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1 Introduction

The analysis of gravitational wave (GW) signals from compact-object binaries, such as spinning
black holes and neutron stars, demands high-precision predictions of their gravitational two-
body dynamics and emitted far-field waveforms. These predictions are crucial for interpreting
data from present [1–3] and future [4–6] gravitational wave observatories, enabling us to infer
source parameters like masses and spins as well as further intrinsic parameters discerning
neutron stars from black holes. In the coming decade the planned third-generation detectors
will drastically increase observational accuracies, such that the need for theoretical predictions
of the spinning gravitational two-body problem going beyond the present precision has
become increasingly urgent [7]. In order to meet this theoretical challenge, a spectrum
of perturbative approximation schemes have been developed for solving the gravitational
two-body problem: the post-Newtonian [8–10] (assuming weak fields and low velocities) and

– 1 –



J
H
E
P
0
2
(
2
0
2
5
)
0
1
9

the post-Minkowskian [11–15] (assuming only weak fields) expansions on the purely analytical
side, and the semi-numerical gravitational self-force [16–19] (assuming a small mass ratio
between the two objects) expansion. High-order results from these approaches, complemented
by numerical relativity [20–22] and resummation techniques such as the effective-one-body
formalism [23, 24], are assembled into waveform models that form the foundation of GW
data analysis [25–31].

Recently, rapid advancements have been made in the post-Minkowskian (PM) expansion,
particularly relevant for the unbound or scattering problem, which is also the focus of this work.
These advancements have been driven largely by the application of modern quantum field
theory techniques and Feynman integration methods: integration by parts [32–36], differential
equations [34, 37–40], and the method of regions [41]. These innovations have rapidly pushed
the state-of-the-art from 3PM to 5PM, employing both underlying worldline [42–69] and
scattering amplitude techniques [70–109]. The Worldline Quantum Field Theory (WQFT)
method [45, 57, 60], which emphasises the calculation of classical scattering observables such
as the momentum impulse and waveform, has been particularly successful: the conservative
5PM impulse up to first self-force (1SF) order — a four-loop calculation — was recently
obtained [110], and the dissipative result is upcoming [111]. Using scattering amplitudes the
same 5PM-1SF order was recently attained in N = 8 supergravity [106].

Spin is an essential property of all compact astrophysical objects, and a key observational
target for GW detectors [112, 113]. In two-body systems with generic spin orientations,
the orbital plane and object spins precess about the total angular momentum, leading to
modulations in the GW signal. Improving the accuracy of waveform models for generic spin
orientations is paramount for future GW searches, binary black hole formation studies, and
tests of general relativity. As long as the two compact objects are well-separated, they may
be efficiently modelled as spinning point particles moving along worldline trajectories that
interact through the gravitational force. Traditionally, the effective worldline description
captures the object’s spin through a spin tensor Sµν(τ) and a co-rotating frame ΛA

µ (τ) [53, 114–
116], augmenting the trajectory xµ(τ) and momentum pµ(τ) canonical pair. However, as
one is generally more interested in the spin tensor, carrying the frame in an action-based
formalism can be cumbersome — though not impossible, as demonstrated in ref. [65].

The spin tensor Sµν couples to the space-time curvature quantified by an infinite series
of higher-dimensional worldline operators with free Wilson coefficients in the logic of effective
field theory [9, 10, 117]. At linear order in curvature, these operators are well understood,
with a single operator for each spin multipole, and with Wilson coefficients entering from
the spin quadrupole order; contributions from the spin monopole and dipole are fixed by
diffeomorphism invariance of the action [115]. These linear-curvature Wilson coefficients
attain known special values when the compact object in question is a Kerr black hole [118].
Corrections involving coupling the spin degrees of freedom to higher powers of the curvature
are being actively explored with increasing zeal [96, 119–127], including an enumeration
and analyses of these corrections in the language of on-shell scattering amplitudes [128–132].
The values of Wilson coefficients at quadratic order in curvature which specialize to the
Kerr-black-hole context is a vibrant and expanding line of research, though as yet an action
describing all spin multipoles of a Kerr black hole to quadratic order in curvature is not
known [129, 133–136].
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Three of the present authors [45, 57, 60], together with Sauer and Steinhoff, have pioneered
a particularly efficient approach for representing the spin degrees of freedom of a compact
binary encounter using a superparticle formalism. It involves a worldline action which enjoys
an extended N = 2 supersymmetry, where the worldline trajectory xµ(τ) is augmented by an
anti-commuting complex worldline vector ψµ(τ) carrying the spin degrees of freedom [56, 57]:
here the spin tensor is a composite object, Sµν = −2imψ̄[µψν]. This approach is particularly
amenable to the WQFT method for determining momentum and spin change observables,
as well as the waveform, at high orders in perturbation theory. Non-spinning results for
the deflection observables [51, 52, 94, 95, 98] were extended to the spinning situation using
this method at two-loop [58, 59] and three-loop orders [67, 68]. Given also the recent work
on 5PM [110, 111], this implies that in a physical PM counting [30, 137], where each order
of spin contributes a PM order, the complete 5PM dynamics for the deflection observables
is now known up to 1SF order.

An important aspect of the description of the angular momentum of an extended body
— or spin — in general relativity is the so-called spin-supplementary condition (SSC). In
the multipolar description of extended bodies (see e.g. refs. [138, 139]), the SSC serves to
close the otherwise-indeterminate equations of motion for the linear and angular momenta
by imposing a further constraint on the angular momentum (spin) tensor Sµν . Effectively,
the six degrees of freedom of the spin tensor are reduced to three, which, in some reference
frame, are encoded by the Pauli-Lubanski spin vector S. The SSC can be regarded as the
fixing of a gauge freedom, any choice of which produces physically equivalent descriptions of
the dynamics (though certain choices yield simplifications) [140, 141]. In the superparticle
formalism the supersymmetry itself provides the SSC constraint. Yet, while elegant, this
supersymmetric approach to spin remains limited to spin-orbit and spin-spin interactions of
the binary only, as it remains unclear how to maintain the symmetries of the worldline action
beyond N = 2 supersymmetries in a gravitational background. This has, so far, presented
an obstacle to further scattering calculations using the WQFT.

In this paper, we therefore introduce a novel formalism that overcomes the limitations
of the supersymmetric worldline. That is, our new formulation is capable of describing
spin interactions to any order. The key inspiration to do so comes from bosonic string
theory in the tensionless (α′ → ∞) limit: we introduce a bosonic spinning worldline model
by augmenting the trajectory phase space variables {xµ, pν} = δµ

ν with a set of bosonic
oscillators {αa, ᾱb} = −iηab/m living in the flat tangent space. In great similarity to the
supersymmetric model, we identify Sµν = −2imᾱ[µαν]. We derive this bosonic oscillator
model from the covariant phase space description of a spinning particle in curved space-time
introduced by d’Ambrosi, Kumar, van de Vis and van Holten in refs. [142–144], which has
been a great inspiration for our work.

The outline for our paper is as follows. First, we construct a higher-spin Hamiltonian
that preserves the common and convenient covariant SSC. Our procedure allows for the
building of such a Hamiltonian to all spin and curvature orders, but we will focus here on all
spin orders at linear order in curvature, and the leading physical PM order (up to quartic
spins) at quadratic order in curvature. By introducing the bosonic oscillators αµ and ᾱµ, a
canonically-conjugate pair encoding the spin degrees of freedom, we then Legendre transform
to the Lagrangian, yielding an action suitable for WQFT perturbative calculations. We then
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set up the perturbative framework of WQFT to perform higher-spin precision computations.
This affords us an opportunity to make contact with recent similar analyses which have
explored the relaxation of the SSC constraint [96, 97, 107, 145]. As a proof of principle of
our new approach, we use WQFT to reproduce the actions emerging from our Hamiltonian
analysis, along the way computing the all-order-in-spin tree-level deflection observables and
finding agreement with the literature. At one-loop level we also include the first layer of
quadratic-in-curvature spin couplings on the worldline in our computations and demonstrate
the covariant SSC preservation including these corrections explicitly, reassuring us of its
suitability for pushing the boundaries on predictions regarding the scattering of spinning
compact bodies in classical general relativity.

2 The Hamiltonian approach to relativistic spinning bodies

In this section we review the Hamiltonian dynamics of massive spinning bodies in curved
space-time leading to the efficient covariant formulation of d’Ambrosi et al. [142–144]. After
discussing the covariant phase space, involving Poisson brackets, we will use this to develop
Hamiltonians that preserve the covariant SSC on the spin tensor, thus keeping only the
degrees of freedom necessary to describe a relativistic spinning body.

2.1 Covariant phase space

The phase space of a massive spinning body is described by: its position xµ, canonical
momentum pµ, and antisymmetric spin tensor Sab. Here we distinguish between curved-space
indices µ, ν, . . . and locally flat indices a, b, . . . taken in a frame defined by the vierbein
ea

µ(x). In order to set up a Hamiltonian dynamical system, we postulate the canonical set
of Poisson brackets:

{xµ, pν} = δµ
ν , (2.1a)

{Sab, Scd} = ηbd Sac + ηac Sbd − ηbc Sad − ηad Sbc , (2.1b)

all other brackets vanishing. The latter identifies Sab as enjoying the flat space-time SO(1,3)
Lorentz algebra, which includes both rotations and boosts. As {(Sab)2, • } = 0 in all cases,
this also identifies s2 := 1

2S
abSab as the usual Casimir invariant — later this will imply

conservation of the length of the spin vector. We now introduce the covariant momentum
and spin tensor:

πµ := pµ + 1
2ωµ,abS

ab , (2.2a)
Sµν := eµ

ae
ν
bS

ab , (2.2b)

where ωµ
ab denotes the spin-connection. Using the brackets (2.1), it is then straightforward

to derive the Poisson brackets for the set of covariant phase space variables {xµ, πµ, S
µν}:

{xµ, πν} = δµ
ν , (2.3a)

{Sµν , Sρκ} = gνκ Sµρ + gµρ Sνκ − gνρ Sµκ − gµκ Sνρ , (2.3b)

{Sµν , πρ} = 2Γ[µ
ρκ S

ν]κ , (2.3c)
{πµ, πν} = −1

2Rµνab S
ab . (2.3d)
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Up to a convention-dependent sign in eq. (2.3d), these are precisely the curved-space Poisson
brackets of Ambrosi et al. [142–144] that were introduced as a consistent covariant canonical
formalism for spinning bodies allowing for different choices of the Hamiltonian.

