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This paper is a contribution to the construction of non-semisimple modular categories.
We establish when Miiger centralizers inside non-semisimple modular categories are
also modular. As a consequence, we obtain conditions under which relative monoidal
centers give (non-semisimple) modular categories, and we also show that examples
include representation categories of small quantum groups. We further derive condi-
tions under which representations of more general quantum groups, braided Drinfeld

doubles of Nichols algebras of diagonal type, give (non-semisimple) modular categories.

1 Introduction

The purpose of this article is to establish new constructions of modular tensor
categories (MTCs) in the non-semisimple setting. We work over an algebraically closed
field k.

To begin, let us recall the main structure of interest in this work, which is due
to Kerler-Lyubashenko [28]. We refer the reader to Section 2 for a discussion of various
types of tensor categories relevant here. Take vect, to be the tensor category of finite-
dimensional k-vector spaces, and for a braided tensor category C, let C' be the Miiger
center of C (see (2.4)).
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Constructing Non-Semisimple Modular Categories 15827

Definition 1.1 (Definitions 2.10 and 2.11). Take C a braided finite tensor category. We
call C a MTC if C is non-degenerate (i.e., C' ~ vect,) and ribbon.

Note that the definition above does not require semisimplicity, as the commonly
used definition of an MTC (see, e.g., [5]). MTCs provide actions of the modular group
though their modular data, the S- and T-matrices, a structure that emerged from
mathematical physics [39]. Semisimple MTCs have appeared in various fields such as
low-dimensional topology [55], conformal field theory [19, 24, 39], and subfactor theory
[27]; they have been under intense investigation towards classification results by rank
(see, e.g., [48]).

The definition of a non-semisimple MTC of [28] has been given further justifica-
tion through equivalent characterizations in [50]. Moreover, non-semisimple MTCs are
gaining traction due to their growing list of applications, starting with non-semisimple
topological quantum field theories [28], most recently in [11], to the study of logarithmic
conformal field theories [25], modular functors [17], and mapping class group actions
[33]. Some module categories of small quantum groups (and of related quasi-Hopf
algebras) have been shown to yield examples of non-semisimple MTCs [18, 34, 35, 42].
But, in general, non-semisimple MTCs are not well understood via classification nor
examples, and we aim to contribute to the latter in this work.

One of the main examples of an MTC in the semisimple setting is the monoidal
center Z(C) [Section 2.4] of a trace-spherical tensor category C [Section 2.2] (often
referred to as a spherical category) [6]. We discuss in Section 3 a non-semisimple
generalization of this result, due to Shimizu, which we will employ later in our main
results. First, we recall the set of square roots of the Radford isomorphism of a
finite tensor category, denoted by Saqrt, (D, &;,) here [Definition 3.3] that Shimizu uses to
parameterize ribbon structures for Z(C) [Theorem 3.5]. This recovers a result Kauffman—
Radford for the ribbonality of the Drinfeld double [Theorem 3.6]; see Proposition 3.8
for the explicit connection between these theorems. Next, we recall Douglas—
Schommer-Pries—Snyder's notion of sphericality [13] in the non-semisimple setting
[Definition 3.9]. By [49], this notion of sphericality implies that Sqrt.(D, £,) is non-
empty [Remark 3.11]. We provide equivalent conditions for the representation category
of a Hopf algebra to be spherical [Proposition 3.12]. Moreover, we obtain the following

result.

Proposition 1.2 (Proposition 3.13). Any unimodular finite ribbon category is spherical

in the sense of [13].
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15828 R. Laugwitz and C. Walton

Shimizu’s results from [50] on the modularity of Z(C) are recalled in
Theorem 3.14 and Corollary 3.15— the hypotheses are, respectively, that Sqrt:(D, &p)
is non-empty and that C is spherical (as in [13]).

We build on the results on Z(C) above to obtain Theorem 1.4 below on the
modularity of relative monoidal centers. Before this, we establish a general result on
the modularity of Miiger centralizer, Theorem 1.3. These are the main results of the
paper, presented in Section 4.

To proceed, note that a full subcategory of a category is called topologizing if it
is closed under finite direct sums and subquotients [46, 50]. Moreover, recall the notion

of the Miiger centralizer of a subset of objects in a braided category; see (4.1).

Theorem 1.3 (Theorem 4.3). Let D be a modular category, let £ be a topologizing
braided tensor subcategory of D, and consider the Miiger centralizer C(£). Then,

C'D((c:)/ x>~ g/.

As a consequence, Cp(€) is modular if and only if £ is modular.

This generalizes a result of Miiger in the semisimple case [41, Corollary 3.5].

Next we discuss a special case of Miiger centralizers: relative monoidal centers.
Take a braided category (B, Vxy: X ® Y 5 Y ® X) with braided opposite B :=
(B, w;}(: X®Y 5> Y ®X). We say that a monoidal category C is B-central if there
exists a faithful braided monoidal functor G: B — Z(C) [Definition 4.4]. With such a
category C, one can form the relative monoidal center Zg(C), which is a full subcategory
of Z(C) consisting of objects that centralize (via the braiding of Z(C)) all objects in the
image of G [Definition 4.7]. In fact, Z5(C) is equal to the Miiger centralizer CZ(C)(G(E))

[Remark 4.8]. Given Theorem 1.3, we obtain the following result.

Theorem 1.4 (Theorem 4.14). Let B be a non-degenerate braided finite tensor category,
and C a B-central finite tensor category so that the set Sqrt;(D, §5) from Definition 3.3 is
non-empty. If the full image G(B) is a topologizing subcategory of Z(C), then the relative

monoidal center Zz(C) is modular.

For B a rigid braided category and H a Hopf algebra in B, Theorem 1.4
can be used to study the modularity of the category of finite-dimensional H-Yetter

Drinfeld modules in B [Example 4.12]. If, further, B is a representation category of a
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quasi-triangular Hopf algebra K, then Theorem 1.4 can also be used to study the
modularity of the representation category of the braided Drinfeld double Dring (H, H*)
[Example 4.13]. From this, we show, as a 1st example, that the representation cate-
gory of the small quantum group Uq(sly), for g a root of unity of odd order, is an
MTC [Example 5.3]. Generalizations of this (non-semisimple) MTC will be given in
Proposition 1.7 below.

Motivated again by the work of Miiger in the semisimple case, we next consider
the decomposition of MTCs into Deligne tensor product of modular subcategories. We
obtain the result below; cf., [41, Theorem 4.2].

Theorem 1.5 (Theorem 4.17). Let D be an MTC, with a topologizing non-degenerate

braided tensor subcategory £. Then, there is an equivalence of ribbon categories:
D~EXRCHE).

In particular, under the conditions of Theorem 1.4, the relative monoidal center

is related to the monoidal center through the factorization
Z(C) ~ BR 25(C).

Continuing an example mentioned above, for H a Hopf algebra in the braided tensor
category K-mod, we have that Drin(H xK)-mod ~ K-mod X Dring (H, H*)-mod as modular
categories under the hypotheses of Theorem 1.4; see Example 4.18(2).

As in [41], we call an MTC C in the non-semisimple setting prime if every
topologizing non-degenerate braided tensor subcategory is equivalent to either C or
vect,. We obtain the result below as an immediate consequence of the theorem above,
cf. [41,Theorem 4.5].

Corollary 1.6 (Corollary 4.20). Every MTC is equivalent to a finite Deligne tensor

product of prime modular categories.

Although primality is difficult to detect in the semisimple case (see [41,Section

4]), we inquire when it holds in the non-semisimple case, particularly for Dring (H, H*)-mod

in the example above; see Question 4.21.
Finally, we construct several examples of non-semisimple MTCs, via Theorem 1.4,
by using Nichols algebras of diagonal type in braided categories of comodules over

finite abelian groups.
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15830 R. Laugwitz and C. Walton

Proposition 1.7 (Proposition 5.15). Take K := kG, for G a finite abelian group, assume
that chark = 0, and take B a finite-dimensional Nichols algebra of diagonal type in
a certain braided category B of K-comodules. Consider the relative monoidal center,
D = Zz(B-mod(B)), or equivalently the category of finite-dimensional modules over
the braided Drinfeld double Dring. (8%, B).

Then, D is modular when (i) the canonical symmetric bilinear form b on
the coquasi-triangular Hopf algebra K is non-degenerate and (ii) certain conditions

involving elements of the top degree of 8 and on the dual R-matrix of K are satisfied.

Note that the Drinfeld double of the bosonization of Nichols algebras has been
studied in the literature, see for example, [22], where two copies of the group algebra
constitute the Cartan part. In this paper, an approach is used where the Cartan part
consists of a simple (dual) group algebra K*.

We end the paper by constructing, via Proposition 1.7, examples of non-
semisimple MTCs attached to Nichols algebras of Cartan type [Example 5.17] and not
of Cartan type [Example 5.18]. The former includes the representation category of the
small quantum group Uq(g) at an odd root of unity. Thus, the methods developed in this
paper provide an alternative argument showing that the category of finite-dimensional
Uq(g)-modules is a non-semisimple MTC, which was previously obtained in [36, Section
A.3]. See also [18, 34] for more general results on the modularity of representation
categories of small quantum groups. On the other hand, the non-semisimple MTCs
in Example 5.18 illustrate that our methods can be used to analyze the modularity of
representation categories attached to a broader class of Nichols algebras beyond small

quantum groups.

2 Preliminaries on Monoidal Categories

In this section, we review terminology pertaining to monoidal categories. We refer
the reader to [5], [15], and [54] for general information. We recall monoidal categories
and module categories [Section 2.1], various types of rigid categories [Section 2.2],
finite tensor categories [Section 2.3], various braided monoidal categories [Section 2.4],
algebraic structures in finite tensor categories [Section 2.5], ribbon monoidal categories
[Section 2.6], and MTCs in the non-semisimple setting [Section 2.7].

We assume that all categories here are locally small (i.e., the collection of
morphisms between any two objects is a set) and that all categories here are abelian.

A full subcategory of a category is called topologizing if it is closed under finite direct
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sums and subquotients [46, Section 3.5.3], [50, Definition 4.3]. Given a functor F: C — D
between two categories C and D, the full image of F is the full subcategory of D on all

objects isomorphic to an object of the form F(C) for C in C.

2.1 Monoidal categories, monoidal functors, and module categories

We refer the reader to [15, Sections 2.1-2.6 and 7.1] and [54, Sections 1.1-1.4] for further
details of the items discussed here.

