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Spin Control and Coherence in Scalable Phosphorus Donor
Qubits

Abstract

Phosphorus donor impurities in a silicon substrate are a promising platform for the
development of a quantum computer. Utilising a scanning tunnelling microscope as an
atomic scale lithography tool, we pattern precision nanoelectronic devices and explore
the use of localised electron or nuclear spin states of phosphorus atoms as quantum
bits (qubits). Throughout this thesis we present four key developments in atomic-scale
devices, focused on addressability and scalability.

We extend the measurement capabilities in precision donor devices, showing that a
radio frequency reflectometry technique allows us to reduce the overall gate density by
using a single terminal charge sensor with stronger electrostatic coupling for addressable
qubit readout.

We demonstrate controllable exchange coupling between two individual electron states
of a single phosphorus donor and a two-donor molecule. By detuning the donor poten-
tials we take two initially independent spin states and induce an exchange interaction
where the spins become anti-correlated, demonstrating the first step toward controlled
interactions between pairs of donor qubits as required for a scalable quantum computer.

We then perform electron spin resonance on the electron states of the single donor
and the two-donor molecule, observing distinct resonance spectra. The large separation
in resonance frequency of ∼260MHz between these electron spin states allows inherent
addressability between the two qubits. In a separate device we observe coherent electron
spin rotation, about an arbitrary axis, achieving full qubit control in a scalable precision
donor device architecture. We demonstrate a dephasing time T∗

2 of ∼280ns and find this
to be limited by magnetic field noise from the interacting 29Si nuclear spins in the silicon
substrate. The coherence can be recovered with a Hahn spin echo sequence to realise a
T2 coherence time of ∼300µs.

Finally we outline a full scale architecture for a scalable quantum computer, describing
all the core operations required to implement the ‘surface code’ error correction protocol.
We present detailed models of our architecture to show that the rate of occurrence of
errors can be brought below the surface code error threshold.
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Nature isn’t classical, dammit, and if you want to
make a simulation of nature, you’d better make
it quantum mechanical, and by golly it’s a won-
derful problem, because it doesn’t look so easy.

Richard Feynmann

1
Introduction & Context

One of the grand technological challenges of the present is to build a quantum
computer. That is – a general computing device where the behaviour of its constituent
parts is determined by quantum mechanics. Of course our universe is demonstrably
quantum mechanical in nature, so the operation of any computer is inherently deter-
mined by quantum mechanics, but the uniquely quantum effects of superposition and
entanglement are not often observable at the macroscopic level. Random interactions
with the environment around and within any device often lead to a return to classically
predictable behaviour. So what is meant by the term ‘quantum computer’ is some-
thing where the non-classical quantum behaviour dominates, and can be preserved and
harnessed to provide improved computational performance.

The nature of the expected enhancement is subtle. By analogy with the way that
the light generated by a laser is fundamentally different from that emitted by even the
brightest lightbulb, a quantum computer will not be simply ‘faster’ or ‘more powerful’
than a modern supercomputer. Laser light is coherent – the electromagnetic waves
produced in a laser are synchronised: all at a single frequency, and all with matching
phase offsets. A lightbulb (or a candle flame, or the sun) on the other hand produces
incoherent light, where although each individual photon of light can be described by a
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CHAPTER 1. INTRODUCTION & CONTEXT

particular frequency and phase, all the photons have different and randomly distributed
wave properties, washing out certain behaviours, for example the interference effects
that can be produced with a laser. A quantum computer will store and manipulate
information in a coherent way, permitting certain types of operations that are simply
not possible with classical, or incoherent, processors.

The concept of quantum computing arose in the 1980s, with Feynman 15 who dis-
cussed the difficulty of simulating some physical process which is determined by quan-
tum physics using a computing machine which is not. He suggested the notion of a
quantum simulator, which would use a specific array of well understood quantum me-
chanical particles to model the action of some other quantum mechanical system of
interest. Deutsch 16 generalised the concept of a specific-use simulator to the paradigm
of universal quantum computing, proposing a computer based on quantum mechanics
which is capable of solving any generic problem. Deutsch 16 noticed that the so-called
‘Church-Turing Principle’:

Every finitely realisable physical system can be perfectly simulated by a uni-
versal computing machine operating by finite means

is not satisfied by classical computers simulating classical physics – because the computer
is discrete, and classical mechanics allows for a continuum of states. Remarkably, the
same principle applied to a quantum computer simulating quantum physics is satisfied
– by virtue of the quantised states of quantum particles and fields. It is thus expected
that quantum computers will have far reaching applications in molecular simulations for
chemistry, medicine and materials science17,18.

Broader applications were realised in the 1990s, with Shor 19 describing a quantum
algorithm for computing the prime factors of a number, which is exponentially faster
(in essence – can be completed in ∼ log(N) steps compared to N) than the best known
classical factoring algorithm, and Grover 20 providing a quantum search algorithm that is
quadratically faster (

√
N rather than N) than what is possible classically. The fact that

there are a large class of economically important problems related to either search or
factorisation has amplified interest in the development of quantum computer technology
over the last 20 years.
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thogonal states, for instance |0⟩ and |1⟩ (marked in green), which are traditionally placed on the Z-axis.
Other points on the surface indicate pure superposition states, parametrised by a probability angle θ
and phase angleφ.

Quantifying qubits

The fundamental unit within a quantum computer is called a qubit, a quantum bit21.
Whilst a single classical bit can take one of two values ‘0’ or ‘1’, the state of a qubit is
allowed to be in a complex superposition of two states |0⟩ and |1⟩, in general:

|Ψ⟩ = α |0⟩+ β |1⟩ (1.1)

where α, β are complex numbers with the restriction that |α|2 + |β|2 = 1. It is illus-
trative to then re-parameterise the superposition in a form which permits a geometric
representation known as the Bloch sphere, shown in Figure 1.1. It illustrates the nature
of a single qubit as having two degrees of freedom, corresponding to the spherical angles:

|Ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ (1.2)

The θ angle relates to the weighting of the two basis states (|0⟩ and |1⟩); if the state
of the qubit is measured, the probability to measure |0⟩ is cos θ/2 (and sin θ/2 for |1⟩).
Such a measurement destroys the value of the phase angle φ, and ‘projects’ the qubit
into one of the basis states. Although it is the multi-dimensional nature of the so-called
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Hilbert space which a qubit occupies that is the fundamental distinction from a classical
system, the final measurement of a qubit abruptly removes this freedom, collapsing back
into a classical-like outcome. Thus, the cleverness in the quantum algorithms mentioned
above is in utilising the extra dimensions during the computation in such a way that at
the end of the process, the answer to the problem is represented only by θ, and not φ, so
that it can be recovered. It is worth noting that the number of extra dimensions available
in the Hilbert space grows exponentially with the number of qubits, so that for example,
adding five more qubits brings the total number of dimensions not to 6× 2 = 12, but in
fact to 26 = 64, so the additional capacity for information content during a computation
grows remarkably fast.

DiVincenzo 22 was one of the first to describe the physical requirements that need to
be satisfied to effectively combine a set of physical qubits together to form a quantum
computer. There are many different physical implementations that meet the require-
ments to some extent, most of which are not discussed at all in this thesis, an extensive
survey can be found in a general review by Ladd et al. 23 . Here we are concerned with
semiconductor spin qubits, and in particular, donor spin qubits in silicon. We shall
describe the state of the art in this one technology following a general discussion of the
most important requirements for a good qubit.

Most critically, the qubits must not be accidentally measured by interactions with
their environment, an effect termed decoherence, and there are two distinct ways in
which things can go wrong. The first is characterised by a relaxation time T1, which
describes the timescale of inelastic interactions which cause the qubit to relax to its
lower energy ground state (|0⟩). In the Bloch sphere picture this is a random and
uncontrolled change in θ. The second is described by a characteristic time T2, which
represents uncontrolled interactions which only impact the phase of a qubit. Since
there is no energy loss, dephasing can often be unwound, recovering a well defined
phase angle. For instance, slow variations in a qubit’s environment may cause the qubit
state to accumulate phase at a different rate for a number of different repetitions of an
experiment, or quantum computation. This is sketched in Figure 1.2(a), where sine waves
of differing frequencies represent the phase decoherence across three trials. Although the
average response quickly decays with a characteristic timescale T ∗

2 , the qubit has a well
defined phase throught each individual trial. Hence the time T ∗

2 describes the pure
dephasing time, which is the decoherence time if nothing is done to try to recover lost
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Figure 1.2: Dephasing and decoherence of qubits due to environmental interacঞons. (a) Inconsistent
phase relationships due to a slowly varying environment across different trials of a quantum computa-

tion lead to decay of the average system response on a timescaleT ∗
2 , although for each single trial the

phase remains well defined, and so the set of trials can be refocused. (b) Sudden random shifts of the

phase within each single trial due to environmental fluctuations determines the limiting dehoherence

timeT2. Adapted from Ladd et al. 23 .

phase information. Quite often the qubit state can be effectively prolonged beyond T ∗
2 by

so-called ‘dynamical decoupling’ strategies which refocus the decaying average response.
There are environmental interactions that abruptly alter the phase, as expressed in
Figure 1.2(b), such that even in an individual trial the phase becomes randomised.
These processes determine the limiting decoherence time T2.

Any qubit implementation must support a means to both initialise and measure the
qubit state as well as a universal set of quantum gates, allowing the quantum computer’s
programmer to access any point within the many-dimensional Hilbert space. Single qubit
gates rotate the vector defining the qubit state by a certain angle about a certain axis on
the Bloch sphere. An additional key component is the ability to perform an entangling
gate between two qubits. Entanglement is a uniquely quantum property of a set of
qubits, which after having interacted may exist in a state which cannot be described
separately. For instance, in the two qubit Bell state Φ+ = 1/

√
2(|0⟩A |0⟩B + |1⟩A |1⟩B),

each qubit (A and B) has equal probability of being measured in either basis state, so
the outcome of the measurement of qubit A alone is completely random, as is that of
B, yet in every case the two will be found to ‘project’ into the same state. In essence,
entanglement is yet another manifestation of the large Hilbert space of multiple qubit
states.
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Another vital quality is that a chosen physical implementation must be extensible
to an arbitrarily large system of interacting qubits, without an exponential increase
in required resources (run-time, or cost to operate). We refer to this requirement as
scalability, and related to it is another – that each individual qubit may be operated on
independently, or in other words the system of qubits needs to be addressable.

If a system is scalable and addressable, and the full set of universal gates are accurate
(and do not introduce too much decoherence themselves), then it is possible through
quantum error correction24,25 to indefinitely extend the overall coherence time of a full
quantum computer, which is the ultimate long-term goal for the field.

The state of the art in silicon

Loss and DiVincenzo 26 initially proposed the spin 1/2 states of a single isolated electron
within a semiconductor quantum dot as a qubit platform in the late 1990s. The first suc-
cessful experiments implementing the concept of an electron spin qubit were achieved
in modulation doped gallium arsenide (GaAs/AlGaAs) heterostructures27,28, demon-
strating measurement of individual electron spin states29, coherent manipulation30, and
controlled interactions between pairs of electrons31,32. An unfortunate limitation in
GaAs is that both gallium and arsenic atomic nuclei are spin 1/2 particles, and the
random evolution of the many nuclei strongly interacting with the electron cause rapid
decoherence. Techniques have been proposed to combat the decohering effect of this
nuclear spin bath33, but an alternative is to select a material with fewer nuclear spins
present.

Silicon is an attractive host material in which to host spin qubits for several reasons34.
The natural abundance of the only spin 1/2 isotope – 29Si is less than 5%. This concen-
tration can be further reduced to nearly zero by gas centrifugation of silicon tetrafluoride
SiF4 or silane SiH4 to produce high purity 28Si35,36 which has no nuclear spin bath at
all. Recent results have shown that this can significantly extend the achievable coherence
time37,38. Additionally, silicon qubit technologies are expected to be able to benefit in
terms of eventual large-scale fabrication from the tremendous engineering effort behind
the modern silicon microelectronics industry.
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Single electron states have been isolated in Si/SiGe heterostructure quantum dots39,
and in metal-oxide-semiconductor field effect transistor (MOSFET) quantum dots40.
Both of these systems have recently demonstrated single qubits with highly accurate
single qubit gates41–43, and MOSFET qubits have recently demonstrated a two qubit
entangling gate44.

As an alternative to electrons in electrostatically confined quantum dots, Kane 45

proposed a qubit based on the nuclear spin of an intentionally placed phosphorus dopant
atom within a silicon substrate. Related ideas using other donor species46, and in
particular using the spin of an electron bound to the donor47,48 followed. There are
natural benefits to both donor qubit flavours: the nuclear spin state is strongly isolated
from the environment and provides an excellent ‘quantum memory’ at the cost of being
relatively slow to operate; the electron spin on the other hand permits much more rapid
logical operations, both single qubit gates and entangling gates between two electrons,
at the cost of a somewhat shorter coherence time.

