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This paper is a contribution to the construction of non-semisimple modular categories.

We establish when Müger centralizers inside non-semisimple modular categories are

also modular. As a consequence, we obtain conditions under which relative monoidal

centers give (non-semisimple) modular categories, and we also show that examples

include representation categories of small quantum groups. We further derive condi-

tions under which representations of more general quantum groups, braided Drinfeld

doubles of Nichols algebras of diagonal type, give (non-semisimple) modular categories.

1 Introduction

The purpose of this article is to establish new constructions of modular tensor

categories (MTCs) in the non-semisimple setting. We work over an algebraically closed

field k.

To begin, let us recall the main structure of interest in this work, which is due

to Kerler–Lyubashenko [28]. We refer the reader to Section 2 for a discussion of various

types of tensor categories relevant here. Take vect
k

to be the tensor category of finite-

dimensional k-vector spaces, and for a braided tensor category C, let C′ be the Müger

center of C (see (2.4)).
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Constructing Non-Semisimple Modular Categories 15827

Definition 1.1 (Definitions 2.10 and 2.11). Take C a braided finite tensor category. We

call C a MTC if C is non-degenerate (i.e., C′ � vect
k
) and ribbon.

Note that the definition above does not require semisimplicity, as the commonly

used definition of an MTC (see, e.g., [5]). MTCs provide actions of the modular group

though their modular data, the S- and T-matrices, a structure that emerged from

mathematical physics [39]. Semisimple MTCs have appeared in various fields such as

low-dimensional topology [55], conformal field theory [19, 24, 39], and subfactor theory

[27]; they have been under intense investigation towards classification results by rank

(see, e.g., [48]).

The definition of a non-semisimple MTC of [28] has been given further justifica-

tion through equivalent characterizations in [50]. Moreover, non-semisimple MTCs are

gaining traction due to their growing list of applications, starting with non-semisimple

topological quantum field theories [28], most recently in [11], to the study of logarithmic

conformal field theories [25], modular functors [17], and mapping class group actions

[33]. Some module categories of small quantum groups (and of related quasi-Hopf

algebras) have been shown to yield examples of non-semisimple MTCs [18, 34, 35, 42].

But, in general, non-semisimple MTCs are not well understood via classification nor

examples, and we aim to contribute to the latter in this work.

One of the main examples of an MTC in the semisimple setting is the monoidal

center Z(C) [Section 2.4] of a trace-spherical tensor category C [Section 2.2] (often

referred to as a spherical category) [6]. We discuss in Section 3 a non-semisimple

generalization of this result, due to Shimizu, which we will employ later in our main

results. First, we recall the set of square roots of the Radford isomorphism of a

finite tensor category, denoted by SqrtC(D, ξD) here [Definition 3.3] that Shimizu uses to

parameterize ribbon structures for Z(C) [Theorem 3.5]. This recovers a result Kauffman–

Radford for the ribbonality of the Drinfeld double [Theorem 3.6]; see Proposition 3.8

for the explicit connection between these theorems. Next, we recall Douglas–

Schommer–Pries–Snyder’s notion of sphericality [13] in the non-semisimple setting

[Definition 3.9]. By [49], this notion of sphericality implies that SqrtC(D, ξD) is non-

empty [Remark 3.11]. We provide equivalent conditions for the representation category

of a Hopf algebra to be spherical [Proposition 3.12]. Moreover, we obtain the following

result.

Proposition 1.2 (Proposition 3.13). Any unimodular finite ribbon category is spherical

in the sense of [13].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/20/15826/6316085 by D
ESY-Zentralbibliothek user on 18 N

ovem
ber 2022



15828 R. Laugwitz and C. Walton

Shimizu’s results from [50] on the modularity of Z(C) are recalled in

Theorem 3.14 and Corollary 3.15— the hypotheses are, respectively, that SqrtC(D, ξD)

is non-empty and that C is spherical (as in [13]).

We build on the results on Z(C) above to obtain Theorem 1.4 below on the

modularity of relative monoidal centers. Before this, we establish a general result on

the modularity of Müger centralizer, Theorem 1.3. These are the main results of the

paper, presented in Section 4.

To proceed, note that a full subcategory of a category is called topologizing if it

is closed under finite direct sums and subquotients [46, 50]. Moreover, recall the notion

of the Müger centralizer of a subset of objects in a braided category; see (4.1).

Theorem 1.3 (Theorem 4.3). Let D be a modular category, let E be a topologizing

braided tensor subcategory of D, and consider the Müger centralizer CD(E). Then,

CD(E)′ � E ′.

As a consequence, CD(E) is modular if and only if E is modular.

This generalizes a result of Müger in the semisimple case [41, Corollary 3.5].

Next we discuss a special case of Müger centralizers: relative monoidal centers.

Take a braided category (B, ψX,Y : X ⊗ Y
∼→ Y ⊗ X) with braided opposite B :=

(B, ψ−1
Y,X : X ⊗ Y

∼→ Y ⊗ X). We say that a monoidal category C is B-central if there

exists a faithful braided monoidal functor G : B → Z(C) [Definition 4.4]. With such a

category C, one can form the relative monoidal center ZB(C), which is a full subcategory

of Z(C) consisting of objects that centralize (via the braiding of Z(C)) all objects in the

image of G [Definition 4.7]. In fact, ZB(C) is equal to the Müger centralizer CZ(C)(G(B))

[Remark 4.8]. Given Theorem 1.3, we obtain the following result.

Theorem 1.4 (Theorem 4.14). Let B be a non-degenerate braided finite tensor category,

and C a B-central finite tensor category so that the set SqrtC(D, ξD) from Definition 3.3 is

non-empty. If the full image G(B) is a topologizing subcategory of Z(C), then the relative

monoidal center ZB(C) is modular.

For B a rigid braided category and H a Hopf algebra in B, Theorem 1.4

can be used to study the modularity of the category of finite-dimensional H-Yetter

Drinfeld modules in B [Example 4.12]. If, further, B is a representation category of a
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Constructing Non-Semisimple Modular Categories 15829

quasi-triangular Hopf algebra K, then Theorem 1.4 can also be used to study the

modularity of the representation category of the braided Drinfeld double DrinK(H, H∗)
[Example 4.13]. From this, we show, as a 1st example, that the representation cate-

gory of the small quantum group uq(sl2), for q a root of unity of odd order, is an

MTC [Example 5.3]. Generalizations of this (non-semisimple) MTC will be given in

Proposition 1.7 below.

Motivated again by the work of Müger in the semisimple case, we next consider

the decomposition of MTCs into Deligne tensor product of modular subcategories. We

obtain the result below; cf., [41, Theorem 4.2].

Theorem 1.5 (Theorem 4.17). Let D be an MTC, with a topologizing non-degenerate

braided tensor subcategory E . Then, there is an equivalence of ribbon categories:

D � E � CD(E).

In particular, under the conditions of Theorem 1.4, the relative monoidal center

is related to the monoidal center through the factorization

Z(C) � B � ZB(C).

Continuing an example mentioned above, for H a Hopf algebra in the braided tensor

category K-mod, we have that Drin(H�K)-mod � K-mod � DrinK(H, H∗)-mod as modular

categories under the hypotheses of Theorem 1.4; see Example 4.18(2).

As in [41], we call an MTC C in the non-semisimple setting prime if every

topologizing non-degenerate braided tensor subcategory is equivalent to either C or

vect
k
. We obtain the result below as an immediate consequence of the theorem above,

cf. [41,Theorem 4.5].

Corollary 1.6 (Corollary 4.20). Every MTC is equivalent to a finite Deligne tensor

product of prime modular categories.

Although primality is difficult to detect in the semisimple case (see [41,Section

4]), we inquire when it holds in the non-semisimple case, particularly for DrinK(H, H∗)-mod
in the example above; see Question 4.21.

Finally, we construct several examples of non-semisimple MTCs, via Theorem 1.4,

by using Nichols algebras of diagonal type in braided categories of comodules over

finite abelian groups.
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15830 R. Laugwitz and C. Walton

Proposition 1.7 (Proposition 5.15). Take K := kG, for G a finite abelian group, assume

that char k = 0, and take B a finite-dimensional Nichols algebra of diagonal type in

a certain braided category B of K-comodules. Consider the relative monoidal center,

D := ZB(B-mod(B)), or equivalently the category of finite-dimensional modules over

the braided Drinfeld double DrinK∗(B∗,B).

Then, D is modular when (i) the canonical symmetric bilinear form b on

the coquasi-triangular Hopf algebra K is non-degenerate and (ii) certain conditions

involving elements of the top degree of B and on the dual R-matrix of K are satisfied.

Note that the Drinfeld double of the bosonization of Nichols algebras has been

studied in the literature, see for example, [22], where two copies of the group algebra

constitute the Cartan part. In this paper, an approach is used where the Cartan part

consists of a simple (dual) group algebra K∗.

We end the paper by constructing, via Proposition 1.7, examples of non-

semisimple MTCs attached to Nichols algebras of Cartan type [Example 5.17] and not

of Cartan type [Example 5.18]. The former includes the representation category of the

small quantum group uq(g) at an odd root of unity. Thus, the methods developed in this

paper provide an alternative argument showing that the category of finite-dimensional

uq(g)-modules is a non-semisimple MTC, which was previously obtained in [36, Section

A.3]. See also [18, 34] for more general results on the modularity of representation

categories of small quantum groups. On the other hand, the non-semisimple MTCs

in Example 5.18 illustrate that our methods can be used to analyze the modularity of

representation categories attached to a broader class of Nichols algebras beyond small

quantum groups.

2 Preliminaries on Monoidal Categories

In this section, we review terminology pertaining to monoidal categories. We refer

the reader to [5], [15], and [54] for general information. We recall monoidal categories

and module categories [Section 2.1], various types of rigid categories [Section 2.2],

finite tensor categories [Section 2.3], various braided monoidal categories [Section 2.4],

algebraic structures in finite tensor categories [Section 2.5], ribbon monoidal categories

[Section 2.6], and MTCs in the non-semisimple setting [Section 2.7].

We assume that all categories here are locally small (i.e., the collection of

morphisms between any two objects is a set) and that all categories here are abelian.

A full subcategory of a category is called topologizing if it is closed under finite direct

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/20/15826/6316085 by D
ESY-Zentralbibliothek user on 18 N

ovem
ber 2022



Constructing Non-Semisimple Modular Categories 15831

sums and subquotients [46, Section 3.5.3], [50, Definition 4.3]. Given a functor F : C → D
between two categories C and D, the full image of F is the full subcategory of D on all

objects isomorphic to an object of the form F(C) for C in C.

2.1 Monoidal categories, monoidal functors, and module categories

We refer the reader to [15, Sections 2.1–2.6 and 7.1] and [54, Sections 1.1–1.4] for further

details of the items discussed here.

A monoidal category consists of a category C equipped with a bifunctor ⊗ : C ×
C → C, a natural isomorphism αX,Y,Z : (X ⊗ Y) ⊗ Z

∼→ X ⊗ (Y ⊗ Z) for each X, Y, Z ∈ C, an

object 1 ∈ C, and natural isomorphisms lX : 1⊗ X
∼→ X and rX : X ⊗ 1

∼→ X for each X ∈ C,

such that the pentagon and triangle axioms hold. By MacLane’s coherence theorem, we

will assume that all monoidal categories are strict in the sense that (X⊗Y)⊗Z = X⊗(Y⊗
Z) and 1⊗X = X = X ⊗1, for all X, Y, Z ∈ C; that is, αX,Y,Z, lX , rX are identity maps. For a

monoidal category (C, ⊗, 1), define the opposite monoidal category to C⊗op = (C, ⊗op, 1)

where X ⊗op Y := Y ⊗ X.

