature, admits
a set of coordinate transformations (the group G3 of motions spaces V4) that allow us to
connect any two points in V3 (see, e.g., [35]). This definition directly implies that the metric
tensor of the V3 space can be represented as follows:

gαβ = ea
αeb

βηab(u
0), ea

α,0 = 0, ηab = ηab(u
0). (2)

while the form
ωa = ea

αduα
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is invariant with respect to transformations of the group G3. The vectors of the frame ea
α

define a non-holonomic coordinate system in V3. The dual triplet of vectors eα
a (eα

a eb
α =

δb
a , eα

a ea
β = δα

β) constructs the operators of the G3 algebra group:

Ŷa = eα
a ∂a, [Ŷa, Ŷb] = Cc

abŶc. (3)

In the following, this definition of homogeneous spaces is used. The electromagnetic
field is invariant with respect to transformations of the group acting in the space. It has the
form:

Ai = la
i αa αa,= αa(u

0). (4)

3. Maxwell Equations

We consider the Maxwell equations with zero sources for electromagnetic potential (4):

1√−g
(
√

−gFij),j = 0. (5)

In the case where i = 0, from the system (5), it follows that: Answer: “Approved”.

1√−g
(
√

−ggαβF0β),α =
1

l
(llα

a ηabα̇b),α = (lα
a,α +

l|a
l
)

βa

η
(βa = ηabηα̇b). (6)

Notation used:

f|a = lα
a f,α, g = −det |gαβ| = −(ηl)2, (η2 = det |ηαβ|, l = det |la

α|).

The dots denote the time derivatives. Then, we have the first equation in the form:

(lα
a,α + l|a)βa = 0. (7)

If i = α, from Equation (5), it follows that:

1

η
(ηgαβF0β),0 =

1

l
(lgνβgαγFβγ),ν ⇒ 1

η
(ηηablα

a α̇b),0 =
1

l
(llν

a l
β
b ηablα

ã l
γ

b̃
η ãb̃Fβγ),ν ⇒ (8)

lα
a

η
β̇a =

1

l
(ll

β
b lα

ã l
γ

b̃
Fβγ)|aηabη ãb̃. (9)

Fαβ can be found using the relations (2)–(4):

Fαβ = (la
β,α − la

β,α)αa = lc
βl

γ
c ld

α lν
d(l

a
γ,ν − la

ν,γ)αa = lb
βla

αlc
γ(l

γ
a|b − l

γ
b|a)αc = lb

βla
αCc

baαc ⇒ (10)

(lFαβ),β = ηabη ãb̃Cd
b̃b

αd((ll
α
a )|ã + llα

a l
γ
ã,γ). (11)

Structural constants of a group G3 can be represent in the form:

Cc
ab = Cc

12ε12
ãb̃
+ Cc

p3ε
p3

ãb̃
, (12)

where
εAB

ab = δA
a δB

b − δA
b δB

a .

From the relations:

(εAB
ãb̃

ηaãηbb̃) = (ηaAηbB − ηaBηbA), (13)

it follows that
η2ε12

cdηacηbd = (η33εab
12 + η23εab

31 + η13εab
23),
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η2ε31
cdηacηbd = (η22εab

31 + η23εab
12 + η12εab

23),

η2ε23
cdηacηbd = (η13εab

12 + η12εab
31 + η11εab

23).

Equations (5) take the form:

ηβ̇a = δa
1(γ1C1

32 − γ2(C
1
31 + ω3) + γ3(C

1
21 + ω2)) + δa

2(γ1(C
2
32 + ω3)+ (14)

γ2C2
13 − γ3(C

2
12 + ω1)) + δa

3(−γ1(C
3
23 + ω2) + γ2(C

3
13 + ω1) + γ3C3

21),

ηabβb = ηα̇a, (15)

ωaβa = 0, ωa = lα
a,α + l|a/l, (16)

where
γ1 = σ1η11 + σ2η12 + σ3η13, γ2 = σ1η12 + σ2η22 + σ3η23,

γ1 = σ1η13 + σ2η23 + σ3η33, σ1 = Ca
23αa, σ2 = Ca

31αa, σ3 = Ca
12αa.

