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The excited states of neutron-rich Fe isotopes have been studied through
a multinucleon transfer reaction of a 70Zn beam on a 238U target. Un-
ambiguous identification of prompt γ rays belonging to each nucleus was
performed by coincidence detection of the ions in a high-acceptance mag-
netic spectrometer. The observed spectra are compared with large-scale
shell-model calculations in the fpgd model space.
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1. Introduction

The existence of a sub-shell closure at N = 40 is a topic that has at-
tracted a substantial amount of experimental and theoretical effort. 68Ni is
considered to show rather good properties of a doubly magic nucleus having
a high excitation energy for the first 2+ state of more than 2 MeV [1] and
a low collective B(E2; 2+ → 0+) transition rate [2]. On the other hand,
mass measurements show a weak harmonic oscillator gap for N = 40 [3].
Besides, the presence of low-lying 0+ states indicates the presence of shape
coexistence in the region [4].

At this point, it is clear that the pseudo-magic number N = 40 is not
a very strong shell closure. There is evidence indicating its disappearance
once two or more protons are removed. This can be deduced from the
low-excitation energies measured for the 2+ states in the iron [5, 6] and
chromium [7, 8] isotopes when approaching N = 40. Moreover, enhanced
B(E2; 2+ → 0+) transition rates have been measured in these isotopes
[9–11], confirming the region of deformation below 68Ni.

The onset of deformation in this region is understood to be caused by the
enhanced quadrupole collectivity generated when neutrons are excited into
the quadrupole-partner orbitals νg9/2 and νd5/2 across the N = 40 sub-shell
gap. Large-scale shell model calculations employing the Lenzi–Nowacki–
Poves–Sieja (LNPS) interaction [12] have successfully explained the spectra
and transition rates measured so far in this region.

Experimental information on iron isotopes proceeds mostly from β-decay
studies [5, 13–19], and from transfer [6] and charge-exchange reactions [20].
Information on high-spin states in this isotopic chain has been extracted
mostly in the Multi-Nucleon Transfer (MNT) experiments, employing the
64Ni+238U reaction [9, 21, 22]. The purpose of this work is to extend these
studies to heavier isotopes populated with the 70Zn+238U reaction, and to
interpret the structure within state-of-the-art shell-model calculations with
the LNPS interaction.

2. Experimental details

The neutron-rich iron isotopes were generated as products of a multin-
ucleon transfer (MNT) process following the collision of a 70Zn beam onto
a 238U target. The 70Zn beam, with an energy of 460 MeV, was deliv-
ered by the Laboratori Nazionali di Legnaro (LNL) Tandem-ALPI acceler-
ator complex, in a 7-day long measurement. A target with a thickness of
1 mg/cm2 was employed. The CLARA–PRISMA setup was used to iden-
tify the projectile-like nuclei in coincidence with the prompt γ rays emitted
from their excited states. The PRISMA large-acceptance magnetic spec-
trometer was positioned at 61◦, close to the grazing angle. The γ rays
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following the de-excitation of the reaction products were detected with the
CLARA array, in a configuration with 22 Compton-suppressed Ge clover de-
tectors. CLARA was positioned in the hemisphere opposite to the PRISMA
spectrometer, covering polar angles from 98◦ to 180◦. Doppler correction of
γ rays was performed on an event-by-event basis. The detection efficiency of
the CLARA spectrometer was 2.5%. More details on the CLARA–PRISMA
setup and data analysis used for the present experiment can be found in
Refs. [22–24].

Neutron-rich iron isotopes have been studied previously in a similar ex-
periment at LNL, using the same setup, but employing a 64Ni beam [22]. In
comparison with this previous study, the use of a 70Zn beam offered the pos-
sibility of populating states in more neutron-rich isotopes. The mass spectra
for the different isotopic chains produced in this experiment are shown in
Fig. 1. Among the iron isotopes, the maximum production was observed for
62Fe, which corresponds to the (−4p–4n) transfer channel. This contrasts
with the mass spectrum obtained in the case of the reaction with a 64Ni
beam, whose maximum was located at 60Fe [22]. Thanks to the enhanced
production of more neutron-rich isotopes, in this experiment, it was possible
to perform γ-ray coincidences for neutron-rich iron isotopes up to 68Fe.
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Fig. 1. Mass spectrum for the different isotopic chains detected at the focal plane
of the PRISMA spectrometer following the 70Zn+238U reaction.
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3. Results and discussion