Both the donor electron49 and donor nuclear spin50 qubits have been achieved by
implanting phosphorus atoms into a region near to a MOSFET type spin measurement
device, using a high energy ion beam. Within isotopically purified silicon, these im-
planted donor qubits have exhibited remarkably long coherence times38 and high single
qubit gate accuracy51. The limitation of the implant strategy is that its positional ac-
curacy is to date not high enough to facilitate a reliable two qubit entangling gate, and
so without advances in the implantation technology is incompatible with the scalability
requirement.

An alternate strategy for the placement of donors is to “really arrange the atoms
the way we want them”∗, which has become possible to a large extent using scanning
tunnelling microscope lithography52. And thus we arrive at the subject of this thesis,
which is to explore atomic precision phosphorus donor devices to create a scalable spin
qubit implementation in silicon. The isolation of an electron to a single donor53, and high
fidelity(> 99%) single shot measurement of a single electron spin state54,55 has already
been achieved with this fabrication strategy. In addition, the recent demonstration
of devices containing coupled phosphorus donor quantum dots, able to host multiple
interacting electrons56,57 represents a promising first step toward scalable qubit systems
based on donors in silicon.

∗ another Richard Feynman quote
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The results expressed in this thesis advance the state of the art in a number of direc-
tions, which we outline in the following pages.

1.2 Thesis outline

The aim of this introductory chapter has been to give some context and to introduce
some of the terminology and associated concepts in quantum computation generally, and
the field of silicon quantum computing in particular.

In Chapter 2 we will provide a brief overview of the physics at play within a silicon
nanoelectronic device and describe the behaviour of confined electrons. We also outline
the behaviour of donor electron and nuclear spins within a magnetic field, and the various
interactions that may be engineered between spins.

In Chapter 3, the fabrication methodology for our devices is laid out. We describe the
use of a scanning tunnelling microscope (STM) under ultra high vacuum (UHV) condi-
tions to perform atomic scale lithography, focussing on the chemical process by which
phosphorus donors are incorporated into the silicon lattice before being encapsulated
in a protective silicon layer. We then explain the microfabrication process by which
electrical contact is made to the buried donor structures.

Chapter 4 contains the first set of significant results of this thesis. Here we intro-
duce methods to reduce the gate density in donor based qubit devices by replacing the
ubiquitous three-terminal single electron transistor charge sensor with a single-terminal
tunnel-coupled reservoir using radio frequency (RF) detection techniques. We show that
additional information is available in the phase and amplitude of a reflected RF signal,
relative to the DC conductance signal historically used to monitor electron tunnelling
events. In addition we examine the other benefits of a tunnel coupled reservoir, in terms
of the strength of coupling to a bound electron, and in terms of the potential bandwidth
of the sensor. Using a double quantum dot device, we find that a tunnel-coupled reser-
voir sensor can provide a measure of electron tunnel rates, and we demonstrate Pauli
spin blockade and use the sensor to accurately measure the tunnel coupling between two
donor quantum dots, and the related exchange interaction energy.
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In Chapter 5 we introduce a two qubit device consisting of a single P donor and a
2P molecule. In this system we show effective spin initialisation and measurement, and
explore the exchange interaction between the two qubits, observing the onset of anticor-
related spin states with increasing inter-qubit coupling. Following theoretical analysis,
we demonstrate the successful integration of a microwave transmission antenna onto
this device. We outline the development of an automated alignment scheme to stabilise
against electrical noise, and demonstrate the use of an adiabatic passage technique to
overcome magnetic noise, and thus perform the first spin resonance experiments com-
paring 1P and 2P qubits. We analyse the measured spin resonance spectra, extracting
information about the nuclear spin dynamics in our device. Using a second two qubit
device, we perform additional coherent spin resonance experiments, demonstrating uni-
versal single qubit logic in the ability to rotate the spin state about an arbitrary axis on
the Bloch sphere. Additionally we asses the coherence properties of our qubit, finding
that the limiting decoherence mechanism is a fluctuating effective magnetic field due to
29Si nuclear spins within our substrate. We extract a dephasing time T ∗

2 > 280ns, and
with a Hahn spin echo sequence extend the coherence time to T2 = 300µs.

Chapter 6 looks to the future, and sets out the concept for a large-scale array of donor
qubits capable of overcoming decoherence and relaxation through error correction using
a scheme known as the ‘surface code’. We specify the geometry of our architecture: a
2D lattice of single P donors and readout sensors in a central layer, with parallel sets
of control wires above and below, all within a solid crystal of isotopically purified 28Si.
We describe the means of executing a universal set of quantum gates in the proposed
quantum processor, in particular focussing on a two qubit entangling gate which is
achieved through the dipole-dipole interaction between two neighbouring donor-bound
electrons. We produce detailed simulations of several aspects of the design, including
electrostatic gate voltage control requirements, and the error rate associated with the
fundamental physical operations, showing that the scheme does allow for effective error
corrected operation.

Finally, in Chapter 7 we summarise the major results and discuss future objectives
and potential short term outcomes.
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2
Phosphorus donors in silicon

We define a number of key concepts and much of the terminology used throughout
the thesis in the course of a brief overview in this chapter, of the physics relevant to
donor nanostructures. We discuss the quantisation of energy levels through confinement,
then introduce the bandstructure of silicon, and examine the impact of dopants. We
next review single electron transport mechanics within the so-called constant interaction
model. The chapter concludes with a description of the various spin interactions present
for donors under the influence of electric and magnetic fields.

2.1 Confined electrons

We begin by looking at the behaviour of electrons in the absence of an atomic crystal
lattice. The behaviour of free electrons in three dimensions can be described∗ by a
∗ Full derivations are not provided here, refer to one of many textbooks on the subject e.g.
Kittel 58 , Ashcroft and Mermin 59
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vacuum Hamiltonian consisting of simply the kinetic energy:

H0 = − ~2

2m0

(
∂2

∂x2
+

∂2

∂x2
+

∂2

∂x2

)
(2.1)

where m0 is the electron mass. We will show later that the behaviour of electrons within
a semiconductor lattice is approximately the same as for free electrons, after substituting
the electron mass with an effective mass determined by the material m0 → m∗. The
dynamics are described by the Schrödinger equation:

H0Ψk = EkΨk (2.2)

Where the states Ψ and energies E are labelled by a wavevector k⃗ = (kx, ky, kz) satisfying
the condition:

kx, ky, kz =
2nπ

L
(2.3)

when the electrons are confined to a cube of volume V = L3. The k are quantised,
but for a large volume, the allowed values form a quasi continuum of wavevectors. As-
suming periodic boundary conditions, the solutions are plane wave states with energy
proportional to the square of the wavevector:

Ψk(r⃗) = eik⃗·r⃗ Ek =
~2

2m0

(
k2x + k2y + k2z

)
(2.4)

At some temperature T , the occupation of states is described by the Fermi-Dirac
distribution:

f(E) =
1

e

(E − µ)

kbT + 1

(2.5)

where the electrochemical potential µ depends in general on the specific potential energy
of electrons in an external field. The Fermi energy EF describes the highest energy
occupied orbital in the ground state, and in the free electron case equal to µ.

Thus 2N free electrons (accounting for spin degeneracy) will fill N states as per
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Figure 2.1: Density of states for low dimensional systems. (a) Schematic of the 3D density of states,

which approaches zero at small energies. Occupied states upto the Fermi energy at a finite tempera-

ture are indicated by the shaded area. (b) 2D density of states, constant above theminimum energy for

each sub-band. (c) 1D density of states, which diverge at the sub-bandminima. (d) 0D density of states,

representing discrete energy levels.

Equation (2.3) in the three dimensional reciprocal space of k⃗ out to a sphere of radius:

kF =

√
2m0EF

h2
(2.6)

As the energy increases, the number of available k states also increases. Enumerating
occupied states as a function of energy produces the electron density of states d(E) in
three dimensions:

d3D(E) =
∂N

∂E
=

L3

2π2

(
2m0

h2

)3/2√
E (2.7)

This relationship is shown in Figure 2.1(a), with the shaded area indicating filled states
up to the Fermi energy at a finite temperature (kBT < EF ), given by the product
f(E)d(E). Thermal excitation results in a number of states above EF being occupied,
in lieu of some states directly below EF , according to Equation (2.5).

2.1.1 2D confinement

A one-dimensional potential well can be applied to confine electrons to a 2D plane. This
is often achieved in a heterostructure where the conduction band energy in two materials
is different, allowing electrons to be tightly confined at the material interface, forming a
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2DEG (two dimensional electron gas). Common heterostructures used in nanoelectronics
include GaAs/AlGaAs and Si/SiGe. Alternatively a semiconductor/insulator interface
can be combined with an applied electric field to produce similar confinement in devices
based on the principle of a MOSFET (metal oxide semiconductor field effect transistor).
In this thesis we employ an atomically abrupt doping profile to achieve 2D confinement.

The additional confinement in the z direction reduces the number of allowed k⃗ vectors.
Repeating the arguments above, the density of states in two dimensions can be found to
be:

d2D(E) =
∂N

∂E
=

L2

2π2

(
2m0

h2

)
Θ(E − Es) (2.8)

where Θ is the Heaviside step function and Es the minimum energy for conduction in
one so-called sub-band. The key characteristic here is that the density of states is in-
dependent of the energy, attaining a constant value above Es. Equation (2.8) describes
the availability of states within one sub-band, but additionally, with increasing energy
additional sub-bands become accessible associated with excited states of the sharp po-
tential well in the z direction. The cumulative d2D for a number of sub-bands is shown
in Figure 2.1(b).

The conduction electron density, or sheet carrier density ns, in electrons per unit area,
is therefore (by integrating the energy up to EF and assuming only one band is relevant):

ns =
m0

π~2
EF (2.9)

2.1.2 1D confinement

Further confining electrons to a single spatial degree of freedom again modifies their
dynamics. 1D confinement is often achieved by restricting the 2DEG formed at an
interface with positively charged depletion gates at the device surface. Other methods
include physically etching away parts of the 2D plane leaving a narrow ‘mesa’, or forming
a nano-wire by catalysed growth of a semiconductor material into a long narrow cylinder.
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2.1. CONFINED ELECTRONS

We achieve crystalline 1D nanowires in the precision donor devices studied in this work
by selective doping of narrow regions.

Predictably, the density of states is again different for 1D electrons, given by:

d1D(E) =
∂N

∂E
=

L

2π2

(
2m0

h2

)1/2 1√
E − Es

(2.10)

Again there are a number of sub-bands associated with quantised values of the z and
y momenta due to the sharp confinement in those directions. The form is plotted in
Figure 2.1(c), which indicates that the number of available states diverges at the onset
of each sub-band. Nevertheless, as for the 3D and 2D cases, there are states available at
all energies.

2.1.3 0D confinement

Making the potential well three-dimensional confines an electron in all directions. The
associated density of states is described by a delta function, one discrete spin degenerate
state at each allowed eigenenergy:

d0D(E) =
∂N

∂E
= 2δ(E − Es) (2.11)

which is sketched in Figure 2.1(d). The spacing between states, and the spacing between
sub-bands s in the 1D and 2D cases above, depends on the length scale of the confinement
R:

∆E = Ej − E(j−1) ∼
~2

2m0

(
Cπ

R

)2

(2.12)

where we use s to label the states/sub-bands.

This is a truly discrete spectrum and the regime of most interest in implementing
donor qubits, although the 1D and 2D behaviours are important also in understanding
the flow of current in our devices.
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CHAPTER 2. PHOSPHORUS DONORS IN SILICON

2.2 Silicon bandstructure

Silicon, the element at the centre of the modern electronics industry, is a covalently
bonded crystal in which the four outer shell electrons of each atom are shared with
neighbouring atoms positioned tetrahedrally around it. This arrangement is the diamond
cubic crystal form, displayed in Figure 2.2(a). The distance between bonded atoms is√

(a/4)2 + (a/4)2 + (a/4)2 = 0.235nm given the lattice constant a = 0.543nm. The
face-centred-cubic basis of the diamond lattice results in a Brillouin zone in the form of
a truncated octahedron as shown in Figure 2.2(b). Lines and points of high symmetry
are marked with standard labels.
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Figure 2.2: Bandstructure of intrinsic silicon. (a) Silicon crystal unit cell, an example of the face-centred-
cubic diamond lattice, containing 8 atoms per unit volume a3. (b) The Brillouin zone of silicon, showing
the fundamental unit cell of reciprocal space. High symmetry lines and points aremarkedwith canonical

labels. (c) Bandstructure of silicon, displaying the energy as a function of wavevector k. The x-axis rep-
resents a range of directions within the Brillouin zone, marked in correspondence with (b). The conduc-

tion bandminimum occurs near theX point, where the band-gap is∼ 1.12eV relative to the valence

bandmaximum atΓ. Reproduced fromChelikowsky and Cohen 60 .