A (strong) monoidal functor (F, F−,−, F0) between monoidal categories (C, ⊗C , 1C)

to (D, ⊗D, 1D) is a functor F : C → D equipped with a natural isomorphism FX,Y : F(X)⊗D
F(Y)

∼→ F(X ⊗C Y) for all X, Y ∈ C, and an isomorphism F0 : 1C
∼→ F(1C) in D, which

satisfy associativity and unitality constraints. An equivalence of monoidal categories

is provided by a monoidal functor between the two monoidal categories that yields an

equivalence of the underlying categories.

Representations of monoidal categories are provided by the next notion. A left

C-module category is a category M equipped with a bifunctor ⊗ : C × M → M, natural

isomorphisms for associativity mX,Y,M : (X⊗Y)⊗M → X⊗(Y⊗M), for all X, Y ∈ C, M ∈ M
satisfying the pentagon axiom, and for each M ∈ M a natural isomorphism 1 ⊗ M → M

satisfying the triangle axiom.

2.2 Rigid, pivotal, and trace-spherical monoidal categories

We refer to [15, Sections 2.10 and 4.7] and [54, Sections 1.5–1.7] for further details of the

items discussed below.

A monoidal category (C, ⊗, 1) is rigid if it comes equipped with left and right

dual objects, that is, for each X ∈ C there exist, respectively, an object X∗ ∈ C with

co/evaluation maps evX : X∗ ⊗ X → 1 and coevX : 1 → X ⊗ X∗, as well as an object ∗X ∈ C
with co/evaluation maps ẽvX : X ⊗ ∗X → 1, c̃oevX : 1 → ∗X ⊗ X, satisfying the usual
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15832 R. Laugwitz and C. Walton

coherence conditions of left and right duals. An object X in a rigid monoidal category C
is invertible if evX and coevX are isomorphisms.

A rigid monoidal category is pivotal if it is equipped with isomorphisms jX : X
∼→

X∗∗ natural in X and satisfying jX⊗Y = jX ⊗ jY for all X, Y ∈ C. Equivalently, a pivotal

category is a rigid monoidal category such that the functors of left and right duality

coincide as monoidal functors [54, Section 1.7].

The quantum dimension of an object X of a pivotal (rigid) monoidal category

(C, ⊗, 1, j) is defined to be dimj(X) = evX∗(jX ⊗ IdX∗)coevX ∈ EndC(1). A pivotal monoidal

category (C, ⊗, 1, j) is trace-spherical if dimj(X) = dimj(X
∗) for each X ∈ C.

2.3 Finite tensor categories

Recall that k is an algebraically closed field. We now discuss certain k-linear monoidal

categories following the terminologies of [15,Sections 1.8, 7.1–7.3, 7.9].

A k-linear abelian category C is locally finite if, for any two objects V, W in

C, HomC(V, W) is a finite-dimensional k-vector space and every object has a finite

filtration by simple objects. Moreover, we say that C is finite if there are finitely many

isomorphism classes of simple objects. Equivalently, C is locally finite if it is equivalent

to the category of finite-dimensional comodules over a k-coalgebra (or, to modules over

a finite-dimensional k-algebra if C is finite). A tensor category is a locally finite, rigid,

monoidal category (C, ⊗, 1) such that ⊗ is k-linear in each slot and 1 is a simple object

of C. A tensor functor is a k-linear exact monoidal functor between tensor categories.

An example of a finite tensor category is vect
k
, the category of finite-dimensional

k-vector spaces. More generally, the category H-mod of finite-dimensional k-modules

over a (finite-dimensional) Hopf algebra H is a (finite) tensor category.

We will use the following tensor product of finite tensor categories. The Deligne

tensor product of two finite abelian categories is the abelian category C � D equipped

with a bifunctor � : C ×D → C �D, (X, Y) 	→ X � Y, right exact in both variables so that

for any abelian category A and any bifunctor F : C × D → A right exact in both slots,

there exists a unique right exact functor F : C � D → A with F ◦ � = F [12, Section 5]. It

is monoidal when both C and D are so, via

(X � Y) ⊗C�D (X ′ � Y ′) := (X ⊗C X ′) � (Y ⊗D Y ′), (2.1)

for all X, X ′ ∈ C and Y, Y ′ ∈ D, and with the unit object 1C � 1D. If C, D are finite tensor

categories, then so is C�D. Given two tensor functors F : C → D and F ′ : C′ → D′ between

finite tensor categories, there exists an induced tensor functor F � F ′ : C � C′ → D � D′.
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Constructing Non-Semisimple Modular Categories 15833

For a tensor category C over k, a left module category over C is a module category

M as in Section 2.1 with the requirement that M is also k-linear and abelian so that the

underlying bifunctor is k-linear on morphisms and exact in the 1st variable (it is always

exact in the 2nd variable).

An internal Hom object for a module category M over a k-linear, finite, tensor

category C is an object Hom(M1, M2) in C, for M1, M2 ∈ M, which represents the left

exact functor C → vect
k
, defined by X 	→ HomM(X ⊗ M1, M2). Namely, we have a natural

isomorphism: HomM(X ⊗ M1, M2) ∼= HomC(X,Hom(M1, M2)).

2.4 Braided monoidal categories, the monoidal center Z(C), and the Müger center C′

Here, we discuss braided tensor categories and related constructions, and refer the

reader to [5, Chapter 1], [15,Sections 8.1–8.3, 8.5, 8.20], and [54, Sections 3.1 and 5.1]

for more information.

A braided tensor category (C, ⊗, 1, c) is a tensor category equipped with a

natural isomorphism cX,Y : X ⊗ Y
∼→ Y ⊗ X for each X, Y ∈ C such that the hexagon

axioms hold. By a braided tensor subcategory of a braided tensor category C we mean

a subcategory of C containing the unit object of C, closed under the tensor product

of C, and containing the braiding isomorphisms. A braided tensor functor between

braided tensor categories C and D is a tensor functor (F, F∗,∗, F0) : C → D so that

FY,X cDF(X),F(Y) = F(cC
X,Y) FX,Y for all X, Y ∈ C. An equivalence of braided tensor categories

is a braided tensor functor between the two tensor categories that yields an equivalence

of the underlying categories.

An important example of a braided tensor category is the monoidal center (or

Drinfeld center) Z(C) of a tensor category (C, ⊗, 1): its objects are pairs (V, cV,−) where

V is an object of C and cV,X : V ⊗ X
∼→ X ⊗ V is a natural isomorphism (called a half-

braiding) satisfying cV,X⊗Y = (IdX ⊗cV,Y)(cV,X ⊗ IdY). An important feature of Z(C) is the

braiding defined by

c(V,cV,−),(W,cW,−) := cV,W : V ⊗ W
∼→ W ⊗ V.

Proposition 2.2. (see [15, Section 7.13]) If C is a (finite) tensor category, then Z(C) is a

braided (finite) tensor category.

Given two braided finite tensor categories (C, ⊗C , 1C , cC) and (D, ⊗D, 1D, cD),

the Deligne tensor product C � D is a braided finite tensor category. The braiding is
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15834 R. Laugwitz and C. Walton

obtained from

cX�Y,X ′�Y ′ = cCX,X ′ � cDY,Y ′ : (X ⊗C X ′) � (Y ⊗D Y ′) → (X ′ ⊗C X) � (Y ′ ⊗D Y) (2.3)

for all X, X ′ ∈ C, Y, Y ′ ∈ D.

We need to consider later the Müger center of a braided tensor category

(C, ⊗, 1, c), which is the full subcategory on the objects

Ob(C′) := {X ∈ C | cY,X cX,Y = IdX⊗Y for all Y ∈ C}. (2.4)

2.5 Algebraic structures in tensor categories

In this section, let C := (C, ⊗, 1) be a tensor category over k. Assume that all structures

below are k-linear as well.

2.5.1 (Co)algebras and their (co)modules

We discuss in this part algebras and coalgebras in C and their (co)modules. More

information is available in [15, Section 7.8] and [54, Section 6.1].

An algebra in C is an object A ∈ C equipped with two morphisms m : A ⊗ A → A

(multiplication) and u : 1 → A (unit) satisfying m(m⊗ IdA) = m(IdA⊗m) and m(u⊗ IdA) =
IdA = m(IdA ⊗ u). We denote by Alg(C) the category of algebras in C, where morphisms

in Alg(C) are morphisms f : A → A′ in C so that f mA = mA′(f ⊗ f ) and f uA = uA′ .

Given an algebra A in C, a left A-module in C is a pair (V, aV) for V an object in

C and

aV : A ⊗ V → V,

a morphism in C satisfying aV(m⊗IdV) = aV(IdA⊗ aV) and aV(u⊗IdV) = IdV . A morphism

of A-modules (V, aV) → (W, aW) is a morphism V → W in C that intertwines with aV

and aW . This way, we define the category A-mod(C) of left A-modules in C. Analogously,

we define mod-A(C), the category of right A-modules in C.

A coalgebra in C is an object C ∈ C equipped with two morphisms � : C → C ⊗
C (comultiplication) and ε : C → 1 (counit) satisfying (� ⊗ IdC)� = (IdC ⊗ �)� and

(ε ⊗ IdC)� = IdC = (IdC ⊗ ε)�. Dual to above, we can define the category Coalg(C) of

coalgebras and their morphisms in C, and given C ∈ Coalg(C) we can define categories,
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Constructing Non-Semisimple Modular Categories 15835

C-comod(C) and comod-C(C), of left and right C-comodules in C, respectively. For V ∈
C-comod(C), the left C-coaction map is denoted by

δV : V → C ⊗ V.

2.5.2 Bialgebras and Hopf algebras

In this part, let C := (C, ⊗, 1, c) be a braided tensor category over k. We define bialgebras

and Hopf algebras in C here, and more details can be found [54, Sections 6.1 and 6.2].

A bialgebra in C is a tuple H := (H, m, u, �, ε) where (H, m, u) ∈ Alg(C) and

(H, �, ε) ∈ Coalg(C) so that �m = (m ⊗ m)(Id ⊗ c ⊗ Id)(� ⊗ �), �u = u ⊗ u, εm = ε ⊗ ε,

and εu = Id1. We denote by Bialg(C) the category of bialgebras in C, where morphisms in

Bialg(C) are morphisms in C that belong to Alg(C) and Coalg(C) simultaneously.

A Hopf algebra is a tuple H := (H, m, u, �, ε, S), where (H, m, u, �, ε) ∈ Bialg(C)

and S : H → H is a morphism in C (called an antipode) so that m(S ⊗ IdH)� =
m(IdH ⊗ S)� = uε. We denote by HopfAlg(C) the category of Hopf algebras in C, where

morphisms are morphisms in Bialg(C). We assume that all Hopf algebras in this work

have an invertible antipode, that is, there exists a morphism S−1 : H → H is a morphism

in C so that SS−1 = IdH = S−1S.

2.5.3 (Co)modules over Hopf algebras

Now we discuss (co)modules over Hopf algebras H in a braided tensor category

(C, ⊗, 1, c). We refer the reader to [15, Sections 7.14, 7.15, 8.3] and [7, Section 3] for more

details.

If V, W are left H-modules in C, then so is the tensor product V ⊗ W, via the

action (2.5) below:

aV⊗W := (aV ⊗ aW)(IdH ⊗ cH,V ⊗ IdW)(�H ⊗ IdV⊗W). (2.5)

This makes the category H-mod(C) a monoidal category, with unit object (1 = k, a1 =
εH⊗Id1). Assume that C is rigid, and take (V, aV) ∈ H-mod(C). Then its left dual (V∗, aV∗) ∈
H-mod(C) is defined using SH , and its right dual (∗V, a∗V) ∈ H-mod(C) is defined using

S−1
H . It follows that H-mod(C) is a (finite) tensor category provided C is a (finite) braided

tensor category.

