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Abstract

Efforts are being made to develop quantum processors beyond planar connectivity
and quantum error correction codes suitable for 3-dimensional structures. In this
study, we propose 3-dimensional architectures of logical data qubits and logical ancilla
qubits based on surface codes using lattice surgery in situations where 3-dimensional
nearest-neighbor connectivity between physical qubits is guaranteed. We also propose
amethod for performing CNOT operations on the proposed architecture. We present a
physical qubit structure that stacks 2-dimensional physical qubit layers and adds sev-
eral additional physical qubits for lattice surgery between adjacent layers. Our design
permits the fast transversal application of CNOT operations between logical qubits in
a nearest-neighbor relationship on adjacent layers, which is three times faster than the
speed of standard lattice surgery CNOTSs. Our design also permits the performance of
CNOT operations between logical qubits that are far from each other using fast SWAP
operations with transversal CNOT and lattice surgery. To demonstrate the advantages
of our architecture, we present the required number of qubits and time for benchmark
circuits on the proposed architecture and compare the required qubits and time on
the checkerboard architecture and row-type architecture which are a 2-dimensional
architectures to show the advantages of our architecture.
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1 Introduction

A variety of quantum computing techniques, ranging from algorithms to physical
devices, have been actively investigated since Shor [1] proposed a polynomial-time
quantum algorithm to find discrete logarithms and factor integers. There has been a
significant improvement in quantum devices in the last few years, both in terms of
physical error rates and number of qubits. IBM, for instance, has made several devices
with 5-433 qubits with moderate error rates accessible via the cloud [2]. Google
demonstrated that it can lower the error rate of calculations by making their quantum
code bigger [3].

However, current quantum computers have clear limitations, such as high gate
error rates and a limited number of physical qubits. For this reason, research on noisy
intermediate-scale quantum operations is being actively conducted [4], and research
on performing basic quantum error-correcting (QEC) code in quantum processors
is also being conducted [5]. Studies have also been conducted to present quantum
architectures and demonstrate efficiency by comparing the required resources, such
as physical qubits, execution time, and quantum volume [6—10], as well as quantum
computing software research for efficient quantum computer operation [11-19].

Research on quantum processors beyond planar connectivity to obtain 3-
dimensional connectivity is also being conducted on various qubit platforms [20-24].
In [20, 21], the authors went beyond planar connectivity using through-silicon vias
(TSVs) on superconductors. In [22], the connectivity was achieved between differ-
ent microchip modules in trapped ion. In [23], the connectivity between different
zones in the atom array was secured. Three-dimensional quantum error correction
codes based on three-dimensional (3D) connectivity have also been studied [25, 26].
In [24], their system achieved high fidelities for two-qubit gates, 3D connectivity,
and fully programmable single-qubit rotations and mid-circuit readouts by employ-
ing logical-level control within a zoned architecture for reconfigurable neutral atom
arrays. Other studies [27] highlight the need for 3D placement of qubits for efficient
quantum computation.

In other studies, resonant cavities with transmon qubits arranged in a 2.5D archi-
tecture have been found to be efficient in implementing surface codes with significant
hardware savings and enhancements in performance/fidelity [28].

The contributions of this study are as follows. First, we propose a physical qubit
placement that can perform a transversal CNOT operation and lattice surgery of a
rotated surface code under 3D nearest connectivity conditions. Second, we propose two
ways to arrange logical data qubits and logical ancilla qubits in the proposed physical
qubit placement: Type 1 and Type 2 architectures. Third, we present a logical operation
method for each 3D architecture, and the advantages of 3D architecture are presented
by comparing the two-dimensional placement method checkerboard architecture and
row-type architecture in terms of the number of logical qubits, time required, and
space—time (the product of the number of logical qubits and time required).