Silicon is an indirect band-gap semiconductor, with a bandgap of ∼ 1.12eV. The
bandstructure is displayed in Figure 2.2(c), reproduced from Chelikowsky and Cohen 60 .
The conduction band minimum is located along the ∆ axis (green dashed line) at k0 ≈
0.85ka = 0.85(2π/a). There are six such minima, or valleys, located along the 6 ⟨100⟩
equivalent crystal directions.
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2.2. SILICON BANDSTRUCTURE

2.2.1 Effective mass approximation

Electron motion within the silicon lattice is affected by the presence of the atomic cores.
The nuclei contribute a periodic potential Vp(r⃗) to the electron Hamiltonian. The Bloch
theorem allows us to express the wavefunctions Ψk(r⃗) of an unconstrained electron within
a periodic crystal as a simple product of a plane wave and a Bloch function uk(r⃗), which
shares the periodicity of the potential Vp.

Ψk(r⃗) = Uk(r⃗) = uk(r⃗)e
ik⃗·r⃗ (2.13)

In the effective mass approximation, which considers only the contribution of states
near k0, the electron mass is replaced with the effective mass m∗, which in the most
general case is a rank 2 tensor describing the curvature of the dispersion relation E(k⃗)

near the conduction band minima.(
1

m∗

)
ij

=
1

~2
∂2E(k⃗)

∂ki∂kj
(2.14)

The tensor nature of m∗ is important in calculating the energies, and the model has
been used to great success, but for simplicity of notation we shall express it simply as a
scalar.

Thus, in the effective mass approximation, solutions to the Schrödinger equation, for
a general confining potential V (r) in addition to the periodic nuclear Coulomb potential
Vp, and the vacuum Hamiltonian H0 (Equation (2.1)):

[H0 + Vp + V (r)]Ψk = EkΨk (2.15)

can be expressed as a product:

Ψk(r⃗) = Uk(r⃗)Φk(r⃗) (2.16)

where Φk is a slowly varying envelope function, and Uk is a Bloch plane wave state as per
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CHAPTER 2. PHOSPHORUS DONORS IN SILICON

Equation (2.13). The effective mass Schrödinger equation is thus separable, and yields:

[H∗ + V (r)]Φk = (Ek − Ek0)Φk (2.17)

H∗ = − ~2

2m∗

(
∂2

∂x2
+

∂2

∂x2
+

∂2

∂x2

)
(2.18)

which is the Schrödinger equation for a free electron in a confining potential V (r), where
the periodic lattice potential Vp has been removed, the electron mass is rescaled to m∗,
and the energy origin is offset by Ek0 , the energy at the conduction bamd minimum.

Solutions to the above (Φk) are conduction band electron states with energies above
the band-gap, and hence are not occupied at equilibrium. The Fermi energy can be raised
out of the band-gap and above Ek0 by doping the semiconductor, which occupies these
effectively free electronic states and activating conduction through the semiconductor.

2.2.2 The effect of delta-doping

By introducing dopants to a semiconductor, we provide a source of electrons and also
modify the confining potential V (r) within the effective mass approximation, changing
the bandstructure. Typical dopants in silicon are group III elements (B, Ga) which act
as acceptors, producing free holes as charge carriers; and group V elements (P, As, Bi)
which act as donors, and produce free electrons. We dope our devices with phosphorus
(P), with each P atom providing an electron to fill a state in the conduction band.
The electron density we achieve in the devices presented in this thesis is on the order
of ns = 1014cm−2, well above the so-called metal-insulator transition61,62 at around
2× 1012cm−2.

This high density is achieved by δ-doping, where 1 in 4 Si atoms in a single mono-layer
along a [001] crystal plane is substituted by a phosphorus, as illustrated in Figure 2.3(a).
The fabrication method is described in the following chapter.

The potential in the z-direction due to the sheet of Coulomb potential wells is ap-
proximated by a delta function (hence the name δ-doping), which confines the crystal
momentum of the electrons, represented by the wavevector k to a 2D plane. The six
valley minima are projected onto the [001] crystal plane in Figure 2.3(b), resulting in
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Figure 2.3: Density of states for low dimensional systems. (a) Representation of a region of the silicon
lattice above and below a δ-doped layer of 1/4mono-layer density. Phosphorus donors are shown in
red. (b) Bandminima, or valleys, shown in reciprocal space. Green ellipsoids represent constant energy

surfaces near the k0 points. Projecting the Brillouin zone onto the [001] plane leaves 5 valleyminima, 4
marked∆, and a doubly degenerate band at theΓ point (where k = 0). (c) Calculated bandstructure of
a delta-doped layer, showing . Reproduced fromCarter et al. 63 .

a double sub-band at the Γ point (red) at the centre of the Brillouin zone where the
out-of-plane valleys have collapsed, and four degenerate ∆ sub-bands (green) due to the
in-plane valleys. Figure 2.3(c) shows a simulation by Carter et al. 63 of the confined 2D
bandstructure resulting from a δ-doped plane similar to that shown in (a). The two
lowest bands have their minima at k = 0 as expected, and the third line, labelled ‘1∆’
has a minimum at a finite k∆ (the exact value of which varies with the exact layout of
donors within the δ-doped layer). All six bands are occupied, with the Fermi energy
0.13eV below the bulk undoped conduction band minimum (shaded in grey).

Within the nanostructured devices presented in this thesis, the δ-layer is lithographi-
cally patterned, producing additional lateral confinement. The transition from 2D con-
duction to 1D conduction is primarily determined by the Fermi wavelength (defined in
Equation (2.6)):

λF =
2π

kF
=

2π~√
2m∗EF

=
2π3/2
√
ns

(2.19)

which, substituting the measured ns for a P donor δ-layer64 of ∼ 2× 1014cm−2 is on the
order of 5-10nm.

Thus, we expect the constant 2D electron density of states for patterned features
wider than 10nm. Nanowires narrower than this show evidence of 1D behaviour, with
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CHAPTER 2. PHOSPHORUS DONORS IN SILICON

discontinuities in the conductance observed in electron transport measurements involving
transport along such narrow wires65. Nevertheless, for the most part, any continuous
area doped with phosphorus effectively behaves like a metallic conductor66.

2.3 Single electron transport

The dynamics of electron motion in the devices we investigate can be modelled quite ef-
fectively with a principally classical theory known as the constant interaction model27,67.
The core concept is that fixed capacitances between all metallic elements of a given cir-
cuit determine the charge state of each isolated zero-dimensional quantum dot element
given the applied voltages on all other (1D/2D) elements.

Consider the simple arrangement of conductive elements shown in Figure 2.4(a). Here
a single 0D structure, a quantum dot (green) is tunnel-coupled to source and drain
reservoirs on the left and right, and capacitively coupled to a gate. The coupling is
parameterised by resistances R and capacitances C as labelled. The isolated quantum
dot has an intrinsic charge −qeN given by the number of conduction electrons N (and
−qe is the electron charge) localised at the site. The non-isolated elements may have
a voltage V applied to them, which has the effect of modifying the energy levels of
the quantum dot by inducing an additional charge CV on the quantum dot. The total
charge is then:

Q = CGVG + CLVS + CRVD − qe(N −N0) (2.20)

where N0 is the number of electrons localised at the quantum dot at equilibrium, with
all voltages zero. The electrostatic energy associated with the total charge Q is given
by:

EQ =
Q2

2CΣ
CΣ = CG + CL + CR (2.21)

The total energy U(N) of the N electron configuration is the sum of all single particle

20



2.3. SINGLE ELECTRON TRANSPORT

a)

b) C
u

rr
e

n
t 

 I S
D

 
Voltage  VG

NN - 1 N + 1

c) d)

B
ia

s 
V

o
lt

a
g

e
  V

S
D

V
G

 

NN - 1 N + 1

E
add

E
add 

/αDS

E
add

µ (N+1)

µ (N)

µ
D

µ
S

DS

E
add

µ (N+1)

µ (N)

µDµ
S

e -

VG

VS VDRLCL RRCR

CG

tunnel junction

R & C in parallel

Figure 2.4: Coulomb blockade in a quantum dot. (a) Schematic circuit diagram of a single quantum dot

(green), tunnel-coupled to source and drain reservoirs, and capacitively coupled to a gate. (b) Electro-

chemical potential representation of two configurations. On the left Coulomb blockadewhere electron
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aded current define the addition energyEadd and the gate lever armα.

orbital energies Ei plus the electrostatic energy:

U(N) =

N∑
i=1

Ei +
[CGVG + CLVS + CRVD − qe(N −N0)]

2

2CΣ
(2.22)

More often, we are interested in the electrostatic potential for a particular charge state
transition, which will occur when the applied gate voltages cause µ to cross the Fermi en-
ergy of one of the metallic tunnel-coupled reservoirs (source or drain, which are typically
at approximately the same energy):

µ(N) = U(N)− U(N − 1) (2.23)

= EN +
−2(CGVG + CLVS + CRVD)qe[(N −N0)− (N − 1−N0)]

2CΣ

+
q2e [(N −N0)

2 − (N − 1−N0)
2]

2CΣ
(2.24)

= EN +
−(CGVG + CLVS + CRVD)qe

CΣ
+
q2e [1− 2N − 2N0]

2CΣ
(2.25)

The energy associated with a particular charge state, representing the maximum
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CHAPTER 2. PHOSPHORUS DONORS IN SILICON

amount of energy that can be added or removed without changing the charge state
is termed the addition energy:

Eadd(N) = µ(N)− µ(N − 1) = ∆E(N) +
q2e
CΣ

(2.26)

consisting of the orbital energy spacing ∆E and the electrostatic charging energy
Ec = q2e

CΣ
. The energy spacing is proportional to the length scale of confinement, as

per Equation (2.12). For a quantum dot that is simply a single P donor, or a small
number of donors clustered together the orbital energy difference is significant53,56,65,
while for dots larger than ∼ 50nm2, the orbital spacing becomes negligible with reference
to the thermal energy at millikelvin temperatures, and the charging energy alone is a
good approximation of the total addition energy∗.

2.3.1 Coulomb blockade

We confine our discussion for now to a regime where electron transport occurs sequen-
tially only through single orbital ground states of the quantum dot. The conditions
required are:

hΓ ≪ kBT qeVSD ≪ ∆E (2.27)

where the tunnel rates Γ, depend on the resistances RL, RR. T is the temperature, and
VSD = VD − VS . Thus there are two distinct configurations, shown in Figure 2.4(b). In
the left panel, there is no quantum dot transition potential µ at the effective Fermi level,
which is given by the source potential µS = −qeVS , or drain potential µD = −qeVD.
This configuration is known as Coulomb blockade – electrons cannot flow from source
to drain, and the quantum dot remains in a fixed charge state.

Alternatively, as shown in the right panel of Figure 2.4(b), when a transition poten-
tial, in this case µ(N + 1), aligns with µS and µD, the quantum dot charge state may

∗ terminology in the literature varies, with some authors using the term charging energy to refer
to the full addition energy even in the case of significant orbital energy variation
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2.3. SINGLE ELECTRON TRANSPORT

continuously switch between N ↔ N + 1, and a small bias voltage VSD will drive a
DC current of electrons sequentially from source to drain as indicated by the arrows.
This condition is met periodically as a function of the gate voltage VG, as sketched in
Figure 2.4(c), which shows the current flow through the quantum dot. Because electrons
pass through the system one by one, and a change in voltage can switch the current flow
on and off, this configuration is known as a single electron transistor (SET). Positions
corresponding to (b) are tagged with diamond markers.

Relaxing the qeVSD ≪ ∆E condition and increasing the source-drain bias produces
characteristic Coulomb blockade diamonds, which are schematically sketched in Fig-
ure 2.4(d). Green shading represents a non-zero current flow from source to drain. A
horizontal cut at VSD = 0 reproduces (c), but as the bias VSD increases, the range of
voltage settings that place a transition potential within the window:

µS > µ > µD (2.28)

also becomes greater. Once a point is reached where qeVSD > Eadd, then there is always
at least one transition potential within the large bias window and the Coulomb blockade
is unconditionally overcome. The scale of the Coulomb diamonds on the gate voltage
axis is given by ∆VG = Eadd/α, as indicated. The lever arm

α =
∂µ

∂VG
= qe

CG

CΣ
(2.29)

relates the voltage to the quantum dot energy.

2.3.2 Double quantum dots

We now introduce the circuit shown in Figure 2.5(a) – a double quantum dot, serially
coupled to source and drain reservoirs. Each dot D1 and D2 is additionally coupled
capacitively to a gate, G1 or G2. There is some cross-coupling of G1 to D2 and vice
versa, not shown. With this circuit, current may only flow between source and drain at
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Figure 2.5: Stability diagram of a double quantum dot. (a) Schematic circuit diagram of two serially cou-

pled quantum dots (purple and orange), tunnel-coupled to source and drain reservoirs and to each

other, and capacitively coupled to two gates, as indicated. (b) Schematic circuit diagram of a double

quantum dot with alternate coupling. HereD1 is tunnel-coupled to both source and drain, andD2 is

only tunnel-coupled toD1. (c) The charge stability diagram is effectively equivalent for both cases (a)

and (b), the difference being in which features appear in themeasured source-drain current. in the se-

rially coupled case, transport is only possible at the triple points (black andwhite dots). In the alternate

case, the charge transitions ofD1 (purple lines) produce a finite DC current flow under a small applied

VSD . Voltage spans∆V correspond to the addition energy of each dot; and δV themutual energy be-

tween the two dots. (d) Electrochemical potential configurations around a pair of triple-points. Charge

states aremarked in blue. Figures reproduced fromVan derWiel et al. 67 .

low bias if both dot potentials are aligned within the bias window:

µS > µ1(N1, N − 2) = µ2(N1, N2) > µD (2.30)

for some pair of integers N1 and N2, the electron occupation numbers for the two dots.