Let us find sets of the Maxwell Equations (14)–(16) for all solvable groups.

Groups G3(I–VII)

The components of the metric tensor and structural constants Cc
ab were found by

Petrov (see [28]). The components of the vector lα
a were found in our work [35]:

eα
a = δ1

a δα
1 exp(−ku3) + δ2

a(−δα
1 εu3 exp(−ku3) + δα

2 exp(−nu3)) + δα
3 δ3

a , (17)

ea
α = δa

1δ1
α exp(ku3) + δ2

a(δ
α
1 εu3 exp nu3 + δα

2 exp nu3)) + δ3
αδ3

a ,

Cc
ab = kδc

1ε13
ab + (εδc

1 + nδc
2)ε

23
ab. (18)

Let us consider Maxwell Equations (14)–(16).
I. For the groups G(I-VI), the equations can be presented in the form:
(1) For the group G1(I)(k = n = ε = 0) :

β̇a = 0, α̇a =
1

η
ηabβb ⇒

Solution of the Maxwell Equations (14)–(16) has the form:

βa = const, αa = βb
∫

1

η
ηabdu0; (19)

(2) For the group G1(I I) (k = n = 0, ε = 1):

β̇a = −δa
1α1η11, α̇a =

1

η
ηabβb; (20)

(3) For the group G1(I I I) (k = 1, n = ε = 0):

β̇a = −δa
1α1η22, β3 = 0, α̇a =

1

η
ηabβb; (21)

(4) For the group G1(IV) (k = n = ε = 1):

β̇a = −δa
1((α1 + α2)η11 + α2eta12 − α1η22) + δa

2((α1 + α2)η11 − α1η12); (22)

β3 = 0, α̇a =
1

η
ηabβb;
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(5) For the group G1(V) (k = n = 1, ε = 0):

β̇a = δa
1(−α2η12 + α1η22) + δa

2(α1η12 − α2η11), β3 = 0, α̇a =
1

η
ηabβb; (23)

(6) For the group G1(VI) (k = 1, n = 2, ε = 0):

β̇a = −δa
1(2α2η12 − α1η22) + δa

2(2α2η11 − α1η12), β3 = 0, α̇a =
1

η
ηabβb. (24)

Equations (20) and (24) were integrated into our work [35]. In the present paper,
the solutions for the group G(VII) were found.

II. Group G(VII).
When obtaining the Maxwell equations for the groups G3(I–VI), the components of

vector fields lα
a could be constructed directly from the components of the metric tensor

(see [35]). For the group G(VII), this cannot be performed. Therefore, the vectors lα
a must

be found directly from the conditions (2). Consider these conditions for the structural
constants of the group G3(VII):

Ca
23 = −δa

1 + 2δa
2 cos α, C2

13 = 1, α = const.

By coordinate transformation of the form ũα = ũα(uβ) the vector field lα
3 can be

diagonalized:
lα
3 = δα

3 .

From the commutation relations, it follows that:

X1,3 = −X2; X2,3 = X1 − 2X2 cos α ⇒ lα
2 = −lα

1,3, lα
2,33 + 2lα

1,3 cos α + lα
1 = 0. (25)

Solution of the Equation (25) has the form:

lα
1 = exp (−q3)(aα

1(u
p) sin p3 + bα

1(u
p) cos p3),

lα
2 = − exp (−q3)(aα

2(u
p) sin (p3 − α) + bα

2(u
p) cos (p3 − α)),

where p, q = 1, 2, q3 = u3 cos α, p3 = u3 sin α. Since the operators Xp commute, the vec-

tors a
p
q , a

p
q can be simultaneously diagonalized by coordinate transformations of the form

ũp = ũp(uq):
a

p
q = δ

p
q , b

p
q = δ

p
q ,

From the commutation relations it follows that: a
p
3 = 0, b

p
3 = 0.