The remainder of this paper is organized as follows. In Sect. 2, we briefly discuss
the rotated surface codes and lattice surgery technique used in this study. Thereafter,
we describe the previous logical qubit layout and briefly explain the circuit mapping
procedures. In Sect. 3, we propose a placement method for physical qubits and explain
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its advantages. We also propose various placement methods for logical qubits and a
logical operation method for placement. In Sect. 4, we compare the estimated resource
use of our 3D layouts with checkerboard architecture and row-type architecture when
performing several benchmark circuits. Section 5 provides the concluding statements.

2 Preliminary

Section 2.1 discusses the rotated surface codes and the lattice surgery technique used in
this study. Section 2.2 describes the previous logical qubit layout and briefly describes
circuit mapping procedures. Finally, in Sect.2.3, we explain how logical CNOT is
performed using transversal CNOT on the surface code.

2.1 Rotated surface code and lattice surgery

The rotated surface codes [29] are % rotated versions of planar surface codes. X and
Z stabilizers of rotated surface codes recognize Z and X defects, similar to planar
surface codes. Physical X or Z operations along the Z-boundary or X-boundary data
qubits define each logical X or Z operator, respectively. One bit of logical information
is encoded in the code distance d logical qubit, which is made up of d? data qubits
and d? — 1 stabilizer qubits. Compared to planar surface code, rotated surface code
uses only about half the qubits to achieve the same code distance. In addition, rotated
surface code uses only about 75% of the qubits compared to planar surface code to
achieve the same logical error rate [30]. Furthermore, rotated surface codes have the
advantage of requiring fewer additional qubits to perform lattice surgery compared
to planar surface codes. Consequently, our study is conducted under the assumption
that the rotated surface code is utilized, although our proposed method is applicable
to both rotated and planar surface code-based architecture.

The method for constructing a single logical qubit in three dimensions has also
been investigated [25]. Their structure enables the implementation of transversal CZ
gates and CCZ gates, thereby eliminating the need for magic state distillation. Despite
the advantages of the 3D surface code, it requires O (d>) physical qubits to construct a
logical qubit with distance d. This significantly increases the number of physical qubits
required compared to the 2D surface code, which requires O (d?) physical qubits to
create a single logical qubit of distance d. Therefore, our study focuses on the rotated
surface code, a type of 2D surface code.

Lattice surgery is an effective technique utilized in the implementation of surface
codes for quantum error correction. This method facilitates the manipulation and inter-
action of logical qubits that are encoded within a two-dimensional lattice of physical
qubits, all while minimizing the need for significant overhead or disruption to the
encoded information. The advantages of lattice surgery can be summarized as fol-
lows. First, by harnessing the topological properties of surface codes, lattice surgery
ensures the fault tolerance of logical qubits throughout operations. Second, it enables
the execution of complex quantum operations without requiring a substantial number
of additional qubits, thus optimizing resource efficiency. Finally, lattice surgery offers
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a flexible approach for the creation, merging, and splitting of logical qubits, which is
essential for the scalability of quantum computing architectures.

The two primary methods of lattice surgery are merging and splitting [29]. In planar
and rotated surface codes, these methods provide a logical universal quantum compu-
tation (UQC) set with only the nearest-neighbor CNOT operation. A UQC set refers
to a collection of quantum gates that, when combined appropriately, are capable of
approximating any unitary operation on a quantum system. By activating the stabiliz-
ers between two logical qubits, the merging process unifies two logical bits of data.
Z(X) boundary-merging results from the transformation of two weight stabilizers at
Z(X) boundaries into four weight stabilizers and the activation of X (Z) stabilizers;
the multiplication of the enabled stabilizer measurement outcomes is equal to mea-
suring logical XX (ZZ) for the associated logical qubits. The logical information in the
merged qubit is comparable to that in the XOR operation on a Z(X) basis following
the Z(X) boundary-merging process. In contrast, splitting disables the stabilizer in
one logical qubit, resulting in the generation of two logical qubits. Disabling the X (Z)
stabilizers causes Z(X) boundary splitting, which is similar to merging.