Figure 2.5(b) shows a slightly different circuit arrangement, where the second dot is
only tunnel-coupled to the first, which in turn is tunnel-coupled to both source and drain.
This configuration is employed throughout the thesis as a charge sensing technique.
Current may flow from source to drain through D1 under the same condition as we saw
in the single quantum dot case (µS > µ1 > µD), except that an additional term appears
in the electrochemical potential expression due to the presence of D2.

As a result of the capacitive interaction between the two quantum dots (parameterised
by the mutual capacitance Cm), the potential of one shifts by a discrete amount when
the charge state of the other changes. The magnitude of the shift is termed the mutual
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charging energy:

Em =
q2eCm

CΣ1CΣ2 − C2
m

(2.31)

where CΣ1 and CΣ2 are the total capacitances of dot D1 and D2 respectively. This
mutual interaction also modifies the single quantum dot charging energies:

EC1 =
q2eCΣ1

CΣ1CΣ2 − C2
m

EC2 =
q2eCΣ2

CΣ1CΣ2 − C2
m

(2.32)

a full derivation of these relations can be found in Van der Wiel et al. 67 .

The charge stability diagram (applicable to both double quantum dot configurations),
indicating the ground state charge configuration (in blue) across a range of gate voltage
coordinates (VG1, VG2) is sketched in Figure 2.5(c). Gate voltage spans ∆V and δV are
marked in green and red, corresponding to the addition and mutual energies as follows:

EC1 = αD1
G1∆G1 Em = αD1

G1δG1 (2.33)

EC2 = αD2
G2∆G2 Em = αD2

G2δG2 (2.34)

with αA
B being the lever arm of gate B for dot A. Purple lines represent charge degeneracy

conditions for D1, orange lines charge degeneracy conditions for D2, and the black lines
denote inter-dot charge transitions where the total number of isolated electrons N1+N2

remains fixed. At the intersection of the lines are triple points, marked by black and
white dots.

The detail around a pair of triple points is displayed in Figure 2.5(d). The key
difference between the two configurations in Figure 2.5(a) and (b) is that in the first
case, electron transport occurs only at the triple points. This involves sequential electron
tunnelling at the black dot – cycling through the charge states (0, 0) → (1, 0) → (0, 1)

as indicated by the dashed arrow encircling the triple point. At the white dot, the
transport can be viewed as sequential hole transport, cycling (1, 1) → (1, 0) → (0, 1). In
the second case, dot D1 sustains a transport current at all points along the purple lines,
where the insets show that µ1 = µS ≈ µD. The orange lines do not correspond to any
transport current in either case, they only denote the gate coordinates where the charge
ground state shifts – a charge reconfiguration may or may not occur depending on the
tunnel gap resistances Rm, RL, RR.
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CHAPTER 2. PHOSPHORUS DONORS IN SILICON

2.4 Donor spin dynamics

We have considered quantum dots in general in the previous section. Next we look at
the specific wavefunction of an electron (with charge qe) bound to a single P donor. The
confining potential is a Coulomb potential well VC(r), centred at the donor site r0:

VC(r) = − q2e
4πϵ0|r⃗ − r⃗0|

(2.35)

Thus the solutions to the effective mass Schrödinger equation (Equation (2.17)):

[H∗ + VC(r)]Φn = (En − Ek0)Φn (2.36)

are simply scaled versions of the Hydrogen atom wavefunctions, and we restrict our
analysis to the 1s orbital state which is the only relevant orbital at low energy. The
interplay of the tetrahedral symmetry of the single donor atom, and the cubic symmetry
of the silicon lattice results in a breaking of valley degeneracy into a singlet groundstate
(A), a doublet (E), and a triplet (T ). The total donor wavefunctions can be written as
a sum over valleys ν:

Ψ(r⃗) =
∑
ν

cνΦν(r⃗)Uν(r⃗) (2.37)

Φν(r) =
1

√
πa

3/2
B

e−r/2a0 (2.38)

(2.39)

where aB is the scaled Bohr radius ∼ 2.5nm for P donors in Si. Here we label a discrete
basis of k-vectors along the positive and negative x-, y-, and z-directions collectively
as ν for the Bloch functions Uν and envelope functions Φν (Equation (2.16)). The
coefficients cν are the weighting of the six valley basis states. Kohn and Luttinger 68

give the coefficients for the six eigenstates (cx, c−x, cy, c−y, cz, c−z), by considering the
symmetry group, and the energies have been measured by Ramdas and Rodriguez 69 .
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State Valley weighting Binding energy (meV)

A 1√
6
(1, 1, 1, 1, 1, 1) 45.6

E 1√
4
(1, 1,−1,−1, 0, 0) 32.6

1√
4
(1, 1, 0, 0,−1,−1)

T 1√
2
(1,−1, 0, 0, 0, 0) 33.9

1√
2
(0, 0, 1,−1, 0, 0)

1√
2
(0, 0, 0, 0, 1,−1)

Table 2.1: Valley content of the donor electron states in silicon. Valley weightings are specified in the
basis (cx, c−x, cy, c−y, cz, c−z) as determined by Kohn and Luttinger

68 . Measured binding energies of

each set of degenerate states taken fromRamdas and Rodriguez 69 .

Both are reproduced in Table 2.1.
Importantly, for a single donor, the valley degeneracy is broken, leaving a non-

degenerate valley groundstate, with the first valley excited state, the triply degenerate
T, located ∼ 12meV higher in energy. Thus the only remaining degeneracy is due to
spin.

2.4.1 Donor in a magnetic field

The spin Hamiltonian for an electron bound to a donor, within an external magnetic
field B0 oriented along the z-axis is analogous to a hydrogen atom in a magnetic field:

H = Helectron Zeeman +Hnuclear Zeeman +Hhyperfine (2.40)

H = γeB0SZ − γnB0IZ + S⃗ · Â · I⃗ (2.41)

Here the electron γe = geµB/h = 27.97GHz/T (and nuclear γn = gnµn/h =

17.25MHz/T) gyromagnetic ratios70,71 are determined by the electron g-factor and
Bohr magneton (nuclear g-factor, and nuclear magneton), along with Planck’s con-
stant. Â is the hyperfine interaction tensor describing the electron-nuclear interaction.
S = (SX , SY , SZ) is the electron spin operator and I = (IX , IY , IZ) the P nuclear spin
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operator, with components given by the Pauli matrices:

SX = IX =
1

2

(
0 1

1 0

)
; SY = IY =

1

2

(
0 i

−i 0

)
; SZ = IZ =

1

2

(
1 0

0 −1

)
(2.42)

Zeeman energy and Larmor precession

The z-spin operator in the electron (and nuclear) Zeeman term establishes an energy
difference EZe = γeB0 (EZnγnB0) between the quantised electron spin (nuclear spin) up
and down states: |↑⟩ and |↓⟩ (|⇑⟩ and |⇓⟩).

Considering Helectron Zeeman in isolation (an equivalent consideration holds for the
nuclear term), its action on the spin vector S⃗ is to drive a continuous precession about
the z-axis, with a Larmor frequency proportional to the field, ωLe = γeB0.

Hyperfine interaction

The hyperfine tensor Â = AÎ + D̂ consists of a scalar contact term71:

A =
8π

3

µ0
4π
h2γeγn|Ψ(r=0)|2 = 117.5MHz (2.43)

proportional to the electron wavefunction density |Ψ(r=0)|2 at the nuclear core of the
P atom; and a dipolar tensor component D̂, negligible in the case of the spherically
symmetric s-like orbital of a single donor-bound electron in the groundstate. In assuming
D̂ ≈ 0, the hyperfine Hamiltonian term simplifies to:

Hhyperfine = AS⃗ · I⃗ (2.44)
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2.4.2 Solution for arbitrary magnetic field

The solution to Equation (2.40) for a single phosphorus donor in silicon has eigenstates72

analogous to the hydrogen atom73. In general for a magnetic field B0 they can be written:

|↑⇑⟩ (2.45)∣∣∣↑̃⇓⟩ = cos(η/2) |↑⇓⟩+ sin(η/2) |↓⇑⟩ (2.46)

|↓⇓⟩ (2.47)∣∣∣↓̃⇑⟩ = cos(η/2) |↓⇑⟩ − sin(η/2) |↑⇓⟩ (2.48)

tan(η) =
A

(γe + γn)B0
(2.49)

Where η is a small parameter in our experimental regime with B0 ∼ 1.5T. The form of
the non-product states

∣∣∣↑̃⇓⟩ , ∣∣∣↓̃⇑⟩ can be understood by considering that they evolve
from the singlet and triplet T 0 states at zero field, as shown in Figure 2.6(a). The
evolution is sketched in Figure 2.6(b) as a function of magnetic field. The four eigenstates
have corresponding energies:

E(|↑⇑⟩) = γeB0 − γnB0 +A

2
(2.50)

E(
∣∣∣↑̃⇓⟩) = √

(γeB0)2 + (γnB0)2 + 4A2 −A

2
(2.51)

E(|↓⇓⟩) = γnB0 − γeB0 +A

2
(2.52)

E(
∣∣∣↓̃⇑⟩) = −

√
(γeB0)2 + (γnB0)2 + 4A2 −A

2
(2.53)

2.4.3 High magnetic field approximation

The experiments presented in this thesis all use a magnetic field B0 > 1T, which permits
a simplification. With γeB0 ≫ A, the parameter η ≈ 0. In Figure 2.6(b) we note that
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Figure 2.6: Energy spectrum of a donor in a magneঞc field. (a) Lowmagnetic field regime, where the

hyperfine coupling,A, produces singlet and triplet eigenstates. Here γ = γe + γn. (b) Evolution of
the eigenstates with increasingmagnetic fieldB0. Here the two antiparallel spin product states are

shown as blue and yellow dotted lines. (c) Highmagnetic field regime, where the Zeeman energy domi-

nates and the product states are a good approximation of the eigenstates. The four resonant transition

energies (ω1, ω2, ν1, ν2) are shown.

the blue and yellow lines approach the linear approximations (dotted lines). Here the
eigenstates are well approximated by the product states:

|↑⇑⟩ |↑⇓⟩ (2.54)

|↓⇓⟩ |↓⇑⟩ (2.55)

With energies:

E(|↑⇑⟩) = γeB0 − γnB0 +A

2
(2.56)

E(|↑⇓⟩) = γeB0 + γnB0 −A

2
(2.57)

E(|↓⇓⟩) = −γeB0 + γnB0 +A

2
(2.58)

E(|↓⇑⟩) = −γeB0 − γnB0 −A

2
(2.59)

This high field basis is shown schematically in Figure 2.6(c). The transition fre-
quencies between these four states that conserve one spin while inverting the other are
the modified Larmor frequencies for the electron and nuclear spins, which vary by A,
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depending on the state of the other spin:

ω1 = γeB0 +
A
2 ω2 = γeB0 − A

2 (2.60)

ν1 =
A
2 + γnB0 ν2 =

A
2 − γnB0 (2.61)

This is the approximation used in the spin resonance experiments of Chapter 5, and is
also used in defining the qubit basis states in Chapter 6.

2.4.4 Rabi oscillations in the rotating frame

We consider now the effect of a sinusoidally varying magnetic field of amplitude Bω in
the x-direction, with frequency ω. Such a field contributes a so-called Rabi term to the
system Hamiltonian:

HRabi(t) = γeBωcos(ωt)SX (2.62)

The rotating wave approximation∗ provides a convenient transformation into a refer-
ence frame rotating with the spin at the Larmor frequency. For an example we consider
the electron Larmor frame provided the nuclear state is |⇑⟩, such that ωLe = ω1. In this
frame

Helectron Zeeman → H ′
electron Zeeman = (ω − ω1)SZ (2.63)

HRabi → H ′
Rabi =

γeBω

2
SX = γeB1SX (2.64)

where we define B1 = Bω/2. The result, which can be applied in a similar fashion
to the nuclear spin, is that the time-dependence in HRabi has been removed, providing
a Hamiltonian that is simple to conceptualise. Any offset in frequency away from ω1

drives z-rotations in the Larmor frame, and the application of an oscillating magnetic
field manifests as a static term driving rotations about the x-axis of the relevant spin’s
Bloch sphere.