The 3+3 components of the spin tensor Sij and S0i generate rotations and boosts
respectively. As we only seek to describe the three degrees of freedom of a spin vector
Si = 1

2ϵ
ijkSjk, i.e. compact rotating bodies, we therefore set the latter three components

S0i = 0 — a choice of SSC. To covariantize this frame-dependent statement in four dimensions,
we introduce an inertial frame defined by a timelike vector tµ = (1,0), so that Sµνt

ν = 0.
The most convenient choice for tµ for us will be the (unit-normalized) covariant momentum
π̂µ := gµνπν/|π|, with |π| = √

gµνπµπν . This choice of frame tµ = π̂µ defines the so-called
covariant SSC. To implement this, we decompose the spin tensor as [142–144]

Sµν = εµνρσπ̂ρSσ + Zµπ̂ν − Zν π̂µ , (2.4)

where εµνρσ :=
√
−gϵµνρσ is the covariant Levi-Civita tensor (ϵ0123 = 1), whose indices may

be raised and lowered using the metric gµν . Here we have introduced the spin vector Sµ

and the SSC vector Zµ:

Sµ := 1
2εµνρκπ̂

νSρκ , Zµ := Sµν π̂ν . (2.5)

Both vectors are orthogonal to πµ by construction: π · S = π · Z = 0. Upon inverting
these relationships one recovers the decomposition of the spin tensor (2.4). The covariant
SSC is then given by Zµ = 0, with the spin vector Sµ characterizing the remaining three
spin degrees of freedom.

We note that other choices of the SSC are possible, though they will not be our main
focus in this paper. By introducing a body-fixed frame ΛA

µ, one may for example consider
the canonical (Pryce-Newton-Wigner) SSC [146–148] Sµν(π̂ν + Λ0

ν) = 0, which is helpful for
formulating a canonical phase-space algebra in the context of conservative (center-of-mass)
two-body systems. This requires an extension of the Poisson brackets (2.3) to include ΛA

µ

in the phase-space, which we will briefly describe in section 3. One might also consider
disgregarding the SSC altogether, as recently discussed in refs. [97, 107], and allowing the
spin tensor Sµν to carry all six degrees of freedom. In this case, using

2s2 := SµνSµν = −2
(
S2 − Z2

)
, (2.6)

we see that conservation of SµνSµν no longer implies conservation of the length of the spin
vector Sµ. The vector Zµ may in this case be interpreted as a mass dipole moment, describing
the position of the body’s center of mass relative to the worldline [140, 141].

2.2 Preserving the spin-supplementary condition

Let us now define a Hamiltonian generating the time evolution along the worldline of the
massive spinning body. Our intention is to preserve the SSC condition Zµ = 0 on the spin
tensor throughout this evolution. The most general form of the total Hamiltonian of a
spinning massive body takes the form

HT = eH[ea
µ(x), pµ, S

µ] + ζµZ
µ + a(SµνSµν − 2s2) , (2.7)
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where H depends on spin only via the spin vector Sµ, not the SSC vector Zµ. We have
also introduced the einbein e, the U(1) gauge field a and the Lagrange multiplier ζµ, whose
roles are to enforce conservation of energy, spin length and SSC respectively. As the Casimir
invariant SµνSµν has vanishing Poisson brackets, we generally ignore the last term and gauge
fix a = 0 without loss of generality.

In order for the covariant SSC choice Zµ = 0 to be preserved, the essential requirement
on the total Hamiltonian HT is that1

Żµ = {Zµ, HT } ≈ 0 . (2.8)

Following Dirac’s notation [149], the symbol ≈ here denotes a weak equality, which is held to
be true once we impose the vanishing of all conserved charges 0 = H = Zµ = (SµνSµν − 2s2)
on the right-hand side — no such condition is imposed on a strong equality.2 This requirement
provides us with sufficient constraints in order to solve for the necessary components of ζµ.
By doing so, we identify the SSC as a second-class constraint in the sense of Dirac [149];
the energy and spin length conservation requirements, which cannot be solved for in this
way, are first-class constraints. We obtain:

{Zµ, HT } ≈ e{Zµ, H}+ ζν{Zµ, Zν} . (2.9)

Using the Poisson brackets (2.3), we have

{Zµ, Zν} ≈ Sµν − 1
2|π|2RρσλτS

µρSνσSλτ . (2.10)

Introducing ψµ := Sµνζν our essential requirement is therefore

ψµ + 1
2|π|2RρσλτS

µρSλτψσ ≈ −e{Zµ, H} . (2.11)

As we will generally solve for ψµ order-by-order in the spins, ψµ =
∑

n>1 ψ
µ
(n), we project

this equation on a fixed spin order n:

ψµ
(n) +

1
2|π|2RρσλτS

µρSλτψσ
(n−2) ≈ −e{Zµ, H}|Sn . (2.12)

Then ζµZ
µ = ζµS

µν π̂ν = −ψµπ̂µ may be inserted into HT (2.7). This provides a fully
constructive mechanism for building up an SSC-preserving Hamiltonian, regardless of what
ansatz is made for H at any order in spin or curvature.

One might object here, that solving eq. (2.11) only weakly for ψµ is insufficient as any
linear-in-Z terms would still be relevant at the level of the total Hamiltonian HT . However,
one can straightforwardly show that this is not the case, as the subsequent contraction with
π̂µ elevates these terms to quadratic order in Z. As a sanity check one may show that the
constructed solution for ζ · Z inserted into HT indeed obeys {Zµ, HT } ≈ 0.

1Under the weak equality used here, there is no distinction between the Żµ = dZµ/dτ and the covariant
time derivative DZµ/dτ := ẋν∇νZµ.

2Said otherwise, weak equality implies that all initially vanishing charges stay zero under time evolution.
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2.3 Constituents of the Hamiltonian ansatz

Having described our procedure for building up an SSC-preserving total Hamiltonian HT (2.7),
our next step will be to make a suitable ansatz for the Z-independent contribution H. This
ansatz includes the spin vector Sµ and momentum πµ coupled to the curvature of the
gravitational field. In the following we will ignore couplings to the Ricci tensor and Ricci
scalar, which amounts to an assumption that the bodies live in a vacuum spacetime.3 Thus,
the gravitational dynamics of the worldline are encoded in the Weyl tensor Cµνρκ, which
may be decomposed in an analogous manner to the spin tensor (2.4). First, we introduce
the electric and magnetic curvature tensors:

Eµν + iBµν = (Cµανβ + iC∗
µανβ)π̂απ̂β (2.13a)

= 1
8Gµα

ρσGνβ
λτCρσλτ π̂

απ̂β , (2.13b)

which depend on the dual Weyl tensor C∗
µναβ = 1

2εµν
ρσCρσαβ and

Gµνρσ = 2gµ[ρgσ]ν + iεµνρσ . (2.14)

By inverting the relationship in eq. (2.13) we obtain a decomposition of the Weyl tensor into
the instantaneous frame of the point particle (in four dimensions) [116]:

Cµνρκ + iC∗
µνρκ = Gµν

ασGρκ
βϵ (Eσϵ + iBσϵ) π̂απ̂β . (2.15)

To derive this, one inserts the definition of the Eµν and Bµν tensors (2.13b) into the right-hand
side above, making use of another useful identity (in four dimensions):

Gµνρσ = Gµνλ
αGρσ

λβπ̂απ̂β . (2.16)

This follows from the fact that ε[µνρσπλ] = 0. Finally, taking the real part of eq. (2.15), we
obtain the following explicit relationship:

Cµνρκ =− 2Eµ[ρ(gκ]ν − 2π̂κ]π̂ν) + 2Eν[ρ(gκ]µ − 2π̂κ]π̂µ)
+ 2B[µ

λπ̂ν]π̂
αεαρκλ + 2B[ρ

λπ̂κ]π̂
αεαµνλ ,

(2.17)

expressing the Weyl tensor in terms of the gravito-electromagnetic tensors.
Constructing an ansatz for the Hamiltonian capturing spinning dynamics at all multipole

orders entails the enumeration of an infinite number of interaction terms. Power counting aids
us in this task by classifying operators in terms of the characteristic size of their contributions
to dynamics. Our dimensional conventions are c = 1, equating length and time, but keeping
ℏ dimensionful as we are doing classical physics. Hence, we discriminate between mass and
length scales. To this end, we assume that the only length scale is the Schwarzschild radius
2Gm — a compact body assumption, valid for black holes and (as an order of magnitude)
for neutron stars. This scale must balance all lengths associated with the curvature tensors
and their covariant derivatives to render the Wilson coefficients dimensionless. The building

3We have observed that such couplings do not make a difference at the formal 2PM order to be consid-
ered below.
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(Gm)2Eµν (Gm)∇µ χµ

Physical PM ∼ ϵ2PM ∼ ϵPM ∼ 1
Curvature ∼ ϵR ∼ 1 ∼ 1

Spin ∼ 1 ∼ 1 ∼ ϵχ

Table 1. Scalings of dimensionless variables in the physical PM, curvature and spin regimes. Here
ϵ∗ ≪ 1 are dimensionless power-counting parameters. In the context of a two-body system the
curvature expansion coincides with a gravitational self-force (GSF) expansion in the mass ratio.

blocks of the EFT are then the rescaled dimensionless curvature tensors (Gm)2Eµν and
(Gm)2Bµν , rescaled covariant derivatives (Gm)∇µ, the covariant momentum πµ and the
dimensionless spin vector:

χµ = Sµ

Gm2 . (2.18)

The former curvature tensors and derivatives appear in the specific combinations

(Gm)n+2∇µ1 . . .∇µnEαβ , (Gm)n+2∇µ1 . . .∇µnBαβ , (2.19)

with the covariant derivatives acting only on the curvature tensor, not the momenta πµ.
For example,

∇µEαβ = ∇µCαπ̂βπ̂ = π̂ρπ̂σ∇µCαρβσ , (2.20)

using Schoonschip notation [150, 151], e.g. BSZ = SνZρBνρ. Power counting rules in physical
PM, curvature and spin orders are given in table 1. Notice that, in the physical PM counting,
powers in the dimensionful spin vector Sµ are also included. A separate power counting in
terms of the spin is therefore often unnecessary, and is itself only meaningful when |χ| ≪ 1.
For black holes, |χ| ≤ 1.