Thus, the vectors of the frame of the homogeneous space of type VII according to
Bianchi can be represented in the form:

lα
1 = exp (−q3)(δ

α
1 sin p3 + δα

2 cos p3), (26)

lα
2 = exp (−q3)(δ

α
1 sin (p3 − α) + δα

2 cos (p3 − α)), lα
3 = δα

3 .

The Maxwell Equations will take the form:

ηβ̇a = δa
1(γ1 − 2γ2 cos α)) + δa

2γ2, ⇒ γ2 = ηβ̇2, γ1 = η(β̇1 + 2β̇2 cos α). (27)

The system of Maxwell’s equations can be represented in the form:

ση11 − α2η12 = γ1, ση12 − α2η22 = γ2(σ = 2α2 cos α − α1); (28)

β1η11 + β2η12 = ηα̇1, β1η12 + β2η22 = ηα̇2, β3 = 0; (29)
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ηα̇3 = β1η13 + β2η23 ⇒ α3 =
∫

β1η13 + β2η23

η
du0. (30)

From Equations (28) and (29), it follows that:

η11(α2α̇2 − σα̇1)(α2β1 + σβ2) = γ1β2(α2α̇2 − σα̇1)− α2α̇2(β1γ1 + β2γ2). (31)

α1α̇2(η(α2α̇2 − σα̇1) + β1γ1 + β2γ2) = 0. (32)

When solving the system of Equations (31) and (32), the variants that need to be considered
are:

A. α2 6= 0. From the system of Equation (29), it follows:

η11(α2β1 + σβ2) = η(α̇1α2 + β̇1β2), η12 =
1

α2
(σ1η11 − ηβ̃1), η22 =

1

α2
2

(σ2
1 η11 − η(σ1 β̃1 + α2 β̇2)). (33)

When solving the set of Equations (31) and (33), the following variants must be
consider:

1. (α2α̇2 − σα̇1) 6= 0 ⇒ η11 = η
α̇1α2+β̇1β2
α2β1+σβ2

. We consider Equation (32):

We will use the following notations:

α1 =
√

ρ sin (ω/2), α2 =
√

ρ cos (ω/2), Ω = (2β2 β̇1 cos α + β1 β̇1 + β2 β̇2), ω = ω(u0),

(1) Let α1 6= 0. Then the Equation (34) can be reduced to the form:

2α2α̇1 cos α − α1α̇1 − α2α̇2 = 2β2 β̇1 cos α + β1 β̇1 + β2 β̇2. (34)

(a) ω̇ 6= 0. In this case, we take the function ω as a new time variable and denote
by the point the derivative on this variable. The functions βp, ρ depend on ω. Then the
Equation (34) can be reduced to the form:

ρ̇(cos α sin ω − 1) + cos α(1 + cos ω)ρ = 2Ω. (35)

The function ρ can be represented in the form: ρ = R(ω)τ(ω), where

R =
∫

cos α(1 + cos ω)

1 − cos α sin ω
dω,

The function τ has the form:

τ = (c + 2
∫

Ω

R(1 − cos α sin ω)
dω),

(b) ω = a = const ⇒ ρ = (c − 2
∫

Ω

(1−cos α sin ω)
du0),

2. α1 = 0, η11 = η
β2 β̇
α2

, η12 = −η
β1 β̇
α2

, η22 = −η
β̇2+2 cos αβ1 β̇

α2
, β = ln (β1 + 2 cos αβ2)

The final solutions are represented in Solutions.
3. α2β1 + σβ2 = 0, η11 is an arbitrary function of u0. In this case, there are two

variants to consider:
(a) α1 = 0 ⇒ function ηpq can be found from (33).
(b) α1 6= 0 ⇒ α̇1α2 + β̇β2 = α̇2α2 + β̇2β2 = 0 ⇒ α2α̇2 + β2 β̇2 = 0(β = 2β2 cos α + β1).
From the last equation it follows that:

α2 = c sin ωβ2 = c cos ω.