Figure 1 shows the process of logical CNOT using lattice surgery. The processes
of merging and splitting each require d cycles; consequently, the overall time needed
amounts to 3d cycles. Note that the target qubit, intermediate qubit, and control qubit
form a right angle. Due to this configuration, the checkerboard architecture is an
appropriate structure for executing CNOT operations based on lattice surgery.

2.2 Logical qubit layout

A virtual layer called a qubit architecture is responsible for configuring logical qubits
and effectively managing time and space resources. The placement of qubits sup-
porting lattice surgical techniques in tile-based architecture (t-arch) and checkerboard
architecture (c-arch) was discussed in [7]. As shown in Fig. 1, the execution of a lattice
surgery-based CNOT gate requires that the control and target qubits must be positioned
within patches that create a 90-degree elbow shape. In the c-arch, neighboring data
patches are consistently arranged in such 90-degree configurations, facilitating the
direct implementation of a lattice surgery-based CNOT gate between them. In our
study, we focus on the c-arch among c-arch and t-arch because it uses fewer logical
ancilla qubits, resulting in better qubit efficiency. The CNOT and SWAP qubit opera-
tions can be carried out between logical qubits that are close to each other. The ratio
of logical data qubits to all logical qubits, which serves as a measure of the qubit
efficiency of the c-arch, is 1/2, while the efficiency of the t-arch is 1/4.

A study on row-type architecture (r-arch), which arranges logical data qubits and
logical ancilla qubits in a row, has also been published [10]. As shown in Fig. 2, logical
data qubits are placed in any of the blue patches in the r-arch, while logical ancilla
qubits are found in the red patches. The qubit efficiency of the r-arch is also 1/2. The
r-arch has the advantage of requiring fewer logical SWAP operations because CNOT
operations are possible even between logical data qubits that are far apart from each
other.
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Fig.1 Process of performing logical CNOT using lattice surgery. The circle represent data qubits, and black
(gray) faces represent X (Z) stabilizers. The X (Z) boundary refers to a boundary where the X (Z) stabilizer
exists. a Initial placement of control, target, and intermediate qubits. Intermediate qubit must be prepared
in |0)7, state. b Z boundary Merging between target qubit and intermediate qubit. ¢ Splitting target qubit.
d X boundary Merging between control qubit and intermediate qubit. e Trimming. ¢, d Can be performed
simultaneously

2.3 Transversal logical CNOT gates

In quantum computing, a transversal operation is a quantum gate or operation applied
to multiple qubits that preserves the integrity of quantum error-correcting codes, espe-
cially within the framework of fault-tolerant quantum computation [31]. Transversal
operations are designed to ensure that errors affecting one qubit do not propagate
across the entire system, thus maintaining the integrity of the quantum information. In
the case of Calderbank—Shor—Steane (CSS) code, logical CNOT can be made transver-
sally. Because the surface code is a kind of CSS code, logical CNOT in surface code
can also be made transversally. Although theoretically possible, owing to difficulties in
actual placement of transversal CNOT, methods of performing CNOT through lattice
surgery, deformation, etc., have been studied [29, 32]. However, studies are underway
to achieve beyond planar connectivity [20-24], and transversal CNOT will also be
feasible because 3D placement is also possible if planar connectivity is exceeded. A
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Fig.2 Layouts of checkerboard architecture, tile-based architecture, and row-type architecture, which are
surface code-based 2D logical qubit placement methods. Checkerboard and row-type architectures are
mainly studied in this paper. In a, ¢, the blue and red patches represent the logical data qubit and the logical
ancilla qubit, respectively. a 8-logical data qubit checkerboard architecture layout. b 4-logical data qubit
tile-based architecture layout. In a cluster consisting of 4 logical qubits, data qubits are assigned to one
of the purple and blue patches, and ancilla qubits are assigned to the other colors. ¢ 8-logical data qubit
row-type architecture layout (Color figure online)

method for arranging a quantum process layer and quantum memory layer and per-
forming an operation using transversal CNOT between the surface code logical qubits
of the processor and memory layers has also been proposed [28].