In the following subsections we will build up a Hamiltonian ansatz order-by-order in
the curvature tensors. In the broader context of a two-body system, which also includes
a second body with mass m∗ ≪ m, the nth order in curvature is sufficient to describe the
system up to (n − 1) orders beyond leading in the mass ratio m∗/m. One can infer this
straightforwardly from the Feynman diagrams involved: at leading order in the mass ratio
(static limit) one requires only single-graviton couplings, at sub-leading order one requires
two-graviton couplings, and so on.

2.4 SSC-preserving linear-in-curvature Hamiltonian

To begin with, let us consider couplings up to linear order in curvatures, but arbitrarily
high spin powers, restricting ourselves to parity-even contributions. Such a description is
entirely sufficient to describe a static object. The relevant EFT analysis was first carried
out in ref. [115], and leads to a single infinity of effective couplings:

HRSn = m2−n

n!

(−1)
n
2CESn

(
∇S

)n−2
ESS , n even ,

(−1)
n−1

2 CBSn

(
∇S

)n−2
BSS , n odd .

(2.21)
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For generality, the Wilson coefficients may depend on the spin scalar χ2 such that CESn =
CESn(χ2). Indeed, the result of ref. [115] was that any other coupling at linear order in
curvature may be reduced to the ones above assuming the Einstein vacuum equations. It
is common to include the higher spin operators through the dynamical mass M2 = m2 −
2
∑

n>1HRSn . The linear-in-R Hamiltonian then reads:

H = 1
2

(
gµν πµ πν −M2

)
= 1

2

(
gµν πµ πν −m2

)
+
∑
n>1

HRSn . (2.22)

Note, that for Kerr black holes, the Wilson coefficients take the value one [115, 118].
We now solve for the SSC order-by-order in spins, and thus write down the total

Hamiltonian HT . The leading-order solution to eq. (2.12) (n = 2) is

ψµ
(2) ≈ −e{Zµ, H}|S2 ≈ − e

2Rπ̂ναβS
µνSαβ . (2.23)

As we will demonstrate shortly, none of the higher-spin corrections (2.21) play a role in the
SSC term until cubic order in spins. Using the spin tensor decomposition (2.4),

ζ · Z = −ψµ
(2)π̂µ +O(S3) = − e

2Rπ̂ZαβS
αβ +O(S3)

= e (EZZ −BSZ) +O(S3) .
(2.24)

To reproduce the second line, one decomposes all dependence on curvature tensors into Eµν

and Bµν using eq. (2.17), thereby ignoring all terms that vanish on support of the vacuum
Einstein equations Rµν = 0; all spin dependence is converted into Sµ and Zµ via eq. (2.4).
Thus, we may ensure conservation of the SSC by including −eBSZ in the total Hamiltonian HT .
The EZZ term may be ignored, as it always weakly vanishes after taking a Poisson bracket.

Proceeding beyond quadratic order in spin, working up to linear curvatures eq. (2.12)
reduces to

ψµ
(n) ≈ −e{Zµ, H}|Sn +O(R2) . (2.25)

One may show that

{Zµ,HRSn}≈m2−n

n!

−(−1)
n
2CESn |π|−1Sµν∇ν(∇S)n−2ESS+O(R2), n even,

−(−1)
n−1

2 CBSn |π|−1Sµν∇ν(∇S)n−2BSS+O(R2), n odd.
(2.26)

In order to derive this, we have made use of the fact that πµ{Sµν , Sσ} ∼ O(R). As
HT = eH + ζ · Z, we can therefore now write down an all-order-in-spin SSC-preserving
Hamiltonian up to linear order in curvature:

HT = e

2
(
gµνπµπν −m2 − 2BSZ + 2

∑
n>1

H̃RSn

)
, (2.27a)

H̃RSn = m2−n

n!

(−1)
n
2CESn(1 + |π|−1∇Z)(∇S)n−2ESS , n even,

(−1)
n−1

2 CBSn(1 + |π|−1∇Z)(∇S)n−2BSS , n odd.
(2.27b)

The clear pattern is: for every term that we include at a given order in spin s, we must include
a corresponding term at one order higher in the spins s+1, in order to compensate for any SSC
violations. One can straightforwardly check, and we have confirmed, that {Zµ, HT } ≈ O(R2).
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2.5 Induced SSC-preserving higher-in-curvature terms

We have now constructed an all-order-spin Hamiltonian which describes a spinning body
obeying the covariant SSC up to linear-in-curvature precision. The full gravitational dynamics
of such an object, however, also depends on higher-curvature corrections. The topic of higher-
curvature operators is a rich and timely one involving the encoding of finite-size effects in
the scattering (see, e.g., refs. [69, 96, 128–130, 132–134, 136, 152, 153]). In this paper we will
consider quadratic-in-curvature corrections up to fourth order in the spin tensor. In this
subsection, we derive the quadratic-in-curvature terms induced by SSC preservation from
the linear-in-curvature couplings (2.21), first appearing (as we shall demonstrate) at quartic
order in spin. In the next subsection, we will extend M2 (2.22) to include quadratic powers
of Eµν and Bµν , with a corresponding new set of Wilson coefficients.

Our task is to solve eq. (2.12) up to quartic spins, and deduce the quadratic-in-curvature
corrections. The leading-order solution (n = 2) was already derived in eq. (2.23), and
remains valid at higher orders in curvature. At cubic order we insert the leading-spin term
−1

2CES2ESS of
∑

n>1HRSn on the right-hand side of eq. (2.12) for H. The relevant Poisson
bracket relation is4

π̂µ {Zµ, ESS} = |π|−1∇ZESS + 2(ESSBZS − Z · S ESνBS
ν)|π|−2 +O(Z2) . (2.28)

At cubic order in spin only the term ∇ZESS contributes, and we deduce

ζ(3)
µ Zµ = −π̂µψ

µ
(3) = −eCES2

2 π̂µ {Zµ, ESS}
∣∣∣
S3

= −eCES2

2|π| ∇ZESS +O(Z2) . (2.29)

Again, there is no change here from the previous subsection.
At fourth order in spins, quadratic-in-curvature terms emerge from two sources: the

quartic spin terms in the bracket (2.28), and the iteration of the second term on the left-hand
side of eq. (2.12) with ψσ

(2) of (2.23) inserted. The latter is

π̂µ
1

2|π|2RρσλτS
µρSλτψσ

(2) = e(ESSBZS − Z · S ESνBS
ν)|π|−2 . (2.30)

It is nice to see that the same quadratic curvature terms appear here as in eq. (2.28).
Combining these results we thus learn that at fourth order in spin the SSC-preserving ζ · Z
term in HT becomes

ζ(4)
µ Zµ = −π̂µψ

µ
(4) =− e

CBS3

6|π|m∇Z∇SBSS

− e
CES2 − 1

|π|2
(ESSBZS − Z · S ESνBS

ν) +O(Z2) .
(2.31)

The first term arises from π̂µ {Zµ, ∇S
m BSS} for the cubic spin contribution, and was already

included in eq. (2.27). The second line represents the leading curvature-squared terms needed
to secure an SSC-preserving theory up to quartic order in spin. Notice that as the Wilson
coefficient appears in the combination CES2 − 1, this implies that for a Kerr BH, where
CES2 = 1, this term does not contribute.

4To be precise, one — as always — first evaluates the Poisson bracket {Zµ, ESS} weakly and thereafter
contracts the result with π̂µ.
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2.6 Generic higher-in-curvature terms

Besides the induced higher-in-curvature terms from the SSC-preservation mechanism, we
may also add a new layer of curvature-squared terms to H. Again, the parametrization
in terms of the minimal set of operators {Eµν , Bµν , S

µ} is extremely useful. At quadratic
order in curvature a new wealth of possible couplings appears. In order to consider only
a finite number of couplings we assume a physical PM expansion. We consider, then, all
terms to quartic physical PM order:

HR2 = (Gm)4m2
(
CE2EµνE

µν + CB2BµνB
µν
)
, (2.32a)

HR2S2 = (Gm)2
(
CE2S2ESµES

µ + CB2S2BSµBS
µ
)
, (2.32b)

HR2S4 = m−2
(
CE2S4ESSESS + CB2S4BSSBSS

)
. (2.32c)

Using Sµ = Gm2χµ makes the physical PM counting manifest — all three terms carry
(Gm)4. Again, the Wilson coefficients may depend on χ2 such that CE2Sn = CE2Sn(χ2) and
CB2Sn = CB2Sn(χ2). Assuming a further expansion in |χ| ≪ 1, we may further expand these
interactions up to fourth order in spin:

CE2(χ2) = C
(0)
E2 + χ2C

(1)
E2 + χ4C

(2)
E2 + . . . , (2.33a)

CE2S2(χ2) = C
(0)
E2S2 + χ2C

(1)
E2S2 + . . . , (2.33b)

CE2S4(χ2) = C
(0)
E2S4 + . . . . (2.33c)

In a scattering computation, these couplings contribute to an observable, such as the impulse
or scattering angle, at the physical 6PM order. This is because each of the two emitted
gravitons must be absorbed by a second worldline, yielding two additional factors of G in the
computation of physical observables. If we also restrict our attention to Kerr black holes, then
all C(m)

(E/B)2Sn with m+ n ≤ 4 are vanishing. More specifically, the constraints on C
(4−n)
(E/B)2Sn

depend on the linear-in-curvature basis used and were determined in our case by matching
to known Kerr observables [129, 136]. The vanishing of the rest of the coefficients for Kerr
black holes has been demonstrated in ref. [134].