A monoidal category consists of a category C equipped with a bifunctor ®: C x
C — C, anatural isomorphismayy,: X ®Y)®Z 5 X® (Y ®Z) foreach X,Y,Z € C, an
object 1 € C, and natural isomorphisms Iy: 1® X = X and ry: X®1 = X foreach X e C,
such that the pentagon and triangle axioms hold. By MacLane's coherence theorem, we
will assume that all monoidal categories are strict in the sense that ( X®Y)®Z = X®(Y®
Z)yand 1 X =X=X®1,forall X,Y,Z € C; that is, Ay y 7 ly, rx are identity maps. For a
monoidal category (C, ®, 1), define the opposite monoidal category to C®°P = (C, ®°P, 1)
where X @P Y =Y ® X.

A (strong) monoidal functor (F,F

. Fy) between monoidal categories (C, ®¢, 1)
to (D, ®p, Ip) is a functor F: C — D equipped with a natural isomorphism Fy y: F(X)®p
F(Y) 5 F(X ®c Y) for all X,Y € C, and an isomorphism Fj: 1, S F(1,) in D, which
satisfy associativity and unitality constraints. An equivalence of monoidal categories
is provided by a monoidal functor between the two monoidal categories that yields an
equivalence of the underlying categories.

Representations of monoidal categories are provided by the next notion. A left
C-module category is a category M equipped with a bifunctor ®: C x M — M, natural
isomorphisms for associativity my y pr: (X®Y)®@M — X®(Y®M), forallX, Y e C,M € M
satisfying the pentagon axiom, and for each M € M a natural isomorphism 1 ® M — M

satisfying the triangle axiom.

2.2 Rigid, pivotal, and trace-spherical monoidal categories

We refer to [15, Sections 2.10 and 4.7] and [54, Sections 1.5-1.7] for further details of the
items discussed below.

A monoidal category (C,®, 1) is rigid if it comes equipped with left and right
dual objects, that is, for each X € C there exist, respectively, an object X* € C with
co/evaluation maps evy: X* ® X — 1 and coevy: T — X ® X*, as well as an object *X € C

with co/evaluation maps évy: X ® *X — 1, Coevy: I — *X ® X, satisfying the usual
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coherence conditions of left and right duals. An object X in a rigid monoidal category C
is invertible if evy and coevy are isomorphisms.

Arigid monoidal category is pivotal if it is equipped with isomorphisms jy: X S
X** natural in X and satisfying jygy = jx ® jy for all X, Y € C. Equivalently, a pivotal
category is a rigid monoidal category such that the functors of left and right duality
coincide as monoidal functors [54, Section 1.7].

The quantum dimension of an object X of a pivotal (rigid) monoidal category
(C,®,1,j) is defined to be dimj(X) = eVy:(jx ® ldy«)coevy € Ende(1). A pivotal monoidal
category (C,®,1,j) is trace-spherical if dimj(X) = dimj(X*) for each X € C.

2.3 Finite tensor categories

Recall that k is an algebraically closed field. We now discuss certain k-linear monoidal
categories following the terminologies of [15,Sections 1.8, 7.1-7.3, 7.9].

A k-linear abelian category C is locally finite if, for any two objects V, W in
C, Homy(V, W) is a finite-dimensional k-vector space and every object has a finite
filtration by simple objects. Moreover, we say that C is finite if there are finitely many
isomorphism classes of simple objects. Equivalently, C is locally finite if it is equivalent
to the category of finite-dimensional comodules over a k-coalgebra (or, to modules over
a finite-dimensional k-algebra if C is finite). A tensor category is a locally finite, rigid,
monoidal category (C,®, 1) such that ® is k-linear in each slot and 1 is a simple object
of C. A tensor functor is a k-linear exact monoidal functor between tensor categories.

An example of a finite tensor category is vect,, the category of finite-dimensional
k-vector spaces. More generally, the category H-mod of finite-dimensional k-modules
over a (finite-dimensional) Hopf algebra H is a (finite) tensor category.

We will use the following tensor product of finite tensor categories. The Deligne
tensor product of two finite abelian categories is the abelian category C X D equipped
with a bifunctor X: C x D - CX D, (X,Y) — XX Y, right exact in both variables so that
for any abelian category .4 and any bifunctor F: C x D — A right exact in both slots,
there exists a unique right exact functor F: CX D — A with F o X = F [12, Section 5]. It

is monoidal when both C and D are so, via
XRY)FP X' KY):=xe X R (Y ePY), (2.1)

forall X, X’ € Cand Y, Y’ € D, and with the unit object 1, X 1p. If C, D are finite tensor
categories, then so is CXD. Given two tensor functors F: C — D and F': (' — D’ between

finite tensor categories, there exists an induced tensor functor FX F': CX(C' — DX D',
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For a tensor category C over k, a left module category over C is a module category
M as in Section 2.1 with the requirement that M is also k-linear and abelian so that the
underlying bifunctor is k-linear on morphisms and exact in the 1st variable (it is always
exact in the 2nd variable).

An internal Hom object for a module category M over a k-linear, finite, tensor
category C is an object Hom(M,;,M,) in C, for M,;,M, € M, which represents the left
exact functor C — vecty, defined by X — Hom (X ® M, M,). Namely, we have a natural
isomorphism: Hom (X ® M;, M,) = Hom. (X, Hom(M,, M,)).

2.4 Braided monoidal categories, the monoidal center Z(C), and the Miiger center C’

Here, we discuss braided tensor categories and related constructions, and refer the
reader to [5, Chapter 1], [15,Sections 8.1-8.3, 8.5, 8.20], and [54, Sections 3.1 and 5.1]
for more information.

A braided tensor category (C,®,1,c) is a tensor category equipped with a
natural isomorphism ¢y y: X ® ¥ = Y ® X for each X,Y € C such that the hexagon
axioms hold. By a braided tensor subcategory of a braided tensor category C we mean
a subcategory of C containing the unit object of C, closed under the tensor product
of C, and containing the braiding isomorphisms. A braided tensor functor between
Fy): C — D so that

Fy x CFI.)(X),F(Y) = F(C)C("Y) Fy yforall X,Y € C. An equivalence of braided tensor categories

braided tensor categories C and D is a tensor functor (F,F,,,
is a braided tensor functor between the two tensor categories that yields an equivalence
of the underlying categories.

An important example of a braided tensor category is the monoidal center (or
Drinfeld center) Z(C) of a tensor category (C, ®, 1): its objects are pairs (V, ¢}, _) where
V is an object of C and ¢y, x: V® X = X ® V is a natural isomorphism (called a half-
braiding) satistying cy xqy = (Idx ® ¢y y)(cy x ®1dy). An important feature of Z(C) is the

braiding defined by
C(V,CV,_),(W,CW’_) = CV,W: V ® W d W ® V.

Proposition 2.2. (see [15, Section 7.13]) If C is a (finite) tensor category, then Z(C) is a

braided (finite) tensor category.

Given two braided finite tensor categories (C,®c,1lc,cc) and (D,®D,1]D,CD),
the Deligne tensor product C X D is a braided finite tensor category. The braiding is
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obtained from
Cxmy xRy = Cyx Behy: X@CX)R(Y QP Y) - (X' @“ X) K (Y @ V) (2.3)

forallX,X' €C,Y,Y €D.
We need to consider later the Miiger center of a braided tensor category

(C,®,1,c), which is the full subcategory on the objects

2.5 Algebraic structures in tensor categories

In this section, let C := (C,®, 1) be a tensor category over k. Assume that all structures

below are k-linear as well.

2.5.1 (Co)algebras and their (cojmodules
We discuss in this part algebras and coalgebras in C and their (cojmodules. More
information is available in [15, Section 7.8] and [54, Section 6.1].

An algebra in C is an object A € C equipped with two morphisms m: AQA — A
(multiplication) and u: 1 — A (unit) satisfying m(m®Id,) = m(ld, ®m) and m(u®Ild,) =
Id, = m(ld, ® u). We denote by Alg(C) the category of algebras in C, where morphisms
in Alg(C) are morphisms f: A - A’inCsothatf m, =m, (f®f) and f uy = uy.

Given an algebra A in C, a left A-module in C is a pair (V, a) for V an object in
C and

ay: AQV > 7T,

amorphism in C satisfying a,(m®ldy,) = a,(ld,® ay) and a,(u®ldy) = Idy,. Amorphism
of A-modules (V,ay) — (W,ay,) is a morphism V — W in C that intertwines with a,
and ay,. This way, we define the category A-mod(C) of left A-modules in C. Analogously,
we define mod-A(C), the category of right A-modules in C.

A coalgebra in C is an object C € C equipped with two morphisms A: C - C®
C (comultiplication) and ¢: C — 1 (counit) satisfying (A ® ld;)A = (Id; ® A)A and
(e®Ildp)A =1d; = (Id; ® €)A. Dual to above, we can define the category Coalg(C) of

coalgebras and their morphisms in C, and given C € Coalg(C) we can define categories,
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C-comod(C) and comod-C(C), of left and right C-comodules in C, respectively. For V €
C-comod(C), the left C-coaction map is denoted by

Sy V—>CQRV.

2.5.2 Bialgebras and Hopf algebras
In this part, let C := (C, ®, 1, ¢) be a braided tensor category over k. We define bialgebras
and Hopf algebras in C here, and more details can be found [54, Sections 6.1 and 6.2].

A bialgebra in C is a tuple H := (H,m,u, A,¢) where (H,m,u) € Alg(C) and
(H,A,¢e) € Coalg(C) sothat Am = (mm)(ldQcQINN(AR A), Au=uQ®u,em=¢Qz¢,
and eu = Id;. We denote by Bialg(C) the category of bialgebras in C, where morphisms in
Bialg(C) are morphisms in C that belong to Alg(C) and Coalg(C) simultaneously.

A Hopf algebra is a tuple H := (H,m,u, A,¢,S), where (H,m,u, A,¢) € Bialg(C)
and S: H — H is a morphism in C (called an antipode) so that m(S ® ldy)A =
m(ldy ® S)A = ue. We denote by HopfAlg(C) the category of Hopf algebras in C, where
morphisms are morphisms in Bialg(C). We assume that all Hopf algebras in this work
have an invertible antipode, that is, there exists a morphism S™!: H — H is a morphism
in C so that SS™! = Id;; = S7!S.