3 Proposed qubit placements and their advantages

In this section, we propose the placement of physical and logical qubits under the con-
dition of 3D nearest-neighbor connectivity and explain the advantages of the scheme
and the operation method in that placement. Figure 3 shows the connectivity and place-
ment of physical qubits as assumed in this study. First, we propose a physical qubit
placement in which 2-dimensional (2D) qubit placements are stacked and interlayer
physical qubits are placed between the stacked layers to perform lattice surgery. We
show that transversal logical CNOT is possible between logical qubits in the same
position of different layers and that lattice surgery using interlayer physical qubits can
also be performed. Second, we propose two logical qubit placement methods based
on the proposed physical qubit placement and explain the advantages and operation
methods of each placements. We demonstrate that the Type 1 placement method has
the advantage of making good use of transversal operations and using fewer logical
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Fig.3 Connectivity between physical qubits assumed in this paper and physical qubit placements. The white
circle represents the upper-layer physical qubit, and the gray circle represents the lower-layer physical qubit.
For visibility, only a portion of the lower-layer qubits are displayed. The black dotted line indicates in-layer
connectivity, and the blue dotted line indicates connectivity between layers. The interlayer physical qubit is
positioned at the center of the red box and exhibits connectivity with the eight physical data qubits located
at the vertices of the box (Color figure online)

@ Interlayer qubit |

Layer 1 i I

(a) (b)

Fig. 4 Configuration of physical qubits proposed in this study. a 2D layers are stacked, and interlayer
physical qubits (red dots) are placed along the edges of logical qubits (black, gray, and light gray parallelo-
grams) between layers. b Top view of layer 1 and interlayer. To enable lattice surgery from all sides, red-dot
interlayer physical qubits surround the entire rim of the logical qubits. ¢ An enlarged view of the circle
in a. A dotted line connection between data qubits between layers means that connectivity exists between
the two data qubits. Logical CNOT can be performed through transversal CNOT using this connectivity
between layers. d Merge between logical qubits of different layers. The merge operation can be performed
by turning off the stabilizer on the edge of the surface to be merged and turning on the stabilizer using the
interlayer physical qubit (Color figure online)

ancilla qubits. In addition, we show that the Type 2 placement method can easily
perform multiple operations simultaneously using lattice surgery and logical ancilla
qubits, and the multi-target CNOT operation can also be easily performed.

3.1 Physical qubit placement and its advantages

We propose a 3D physical qubit placement method when the 3D nearest-neighbor
connectivity is satisfied. As shown in Fig. 4, the 2D layers of lattice placement are
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stacked in 3D, and the interlayer physical qubits represented by the red dot in figure 2
are placed to perform lattice surgery between different layers on the edge of the logical
qubit. As shown in Fig. 4b, when the distance of the surface code is d, d interlayer
physical qubits are required for each boundary; therefore, 4d interlayer physical qubits
are required for each logical qubit between the layers. Because the rotated surface code
with distance d is composed of 2d> — 1 physical qubits, the additional 4d required
for interlayer physical qubit placement can be ignored when d is sufficiently large.
Furthermore, when lattice surgery is not performed, interlayer physical qubits can
replace the qubits used for stabilizer measurements, as represented by the triangles in
Fig. 4. In Fig. 4d, when the qubit on which the lattice surgery is performed is unfolded,
it has the same shape as the qubit on which the lattice surgery is performed in a 2D
architecture. Therefore, through the interlayer physical qubits, lattice surgery on 3D
architecture can be handled in the same manner as in 2D architecture.

Through the placement shown in Fig. 4, a logical CNOT between logical qubits
with different layers but the same position can be performed as a transversal CNOT.
Therefore, the CNOT operation can be performed in d cycles, and the SWAP operation
can be performed in 3d cycles [28]. This can save both qubit and time resources
compared to CNOT using lattice surgery requiring 3d cycles and one additional logical
ancilla qubit and SWAP operation requiring 9d cycles and one additional logical ancilla
qubit.