∗ consult your favorite NMR/ESR textbook for a derivation74,75
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When the B1 field is applied exactly at any of the four resonant frequencies between
a pair of eigenstates, the result is a coherent Rabi oscillation between the two states.

2.5 Summary

In this chapter we have introduced a number of theoretical concepts relevant to the
results presented in the chapters following. Most importantly, we established the sin-
gle electron transport processes used to monitor the behaviour of electrons in low-
dimensional nanodevices. We also determined the ground state characteristics of the
single donor bound electron, and showed that the spin states may be accurately de-
scribed in a simplified basis of product states.
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3
Experimental techniques

The process to produce donor structures with atomic precision using a scanning
tunnelling microscope (STM) is described in the first part of this chapter. We describe
the sample preparation process, atomic precision lithography and the method by which
electrical contact is made to the nanometre sized features. The chapter concludes with
an overview of the cryogenic measurement set-up used to characterise and operate the
donor devices.

3.1 Device fabrication

The devices presented in this thesis are made through a novel ultra high vacuum (UHV)
process summarised in Figure 3.1. The silicon surface is cleaned and prepared by wet
chemical etching (a), followed by a high temperature flash anneal (b) under UHV con-
ditions, and passivation of the surface with a layer of hydrogen (c). Atomic precision
structures are patterned by employing the STM as a lithography tool to remove parts
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Figure 3.1: Atomic precision donor device fabricaঞon scheme. (a) Silicon wafer is cleaned by a wet
chemical process. The surface will be covered in a thin oxide layer, and be largely free of contamination.

(b) A high temperature (1100◦C) anneal removes residual contamination and the oxide layer, recon-
structing an atomically flat surface. (c) The highly reactive silicon surface is passivated by amono-layer

of hydrogen, forming a lithographic mask. (d) The desired pattern is written into themask by selectively

desorbing the hydrogenmask with the tip of the STM. (e) The sample is dosedwith phosphine gas, which

will adsorb onto the surface within the lithographically defined areas. (f) At an increased temperature

(340◦C), the phosphinemolecule dissociates, leaving the phosphorus atom incorporated into the silicon

lattice. (g) The patterned layer is encapsulated by a layer of silicon (typically 50nm thick), embedding

the donors in a bulk-like crystal environment.

of the hydrogen mask (d), allowing phosphine gas (PH3) to adsorb onto the exposed
silicon (e). The phosphorus donors are incorporated into the silicon crystal through
a thermal anneal (f), and the donor layer is then overgrown with epitaxial silicon (g)
before removal from the UHV system. The buried donor structures are then contacted
using standard microfabrication techniques: etching vertical vias into the silicon, and
depositing aluminium to form a low resistance ohmic contact on the chip surface that
may be wire bonded to permit electrical measurements. We now discuss each of the
steps in more detail.
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3.1.1 Surface preparation

We use Czochralski grown [001] silicon wafers as a substrate∗, with a background doping
of boron to give a resistivity of 5 − 10Ωcm. The wafers are 300µm thick, and we cut
each sample to 10× 2.5mm to permit loading into the STM sample holder.

Registration markers

We begin the process by fabricating† a set of registration markers into the wafer, following
the process developed by Ruess et al. 76 . These micrometre scale registration markers
survive the high temperature anneal used to reconstruct the surface, which is critical to
be able to align our ohmic contacts to the buried donor structures.

The samples are first oxidised, by growing a 50nm thick thermal oxide at 800◦C in an
oxygen environment, so that the markers can be produced with minimal contamination
of the surface during the preparation sequence. We use a standard electron beam lithog-
raphy‡ (EBL) process to define and develop a PMMA (poly-methyl-methacrylate) mask
of the registration marker pattern, which is transferred to the oxide layer by etching in a
buffered hydrofluric (BHF) acid bath (15:1 NH4F:HF, 20%). The exposed silicon areas
are etched to a depth of 300nm in a bath of TMAH (tetramethyl-ammonium hydroxide,
25%). The PMMA mask is then removed with acetone, and the thermal oxide with
buffered hydroflouric acid (15:1 NH4F:HF, 20%).

Chemical Cleaning

At this point, the substrate is cleaned in a three step process:

• A sulphuric peroxide mixture (3:1 H2SO4:H2O2) removes residual organic contam-
ination

• A hydroflouric acid bath (1:10 HF:H2O) removes any oxide from the surface

• An RCA standard clean ‘SC-2’ mixture (6:1:1 H2O:HCl:H2O2) removes residual
metallic contamination, and produces a thin native oxide layer protecting the wafer
from incidental contamination before it is loaded into the UHV environment.

∗ wafer stock obtained from MMRC Pty. Ltd. † microfabrication was carried out within the
Australian National Fabrication Facility’s (ANFF) NSW node ‡ FEI/Phillips XL-30 scanning
electron microscope
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The wafer is rinsed in de-ionised water following each stage of the cleaning process.

Ultra high vacuum degassing and flash anneal

The substrate is loaded into the UHV chamber of the STM∗, and the sample and its
holder are degassed by heating to around 500◦C in vacuum, in order to evaporate resid-
ual water and other contaminates. A current of ∼ 3A is passed through the sample,
rapidly heating it to around 1100◦C for one minute. To minimise contamination from
secondary heating of the sample holder and apparatus, we divide the total anneal time
into 4 windows of (20s,20s,20s,6s). This flash anneal performs two functions: it removes
the native oxide layer; and it thermally excites the top layer of atoms, yielding an atom-
ically flat surface with a low defect density when the substrate is slowly cooled to room
temperature over several minutes.

Hydrogen passivation

Each silicon atom, with 4 valence electrons is bonded (with sp3 type orbitals) to 4 neigh-
bours in the bulk lattice, but at the surface, the situation is different. The reconstructed
silicon (001) surface is characterised by a 2 × 1 unit cell. The bond lengths near the
surface relax to position pairs of atoms closer together than they are in the bulk, termed
‘dimers’. Thus, at the surface each atom is bonded to two atoms below, plus its dimer
pair, leaving one free electron per atom, and a highly reactive surface.

We passivate the surface by exposing it to a flux of atomic hydrogen, produced by
thermally cracking H2 gas at 1400◦C. We aim to produce a monolayer of hydrogen, with
H termination of the dangling bond above every silicon atom. The substrate is heated
to around 340◦C for 6 minutes while a H pressure of 5× 10−7mbar is maintained in the
process chamber. This temperature is in the intermediate range avoiding etching of the
substrate – which occurs at room temperature77, and thermal dissociation of H, and
thus incomplete coverage – which occurs above ∼ 470◦C78.

∗ A Scientia Omicron variable temperature STM and integrated ‘multiprobe’ UHV preparation
chamber

36



3.1. DEVICE FABRICATION

sample

tip

current
amplifier

computer
(data processing

 and display)

V

sample
bias

I
feedback control 
and scanning unit

piezo 

scanner

tip

tip path

z∆z

e-

(a) (b)

crystal
step edge

parallel
dimer rows

dimer 
vacancy

single 
dangling 
bond

desorbed
region

[100]

[ 0
1

0
]

10nm

Figure 3.2: Scanning tunnelling microscope imaging and lithography. (a) Schematic showing the opera-
tion of an STM. A piezoelectric scannermoves the scanning tip across the surface, while monitoring the

tunnel current flowing between sample and tip under an applied bias voltage in order tomaintain a con-

stant vertical separation z. Figure adapted from Fuechsle 81 . (b) An exemplary image of a reconstructed

and passivated silicon [001] surface, with the brightness proportional to z. Common surface features
and defects are shown, which are discussed in the text.

3.1.2 Atomic scale hydrogen lithography

The scanning tuinnelling microscope (STM) is central to our device fabrication strategy.
The concept of using an STM as a lithography tool was introduced by Lyo and Avouris 79 ,
and the application of the technique to a hydrogen passivation layer was shown by Lyding
et al. 77 in the 1990s. O’Brien et al. 80 are responsible for complementing the atomic
scale lithography process with a gaseous phosphorous deposition method, which we now
employ.

The operational principle of an STM is sketched in Figure 3.2(a). A bias voltage V is
applied between the sample and the STM tip (a tungsten wire etched to a final radius
∼ 5nm), which causes electrons to tunnel through the vacuum potential barrier between
the tip and sample surface when the vertical gap ∆z is small enough (on the order of pm).
The measured current I is used as a feedback signal so that ∆z may be kept constant
while a piezoelectric scanner moves the tip in the x- and y-directions. The z height
of the sample surface is defined by an equipotential surface which reflects not only the
physical layout of atoms, but also the extent of the highest energy occupied conduction
electron wavefunction at the surface of the substrate (lowest energy unoccupied states
can also be imaged by reversing the sample bias).
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Mode bias voltage tunnel current spot size scan speed

Imaging −2.0V 100pA - 1µm/s

Lithography
– tunnelling +4.0V 5nA < 0.5nm 100nm/s

– field emission +8.0V 30nA ∼ 3nm 2µm/s

Table 3.1: Typical STM scanning parameters for filled state imaging, and lithography by the tunnelling

mode and the field emissionmode

Features on the silicon surface

Scanning the reconstructed and passivated silicon surface produces images such as the
example shown in Figure 3.2(b). The image shows an area spanning four successive
crystal planes, with edges visible when one plane comes to an end and the tip steps
down to the lower plane. The dimers are oriented in parallel rows along the [110] and
[11̄0] crystal axes in alternating crystal planes (visible as clear lines in typical STM
images such as Figure 3.2(b)).

The two most common defects82 in the surface are: a dimer vacancy, where a pair of
silicon atoms are absent from the surface layer – which appears as a dark rectangular
space; and a single dangling bond, where the hydrogen termination is absent above one
single silicon atom – which appears as a bright spot.

Controlled hydrogen removal

Hydrogen atoms are removed selectively by modifying the bias voltage and tunnel cur-
rent. Exact values used vary for different scanning tips, but typical values are provided
in Table 3.1. There are two distinct regimes for lithography: atomic resolution is ob-
tained in a tunnelling mode, where the excess energy from inelastic tunnelling of many
electrons removes a H atom by exciting a vibrational mode of the Si-H bond77,83; and
a field emission mode, where electrons are emitted into the vacuum before striking the
surface, each single electron having sufficient energy to free a H atom84,85.

Figure 3.2(b) shows an example of narrow rectangular region where the hydrogen mask
has been removed with tunnelling mode lithography. The area is 7 dimer rows wide, or
14 atoms, a typical scale used to write nanowire leads for source and drain reservoirs.
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The bright colour reflects the larger vertical extent of the filled-state wavefunction of
the dangling bonds above the bare Si, relative to the smaller wavefunction above a
terminating H atom. The tunnelling mode lithography permits the precise placement
of just one P donor52, which we show in the following section is achieved by patterning
a 3 dimer patch. The field emission mode is used to pattern long (> 2µm) nanowires
extending away from the nanometre sized features of a device, terminating in large
(> 1µm2) contact pads. These allow reliable low resistance electrical contact to be made
by later aligning external contacts to the patches with the ∼ 100nm alignment accuracy
afforded by our registration markers.

3.1.3 Dopant incorporation and encapsulation

Following the lithographic patterning, we dose the surface with phosphine (PH3) gas for
6 minutes at a chamber pressure of 5× 10−9mbar. This results in chemical adsorbtion of
phosphine onto the exposed silicon surface. Note that the dosing is performed with the
sample still on the STM scanning stage, allowing immediate imaging of the dosed surface.
Figure 3.3(a) and (b) show an example of a small patch, only 3 dimers in size, before and
after phosphine dosing. The phosphine molecules have chemically dissociated, with one
H atom filling a dangling bond above a Si atom and the remaining PH2 fragment bound
to the other Si atom within one dimer, as illustrated in the first panel of Figure 3.3(c).

Phosphorus incorporation

The process by which phosphine dissociates on the surface is well documented78,86,87.
The full chemical reaction requires an elevated temperature to overcome the activation
energy, so we heat the sample to around 340◦C for 1 minute. There are a number of
dissociation reaction pathways88, the most favourable being that shown in Figure 3.3(c).

• One of the PH2 fragments recombines with the neighbouring H to desorb from the
surface, leaving an un-terminated dimer (I)
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Figure 3.3: Phosphine dissociaঞon and donor incorporaঞon. (a) STM image of a three dimer lithographic

patch, with a overlaid grid representing the dimer dimensions. The hydrogen termination has been

removed from 6 adjacent Si atoms. (b) STM image of the same area after phosphine dosing. The clear

change in appearance is due to the adsobtion of 3 phosphinemolecules, which chemically dissociate

into surface-bound PH2 fragments.

• A neighbouring PH2 further dissociates by transitioning to an interstitial position
between Si atoms of the newly free dimer, leaving behind one H atom and resulting
in a PH fragment, bonded to a pair of Si within a dimer (II)

• The interstitial PH donates its H to a neighbouring PH2 fragment, allowing it to
desorb, and leaving the P atom bonded across two dimers (III)

• The final step incorporates the P atom into a silicon lattice site, denoted Si:P,
ejecting the original Si atom. This transition does not occur at room temperature,
necessitating the thermal anneal at 340◦C, which also accelerates the previous
steps.