2.5.3 (Co)modules over Hopf algebras
Now we discuss (co)modules over Hopf algebras H in a braided tensor category
(C,®,1,c). We refer the reader to [15, Sections 7.14, 7.15, 8.3] and [7, Section 3] for more
details.

If V,W are left H-modules in C, then so is the tensor product V ® W, via the

action (2.5) below:

Ayew = @y @ ay)(ldy @ cg y ® 1dy)(Ag ® ldygy). (2.5)

This makes the category H-mod(C) a monoidal category, with unit object (1 = k,a; =
eyg®Id;). Assume that C is rigid, and take (V, a;) € H-mod(C). Then its left dual (V*,ay«) €
H-mod(C) is defined using Sy, and its right dual (*V, a.;;) € H-mod(C) is defined using
S;II. It follows that H-mod(C) is a (finite) tensor category provided C is a (finite) braided
tensor category.

For one supply of braided tensor categories, take the category H-mod(vect,) for

H a finite-dimensional k-Hopf algebra. We say that H is quasi-triangular if it comes
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equipped with an invertible element R = RV @ R®® € H ® H satisfying
(A®Id)(R) = Ri5Rys, (Id® A)(R) = Ry3R,;, A°P(h) = RA(WR™!, forheH,

where A°P is the opposite coproduct. It follows that H-mod(vect,) is a braided tensor
category if and only if the finite-dimensional Hopf algebra H is quasi-triangular; here,

the braiding is given by
— () 1)
Cyw(V@w) =ay(RY@w)®ayR" ®Vv),

for (V,ay), (W,ay) € H-mod(vect,). We say that H is coquasi-triangular if it comes

equipped with a convolution-invertible bilinear form r: H ® H — k satisfying

T‘(h, kE) == r(h(l), K)r(h(z), k), r(ﬁh, k) == T‘(E, k(l))r(h, k(z)),

r(hay Laphebay = Layhayr(hg) £iz),

h,k, ¢ € H (see e.g., [38, Definition 2.2.1]). It follows that H-comod(vect,) is a braided
tensor category if and only if the finite-dimensional Hopf algebra H is coquasi-

triangular; here, the braiding is given by
cyw(vew) = (r®ldy ®Ildy)(dy ® T ® 1dy) (6 ® d)(w ® v)

for (V,8y), (W, 8y,) € H-comod(vect,) and r(a ® b) = b ®a.

For another supply of braided tensor categories, take a Hopf algebra H in C,
and consider the category of H-Yetter-Drinfeld modules in C, denoted by £YD(C), which
consists of objects (V,ay,8y), where (V,ay,) € H-mod(C) with left H-coaction in C
denoted by 8;,: V — H ® V, subject to compatibility condition:

(mH ® av)(IdH ® Cuym ® Idv)(AH ® (Sv)

A morphism f: (V,ay,8y) - (W, ay, Sy) in gYD(C) is given by a morphism f: V — W in
C that belongs to H-mod(C) and H-comod(C). Given two objects (V, ay, §;y) and (W, ay,, 8)
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in £YD(C), their tensor product is given by (V @ W, Ayew: Syew), wWhere ay gy, as in (2.5)

and

Syew = (My @ ldygy)(ldy ® ¢y y @ ldy) 3y ® dy).

The category gYD(C) is braided with braiding given by c;'?W =(@ay® IdV)(IdH®C§'W)(8V®
ld,). Further, when C = vect, and dim, H < oo, we get that YD(vect,) is equivalent
to the braided tensor category of modules over the Drinfeld double, Drin(H), see for
example, [38, Theorem 7.1.2] and cf. Example 4.13 below with K = k.

2.6 Ribbon tensor categories

In this section we assume that C := (C, ®, 1, ¢) is a braided tensor category, and we refer
the reader to [5, Chapter 2], [15, Sections 8.9-8.11], [54, Section 3.3], and [44, Chapter 12]
for details of the discussion below.

A braided tensor category (C,®, 1, c) is ribbon (or tortile) if it is equipped with
a natural isomorphism 6y : X = X (a twist) satisfying Oxgy = (Ox ® Oy) o Cy x o Cx y and
Ox)* = 0x« for all X, Y € C. A functor (or, equivalence) of ribbon categories is a functor
(respectively, equivalence) F: C — D of braided tensor categories such that F(Qg) = GP?(X),
for any X € C, cf. [52, Section 1].

In a ribbon category (C,®, 1, c,6), consider the Drinfeld isomorphism:
by = (Idge ® €Vy) (Cyx v ® ldy)(COBVx. ® ldy): X = X**. (2.6)
Then,
Jx 1= byt X — X (2.7)

defines a pivotal structure on C.
For a supply of ribbon categories, consider the category H-mod(vect,) for H =
(H,R) a finite-dimensional quasi-triangular k-Hopf algebra. We say that H is a ribbon

Hopf algebra if there exists a central invertible element v € H satisfying

AW)=RyR)IveV), ewv)=1, Sv) =v. (2.8)
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This definition is equivalent to the one given in [45, Section 3.3], [44, Definition 12.3.5]. It
follows that H-mod(vect,) is a ribbon category if and only if H is a ribbon Hopf algebra
[38, Corollary 9.3.4]. In this case, the ribbon twist is given by the action of v—!.

The following lemma will be of use.

Lemma 2.9. Take D a braided full tensor subcategory of a braided tensor category C.
If C is ribbon, then so is D.

This result is obtained by restricting the ribbon structure from C to D. Moreover,

the ribbon structure of the monoidal center Z(C) will be discussed later in Section 3.2.

2.7 Modular tensor categories

In the section, we discuss a notion of an MTC for the non-semisimple setting. This is
based on the work by Kerler-Lyubashenko [28] and the recent work by Shimizu [50]. To
proceed, we adopt the definition of non-degeneracy below, which extends the notion of

non-degeneracy in the semisimple setting; see [15, Definition 8.19.2 and Theorem 8.20.7].

Definition 2.10 ([50, Theorem 1]). We call a braided finite tensor category (C,®,1,c)

non-degenerate if its Miiger center C’ is equal to vect,.

Next, we discuss a characterization of non-degeneracy. Let (C, Cxy: X®Y =

Y ® X) be a braided tensor category, and take the braided tensor category:
C:=C cyx: XQY > Y ®X).

The assignments C — Z(C), X — (X,cx _), and C - Z20), X — (X, C_x) extend to a
braided tensor functor C XC — Z(C). If this functor yields an equivalence between the
braided tensor categories C X C and Z(C), then we say that (C,®,1,c) is factorizable.
A braided finite tensor category is non-degenerate if and only if it is factorizable [50,
Theorem 4.2]; note that this article also provides a third equivalent characterization of
non-degeneracy in terms of a non-degenerate form on the coend.

Moreover, the following types of tensor categories are of primary interest in this

work.

Definition 2.11 ([28, Definition 5.2.7], [50, Section 1]). A braided finite tensor category

is called modular if it is non-degenerate and ribbon.
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Now consider the braided finite tensor category H-mod(vect,) for H a finite-
dimensional, quasi-triangular Hopf algebra over k. We get that H-mod(vect,) is modular
precisely when H is ribbon and factorizable [15, Proposition 8.11.2 and Example 8.6.4].

Remark 2.12. By Lemma 2.9, we obtain that a topologizing non-degenerate braided

tensor subcategory of a modular category is also modular.

Remark 2.13. It is straight-forward to show that if C and D are modular, then so

is C ¥ D via the monoidal structure (2.1), the braiding (2.3), and with ribbon structure
oD .= 9C K oD,

3 Non-Semisimple Spherical Categories and Ribbon Structures on the Center

Let C be a finite tensor category over an algebraically closed field k. The purpose of
this section is to review sufficient conditions for the monoidal center Z(C) to be an
MTC. First, we recall the notion of a distinguished invertible object and the Radford
isomorphism of C in Section 3.1. This allows us to recall, in Section 3.2, Shimizu's
necessary and sufficient conditions for Z(C) to be ribbon, generalizing a result of
Radford-Kauffman in the case when C = H-mod(vect,) for H a finite-dimensional Hopf
algebra. In Section 3.3, we recall the concept of a spherical category introduced in the
work by Douglas—Schommer-Pries—Snyder [13], expanding the semisimple notion in [6]

to the non-semisimple setting; it is then applied to describe when Z(C) is modular.

3.1 The distinguished invertible object D and the Radford isomorphism &p

For details, see [15, Sections 7.18-7.19 and 8.10], [44, Section 10.5], and the references
within.

Consider C as a C X C®°-module category. In this case, the canonical algebra
is defined as A,,, := Hom(1,1) € Alg(C X C®°P). For example, if H is a Hopf algebra
over k, then the canonical algebra in C := H-mod(vect,) is H* € Alg(C X C®°P) viewed
as an H-bimodule over k with left and right H-actions given by translation. The
category HopfBimod(C) := mod-A,, (C K C®°P) of right A ,,-modules in C K C®P is called
the category of Hopf bimodules in C. Both A_,, and its dual object A}, belong to

can

HopfBimod(C). Moreover, HopfBimod(C) is a tensor subcategory of (C X C®P, o, A

can)

where

O = p(ldy x F) K 1dpsep : (CKCPP) x (C K CFP) = (C x (C¥°P K (C)) KCP®P — CKCPP,
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for F: C®P X C — vecty, (X,Y) — Hom,(*Y,X), and p is the natural action of vect, on
C. Continuing the example above, for C := H-mod(vect,) with H € HopfAlg(vect,), and
A, = H*, we get that HopfBimod(C) is the usual category of Hopf bimodules over H.
Moreover, for M, N € HopfBimod(C), we obtain that M O N = (M* @y N*)*, for ()* denoting
the k-linear dual here.

By [16, Theorem 3.3] and [13, Theorem 3.3.4], there exists an invertible object
D e Csothat DX1)0OA,,, = A*

+an @s objects in HopfBimod(C). This isomorphism is unique
up to a scalar, and D is indeed an invertible object of C. We call D the distinguished

can
invertible object of C.