For one supply of braided tensor categories, take the category H-mod(vect
k
) for

H a finite-dimensional k-Hopf algebra. We say that H is quasi-triangular if it comes
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15836 R. Laugwitz and C. Walton

equipped with an invertible element R = R(1) ⊗ R(2) ∈ H ⊗ H satisfying

(� ⊗ Id)(R) = R13R23, (Id⊗ �)(R) = R13R12, �op(h) = R�(h)R−1, for h ∈ H,

where �op is the opposite coproduct. It follows that H-mod(vect
k
) is a braided tensor

category if and only if the finite-dimensional Hopf algebra H is quasi-triangular; here,

the braiding is given by

cV,W(v ⊗ w) = aW(R(2) ⊗ w) ⊗ aV(R(1) ⊗ v),

for (V, aV), (W, aW) ∈ H-mod(vect
k
). We say that H is coquasi-triangular if it comes

equipped with a convolution-invertible bilinear form r : H ⊗ H → k satisfying

r(h, k�) = r(h(1), �)r(h(2), k), r(�h, k) = r(�, k(1))r(h, k(2)),

r(h(1), �(1))h(2)�(2) = �(1)h(1)r(h(2), �(2)),

h, k, � ∈ H (see e.g., [38, Definition 2.2.1]). It follows that H-comod(vect
k
) is a braided

tensor category if and only if the finite-dimensional Hopf algebra H is coquasi-

triangular; here, the braiding is given by

cV,W(v ⊗ w) = (r ⊗ IdW ⊗ IdV)(IdH ⊗ τ ⊗ IdV)(δW ⊗ δV)(w ⊗ v)

for (V, δV), (W, δW) ∈ H-comod(vect
k
) and τ(a ⊗ b) = b ⊗ a.

For another supply of braided tensor categories, take a Hopf algebra H in C,

and consider the category of H-Yetter–Drinfeld modules in C, denoted by H
HYD(C), which

consists of objects (V, aV , δV), where (V, aV) ∈ H-mod(C) with left H-coaction in C
denoted by δV : V → H ⊗ V, subject to compatibility condition:

(mH ⊗ aV)(IdH ⊗ cH,H ⊗ IdV)(�H ⊗ δV)

= (mH ⊗ IdV)(IdH ⊗ cV,H)(δV ⊗ IdH)(aV ⊗ IdH)(IdH ⊗ cH,V)(�H ⊗ IdV).

A morphism f : (V, aV , δV) → (W, aW , δW) in H
HYD(C) is given by a morphism f : V → W in

C that belongs to H-mod(C) and H-comod(C). Given two objects (V, aV , δV) and (W, aW , δW)
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Constructing Non-Semisimple Modular Categories 15837

in H
HYD(C), their tensor product is given by (V ⊗ W, aV⊗W , δV⊗W), where aV⊗W as in (2.5)

and

δV⊗W = (mH ⊗ IdV⊗W)(IdH ⊗ cH,V ⊗ IdW)(δV ⊗ δW).

The category H
HYD(C) is braided with braiding given by cYDV,W = (aW ⊗IdV)(IdH ⊗cCV,W)(δV ⊗

IdW). Further, when C = vect
k

and dim
k

H < ∞, we get that H
HYD(vect

k
) is equivalent

to the braided tensor category of modules over the Drinfeld double, Drin(H), see for

example, [38, Theorem 7.1.2] and cf. Example 4.13 below with K = k.

2.6 Ribbon tensor categories

In this section we assume that C := (C, ⊗, 1, c) is a braided tensor category, and we refer

the reader to [5, Chapter 2], [15, Sections 8.9–8.11], [54, Section 3.3], and [44, Chapter 12]

for details of the discussion below.

A braided tensor category (C, ⊗, 1, c) is ribbon (or tortile) if it is equipped with

a natural isomorphism θX : X
∼→ X (a twist) satisfying θX⊗Y = (θX ⊗ θY) ◦ cY,X ◦ cX,Y and

(θX)∗ = θX∗ for all X, Y ∈ C. A functor (or, equivalence) of ribbon categories is a functor

(respectively, equivalence) F : C → D of braided tensor categories such that F(θCX ) = θDF(X),

for any X ∈ C, cf. [52, Section 1].

In a ribbon category (C, ⊗, 1, c, θ), consider the Drinfeld isomorphism:

φX = (IdX∗∗ ⊗ evX)(cX∗,X∗∗ ⊗ IdX)(coevX∗ ⊗ IdX) : X
∼→ X∗∗. (2.6)

Then,

jX := φXθX : X
∼→ X∗∗ (2.7)

defines a pivotal structure on C.

For a supply of ribbon categories, consider the category H-mod(vect
k
) for H =

(H, R) a finite-dimensional quasi-triangular k-Hopf algebra. We say that H is a ribbon

Hopf algebra if there exists a central invertible element v ∈ H satisfying

�(v) = (R21R)−1(v ⊗ v), ε(v) = 1, S(v) = v. (2.8)
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15838 R. Laugwitz and C. Walton

This definition is equivalent to the one given in [45, Section 3.3], [44, Definition 12.3.5]. It

follows that H-mod(vect
k
) is a ribbon category if and only if H is a ribbon Hopf algebra

[38, Corollary 9.3.4]. In this case, the ribbon twist is given by the action of v−1.

The following lemma will be of use.

Lemma 2.9. Take D a braided full tensor subcategory of a braided tensor category C.

If C is ribbon, then so is D.

This result is obtained by restricting the ribbon structure from C to D. Moreover,

the ribbon structure of the monoidal center Z(C) will be discussed later in Section 3.2.

2.7 Modular tensor categories

In the section, we discuss a notion of an MTC for the non-semisimple setting. This is

based on the work by Kerler–Lyubashenko [28] and the recent work by Shimizu [50]. To

proceed, we adopt the definition of non-degeneracy below, which extends the notion of

non-degeneracy in the semisimple setting; see [15, Definition 8.19.2 and Theorem 8.20.7].

Definition 2.10 ([50, Theorem 1]). We call a braided finite tensor category (C, ⊗, 1, c)

non-degenerate if its Müger center C′ is equal to vect
k
.

Next, we discuss a characterization of non-degeneracy. Let (C, cX,Y : X ⊗ Y
∼→

Y ⊗ X) be a braided tensor category, and take the braided tensor category:

C := (C, c−1
Y,X : X ⊗ Y

∼→ Y ⊗ X).

The assignments C → Z(C), X 	→ (X, cX,−), and C → Z(C), X 	→ (X, c−1
−,X), extend to a

braided tensor functor C � C → Z(C). If this functor yields an equivalence between the

braided tensor categories C � C and Z(C), then we say that (C, ⊗, 1, c) is factorizable.

A braided finite tensor category is non-degenerate if and only if it is factorizable [50,

Theorem 4.2]; note that this article also provides a third equivalent characterization of

non-degeneracy in terms of a non-degenerate form on the coend.

Moreover, the following types of tensor categories are of primary interest in this

work.

Definition 2.11 ([28, Definition 5.2.7], [50, Section 1]). A braided finite tensor category

is called modular if it is non-degenerate and ribbon.
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Constructing Non-Semisimple Modular Categories 15839

Now consider the braided finite tensor category H-mod(vect
k
) for H a finite-

dimensional, quasi-triangular Hopf algebra over k. We get that H-mod(vect
k
) is modular

precisely when H is ribbon and factorizable [15, Proposition 8.11.2 and Example 8.6.4].

Remark 2.12. By Lemma 2.9, we obtain that a topologizing non-degenerate braided

tensor subcategory of a modular category is also modular.

Remark 2.13. It is straight-forward to show that if C and D are modular, then so

is C � D via the monoidal structure (2.1), the braiding (2.3), and with ribbon structure

θC�D := θC � θD.

3 Non-Semisimple Spherical Categories and Ribbon Structures on the Center

Let C be a finite tensor category over an algebraically closed field k. The purpose of

this section is to review sufficient conditions for the monoidal center Z(C) to be an

MTC. First, we recall the notion of a distinguished invertible object and the Radford

isomorphism of C in Section 3.1. This allows us to recall, in Section 3.2, Shimizu’s

necessary and sufficient conditions for Z(C) to be ribbon, generalizing a result of

Radford–Kauffman in the case when C = H-mod(vect
k
) for H a finite-dimensional Hopf

algebra. In Section 3.3, we recall the concept of a spherical category introduced in the

work by Douglas–Schommer-Pries–Snyder [13], expanding the semisimple notion in [6]

to the non-semisimple setting; it is then applied to describe when Z(C) is modular.

3.1 The distinguished invertible object D and the Radford isomorphism ξD

For details, see [15, Sections 7.18–7.19 and 8.10], [44, Section 10.5], and the references

within.

Consider C as a C � C⊗op-module category. In this case, the canonical algebra

is defined as Acan := Hom(1, 1) ∈ Alg(C � C⊗op). For example, if H is a Hopf algebra

over k, then the canonical algebra in C := H-mod(vect
k
) is H∗ ∈ Alg(C � C⊗op) viewed

as an H-bimodule over k with left and right H-actions given by translation. The

category HopfBimod(C) := mod-Acan(C � C⊗op) of right Acan-modules in C � C⊗op is called

the category of Hopf bimodules in C. Both Acan and its dual object A∗
can belong to

HopfBimod(C). Moreover, HopfBimod(C) is a tensor subcategory of (C � C⊗op, �, Acan)

where

� := ρ(IdC × F) � IdC⊗op : (C � C⊗op) × (C � C⊗op) ∼= (C × (C⊗op � C)) � C⊗op −→ C � C⊗op,
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15840 R. Laugwitz and C. Walton

for F : C⊗op � C → vect
k
, (X, Y) 	→ HomC(∗Y, X), and ρ is the natural action of vect

k
on

C. Continuing the example above, for C := H-mod(vect
k
) with H ∈ HopfAlg(vect

k
), and

Acan = H∗, we get that HopfBimod(C) is the usual category of Hopf bimodules over H.

Moreover, for M, N ∈ HopfBimod(C), we obtain that M �N = (M∗ ⊗H N∗)∗, for ()∗ denoting

the k-linear dual here.

By [16, Theorem 3.3] and [13, Theorem 3.3.4], there exists an invertible object

D ∈ C so that (D�1)�Acan
∼= A∗

can as objects inHopfBimod(C). This isomorphism is unique

up to a scalar, and D is indeed an invertible object of C. We call D the distinguished

invertible object of C.

We also get a canonical natural tensor isomorphism

ξD(X) : D ⊗ X
∼→ X4∗ ⊗ D,

defined as follows. Let F, G : C → C be two tensor functors, and consider the category

Z(F, G) with objects:

Ob(Z(F, G))={(V, σV) | V ∈C, σV(−) : V ⊗ F(−)
∼→ G(−)⊗V a ⊗-compatible natural isom.},

where the compatibility conditions are [49, (3.1),(3.2)]. Two objects (V, σV) and (V ′, σV ′) of

Z(F, G) are equivalent if there is an isomorphism f : V
∼→ V ′ so that σV ′(X)(f ⊗ IdF(X)) =

(IdG(X) ⊗ f )σV(X) for all X ∈ C. This category is not always monoidal, but it is always a

finite abelian category [49, Theorem 3.4]. We also have that Z(IdC , IdC) is the monoidal

center Z(C). By [49, Lemma 3.3, (4.3)], we get equivalences

Z(IdC , (−)4∗
C )

∼−→ A∗∗
can-mod(C)

∼−→ A∗∗
can-HopfBimod(C).