As can be seen in Figure 3.3(c), a minimum of 3 adjacent dimers are required for a P
donor to fully incorporate. Larger exposed patches allow for a maximum final P density
of ∼ 1/4 of a monolayer, which is understood to be facilitated by additional desorption
of H2 during the incorporation anneal, which facilitates the transition to dissociation
product III without loss of a PH3 molecule.
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Epitaxial silicon encapsulation

We activate the donors by growing an encapsulation layer (25− 50nm thick) of silicon.
Material is thermally sublimated by passing a current through a solid silicon source fila-
ment, growing single crystal silicon at a rate of around 0.15nm/min. During the growth
the substrate is heated to ∼ 250◦C to ensure epitaxial crystal growth89–91. Lower tem-
peratures or higher growth rates result in amorphous crystal growth and consequently
poor donor activation and lower electron mobility within the δ-layer. Higher tempera-
tures also produce a poor quality δ-layer, as the P donors become prone to segregation,
moving with the surface as the silicon is grown.

The fabrication routine we have outlined produces metallic conduction within the
patterned regions where the donor density is ∼ 2× 1014cm−2. In a highly epitaxial
bulk-like crystal, the donors are fully activated91, producing an electrical carrier density
ns ∼ 2× 1014cm−2, and a sheet resistivity of around 0.2kΩ/2.

3.1.4 Microfabrication of electrical contacts

After removing a donor device from the UHV system, we use electron beam lithography
(EBL), reactive ion etching (RIE) and physical vapour deposition (PVD) to produce
electrical contacts, aligned to the buried donor patches with reference to the original
registration markers92.

• We use a PMMA mask and EBL to define a series of small (∼ 200nm diameter)
holes aligned to the ∼ 1µm2 phosphorus patches. Figure 3.4(a) shows an image of
such a mask – the small holes are visible within the red circle.

• The holes are etched ∼ 70nm into the silicon by RIE etching∗ in a fluorine based
gas mixture (1:2 SF6:CHF3) at a pressure of 5mTorr with a plasma power of 100W.
This process etches silicon at a rate of 1nm/s.

• The first mask is removed, a second PMMA mask applied, and another round of
EBL defines a pattern of surface contact wires, which taper from the scale of the

∗ Oxford instruments Plasmalab-100
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Figure 3.4: Making electrical contact to buried donor structures. (a) Optical image showing the devel-
oped PMMAmask before RIE etching of the vertical contact via holes (circled). Registrationmarkers

are visible around the image edges. (b) Optical image showing the developed PMMAmask before evap-

oration of the aluminium (Al) electrical contacts. (c) Optical image displaying the completed electrical

contacts on the silicon surface, aligned to vertically etched via holes. The wires extend beyond the

lower edge of the the image to∼ 200µm sized bond pads. (d) Vertical cross-section of the contact-

ing scheme, showing dimensions above and below the buried donor δ-layer. Low resistance contact is

achieved by chemically removing the native oxide layer before the aluminium is deposited.

donor patches and vertical holes up to ∼ 200µm, which is suitable for wire-bonding
into the sample carrier for our electrical measurements. Figure 3.4(b) shows an
image of such a mask.

• The exposed silicon surface is cleaned within an oxygen plasma (340mTorr, 50W
for 2 minutes) to remove residual PMMA from the etched holes.

• The native surface oxide (which formes naturally on the silicon over around an
hour in ambient conditions) is removed by etching in buffered hydrofluoric acid
(15:1 NH4F:HF, 20%) for 15 seconds.

• 80nm of aluminium is evaporated onto the exposed surface at a rate of 0.1nm/m
in an electron beam PVD evaporator∗

∗ Kurt Lesker PVD75
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• The bulk of the metal is lifted off by soaking in N-methyl-2-pyrrolidone (NMP)
for up to 1 hour to dissolve the underlying PMMA, leaving the structure as shown
in Figure 3.4(c) – where bright areas are the aluminium metal contacts.

A schematic of the vertical structure at the end of this process is shown in Fig-
ure 3.4(d). The contact resistance achieved by this scheme is < 100kΩ.

We have outlined the full fabrication process used to manufacture the donor devices
we present in the following chapters. The next section briefly outlines the measurement
techniques we employ.

3.2 Cryogenic Measurements

The various measurements throughout Chapters 4 and 5 were undertaken on a number
of different dilution refrigerators with varied instrumentation, so we aim here to give a
general sense of the measurement techniques we employ, and specific details relating to
the individual experiments may be found in the appedices.

Initial measurements of a device are performed at a temperature of 4K in a liquid
helium bath. The confinement within our donor structures (with quantum dots on the
order of 1000nm2 or smaller) is sufficient that the single electron transport regime is
achieved at this temperature. This allows us to perform simple DC measurements of the
charge stability conditions similar to the diagrams in Figure 2.5. Spin physics cannot be
resolved however, since the electron Zeeman energy γeB0 is less than kBT for magnetic
fields B0 even up to several Tesla. Thus we perform the bulk of our experiments in a
dilution refrigerator∗, which achieves a typical base temperature of < 50mK, and which
is fitted with a superconducting magnet to provide the external magnetic field B0.

Low pass filtering for noise reduction

In silicon, with its small spin orbit coupling, noise in the voltage applied to the gates and
electron reservoirs within a device does not directly effect the spin states. It does however
∗ Oxford instruments Kelvinox-100 or Leiden cryogenics CF-500
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Figure 3.5: Noise filtering for bias voltage lines. Layout of the custom printed circuit board containing

24 individual signal lines with two stage RC low pass filters. The first and second stages are separated

by a feed-through zonewhere all lines are electrically shielded between top and bottom ground planes.

Colours represent the four conductor layers in order from top to bottom: orange, purple, blue, green.

degrade the measurement by broadening resonant tunnelling features. Therefore, in
order to reduce voltage noise in our measurements, we pass all DC and pulse signals
through a two stage RC filter. The resistors and capacitors are surface mounted lumped
element components with values as indicated in Figure 3.5, and a low-pass cut-off of
150kHz.

Figure 3.5 shows the custom circuit board consisting of four signal layers (coloured
orange, purple, blue and green from top to bottom). Between the two RC stages, all
24 signal wires are fed through the two internal layers, shielded by conducting ground
planes in the top and bottom layers. This is done to enhance the high frequency filtering,
by preventing radiated EM fields from transmitting high frequency noise through free
space around the filter components, with the aim of producing an electrically quiet
environment on the output side. The filters sit in a brass housing mounted in the wall
of an effective Faraday cage that surrounds the device, and two large holes allow the
board to be clamped in the centre, providing a low resistance, high thermal conductivity
connection to the mixing chamber of the dilution refridgerator.

Wiring from room temperature to the filters is through twisted wire pairs. We keep
one wire of each pair grounded, which effectively sheilds the other, minimising cross-talk
between lines.
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Control software

To control the various instruments we use a python environment based on the open-
source ‘QT-Lab’ framework∗. A range of routines were developed to facilitate the gener-
ation of time dependent voltage pulses and modulated resonant microwave signals and
also for realtime acquisition of current signals.

Signal generation

DC voltage signals are generated by a voltage source and typically are divided by a
factor between 5 and 50 with a simple resistive voltage divider at room temperature.
This also allows the use of the full dynamic range of a source (typically 10V) whilst the
required voltages for our in-plane gates are on the order of 100mV.

Pulsed gate signals are produced by an arbitrary waveform generator (refer to appen-
dices for specific models used in each of the experiments) or high speed digital to analog
converter. These signals are typically added to a DC voltage with a passive resistive
adder at room temperature, and since we do not pulse at rates above ∼ 1kHz these
signals are applied to the sample via the DC twisted pair lines, filtered to ∼ 150kHz as
discussed above.

The radio frequency signals of Chapter 4 are produced with an AC signal generator and
the reflectometry circuit described in that chapter. The AC signal is fed to the device by
high frequency semi-rigid copper-nickel coaxial cable, attenuated at each thermal stage
to dissipate heat and the associated thermal Johnson-Nyquist noise. The AC signal is
finally added to a DC bias with an RC bias tee on a custom PCB at the mixing chamber
stage before it reaches the device.

The microwave frequency signals of Chapter 5 are produced by a vector signal gener-
ator, which internally modulates the AC signal with modulation patterns we generate
with an arbitrary waveform generator. The resulting signal is fed into the dilution re-
frigerator also through semi-rigid coaxial lines. Here we use a highly dissipative stainless
steel cable in place of discrete attenuators at every thermal stage.

∗ developed at Delft University (available on Github)
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Signal capture

The output signal that we measure is a current on the order of 100pA. We use a
transimpedance amplifier∗ at room temperature to transform the current into a high
impedance voltage signal. This typically introduces additional high frequency noise
which we suppress with an active analog electronic Bessel filter† after electrically de-
coupling the signal line from the dilution refridgerator’s cold ground reference with an
isolating unity gain voltage amplifier‡. The amplified signal is then digitised for analysis.

3.3 Summary

In this chapter we have introduced the core experimental methods through which our
precision donor devices are fabricated and measured, providing a basis for understanding
the spcific details of each device and each experiment in Chapter 4 and Chapter 5.

∗ Femto DLPCA-200 † SRS SIM965 ‡ SRS SIM910
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4
Single electron charge sensing by radio

frequency reflectometry

One of the major challenges in scaling up to large arrays of addressable qubits
is integrating enough readout sensors to monitor each donor based qubit, since physical
space is limited by the close proximity of qubits required to enable two-qubit interactions.
For donor qubits coupled using the exchange interaction, the separation may be as small
as 10–20�nm, yet the highest fidelity readout sensor used to date, the single electron
transistor (SET), requires significantly more real estate55.

Spin readout relies on a spin to charge conversion process followed by charge state
readout, and it is therefore the determination of the charge states that is the fundamental
measurement required for most donor based quantum information processors. A typical
planar, donor-defined SET is shown in Figure 4.1(a). The current flow through the SET
is sensitive to the local potential landscape, so that the motion of a single electron on
or off a nearby donor may switch the flow of current on or off. This can be seen in (b),
where discontinuities run through the parallel conductance lines at two distinct angles,
representing a change in the charge state of either of the two donors present in this
device.
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Figure 4.1: Charge sensors in planar donor devices. (a,c,e) STM images and (b,d,f) corresponding charge

stability diagrams for three different charge sensing devices. (a) A typical SET charge sensor, capable of

monitoring the charge state of a double quantum dot. The presence or absence of an electron on either

small dot is sensed by the SET. An SET gate (G) is required to provide independent control of the SET

potential, and so the entire structure fills over 120◦ of the radial space surrounding the donors. Current
flow from source (S) to drain (D), as indicated with green arrows, may be switched on or off by a change

in charge state, producing discontinuities in (b) the SET current as a function of gate voltages. Diago-

nal lines of high conductance represent the periodic switching of the SET due to Coulomb blockade,

and discontinuities with two different slopes provide an indirect indication of charge state reconfigura-

tions on each of the two donor dots. (c) A hybrid charge sensing device incorporating an SET alongside a

reservoir (S′) tunnel coupled to a single donor. We investigatemultiple radio frequency charge sensing

mechanisms in this device: AC tunnelling through the SET from source to drain as represented by green

arrows, which produces (d) lines of conductance comparable to those in (b); but also AC tunnelling from

S′ to the single donor, as shown by the purple arrow, which produces clear lines directly showing the
donor charge state transitions. (e) A double quantum dot device without an SET, where we show that

charge sensing is still possible bymonitoring the AC tunnelling from one reservoir (D) to each of the

dots, as shown by the purple arrows. (f) The charge stability map clearly indicates the charge state tran-

sitions of each dot as lines with two distinct slopes. The absence of an SET simplifies the appearance of

the stability diagram significantly.
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In this chapter we shall describe two experiments that move beyond measuring the
flow of current through an SET, to consider the reflection of radio frequency signals from
nanoscale structures using a single terminal sensor. This strategy permits a much more
efficient use of chip real estate as the single terminal charge sensor can be more readily
scaled in contrast to a three terminal SET which consumes ∼ 120◦ of the radial space
surrounding the donors being sensed.

In the first experiment, we compare the visibility of the charge transitions of a de-
terministically placed single P donor, as seen in a reflected RF voltage signal and in a
transmitted DC current. The device we use is summarised in Figure 4.1(c). The RF re-
flectometry measurements are performed using an electron reservoir (S’) tunnel coupled
to the donor, and concurrently, with a capacitively coupled single electron transistor
(SET). The RF measurement allows direct observation of charge state transitions of the
donor (continuous parallel purple lines in Figure 4.1(d)), in contrast to a more tradi-
tional SET current signal as in Figure 4.1(b) where the equivalent donor transitions are
only observed indirectly by offsets in the parallel SET conductance lines. We show that
the electrostatic coupling of our tunnel coupled reservoir is over 5 times greater than
that typical for a capacitively coupled gate. We also extract a neutral phosphorus donor
charging energy of 62± 17meV, consistent with previous measurements53,69.