We also get a canonical natural tensor isomorphism
Er(X): D®X = X* @D,

defined as follows. Let F,G: C — C be two tensor functors, and consider the category
Z(F, G) with objects:

Ob(Z(F,G))={(V,op) | VeCl, op(—): V®F(-)— G(—-)Q®V a ®-compatible natural isom.},

where the compatibility conditions are [49, (3.1),(3.2)]. Two objects (V,oy,) and (V', o) of
Z(F, G) are equivalent if there is an isomorphism f: V S V' so that o XS ® IdF(X)) =
(Idgx) ® floy(X) for all X e C. This category is not always monoidal, but it is always a
finite abelian category [49, Theorem 3.4]. We also have that Z(ld;,|d;) is the monoidal
center Z(C). By [49, Lemma 3.3, (4.3)], we get equivalences

Z2(dg, (—)E) — A%, -mod(C) — A%, -HopfBimod(C).

can can

The 1st equivalence is an isomorphism, and the 2nd equivalence is induced by C >
HopfBimod(C) given by ¥ — (Y X 1) © A_,,- Now the object A}, in A%} -HopfBimod(C)
corresponds to pair (D, &p) in Z(Idg, (—)f‘j*). Here, & is called the Radford isomorphism
of C.

Now consider the case C = H-mod(vect,) for a Hopf algebra H over k, and
consider the distinguished grouplike elements of H and H* defined as follows (see [26,
Section 1] or [44, Section 10.5]). In this case, D is a one-dimensional module, and so the

action is given through an invertible character oy € H*, thatis, h-d = a;ll(h)d for any
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d € D. By virtue of D being the distinguished invertible object in C,
oy € G(H") is uniquely characterized by ay(h)A = Ah, for all h € H, (3.1)

for a choice of non-zero left integral A for H. The Radford isomorphism is now given by

the action of an element
gy € G(H), which is uniquely characterized by pA» = ev(p ® gg)A, forall p € H*, (3.2)

where X is a non-zero right integral of H*. Explicitly, if D = kv, then for any X € C and
x € X we get £5(X) (Vv ® x) = gy - X ® v. Now, Radford’s S*-formula [43],

S*(h) = ' (hy) gy hiz) 97 e (s),

implies that (D, £5) defines an object in Z(Id;, (—)**).

Recall that a finite tensor category C is unimodular if D = 1 [15, Section 6.5].
When C is a factorizable finite tensor category, then C is unimodular [15, Proposition
8.10.10].

3.2 Ribbon structures on the center

In this section, we recall the results of [49] and [26] on the existence of ribbon structures
on the center Z(C) of a finite tensor category, using the pair (D,%,) defined in the

previous section.

Definition 3.3 (Sqrt.(D,&p)). Let C be a finite tensor category and recall (D, &p) from
Section 3.1. We define Sqrt-(D,£p) to be the set of equivalence classes of invertible
objects (V,oy) in Z(ldg, (—)**) such that there exists an isomorphism v: V** ® V 5D

such that the following diagram commutes:

VRV X ldy sx @ov (X) VEEQ X* QY ov(X)**Qldy X QV** RV
V®|dxl lldx4*®v
X
D®X o) X*®D.

(3.4)

Theorem 3.5. ([49, Sections 5.2, 5.4, 5.5]) The set of ribbon structures on Z(C) is in
bijection with the set Sqrt;(D, £p). In particular, if we take (V, oy) € Sart-(D, &p), then
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the corresponding ribbon structure on Z(C) is given by 8 = ¢~'j, where ¢ is the Drinfeld

isomorphism of Z(C) from (2.6) and j is a pivotal structure on Z(C) given by
Jx 1= (Idxw ® coevy')(oy(X) ® Idy)(cx y ® Idy)(ldy ® coevy): X S X,
forX e C.

In the case when ¢ = H-mod(vect,), Shimizu's theorem specializes to the

following classical result of Kauffman-Radford.

Theorem 3.6. ([26, Theorem 3]) Let g € H and o € H* be the distinguished group-like

elements defined in (3.1) and (3.2). Then there is a bijection between the sets

{({,a) € G(H*) x G(H) | 2= Ay, a? = gy, satisfying (3.7)} , where

S?(h) = ¢ (h))ahga '¢(hg),  forallheH, (3.7)

and the set of ribbon elements of the Drinfeld double, Drin(H), cf. (2.8).
The bijection is given by sending a pair (¢, a) to SR®)RMV (¢~ ® a™!), for R and
S the R-matrix and antipode of Drin(H), respectively.

The precise connection between the above results by Kauffman-Radford and

Shimizu is given by the following proposition.

Proposition 3.8. Let H be a finite-dimensional Hopf algebra and C = H-mod. Then
there is a bijection between the set of pairs (¢, a) of Theorem 3.6 and the set Sqrt-(D, &)
of Definition 3.3.

Proof. Given a pair (¢,a) as in Theorem 3.6, we define (V,oy) € Z(Id,(—)*") of
Sarte(D, &p) as follows. First, V is the one-dimensional H-module with action h - v =
¢~ Y(h)v for any v € V,h € H. Second, the isomorphism opX): VX - X*QVis
defined by ox(v® x) = ax ® v for all v € V, x € X. This isomorphism defines an element
in Saqrt.(D, &p) provided that (¢, a) satisfy the conditions of Theorem 3.6. In particular,
(3.7) implies that oy, (X) is a morphism of H-modules.

Conversely, assume given a pair (V,oy) € Sartz(D, ép). Then V is an invertible H-
module and thus is one-dimensional. Fix a generator v € V. Then we obtain ¢ such that

h-v = ¢~!(h)v. The isomorphism v: V** ® V — D of H-modules implies that ¢ =2 = aﬁl
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and hence ¢? = ay. We obtain an element a € G(H) so that a® = gy, satisfying, (3.7) as
follows. Recall that there is an isomorphism of Hopf algebras H = End(F), where F: C —
vect, is the forgetful functor, for details, see for example, [15, Sections 5.2-5.3]. Here,
h € H gets sent to {hy: F(X) — F(X),x — h - X}x.op()- Further, for the one-dimensional
H-module V fixed above, there are isomorphisms of k-vector spaces f5: F(V) ® F(X) S
F(X),v®@x +— x and fy: F(X) S F(X)®F(V), x — x®v, natural in X. So by identifying the
k-vector spaces F(X) and F(X**), we obtain that the natural isomorphism o, (X): F(V) ®
F(X) > F(X) ® F(V) is of the form fy o ay o f5, and must be given by v® x — (a-x) ® v for
some a € H. The assumption that oy, defines a natural isomorphism V® (—) = (=)*QV

of H-modules implies condition (3.7). The diagram in (3.4) implies that a? = gg. |

3.3 Non-semisimple spherical categories

Using the distinguished invertible object D defined in Section 3.1, we obtain a notion of

sphericality for non-semisimple finite tensor categories.

Definition 3.9. ([13, Definition 3.5.2]) A pivotal finite tensor category (C,®,1,j) is
spherical if there is an isomorphism v: T = D so that the following diagram commutes:

JEF ix

X X4*

V®Idxl lldﬂ*@y (3.10)

X
Dox PN xugp

In fact, if C is semisimple; then C is spherical precisely when C is trace-spherical;

see [13, Proposition 3.5.4].

Remark 3.11. On the one hand, a spherical category in the sense above gives a special
case of a tensor category C satisfying the assumption that Sqrt; (D, £,) from Definition
3.3 is non-empty; namely, (1,j) € Sqrt.(D,&p). On the other hand, Example 5.2 later
illustrates that there are categories C satisfying Sqrt-(D,&p) # @ that do not have a

spherical structure.

Proposition 3.12 (SPiv(H)). Take C = H-mod(vect,) and recall (3.1) and (3.2). Then C is

spherical in the sense of Definition 3.9 if and only if ¢y = ¢ and

SPiv(H) := {a € G(H) | a’? =gy, S*(h) = aha™?, forallh e H} # .
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In this case, there is a bijection between pivotal structures j on C such that (C,j) is
spherical and the set SPiv(H).

Proof. First assume that C = H-mod(vecty) is spherical. Then, by definition, D = 1,
which implies that o; = €. By Remark 3.11, (1,j) € Sqart;(D, &p). Using Proposition 3.8,
this element of Sqrt. (D, §,) corresponds to a pair (¢, a) satisfying (3.7), with ¢ = ¢, such
that a? = gg. Thus, a € SPiv(H). From Proposition 3.8 it further follows that there is a
bijection between the subset of Sqrt. (D, &) of pairs (V,oy,) such that V = 1 and pairs
(¢, a) satisfying the conditions of Theorem 3.6 (i.e., a? = gy and (3.7), or equivalently,
a € SPiv(H)).

Conversely, assume oy = ¢ and a € SPiv(H) # @. Again under the bijection
of Proposition 3.8, the pair (g,a) corresponds an element (1,0;) € Sqrt.(D,&p). In
particular, (1,0;) is an element of Z(lds, (—)**), which implies, using the convention
T®X =X =X®I1, that j := oy is a pivotal structure for C, which, by construction,
satisfies (3.10). Thus, C is spherical. [ |

Examples of spherical categories obtained from Nichols algebras can be found
later in the text, see Remark 5.16(3) and Example 5.18.

Next, we show that a source of non-semisimple spherical categories is given by
unimodular ribbon categories, cf. [15, Proposition 8.10.12] in the semisimple case. Recall
that in the semisimple case, every finite tensor category is unimodular [15, Remark
6.5.9].

Proposition 3.13. Any unimodular finite ribbon category is spherical in the sense of
Definition 3.9.

Proof. Assume C is a ribbon category with braiding ¢ and twist 6. Then C is a pivotal
category via the pivotal structure j of (2.7). Consider the following computation:
e I Jx = B o Jx
= Pipr Py Oxer Px Ox
= Px+ Pxor (Idge ® €Vy) (Cxrr xpo (O ® Oy )COBVy ® ldy)
= ¢+ Gxer (1dxue ® BVx) (Cipts yx (Oxgrges ) COBV g ® Ily)
= ¢ Gxer (Idygee ® BVR) (Cgin yv ® Idy)
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Here, the 1st equation uses that jy« = j%. The 2nd equation uses (2.7) and that
Oy« = 0%. The 3rd equality uses (2.6) and the naturality of 6. The 4th equation follows
from Oyoy = (Ox ® Oy) Cxy Cyx = Cyx Cxy (0x ® 0y). The next equation holds
by the naturality of 6 and the fact that §; = Id;. The last equality then follows a
sequence of arguments using the naturality of the braiding and rigidity axioms. So,
jSk(*jX = (¢;}*)_1¢X-

Now assume that C is unimodular so that D = 1. Using [49, Theorem A.6], cf. [15,
Theorem 8.10.7], we find that

En(X) = (¢5) oy

Thus, using n = Id: 1 — D, this shows that j satisfies the conditions of Definition 3.9.