The 1st equivalence is an isomorphism, and the 2nd equivalence is induced by C ∼→
HopfBimod(C) given by Y 	→ (Y � 1) � Acan. Now the object A∗

can in A∗∗
can-HopfBimod(C)

corresponds to pair (D, ξD) in Z(IdC , (−)4∗
C ). Here, ξD is called the Radford isomorphism

of C.

Now consider the case C = H-mod(vect
k
) for a Hopf algebra H over k, and

consider the distinguished grouplike elements of H and H∗ defined as follows (see [26,

Section 1] or [44, Section 10.5]). In this case, D is a one-dimensional module, and so the

action is given through an invertible character αH ∈ H∗, that is, h · d = α−1
H (h)d for any
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Constructing Non-Semisimple Modular Categories 15841

d ∈ D. By virtue of D being the distinguished invertible object in C,

αH ∈ G(H∗) is uniquely characterized by αH(h)� = �h, for all h ∈ H, (3.1)

for a choice of non-zero left integral � for H. The Radford isomorphism is now given by

the action of an element

gH ∈ G(H), which is uniquely characterized by pλ = ev(p ⊗ gH)λ, for all p ∈ H∗, (3.2)

where λ is a non-zero right integral of H∗. Explicitly, if D = kv, then for any X ∈ C and

x ∈ X we get ξD(X)(v ⊗ x) = gH · x ⊗ v. Now, Radford’s S4-formula [43],

S4(h) = α−1
H (h(1)) gH h(2) g−1

H αH(h(3)),

implies that (D, ξD) defines an object in Z(IdC , (−)4∗).
Recall that a finite tensor category C is unimodular if D = 1 [15, Section 6.5].

When C is a factorizable finite tensor category, then C is unimodular [15, Proposition

8.10.10].

3.2 Ribbon structures on the center

In this section, we recall the results of [49] and [26] on the existence of ribbon structures

on the center Z(C) of a finite tensor category, using the pair (D, ξD) defined in the

previous section.

Definition 3.3 (SqrtC(D, ξD)). Let C be a finite tensor category and recall (D, ξD) from

Section 3.1. We define SqrtC(D, ξD) to be the set of equivalence classes of invertible

objects (V, σV) in Z(IdC , (−)∗∗) such that there exists an isomorphism ν : V∗∗ ⊗ V
∼→ D

such that the following diagram commutes:

(3.4)

Theorem 3.5. ([49, Sections 5.2, 5.4, 5.5]) The set of ribbon structures on Z(C) is in

bijection with the set SqrtC(D, ξD). In particular, if we take (V, σV) ∈ SqrtC(D, ξD), then
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15842 R. Laugwitz and C. Walton

the corresponding ribbon structure on Z(C) is given by θ = φ−1j, where φ is the Drinfeld

isomorphism of Z(C) from (2.6) and j is a pivotal structure on Z(C) given by

jX := (IdX∗∗ ⊗ coev−1
V )(σV(X) ⊗ IdV∗)(cX,V ⊗ IdV∗)(IdX ⊗ coevV) : X

∼→ X∗∗,

for X ∈ C.

In the case when C = H-mod(vect
k
), Shimizu’s theorem specializes to the

following classical result of Kauffman–Radford.

Theorem 3.6. ([26, Theorem 3]) Let gH ∈ H and αH ∈ H∗ be the distinguished group-like

elements defined in (3.1) and (3.2). Then there is a bijection between the sets

{
(ζ , a) ∈ G(H∗) × G(H)

∣∣ ζ 2 = αH , a2 = gH , satisfying (3.7)
}

, where

S2(h) = ζ−1(h(1))ah(2)a
−1ζ(h(3)), for all h ∈ H, (3.7)

and the set of ribbon elements of the Drinfeld double, Drin(H), cf. (2.8).

The bijection is given by sending a pair (ζ , a) to S(R(2))R(1)(ζ−1 ⊗ a−1), for R and

S the R-matrix and antipode of Drin(H), respectively.

The precise connection between the above results by Kauffman–Radford and

Shimizu is given by the following proposition.

Proposition 3.8. Let H be a finite-dimensional Hopf algebra and C = H-mod. Then

there is a bijection between the set of pairs (ζ , a) of Theorem 3.6 and the set SqrtC(D, ξD)

of Definition 3.3.

Proof. Given a pair (ζ , a) as in Theorem 3.6, we define (V, σV) ∈ Z(Id, (−)∗∗) of

SqrtC(D, ξD) as follows. First, V is the one-dimensional H-module with action h · v =
ζ−1(h)v for any v ∈ V, h ∈ H. Second, the isomorphism σV(X) : V ⊗ X → X∗∗ ⊗ V is

defined by σX(v ⊗ x) = ax ⊗ v for all v ∈ V, x ∈ X. This isomorphism defines an element

in SqrtC(D, ξD) provided that (ζ , a) satisfy the conditions of Theorem 3.6. In particular,

(3.7) implies that σV(X) is a morphism of H-modules.

Conversely, assume given a pair (V, σV) ∈ SqrtC(D, ξD). Then V is an invertible H-

module and thus is one-dimensional. Fix a generator v ∈ V. Then we obtain ζ such that

h · v = ζ−1(h)v. The isomorphism ν : V∗∗ ⊗ V → D of H-modules implies that ζ−2 = α−1
H
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Constructing Non-Semisimple Modular Categories 15843

and hence ζ 2 = αH . We obtain an element a ∈ G(H) so that a2 = gH , satisfying, (3.7) as

follows. Recall that there is an isomorphism of Hopf algebras H ∼= End(F), where F : C →
vect

k
is the forgetful functor, for details, see for example, [15, Sections 5.2–5.3]. Here,

h ∈ H gets sent to {hX : F(X) → F(X), x 	→ h · x}X∈Ob(C). Further, for the one-dimensional

H-module V fixed above, there are isomorphisms of k-vector spaces f ′
X : F(V) ⊗ F(X)

∼→
F(X), v⊗x 	→ x and f ′′

X : F(X)
∼→ F(X)⊗F(V), x 	→ x⊗v, natural in X. So by identifying the

k-vector spaces F(X) and F(X∗∗), we obtain that the natural isomorphism σV(X) : F(V) ⊗
F(X)

∼→ F(X)⊗ F(V) is of the form f ′′
X ◦ aX ◦ f ′

X and must be given by v ⊗ x 	→ (a · x)⊗ v for

some a ∈ H. The assumption that σV defines a natural isomorphism V ⊗ (−)
∼→ (−)∗∗ ⊗V

of H-modules implies condition (3.7). The diagram in (3.4) implies that a2 = gH . �

3.3 Non-semisimple spherical categories

Using the distinguished invertible object D defined in Section 3.1, we obtain a notion of

sphericality for non-semisimple finite tensor categories.

Definition 3.9. ([13, Definition 3.5.2]) A pivotal finite tensor category (C, ⊗, 1, j) is

spherical if there is an isomorphism ν : 1
∼→ D so that the following diagram commutes:

(3.10)

In fact, if C is semisimple; then C is spherical precisely when C is trace-spherical;

see [13, Proposition 3.5.4].

Remark 3.11. On the one hand, a spherical category in the sense above gives a special

case of a tensor category C satisfying the assumption that SqrtC(D, ξD) from Definition

3.3 is non-empty; namely, (1, j) ∈ SqrtC(D, ξD). On the other hand, Example 5.2 later

illustrates that there are categories C satisfying SqrtC(D, ξD) 
= ∅ that do not have a

spherical structure.

Proposition 3.12 (SPiv(H)). Take C = H-mod(vect
k
) and recall (3.1) and (3.2). Then C is

spherical in the sense of Definition 3.9 if and only if αH = ε and

SPiv(H) := {
a ∈ G(H) | a2 = gH , S2(h) = aha−1, for all h ∈ H

} 
= ∅.
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15844 R. Laugwitz and C. Walton

In this case, there is a bijection between pivotal structures j on C such that (C, j) is

spherical and the set SPiv(H).

Proof. First assume that C = H-mod(vect
k
) is spherical. Then, by definition, D ∼= 1,

which implies that αH = ε. By Remark 3.11, (1, j) ∈ SqrtC(D, ξD). Using Proposition 3.8,

this element of SqrtC(D, ξD) corresponds to a pair (ζ , a) satisfying (3.7), with ζ = ε, such

that a2 = gH . Thus, a ∈ SPiv(H). From Proposition 3.8 it further follows that there is a

bijection between the subset of SqrtC(D, ξD) of pairs (V, σV) such that V ∼= 1 and pairs

(ε, a) satisfying the conditions of Theorem 3.6 (i.e., a2 = gH and (3.7), or equivalently,

a ∈ SPiv(H)).

Conversely, assume αH = ε and a ∈ SPiv(H) 
= ∅. Again under the bijection

of Proposition 3.8, the pair (ε, a) corresponds an element (1, σ1) ∈ SqrtC(D, ξD). In

particular, (1, σ1) is an element of Z(IdC , (−)∗∗), which implies, using the convention

1 ⊗ X = X = X ⊗ 1, that j := σ1 is a pivotal structure for C, which, by construction,

satisfies (3.10). Thus, C is spherical. �

Examples of spherical categories obtained from Nichols algebras can be found

later in the text, see Remark 5.16(3) and Example 5.18.

Next, we show that a source of non-semisimple spherical categories is given by

unimodular ribbon categories, cf. [15, Proposition 8.10.12] in the semisimple case. Recall

that in the semisimple case, every finite tensor category is unimodular [15, Remark

6.5.9].

Proposition 3.13. Any unimodular finite ribbon category is spherical in the sense of

Definition 3.9.

Proof. Assume C is a ribbon category with braiding c and twist θ . Then C is a pivotal

category via the pivotal structure j of (2.7). Consider the following computation:

φ∗
X∗ j∗∗

X jX = φ∗
X∗ jX∗∗ jX

= φ∗
X∗ φX∗∗ θX∗∗ φX θX

= φ∗
X∗ φX∗∗ (IdX∗∗ ⊗ evX)(cX∗,X∗∗(θX∗ ⊗ θX∗∗)coevX∗ ⊗ IdX)

= φ∗
X∗ φX∗∗ (IdX∗∗ ⊗ evX)(c−1

X∗∗,X∗(θX∗⊗X∗∗)coevX∗ ⊗ IdX)

= φ∗
X∗ φX∗∗ (IdX∗∗ ⊗ evX)(c−1

X∗∗,X∗ ⊗ IdX)

= φX .
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Constructing Non-Semisimple Modular Categories 15845

Here, the 1st equation uses that jX∗ = j∗X . The 2nd equation uses (2.7) and that

θX∗ = θ∗
X . The 3rd equality uses (2.6) and the naturality of θ . The 4th equation follows

from θX⊗Y = (θX ⊗ θY) cX,Y cY,X = cY,X cX,Y (θX ⊗ θY). The next equation holds

by the naturality of θ and the fact that θ1 = Id1. The last equality then follows a

sequence of arguments using the naturality of the braiding and rigidity axioms. So,

j∗∗
X jX = (φ∗

X∗)−1φX .

Now assume that C is unimodular so that D = 1. Using [49, Theorem A.6], cf. [15,

Theorem 8.10.7], we find that

ξD(X) = (φ∗
X∗)−1φX .

Thus, using η = Id : 1 → D, this shows that j satisfies the conditions of Definition 3.9.

Thus, C is spherical. �

Finally, the recent results by Shimizu provide, in the non-semisimple framework,

a sufficient condition for the monoidal center Z(C) to be modular.

Theorem 3.14 ([49, Theorem 5.10]). If C is a tensor category with SqrtC(D, ξD) 
= ∅, then

its center Z(C) is modular in the sense of Definition 2.11.