Again, eq. (2.32) will need to be augmented by terms linear in Zµ in order to preserve
the SSC. In complete analogy to the analysis in section 2.4, this will — at the quadratic
order in curvature — yield the contributions∑

n≥0
H̃R2Sn =

∑
n≥0

(1 + |π|−1∇Z)HR2Sn +O(R3) . (2.34)

We refrain here from working out the associated cubic-in-curvature terms. Our complete
quadratic-in-curvature Hamiltonian, including terms up to quartic powers in spin, therefore
takes the form

HT = e

2

[
gµνπµπν −m2 − 2BSZ − 2(CES2 − 1)

|π|2
(ESSBZS − Z · S ESνBS

ν)
]

+ e
∑
n>1

(H̃RSn + H̃R2Sn) .
(2.35)

Expressions for H̃RSn and H̃R2Sn were provided in eqs. (2.27b) and (2.34) respectively.
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3 The Lagrangian approach to relativistic spinning bodies

In order to set up an efficient Feynman diagrammatic perturbation theory enabling us to
compute observables, we now intend to transition from the Hamiltonian to the Lagrangian
second-order formalism. In principle, this is a simple task: Legendre transform the full
Hamiltonian of the system (2.7) to give a worldline Lagrangian, and then solve for the
canonical momentum πµ in terms of ẋµ. The main practical difficulty is that we cannot write
down a worldline action that involves only xµ, πµ and Sµν (plus the metric and curvature
tensors) which are the essential degrees of freedom, the latter restricted by the SSC. The issue
is the kinetic term for the spin degrees of freedom, that cannot be written down with Sµν alone

— we must introduce additional variables into our system, or represent Sµν as a composite
object. We briefly review two established approaches for doing so before moving to the central
innovation of our work: the representation of the spin tensor in terms of bosonic oscillators.

3.1 The body-fixed frame approach

The most conventional solution within worldline EFT is to use the body-fixed frame ΛA
µ(τ),

which satisfies ηABΛA
µΛB

ν = gµν . From this, one may define the antisymmetric angular-
velocity tensor

Ωµν = ΛA
µDΛAν

dτ , (3.1)

which is dual to the spin tensor: {Sµν ,Ωρσ} = δ
[ρ
µ δ

σ]
ν . The first-order form of the action

of the full system is then given by

S = −
∫
dτ
(
pµẋ

µ + 1
2SabΩab −HT

)
. (3.2)

The main advantage of this approach is that it leaves flexibility over the choice of SSC: by
using the body-fixed frame, the components S0i may be taken to vanish in alternative frames
of reference. See e.g. [9, 10, 116] for more details on this approach, and in particular [65] for
a diagrammatic implementation using the WQFT formalism. In this paper though, we lay
out a more economical mechanism avoiding the need for a dynamical body fixed frame for
handling spin degrees of freedom, motivated by our desire to specialize to the covariant SSC.

3.2 The N = 2 supersymmetric formalism

More recently, three of the present authors with Steinhoff introduced an economical worldline
formulation of spin using the N = 2 superparticle [56, 57], building upon the works of
refs. [154–156]. Here the spin is carried by a Grassmann-odd complex vector ψa(τ) on the
worldline, with the fundamental Poisson-bracket:

{ψa, ψ̄b} = −iηab . (3.3)

This ensures that the spin tensor Sab = −2iψ̄[aψb], considered as a composite object, enjoys
the brackets (2.1b). Within this approach, preservation of the covariant SSC is ensured by
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the existence of an N = 2 supersymmetry, with charges

H = 1
2(g

µνπµπν −m2 −Rabcdψ̄
aψbψ̄cψd) , (3.4a)

J = ηabψ̄
aψb , (3.4b)

Q = ψaeµ
aπµ , (3.4c)

Q̄ = ψ̄aeµ
aπµ . (3.4d)

These obey the N = 2 supersymmetry algebra (all other brackets vanishing):

{Q, Q̄} = −2iH , {J,Q} = −iQ , {J, Q̄} = iQ̄ . (3.5)

The existence of this algebra implies that H , J , Q and Q̄ form a set of first-class constraints,
as the brackets of all four supercharges weakly vanish. Preservation of the covariant SSC
is then guaranteed as Zµ = Sµν π̂ν = −i(ψ̄µQ + ψµQ̄)/|π| ≈ 0.

In this N = 2 SUSY formulation, there is no need to solve for the SSC explicitly as
we did in section 2.2 — the automatically SSC-preserving Hamiltonian (3.4a) can instead
be derived from the bracket {Q, Q̄}. Decomposing the third term of this Hamiltonian onto
the {Eµν , Bµν , S

µ, Zµ} basis (in a vacuum space-time)

Rabcdψ̄
aψbψ̄cψd = −1

4RµνρσS
µνSρσ = ESS − EZZ + 2BSZ , (3.6)

shows that the BSZ term appearing here is exactly the one in the SSC-preserving Hamil-
tonian (2.27). Meanwhile, the extra ESS term induces a shift CES2 → C̃ES2 = CES2 − 1
compared with HRS2 (2.21) — and the EZZ term is irrelevant. Thus, the unique N = 2
SUSY theory wherein C̃ES2 = 0 represents black holes, whereas C̃ES2 ̸= 0 represents more
generic compact bodies. In this case, the N = 2 SUSY is obeyed only “approximately”,
i.e. up to and including quadratic order in spin.

This is the N = 2 supersymmetric approach’s main drawback, indeed, namely that
it is limited to capturing interactions only up to quadratic order in the spins of compact
objects, due to the Grassmann-odd nature of ψa. While an extension to higher orders in
spin is possible in a flat background, using a set of supercharges Qα = p · ψα with real
Grassmann-odd vectors ψa

α(τ) carrying a flavor index α = 1, . . . ,N , the corresponding N -fold
supersymmetry algebra cannot be realized in an arbitrary curved background spacetime [155–
159]. Fortunately for us, doing so is not necessary in order to describe higher powers of
classical spin: we require only that the covariant SSC constraint Zµ = 0 be preserved, rather
than the more restrictive N -fold supersymmetry algebra. The approach of this paper using
bosonic oscillators αa — to be introduced momentarily — overcomes the inherent limitations
of the N = 2 supersymmetric formalism.

3.3 Introducing the bosonic oscillator approach

Let us now proceed to the main object of this paper: the introduction of a novel scheme
designed to handle spin interactions at any order. We simply “bosonize” the construction of
refs. [56, 57] and introduce a conjugate pair of commuting complex vectors αa and ᾱa living
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in the tangent space that obey the fundamental Poisson brackets5

{αa, ᾱb} = − i
m
ηab . (3.7)

The spin tensor is defined by

Sµν = −2mi eµ
ae

ν
b ᾱ

[aαb] , (3.8)

where we anti-symmetrize with a factor 1/2. It is a straightforward exercise to check that
this induces the Poisson bracket structure of d’Ambrosi et al. [142–144] given in eq. (2.3)
using πµ = pµ − iωµ,abᾱ

[aαb] of eq. (2.2) and the fundamental Poisson brackets {xµ, pν} = δµ
ν .

A naive counting of degrees of freedom shows that while Sµν has six, αµ and ᾱµ together
have eight degrees of freedom. These additional degrees of freedom must be eliminated by
internal symmetries of the bosonic oscillators. Indeed, we find that the physical spin tensor
Sµν is invariant under transformations,

δϵα
µ = ϵᾱµ , δϵᾱ

µ = ϵ̄αµ , (3.9)

with complex global parameter ϵ. Due to the complex nature of ϵ, this symmetry exactly
removes the two undesired extra degrees of freedom. We note that the commutator of two
such transformations,

δϵδϵ′ − δϵ′δϵ = δλ , (3.10)

with real parameter λ = 2Im(ϵϵ′) is a U(1) rotation:

δλα
µ = iλαµ , δλᾱ

µ = −iλᾱµ . (3.11)

The Noether charges of these symmetries are α2, ᾱ2 and α · ᾱ which ensures conservation
of spin length:

−1
2S

µνSµν = (α · ᾱ)2 − α2ᾱ2 , (3.12)

in perfect agreement with the discussion in section 2.
The inspiration for this oscillator construction of the spin comes from the bosonic string,

which contains an infinite set of higher-spin massive particles generated by the worldsheet
oscillators αµ

n(τ, σ) upon quantization. Our spinning worldline model (in flat space) arises
simply as the tensionless limit (α′ → ∞) [160, 161] of the bosonic string. This is achieved
upon rescaling the Virasoro generators L0 → L0/α

′ and L±1 → L±1/
√
α′ that obey an

SL(2,R) algebra: in the tensionless limit this leaves only {xµ, pµ, α
µ
±1} in the phase space,

and all string states become massless. This is our phase space. The transition to massive
higher-spin states is performed via a Kaluza-Klein reduction, similar to the supersymmetric
construction [57, 156].6 The problem of BRST quantization and equivalence of this bosonic
higher-spin particle to higher-spin field theory was explored in refs. [162–164].

5We note that from a canonical viewpoint a rescaling αa → αa/
√

m would be more natural, as it provides
a canonical Poisson bracket. Yet, we have chosen this convention in order to unify the propagators in the
subsequent perturbative treatment.

