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Abstract 

We study the renormalization properties of the four-fermion theory in less than four dimen­
sions (D < 4) in 1/N expansion scheme. It is shown that /3 function of the bare coupling has a 
nontrivial ultraviolet fixed point with a large anomalous dimension ( 'Yti;.p = D - 2) in a similar 
manner to QED and gauged Nambu-Jona-Lasinio (NJL) model in ladder approximation. The 
anomalous dimension has no discontinuity across the fixed point in sharp contrast to gauged NJL 
model. The operator product expansion of the fermion mass function is also given. 

Introduction 

Recently the possibility that QED may have a nontrivial ultraviolet(UV) fixed point has been 
paid much attention from the viewpoints of "zero charge" problem in QED and raising condensate 
in technicolor model. Actually such a possibility was pointed out in ladder approximation in which 
the cutoff Schwinger-Dyson equation for the fermion self-energy possesses a spontaneous-chiral­
symmetry-breaking solution for the bare coupling larger than a non-zero value ( ao = eij/ 411" > 
?r/3 = ac)- We can make this solution finite by letting ao have a cutoff dependence in such 
a way that ao( I\) _,. ac + 0 (I\ - oo ), ac being identified as the critical point with scaling 
behavior of essential-singularity type. At the critical point, fermion mass operator ;j;'lj; has a large 
anomalous dimension 'Yti;.p = 1, which is indeed crucial to the technicolorJ2l 

This problem was further analyzed in ladder approximation in the two-coupling space of the 
gauged Nambu-Jona-Lasinio (NJL) model, i.e., QED plus a (possibly "induced") four-fermion 
interaction whose physical dimension becomes 4( =6-2"fti;.p) at the critical point due to a large 'Yti;.p 

(=1).l31 Quite recently a critical line of this model was discovered in the whole prameter space of 
two couplings (ao(I\), go(/\)), with go(/\) being the dimensionless bare four-fermion coupling.l4H5l 
The most striking feature of the model is the appearance of an even larger anomalous dimension 
'Yti;.p = 1 + y'l - ao/ac (2: 1) at the critical line, which in fact suggests the four-fermion 
interaction may become a relevant operator and renormalizable, in sharp contrast to the symmetric 
phase where one obtains a smaller 'Yti;.p = 1-y'l - ao/ac ( < 1) and accordingly the four-fermion 

interaction is irrelevant.l6l 
An important application of this dynamical symmetry breaking with a very large 'Yti;.µ(-::::. 2 for 

ao -::::. 0) is a "top-mode standard model" in which a top quark condensate is responsible for the 
electroweak symmetry breaking.l7l 

However the existence of a critical point for the bare coupling ao(I\) does not necessarily 
imply the UV fixed point for the renormalized one a(µ) in the continuum theory. In fact the j3 

* This talk is based on the work done in collaboration with K. Yamawaki.l1l 
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function was argued to be non-negative, ,8( a(µ)) ;::: 0, based on the spectral representationJ8] 

In ladder approximation, there is no simple way to compute ,B(a(µ)) and/or ,B(g(µ)) through 

the calculation of vertex Green functions and hence no direct comparison with ,B( ao(!\)) and/or 
P(go(!\)) obtained through the gap equation (ladder Schwinger-Dyson equation) for the fermion 
propagator. Also the above discontinuity of 'Y~<ti·l±Jl - ao/ac, across the critical line seems to 
be rather paradoxical (an artifact of ladder approximation ?), though not obviously in contradiction 
to the operator product expansion (OPE)J9] 

In this talk, we wish to clarify these issues by explicitly calculating ,B(g ), 'Y~<ti(g) and the 

corresponding "bare" quantities ,B(go). :Y~"'(go) of the four-fermion theory in less than four 
dimensions (2 < D < 4) in 1/N expansion; the theory in fact was shown to be renormalizable 
and was also demonstrated to have a nontrivial UV fixed point for the renormalized coupling, 
9(µ) = g* f 0, and a large anomalous dimension 'Y~<ti(g*) = D - 2 at the fixed pointJlO] We 

shall show ,B(go) and :Y~</J(go) are very similar to ,B(g) and 'Y~<ti(g), respectively; ,B(go) possesses 
a UV fixed point go(!\) = 9c in much the same way as the ladder QED and the gauged NJL 
model, while :Y~</J(go) becomes large, :Y~</J(gc) = D - 2, although having no discontinuity across 
the fixed point in contrast to the gauged NJL model. The discontinuity of :Y~</J(go) may be traced 
to the fact that usually in ladder approximation go(/\) is not renormalized in the symmetric phase 
: Taking account of the renormalization of go(/\) in our model indeed fill in the gap of :Y~<ti· 

The large anomalous dimension without discontinuity will be shown to be consistent with the 
operator product expansion of the fermion mass function, which actually holds in a quite nontrivial 
fashionJ1l 

1/N expansion and Renormalized theory 

let us start with the following four-fermion theory, 

where 'if;a( x) is a four-component Dirac fermion and the suffix runs from one to N. The space-time 
dimension is less than four. This system has a symmetry under discrete chiral transformation; 
'if;a(x) -+ 151/Ja( x ). By introducing an auxiliary field a( x ), we rewrite the Lagrangian into 

.Cu(x) = ;pai~'if;a - M¢a'ifJa -(N/2Go)0-2 - 0-;pa'if;a -(NM/Go)O-, 

where the a field has been shifted to 0- by a vacuum expectation value (a) = M determined 
through a self-consistent equation, the gap equation, which is derived from the condition that 
the new variable has no vacuum expectation value. 

