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Abstract

We study the renormalization properties of the four-fermion theory in less than four dimen-
sions (D < 4) in 1/N expansion scheme. It is shown that § function of the bare coupling has a
nontrivial ultraviolet fixed point with a large anomalous dimension ('y%p = [ —2) in a similar
manner to QED and gauged Nambu-Jona-Lasinio (NJL) model in ladder approximation. The
anomalous dimension has no discontinuity across the fixed point in sharp contrast to gauged NJL
model. The operator product expansion of the fermion mass function is also given.

Introduction

Recently the possibility that QED may have a nontrivial ultraviolet(UV) fixed point has been
paid much attention from the viewpoints of “zero charge” problem in QED and raising condensate
in technicolor model. Actually such a possibility was pointed out in ladder approximation in which
the cutoff Schwinger-Dyson equation for the fermion self-energy possesses a spontaneous-chiral-
symmetry-breaking solution for the bare coupling larger than a non-zero value (o = 65/471' >
/3 = «.). We can make this solution finite by letting ag have a cutoff dependence in such
a way that ag(A) — a.+ 0 (A — o0), a. being identified as the critical point with scaling
behavior of essential-singularity type. At the critical point, fermion mass operator ¢4/ has a large
anomalous dimension Vgy = 1. which is indeed crucial to the technicolor.2]

This problem was further analyzed in ladder approximation in the two-coupling space of the
gauged Nambu-Jona-Lasinio (NJL) model, i.e., QED plus a (possibly “induced") four-fermion
interaction whose physical dimension becomes 4(=6—2'y;w) at the critical point due to a large Yo

(=1).[3] Quite recently a critical line of this model was discovered in the whole prameter space of
two couplings (ag(A), go(A)), with go(A) being the dimensionless bare four-fermion coupling. (5]
The most striking feature of the model is the appearance of an even larger anomalous dimension
Yoy = 1+ /1—ag/a. (> 1) at the critical line, which in fact suggests the four-fermion
interaction may become a relevant operator and renormalizable, in sharp contrast to the symmetric
phase where one obtains a smaller 3, = 1—1/1 — ag/a. (< 1) and accordingly the four-fermion
interaction is irrelevant.[] :

An important application of this dynamical symmetry breaking with a very large 7,7”‘,(:: 2 for
ag = 0) is a “top-mode standard model” in which a top quark condensate is responsible for the
electroweak symmetry breaking.m

However the existence of a critical point for the bare coupling ag(A) does not necessarily
imply the UV fixed point for the renormalized one () in the continuum theory. In fact the 8

* This talk is based on the work done in collaboration with K. Yamawaki.[l]



function was argued to be non-negative, ﬂ(a(”)) > 0, based on the spectral representation. (8!
In ladder approximation, there is no simple way to compute ﬂ(a(”)) and/for B(g(u)) through
the calculation of vertex Green functions and hence no direct comparison with 3(cg(A)) and/or
B(go(/\)) obtained through the gap equation (ladder Schwinger-Dyson equation) for the fermion
propagator. Also the above discontinuity of YVgprlEV 1= ag/ac , across the critical line seems to
be rather paradoxical (an artifact of ladder approximation ?), though not obviously in contradiction
to the operator product expansion (OPE).[QI

In this talk, we wish to clarify these issues by explicitly calculating £(g), ww(g) and the

corresponding “bare” quantities 3(gg), A34(90) of the four-fermion theory in less than four
dimensions (2 < D < 4) in 1/N expansion; the theory in fact was shown to be renormalizable
and was also demonstrated to have a nontrivial UV fixed point for the renormalized coupling,
IHu) = g® # 0, and a large anomalous dimension 'yw(g*) = D — 2 at the fixed point.[101 We
shall show E’(go) and %¢¢(go) are very similar to S(g) and 7$¢(g), respectively; 3(gg) possesses
a UV fixed point gg(A) = g, in much the same way as the ladder QED and the gauged NJL
model, while 97,,(g0) becomes large, 77, (gc) = D — 2, although having no discontinuity across
the fixed point in contrast to the gauged NJL model. The discontinuity of 4;,,(go) may be traced
to the fact that usually in ladder approximation gg(A) is not renormalized in the symmetric phase
: Taking account of the renormalization of go(A) in our model indeed fill in the gap of 57,.
The large anomalous dimension without discontinuity will be shown to be consistent with the

operator product expansion of the fermion mass function, which actually holds in a quite nontrivial
fashion.[1]

1/N expansion and Renormalized theory

Let us start with the following four-fermion theory,
Lap(z) = PHigy® + Go($°9°)? /2N,

where 9%(z) is a four-component Dirac fermion and the suffix runs from one to N. The space-time
dimension is less than four. This system has a symmetry under discrete chiral transformation;
¥%(z) — w¥®(z). By introducing an auxiliary field o(z), we rewrite the Lagrangian into

Lo(z) = PUidu® — MY p® — (N/2G)5? — 59°¢* — (NM/Go)5,

where the o field has been shifted to G by a vacuum expectation value (¢) = M determined
through a self-consistent equation, the gap equation, which is derived from the condition that
the new variable has no vacuum expectation value.