6We thank Roberto Bonezzi for crucial discussions on this topic.
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The key advantage of using the bosonic oscillators to model the spin tensor Sµν is that
we may now immediately write down a simple higher-spin worldline Lagrangian that is tailor-
made for high-precision perturbative studies at any spin-order. Following the discussion in the
previous sections, the full SSC-preserving Hamiltonian (2.27) expressed in the phase-space
variables {xµ, πµ, α

a, ᾱa} takes the form (to arbitrary orders in curvature)

e−1HT = 1
2g

µν(x)πµ πν − 1
2m

2 +Hnm(xµ, πµ, α
a, ᾱa) , (3.13)

with the einbein e ensuring the reparametrization invariance τ → τ ′(τ). Note that
Hnm(xµ, πµ, α

a, ᾱa) is at least linear in curvature, and we express Sµ and Zµ in the oscillators
using eq. (2.5) and eq. (3.8). Taking into account the fundamental Poisson brackets (2.1a)
and (3.7), the first-order form of the action therefore reads

S̃ = −
∫
dτ
[
pµẋ

µ −miᾱaα̇bηab −HT

]
. (3.14)

The algebraic equations of motion for pµ, i.e. ẋµ ≈ {xµ, HT }, are

e−1ẋµ =
[
πµ + δHnm(x, π, α, ᾱ)

δπµ

]
πµ=pµ−im ωµ,abᾱ[aαb]

, (3.15)

using δHT
δpµ

= δHT
δπµ

. This is an implicit equation allowing us to express pµ as a function
of {xµ, ẋµ, αa, ᾱa}. It is convenient to choose the proper time gauge and set e = 1/m.
Reinserting the (implicit) result for pµ(xµ, ẋµ, αa, ᾱa) into the first-order Lagrangian (3.14)
yields the worldline Lagrangian expressed in the variables {x, ẋ, α, α̇, ᾱ}

S = −
∫
dτ

m
2 gµν ẋ

µẋν −miηabᾱ
aDαb

dτ − 1
m

{
Hnm + 1

2

(
δHnm
δπµ

)2}
π=π(x,ẋ,α,ᾱ)

(3.16)

with the covariant derivative

Dαa

dτ = α̇a − ωµ
a

bẋ
µαb . (3.17)

Note that we have dropped a non-dynamical term m
2 . Importantly, in the above the terms

containing Hnm and its variations need to be evaluated for πµ = πµ(x, ẋ, α, ᾱ) as the solution
of eq. (3.15). Given this precondition the worldline Lagrangian (3.16) is exact.

3.4 Linear-curvature couplings

To linear order in curvature this solution or eq. (3.15) reads

πµ = mẋµ − δHnm
δπµ

∣∣∣
π→mẋ

+O(R2) , (3.18)

as Hnm ∼ O(R):

Hnm = −BSZ +
∑
n>1

H̃RSn +O(R2) . (3.19)
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Therefore, if we are only interested in the linear-in-curvature terms we may drop the last
term

(
δHnm
δπµ

)2
in the Lagrangian of eq. (3.16) and insert π = mẋ for Hnm. With the

linear-in-curvature form of the non-minimal Hamiltonian of eq. (2.27), we therefore find
the higher-spin worldline theory action

S :=−
∫
dτ
[

m
2 gµν ẋ

µẋν − imᾱa
Dαa

dτ −mBaz (3.20)

−m
∑
n>1

(1− i|ẋ|−1∇z)
(∇a)n−2

n!

CESnEaa , n even,
−iCBSnBaa , n odd,

+O(R2)
]
.

Here we have introduced

Eµν := Eµν

∣∣
πµ→mẋµ , Bµν := Bµν

∣∣
πµ→mẋµ ,

aµ := i
m
Sµ
∣∣
πµ→mẋµ = εµẋᾱα

|ẋ|
, zµ := i

m
Zµ
∣∣
πµ→mẋµ = 2ᾱ[µαν]ẋν

|ẋ|
.

(3.21)

The factor of i/m in the definitions of aµ and zµ cleans up the action by absorbing the signs
and factors of the mass appearing in e.g. eq. (2.27). Up to these phases and factors of the
mass, these objects can be thought of as the configuration-space spin and SSC vectors, which
differ from the phase-space spin quantities used up to now by curvature corrections.

From eq. (3.21) one can see that the decomposition in terms of oscillators imposes an
additional restriction on the spin degrees of freedom, namely that a · z = 0 — a condition
which need not be obeyed by the spin and SSC vectors as defined in eq. (2.4). Evaluating
the Poisson brackets of S · Z using eq. (2.3), one easily finds that {H,S · Z} ∼ O(Z) for any
Hamiltonian H. As such, we can be assured that this quantity does not affect dynamics
as long as the initial SSC vector is vanishing, justifying the decomposition eq. (3.8) for
describing systems with the covariant SSC.

3.5 Leading higher-curvature couplings

Based on the Hamiltonian analysis in section 2.5 we learned that the first induced quadratic-
in-curvature terms arise at the quartic spin order. Let us now translate these additional
non-minimal terms to the Lagrangian formulation involving the bosonic oscillator formalism.

We must first determine how the Hamiltonian terms of various curvature orders enter the
Lagrangian in eq. (3.16). Towards this end, we decompose Hnm into linear- and quadratic-
in-curvature terms:

Hnm = H(1)
nm +H(2)

nm . (3.22)

Plugging this into eq. (3.16) and expanding to quadratic order in curvature, the terms to
be added to the Lagrangian eq. (3.20) take the form

S|R2 = −
∫
dτ

− 1
m
H(2)

nm

∣∣∣
π→mẋ

+ 1
2m

(
δH

(1)
nm

δπµ

∣∣∣
π→mẋ

)2 . (3.23)
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We stress that the sign in the last term is not a typo, as inserting the linear in curvature
corrected solution for πµ = mẋµ +π(1)

µ with π(1)
µ = − δH

(1)
nm

δπµ

∣∣∣
π→mẋ

of eq. (3.18) into H(1)
nm yields

H(1)
nm

∣∣∣
π→mẋ+π

(1)
µ

= H(1)
nm

∣∣∣
π→mẋ

+ π(1)
µ

δH
(1)
nm

δπµ

∣∣∣
π→mẋ

= H(1)
nm

∣∣∣
π→mẋ

−
(
δH

(1)
nm

δπµ

∣∣∣
π→mẋ

)2

(3.24)

giving the total contribution of eq. (3.23). As we have restricted our Hamiltonian analysis to
quartic order in the spin tensor in section 2.6, we limit ourselves to the same precision here.
Concretely, then, H(2)

nm comprises the induced operators in eq. (2.31) as well as the operators
in eq. (2.32). For the square of the variation of H(1)

nm within our present quartic-in-spin scope
we only have the term contributing

H(1)
nm

∣∣∣
S2

= −BSZ − CES2

2 ESS . (3.25)

Varying this quantity, we need

∂BSZ

∂πµ
=
(
C∗

Sπ̂Z
µ + C∗

Zπ̂S
µ − 2BSZ π̂

µ +BZνϵ
µνπ̂Z −BSνϵ

µνπ̂S
)
|π|−1, (3.26)

δESS

δπµ
= 2

(
BSνε

µνπ̂S + ESνε
µνπ̂Z

)
|π|−1, (3.27)

from which one deduces

− 1
2m

(
∂H

(1)
nm

∂πµ

∣∣∣
π→mẋ

)2

= −m(CES2 − 1)
ẋ2

{
(CES2 − 1)EaaBaz

+
[
CES2 − 1

2 BaµBaν − EzµBaν

]
(aµaν − a2gµν)

}
,

(3.28)

dropping O(Z2) terms and applying a · z = 0 per eq. (3.21). Combining this with the
quadratic-in-curvature terms of eq. (2.32),

1
m
H(2)

nm

∣∣∣
π→mẋ

= −m(CES2 − 1)
|ẋ|2

EaaBaz +
1
m

∑
n>1

H̃R2Sn

∣∣∣
π→mẋ

, (3.29)

we find the following leading higher curvature contributions to the worldline Lagrangian
up to quartic order in spin:

SS≤4R2 =
∫
dτ
{
−mCES2 − 1

2ẋ2

[
(CES2 − 1)BaνBaρ(aνaρ − a2gνρ)

+2CES2EaaBaz − 2EzµBaν(aµaν − a2gµν)
]

+ 1
m
HS4R2

∣∣∣
π→mẋ

+ 1
m
(1− i|ẋ|−1∇z)(HR2 +HS2R2)

∣∣∣
π→mẋ

]
.

(3.30)

Again, the gravito-electromagnetic tensors Eµν and Bµν are constructed with πµ = mẋµ (3.21).
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4 The perturbative WQFT framework

The transition from a Hamiltonian to a Lagrangian, performed in the previous section, has set
the stage for the implementation of a perturbative, Feynman-diagrammatic method for solving
the classical equations of motion: the WQFT approach [45, 57, 60]. In this section we lay out
this framework and describe the Feynman rules of the theory and their extraction. Moreover,
we discuss the connection to the ansatz-based construction of refs. [96, 97, 107, 145].

As in other formulations of WQFT [45, 46, 65], the essential element enabling perturbative
calculations is a background field expansion about the solution to the non-interacting system.
When gravitational interactions are present, we expand the metric around flat space as
gµν = ηµν + κhµν , with κ =

√
32πG. Then, the worldline fields acquire the perturbations

xµ
i (τ) = bµ

i + vµ
i τ + zµ

i (τ) , αµ
i (τ) = αµ

−∞,i + α′µ
i (τ) , (4.1)

where the κ→ 0 dynamics are described by zµ
i (τ) = α′µ

i (τ) = 0 and the two worldlines are
labelled with i = 1, 2. The worldline background parameters are bµ

i and vµ
i and from those

we define the relative impact parameter, bµ and Lorentz factor γ:

bµ = bµ
2 − bµ

1 , γ = v1 · v2 . (4.2)

For each dynamical field, we have a corresponding background variable defined by the field’s
value at past infinity. We use a −∞ subscript to denote these background values, and a
prime to denote the remaining fluctuation. Examples include

Sµ
i (τ) = mia

µ
−∞,i + S′µ

i (τ) (4.3a)

Zµ
i (τ) = Zµ

−∞,i + Z ′µ
i (τ) , (4.3b)

Sµν
i (τ) = Sµν

−∞,i + S′µν
i (τ) , (4.3c)

where, in the first line, we introduced the initial-state Pauli-Lubanski vector aµ
−∞,i = Sµ

−∞,i/mi.
Naturally, background parameters obey similar relations as the dynamical ones, and we have

Sµν
−∞,i = −2imiᾱ

[µ
−∞,iα

ν]
−∞,i , (4.4)

where we note, also, that the distinction between local and covariant indices disappears
at past infinity.