When compared to the 3D-3D lattice surgery and 2D-3D lattice surgery discussed
in [25], the approach proposed in this paper is fundamentally a more general lattice
surgery method, namely 2D-2D lattice surgery. As such, it requires fewer qubits than
the 3D-3D lattice surgery, and unlike the 2D-3D lattice surgery, it allows for the
straightforward merging of X boundaries.

3.2 Logical qubit placements and operations: Type 1 architecture

As shown in Fig. 5, logical ancilla qubits are placed on the top layer and logical
data qubits are placed on the remaining layers. Logical ancilla qubits allow lattice
surgery to be performed between qubits in different positions (different x- and y-
coordinates). Because lattice surgery is not required between two different data qubit
layers, interlayer physical qubits are not required, and only interlayer physical qubits
must be placed between the data qubit and ancilla qubit layers. The operation between
logical data qubits of different layers at the same position can be performed using a
transverse CNOT when two qubits are adjacent. When two qubits are separated, the
positions of the qubits are moved adjacent through a transversal SWAP operation.
Subsequently, a logical CNOT operation can be performed using transverse CNOT.

If logical CNOT between qubits in different positions (different x- and y-
coordinates) is to be performed, lattice surgery using logical ancilla qubits is used.
The specific procedure for the CNOT between different positions is shown in Fig. 6.
To merge with the logical ancilla qubit, the logical data qubits for which the CNOT
operation is to be performed are placed directly below the ancilla qubit layer using
transversal SWAP. The CNOT operation is then performed via lattice surgery through
merging and splitting.
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Merge/split

!nsversa! CNOT/SWAP

Fig.5 Type 1 architecture and operation methods in that placement. a Red and blue boxes indicate logical
ancilla and logical data qubits. The operation between different positions uses transversal SWAP and lattice
surgery with a logical ancilla qubit. b Performing CNOT or SWAP in Type 1 architecture. The dark blue
box and orange box represent the control qubit and target qubit, respectively, of the CNOT operation to
be performed, and the logical data qubits not directly related to the CNOT operation are shown semi-
transparently. Transversal CNOT and SWAP operations are shown in brown boxes and merge and split
operations are shown in purple. To perform CNOT between two logical data qubits represented by dark
blue boxes, the logical data qubit is located directly below the ancilla qubit layer through transversal SWAP
operation, and the CNOT operation is then performed by lattice surgery using logical ancilla qubits (dark
red) (Color figure online)

Fig.6 Process of CNOT operation for the control (dark blue) and target (orange) logical qubits. a Logical
data qubits to be operated on are moved to the ancilla qubit layer and through the transversal SWAP
operation. b A merge is performed between the blue control qubit and the logical ancilla qubit of the upper
layer, and a merge is performed between the orange target qubit and the logical ancilla qubits. ¢ Split is
performed between the control qubit and the logical ancilla qubit. d Merge between the logical ancilla qubit
and the merged orange qubit. e Shrinking the merged orange qubits and re-initializing the logical ancilla
qubits. Steps ¢, d can be performed simultaneously (Color figure online)

When logical CNOT is performed in the above method, the feasibility of simulta-
neous multiple CNOT operations depends on the position of the qubits to perform the
CNOT operations. In CNOT using lattice surgery, paths are created by merging log-
ical ancilla qubits during the merging process. Therefore, when CNOTs using lattice
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Fig. 7 Structure of Type 2 architecture. It is composed of a logical ancilla qubit layer at the bottom and a
checkerboard architecture stacked on top of it. It has the advantage that CNOT operation between arbitrary
logical data qubits can be performed in 3d cycles using lattice surgery

surgeries are performed simultaneously if the paths overlap, they cannot be performed
simultaneously.

In the case of Type 1 architecture, more transversal SWAPs are required as more
layers are stacked, which leads to an extension of the operation execution time. There-
fore, we propose a Type 2 architecture, a 3D architecture suitable for algorithms that
use many qubits.