We now perform 1/N expansion to evaluate Green functions. The fermion propagator and
the vertex are of order O(N?), while the boson propagator and the tadpole are of order O(1/N)
and O(N), respectively. The boson propagator, the gap equation and the scalar vertex in 1/N
leading order are given by,

A
1 o[l [ 4%k 1 1
f:)a(p) —ZN[_(?()--—Z/(z’lT)DTr(ﬁ"}'K"-MV-—M)]’

A
dPk 4

(&) x M(1—1iGg Wm);‘o, (1)

[%%(p, q) = iNDo(p - q)/Go.
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The gap equation has two solutions, a symmetric solution M = 0 and a spontaneously broken

one M # 0.
This model can be simultaneously renormalized for both solutions as follows. We define the

renormalized coupling G(“)(E 9(/-‘)/‘2_13);

A
1 Zg _ 1 . [ &%k 11

=G -G '] @P TP =

AD-—Z D-2

£, (2)

Zeg=1-G -
¢ 0( ge g*

where

: (4)P/(D — 2)

_ (D-2)
v = G -TE-DRBoE Dy - ¢ (0,

with [(B) being the gamma (beta) function. Notice that the renormalization constant Zg can be
defined to be mass-independent (Zero Mass Renormalization Procedure)[11] even for the broken
solution M # 0, and also that Zyy = Z, = 1 in 1/N leading order.

The g function of the renormalized coupling, 8(g) = pag: , is calculated from (2);

Blg) = (D - 2)5;(9" -9),

which is valid in both phases (solid line in Fig.1). It is now evident that g* is the UV fixed point
which separates the symmetric and broken phases of the symmetry. In D=2 we have ¢* = 0
((D —2)/g* — 2/x), which is just the asymptotic freedom of Gross-Neveu model.

-~

B(B)

g\ ¢ | g (go)

Fig. 1. B functions of renormalized coupling (solid line), and of bare coupling (dashed line).

For the scalar vertex, we can take Z4y = Zg. Thus the anomalous dimension of the mass

o dinZy, ,
operator %)%, g, = s also obtained from (2),

Y34(9) = (D — 2)57.

(solid line in Fig.2). There is no discontinuity at g(u) = g¢*.
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9(9%)

Fig. 2. Anomalous dimensions of mass operator, renormalized one (solid line) and bare one
(dashed line).
Bare quantities

Let us now turn to the cutoff dependence of the bare coupling in the present model. From
(2) we obtain, for A > 4,

Blao) = Ayrso =(0-2L 6. - 0), 0

p,G(“)--fized
where gg = GoAP~? (dashed line in Fig.1). Since the gap equation (1) leads to a relation,

AP=2 g —go(N) _ pP72g" — g(1)
ge  go(A) g 9w

ge turns out to be the critical point which divides the two phases, corresponding to g*. On the
other hand, from the gap equation (1), we obtain (for gg > g.)

Jgo
)

A _ e) N _n 90 .
Alao) = Agr90 ~ (D -2) o (9¢ YIS

M~ fized
Which is actually the § function widely discussed in the ladder QED and the gauged NJL model.
In the limit M/A < 1, this reduces to (3). This reflects the fact that we can renormalize
simultaneously the gap equation and the boson propagator by the renormalization of the coupling.

dinZ;
The anomalous dimension 45, (g0(A)) = -—-/\—%KM is also calculated from (2),
o go
Tgul90) = (D= 2) 7,

(dashed line in Fig.2). This does not have a discontinuity at gg(A) = g. in contrast to the gauged
NJL model.

Note that (3) is valid both in the symmetric and the broken phases. This is contrasted with
the ladder QED in which the renormalization of «g is performed only through the gap equation
for the fermion propagator, which is trivial in the symmetric phase (B(ag) = 0), but not through
that of other Green functions such as fermion-photon vertex and fermion four-point function.
The lack of renormalization of the bare coupling in the symmetric phase is also shared by the
ladder gauged NJL model (B(gg) = B(ag) = 0 below the critical line).