4.1 The Lagrangian: an ansatz-based approach

The WQFT Feynman rules arise from the substitution of eq. (4.1) into an action. For all-spin
covariant-SSC-conserving scattering to linear-in-curvature precision, we have developed a
suitable action in eq. (3.20). We take this opportunity, though, to present an alternative
derivation of that action, adopting instead an ansatz-based approach for the enumeration
of z-dependent operators. This method was first applied in a similar vein in refs. [96, 145],
where actions suited to classical computations using quantum fields were constructed. These
were recently connected to worldline actions in the supplemental analyses of refs. [97, 107].

– 18 –



J
H
E
P
0
2
(
2
0
2
5
)
0
1
9

In contrast to passing through a constrained Hamiltonian analysis, as we have done
above, the ansatz for z-dependent operators starts with a priori unconstrained coefficients.
An appropriate ansatz for the action in this regard is7

S = −m
∫

dτ
(
1
2gµν ẋ

µẋν − iηabᾱ
aDαb

dτ − Lnm

)
, (4.5)

where Lnm = L(a)
nm + L(Z)

nm and

L(a)
nm =

∞∑
n=1

(∇a)2n−2
(
CES2n

(2n)! Eaa −
iCBS2n+1

(2n+ 1)!∇aBaa

)
, (4.6a)

L(Z)
nm = C

(Z)
2
2 Baz −

∇z

|ẋ|

∞∑
n=2

(∇a)2n−4

C(Z)
2n

(2n)!∇aBaa +
iC(Z)

2n−1
(2n− 1)!Eaa

 . (4.6b)

The constituents of this action were defined in eq. (3.21). Eq. (4.6) comprises a basis for
linear-in-curvature operators at any spin order with up to one power of zµ.8 Indeed, alternative
operators involving zµ contracted with the curvature components can be related to those
labelled by C(Z)

n via the differential Bianchi identity — up to operators which are total time
derivatives — meaning they are redundant. With this, our ansatz possesses the same number
of free Wilson coefficients as the linear-in-curvature quantum action in refs. [96, 145]. The
upshot of this section will be the determination of the coefficients C(Z)

n through perturbative
considerations. In particular, we will see that the formal-1PM-order conservation of the
covariant SSC determines all these coefficients such that eq. (4.6) reduces to eq. (3.20).

As we have done in sections 2.5 and 2.6, we may extend our scope to higher-curvature
operators, which are trivially accommodated in our present approach. Again, there are two
categories of O(R2) operators we must consider: those with and without a factor of zµ. In
the latter category, rather than using the general set in eq. (2.32), we content ourselves with
restricting to coefficient values reproducing known Kerr observables at one-loop order (see
e.g. [129, 134, 165–167]). As mentioned below eq. (2.32), we find that the linear-in-curvature
action (3.20) is sufficient towards this end and therefore does not need any z-independent
quadratic-in-curvature operators. Interestingly, this means that our action (3.20) manifests
the vanishing of static linear Love numbers for Kerr at quartic order in spin [133].

In the z-dependent-operator category, we include all possibilities at quartic order in
the spin tensor with unfixed coefficients:

SR2Za3 = −m
∫

dτ 1
ẋ2

[
EaµBzν

(
C

(Z)
R2,1a

2 gµν + C
(Z)
R2,2a

µaν
)

+EzµBaν

(
C

(Z)
R2,3a

2 gµν + C
(Z)
R2,4a

µaν
)]
.

(4.7)

7Worldline labels will be omitted for the time being to avoid notational clutter.
8It turns out that operators with higher powers of zµ are redundant with higher-curvature, lower-

z operators in a covariant-SSC-preserving theory. This follows from the relation Zµ = −imzµ +
im

C
ES2−1

ẋ2 Baν

(
a2gµν − aµaν

)
+ O(ZR, R2) in conjunction with the irrelevance of higher-Z operators in

the SSC-preserving Hamiltonian. The upshot is that O(z0,1) operators are sufficient for describing covariant-
SSC-preserving dynamics to all orders in perturbation theory.
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Recall from eq. (3.21) that a · z = 0, restricting the operators that can be written. Analogously
to C(Z)

n at linear order in curvature, we seek to recover eq. (3.30) by determining constraints
on the C(Z)

R2,n from conservation of the covariant SSC, this time at the formal-2PM order.
Most generally, one should include operators with O(an<3z) in eq. (4.7) and determine their
coefficients as well. However, we take advantage of our foreknowledge from eq. (3.30) that
no such operators are needed to conserve the covariant SSC to ignore them from the outset;
constraining the coefficients in eq. (4.7) will be enough of a proof of principle. An in-depth
exploration of quadratic-in-curvature operators at higher spin orders and for general compact
objects is left to future work.

Having collected all the ingredients with which we will perform perturbative computations
— eqs. (4.5)–(4.7) — we move now to the Feynman rules of the theory, focusing on those
pertaining to the worldline and bosonic-oscillator perturbations rather than the well-known
bulk gravitational rules.

4.2 Propagators

Propagators are derived from the kinetic part of the action defined from the κ→ 0 limit of
the action after insertion of the background field expansion (4.5):

S|kinetic = −m
∫
dτ ηµν

(1
2 ż

µżν − iᾱ′µα̇′ν
)
. (4.8)

It is convenient to work in momentum (energy) space and we define

zµ(τ) =
∫

ω
e−iωτzµ(ω) , α′µ(τ) =

∫
ω
e−iωτα′µ(ω) , (4.9)

with integration measures absorbing factors of 2π:
∫

ω =
∫ dω

2π .
We employ the in-in formalism discussed in the context of WQFT in [15]. As shown

there, in the classical limit, the only difference to the in-out formalism is the use of retarded
propagators instead of the (time-symmetric) Feynman prescription. Propagators thus have
a causality associated with them and are not symmetric under ω → −ω, as they would
be with a Feynman prescription.

For notational convenience, we collect the worldline fields in a composite vector,

Zµ
I (ω) = {zµ(ω), α′µ(ω), ᾱ′µ(ω)} , (4.10)

with flavor index I. The retarded propagator of this flavoured worldline field then reads

ω

µ

I

ν

J
= −iη

µν

m


1

(ω+i0)2

− 1
ω+i0

1
ω+i0


IJ

, (4.11)

with all other entries vanishing. In this diagram, the arrow indicates causality flow and
the energy ω is assumed to be labelled in the same direction as this flow. Instead, if
the labelling would be reversed, essentially sending ω → −ω, the iϵ of the propagators,
essentiallly, change sign:

−ω
µ

I

ν

J
= −iη

µν

m


1

(ω−i0)2

1
ω−i0

− 1
ω−i0


IJ

. (4.12)
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Note also that, in contrast to the propagators for Grassmann-odd oscillators, the propagators
for the bosonic oscillators are sensitive to the alignment of oscillator flow from αµ

i to ᾱµ
i .

4.3 Interaction vertices

The next ingredients for perturbative calculations are the interaction vertices. While any
desired vertex can be derived directly from the action, here we lay out an elegant approach
generating vertices with multi-worldline perturbation legs through the action of Poisson
brackets on pure-graviton vertices — echoing our use of brackets in the Hamiltonian analysis.

In order to derive the vertices, we expand the interaction part of the action in the
perturbative fields. The interaction part reads,

Sint = −m
∫

dτ
(
hµν ẋ

µẋν + ωbc
µ Sbcẋ

µ
)
+ Snm =

∫
dτLint ,

where we also introduced its Lagrange function Lint.
Let us first expand the action in the gravitational perturbations, which we write schemat-

ically as

Lint=
∞∑

n=1

∫
k1...kn

V µ1ν1...µnνn

(n) (ẋµ,αµ,ᾱµ;kµ
1 ...k

µ
n)eix(τ)·

∑
n

knhµ1ν1(k1)...hµnνn(kn). (4.13)

Here, we work in momentum space for the gravitons. This step requires one to expand all
the gravitational fields used in the action such as the metric, curvature and its covariant
derivatives, which is cumbersome but straightforward using computer algebra. Importantly
all dependence on the trajectory xµ(τ) is in the exponential function which simply follows
from the fact that the trajectory appears only as the argument of the gravitational fields in
position space. The expansion coefficients V µ1ν1...µnνn

(n) , then, depend only on the n graviton
momenta and polynomially on the velocity ẋ(τ) and bosonic oscillators αµ(τ) and ᾱµ(τ)
(in fact, only through the combination Sµν = −2imᾱ[µαν]). Clearly, a further expansion
in the perturbations of xµ, αµ and ᾱµ is now trivial requiring only an expansion of the
exponential function and the polynomials in the expansion coefficients. It is also clear
that no information is lost upon inserting the background parameters into the expansion
coefficients (as long as the background parameters are kept generic). Thus, the functions
V µ1ν1...µnνn

(n) (vµ, αµ
−∞, ᾱ

µ
−∞; kµ

1 . . . k
µ
n) contain all required information about n-point graviton

vertices with any number of outgoing worldline fields.
Feynman rules with outgoing worldline perturbations are now derived by further variations

of eq. (4.13) with respect to the said fields. Such variations are, however, easily rephrased
as partial derivatives with respect to the background parameters. Thus, the operators for
attaching an external z, α′ or ᾱ′ leg are (see also refs. [15, 168])

V
µ1ν1...µnνn|σ1...σm

n|I1...Im
=

µ1ν1 µnνn

ωm

Zσ1
I1

...