By Remark 3.11, one obtains the following consequence generalizing Müger’s

result [40, Theorem 2], see also [54, Theorem 9.11], to the non-semisimple case.

Corollary 3.15 ([49, Theorem 5.11]). If C is spherical in the sense of Definition 3.9, then

its center Z(C) is modular in the sense of Definition 2.11.

4 Modularity of Müger Centralizers and Relative Monoidal Centers

This section contains the main categorical results of this paper. We first use the

double centralizer theorem of [50] to prove that Müger centralizers of non-degenerate

topologizing subcategories in a modular category are again modular [Section 4.1]. Then

we recall the construction of the relative center ZB(C) [Section 4.2] and conclude, as a

main application, that it produces modular categories under conditions on C identified

in [49] and assuming that B is non-degenerate [Section 4.3]. We also produce an analogue

of Müger’s decomposition theorem of modular categories in the non-semisimple setting

[Section 4.4].
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15846 R. Laugwitz and C. Walton

4.1 Modularity of Müger centralizers

In the following we apply the double centralizer theorem by Shimizu [50,Theorem 4.9]

(which is a non-semisimple version of [41,Theorem 3.2(i)]) to obtain a generalization of

the result by Müger [41,Corollary 3.5] that centralizers of non-degenerate subcategories

in modular categories are again modular in the non-semisimple setting. For this, we

require the following notion of centralizer.

Let S be a subset of objects of a braided category C, the Müger centralizer CC(S)

[41,Definition 2.6] of S in C is defined as the full subcategory of C with objects

Ob(CC(S)) := {X ∈ C | cY,X cX,Y = IdX⊗Y for all Y ∈ S}. (4.1)

Note that CC(S) is a topologizing monoidal subcategory of C and, thus, braided. For

a single object X in C, we denote CC({X}) = CC(X). If C is rigid, then CC(S) is a rigid

monoidal subcategory of C [41, Lemma 2.8]. The following result is straightforward.

Lemma 4.2. If C is a (finite) tensor category and S a subset of its objects, then CC(S)

is a (finite) tensor category.

The result below is the main method of this paper used to construct MTCs.

Theorem 4.3. Let D be a modular category in the sense of Definition 2.11, let E be

a topologizing braided tensor subcategory of D, and consider the Müger centralizer

CD(E). Then,

CD(E)′ � E ′.

As a consequence, CD(E) is modular if and only if E is modular.

Proof. First, let V be an object in E ′. Then, for any object W in E , the equation IdV⊗W =
cW,V cV,W holds in D using that E is a full braided subcategory of D. By definition, this

shows that V is an object in CD(E). Now let X be an object in CD(E). Again, by definition

and since V ∈ E , we get that V centralizes X. Hence, V is contained in the Müger center

CD(E)′.
Conversely, let X be an object in CD(E)′. Then, using CD(E) ⊆ D, we have that X is

in the Müger centralizer CD(CD(E)). Using the double centralizer theorem [50, Theorem

4.9], it follows thatCD(CD(E)) equals E . Note that this result uses that E is a topologizing
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Constructing Non-Semisimple Modular Categories 15847

subcategory of D. Hence, X is an object of E . But as X was assumed to be an object of

CD(E) it centralizes all objects of E and is thus isomorphic to an object in E ′. Therefore,

CD(E)′ � E ′, as desired.

Hence, CD(E) is non-degenerate as in Definition 2.10 if and only E is. Since both

CD(E) and E are ribbon subcategories of D [Lemma 2.9], the consequence holds. �

If E is not a topologizing subcategory that we can replace E by its subquotient

completion, which is also a braided tensor subcategory of D, in the statement of the

theorem above. Note that if D is semisimple, then E is a topologizing subcategory

provided that it is a full subcategory closed under direct summands. (This follows as the

simple objects of E are also simple in D and cannot have any non-trivial subquotients.)

4.2 B-central monoidal categories and relative monoidal centers

Let B := (B, ⊗B, 1B, ψ) be an abelian braided monoidal category throughout this section.

Also, recall the braided monoidal category B := (B, ψ−1
Y,X : X ⊗ Y

∼→ Y ⊗ X).

Definition 4.4. A monoidal category C is B-central if there exists a faithful braided

monoidal functor G : B → Z(C). In this case, we refer to the functor G as B-central

as well.

Likewise, if B is a braided (finite) tensor category, then we say that a (finite)

tensor category C is B-central if there exists a faithful braided tensor functor

G : B → Z(C).

Remark 4.5. We compare our notion of a B-central functor with similar notions in the

literature.

(1) Denote by F : Z(C) → C the forgetful functor. We have that for a B-central

functor G, the functor T := F ◦ G : B → C is central in the sense of [10,

Definition 2.3] and, in addition, faithful. Later in [10] only central functors

such that T is fully faithful are considered. While faithfulness of G is

equivalent to faithfulness of T we do not require that T is full.

(2) Recall from [31, Section 3.3] that a monoidal category C is B-augmented if

it comes equipped with monoidal functors F ′ : C → B and T ′ : B → C and

natural isomorphisms τ : F ′T ′ ∼→ IdB and σ : ⊗C (IdC � T ′) ∼→ ⊗op
C (IdC � T ′)

such that σ descends to ψ under F ′, τ , and σ are coherent with the structure

of C and B. So a B-augmented monoidal category C is B-central. In fact,
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15848 R. Laugwitz and C. Walton

we may define a functor of braided monoidal categories G : B → Z(C), by

B 	→ (T ′(B), σ−1) and by T ′ on morphism spaces. Since T ′ has a right inverse,

it is faithful, and thus G is faithful.

(3) Note that, in the semisimple case, if B is non-degenerate, then G is fully

faithful; see [9, Corollary 3.26].

Example 4.6. Given H a Hopf algebra in a braided monoidal category (respectively,

braided (finite) tensor category) B, we have that C = H-mod(B) is a B-central monoidal

category (respectively, B-central (finite) tensor category) [31, Example 3.17]. Define a

braided monoidal functor G : B → Z(C) by sending V ∈ B to ((V, atriv
V ), ψ−1

−,V), where

atriv
V := ε ⊗ IdV : H ⊗ V → V is the trivial H-action on V and ψ is the braiding of B.

The two conditions of the action being trivial, and the half-braiding equaling ψ−1, are

stable under taking subquotients in Z(C). Hence, the image of B in Z(C) is a topologizing

subcategory.

Definition 4.7. Given a B-central monoidal category C, we define the relative monoidal

center ZB(C) to be the braided monoidal full subcategory consisting of objects (V, c) of

Z(C), where V is an object of C, and the half-braiding c := cV,− : V ⊗ IdC
∼→ IdC ⊗ V is a

natural isomorphism satisfying the two conditions below:

(i) [tensor product compatibility] cV,X⊗Y = (IdX ⊗ cV,Y)(cV,X ⊗ IdY), for X, Y ∈ C.

(ii) [compatibility with B-central structure] cG(B),V ◦ cV,G(B) = IdV⊗G(B), for any

B ∈ B.

That is, ZB(C) is the full subcategory of Z(C) of all objects that centralize G(B) for any

object B of B.

Remark 4.8. It is clear, by definition, that ZB(C) is equal to the Müger centralizer

CZ(C)(G(B)). Hence, ZB(C) is a topologizing braided monoidal subcategory of Z(C).

Proposition 4.9. Take B a braided (finite) tensor category, and C a B-central (finite)

tensor category (with B-central functor G : B → Z(C)). Then, ZB(C) is a braided (finite)

tensor category.

Proof. First, recall that Z(C) is a braided finite tensor category by Proposition 2.2.

Next, Remark 4.8 implies that the braiding in ZB(C) is the restriction of the braiding in

Z(C). Finally, with Lemma 4.2, the full braided subcategory ZB(C) = CZ(C)(G(B)) of Z(C)

is a tensor category, and it is finite provided that C is finite. �
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Constructing Non-Semisimple Modular Categories 15849

Remark 4.10. An important invariant of a finite tensor category C is the Frobenius–

Perron dimension FPdim(C) defined in [15, Definition 6.1.7]. It follows directly from

[50, Theorem 4.9] and [15, Theorem 7.16.6] for C a B-central finite tensor category, the

Frobenius–Perron dimension of the relative center is given by

FPdim
(
ZB(C)

) = FPdim(C)2

FPdim(B)
.

Example 4.11. For any braided monoidal category B consider the functor B → Z(B)

of braided monoidal categories given by sending X to (X, ψ−1
−,X). This functor makes B a

B-central monoidal category such that ZB(B) � B as braided monoidal categories.

Example 4.12. In the setup of Example 4.6, where B is rigid and C = H-mod(B) for

H ∈ HopfAlg(B), we have an equivalence of braided monoidal categories

ZB(C) � H
HYD(B),

see [31, Proposition 3.36]. If B is a (finite) tensor category here, then so is ZB(C).

Example 4.13. Continuing the example above, let B = K-mod for a finite-dimensional

quasi-triangular Hopf algebra K, and H a finite-dimensional Hopf algebra in B with

dual H∗ (as in dually paired Hopf algebras [30, Definition 3.1]), and

C = H-mod(K-mod) � H � K-mod.

Then there is an equivalence of tensor categories

ZB(C) � H
HYD(B) � DrinK(H, H∗)-mod.

Here, DrinK(H, H∗) is a quasi-triangular Hopf algebra called the braided Drinfeld double

of H. It is due to [37] where it is referred to as the double bosonization. For details,

including a presentation of DrinK(H, H∗), see [30, Section 3.2]. See Lemma 5.9 for a

presentation in the case that H is a Nichols algebra of diagonal type. The case when

K = k is discussed at the end of Section 2.5.3.
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15850 R. Laugwitz and C. Walton

4.3 Main application: modularity of ZB(C)

In this part, we provide the main application of Theorem 4.3 to establish when a relative

monoidal center is modular. This result provides sufficient conditions that ZB(C) is a

modular category.

Theorem 4.14. Let B be a non-degenerate braided finite tensor category, and C a B-

central finite tensor category so that the set SqrtC(D, ξD) from Definition 3.3 is non-

empty. Assume that the full image G(B) in Z(C) is a topologizing subcategory. Then the

relative monoidal center ZB(C) is an MTC.

Here, the braiding of ZB(C) is restricted from that of Z(C), see Proposition 4.9,

and the ribbon structure is restricted to ZB(C) from that of Z(C) by Lemma 2.9.

Proof of Theorem 4.14. We have that Z(C) is modular by Theorem 3.14. By assump-

tion, the full image G(B) is a topologizing subcategory of Z(C), and since G : B → Z(C) is

faithful, G(B) is non-degenerate. Now, apply Theorem 4.3 with D = Z(C) and E = G(B),

together with Remark 4.8, to conclude that ZB(C) is modular, as desired. �

Remark 4.15. The statement of Theorem 4.14 can be varied to requiring that the

subquotient completion of the full image of G (with braiding obtained from being

a tensor subcategory of Z(C)) is non-degenerate instead of requiring that B is non-

degenerate and G(B) topologizing.

In the setting of Example 4.12, Shimizu achieved Theorem 4.14 for ZB(C) �
H
HYD(B) in [51, Theorem 4.2] using [50, Theorem 6.2]. Next, by Theorem 3.14, we obtain

the following result as a special case.

Corollary 4.16. Let B be a non-degenerate braided finite tensor category, and C a B-

central finite tensor category that is spherical in the sense of Definition 3.9 and such

that the full image G(B) in Z(C) is a topologizing subcategory. Then the relative monoidal

center ZB(C) is modular.