We now perform 1/N expansion to evaluate Green functions. The fermion propagator and 
the vertex are of order O(N°), while the boson propagator and the tadpole are of order 0(1/N) 
and O(N), respectively. The boson propagator, the gap equation and the scalar vertex in 1/N 
leading order are given by, 

/\ D 

(O-) <X M(l - iG0 j (~1l")~ k2 ~ M2 ) = o, (1) 

r~"'(p, q) = iN D"(p - q)/Go. 
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The gap equation has two solutions, a symmetric solution M = 0 and a spontaneously broken 
one M -f 0. 

This model can be simultaneously renormalized for both solutions as follows. We define the 
renormalized coupling G(µ)(= g(µ)µ2-D); 

r..D-2 µD-2 
Zo = 1 - Go(-- - --), 

9c g* 
(2) 

where 

* (47r)Df2(D - 2) 
g = [8(D - l)f(2 - D/2)B(D/2, D/2)]' 

with f(B) being the gamma (beta) function. Notice that the renormalization constant Zo can be 
defined to be mass-independent (Zero Mass Renormalization Procedure)i11] even for the broken 
solution M -f 0, and also that Z.p = Z17 = 1 in 1/N leading order. 

The fJ function of the renormalized coupling, fJ(g) = µ 
0~~), is calculated from (2); 

fJ(g) = (D - 2) !!.._ (g* -"- g ), 
g* 

which is valid in both phases (solid line in Fig.1). It is now evident that g* is the UV fixed point 
which separates the symmetric and broken phases of the symmetry. In 0=2 we have g* = 0 
((D - 2)/g* - 2/7r), which is just the asymptotic freedom of Gross-Neveu model. 

0 
9c \ 

\ 
\ 
\ 
\ 

Fig. 1. fJ functions of renormalized coupling (solid line), and of bare coupling (dashed line). 

For the scalar vertex, we can take Z;j,,µ = Zc. Thus the anomalous dimension of the mass 
_ olnZ-

operator '1/;a'l/;a. r;j,.p = µ a/t/;. is also obtained from (2), 

(solid line in Fig.2). There is no discontinuity at g(µ) = g*. 
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Fig. 2. Anomalous dimensions of mass operator, renormalized one (solid line) and bare one 
(dashed line). 

Bare quantities 

Let us now turn to the cutoff dependence of the bare coupling in the present model. From 
(2) we obtain, for/\~µ, 

a fJ I go µ(go) = /\
0

/\go G 
1

. d :::= (D - 2) - (gc - go), 
µ, (µ.)- sze gc 

(3) 

where go= Go/\D-2 (dashed line in Fig.I). Since the gap equation (1) leads to a relation, 

/\D-2 gc _go(/\) µD-2 g* _ g(µ) 
= 9c go(/\) g;- g(µ) 

gc turns out to be the critical point which divides the two phases, corresponding to g*. On the 
other hand, from the gap equation (1), we obtain (for go> gc) 

A 8 I go go 
f3(go) = /\f)/\go M-fi:z:ed :::= (D- 2) gc (gc - (1 + M2//\2)), 

which is actually the f3 function widely discussed in the ladder QED and the gauged NJL model. 
In the limit M / (\ ~ 1, this reduces to (3). This reflects the fact that we can renormalize 
simultaneously the gap equation and the boson propagator by the renormalization of the coupling. 

fJlnZ-
The anomalous dimension :Y;j,.µ(go(/\)) = -/\ alp is also calculated from (2), 

(dashed line in Fig.2). This does not have a discontinuity at go(f\) = gc in contrast to the gauged 
NJL model. 

Note that (3) is valid both in the symmetric and the broken phases. This is contrasted with 
the ladder QED in which the renormalization of ao is performed only through the gap equation 
for the fermion propagator, which is trivial in the symmetric phase (lJ( ao) = 0), but not through 
that of other Green functions such as fermion-photon vertex and fermion four-point function. 
The lack of renormalization of the bare coupling in the symmetric phase is also shared by the 
ladder gauged NJL model (lJ(go) = lJ(ao) = 0 below the critical line). 