In the second experiment, we apply reflectometry techniques to a double quantum
dot formed by two nearby donor clusters, consisting of 2 and 3 P donors respectively,
shown in Figure 4.1(e) Without an additional charge sensor, in this device DC measure-
ments allow observation of the donor state by monitoring electron transport through
the two dots. As an alternative, we demonstrate charge sensing in this device via RF
reflectometry. Figure 4.1(f) shows the clear charge stability diagram of the quantum
dot charge states, obtained from the reflected RF signal, without the complication of
numerous additional SET conductance lines. Using RF reflectometry we measure elec-
tron tunnel rates between the reservoir and donors, observing values from 100MHz to
22GHz as the number of electrons on one of the quantum dots is increased from 1 to 4.
This technique also allows us to observe Pauli spin blockade, showing that single shot
singlet-triplet measurement is possible using a single terminal sensor. By detuning the
double quantum dot we demonstrate tunability of the exchange energy over 2 orders of
magnitude, an important milestone in controlling the interactions between electrons in
these precision donor systems.
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Together, the work in this chapter shows that RF reflectometry, and in particular,
single terminal dispersive sensing, is a powerful strategy, providing an alternative to DC
charge sensor conductance based readout. We compare the strengths and weaknesses of
both methods, but highlight the demonstrably smaller physical footprint possible with
the RF technique. These results show that we can replace three terminal transistors
by a single terminal dispersive reservoir, which plays the role of both control gate and
sensor, promising for scalable donor qubit control and readout.

4.1 Radio frequency measurements in nanoscale
devices

In this background section we introduce the motivation behind the development of high
frequency charge detection techniques. We then present a theoretical overview of the
AC electronics involved in the experiments that follow and describe the mechanisms
at play in the context of a brief review of recent literature on RF charge detection in
nanoelectronic devices.

4.1.1 The limitations of DC charge sensing

Measurement of single electron spin states has to date largely relied on spin to charge
conversion followed by charge state readout through either a charge-sensing single elec-
tron transistor (SET) or quantum point contact (QPC). A QPC is a field effect device
consisting of a buried two-dimensional electron gas (2DEG), locally constricted by elec-
trostatic gates to form a short one dimensional constriction, producing a quantised set
of transverse energy levels through which electrons may ballistically pass through the
point contact. An example is shown in Figure 4.2(a). By tuning gate voltages to a point
where an additional channel starts to become available, the conductance G of the QPC
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Figure 4.2: DC charge sensing strategies. (a,c,e) Images and (b,d,f) corresponding charge sensitivity dia-
grams for classes types of charge sensing devices. (a) A GaAs quantum point contact (QPC) formed by

depleting a buried 2DEGwith voltages on surface gates to form a 1D conductance channel. TwoQPCs

are shown left and right. Reproduced from Johnson et al. 93 (b) Conductance steps characteristic of a
QPC. Increasing gate voltage lowers the energy of successive conductance channels, increasing the

current flow. A change in the charge state of a nearby quantum dot is equivalent to a discrete change in

gate voltage, effectively offsetting the conductance curve. (c) A planar, donor defined tunnel gap (lower

half) and SET (upper half) in silicon, produced by STM lithography. Reproduced fromHouse et al. 9 . (d)
The conductance response of a simple tunnel gap. Increasing gate voltage gradually lowers the resis-

tance, and similarly, a charge offset is equivalent to a discrete gate voltage shift. (e) AMOSFET-based

single electron transistor (SET) formed by accumulating electrons in the silicon substrate beneath an

oxide layer below the gate shaded red. Reproduced fromMorello et al. 94 (f) Conductance peaks occur
periodically as the gate voltage is increased as charge states of the SET island itself come into resonance

with the source and drain. A charge state change external to the SET offsets the positions of all peaks.

becomes sensitive to the local electrostatic environment. As sketched in Figure 4.2(b),
a discrete change in the charge state of a nearby quantum dot (switching the response
between the blue and red lines) changes the current through the QPC.

A similar outcome can be achieved with a simple tunnel gap between two leads, where
electrons tunnel through a barrier instead of travelling ballistically through a 1D mode.
This type of device is shown (together with an SET) in the lower half of Figure 4.2(c)
Here the electrostatic environment affects the barrier height, which in turn changes the
transmitted tunnel gap current at a particular bias. Typically a tunnel gap type sensor
provides a slowly varying and continuous signal across a range of gate voltages (red
curve in Figure 4.2(d)), with discontinuities in this smooth background at fixed charge

51



CHAPTER 4. SINGLE ELECTRON CHARGE SENSING BY RADIO FREQUENCY
REFLECTOMETRY

degeneracy points where an electron tunnels nearby (switching the response to the blue
curve).

The SET sensor consists of a quantum dot (QD) exhibiting Coulomb blockade (intro-
duced in Section 2.3.1). SET devices based on electrostatically confined 2DEGs or those
defined by regions of phosphorus donors behave in much the same way. Examples are
shown in Figure 4.2(c,e). Here the current flow is a periodic function of the quantum
dot potential, effectively zero for most configurations of the electrostatic environment
while the SET is in Coulomb blockade, and taking a finite value when the gate volt-
ages align a quantum dot transition potential to the lead Fermi levels (red curve in
Figure 4.2(f)). Nearby charges capacitively, or through direct tunnel coupling, interact
with the quantum dot. This shifts its electrochemical potential, often by a fraction of the
SET’s charging energy (blue curve), and capable of discretely switching the conductance
from an on-resonance value to the blockade value.

Physical sensor size

All three of these charge sensor devices take up considerable space on a chip compared
to the small size of a donor qubit. Two current carrying ohmic contacts are needed: a
source and a drain, and often also a third gate terminal to be able to tune the sensor
to a sensitive working point. This is not a problem in devices containing one or two
qubits, but for more complex arrays of multiple qubits, the space surrounding each will
be largely needed to accommodate interactions involving neighbouring qubits. Because
donor qubits are atomic in size, a more compact sensor is desirable in scaling up towards
a large-scale Si:P quantum computer.

Simply miniaturising the SET (for example) is not viable, since with decreasing quan-
tum dot (or SET island) area, the charging energy increases, meaning that the peaks of
Figure 4.2(f) become spaced more widely and consequently the sensor can only be sen-
sitive at very few specific voltage settings. As an example, the SET in Figure 4.2(c) has
dimensions of 17.2 × 8.5nm such that the separation between adjacent Coulomb peaks
is ∼ 80mV. A smaller SET island will only increase the peak separation, meaning that
the sensor is ‘blind’ across a high proportion of all voltage settings.

The size of any 2 or 3 terminal sensor is additionally constrained in terms of the
angular spread of its source and drain leads, because the two leads cannot be parallel
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to one another at small distances, as this would allow a parasitic conduction pathway
between the two leads that would be insensitive to charges within the device.

Noise and bandwidth

A major source of noise at low frequencies in many solid state electronic systems, is
generally considered to be due to a background of two-level charge fluctuators. Increas-
ing with the inverse of frequency, this effect is referred to as 1/f noise. DC charge
measurements face the challenge of significant 1/f noise which can only be overcome by
integrating over an extended time period such that the noise averages to zero. This av-
eraging reduces the measurement bandwidth, limiting the time resolution of the sensor.

The measurement bandwidth is also limited by the fact that all the DC sensors detailed
above measure the flow of current through a resistive circuit. The two tunnel barriers
of an SET for instance must be on the order of 100kΩ or greater to avoid lifetime
broadening of the Coulomb peaks (where the uncertainty principle spreads the width
of a Coulomb peak in inverse proportion to the average lifetime of an electron flowing
through the SET island). This resistance together with the typical capacitive load of
wiring between the SET at millikelvin and a room temperature current amplifier in an
experiment (normally greater than 1nF), limits the bandwidth for DC operation of the
SET, with an RC time constant of a few kHz (higher if the line capacitance can be
reduced).

For improved sensor performance we therefore seek a method to reduce sensor resis-
tance or wiring capacitance, operate at higher frequency, and with a smaller physical
footprint. In this chapter we show that radio frequency reflectometry provides a route
to improve in all of these areas. Underlying radio frequency reflectometry is the same
fundamental idea used in laser interferometry, or in a lock-in amplifier. An AC signal is
applied to a system, the signal is reflected with an altered amplitude and phase. Mea-
suring the reflection alone provides limited information but by interfering the reflected
signal with a copy of the original input in a so-called homodyne detection process, a
complex valued reflection coefficient can be recovered. This homodyne signal can be
engineered to sensitively respond to, in our case, changes in the charge state of the
electronic system being measured. Before detailing the implementation in our precision
donor devices, we present some theoretical background and a review of achievements in
the literature.
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4.1.2 Theory of LCR resonant circuits

An AC voltage signal Vin(t) = V1 sin(ωt+ θ1) drives an AC current response I(t) within
a circuit, which manifests as a complex impedance Z to the incoming signal, related by
Ohm’s law Vin(t) = I(t)Z. The incoming signal is accordingly reflected by the system
Vout = V2 sin(wt+θ2) = Vin

Z−Z0
Z+Z0

. Here Z0 is the impedance of the transmission line used
to deliver the signal to the system. If Vout is demodulated with a copy of the original
AC signal in a frequency mixer, the output encodes the complex reflection coefficient
Γ = Z−Z0

Z+Z0
.

In order to gain full information of the complex response, two mixers are used in a
combination called an IQ demodulator. The second mixer introduces a 90◦ phase offset
before combining the signals. The first produces an output consisting of

VI = V1V2 sin(ωt+ θ1) sin(ωt+ θ2) (4.1)

=
V1V2
2

cos ((ωt+ θ1)− (ωt+ θ2))−
V1V2
2

cos ((ωt+ θ1) + (ωt+ θ2)) (4.2)

=
V1V2
2

cos (θ1 − θ2) (4.3)

where we have removed the high frequency component, since this is normally filtered
out with a simple low pass filter. The phase shifted mixer on the other hand produces

VQ = V1V2 cos(ωt+ θ1) sin(ωt+ θ2) (4.4)

=
V1V2
2

sin ((ωt+ θ1)− (ωt+ θ2)) +
V1V2
2

sin ((ωt+ θ1) + (ωt+ θ2)) (4.5)

=
V1V2
2

sin (θ1 − θ2) (4.6)

These two DC voltage signals VI and VQ represent the in-phase (real) and quadrature
(imaginary) components of the complex reflection coefficient. These are often recast to
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represent the amplitude |Γ| and phase angle ϕ(Γ)

√
V 2
Q + V 2

I =
V1V2√

2
=
V1

2

√
2
|Γ| (4.7)

∼ |Γ| (4.8)

(4.9)

arctan(VQ/VI) = arctan(
sin(θ1 − θ2)

cos(θ1 − θ2)
) = δθ (4.10)

∼ ϕ(Γ) (4.11)

4.1.3 Frequency dependant impedance in a resonant cir-
cuit

We now consider the effect of changing the resistance and capacitance within a simple
resonant RLC circuit before moving on to discuss the underlying physical mechanisms
that modify the resistance and capacitance of a nanoelectronic device.

The system of interest is embedded within a resonant LCR tank circuit. Consider
first the impedance of a simple series circuit containing inductor L, capacitor C, and
resistor R, as indicated in Figure 4.3(a).

Z = ZL + ZC + ZR (4.12)

= iωL+
1

−iωC
+R (4.13)

In the simplest sense, with increasing drive frequency ω, the positive imaginary inductive
impedance ZL grows larger and negative imaginary capacitive impedance ZC grows
smaller. the resistive impedance ZR is real and independent of frequency. These three
components are sketched in Figure 4.3(c) on the complex plane. The total, Z = ZLCR

follows a vertical trajectory as indicated by the grey line, moving up the page with
increasing frequency, and crossing the real axis at the resonant frequency ω0 = 1√

LC
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Figure 4.3: LCR resonant circuits as a sensor. (a) A simple series LCR circuit. (b) Idealised circuit model

used in this chapter’s measurements. The device is represented by the parallel resistance and capaci-

tance, in series with a lumped element inductor. (c) impedance diagram on the complex half-plane. The

sum of resistive, capacitive, and inductive impedancesZLCR traverses a vertical locus as the drive fre-

quency is increased. The reflection coefficientΓ depends reflects both the length and angle of a vector

connectingZ0 andZLCR. (d) Green and purple lines represent themagnitude and phase respectively

of the reflection coefficientΓ as a function of drive frequencyω. A resonance occurs atω0 where the

total impedance crosses the real axis, withaminimum in |Γ| and an inflexion point inϕ(Γ). The effect
on the resonance curve is sketched for an increase in device resistance, the dashed line indicating a

damping of the resonance. (e) Similar plot, but showing the effect of an increased device capacitance,

shifting the resonant condition to a lower frequency.

where ZLCR comes nearest to the (resistive only) Z0 = 50Ω. In measuring the amplitude
and phase of the reflection coefficient, we observe the length and angle of the vector
indicated with a green arrow in Figure 4.3(c), producing a pair of resonance curves as
sketched in Figure 4.3(d,e). The width of the observed peak in |Γ| is characterised by
the dimensionless quality factor Q = 1

R

√
L
C , with a lower resistance producing a higher

Q and a sharper peak.