Proof. This follows directly from Theorem 4.14 using Remark 3.11. �

Observe that this result is a relative generalization of Corollary 3.15 above due

to Shimizu.
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Constructing Non-Semisimple Modular Categories 15851

4.4 Müger’s decomposition theorem in the non-semisimple setting

In this section, we establish a generalization of Müger’s decomposition theorem of mod-

ular fusion categories [41, Theorem 4.5] to the non-semisimple setting [Corollary 4.20].

We begin with a non-semisimple generalization of [41, Theorem 4.2].

Theorem 4.17. Let D be an MTC, with a topologizing non-degenerate braided tensor

subcategory E . Then there is an equivalence of ribbon categories:

D � E � CD(E).

Here, E is modular [Remark 2.12]; the results in [41] have E being modular as a

hypothesis.

Proof of Theorem 4.17. As in the discussion before [50, Lemma 4.8], let D1 and D2 be

topologizing subcategories of D, and let T : D1 � D2 → D be the functor induced by ⊗D.

Set D1 ∨ D2 to be the closure under subquotients of the image of T. We then get that

D1 ∨ D2 and D1 ∩ D2 are topologizing full subcategories of D. Applying this to D1 = E
and D2 = CD(E) we see that

E ∩ CD(E) = {V ∈ E | cW,V cV,W = IdV⊗W ∀W ∈ E} = E ′ � vect
k
.

Next,

E � CD(E) � E ∨ CD(E)

as ribbon tensor categories via the functor T above. Indeed, we see by construction that

T is essentially surjective. Applying [50, Lemma 4.8] with E ∩ CD(E) � vect
k

we get that

FPdim(E ∨ CD(E)) = FPdim(E) FPdim(CD(E)) = FPdim(E � CD(E)).

So by [15, Proposition 6.3.4], T is an equivalence of categories. Moreover, E and CD(E)

centralize each other by definition. So, as in the proof of [40, Proposition 7.7], T is a

functor of braided tensor categories such that T(θV � θW) = θV⊗W , for all V ∈ E , W ∈
CD(E). Thus, T is an equivalence of ribbon tensor categories as the braiding and twist

are preserved.
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15852 R. Laugwitz and C. Walton

Finally, we get the desired result by the computation below, which follows from

the double centralizer theorem [50, Theorem 4.9]:

E ∨ CD(E) = CD[CD(E ∨ CD(E))] = CD[CD(E) ∩ CD(CD(E))]

= CD[CD(E) ∩ E ] � CD(vect
k
) = D.

�

Example 4.18. Let B be a non-degenerate braided finite tensor category, and let C be a

B-central finite tensor category, with B-central functor G : B → Z(C). Assume that G(B)

is a topologizing subcategory of Z(C) and that SqrtC(D, ξD) 
= ∅.

(1) Then, by the Theorems 4.14 and 4.17, we have a decomposition of MTCs:

Z(C) � B � ZB(C).

(2) If, further, B = K-mod and C = H-mod(K-mod), for a quasi-triangular

Hopf algebra K, and for a finite-dimensional Hopf algebra H in B, then by

Example 4.13, we have a decomposition of MTCs:

Drin(H � K)-mod � K-mod � DrinK(H, H∗)-mod.

In comparison with [41, Definition 4.4], consider the following terminology.

Definition 4.19. An MTC C is prime if every topologizing non-degenerate braided

tensor subcategory is equivalent to either C or vect
k
.

As a consequence of Theorem 4.17, we immediately obtain the result below; cf.,

[41, Theorem 4.5].

Corollary 4.20. Every MTC is equivalent to a finite Deligne tensor product of prime

modular categories.

Question 4.21. Continuing Example 4.18(2), when is the (not necessarily semisimple)

modular category DrinK(H, H∗)-mod prime?

In Example 5.3 below, we recall that the (non-semisimple, factorizable, ribbon)

small quantum group uq(sl2) arises as a braided Drinfeld double DrinK(H, H∗). It is an

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/20/15826/6316085 by D
ESY-Zentralbibliothek user on 18 N

ovem
ber 2022



Constructing Non-Semisimple Modular Categories 15853

interesting question to determine the primality of its module category, and as well as of

the module categories of other examples of non-semisimple braided Drinfeld doubles in

the next section. In the semisimple case, Müger offers examples of prime and non-prime

module categories over Drinfeld doubles of groups [41, Theorem 4.7, Table 1].

5 Examples of Modular Categories

In this part, we provide several examples of MTCs using the relative center construction

[Theorem 4.14]. In some cases, we also illustrate our decomposition result Theorem 4.17

above. We start in Section 5.1 by discussing relative centers over vect
k
, monoidal centers

of modules over Taft algebras, and their relation to uq(sl2)-mod. Next, we provide

preliminary information about braided doubles of Nichols algebras of diagonal type

in Section 5.2. We study the modularity of braided doubles of such Nichols algebras in

Section 5.3; the main result is Proposition 5.15 there. Finally, in Section 5.4, we apply

this result to module categories of small quantum groups (of Cartan type) and also to

module categories of a braided Drinfeld double of Nichols algebras not of Cartan type.

Throughout this section, we additionally assume that k has characteristic zero.

5.1 First examples

Here, we include some 1st examples of non-semisimple modular categories obtained

from the general result of Theorem 4.14.

Example 5.1. Take B = vect
k
, the category of finite-dimensional k-vector spaces

with its usual symmetric structure. Let C be a finite tensor category over k (i.e., C is

vect
k
-central) so that the set SqrtC(D, ξD) is non-empty. For instance, if C is unimodular

finite ribbon category, then C is spherical [Proposition 3.13] and hence SqrtC(D, ξD) 
= ∅

[Remark 3.11]. Then Theorem 4.14 specializes to the result that Zvectk(C) = Z(C) is

modular, recovering Theorem 3.14.

Example 5.2 ((Drinfeld double of) the Taft algebra Tn(q−2)). Let n ≥ 3 be an integer, and

let q be a primitive root of unity so that q2 has order n. Take K = kZn, for Zn = 〈g | gn =
1〉, and set Bq = K-mod. Here, Bq is braided using the R-matrix R = 1

n

∑n−1
i,j=0 q−2ijgi ⊗ gj.

Next, take the monoidal category

C := H-mod(Bq), for H := k[x]/(xn) ∈ HopfAlg(Bq),
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15854 R. Laugwitz and C. Walton

with �(x) = x ⊗ 1 + 1 ⊗ x and ε(x) = 0. As in [32, Section 6], consider the Taft algebra

Tn(q−2), which is the k-Hopf algebra:

T := Tn(q−2) = k〈g, x〉/(gn − 1, xn, gx − q−2xg),

with �(g) = g ⊗ g, �(x) = g−1 ⊗ x + x ⊗ 1, ε(g) = 1, ε(x) = 0, S(g) = g−1, S(x) = −gx.

Then, we get an equivalence of monoidal categories:

C � Tn(q−2)-mod.

Computations as in [26, Proposition 7] show that if n is even, then SqrtC(D, ξD) =
∅; see Proposition 3.8. If n = 2m − 1 is odd, then the distinguished group-like elements

(see (3.1), (3.2)) are given by gT = g and αT : T → k with αT(g) = q−2, αT(x) = 0. Thus,

a = gm
T and ζ = αm

T are the unique elements satisfying the equations of Theorem 3.6.

Hence, using Proposition 3.8, the unique element (V, σV) of SqrtC(D, ξD) is given by the

one-dimensional T-module V = kv, where g · v = q2m, x · v = 0, and σV(W) : V ⊗ W
∼→

W∗∗ ⊗ V, with σV(W)(v ⊗ w) = (gm · w) ⊗ v, for W ∈ ObC, w ∈ W. Thus, SqrtC(D, ξD) 
= ∅

if and only if n is odd. In this case, by Theorem 3.14, we get that Z(C) is modular with a

unique ribbon structure. We further have an equivalence of modular categories

Z(C) � Drin(Tn(q−2))-mod,

where modularity of the right-hand side is inherited from that on the left-hand side. We

note that C is not a spherical category in the sense of Definition 3.9 since D 
∼= 1, cf. [13,

Section 3.5.2] for the case n = 3. In particular, αT fails to equal ε as in Proposition 3.12.

Example 5.3 (The small quantum group uq(sl2)). For q as in Example 5.2, with n odd,

consider the small quantum group uq(sl2), which is generated by k, e, f , subject to the

relations

kn = 1, en = f n = 0, ke = q2ek, kf = q−2fk, ef − fe = k − k−1

q − q−1 ,

with coproduct and counit determined on generators by

�(k) = k ⊗ k, �(e) = 1 ⊗ e + e ⊗ k, �(f ) = k−1 ⊗ f + f ⊗ 1,

ε(k) = 1, ε(e) = ε(f ) = 0.
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Constructing Non-Semisimple Modular Categories 15855

For the categories Bq and C as in Example 5.2, the relative center ZBq
(C) is equivalent

as a monoidal category to uq(sl2)-mod, see [32, Proposition 6.7(i)]. Thus, uq(sl2)-mod

is a braided category. We have seen in Example 5.2 that since n is odd, SqrtC(D, ξD)

contains a unique element. Moreover, in this case, one checks that the underlying

braided category Bq is non-degenerate using [15, Exercise 8.6.4]. Thus, by Theorem 4.14,

ZBq
(C) � uq(sl2)-mod is modular.

Continuing Example 4.18, we see that there is a decomposition of modular

categories

Drin(Tn(q−2))-mod � Bq � uq(sl2)-mod.

A vast generation of this example, using braided Drinfeld doubles of Nichols

algebras of diagonal type, will be given in the following sections.

5.2 Braided Drinfeld doubles of Nichols algebras of diagonal type

In this part, we discuss Nichols algebras of diagonal type, a large class of Hopf algebras

in braided categories kG-comod, for G a finite abelian group. To start, consider the

following notation that will be used throughout the rest of the section.

Notation 5.4. (G, gi, mi, �, ei, i, gi, δi, K, r, b, Bq, γi, γi, γ i, γ i). Fix the notation below.

• Let G = 〈g1, . . . , gn〉 be a finite abelian group, where gi has order mi.

• Take � to denote the lattice Zm1
× · · ·×Zmn

, and let ei be the i-th elementary

vector.

• For i = (i1, . . . , in) ∈ �, write gi := gi1
1 . . . gin

n and use additive notation on

indices i, so for example, g−ei
= g−1

i .

• Take K to be the group algebra kG.

• Denote the basis of K∗ dual to {gi} by {δi}, so that the pairing of K∗ and K is

given by 〈δi, gj〉 = δi,j.

• Let q = (qij) ∈ Matn(k) with qij 
= 0, and let Bq be the braided category

K-comodr with dual R-matrix r of K given by r(gi ⊗ gj) = qji.

• Consider the symmetric bilinear form b on K given by b(gi, gj) :=
r(gi, gj)r(gj, gi). In particular, b is determined by b(gi, gj) = qijqji.

• For i = (i1, . . . , in) ∈ �, take the group-like elements of K∗: γi := ∑
j r(gj ⊗gi)δj

and γ i := ∑
j r(gi ⊗ gj)δj. We write γi := γei

and γ i := γ ei
. Then γi = γ

i1
i . . . γ

in
i

and γ i = γ
i1
i . . . γ

in
i .
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15856 R. Laugwitz and C. Walton

We record a fact about non-degeneracy that will be used several times later.

Lemma 5.5. ([15, Example 8.13.5], [14,Section 2.11]) The braided category Bq is non-

degenerate if and only if the symmetric pairing b is non-degenerate.

Next, we recall the definition of a Nichols algebra of diagonal type from work of

Andruskiewitsch–Schneider [2].

