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A quantum state in a Bianchi II model is studied as it approaches the cosmological
singularity, by means of the evolution of its moments. Classically this system presents a
transition between two Bianchi I models. This phenomenon is described by a very specific
and well-known transition law, which is derived based on the conservation of certain
physical quantities. In the quantum theory fluctuations, as well as higher-order quantum
moments, of the different variables arise. Consequently, these constants of motion are
modified and hence also the transition rule. We focus on the so-called locally rotationally
symmetric and vacuum case, as a first step towards a more complete study. Indeed, the
future goal of this research line is to generalize this analysis to the Bianchi IX spacetime,
which can be seen as a succession of Bianchi II models. Ultimately, these results will
shed light on the role played by quantum effects in the BKL conjecture.
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1. Introduction

Close to a spacelike singularity, it is conjectured that the classical dynamics of any uni-
verse follows a chaotic behavior, according to Belinski-Khalatnikov-Lifshitz (BKL).!
In this scenario, the dynamics of each point is decoupled from the rest and can be
described by a Bianchi IX spacetime, which can be understood as a succession of
Bianchi II models.! This model is much easier to analyze than the full Bianchi IX
dynamics, and therefore provides a good first step to study the full BKL scenario.
More precisely, as it was described in Misner’s seminal work,? in the Bianchi IT model
the system undergoes a single transition between two Bianchi I models. However,
close to the singularity quantum effects are expected to become relevant, and thus,
in the present work we will analyze how they modify this classical transition.

2. Classical Model

A Bianchi IT model is a type of spatially homogeneous but anisotropic four-
dimensional spacetime. If we follow the usual 3+1 decomposition in order to describe
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the model canonically, the vacuum Hamiltonian constraint of this system is found
to be

1 —3a a—
C= e (=po+p2 +p}) +e* ¥ =0, (1)

where « describes the spatial volume and S84 are the shape parameters that encode
the spatial anisotropy of the spacetime. These are the so-called Misner variables
and p, and py are their corresponding conjugate momenta. If a is chosen as the
internal time, the physical Hamiltonian of the system takes the subsequent form:

Hi= —po= (02 +p2 +2e2504) 12 2)
This is the most general vacuum description but, in order to further simplify the
problem, we will remove one of the shape parameters by imposing f_ = 0 = p_,

which is known as the locally rotationally symmetric (LRS) case. Consequently, the
Hamiltonian (2) is reduced to:
H = (p? + 2% %9)"?, (3)
where, for compactness, 5 := f4 and p := p; have been defined.
This model presents a singularity, even in the particular LRS case, precisely
when o — —o0. Hence, we will be interested in studying the evolution towards this
limit. For this purpose, the first step is to obtain the equations of motion:

5 P

b= (4)
o_ 8 a-sp

p_ He 9 (5)

where the dot represents the derivative with respect to the internal time «. From
(4)-(5) we note that, when the exponential term e**~8 is negligible, the equations
of motion can easily be solved. Under such an assumption, p would be a constant
of motion and, in this sense, the system would follow a free dynamics, whereas the
shape-parameter 8 would be a linear function of a:
8 = sign(p)a +c, (6)

with an integration constant c. During this period the system is equivalent to a
LRS vacuum Bianchi I —or Kasner— solution. This Kasner regime is completely
characterized by the values of the constants of motion p and c. As illustrated in
Fig. 1 and Fig. 2, if we begin the evolution towards the singularity in one of these
regimes, with p > 0 and at large values of «, the shape parameter S follows the linear
behavior as given in (6) until the exponential term e**~8% ceases to be negligible. At
that point, a transition happens and the system enters in another Kasner regime.

In order to study this transition, a useful procedure is to exploit the conserved
quantities of the system. The mentioned constants of motions are found to be the
following:

Ry :=2H - D, (7)
Ry = 2T (H — p). (8)
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Fig. 1. Classical evolution of the variable 3 with respect to a, where p > 0 for large values of «
and S.
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Fig. 2. Classical evolution of the variable p with respect to «, where p > 0 for large values of «
and S.

If we evaluate these quantities in the initial and final states and equate them, we
obtain a system of two equations, which relate the parameters of the first Kasner
epoch (¢,p) with those of the second one (¢, p). Thus, after solving it we obtain the
law that describes the transition between the two Kasner regimes, namely:

. 1_

p=—3D, 9)
1 (2,

¢=—3¢c— iln (3p ) (10)

3. Quantum Transition Rules

Once that we have provided a canonical description of the classical model, we are
ready to develop the quantum analysis. The quantum dynamics is governed by the
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following Hamiltonian operator, which is defined from the classical one and chosen
to be Weyl-ordered, that is, with a totally symmetric ordering of the basic operators:

1/2

H(p, ) = (5 + 2¢%57) (11)

Weyl '