3.3 Logical qubit placements and operations: Type 2 architecture

The Type 2 architecture is composed by placing a logical ancilla qubit layer at the
bottom and stacking a checkerboard architecture on top of it. Because the Type 2
architecture performs operations mainly in lattice surgery, interlayer physical qubits
for lattice surgery must always exist between the ancilla qubit layers. In the Type 2
architecture, because a logical ancilla qubit exists next to an arbitrary logical data
qubit, connection through lattice surgery is always possible between two logical data
qubits. Therefore, even if the layer is large, a CNOT can be performed at an arbi-
trary position through lattice surgery; thus, an arbitrary CNOT can be performed in
3d cycles. In addition, because logical data qubits are surrounded by logical ancilla
qubits, the accessibility between the qubits is improved, thereby increasing the num-
ber of operations that can be performed simultaneously. Figure 8 shows the process
by which the two CNOTs are performed simultaneously. As shown in Fig. 8, the Type
2 architecture has the advantage of increasing the probability of performing multiple
CNOT operations simultaneously because it uses many logical ancilla qubits.
Another advantage of the Type 2 architecture is that it is easy to perform multi-target
CNOT operations. Herr et al. [33] showed that a multi-target CNOT operation can be
performed in 3d cycles regardless of the number of targets when the target logical data
qubits are lined up and logical ancilla qubits are lined up next to them. As shown in
Fig. 7, because the Type 2 architecture has logical data qubits arranged in the form of
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(b)

Fig. 8 The process of two CNOT operations in the Type 2 architecture. a Dark blue represents CNOT 1
and orange represents CNOT 2. b In both CNOT 1 and CNOT 2, the target qubit and the control qubit are
adjacent through merging with the logical ancilla qubit, therefore CNOT can be performed through lattice
surgery. Because these processes can proceed simultaneously, it can be confirmed that CNOT 1 and CNOT
2 can be performed simultaneously (Color figure online)

a column and logical ancilla qubits next to it, a multi-target CNOT operation targeting
several logical data qubits in one column can be performed in 3d cycles. The Type 2
architecture has the advantage that the computation time can be reduced compared to
the Type 1 architecture, although the number of logical ancilla qubits used increases,
so the total number of qubits used increases.

4 Results

For the Type 1 architecture (3D), Type 2 architecture (3D) and checkerboard-type
architecture (2D), row-type architecture (2D), the time expressed in the surface code
error syndrome measurement cycle, the number of logical qubits, and the space—
time of benchmark circuits are compared. Space-time is the product of time and the
number of logical qubits. We used [[7, 1, 3]] code execution circuit, [[15, 1, 3]] as
benchmark circuits. The initial placement of the circuit was arranged sequentially
without optimization. The scheduling of logical operations was performed manually
without optimization.

Figure 9 shows the [[7, 1, 3]] circuit, and the initial placement of each architecture
that performs the circuit. The result of the [[7, 1, 3]] circuit operation scheduling for
the Type 1 architecture is shown in Fig. 10. It shows that 34d error correction cycles
are required. Figure 11 shows the time and number of logical qubits used for each
architecture.

In Fig. 11, qubit is the number of logical qubits consumed by the algorithm, time is
the surface code error syndrome measurement cycle, and space—time is expressed as
the product of time and qubit. Overall, the Type 1 architecture requires fewer logical
ancilla qubits than the other architectures; therefore, the number of logical qubits used
is small. Despite the low number of logical qubits used, the times for Type 1 archi-
tecture are comparable to the r-arch and smaller than the c-arch for all benchmarks.
The reason why the Type 1 architecture takes a similar amount of time as the row-type
architecture is due to the process involved in the Type 1 architecture, specifically, the

@ Springer



164 Page 12 0f 16 J.Haetal.

@ |o—1Hl

® n—H

@ n S
® bh—P &
® H——1
QL) ay et

(@)

() (e)