Definition 5.6 (B(V), I(V)). Retain the notation above. Let V be an object in K
KYD (with

braiding c). Recall that the tensor algebra T(V) = ⊕
n≥0 V⊗n is a natural Hopf algebra

object in K
KYD, such that all elements v ∈ V are primitive, that is, �(v) = v ⊗ 1 + 1 ⊗ v.

(1) The Nichols algebra B(V) is the quotient of T(V) be the unique largest

homogeneously generated Hopf ideal I(V) ⊆ ⊕
n>1 V⊗n.

(2) We say that B(V) is of diagonal type if there exists a basis x1, . . . , xn of V so

that

c(xi ⊗ xj) = qijxj ⊗ xi.

There exists a complete classification of finite-dimensional Nichols algebras of

diagonal type over a field k or characteristic zero [21]. The Nichols algebras B(V) have

a Poincaré-Birkhoff-Witt (PBW) basis [29] and generalized root systems [20]. For finite-

dimensional Nichols algebras of diagonal type, relations for the ideal I(V) were found

in [3, 4] and are detailed in many examples in [1].

Lemma 5.7 (Bq, B∗
q). Consider the Yetter–Drinfeld module V over K with action gi ·xj =

qijxj and coaction δ(xi) = gi ⊗ xi. Then:

(1) The Nichols algebra, B(V) ∈ HopfAlg(K
KYD) is of diagonal type, which we

denote by Bq.

(2) If Bq is finite-dimensional, then Bq and B∗
q are dually paired Hopf algebras

in Bq. In particular, the pairing ev : B∗
q ⊗ Bq → k is uniquely induced from

the pairing of V∗ and V.

Proof. Part (1) follows from [2, Section 2].

For part (2), consider the braided monoidal functor �r : Bq → K
KYD sending

(V, δV) to (V, aV , δV), where aV(k ⊗ v) = r(v(−1) ⊗ k) ⊗ v(0), for all k ∈ K and v ∈ V.

Then the Yetter–Drinfeld module V is the image of the K-comodule (V, δ) under �r and
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Constructing Non-Semisimple Modular Categories 15857

Bq is a Hopf algebra in the image of �r. Thus, Bq, forgetting the K-action, is a Hopf

algebra in Bq.

It is well known that the duality pairing ev : V∗ ⊗ V → k extends to a unique

non-degenerate pairing ev : B(V∗)⊗B(V) → k of Hopf algebras in K
KYD, see for example,

[23, Corollary 7.2.8]. By the above observations, this is a non-degenerate pairing of Hopf

algebras in Bq. �

Having viewed Bq and B∗
q as braided Hopf algebras in Bq = K-comodr, we

are able to compute their braided Drinfeld double over the Hopf algebra K∗, cf.

Example 4.13; see [30, Section 3.2] for the presentation of general braided Drinfeld

doubles used here. We fix the following notation.

Notation 5.8. (xi, yi). For V in Definition 5.6 and in Lemma 5.7 above, we fix dual

bases x1, . . . , xn of V, and y1, . . . , yn of V∗, and denote the resulting generators of B(V),

respectively, of the dual Nichols algebra B(V∗) by the same symbols.

Proposition 5.9 (DrinK∗(B∗
q,Bq)). Retain the notation above and assume that the

braided Hopf algebra Bq in K-comodr from Lemma 5.7 is finite-dimensional. Then the

braided Drinfeld double DrinK∗(B∗
q,Bq) is a Hopf algebra generated as an algebra by

elements {δi}i∈�, {xi}i=1,...,n, and {yi}i=1,...,n, subject to the relations I(V) and I(V∗), along

with

δiδj = δi,jδi, δixj = xjδi−ej
, δiyj = yjδi+ej

, yixj − q−1
ji xjyi = (1 − γiγi)δi,j.

Here, it is understood that δi = δj if i = j ∈ �. The coproduct and counit are

determined by

�(δi) =
∑

a+b=i

δa ⊗ δb, �(xi) = xi ⊗ 1 + γi ⊗ xi, �(yi) = yi ⊗ 1 + γ i ⊗ yi,

ε(δi) = δi,0, ε(xi) = ε(yi) = 0.

The antipode is determined by

S(δi) = δ-i, S(xi) = −γ −1
i xi, S(yi) = −γ −1

i yi.
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15858 R. Laugwitz and C. Walton

The Hopf algebra DrinK∗(B∗
q,Bq) is quasi-triangular with R-matrix given by

RDrin =
∑
α

∑
i

δiyα ⊗ xαγi,

where α indexes a basis {xα} of Bq with dual basis {yα} of B∗
q with respect to the

paring ev.

Proof. First, note that for (K, r) coquasi-triangular, ((K∗)cop, r∗) is a quasi-triangular

Hopf algebra, where (K∗)cop = (K, m, u, �op, ε, S−1) is the co-opposite Hopf algebra with

R-matrix given by the dual of r, that is,

R := r∗ = (r ⊗ IdK∗⊗K∗)(IdK ⊗ coevK ⊗ IdK∗)coevK .

The functor

� : K-comodr −→ (K∗)cop-modR, (V, δ) 	−→ (V, a∗
V), a∗

V := (evK ⊗ IdV)(IdK∗ ⊗ δ),

defines an equivalence of braided tensor categories. In the case K = kG, (K∗)cop = K∗

and, thus, B∗
q and Bq can be regarded as dually paired Hopf algebras in K∗-modR.

The result now follows from specifying the presentation from [30, Section 3.2] to

the case DrinK∗(B∗
q,Bq). For this, observe that R = r∗ for K∗ is given by R∗ = ∑

i δi ⊗ γi ∈
K∗ ⊗ K∗ and that the action and coaction of K∗ on V are given by

δi · xj = δi,ej
xj, δ(xj) = γj ⊗ xj, γi · xj = qijxj, γ i · xj = qjixj.

�

Remark 5.10 (ki, ki, G′). Note that DrinK∗(B∗
q,Bq) is a Z-graded Hopf algebra where

deg δi = 0, for i ∈ �, deg xi = 1 and deg yi = −1, for i = 1, . . . , n. It has a triangular

decomposition on B∗
q ⊗ K∗ ⊗ Bq. Modules over this Hopf algebra can be described as

a relative monoidal center, cf. Example 4.13. For i ∈ �, we denote ki := γiγ i and ki :=
γiγ i. When the braided category Bq is non-degenerate [Lemma 5.5], K∗ is isomorphic to

the group algebra kG′, where G′ = 〈k1, . . . , kn〉 is isomorphic to G. Thus, in this case,

DrinK∗(B∗
q,Bq) has a triangular decomposition Bq ⊗ kG′ ⊗B∗

q. We note neither r nor rop

are necessarily non-degenerate pairings, so 〈γ1, . . . , γn〉 and 〈γ 1, . . . , γ n〉 are, in general,

proper subgroups of G′ (see, e.g., Example 5.18 below).
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Constructing Non-Semisimple Modular Categories 15859

The next result, relating braided Drinfeld doubles and relative centers, will be

of use later.

Proposition 5.11 ([31, Section 4.2]). Retain Notation 5.4 and set C = Bq-mod(Bq). Then

there exists an equivalence of braided monoidal categories

ZBq
(C)

∼→ DrinK∗(B∗
q,Bq)-mod.

5.3 Modularity of braided Drinfeld doubles of Nichols algebras of diagonal type

In this section, we present an application of Theorem 4.14 by providing sufficient

conditions for categories of finite-dimensional modules over DrinK∗(B∗
q,Bq), that is,

over braided Drinfeld doubles of finite-dimensional Nichols algebras of diagonal type,

to be modular.

Notation 5.12. (�, x�, i�). Continuing Notation 5.4 assume that the Nichols algebra Bq

is finite-dimensional and let � be the the top Z-degree of Bq. Note that (Bq)� is one-

dimensional [2, Lemma 1.12]. We choose a non-zero element x� in (Bq)� and denote its

G-degree by i�.

Lemma 5.13 ([1, Section 2.12]). We have that i� = ∑
β∈�+

q
(mβ −1)β ∈ �, where �+

q is the

set of positive roots of the Nichols algebra Bq and mβ is the order of the root of unity

r(gβ , gβ).

Lemma 5.14. Recall (3.1), (3.2), Notation 5.12, and the notation of Section 5.2. The

distinguished group-like element for H := Bq � K∗ and for H∗, respectively, are

gH = 1 ⊗ γi� , αH(x ⊗ δi) = ε(x)δi, −i�.

Proof. We use techniques from [8, Section 4] by first understanding integrals of H.

These elements can be built from integrals of Bq and of K∗ as follows. Take a left

integral of Bq, that is, an element x ∈ Bq such that hx = ε(h)x for any h ∈ Bq. Then for

any left integral k of K∗, we get that � := (1 ⊗ k)(x ⊗ 1) = (k(1) · x) ⊗ k(2) is a left integral

of H = Bq � K∗ [8, Section 4.6].

Since (Bq)0 = k1, it follows that 1 is the only group-like element of Bq. By self-

duality of Bq, we conclude that the distinguished group-like elements of Bq and its dual
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15860 R. Laugwitz and C. Walton

are g = 1 ∈ Bq and α = ε ∈ B∗
q, respectively. Thus, � = δ0x� is a left integral for H and

we compute that

�xj = 0 = ε(xj) = αH(xj ⊗ 1)�, �δi = δ0δi + i�x� = δi, −i�� = αH(1 ⊗ δi)�,

verifying the claimed formula for αH on generators.

To find gH we observe that the elements δ∗
i ∈ H∗ and x∗

j ∈ H∗ satisfy the relation

x∗
j δ∗

i = r(gi, gj)δ
∗
i x∗

j , ∀j = 1, . . . , n, i ∈ �.

A right integral for H∗ is given by λ = x∗
�

∑
i δ∗

i . Hence, we compute on generators

x∗
j λ = 0 = ε(x∗

j )λ = ev(x∗
j , 1 ⊗ γi� )λ, for all j = 1, . . . , n,

δ∗
j λ = δ∗

j

∑
i

x∗
�δ

∗
i =

∑
i

r−1(gj, g−i� )x
∗
�δ

∗
j δ∗

i = r(gj, gi� )λ = ev(δ∗
j , 1 ⊗ γi� )λ, for all j ∈ �.

This computation verifies the claimed formula for gH . �

See [1, Proposition 2.42] for similar computations for Bq � kG. Next, we derive

the following conditions for DrinK∗(B∗
q,Bq)-mod to be modular.

Proposition 5.15. Recall Notation 5.4 and 5.12 and Remark 5.10. The braided tensor

categories

DrinK∗(B∗
q,Bq)-mod � ZBq

(Bq-mod(Bq))

are modular when

(i) the symmetric bilinear form b on K is non-degenerate, and

(ii) there exist j, a ∈ � such that 2j = i�, 2a = i�, b(gi, ga)2 = r(gi, gi� ), and

r(gj, gi)b(gi, ga) = q−1
ii for all i = 1, . . . , n.