Then, instead of studying the evolution of the wave function itself, we follow a
formalism developed for quantum cosmology and quantum mechanics in general,
which is based on the moment decomposition of the wave function.? Thus, according
to this formalism, the system is fully described by the expectation values of the basic
variables,

B:=(B), p=p) (12)
as well as the following infinite set of quantum moments:
AB'P) =((B—B)' (D — 1Y )wep (.5 € N). (13)

The sum of the indices 7 + j will be referred as the order of the corresponding mo-
ment. The evolution of these variables is ruled by a quantum effective Hamiltonian
Hg, that is defined as the expectation value of H. By performing a Taylor expansion
around the expectation values of B and p, it can be written as the following infinite
series:

Ho = (H(p, B)) (14)
—HED+ Y Ay,
1+j=2

where H(8,p) is the classical Hamiltonian (3). This effective Hamiltonian Hg en-
codes the complete dynamical information of the system. Indeed, the equations of
motion for the variables of the system —3, p and A(B'p’)— are obtained by comput-
ing their Poisson brackets with Hg:

dg _ _ 0Hg

%_{"B’HQ}_Tp’ (15)
dp - o _8HQ

do = o} = =752, (16)
dA(BipI o

BOV) _ (a). Ho) a7)

{ABP), AB™ ™)}

_ *ZC"’ 1 9™+ H (B, p)
= mln!  0B™Ip"
where the Poisson brackets between expectation values are defined in the usual way
in terms of the commutator, that is, {(A), (B)} := —i([A, B])/h. Let us emphasize
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that this evolution of the variables is completely equivalent to that given by the
Schrédinger picture in terms of the wave function.

We observe that the classical Hamiltonian H defined in (3) is not polynomial,
which means that the series in (14) is indeed infinite and it is not truncated at certain
order. Thus, the equations of motion (15)-(17) form an infinite system of coupled
equations. Therefore, in order to study and compute the dynamics explicitly, a cut-
off must be introduced. That is, we will consider all the moments of order higher
than a certain value N to be vanishing:

A(B'p?) =0 for i+j> N. (18)

In fact, such a truncation corresponds to considering a semiclassical regime, where
the quantum state is peaked on a classical trajectory and hence the high-order
moments are negligible.

However, even if we apply a cut-off, instead of solving the coupled system of
equations for any value of a, we will focus on the so-called Kasner regimes, as we
have done in the classical analysis. During these periods, the equations of motion
take the form

% ~ sign(p), ;Z—Z ~ 0, % ~ 0, (19)
which are immediate to solve:
B ~ sign(p)a +c, (20)
p ~ const., (21)
A(B'p?) ~ const., (22)

with an integration constant c¢. Comparing these results with the classical ones, we
observe that the behavior of p and S in these states remains identical in the quantum
analysis. Moreover, the moments hold a constant value. In summary, the parameters
that characterize each quantum Kasner epoch will be, as in the classical case, the
constants ¢ and p, along with the infinite constant set of moments A(3%p?). Then,
in order to analyze the transition between two of these quantum Kasner regimes,
we will once again exploit the constants of motion. In this quantum scenario, the
conserved quantities are found to be the expectation values (R1> and (Rg), where
Ry and R, are the operator counterpart of the classical conserved quantities (7)
and (8). In fact, any of the following combinations is also a constant of motion:

(RI'R}") = const., for m,n € Nandi,j € {1,2}. (23)

Nonetheless, as a technical subtlety, it must be mentioned that the choice of ordering
of these operators is far from trivial: one must find the proper ordering so that they
are conserved. Furthermore, at higher orders in moments, there may appear some
terms that go with some explicit powers of . A more detailed discussion about
these issues can be found in.?
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Based on the classical results, we will consider that we have an initial Kas-

ner regime characterized by the parameters (¢,p, A(G'p?)) and that, as we ap-
proach the singularity, another such regime is reached described by the parameters

—_~—

(¢,p, A(B*p7)). Hence, if we evaluate the constants of motion in these two states
and equate them, we obtain a system of algebraic equations that relate the different
parameters. After solving this system, we get the quantum transition law, which
takes the following form:

p= —3P (24)
N 1. (2p No(—1yn
c=—3e— -1 (g) +3 (njl AQpr), (25)
n=2
o N—(m+n) m a
mnkl
A(Bmpn) = Z Z ST A(BFpmFnti=F) (26)
=0 k=0

, [N/4]