Thus, C is spherical. n

Finally, the recent results by Shimizu provide, in the non-semisimple framework,

a sufficient condition for the monoidal center Z(C) to be modular.

Theorem 3.14 ([49, Theorem 5.10]). If C is a tensor category with Sqrt, (D, &) # @, then

its center Z(C) is modular in the sense of Definition 2.11.

By Remark 3.11, one obtains the following consequence generalizing Miiger's

result [40, Theorem 2], see also [54, Theorem 9.11], to the non-semisimple case.

Corollary 3.15 ([49, Theorem 5.11]). If C is spherical in the sense of Definition 3.9, then

its center Z(C) is modular in the sense of Definition 2.11.

4 Modularity of Miiger Centralizers and Relative Monoidal Centers

This section contains the main categorical results of this paper. We first use the
double centralizer theorem of [50] to prove that Miiger centralizers of non-degenerate
topologizing subcategories in a modular category are again modular [Section 4.1]. Then
we recall the construction of the relative center Zz(C) [Section 4.2] and conclude, as a
main application, that it produces modular categories under conditions on C identified
in [49] and assuming that 5B is non-degenerate [Section 4.3]. We also produce an analogue
of Miiger's decomposition theorem of modular categories in the non-semisimple setting
[Section 4.4].
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4.1 Modularity of Miiger centralizers

In the following we apply the double centralizer theorem by Shimizu [50,Theorem 4.9]
(which is a non-semisimple version of [41,Theorem 3.2(i)]) to obtain a generalization of
the result by Miiger [41,Corollary 3.5] that centralizers of non-degenerate subcategories
in modular categories are again modular in the non-semisimple setting. For this, we
require the following notion of centralizer.

Let S be a subset of objects of a braided category C, the Miiger centralizer C,(S)
[41,Definition 2.6] of S in C is defined as the full subcategory of C with objects

Ob(Ce(8)) :={X €C | cyx cxy = ldygy forall Y € S}. 4.1)

Note that C,(S) is a topologizing monoidal subcategory of C and, thus, braided. For
a single object X in C, we denote C,({X}) = C,(X). If C is rigid, then C,(S) is a rigid

monoidal subcategory of C [41, Lemma 2.8]. The following result is straightforward.

Lemma 4.2. If C is a (finite) tensor category and S a subset of its objects, then C.(S)

is a (finite) tensor category.
The result below is the main method of this paper used to construct MTCs.

Theorem 4.3. Let D be a modular category in the sense of Definition 2.11, let £ be
a topologizing braided tensor subcategory of D, and consider the Miiger centralizer
Cp(E). Then,

C'D((C:)/ x>~ g/.
As a consequence, Cp(€) is modular if and only if £ is modular.

Proof. First, let V be an object in £'. Then, for any object W in &, the equation Idy,g, =
Cw v Cyw holds in D using that £ is a full braided subcategory of D. By definition, this
shows that V is an object in C; (). Now let X be an object in Cp(€). Again, by definition
and since V € £, we get that V centralizes X. Hence, V is contained in the Miiger center
Cp(&).

Conversely, let X be an object in C5(€)’. Then, using C(£) € D, we have that X is
in the Miiger centralizer Cp(Cp(€)). Using the double centralizer theorem [50, Theorem
4.9], it follows that C(Cp(€)) equals £. Note that this result uses that £ is a topologizing
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subcategory of D. Hence, X is an object of £. But as X was assumed to be an object of
Cp (&) it centralizes all objects of £ and is thus isomorphic to an object in &£’. Therefore,
Cp(€) ~ &', as desired.

Hence, C; (&) is non-degenerate as in Definition 2.10 if and only £ is. Since both

Cp(€) and € are ribbon subcategories of D [Lemma 2.9], the consequence holds. |

If £ is not a topologizing subcategory that we can replace £ by its subquotient
completion, which is also a braided tensor subcategory of D, in the statement of the
theorem above. Note that if D is semisimple, then £ is a topologizing subcategory
provided that it is a full subcategory closed under direct summands. (This follows as the

simple objects of £ are also simple in D and cannot have any non-trivial subquotients.)

4.2 B-central monoidal categories and relative monoidal centers

Let B := (B,®p, 15, %) be an abelian braided monoidal category throughout this section.
Also, recall the braided monoidal category B:= (B, w;}(: XV >V ® X).

Definition 4.4. A monoidal category C is B-central if there exists a faithful braided
monoidal functor G: B — Z(C). In this case, we refer to the functor G as B-central
as well.

Likewise, if B is a braided (finite) tensor category, then we say that a (finite)
tensor category C is B-central if there exists a faithful braided tensor functor
G: B— Z(0).

Remark 4.5. We compare our notion of a B-central functor with similar notions in the

literature.

(1) Denote by F: Z(C) — C the forgetful functor. We have that for a B-central
functor G, the functor T := F o G: B — C is central in the sense of [10,
Definition 2.3] and, in addition, faithful. Later in [10] only central functors
such that T is fully faithful are considered. While faithfulness of G is
equivalent to faithfulness of T we do not require that T is full.

(2) Recall from [31, Section 3.3] that a monoidal category C is B-augmented if
it comes equipped with monoidal functors F: C — B and T': B — C and
natural isomorphisms 7: F'T' — ldg and 0: @ (Id; K T') - & (Id, B T')
such that o descends to iy under F’, 7, and o are coherent with the structure

of C and B. So a B-augmented monoidal category C is B-central. In fact,
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15848 R. Laugwitz and C. Walton

we may define a functor of braided monoidal categories G: B — Z(C), by
B> (T'(B),0 1) and by T" on morphism spaces. Since T’ has a right inverse,
it is faithful, and thus G is faithful.

(3) Note that, in the semisimple case, if B is non-degenerate, then G is fully
faithful; see [9, Corollary 3.26].

Example 4.6. Given H a Hopf algebra in a braided monoidal category (respectively,
braided (finite) tensor category) B, we have that C = H-mod(/5) is a B-central monoidal
category (respectively, B-central (finite) tensor category) [31, Example 3.17]. Define a
braided monoidal functor G: B — Z(C) by sending V € B to ((V, a%}ri"),w:},), where
a%V = ¢ ®Id,: H® V — V is the trivial H-action on V and v is the braiding of B.
The two conditions of the action being trivial, and the half-braiding equaling ¥ !, are
stable under taking subquotients in Z(C). Hence, the image of Bin Z(C) is a topologizing
subcategory.

Definition 4.7. Given a B-central monoidal category C, we define the relative monoidal
center Zg(C) to be the braided monoidal full subcategory consisting of objects (V,c) of
Z(C), where V is an object of C, and the half-braiding ¢ := ey V® Ide = ld, ® Vis a

natural isomorphism satisfying the two conditions below:
(i) [tensor product compatibility] ¢y xoy = (Idy ® ¢y y)(cy x ® Idy), for X, ¥ € C.
(ii) [compatibility with B-central structure] cgp) v o €y gy = ldygen), for any
BeB.
That is, Zz(C) is the full subcategory of Z(C) of all objects that centralize G(B) for any
object B of B.

Remark 4.8. It is clear, by definition, that Zz(C) is equal to the Miiger centralizer
CZ(C)(G(E)). Hence, Zz(C) is a topologizing braided monoidal subcategory of Z(C).

Proposition 4.9. Take 5 a braided (finite) tensor category, and C a 5-central (finite)
tensor category (with B-central functor G: B — Z(C)). Then, Z5(C) is a braided (finite)

tensor category.

Proof. First, recall that Z(C) is a braided finite tensor category by Proposition 2.2.
Next, Remark 4.8 implies that the braiding in Zz(C) is the restriction of the braiding in
Z(C). Finally, with Lemma 4.2, the full braided subcategory Zz(C) = CZ(C)(G(B)) of Z(C)

is a tensor category, and it is finite provided that C is finite. |
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Remark 4.10. An important invariant of a finite tensor category C is the Frobenius—
Perron dimension FPdim(C) defined in [15, Definition 6.1.7]. It follows directly from
[50, Theorem 4.9] and [15, Theorem 7.16.6] for C a B-central finite tensor category, the

Frobenius-Perron dimension of the relative center is given by

. FPdim(C)?

FPAim(Z;(C)) = =——=.
m(Z5©) = Fpgim®)

Example 4.11. For any braided monoidal category B consider the functor B — Z(B)

of braided monoidal categories given by sending X to (X, 1//:;{). This functor makes B a

B-central monoidal category such that Zz(B) >~ B as braided monoidal categories.

Example 4.12. In the setup of Example 4.6, where B is rigid and C = H-mod(B) for

H € HopfAlg(B), we have an equivalence of braided monoidal categories
Z3(C) =~ BYD(B),

see [31, Proposition 3.36]. If B is a (finite) tensor category here, then so is Zz(C).

Example 4.13. Continuing the example above, let B = K-mod for a finite-dimensional
quasi-triangular Hopf algebra K, and H a finite-dimensional Hopf algebra in B with

dual H* (as in dually paired Hopf algebras [30, Definition 3.1]), and
C = H-mod(K-mod) >~ H x K-mod.
Then there is an equivalence of tensor categories
Z5(C) ~ BYD(B) ~ Dring(H, H*)-mod.

Here, Dring (H, H*) is a quasi-triangular Hopf algebra called the braided Drinfeld double
of H. It is due to [37] where it is referred to as the double bosonization. For details,
including a presentation of Dring(H,H*), see [30, Section 3.2]. See Lemma 5.9 for a
presentation in the case that H is a Nichols algebra of diagonal type. The case when
K =k is discussed at the end of Section 2.5.3.
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15850 R. Laugwitz and C. Walton
4.3 Main application: modularity of Z5(C)

In this part, we provide the main application of Theorem 4.3 to establish when a relative
monoidal center is modular. This result provides sufficient conditions that Zz(C) is a

modular category.

Theorem 4.14. Let B be a non-degenerate braided finite tensor category, and C a B-
central finite tensor category so that the set Sqrt.(D,&,) from Definition 3.3 is non-
empty. Assume that the full image G(B) in Z(C) is a topologizing subcategory. Then the

relative monoidal center Zz(C) is an MTC.

Here, the braiding of Zz(C) is restricted from that of Z(C), see Proposition 4.9,
and the ribbon structure is restricted to Zz(C) from that of Z(C) by Lemma 2.9.