B. α2 = 0. In this case, from the set of Equations (28) and (29), it follows that:

α1α̇1 + β1 β̇1 + 2 cos αβ1 β̇2 = 0, α1 =
√

c − (β1)2 − 4 cos α
∫

β1 β̇2du0.
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The functions ηab are determined from Equations (28) and (29). The results are given in the
Solutions.

4. Solutions

In this section, all solutions of Maxwell’s vacuum equations for homogeneous Bianchi
type VII spaces and electromagnetic fields invariant with respect to the groups of motions
G3(VII) are given. For all solutions, the functions α3 and η33 have the form:

α3 =
∫

(η13β1 + η23β2)du0, η33 =
η2 − 2η12η13η23 + η11η2

23 + η22η2
13

η11η22 − η2
13

.

Other functions that specify solutions are shown below.

4.1. α2 6= 0

The functions η12, η22 have the form:

η12 =
1

α2
(σ1η11 − ηβ̇), η22 =

1

α2
2

(σ2
1 η11 − η(σ1 β̇1 + α2 β̇)), σ1 = 2α2 cos α − α1, β = 2β2 cos α + β1.

(1) β1α2 + β2σ1 6= 0, η11 = η
α̇1α2+β̇2 β̇

β1α2+β2σ1
, Ω = (β1 β̇1 + β2 β̇2) + 2β2 β̇1 cos α.

(a) α1 =
√

ρ sin c α1 =
√

ρ cos c, ρ =
∫

2Ωdu0

cos α sin c−1 .

(b) α1 =
√

ρ sin ω
2 , α2 =

√
ρ cos ω

2 , ω = ω(u0), βp = βp(ω), β̇p = ∂βp/∂ω,

ρ =
R

1 − cos α sin ω
(c − 2

∫

Ω(1 − cos α sin ω)dω

R
),R = exp

∫

cos αdω

1 − cos α sin ω

(c) α1 = 0, η11 = η
β2 β̃
α2

, η12 = −η
β1 β̃
α2

, η22 = −η
β̇2+2 cos αβ1 β̃

α2
β̃ = (ln(β1 + 2 cos αβ2)),0.

(2) η11 is an arbitrary function of u0.

(a) α1 = 0, η12 = 2η11 cos α − η, η22 = 4η11 cos2 α − η
2β̇ cos α+β̇

α2
.

(b) α1 = ac sin ω, α2 = c sin ω, β2 = c cos ω, β1 = c(a − 2 cos α) cos ω. c, a = const

η12 = (2 cos α − a)η11 + aη, η22 = (2 cos α − a)2η11 + η(a(2 cos α − a) + 1).

4.2. α2 = 0

1. α1 =
√

c − (β1)2 − 4 cos α
∫

β1 β̇2du0. η11 = −η
(2 cos αβ̇2+β̇1)

α1
, η12 = −η

β̇2
α1

, η22 =

η
β̇2β1
β2α1

.

2. β2 = 0, α1 = c sin ω, β1 = c cos ω.η22, ω are arbitrary functions of u0.

η12 = 0, η11 = −ηω̇, η13 = η
α̇3

β1
.

All functions included in these expressions that are not additionally described (for
example, η, ηp3, and so on) are arbitrary functions of u0.

5. Conclusions

In the paper, the classification of solutions of vacuum Maxwell equations for the case
where the electromagnetic fields and the metrics of homogeneous spaces are invariant
with respect to solvable groups of motions was completed (for the groups G3(I–VI),
classification was carried out in the paper [35]). Since this classification was carried out in
the canonical frame (2), it allows one to proceed with the classification of exact solutions of
the vacuum Einstein–Maxwell equations for the found fields. This will be of interest for the
study of the early stages of the evolution of the Universe.
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