: bmnklr — Cmnk

IS WA(PT) ARt =Ry 4 ﬁQk—nh?k’
r=2 k=0 l=lmin k=1

where N denotes the order of the truncation. On the one hand, as can be seen
from (24), the transition law for p remains identical as the classical one. However,
we do obtain some quantum corrections for the transition law of £, as can be
seen by comparing (10) with (25). Nevertheless, as expected, if all the moments
are set to zero we recover the classical transition law. On the other hand, the
transition law for the moments can be written in the compact form (26), with
certain numerical coefficients a.nnki, Omnkir and Cpnk. Up to fifth order in moments,
we have obtained the explicit expression of these coefficients and we refer the reader
to3 for the detailed expressions. If we analyze this formula in detail, we observe that
it is linear in all of the moments except for some quadratic terms that contain pure
moments of p. Moreover, regardless of the order of the truncation, there is a strong
dependence on the index m of the shape parameter 3 of the corresponding moment.
In particular, this index determines which initial moments will directly affect the

value of a given final moment. For instance, the value of A(p™) (which corresponds

to m = 0) only depends on the initial pure p-moments A(p"). Nevertheless, the

P

value of A(Bp™), that is m = 1, depends not only on pure p-moments, but also

on A(fp™). In general, the value of the final moment A(/B_%”) will depend on the
initial moments A(B7p?) with j < m.

4. Quantum Dynamics

Once we have studied the asymptotic characteristics of this model in the Kasner
regimes, we complete it by performing a numerical analysis to examine in detail its
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dynamical evolution. For this purpose, we have chosen an initial Gaussian state,
namely
2m)!(2n)!

W — 9—2(m+n) y2m ;2(n—m) ( (27)

m!n!
for Vm,n € N, and vanishing otherwise. As expected, the numerical study shows
that starting from high values of a and evolving towards lower ones, the system
follows the Kasner dynamics until it undergoes a transition, which happens near
« = 0. This transition takes place in a very small period of time and then the system
reaches its final equilibrium value —the final Kasner regime— very quickly.

Regarding the evolution of the expectation values p and 3, we remark that they
remain almost identical as in the classical case, that is, as depicted in Fig. 1 and
Fig. 2. In fact, only in a very close zoom into the transition (near o = 0) we can
appreciate a slight modification in their evolution: quantum effects slightly increase
the value of p and  during the transition.

Moreover, the evolution of the moments show that during the initial Kasner
regime they hold a constant value, at certain point they begin to perform strong
oscillations and then quickly relax to their final constant value, which characterizes
the coherent state during the final Kasner regime. The precise dynamics of the
moments are quite complicate but, if we look into the transition in more detail,
some general features can be detected. For instance, we remark that the higher the
index of p, the earlier the moments reach their final equilibrium value. Furthermore,
we observe that the lower the order of a given moment, the sooner it starts to
oscillate and with a larger amplitude, which is in agreement with the semiclassical
hierarchy of moments we are assuming. More specifically, at each given order the
pure fluctuations of p show the biggest amplitudes. In addition, moments with at
least one odd index, i.e., the initially vanishing ones, present more oscillations.

It is particularly interesting to observe that the moments that were vanishing in
the initial Kasner epoch —due to the choice of the Gaussian state— are not vanishing
in the final one, due to the mentioned oscillations. This is indeed an expected
outcome according to the transition laws (26). However, it means that even when
we choose an initial state where there are no correlations between § and p, the
transition will generate correlations for the final state. In particular, all the initial
vanishing moments are activated in a similar way: as they approach the transition
they experience an excitation and start to grow exponentially, until they begin to
oscillate.

5. Conclusions

In summary, we have described the quantum LRS Bianchi IT model making use of a
decomposition of the wave function into its infinite set of moments. For the classical
case, we have obtained the explicit constants of motion for the full dynamics, and
thus we have completely integrated the equations of motion. For the quantum case,
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making use of the conserved quantities (23), we have been able to obtain the exact
quantum transition law for every variable (24)-(26) up to fifth-order in moments.
Furthermore, by performing a numerical analysis of the model, we have studied
the dynamical part of the evolution. In particular we have focused on the region
where the transition takes place, and we have derived some general features of the
behavior of the different variables. The follow-up of this work is to remove the LRS
symmetry and to study the most general Bianchi IT model. Then, the next step will
be to extend the analysis to the full Bianchi IX model, and ultimately, to obtain
the quantum corrections to the BKL transitions.

Acknowledgments

SFU acknowledges financial support from an FPU fellowship of the Spanish Min-
istry of Universities. AA-S is supported by the ERC Advanced Grant No. 740209.
This work is funded by Projects FIS2017-85076-P and PID2020-118159GB-C44
(MICINN/AEI/FEDER, UE), and by Basque Government Grant No. IT956-16.

References

1. V. A. Belinskii, I. M. Khalatnikov and E. M. Lifschitz, A general solution of the Einstein
equations with a time singularity, Adv. Phys. 13, 639 (1982).

2. C. W. Misner, Mixmaster Universe, Phys. Rev. Lett. 22,1071 (1969).

3. A. Alonso-Serrano, D. Brizuela and S. F. Uria, Quantum Kasner transition in a locally
rotationally symmetric Bianchi II universe, Phys. Rev. D 104, 024006 (2021).

4. M. Bojowald and A. Skirzewski, Effective equations of motion for quantum system,
Rev. Math. Phys. 18, 713 (2006).



	9789811269776_0044