Proof of Theorem 4.14. We have that Z(C) is modular by Theorem 3.14. By assump-
tion, the full image G(B) is a topologizing subcategory of Z(C), and since G: B — Z(C) is
faithful, G(B) is non-degenerate. Now, apply Theorem 4.3 with D = Z(C) and £ = G(B),
together with Remark 4.8, to conclude that Z;z(C) is modular, as desired. [ |

Remark 4.15. The statement of Theorem 4.14 can be varied to requiring that the
subquotient completion of the full image of G (with braiding obtained from being
a tensor subcategory of Z(C)) is non-degenerate instead of requiring that B is non-

degenerate and G(B) topologizing.

In the setting of Example 4.12, Shimizu achieved Theorem 4.14 for Zz(C) =~
gYD(B) in [51, Theorem 4.2] using [50, Theorem 6.2]. Next, by Theorem 3.14, we obtain

the following result as a special case.

Corollary 4.16. Let B be a non-degenerate braided finite tensor category, and C a B-
central finite tensor category that is spherical in the sense of Definition 3.9 and such
that the full image G(B) in Z(C) is a topologizing subcategory. Then the relative monoidal

center Zz(C) is modular.
Proof. This follows directly from Theorem 4.14 using Remark 3.11. |

Observe that this result is a relative generalization of Corollary 3.15 above due

to Shimizu.
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4.4 Miiger's decomposition theorem in the non-semisimple setting

In this section, we establish a generalization of Miiger's decomposition theorem of mod-
ular fusion categories [41, Theorem 4.5] to the non-semisimple setting [Corollary 4.20].

We begin with a non-semisimple generalization of [41, Theorem 4.2].

Theorem 4.17. Let D be an MTC, with a topologizing non-degenerate braided tensor

subcategory £. Then there is an equivalence of ribbon categories:

Here, £ is modular [Remark 2.12]; the results in [41] have £ being modular as a

hypothesis.

Proof of Theorem 4.17. As in the discussion before [50, Lemma 4.8], let D, and D, be
topologizing subcategories of D, and let T: D; K D, — D be the functor induced by ®7.
Set D, v D, to be the closure under subquotients of the image of T. We then get that
D, v D, and D; N D, are topologizing full subcategories of D. Applying this to D; = &
and D, = Cp(E) we see that

Next,
ERCpH(E) ~ EVCp(E)

as ribbon tensor categories via the functor T above. Indeed, we see by construction that

T is essentially surjective. Applying [50, Lemma 4.8] with £ N C;(€) ~ vect, we get that
FPdim(E v Cp(€)) = FPdim(E) FPAim(Cp(£)) = FPAIm(E X Cp(E)).

So by [15, Proposition 6.3.4], T is an equivalence of categories. Moreover, £ and Cp(E)
centralize each other by definition. So, as in the proof of [40, Proposition 7.7], T is a
functor of braided tensor categories such that T(0y, X 6y,) = Oyqy, forall V e &, W €
Cp(€). Thus, T is an equivalence of ribbon tensor categories as the braiding and twist

are preserved.
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15852 R. Laugwitz and C. Walton
Finally, we get the desired result by the computation below, which follows from
the double centralizer theorem [50, Theorem 4.9]:

Example 4.18. Let B be a non-degenerate braided finite tensor category, and let C be a
B-central finite tensor category, with 5-central functor G: B — Z(C). Assume that G(B)
is a topologizing subcategory of Z(C) and that Sqrt;(D, §p) # @.

(1) Then, by the Theorems 4.14 and 4.17, we have a decomposition of MTCs:
Z(C) ~ BK Zz(0).

(2) 1If, further, B = K-mod and C = H-mod(K-mod), for a quasi-triangular
Hopf algebra K, and for a finite-dimensional Hopf algebra H in B, then by

Example 4.13, we have a decomposition of MTCs:

Drin(H »x K)-mod ~ K-mod X Dring (H, H*)-mod.

In comparison with [41, Definition 4.4], consider the following terminology.

Definition 4.19. An MTC C is prime if every topologizing non-degenerate braided

tensor subcategory is equivalent to either C or vect,.

As a consequence of Theorem 4.17, we immediately obtain the result below; cf.,
[41, Theorem 4.5].

Corollary 4.20. Every MTC is equivalent to a finite Deligne tensor product of prime

modular categories.

Question 4.21. Continuing Example 4.18(2), when is the (not necessarily semisimple)

modular category Dring (H, H*)-mod prime?

In Example 5.3 below, we recall that the (non-semisimple, factorizable, ribbon)

small quantum group uq(slz) arises as a braided Drinfeld double Dring(H, H*). It is an
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interesting question to determine the primality of its module category, and as well as of
the module categories of other examples of non-semisimple braided Drinfeld doubles in
the next section. In the semisimple case, Miiger offers examples of prime and non-prime

module categories over Drinfeld doubles of groups [41, Theorem 4.7, Table 1].

5 Examples of Modular Categories

In this part, we provide several examples of MTCs using the relative center construction
[Theorem 4.14]. In some cases, we also illustrate our decomposition result Theorem 4.17
above. We start in Section 5.1 by discussing relative centers over vect,, monoidal centers
of modules over Taft algebras, and their relation to uq(stz)—mod. Next, we provide
preliminary information about braided doubles of Nichols algebras of diagonal type
in Section 5.2. We study the modularity of braided doubles of such Nichols algebras in
Section 5.3; the main result is Proposition 5.15 there. Finally, in Section 5.4, we apply
this result to module categories of small quantum groups (of Cartan type) and also to
module categories of a braided Drinfeld double of Nichols algebras not of Cartan type.

Throughout this section, we additionally assume that k has characteristic zero.

5.1 First examples

Here, we include some 1st examples of non-semisimple modular categories obtained

from the general result of Theorem 4.14.

Example 5.1. Take B = vect,, the category of finite-dimensional k-vector spaces
with its usual symmetric structure. Let C be a finite tensor category over k (i.e., C is
vect, -central) so that the set Sqrt.(D, §;) is non-empty. For instance, if C is unimodular
finite ribbon category, then C is spherical [Proposition 3.13] and hence Sqrt (D, &) # @
[Remark 3.11]. Then Theorem 4.14 specializes to the result that 2.y (C) = Z(C) is

modular, recovering Theorem 3.14.

Example 5.2 ((Drinfeld double of) the Taft algebra T, (q~2)). Letn > 3 be an integer, and
let g be a primitive root of unity so that g? has order n. Take K = kZ,, for Z,, = (g | g" =
1), and set B, = K-mod. Here, B, is braided using the R-matrix R = % ZZJ-;IO g ¥%gd.

Next, take the monoidal category

C:= H—mod(Bq), for H := k[x]/(x") € HopfAIg(Bq),
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with A(x) = x® 1+ 1 ® x and ¢(x) = 0. As in [32, Section 6], consider the Taft algebra
T, (q~2), which is the k-Hopf algebra:

T:=T,(q % =k(g,x)/(g" -1, x", gx — q *xg),

with A(9) =g®g, A =g'®x+x®1,¢@ =1, ex) =0, S(g) =g, S& = —gx.
Then, we get an equivalence of monoidal categories:

C ~ T,(q~%)-mod.

Computations as in [26, Proposition 7] show that if n is even, then Sqrt.(D, &) =
o; see Proposition 3.8. If n = 2m — 1 is odd, then the distinguished group-like elements
(see (3.1), (3.2)) are given by g = g and ap: T — k with ap(g) = ¢72, ap(x) = 0. Thus,
a = gy and ¢ = af' are the unique elements satisfying the equations of Theorem 3.6.
Hence, using Proposition 3.8, the unique element (V,oy,) of Sqrt(D, &p) is given by the
one-dimensional T-module V = kv, where g - v = ¢°™, x-v = 0, and oy(W): Ve W =
W* @ V, with o, (W)(v®@ w) = (g - w) ® v, for W € ObC, w € W. Thus, Sqrt,(D, &p) # @
if and only if n is odd. In this case, by Theorem 3.14, we get that Z(C) is modular with a

unique ribbon structure. We further have an equivalence of modular categories
Z(C) ~ Drin(T,,(g~%))-mod,

where modularity of the right-hand side is inherited from that on the left-hand side. We
note that C is not a spherical category in the sense of Definition 3.9 since D 2% 1, cf. [13,

Section 3.5.2] for the case n = 3. In particular, a fails to equal ¢ as in Proposition 3.12.

Example 5.3 (The small quantum group u,(sl,)). For g as in Example 5.2, with n odd,
consider the small quantum group uq(slz), which is generated by k, e, f, subject to the

relations

k—k7!

K"'=1, e"=f"=0, ke=q’ek, kf =q *fk, ef—fe:m,

with coproduct and counit determined on generators by

Ak)=k®k  Al)=1®e+e®k AP =k'Q@f+f®]I,

ek)=1, e(e) =¢e(f)=0.
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For the categories B, and C as in Example 5.2, the relative center ZBq (C) is equivalent
as a monoidal category to uq(slz)—mod, see [32, Proposition 6.7(i)]. Thus, uq(slz)—mod
is a braided category. We have seen in Example 5.2 that since n is odd, Sqrt-(D,&p)
contains a unique element. Moreover, in this case, one checks that the underlying
braided category B, is non-degenerate using [15, Exercise 8.6.4]. Thus, by Theorem 4.14,
ZBq C) ~ uq(stz)—mod is modular.

Continuing Example 4.18, we see that there is a decomposition of modular

categories
Drin(T,,(q~?))-mod =~ B, K u(sl,)-mod.

A vast generation of this example, using braided Drinfeld doubles of Nichols

algebras of diagonal type, will be given in the following sections.

5.2 Braided Drinfeld doubles of Nichols algebras of diagonal type

In this part, we discuss Nichols algebras of diagonal type, a large class of Hopf algebras
in braided categories kG-comod, for G a finite abelian group. To start, consider the

following notation that will be used throughout the rest of the section.