Proof. To show that ZBq
(Bq-mod(Bq)) is modular, it suffices to check that

(a) the braided finite tensor category Bq is non-degenerate and that (b) the set

SqrtBq-mod(Bq)(D, ξD) is non-empty, by Theorem 4.14. Then, the equivalent category,

DrinK∗(B∗
q,Bq)-mod [Proposition 5.11], is also modular. Now (a) follows from (i) using

Lemma 5.5.
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Constructing Non-Semisimple Modular Categories 15861

Now we show that (ii) implies (b). Take H := Bq � K∗, a finite-dimensional Hopf

algebra with H-mod � Bq-mod(Bq). By (ii), we can define

a = 1 ⊗ ka, ζ(x ⊗ δi) = ε(x)δi,−j,

and compute using Proposition 5.9 that

a2 = k2
a =

∑
i,l∈�

b(gi, ga)b(gl, ga)δiδl =
∑
i∈�

b(gi, ga)2δi =
∑
i∈�

r(gi, gi� )δi = γi� = gH ,

ζ 2(δi) = (ζ ⊗ ζ )(�(δi)) =
∑

k+l=i

ζ(δk)ζ(δl) =
∑

k+l=i

δk,−jδl,−j = δi,−i� = αH(δi),

ζ 2(xi) = ζ(xi)ζ(1) + ζ(γi)ζ(xi) = 0 = ε(xi) = αH(xi),

for all i = 1, . . . , n and i ∈ �. Here, αH and gH are the distinguished group-like elements

of H∗ and H, respectively, of Lemma 5.14. For these elements, again using Proposition

5.9, we see that

S2(xi) = γ −1
i xiγi = q−1

ii xi,

ζ−1((xi)(1))a(xi)(2)a
−1ζ((xi)(3)) = ζ−1(γi)axia

−1ζ(1) = r(gj, gi)b(gi, ga)xi,

for all i. Here, γi is from Notation 5.4 and ζ−1(δi) = δi,j. Using that r(gj, gi)b(gi, ga) = q−1
ii

from (ii), we conclude that condition (3.7) holds for h = xi. This equation is evident

for h ∈ G since G is an abelian group and hence holds for all h ∈ H using that S2 is

an algebra morphism. Thus, applying Proposition 3.8 with the above elements a and ζ

yields (b). �

Remark 5.16.

(1) As a consequence of Radford’s S4-formula [43] for the Hopf algebra H =
Bq � K∗, we obtain that the values q = (qij) satisfy

r(gi� , gi)r(gi, gi� ) = q−2
ii .

(2) Similar conditions as in Proposition 5.15(ii) were already derived in [1,

Proposition 2.42] to determine when Drin(Bq�kG) is a ribbon Hopf algebra.
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15862 R. Laugwitz and C. Walton

(3) Using Proposition 3.12, we derive necessary and sufficient conditions for

C = Bq-mod(Bq) to be spherical. The monoidal category

Bq-mod(Bq) � Bq � K∗-mod

is spherical if and only if i� = 0 and there exist b, c ∈ � such that for a :=
γbγ c,

a2 = 1, r(gi, gb)r(gc, gi) = q−1
ii for all i = 1, . . . , n.

In this case, SPiv(H) is given by these elements a. See Example 5.18 for a

class of examples of spherical categories obtained this way.

5.4 Small quantum groups and other examples

In this subsection, we include some specific examples and demonstrate how

Theorem 4.14 and Proposition 5.15 lead to examples of non-semisimple modular

categories.

Example 5.17 (The small quantum group uq(g)). Take q a root of unity of odd order

l ≥ 3 and let g be the semisimple Lie algebra of rank t, associated to the irreducible

symmetrizable Cartan matrix (aij)
t
i,j=1. We choose coprime integers di = 1, 2, 3 so that

(diaij) is a symmetric matrix. Associated to these data, one defines a finite-dimensional

Hopf algebra uq(g), the small quantum group (or Frobenius–Lusztig kernel) as, for

example, in [47, Section 3.2] (When g is of type G2, assume l is coprime to 3; di = 3 only

appears in this case). The Hopf algebras uq(g) generated by group-like elements k±1
i ,

(ki, 1)-skew primitive elements ei, and (1, k−1
i )-skew primitive elements fi for i = 1, . . . t,

subject to relations:

kl
i = 1, el

i = 0, f l
i = 0,

kiej = qdiaijejki, kifj = q−diaij fjki, eifj − fjei = δi,j(ki − k−1
i )(qdi − q−di)−1,

1−aij∑
m=0

(−1)m
(

1 − aij

m

)
qdi

e
1−aij−m
i eje

m
i = 0,

1−aij∑
m=0

(−1)m
(

1 − aij

m

)
qdi

f
1−aij−m
i fjf

m
i = 0,

for the abelian group K := 〈k1, . . . , kt〉 ∼= Z
×t
l .
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Constructing Non-Semisimple Modular Categories 15863

The above datum also defines a Nichols algebra of diagonal type by setting

qij := qdiaij . The braiding given by q is of Cartan type, that is, satisfies qijqji = q
aij

ii , for

all i, j = 1, . . . , t. Moreover, the associated Nichols algebra Bq is isomorphic to uq(n+),

the positive part of the small quantum group associated to g, and the braided Drinfeld

double DrinK∗(Bq,B∗
q) is isomorphic to uq(g), both via

γi = γ i 	→ ki, xi 	→ ei, yi 	→ kifi(q
−di − qdi).

See, for example, [35], [2, Theorem 4.3], and the references therein, for the isomorphism

of Bq and uq(n+), along with [53, Section 5.10], [37, Proposition 4.3], [31,Theorem 4.9] for

the isomorphisms of the braided Drinfeld doubles.

We obtain that the category DrinK∗(Bq,B∗
q)-mod � uq(g)-mod is modular by

applying Proposition 5.15 as follows. First, the pairing r : G × G → k obtained from q

as in Notation 5.4 is non-degenerate using a computation as in [47, proof of Proposition

3.5], assuming that the determinant of (diaij) is coprime to l. This implies that G is

isomorphic to the group 〈γ1, . . . , γr〉 ⊆ kG∗. Further, r is symmetric and the associated

bilinear form b is given as its square. Thus, as all qdiaij are primitive l-th roots of unity,

with l odd, the same holds for q2diaij and b is also non-degenerate. Therefore, Proposition

5.15(i) holds. Moreover, the proof of [8, Theorem 5.4] contains a computation that

shows that Proposition 5.15(ii) holds for this class of examples (In fact, Burciu denotes

δ = ζ , h = a, χi(g) = r(gi, g) and verifies the required equation δ−1(gi)χ(h) = χi(gi)
−1

using the Lie theoretic computation that, writing the j-th positive root as βj = ∑t
s=1 cjsαs,

we have
∑

j
∑

s aiscjs = 2.). Therefore, Proposition 5.15 implies that DrinK∗(Bq,B∗
q)-mod

is an MTC.

Continuing Example 4.18, we have a decomposition of modular categories:

Drin(uq(b+))-mod � Bq � uq(g)-mod,

where uq(b+) is the positive Borel part of uq(g) generated by the ei and ki.

Finally, we produce an example of a relative monoidal center that gives a

modular category that is not of the form uq(g)-mod. It consists of modules over a more

general type of quantum group, namely, modules over the braided Drinfeld double of a

Nichols algebra that is not of Cartan type.
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15864 R. Laugwitz and C. Walton

Example 5.18. Let q ∈ k be a primitive 2n-th root of unity, for n ≥ 1 an odd integer.

We denote by G the abelian group 〈g1, g2〉 = Z2n × Z2n. Consider the Nichols algebra Bq

of diagonal type determined by q = (qij), with

q11 = q22 = −1, q12 = 1, q21 = q,

as in Section 5.2. This Nichols algebra appears in the classification of [21, Table 1, Row

2]. It has by [29] a PBW basis given by the set
{
xa1

1 xa2
2 xa12

12

∣∣ 0 ≤ a1, a2 < 2, 0 ≤ a12 < 2n
}

,

where x12 := x1x2−x2x1, and is thus 8n-dimensional. Note that Bq is generated by x1, x2

subject to the relations

x2
1 = 0, x2

2 = 0, xn
12 = 0,

see [1, Section 5.1.11] and is one of the Nichols algebras of super type A(1|1).

In this example, the symmetric bilinear form b from Notation 5.4 is given by

b(gi, gj) = qjiqij, so

b(g1, gc1
1 gc2

2 ) = b(g1, g1)c1b(g1, g2)c2 = qc2 , b(g2, gc1
1 gc2

2 ) = b(g2, g1)c1b(g2, g2)c2 = qc1 ,

for all c1, c2.

Hence, gc1
1 gc2

2 is in the radical of b if and only if c1, c2 = 0 mod 2n since q is a

primitive 2n-th root of unity. Thus, b is non-degenerate and Proposition 5.15(i) holds by

Lemma 5.5.

The Hopf algebra DrinK∗(Bq,B∗
q) may be presented as the Hopf algebra gener-

ated by xi, yi, and ki := γiγ i for i = 1, 2, subject to relations, for i, j = 1, 2, i 
= j,

kixi = xiki, kiyi = yiki, kixj = qxjki, kiyj = q−1yjki, xiyj + yjxi = δi,j(1−ki),

x2
i = y2

i = 0, k2n
i = 1, (x1x2 − x2x1)2n = (y2y1 − y1y2)2n = 0,

�(x1) = x1 ⊗ 1 + kn
2 ⊗ x1, �(x2) = x2 ⊗ 1 + kn

1 k2 ⊗ x2,

�(y1) = y1 ⊗ 1 + k1kn
2 ⊗ y1, �(y2) = y2 ⊗ 1 + kn

1 ⊗ y2.

Here, we use that γ1 = kn
2 , γ2 = kn

1 k2, γ 1 = k1kn
2 , and γ 2 = kn

1 . Note that 〈γ1, γ2〉 and

〈γ 1, γ 2〉 are both proper subgroups of 〈k1, k2〉.
The top Z-degree element xi� is x1x2x2n−1

12 and has G-degree i� = (2n, 2n) = 0 ∈
� = Z2n × Z2n. There are four pairs j = (j1, j2), a = (a1, a2) ∈ � satisfying the conditions
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from Proposition 5.15(ii):

(1) j = (0, 0), a = (n, n); (2) j = (n, 0), a = (n, 0);

(3) j = (0, n), a = (0, 0); (4) j = (n, n), a = (0, n);

It is clear that in all cases (1)–(4), 2j = 0 = i� and that ka = ka1
1 ka2

2 squares to gH = γ0 = 1,

so that b(gi, ga)2 = r(gi, gi� ) = 1 for all i = 1, 2. The remaining condition of Proposition

5.15(ii) is verified using explicit computation. In Case (1), for instance, we compute that

r(gj, g1)b(g1, ga) = r(g(0,0), g1)b(g1, g(n,n)) = q2n
11 (q12q21)n = (−1)2nqn = −1 = q−1

11 ,

using qn = −1. Similarly,

r(gj, g1)b(g1, ga) = r(g(0,0), g2)b(g2, g(n,n)) = q2n
22 (q21q12)n = (−1)2nqn = −1 = q−1

22 .

Thus, the set SqrtC(D, ξD) contains four distinct elements, which yields four different

ribbon structures on DrinK∗(Bq,B∗
q)-mod by the proof of Theorem 4.14 (using Theorem

3.5). In each case, this category is modular by Proposition 5.15.

Moreover, to study the sphericality of the category C := Bq-mod(Bq), we apply

Remark 5.16(3) and show that only Case (1) yields a spherical structure. For this, we set

b = (1, 0), c = (0, 1), and get that a = γbγ c = γ1γ 2 = kn
1 kn

2 . Then a2 = k2n
1 k2n

2 = 1 and the

equations r(gi, gb)r(gc, gi) = q−1
ii , for i = 1, 2 follow similarly to above, thus satisfying

the conditions in Remark 5.16(3). Note that a here is the same as the one obtained in Case

(1); thus, in this case, C is spherical in the sense of Definition 3.9. Finally, Cases (2)–(4)

do not yield spherical structures on C. Indeed, by Proposition 3.12, having a ∈ SPiv(H)

is equivalent to (ζ , a) belonging to the set of Theorem 3.6 with ζ = ε. The pairs (j, a)

above correspond to pairs (ζ , a) in Theorem 3.6, with a = ka and ζ obtained from j via

ζ(x ⊗ δi) = ε(x)δi,j. To get that ζ = ε, we need that j = 0, which only occurs in Case (1).
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