It may be this non-renormalization of the bare coupling in the symmetric phase that caused 
the discontinuity of the anomalou,s dimension, 'Y;j,.p = 1 ±Ji - a0 /ac, across the critical line 
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in the gauged NJL model. In order to clarify this point in our model, we incorporate a fermion 
bare mass mo into the gap equation ( 1 ); 

(4) 

where M is defined as Sj;1(p) = p- M. mo is renormalized as mo= Z;j,.pmR. In the symmetric 
phase, {4) itself does not require the renormalization of 90· Were it not for any renormalization 
of 90 through other Green functions than the fermion propagator, one would conclude that 

mo "' M(l - A£~2 A::2
) "' Ao. This is indeed what happened to the ladder gauged NJL 

model. However, in the case at hand, 90 is actually renormalized through the boson propagator 
renormalization (2) in such a way that 1- 9o(A)/9c"' A2-D; namely mo,..., 1/AD-2. 

Mass function and OPE 

We define mass function of fermions, the effective coupling and the effective mass as follows, 

and 

L.(q;9R,mR,µ) = B(q;9R,mR,µ)/A(q;9R,mR,µ), 

S(/(q;9R,mR,µ) = A(q;9R,mR,µ)<f.- B(q;9R,mR,µ), 

dm(Q) 
Q~ = --Y;j,.pm(Q); m(µ) = mR, 

Qd~~) = /3(9); 9(µ) = 9R, 

1Q dQ' 
m(Q) = mR exp{- µ -Y;j,.p Q' }. 

Based on OPE and renormalization group equation, the general formula of the asymptotic be­
havior of the mass function is; 

(5) 

where -q2 = Q2 ~ µ2, m~. The second term in R.H .S. is a dynamical mass associated with the 

spontaneous chiral symmetry breaking, which was given by Politzer.l12] The first term, a current 
mass with the explicit chiral symmetry breaking, can be obtained as follows. In the scheme of 
ZMRP, we straightforwardly have 

- () 
r~.P(q;9R,mR,µ) = --!:l-S[/(q;9R,mR,µ), 

vmR 

from the corresponding formula in terms of bare quantities. There is no singularity in the limit 
that the renormalized mass goes to zero, so that, we next expand each term in both sides with 
respect to the renormalized mass mR. Then, 



The first term in the expansion of B function is a dynamical mass in broken phase, or is equal to 
zero in symmetric phase because of chiral symmetry. Here we take the explicit breaking term as 
perturbation to broken phase, so that, 

'!;""( ) B'(q;gR,O,µ) 0( 2) (D . l ) 
L q;gR, mR,µ ~ mR A( . 

0 
) + mR + ynamica Mass , 

q,gR, ,µ 

mR { ~t/;( }/ . ~A(. O )Tr f R q,q;gR,O,µ) 4+(Dynamical Mass). 
q,gR, ,µ 

(6) 

Renormalization group equations for A(q; gR, 0, µ)and r~t/;(q, q; gR, 0, µ)can be solved as follows. 

(7) 

(8) 

where -q2 = q2. What we want follows from eq.(6),(7),and (8). 
In the case of the four-fermion theory considered, the scalar vertex and the Wilson coefficient 

function in the zero mass limit are 

- g* 
r~t/J(q,q;g(Q),O,Q) = iND11(0;g(Q),O,Q)/G(Q) = g* _ g(Q)' 

iG(Q) 
C~t/J(q;g(Q),O,Q) = NQ2. 

Thus we obtain the asymptotic form of the fermion mass, 

g* G(Q) { {Q dQ'} -
M ~ m(Q) g* _ g(Q) - ~ exp + }µ 'Y~tJ; Q' (Ol 1/17/J IO)(µ), 

g* G(µ) -
~ mR g* _ g(µ) - N (Ol 1/17/J IO)(µ). 

In the second equality, we use the relation 

G(µ) g* - g(µ) { 1Q dQI} 
G(Q) = g* - g(Q) =exp + µ 'Y~t/J Q' ' 

(9) 

which follows from Za = Z~tJ;· Eq.(9) in fact agrees with the gap equation (1), if it is expanded 
in the renormalized mass, and the subtraction of the operator ~7/; is considered. The subtraction 
procedure is as follows,[13] 

by means of which ~1/1 can be renormalized by Z~t/J defined through the scalar vertex and does 
not mix with the operator 1. Note that the effective mass m(Q) is multiplied by the nontrivial 

factor g* /(g* -g( Q)), which precisely compensates rapid damping of m(Q) ""q-7-i;,(g*) to yield 
the first term of (9), a constant mass. This is a remarkable difference from that in QCD-like 
theories. 
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Summary 

The four-fermion theory in D < 4 dimensions is an explicit example of the model possessing 
a nontrivial UV fixed point in both the bare and the renormalized couplings. It shares many 
interesting features with QED and gauged NJL model in ladder approximation in four dimensions. 
The gap in the anomalous dimension across the fixed point in the gauged NJL model may be 
caused by the non-renormalization of the coupling in the symmetric limit. The large anomalous 
dimension is consistent with the OPE formula of mass function including the nontrivial coefficient. 
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