Notation 5.4. (G, g;, m;, A, e;, 1, g;, 6. K, 1, b, Bq, Yir Vir Vir ¥;)-  Fix the notation below.

e LetG=(g,,...,9,) be afinite abelian group, where g; has order m,.

e Take A to denote the lattice Z,,,, x --- x Z,, , and let e; be the i-th elementary
vector.

e Fori= (i,...,1,) € A, write g; = glf gi? and use additive notation on
indices i, so for example, g_,. = g;l.

e Take K to be the group algebra kG.

e Denote the basis of K* dual to {g;} by {§;}, so that the pairing of K* and K is
given by (03, g5) = di5-

e Let q = (g;) € Mat,(k) with g;; # 0, and let By be the braided category
K-comod, with dual R-matrix r of K given by r(g; ® 9;) = gj;-

e Consider the symmetric bilinear form b on K given by b(g;, g5 =
r(9;: 9y)r(g;, g;)- In particular, b is determined by b(g;, g;) = q;;q;;-

e Fori=(i,...,1,) € A, take the group-like elements of K*: y; := Zj r(g;®91);
and y; := Zj r(g; ® g;)8;. We write y; 1= Ve, and y; := Ve Then y; = yiil .. yii"

—ln

andy; =y ... 7"
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We record a fact about non-degeneracy that will be used several times later.

Lemma 5.5. ([15, Example 8.13.5], [14,Section 2.11]) The braided category Bq is non-

degenerate if and only if the symmetric pairing b is non-degenerate.

Next, we recall the definition of a Nichols algebra of diagonal type from work of

Andruskiewitsch-Schneider [2].

Definition 5.6 (B(V), J(V)). Retain the notation above. Let V be an object in EYD (with
braiding c). Recall that the tensor algebra T(V) = @, V®" is a natural Hopf algebra

object in EYD, such that all elements v € V are primitive, thatis, A(v) = v 1+ 1Qv.

(1) The Nichols algebra 8(V) is the quotient of ¥(V) be the unique largest
homogeneously generated Hopf ideal J(V) € ,,.; V®".

(2) We say that ®B(V) is of diagonal type if there exists a basis x;,...,x,, of V so
that

There exists a complete classification of finite-dimensional Nichols algebras of
diagonal type over a field k or characteristic zero [21]. The Nichols algebras B(V) have
a Poincaré-Birkhoff-Witt (PBW) basis [29] and generalized root systems [20]. For finite-
dimensional Nichols algebras of diagonal type, relations for the ideal J(V) were found

in [3, 4] and are detailed in many examples in [1].

Lemma 5.7 (%q, ‘ZB:;). Consider the Yetter-Drinfeld module V over K with action g; Xj =
g;;x; and coaction §(x;) = g; ® x;. Then:
(1) The Nichols algebra, B(V) € HopfAIg(IngD) is of diagonal type, which we
denote by B.
(2) If B is finite-dimensional, then B, and %; are dually paired Hopf algebras
in By. In particular, the pairing ev: 83 ® By — k is uniquely induced from
the pairing of V* and V.

Proof. Part (1) follows from [2, Section 2].

For part (2), consider the braided monoidal functor ®,: By — ®YD sending
(V,8) to (V,ay,8y), where ay(k®@v) = rvCY @ k) @ v®©, for all k € K and v € V.
Then the Yetter-Drinfeld module V is the image of the K-comodule (V,§) under ¢, and
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Bq
algebra in B.

is a Hopf algebra in the image of ®,. Thus, B, forgetting the K-action, is a Hopf

It is well known that the duality pairing ev: V* ® V — k extends to a unique
non-degenerate pairing ev: B(V*) ® B(V) — k of Hopf algebras in £YD, see for example,
[23, Corollary 7.2.8]. By the above observations, this is a non-degenerate pairing of Hopf
algebras in By [ ]

Having viewed B, and SB;.“I as braided Hopf algebras in B; = K-comod,, we
are able to compute their braided Drinfeld double over the Hopf algebra K*, cf.
Example 4.13; see [30, Section 3.2] for the presentation of general braided Drinfeld

doubles used here. We fix the following notation.

Notation 5.8. (x;, y;). For V in Definition 5.6 and in Lemma 5.7 above, we fix dual
bases x;,...,x,, of V, and y;,...,y, of V*, and denote the resulting generators of B(V),

respectively, of the dual Nichols algebra 2B(V*) by the same symbols.

Proposition 5.9 (Dring. (%*,%q)). Retain the notation above and assume that the
braided Hopf algebra B, in K-comod, from Lemma 5.7 is finite-dimensional. Then the
braided Drinfeld double DrinK*(%*,‘Bq) is a Hopf algebra generated as an algebra by
elements {5;}icp, (X;}i=1,. n, and {y;};—; . subject to the relations J(V) and 3(V*), along
with

—-1 —
88 =810 X =Xbie 8V = Vb V%~ @y XV = (1 -y

Here, it is understood that §; = & if i = j € A. The coproduct and counit are

determined by

AG)= D 8,®8, AX)=x%01+y0%, AF)=y;®1+7;®y,
a+b=i

e(8;) = 3 o, e(x;) = e(y;) =0.
The antipode is determined by

SG) =64  Sxp=-v""x;, Sy =-7;'v
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The Hopf algebra Dring. (‘BZ‘{, B) is quasi-triangular with R-matrix given by
Rprin = Z z iV ® X Vis
o i

where o indexes a basis {x,} of B, with dual basis {y,} of ‘BZ‘I with respect to the

paring ev.

Proof. First, note that for (K, r) coquasi-triangular, ((K*)®°P,r*) is a quasi-triangular
Hopf algebra, where (K*)°°P = (K, m, u, A°?,s,S™1) is the co-opposite Hopf algebra with
R-matrix given by the dual of r, that is,

The functor
®: K-comod, — (K*)°?-modg, (V,8) — (V,a}), aj = (evg @ ldy)(ldg ® 6),

defines an equivalence of braided tensor categories. In the case K = kG, (K*)®°P = K*
and, thus, %Z‘I and B can be regarded as dually paired Hopf algebras in K*-modg.

The result now follows from specifying the presentation from [30, Section 3.2] to
the case Dring.(Bg, B). For this, observe that R = r* for K* is given by R* = >;6;® ; €

K* ® K* and that the action and coaction of K* on V are given by

8i . X] = 8i,erj' (S(X]) = )/] X Xj, Vi X] = qL]X]’ 7i . X] = q]LX]

Remark 5.10 (k;, k;, G'). Note that Dring. (%*,%q) is a Z-graded Hopf algebra where
degd; = 0, fori € A, degx; = 1 and degy; = —1, fori = 1,...,n. It has a triangular
decomposition on %f; ® K* ® By Modules over this Hopf algebra can be described as
a relative monoidal center, cf. Example 4.13. For i € A, we denote k; := y;y; and k; :=
¥;7i- When the braided category B, is non-degenerate [Lemma 5.5], K* is isomorphic to
the group algebra kG’, where G' = (ky,...,k,;) is isomorphic to G. Thus, in this case,
Dring. (Bg, B,) has a triangular decomposition B ® kG’ ® B5. We note neither r nor rP
are necessarily non-degenerate pairings, so (y;,...,¥,) and (¥;,...,7,,) are, in general,

proper subgroups of G’ (see, e.g., Example 5.18 below).
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The next result, relating braided Drinfeld doubles and relative centers, will be

of use later.

Proposition 5.11 ([31, Section 4.2]). Retain Notation 5.4 and set C = ‘Bq—mod(Bq). Then

there exists an equivalence of braided monoidal categories
253,(C) = Dring. (B, B)-mod.

5.3 Modularity of braided Drinfeld doubles of Nichols algebras of diagonal type

In this section, we present an application of Theorem 4.14 by providing sufficient
conditions for categories of finite-dimensional modules over Dring. (‘B*,%q), that is,
over braided Drinfeld doubles of finite-dimensional Nichols algebras of diagonal type,

to be modular.

Notation 5.12. (¢, x,, i,). Continuing Notation 5.4 assume that the Nichols algebra ‘Bq
is finite-dimensional and let ¢ be the the top Z-degree of B,. Note that (B is one-
dimensional [2, Lemma 1.12]. We choose a non-zero element x, in (%q)é and denote its

G-degree by i,.

Lemma 5.13 ([1, Section 2.12]). We have thati, = ZﬂeA;(mﬁ —1)B8 € A, where A:IF is the

set of positive roots of the Nichols algebra B, and my is the order of the root of unity

Lemma 5.14. Recall (3.1), (3.2), Notation 5.12, and the notation of Section 5.2. The

distinguished group-like element for H := B, x K* and for H*, respectively, are
9 =1®v, ap(x ® ;) = e(x)é;, —1i,.

Proof. We use techniques from [8, Section 4] by first understanding integrals of H.
These elements can be built from integrals of B, and of K* as follows. Take a left
integral of SBq, that is, an element x ¢ %q such that hx = e¢(h)x for any h € ‘Bq. Then for
any left integral k of K*, we getthat A .= (1Qk)(x® 1) = (k(l) ‘X)) ® k(z) is a left integral
of H =%, x K* [8, Section 4.6].

Since (B4), = k1, it follows that 1 is the only group-like element of B,. By self-
duality of B4, we conclude that the distinguished group-like elements of B, and its dual
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areg=1€Bganda=¢¢€ EB;, respectively. Thus, A = §yx, is a left integral for H and
we compute that

verifying the claimed formula for oy on generators.

To find g;; we observe that the elements & € H* and x;' € H* satisfy the relation

XJ’-‘(S;‘ = r(gi,gj)éik ]*, Vi=1,...,n,i€A.

A right integral for H* is given by A = xj > ; 6. Hence, we compute on generators

X’-‘)»:O:s(xj’-k))»:ev(xj’f,l®yil))\, forallj=1,...,n

8h =8 Z;z;fa* > NG 9% 88 =1(g5. g )k = eV, 1@ 1)%,  forallje A.
i

This computation verifies the claimed formula for g. |

See [1, Proposition 2.42] for similar computations for %q x kG. Next, we derive

the following conditions for Dring. (B}, %q)—mod to be modular.

Proposition 5.15. Recall Notation 5.4 and 5.12 and Remark 5.10. The braided tensor

categories
Dring. (Bg, B,)-mod =~ ZBq(%q-mod(Bq))

are modular when

(i) the symmetric bilinear form b on K is non-degenerate, and
(ii) there exist j,a € A such that 2j = i,, 2a = i, b(gi,ga)2 = 19, 9i,): and
r(gj,gi)b(gi,ga) = qi_i1 foralli=1,...,n.