It may be this non-renormalization of the bare coupling in the symmetric phase that caused
the discontinuity of the anomalous dimension, Yoy = 1E V1= ag/a., across the critical line
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in the gauged NJL model. In order to clarify this point in our model, we incorporate a fermion
bare mass mg into the gap equation (1);

A -
o [Pk 4 (), s
M =mp +iGg L T A L 4)

where M is defined as S;l(p) = §— M. mq is renormalized as mg = Zy,,mp. In the symmetric
phase, (4) itself does not require the renormalization of gp. Were it not for any renormalization
of go through other Green functions than the fermion propagator, one would conclude that
mg ~ M(1— —-QQ—Q-AD 2) ~ A9, This is indeed what happened to the ladder gauged NJL
model. However in the case at hand, gg is actually renormalized through the boson propagator
renormalization (2) in such a way that 1 — go(A)/gc ~ A2=D; namely mg ~ 1/AP-2,

Mass function and OPE

We define mass function of fermions, the effective coupling and the effective mass as follows,
¥(q; gr, mr, 1) = B(¢; gr, mr, 4)/A(q: gr, MR, 1),

S7X(g: gr, MR, 1) = A(g: R, MR, 1) — B(g; gr, MR, 1),

and
2D — —gym(@) i) =,
czd"‘Q) Be): o) = o,

m(Q) = mg EXP{—/“Q ’7,7,,;,%2,1}.

Based on OPE and renormalization group equation, the general formula of the asymptotic be-
havior of the mass function is;

(g 95, mes ) =m(Q) TH{T%(9,4:9(Q),0,Q) } /4

. (5)
+iQ%05(0:9(@),Q) expf+ / T e} (019410},
where —g2 = Q2 > 2 mR The second term in R.H.S. is a dynamical mass associated with the

spontaneous chiral symmetry breaking, which was given by Politzer.[12] The first term, a current
mass with the explicit chiral symmetry breaking, can be obtained as follows. In the scheme of
ZMRP, we straightforwardly have

- a -1
r‘}lgp(q;gR) MR, H) - ~5;{};SR (qn gR) mRg, /l),
from the corresponding formula in terms of bare quantities. There is no singularity in the limit

that the renormalized mass goes to zero, so that, we next expand each term in both sides with
respect to the renormalized mass mp. Then,

[%¥(g,9: 9r, 0, 1) = B'(¢; gr, 0, 1) — A'(q: 9, 0, ).



The first term in the expansion of B function is a dynamical mass in broken phase, or is equal to
zero in symmetric phase because of chiral symmetry. Here we take the explicit breaking term as
perturbation to broken phase, so that,

B'(q:9r;0,1) 2 :
— DI D8 L O(m + (Dynamical Mass),
A(g: 9r, 0, ) (ma’) ¥ Dy ) (6)

TR Tr{ rﬁ"’(g, q:9R, 0, n) }/4 + (Dynamical Mass).

Z(q' 9R, MR, /“‘) = mR

~ Algigr,0,p)

Renormalization group equations for A(g; g, 0, 1) and I'}"z'/’(q, q: 9r, 0, 1) can be solved as follows.

A(g:9r, 0, p) = eXP{ / 27¢dQQ,I , U]
r%¥(a, 408, 0,1) = exp{ - / (o9 + 20} R @ 50(@,00) @

where —g? = Q2. What we want follows from eq.(6),(7).and (8).
In the case of the four-fermion theory considered, the scalar vertex and the Wilson coefficient
function in the zero mass limit are

*

r(4,4:9(Q),0,@) = iN D, (0:¢(Q), 0,Q)/G(Q) =

g(Q)
G
C3u(4:9(Q),0,Q) = - N(QQQ)-
Thus we obtain the asymptotic form of the fermion mass,
G@Q) ¢ do -
M = m(@Q) = g(Q) o / v} ©F 10, o
g* _GW wiawlo
g*_g(#) N < l"/““ )(,;)

In the second equality, we use the relation

Gr) _ g —g(p) _ ° 4
Q) r-9@) e""{*f,, g }

which follows from Zg = Z,,. Eq.(9) in fact agrees with the gap equation (1), if it is expanded
in the renormalized mass, and the subtraction of the operator 91 is considered. The subtraction
procedure is as follows,[13]

_ - N N F'M 4. 9R, 0,
() = g = Tt Trolo (B0 porigy),

by means of which ¥ can be renormalized by Z'N defined through the scalar vertex and does
not mix with the operator 1. Note that the effective mass m(Q) is multiplied by the nontrivial

factor g*/(g* — g(Q)). which precisely compensates rapid damping of m(g) ~ Q”YW(-"‘) to yield
the first term of (9), a constant mass. This is a remarkable difference from that in QCD-like
theories.
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Summary

The four-fermion theory in D < 4 dimensions is an explicit example of the model possessing

a nontrivial UV fixed point in both the bare and the renormalized couplings. It shares many
interesting features with QED and gauged NJL model in ladder approximation in four dimensions.
The gap in the anomalous dimension across the fixed point in the gauged NJL model may be
caused by the non-renormalization of the coupling in the symmetric limit. The large anomalous
dimension is consistent with the OPE formula of mass function including the nontrivial coefficient.
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