...

Zσm
Im

ω1

k1 kn

(4.14)

=δ

 m∑
i=1

ωi+
n∑

j=1
v·ki

( m∏
i=1

Dσi
Ii

)
e

ib·
∑n

j
kjV µ1ν1...µnνn

(n) [v,α−∞,ᾱ−∞;k1 ...kn]
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where the operators Dσ
I can be expressed in terms of Poisson brackets taken with respect

to the background variables:

Dσ
1V = m{−vσ + iωbσ, V } , Dσ

2V = im{ασ
−∞, V } , Dσ

3V = −im{ᾱσ
−∞, V } . (4.15)

The background Poisson brackets follow from the τ → −∞ limit of the generic brackets,
eqs. (2.3) and (3.7), and read

{bµ, vν} = 1
m
ηµν , (4.16a)

{αµ
−∞, ᾱ

ν
−∞} = − i

m
ηµν , (4.16b)

with all other brackets zero.
In order to use this recursion the parameters in V µ1ν1...µnνn

(n) [v, α−∞, ᾱ−∞; k1 . . . kn] must
be left unconstrained, e.g. v2 = 1 and v · k = 0 — where kµ :=

∑n
i=1 k

µ
i — should not be

imposed. For example, the one-graviton generator is:

V µν
(1) [v,α,ᾱ;k]=−im

κ2 vµvν+ iκ
2m(k·S)(µvν)+ 1

v4

C(Z)
2
2

Zβ

m

∂C̃
∗(1)
avZv(−k)

∂hµν(−k)

+
∞∑

n=1

(
k·a√
v2

)2n−2
CES2n+

C
(Z)
2n+1

2n+1
ik·Z
m
√
v2

 1
(2n)!

∂C̃
(1)
avav(−k)

∂hµν(−k)

+
∞∑

n=1

(
k·a√
v2

)2n−1
CBS2n+1+

C
(Z)
2n+2

2n+2
ik·Z
m
√
v2

 i
(2n+1)!

∂C̃
∗(1)
avav(−k)

∂hµν(−k)

.
(4.17)

To compactify the expression, we have omitted −∞ labels on the background variables
αµ
−∞ ᾱµ

−∞, Sµν
−∞, aµ

−∞, and Zµ
−∞. Additionally, we have written the graviton dynamics

implicitly as the partial derivative of the momentum-space Weyl tensor expanded to linear
order in κ, C̃(1)

αβρτ (−k):

∂C̃
(1)
αβρτ (−k)

∂hµν(−k)
= −κk[αηβ][ρδ

(µ
τ ] k

ν) − κk[ρητ ][αδ
(µ
β] k

ν) − κδ
(µ
[α (kβ]k[ρ − k2ηβ][ρ)δ

ν)
τ ]

+ κ

3η
µν(k2ηα[ρητ ]β + 3k[ρητ ][αkβ] + ηα[τηρ]βk

µkν).
(4.18)

Substituting the one-graviton generator (4.17) into eq. (4.14), we can now generate any
Feynman rule with one graviton and any number of worldline perturbations. For example,
the one-graviton Feynman rules with no worldline perturbations is (for brevity, we print
the following rule for Zµ

−∞ = 0)

V µν
1| =

µν
(4.19)

= −im δ (v · k)eib·k
[
κ

2 v
µvν + iκ

2m(k · S)(µvν)

+
∞∑

n=1
(k · a)2n−2

(
CES2n

(2n)!
∂C̃

(1)
avav(−k)

∂hµν(−k)
+ (k · a) iCBS2n+1

(2n+ 1)!
∂C̃

∗(1)
avav(−k)

∂hµν(−k)

)]
.
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Again, we have omitted explicit −∞ subscripts in this equation. More complicated rules
involving one graviton and one worldline perturbation are included in Appendix A.

Let us end this section with a word of caution concerning dimensional regularization and
the presence of Levi-Civita-tensors — being defined in D = 4 — in the worldline vertices. As
we are only allowing parity-even interactions the total number of Levi-Civitas in any vertex
is even. There are two schemes in dealing with this issue in dimensional regularization where
we lift our theory to D = 4− 2ϵ dimensions: (a) Contract all Levi-Civita products to ηµν ’s
and upgrade these thereafter to D dimensions. (b) Contract all Levi-Civita products and
keep the resulting ηµ4ν4 ’s in D = 4 dimensions, thereby splitting the indices as µ→ (µ4, µϵ).
It is crucial to do so consistently in a calculation. The final (renormalized) results will not
depend on this choice, yet intermediate results can be scheme dependent.

4.4 Observables from the WQFT formalism

The Lagrangian ansatz in eq. (4.6) can now be readily applied to the perturbative computation
of observables. After quickly reviewing the role of one-point functions in WQFT, we discuss
the constraints on the Lagrangian ansatz emerging from the requirement that the covariant
SSC is perturbatively conserved up to one-loop order. The upshot is that we will recover
the precise action derived via the Hamiltonian analysis in Sections 2 and 3.

As in the case of WQFT constructed using Grassmann variables, observables are related
to one-point functions of the dynamical perturbations in the WQFT action [45, 46, 56, 57].
Specifically, reinstating particle labels, the linear impulse and spin kick depend on the
worldline and oscillator perturbations respectively through9

∆pµ
i = −miω

2 ⟨zµ
i (−ω)⟩|ω→0 , (4.20a)

∆αµ
i = iω ⟨α′µ

i (−ω)⟩
∣∣∣
ω→0

. (4.20b)

Here ∆pµ
i is the change of momentum, or impulse, of black hole i under the scattering, and

∆αµ
i is the change in the oscillator worldline field. The latter induces the change in the spin

tensor, or spin kick, ∆Sµν
i under the scattering via

∆Sµν
i = −2imi(ᾱ[µ

−∞,i∆α
ν]
i +∆ᾱ[µ

i α
ν]
−∞,i +∆ᾱ[µ

i ∆αν]
i ) . (4.21)

In a two-body context, the one-point function ⟨Zµ
I,i(−ω)⟩ is computed perturbatively via

the diagram [45]

⟨Zµ
I,i(−ω)⟩ =

Zµ
I,i(−ω)

ω →
, (4.22)

where the striped ellipse represents a sum over all connected diagrams where the two worldlines
fluctuate and interact gravitationally. As we are interested in the classical (ℏ → 0) result,
only tree-level graphs are to be considered. The overall factors of ω in eq. (4.20) cancel the

9We do not differentiate between locally-flat and curved spacetime indices here as observables are measured
at flat time-like infinity.
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propagator for the external leg and thus amount to an amputation of the outgoing leg. When
observables are extracted directly through these one-point functions — rather than by passing
through the eikonal, for example [57] — we are allowed to impose the initial conditions on
the parameters at the level of the Feynman rules, i.e. that the initial SSC vector is vanishing.

4.5 Perturbative SSC preservation

Having reviewed the extraction of observables from WQFT, we turn our focus to the change
in the SSC vector. As a composition of the spin tensor and the worldline velocity, its change
can be constructed from eq. (4.20), (4.21) most generally through

∆Zµ
i = 1

m
∆pi,νS

µν
−∞,i + vi,ν∆Sµν

i + 1
m
∆pi,ν∆Sµν

i . (4.23)

However, as our interest lies in the conservation of the covariant SSC, we can replace ∆Zµ
i = 0

with a simpler yet equivalent condition. The key insight here is that the change in the bosonic
oscillator and its conjugate can be unified through

∆αµ
i = αρ

−∞,ifi,ρ
µ , ∆ᾱµ = ᾱρ

−∞,ifi,ρ
µ, (4.24)

for some common function fi,ρ
µ whose precise form will not concern us. This is a consequence

of the fact that αµ
−∞,i and ᾱµ

−∞,i enter observables only through the spin tensor. The change
in spin tensor then takes the alternative form

∆Sµν
i = −2Sρ[µ

−∞,ifi,ρ
ν] + Sτρ

−∞,ifi,τ
µfi,ρ

ν , (4.25)

expressed directly in terms of the initial spin tensor. Plugging this in to eq. (4.23), and
requiring conservation of the covariant SSC perturbatively, we learn that

∆Zµ
i = 0 ⇔ ∆(ẋi · αi) = 0 ⇔ ∆(ẋi · ᾱi) = 0. (4.26)

Thus, conservation of the SSC vector is equivalent to conservation of the “bosonic super-
symmetry” charges pi · αi and pi · ᾱi in our theory.

Moving now to the perturbative computation, at leading order we must evaluate

⟨Zµ
I,i(−ω)⟩LO =

Zµ
I,i(−ω)

ω →
, (4.27)

for I = 1, 2, 3. Imposing ∆Zµ
i |LO = 0, all coefficients of zµ-dependent operators in eq. (4.6)

are constrained to obey

C
(Z)
2 = 2 , C(Z)

n = n×

CESn−1 , n odd,
CBSn−1 , n even,

(4.28)

where n ≥ 3. Substituting these back into eq. (4.6), our ansatz reduces to eq. (3.20) which
was derived from the Hamiltonian analysis. Additionally, we have confirmed that when the
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Kerr values Ci,(E/B)Sn = 1 are chosen, we find agreement with the impulse and spin kick
derived from other methods [118, 169–171].

In order to constrain the quadratic-in-curvature operators (4.7), we move to next-to-
leading order. Besides the leading-order one-point functions (4.27), which contribute to
the change in SSC vector through the last term in eq. (4.23), we need the sub-leading
one-point functions:

⟨Zµ
I,i(−ω)⟩NLO (4.29)

= + 1
2 + 1

2

+ + + .