Fig. 9 Initial placement of the [[7, 1, 3]] circuit and each architecture. The mark ‘X’ in ¢ indicates logical
qubits that are not used. a [[7, 1, 3]] circuit. Initial placement of b Type 1 architecture, ¢ Type 2 architecture,
d checkerboard architecture, and e row-type architecture

time it requires to elevate the logical data qubit from the lowest layer to the top using
a transversal SWAP operation. In contrast to the Type 1 architecture, the Type 2 archi-
tecture requires the least time while having the largest number of logical qubits for all
benchmark circuits. Therefore, the Type 1 architecture can be useful when qubits are a
critical resource, and the Type 2 architecture is advantageous when a small amount of
time is important. In the case of space—time, which can examine the overall required
resources, it can be confirmed that for the [[7, 1, 3]] benchmark circuit, the Type 1
architecture consumes approximately 47% of the resources compared to the checker-
board architecture and approximately 83% of the resources compared to the row-type
architecture. For the [[15, 1, 3]] benchmark circuit, the Type 1 architecture consumes
approximately 35% of the resources compared to the checkerboard architecture and
approximately 62% of the resources compared to the row-type architecture. Therefore,
the [[15, 1, 3]] circuit is more advantageous for 3D architecture than the [[7, 1, 3]] cir-
cuit. The reason for this is that the larger the size of the circuit, the more operations
that are performed simultaneously, the higher the saving rate of the ancilla qubits,
and the higher the probability of utilizing the advantages of the 3D architecture. For
both benchmark circuits, the Type 2 architecture had a slightly smaller space—time
than the Type 1 architecture. Therefore, in terms of space—time, the Type 2 architec-
ture is the most efficient among the four architectures. Because [[7, 1, 3]] circuit and
[[15, 1, 3]] circuit are the main components of magic state distillation, which requires
considerable resources when performing quantum circuits, being able to perform them
efficiently means that many quantum circuits can be performed efficiently.
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2 CNOT(2,5) CNOT(3,6) CNOT(2,5) CNOT(3,6)
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82 CNOT(3,5) CNOT(3,5)

Fig.10 Resultof [[7, 1, 3]] circuit operation scheduling for Type 1 architecture. ‘Time’ means surface code
error syndrome measurement cycle. ‘Init’ means initialization of logical qubits

5 Conclusion

We proposed a 3D physical qubit placement method based on 3D nearest-neighbor
connectivity. Using the presented physical qubit placement method, we propose two
logical qubit placement methods and a method for performing logical operations in
these placements. They reduced the number of logical qubits or the computation time
by using the fact that a transversal CNOT operation between adjacent surface codes
is possible, and the accessibility between logical qubits increases in the case of a 3D
structure. Because the 2D architecture uses lattice surgery to perform CNOT, it takes
3d cycles to perform CNOT and 9d cycles to perform the SWAP operation, whereas
the 3D architecture performs transversal CNOT between adjacent logical qubits in d
cycles and transversal SWAP in 3d cycles. In addition, when using a 3D architecture
with more ancilla qubits, CNOT can be performed in only 3d cycles by using lattice
surgery without using the SWAP operation for logical qubits at arbitrary positions.
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Fig. 11 Time, logical qubits used, and space—time of benchmark circuits for each architecture. Space—time
is expressed as the product of time and logical qubits used. CB checkerboard architecture, R row-type
architecture

Furthermore, in a 3D architecture, depending on the location of the operation, multi-
target CNOT can be performed in only 3d cycles.

We also compared the resources required for 3D architecture and 2D architecture
by manually performing scheduling on two benchmark circuits. The Type 1 archi-
tecture maintained similar times while using fewer qubits compared with r-arch in
both benchmark circuits. Although the Type 2 architecture uses more qubits, it signif-
icantly reduces the time compared to r-arch in both benchmark circuits. Regarding the
space-time representing the comprehensive required resources, both 3D architectures
showed some gain compared to 2D in space—time. In addition, the space—time gain of
the 3D architecture increased as the scale of the benchmark circuit increases, which is
expected to be universally applicable when the scale of the quantum circuit increases.
Because the two 3D architectures have similar space—times despite the very different
resources required in the qubit and time, it is expected that the two architectures can
be compatibly selected depending on the quantum computing environment.
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