The γ-ray spectra measured in coincidence with the detection of the iron
isotopes in PRISMA from A = 64 to A = 68 are shown in Fig. 2.
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Fig. 2. Doppler-corrected γ-ray spectra registered in CLARA in coincidence with
the iron isotopes in PRISMA. Transitions assigned to each nucleus are labelled
with their energies.

The level scheme of 64Fe has been established from β-decay experiments
[5, 15] and multinucleon transfer in the 64Ni+238U reaction [21, 22], where
the population of the positive-parity band was observed up to J = 10 ℏ.
Figure 2 presents the γ-ray spectra observed in coincidence with the 64Fe ions
detected in PRISMA. The three strongest peaks (1078, 1017, and 747 keV)
are identified with the 6+ → 4+ → 2+ → 0+ transitions, respectively.
Besides these transitions, three small peaks can be also observed at 583, 686,
and 1078 keV, corresponding to the population of positive-parity states. In
this work, we assumed the spin and parity assignments proposed in Ref. [21],
which are in agreement with our shell-model calculations.

The excited levels of 66Fe have been studied in detail in β-decay experi-
ments [14, 18, 19], which provided information about the low-spin structure.
Yrast states up to 4+ are known from the MNT reaction experiment [22] and
β-decay studies [16]. Two possible candidates for a 6+ state were suggested
in the proton knockout experiments [6]. In the γ-ray spectra observed in
our experiment, see Fig. 2, three γ rays can be clearly observed. These
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three transitions are compatible with the de-excitation of the yrast states
suggested in Ref. [6], supporting the identification of the 2364 keV state as
the 6+ state. The production of 68Fe in our experiment was low, but still it
was possible to clearly identify a peak at 521 keV, which corresponds to the
decay of the first 2+ state [14, 16, 20].

We have performed large-scale shell model calculations in order to give
a quantitative interpretation of the experimental spectra. The LNPS inter-
action was employed, with an inert core of 48Ca. The chosen valence space
corresponds to the whole fp shells for protons and the p3/2, f5/2, p1/2, g9/2,
and d5/2 orbitals for neutrons. The results of our calculations are compared
with the data obtained for the even iron isotopes in Fig. 3. The theoretical
description is quite satisfactory. It is worth to compare it with the results of
previous calculations including only the fpg shell space for 66Fe [22], where
the excitation energy of the 2+ state was found to be 771 keV, 200 keV
higher than the experimental value. The inclusion of the d5/2 orbital in the
calculations allows to reproduce the large quadrupole collectivity required
to obtain a satisfactory agreement with the experimental data.

Fig. 3. (Colour on-line) Level schemes observed in our experiment for the of the
64,66,68Fe isotopes. The experimental spectra are compared with the results of our
shell-model calculations. The (4+) state in 68Fe (blue/grey) was not observed in
this experiment, but the excitation energy of this state was determined in Refs.
[16, 20]. This state was included for comparison with the theoretical calculations.
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4. Summary

In this work, we presented the level schemes for the neutron-rich Fe
isotopes from A = 64 to A = 68, populated in the multinucleon transfer
reaction of a 70Zn beam on a 238U target. The experiment was performed
at the INFN Legnaro National Laboratory, where the CLARA Ge array was
coupled to the PRISMA magnetic spectrometer in order to unambiguously
assign the γ rays emitted to the corresponding isotopes. New levels and
transitions have been proposed in the even nuclei, based on arguments of
systematics and a comparison with shell-model predictions. Analysis for the
odd-mass isotopes is currently ongoing and it will be published elsewhere.
Large-scale shell-model calculations have been performed in the fpgd valence
space using the LNPS interaction. The inclusion of the d5/2 orbital allowed
to reproduce quite successfully the experimental data and collective aspects
up to N = 42.
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