Internal Zν
J,j propagators here involve a sum over the flavor index J . As these calculations

involving one-loop integrals are now standard, we refer the reader to refs. [45, 57] for further
computational details. Assembling any of the three conditions in eq. (4.26) at next-to-leading
order determines the Wilson coefficients in eq. (4.7):

C
(Z)
R2,1 = 0, C

(Z)
R2,2 = CES2(CES2 − 1), C

(Z)
R2,3 = −C(Z)

R2,4 = CES2 − 1. (4.30)

Thus, we reproduce precisely the quadratic-in-curvature part of the action as derived from
the covariant-SSC-preserving Hamiltonian in eq. (3.30). Along the way, we have verified
that we reproduce the known NLO linear impulse in the Kerr limit up to fourth order in
the spin vector [166, 167]. In summary: we have demonstrated the compatibility of the
Hamiltonian analysis in sections 2 and 3 with perturbative computations of observables
from an ansatz-based Lagrangian.

5 Conclusions

The WQFT formalism has proven itself a remarkably powerful tool for calculating scattering
observables in classical GR. Significant calculations of scattering observables — the scattering
angle, fluxes, spin kick, the gravitational waveform [46, 56] — have been done involving
spinning massive bodies, up to quadratic order in spins at 3PM [58, 59], and linear in spins
at 4PM [67, 68]. These results are already being used in effective-one-body (EOB) models,
both to describe large-angle scattering [30, 137] and bound-orbit waveforms [31]. However,
the use of an N = 2 supersymmetric worldline action has so far meant a restriction to
quadratic powers in spin (quadrupoles) — a restriction that other approaches involving
scattering amplitudes have not had [96, 109, 128, 145, 165–167, 169, 170, 172, 173]. This
restriction follows from the need to ensure that all spin degrees of freedom are captured by a
three-dimensional Pauli-Lubanski spin vector S⃗, imposing a spin-supplementary condition
(SSC) on the relativistic spin tensor Sµν . The N = 2 formulation enforces this SSC using a
corresponding pair of conserved supercharges. Unfortunately, as there exists no covariant
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gravitational coupling of the supersymmetric worldline action beyond N = 2 supersymmetries,
further progress has been hindered — although, an alternative WQFT-based approach using
a spinning body-fixed frame has recently been introduced [65].

In this paper, we laid the foundations for an efficient higher-spin WQFT implementation,
designed for future calculations at high orders in perturbation theory. The essential challenge
was to build an SSC-preserving worldline action, suitable for WQFT-style quantization, that
avoids the inherent limitations of the N = 2 SUSY action. Our starting point was instead the
Hamiltonian, which depends only on the particle’s essential degrees of freedom — position
xµ, spin Sµν , and the metric gµν — and wherein the SSC manifests itself as a second-class
constraint on the dynamics (in the language of Dirac [149]). By explicitly solving for the SSC,
a suitable ansatz could be made for the Hamiltonian depending only on the spin vector Sµ

(instead of the spin tensor Sµν) both with linear and quadratic curvature couplings. In the
corresponding first-order worldline action, related to the Hamiltonian by a simple Legendre
transform, we then showed how there arises the need to enlarge the spinning phase space.
Motivated by the desire for a covariant SSC constraint πµS

µν = 0, we found that a convenient
encoding is via a set of complex bosonic oscillators αa, with Sab = −2imᾱ[aαb]. Inspiration for
this encoding comes from the bosonic string, our model arising in the tensionless limit. The
constructed bosonic worldline action may be used inside or outside the WQFT framework.

Alongside our work on the Hamiltonian, we demonstrated an alternative ansatz-based
approach for obtaining the SSC-conserving worldline action. As its starting point, this
method took an ansatz for the most general action constructed from the worldline degrees of
freedom with up to one power of zµ. The number of free Wilson coefficients in this action
corresponds to that of the linear-in-curvature action of refs. [96, 145]. To connect to the
Hamiltonian analysis, we evaluated the perturbative change in the SSC vector and determined
conditions on the Wilson coefficients of the action such that this change vanishes. In this
way, coefficients were fixed for all linear-in-curvature operators and for the leading (in terms
of the physical PM counting) quadratic in curvature operators. As a by-product of this
analysis, we validated that this novel action produces known Kerr observables at leading
and subleading loop orders [118, 166, 167, 170].

Having now developed a higher-spin WQFT framework, there exist several opportunities
for follow-up calculations. Most natural would be to extend the scattering observables
at formal 3PM order (two loops) to cubic and quartic order in spin, which would have a
physical 6PM and 7PM counting respectively. Seeing as the associated Hamiltonian for the
conservative dynamics would be fully local in time (i.e. avoid any nonlocalities arising from
tails), such results would have immediate relevance for bound two-body motion. At 4PM order
a quadratic-in-spin result (physical 6PM) would also be new: given our present discussion of
higher-curvature terms we anticipate a 1/ϵ dim-reg divergence, to be renormalized by adding a
suitable counter term to the action [69]. The leading-order gravitational waveform can also be
generalized to include higher-spin effects, a calculation already done using amplitudes-based
methods [100, 101, 167, 174].

In the longer term, the main application for these perturbative scattering results will
likely be within EOB models (or similar resummations) used to describe both unbound and
bound two-body motion in the strong-field regime. From that perspective, the eikonal phase

— that we have not focused on in this paper — will likely play a crucial future role. In its
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guise as the radial action, a gauge-invariant quantity, it is straightforward to interpolate
the eikonal phase the two-body and (deformed) one-body systems. Extending our ability
to calculate the eikonal phase to higher PM orders using WQFT methods will therefore be
an important task, one that will also allow us to leverage powerful unitarity-based methods
for future calculations. We leave this exciting prospect for future work.
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A Feynman rules with worldline perturbations

For illustrative purposes, we collect here the Feynman rules with one graviton and one worldline
perturbation generated through eq. (4.14) from the one-graviton generator eq. (4.17). The
condition Zµ

−∞ = 0 has again been imposed on the rules in this section to simplify them, and all
background quantities are taken at infinite past, though we omit the −∞ subscripts on αµ

−∞,
ᾱµ
−∞, aµ

−∞ and Sµν
−∞. The vertex involving one graviton and one trajectory perturbation

represents the rule

V
µν|ρ

1|1 =
µν

Zρ
1 (−ω)

(A.1)

= m δ (v · k + ω)eib·k
{
κ

2 v
µvνkρ + iκ

2m(k · S)(µvν)kρ + C
(Z)
2
2

ω

m
Sτρ∂C̃

∗(1)
avτv(−k)

∂hµν(−k)

+
∞∑

n=1
(k · a)2n−3

[
kρ (k · a)

(
CES2n

(2n)!
∂C̃

(1)
avav(−k)

∂hµν(−k)
+ (k · a) iCBS2n+1

(2n+ 1)!
∂C̃

∗(1)
avav(−k)

∂hµν(−k)

)

+ iω
m

(k · S)ρ (k · a)

 C
(Z)
2n+1

(2n+ 1)!
∂C̃

(1)
avav(−k)

∂hµν(−k)
+

iC(Z)
2n+2

(2n+ 2)!(k · a)
∂C̃

∗(1)
avav(−k)

∂hµν(−k)


− ω

m
ϵσλαβPv,λ

ρSαβ

[
(k · a)

(
CES2n

(2n)!
∂C̃

(1)
σvav(−k)

∂hµν(−k)
+ iCBS2n+1

(2n+ 1)! (k · a)
∂C̃

∗(1)
σvav(−k)

∂hµν(−k)

)
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−1
2kσ

(
(2n− 2)CES2n

(2n)!
∂C̃

(1)
avav(−k)

∂hµν(−k)
+ (2n− 1) iCBS2n+1

(2n+ 1)! (k · a)
∂C̃

∗(1)
avav(−k)

∂hµν(−k)

)]

+2ωvαP βρ
v (k · a)

CES2n

(2n)!
∂C̃

(1)
aαaβ(−k)

∂hµν(−k)
+ iCBS2n+1

(2n+ 1)!(k · a)
∂C̃

∗(1)
aαaβ(−k)

∂hµν(−k)

 .
Here we have employed the projector Pµν

v = ηµν−vµvν . Replacing the trajectory perturbation
with an oscillator perturbation, eq. (4.14) gives instead

V
µν|ρ

1|2 =
µν

Zρ
2 (−ω)

(A.2)

= 2mδ (v ·k+ω)eib·k
{
iκ
4 v

(µ
[
(k ·α)ην)ρ−kραν)

]
− C

(Z)
2
2 aσηρ[ταν]vν

∂C̃
∗(1)
σvτv(−k)

∂hµν(−k)

− ikτη
ρ[ταν]vν

∞∑
n=1

(k ·a)2n−2

 C
(Z)
2n+1

(2n+1)!
∂C̃

(1)
avav(−k)

∂hµν(−k)
+

iC(Z)
2n+2

(2n+2)!(k ·a)
∂C̃

∗(1)
avav(−k)

∂hµν(−k)


+ϵσvρτατ

∞∑
n=1

(k ·a)2n−3
[
(k ·a)

(
CES2n

(2n)!
∂C̃

(1)
σvav(−k)

∂hµν(−k)
+ iCBS2n+1

(2n+1)! (k ·a)
∂C̃

∗(1)
σvav(−k)

∂hµν(−k)

)

+1
2kσ

(
(2n−2)CES2n

(2n)!
∂C̃

(1)
avav(−k)

∂hµν(−k)
+(2n−1) iCBS2n+1

(2n+1)! (k ·a)
∂C̃

∗(1)
avav(−k)

∂hµν(−k)

)]}
.

The rule for a perturbation of the conjugate oscillator is related to this one through

V
µν|ρ

1|3 =
µν

Zρ
3 (−ω)

= V
µν|ρ

1|2

∣∣∣
α→−ᾱ

. (A.3)

These involve functional derivatives of the momentum-space Weyl curvature tensor expanded
to linear order in κ, which has been given in eq. (4.18).
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