Proof. To show that ZBq(%q—mod(Bq)) is modular, it suffices to check that
(a) the braided finite tensor category B is non-degenerate and that (b) the set
Sqrt%q mod(Bq) (D: €p) is non-empty, by Theorem 4.14. Then, the equivalent category,
Dring. (B, B o -mod [Proposition 5.11], is also modular. Now (a) follows from (i) using

Lemma 5.5.
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Now we show that (ii) implies (b). Take H := B, x K*, a finite-dimensional Hopf
algebra with H-mod =~ B,-mod(B,). By (ii), we can define

a=1 ®ka, g(X@Sl) :8(X)8i,—j'
and compute using Proposition 5.9 that

a’ =kj = Z b(gi, 9a)b(91, 9a)5i61 = Zb(gi,ga)zrsi = Zr(gi,giz)éi =Y, =9
ileA ieA ieA

PO =CRODAG) = D 1LY = D & 301 =8 3, = g,

k+1=i k+1=i

£2(x) =t (D) + C () (%) = 0 = £(x;) = ay(xy),

foralli=1,...,nand i€ A. Here, oy and gy are the distinguished group-like elements
of H* and H, respectively, of Lemma 5.14. For these elements, again using Proposition

5.9, we see that
S2(x) = v Xy = a4 %,

TN &) aaE) e () @) = ¢ (axaT e (1) = (g5, g)b(9;, 9a) X,

for all i. Here, y; is from Notation 5.4 and ¢~1(8;) = 8;j- Using that r(g;, 9,)b(g;, g,) = qi_i1
from (ii), we conclude that condition (3.7) holds for h = x;. This equation is evident
for h € G since G is an abelian group and hence holds for all h € H using that S? is
an algebra morphism. Thus, applying Proposition 3.8 with the above elements a and ¢
yields (b). |

Remark 5.16.

(1) As a consequence of Radford’s S*-formula [43] for the Hopf algebra H =
By @ K*, we obtain that the values q = (g;) satisfy

r(9i,,99)7(9;. Gi,) = ;2

(2) Similar conditions as in Proposition 5.15(ii) were already derived in [1,

Proposition 2.42] to determine when Drin(B4 x kG) is a ribbon Hopf algebra.
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(3) Using Proposition 3.12, we derive necessary and sufficient conditions for

C =B -mod(By) to be spherical. The monoidal category
By-mod(By) ~ By K*-mod

is spherical if and only if i, = 0 and there exist b,c € A such that for a :=

yb?c ’

a“ =1, r(g;, 9p)7( G 9;) = qi_l.1 foralli=1,...,n.

In this case, SPiv(H) is given by these elements a. See Example 5.18 for a

class of examples of spherical categories obtained this way.

5.4 Small quantum groups and other examples

In this subsection, we include some specific examples and demonstrate how
Theorem 4.14 and Proposition 5.15 lead to examples of non-semisimple modular

categories.

Example 5.17 (The small quantum group u,(g)). Take g a root of unity of odd order

I > 3 and let g be the semisimple Lie algebra of rank t, associated to the irreducible
. t

y’ij=1"
) is a symmetric matrix. Associated to these data, one defines a finite-dimensional

symmetrizable Cartan matrix (a
(diaij

Hopf algebra u,(g), the small quantum group (or Frobenius-Lusztig kernel) as, for

We choose coprime integers d; = 1,2,3 so that

example, in [47, Section 3.2] (When g is of type G,, assume [ is coprime to 3; d; = 3 only
appears in this case). The Hopf algebras u,(g) generated by group-like elements kfd,
(k;, 1)-skew primitive elements e;, and (1, ki_l)—skew primitive elements f; fori=1,...¢,

subject to relations:

! ! I
=1, é=0  fl=o
kie; = qU%ek,  kify=q Wik, ey —fiei =80~k H@h —q )7,
1-ay; 1—a;;
ZJ( (1T i em g Z]( pr(t ) e g
— m ) e & m )t e

for the abelian group K := (ky, ..., k;) = 7.
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The above datum also defines a Nichols algebra of diagonal type by setting
gjj = q%%i. The braiding given by q is of Cartan type, that is, satisfies 9;i9ji = q:.liij, for
alli,j = 1,...,t. Moreover, the associated Nichols algebra %q is isomorphic to uq(n+),
the positive part of the small quantum group associated to g, and the braided Drinfeld

double DrinK*(%q, %(’;) is isomorphic to Uqg(9), both via

vi=7i— ki x> e,y kfiq 4 —q%).

See, for example, [35], [2, Theorem 4.3], and the references therein, for the isomorphism
of ‘Bq and uq(n+), along with [53, Section 5.10], [37, Proposition 4.3], [31,Theorem 4.9] for
the isomorphisms of the braided Drinfeld doubles.

We obtain that the category Dring.(By, Bg)-mod =~ u,(g)-mod is modular by
applying Proposition 5.15 as follows. First, the pairing r: G x G — k obtained from q
as in Notation 5.4 is non-degenerate using a computation as in [47, proof of Proposition
3.5], assuming that the determinant of (d;a;;) is coprime to l. This implies that G is
isomorphic to the group (y;,...,y,) € kG*. Further, r is symmetric and the associated
bilinear form b is given as its square. Thus, as all q%% are primitive I-th roots of unity,
with [ odd, the same holds for g?%%i and b is also non-degenerate. Therefore, Proposition
5.15(1) holds. Moreover, the proof of [8, Theorem 5.4] contains a computation that
shows that Proposition 5.15(ii) holds for this class of examples (In fact, Burciu denotes
8§ = ¢,h = a,x;(9) = r(g;,9) and verifies the required equation §~1(g,)x(h) = x;(g;) "}
using the Lie theoretic computation that, writing the j-th positive root as B; = Zgzl CjsOs,
we have > ;> ¢ a;.c;; = 2.). Therefore, Proposition 5.15 implies that Dring. (B4, Bg)-mod
is an MTC.

Continuing Example 4.18, we have a decomposition of modular categories:
Drin(uq(b+))—mod ~ Bq X uq(g)-mod,

where u,(b,) is the positive Borel part of u,(g) generated by the e; and k;.

Finally, we produce an example of a relative monoidal center that gives a
modular category that is not of the form u,(g)-mod. It consists of modules over a more
general type of quantum group, namely, modules over the braided Drinfeld double of a

Nichols algebra that is not of Cartan type.
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Example 5.18. Let g € k be a primitive 2n-th root of unity, for n > 1 an odd integer.
We denote by G the abelian group (g;,9,) = Z,,, X Z,,,. Consider the Nichols algebra B
of diagonal type determined by q = (qij), with

d11 =4z = —1, G2 =1, 4> =4,

as in Section 5.2. This Nichols algebra appears in the classification of [21, Table 1, Row
2]. It has by [29] a PBW basis given by the set {x{'x5?x{}* | 0 < ay,a, < 2, 0 < a, < 2n},
where x,, := X, X, —X,X,, and is thus 8n-dimensional. Note that B is generated by x;, x,

subject to the relations
Xf =0, X% =0, x}, =0,

see [1, Section 5.1.11] and is one of the Nichols algebras of super type A(1]1).

In this example, the symmetric bilinear form b from Notation 5.4 is given by

b(g;,9;) = g;;q;j, SO

b(glrgflggz) =b(9,,9,)°b(g,,95)% = q%, b(gzlgflg?) = b(g,,9,)b(g,.95)%? = q°,

for all ¢;, c,.

Hence, ¢5'g,? is in the radical of b if and only if ¢;,c, = 0 mod 2n since q is a
primitive 2n-th root of unity. Thus, b is non-degenerate and Proposition 5.15(i) holds by
Lemma 5.5.

The Hopf algebra Dring. (By, %:‘I) may be presented as the Hopf algebra gener-
ated by x;,y;, and k; := y;; for i = 1, 2, subject to relations, fori,j =1,2,1 #j,

kix; = x;k;, kiy; = vik;, kix; = gx;k;, kiy; = q_Iiji' x,y; +yix; = 6;;(1—k;),
xZ=y?=0, k=1, (x1%5 — X,x)*" = (y71 — V1Y) =0,
Ax) =x,®1+k) %y, Axy)) =X, ® 1 + kTk, @ x5,

Ay =7 ®1+kki®y,, Ay =y, 81 +kl®y,.

Here, we use that y; = k7, y, = ki'ky, ¥, = k k3, and ¥, = k. Note that (y;,y,) and
(¥1,75) are both proper subgroups of (k;, k,).
The top Z-degree element x;, is Xlxzxfgfl and has G-degreei, = (2n,2n) =0 €

A = Zy, X Zyy,. There are four pairs j = (j;,j;), a = (a;,a,) € A satisfying the conditions
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from Proposition 5.15(ii):

(1)j=(0,0),a=(n,n) (2)j=(n,0),a=(n,0);
(3)j=(0,n),a=(0,0); 4)j=m,n),a=(0,n)

It is clear that in all cases (1)-(4), 2j = 0 = i, and that k, = k]'k;? squares to gy =y, = 1,
so that b(g;, g,)? = r(9;,9;,) = 1 for all i = 1, 2. The remaining condition of Proposition

5.15(ii) is verified using explicit computation. In Case (1), for instance, we compute that

r(gj,gl)b(gl,ga) = r(g(o,o),gﬂb(gpg(n,n)) = Q%?(‘hz‘bl)n = (—l)znq" =-1= ql_ll,

using g"* = —1. Similarly,

795, 91)b(G1, 9a) = (9(0,0): 920D 2 Ginm) = 955 (21 D12)" = (—1D*"q" = —1 = g3; .

Thus, the set Sqrt.(D, &) contains four distinct elements, which yields four different
ribbon structures on Dring. (B, %;’i)-mod by the proof of Theorem 4.14 (using Theorem
3.5). In each case, this category is modular by Proposition 5.15.

Moreover, to study the sphericality of the category C := B-mod(B,), we apply
Remark 5.16(3) and show that only Case (1) yields a spherical structure. For this, we set
b= (1,0), ¢ = (0,1), and get that a = y, 7, = ;7 = k'k}. Then a? = k?"k3" = 1 and the
equations r(g;, g,)r(G¢. 9;) = qi_il, for i = 1,2 follow similarly to above, thus satisfying
the conditions in Remark 5.16(3). Note that a here is the same as the one obtained in Case
(1); thus, in this case, C is spherical in the sense of Definition 3.9. Finally, Cases (2)-(4)
do not yield spherical structures on C. Indeed, by Proposition 3.12, having a € SPiv(H)
is equivalent to (¢, a) belonging to the set of Theorem 3.6 with ¢ = ¢. The pairs (j,a)
above correspond to pairs (¢, a) in Theorem 3.6, with a = k, and ¢ obtained from j via

{(x ®3;) = e(x)d; ;. To get that ¢ = ¢, we need that j = 0, which only occurs in Case (1).
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