The real response of a nanoelectronic device is more accurately described by a dif-
ferent idealised circuit model shown in Figure 4.3(b) where electron tunnelling effects
are described by a resistance and capacitance in parallel. The total impedance for this
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circuit topology can be similarly determined.

Z =
1

1
ZR

+ 1
ZC

+ ZL (4.14)

=
1

1
R − iωC

+ iωL (4.15)

=
R

1− iωCR
+ iωL (4.16)

=
R+ iωCR2

1− i2ω2C2R2
+ iωL (4.17)

From here we make two approximations which simplify the representation: ωCR ≫ 1,
satisfied by our experimental parameters (since ω ∼ 200MHz, C ∼ 1pF, R ∼ 20MΩ);
and ω ≃ ω0 since we are primarily concerned with behaviour near resonance.

Z =
R+ iωCR2

ω2C2R2
+ iωL (4.18)

=
1

ω2C2R
+ i

1

ωC
+ iωL (4.19)

=
L

CR
+

1

−iωC
+ iωL (4.20)

Equation (4.20) is the same expression for the series circuit (Equation (4.13)), except
that the resistive component is now given by an effective resistance Reff = L

CR .

In summary, the response of the reflected RF signal is sensitive to a changes in both
the resistance and capacitance of the device we are interested in sensing. We now
consider three different ways in which such changes may arise, with reference to specific
RF sensing devices in the literature.

4.1.4 Charge sensing based on RF signals

Here we review the state of the art in charge detection methods based on RF reflec-
tometry signals. We discuss two classes of devices with increasing popularity in the
nanoelectronic device community: the RF-SET (radio frequency single electron transis-
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tor) and the dispersive gate sensor, as well as a third alternative with specific relevance
to our atomic precision fabrication strategy – a dispersive tunnel-coupled reservoir.

The RF-SET sensor

The effect of a change in the system resistance is to narrow or broaden the resonance
peak. In practice, rather than monitor the peak width by sweeping the drive frequency,
typically the reflection coefficient is measured at a fixed frequency, most often on-
resonance, and the increased or reduced reflection amplitude is interpreted as arising
from a changed resistance within the system being sensed. The most common origin
of a variable resistance is non-resonant tunnelling through an SET channel, and this
dissipative process is the basis for the operation of an RF-SET.

The RF-SET was first introduced by Schoelkopf et al. 95 , as a method to increase
the real-time bandwidth of the SET as a charge sensor. The SET is inherently a high
resistance device (> MΩ), and with wiring capacitance typically on the order of nF, the
resultant RC time constant restricts measurement bandwidth of the DC-SET to a few
kHz. This is not an intrinsic limitation of the SET itself, but of the DC measurement
circuit normally used to amplify the current. By operating instead at an RF frequency
with a resonant circuit, the wiring capacitance becomes unimportant, and therefore
the RF-SET allows higher bandwidth measurements. The increased bandwidth was
demonstrated in an aluminium SET shown in Figure 4.4(a), where standard double
angle evaporation was employed to produce the tunnel junctions between source, island
and drain.

The source-drain bias of the SET oscillates under an RF excitation applied to the
drain. Therefore, relative to the potential of the SET island, an electron will tunnel onto
the SET at a higher potential and tunnel off at a lower potential, dissipating the energy
difference. Hence AC tunnelling manifests as an increased conductance, or a reduced
resistive impedance R. With the circuit topology of Figure 4.3(b), Reff is increased and
this damps the resonance (as was illustrated in Figure 4.3(d)). The behaviour is seen
in Figure 4.4(b), where dips in the reflected signal amplitude (rf power) correspond to
coulomb peaks in a DC conductance measurement. Schoelkopf et al. 95 showed that the
response was sensitive to single electron motion at a bandwidth of ∼ 100MHz.

The RF-SET has been implemented in metallic QDs97, GaAs heterostructure QDs98,
silicon MOSFET QDs99. An additional benefit of the RF-SET was recently highlighted
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Figure 4.4: High bandwidth sensing with the RF-SET. (a) SEM image of an RF-SET formed by double-

angle metal evaporation reproduced from Schoelkopf et al. 95 . The SET is comprised of Source, Island,
Drain and Gate at the top of the image. (b) DC conductance and reflected RF power shown as a func-

tion of gate voltage. Coulomb peaks in the conductance signal (bottom curve) occur when the charging

energy (e/Cg) is overcome allowing conduction through the SET island. These points correspond to a

reduction in the reflection amplitude (top curve). Reproduced from Schoelkopf et al. 95 . (c) SEM image

of a fin-FET transistor and (d) TEM image showing a cross-section of the same transistor, both repro-

duced fromVillis et al. 96 . (e) DC conductancemeasurement showing coulomb diamonds due to the

formation of a quantum dot in the transistor channel below pinch-off voltage. The blockaded region (for

smallVd) shows no significant features. (f) RF reflected amplitudemeasurement of the same device,
where resonances due to nearby charge traps are visible in the blockaded region as diagonal lines. (e,f)

also reproduced fromVillis et al. 96 .
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by Villis et al. 96 , who used an RF-SET to detect the charging of dopant atoms within the
channel of a fin-FET transistor, an effect that is not visible in bias spectroscopy transport
measurements. The transistor used as the RF-SET can be seen in Figure 4.4(c,d).
At negative gate voltage, the conductive channel between source and drain becomes
depleted, forming an isolated island of charge. Addition of electrons to the SET island
can be seen as Coulomb diamonds in Figure 4.4(e), a DC conductance measurement.
The equivalent RF-SET measurement signal in Figure 4.4(f) reveals additional features
within the Coulomb blockade region, that were attributed in this device to a charge trap
within the wrap-around gate structure.

RF reflectometry combined with a single electron transistor can provide a high band-
width charge sensing signal, sensitive to charge transitions occurring even with the SET
itself in Coulomb blockade.

The dispersive gate sensor

The effect of change in the system capacitance within a resonant circuit is a shift of the
resonance peak in frequency. Such a change in the capacitance arises within a device
when electrons tunnel back and forth at a fixed energy (non-dissipatively) in response
to an AC voltage, between charge states having different dispersion (E(V )) relations.
This dispersive shift in the resonant frequency can be seen by monitoring the phase
or amplitude of a reflected RF signal at a fixed drive frequency near to the resonant
frequency.

Importantly, the non-dissipative AC tunnelling response can be observed by any con-
ductor capacitively coupled to the charge states involved. This fact has been exploited
to convert existing gates within a nanoelectronic device into a single terminal detector
described as a dispersive gate sensor (DGS). The technique has been demonstrated using
metallic surface gates defining QDs in GaAs quantum wells by Colless et al. 100 , with
a double quantum dot device shown in Figure 4.5(a). The blue highlighted R gate is
coupled to a resonant circuit and has an RF signal applied, which induces AC tunnelling:
between the two dots – corresponding to isolated points in the upper left of Figure 4.5(b);
or between a dot and an electron reservoir – as evidenced by lines defining the charge
state cells at higher gate voltages. The schematic of Figure 4.5(c) illustrates a stable
point (orange), where the RF signal moves the system within the dispersion relation of
one single charge state, in contrast to at a charge state transition (green), where the AC
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(a)

(b)

(d) (e) (f )

(c)

Figure 4.5: Dispersive gate sensing via a modified device capacitance. (a) SEM image of a GaAs double

quantum dot. The quantum dots are formed by locally depleting a 2DEG under the gate structures.

The blue highlighted gate is connected to a resonant circuit enabling its use as a dispersive gate sensor.

(b) Reflected RF amplitudeVDGS shown as a function of L and R gate voltage. Lines with two slopes

appear in the response corresponding to charge transitions of the two dots, where tunnelling from one

of the electron reservoirs to a quantum dot in response to the applied RF signal contributes additional

capacitance to the gate sensor. For lower electron numbers the dot to reservoir tunnel rate is too slow

to be driven by the RF signal, and only fast inter-dot tunnelling signal remains. (c) Schematic showing

the dispersion relations of subsequent quantum dot charge states. At degeneracy points (green), the RF

promotes AC tunnelling and here the ground state energy does not follow the normal dispersion curve,

manifesting an an added capacitance, compared to stable regions (orange) where the charge state is

unchanged. (a-c) reproduced fromColless et al. 100 (d) SEM image showing a cross-section of a silicon

fin-FET transistor, with the channel containing phosphorus dopants. The gate is coupled to a resonant

circuit as a dispersive gate sensor. (e) DC conductancemeasurement showing the pinch-off point of the

transistor marked by a dotted line, above this point several resonances indicating transport through

specific dopants are visible as sharp conductance lines. (f) RF reflected amplitudemeasurement (the

derivative is shown) of the same device, wheremultiple donor resonances are clearly visible in non-

conductive region. (d,e,f) reproduced fromVerduijn et al. 101 .
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voltage promotes AC tunnelling between two states with distinct dispersion curves. If
the tunnel rate is comparable to or faster than the drive frequency, the system oscillates
between the two states, and the change in charge in response to a change in voltage
manifests as a so-called quantum capacitance dQ/dV = CQ. This technique has been
shown to be sensitive to single charge motion102 with a bandwidth ∼ 8MHz

Effective use of the dispersive gate sensor was made by Verduijn et al. 101 , using
poly-silicon wrap-around gates surrounding the channel of a silicon fin-FET as shown
in Figure 4.5(d). Comparing to a DC measurement in Figure 4.5(e), dispersive sensing
with the wrap-around gate shown in Figure 4.5(f) reveals numerous charge transitions
below the pinch-off point (dotted line in (e)) of the transistor. These lines represent
donor transitions, not visible in transport measurements.

A major advantage of this sensor is that it doesn’t require any additional structures
be introduced to a device, since any gate already required to define the nano-structure
or control the electrons may be used additionally as a sensor. Indeed converting every
gate into a dispersive sensor is in principle possible, and combined with frequency mul-
tiplexing103, and may provide a much more complete picture of charge motion within a
device without a dedicated sensor device like an SET.

The tunnel coupled reservoir

As an alternative to the dispersive gate sensor which relies on capacitive coupling, a
single terminal charge sensor can be made by placing a single metallic electron reservoir
in direct tunnel-contact with a quantum dot. Such a tunnel coupled reservoir may
sense charge transitions where an electron tunnels directly to/from the reservoir itself,
providing a much stronger signal compared to the capacitively coupled dispersive gate
sensor. More distant charge motion where tunnelling does not involve the reservoir can
also be detected, just as it is by a gate sensor.

The direct tunnelling configuration was described by Persson et al. 104 as a single
electron box (effectively one half of an SET), and depending on the tunnel rate and
driving frequency, AC electron motion may produce a dissipative or dispersive response.
A theoretical understanding of the dispersive response was developed by Gabelli et al. 105

and has been extended by others to the dissipative regime104,106.
Between a quantum dot and an electron reservoir, the AC tunnelling resistance RQ

and capacitance CQ depend on the dot-reservoir tunnel rate γ, the drive frequency ω, the
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electron temperature T , the effective lever arm of the reservoir over the dot potential α′,
and the energy offset δµ = µ− EF between dot potential µ and reservoir Fermi energy
EF

105

RQ =
4kBT

γα′2e2

(
1 +

γ2

ω2

)
cosh2

(
δµ

2kBT

)
(4.21)

CQ =
α′2e2

4kBT

(
1 +

ω2

γ2

)−1

cosh−2

(
δµ

2kBT

)
(4.22)

Now consider some limiting cases, taking δµ = 0 to examine the response right at the
charge transition point:

• In the slow tunnelling limit γ ≪ ω, CQ goes to zero, and RQ takes a maximum
value of 4kBT

γα′2e2 . This can be understood since the electron is unable to tunnel as
fast as the driving signal so no charge motion occurs.

• Passing through γ = ω, CQ goes through an inflexion point, and RQ is minimised
at 8kBT

ωα′2e2 . Tunnelling may now occur, but stochastically with a delay comparable
to the period of the RF drive. The reservoir Fermi energy oscillates, and therefore
tunnelling onto the dot is likely to occur with the maximum Fermi energy, and
tunnelling off of the dot at minimum Fermi energy, thus the tunnelling in this
regime dissipates energy.

• In the fast tunnelling limit γ ≫ ω, CQ reaches a maximum value of α′2e2

4kBT , and
RQ also becomes large again. Here tunnelling is effectively instantaneous, occur-
ring before the drive voltage reaches its peak value; at the same energy in either
direction and so without energy loss. The dominant effect is in this case dispersive.

The following sections present the first RF reflectometry measurements in atomic pre-
cision donor defined planar nano-structures. First, in Section 4.2 we present a hybrid
device which displays the combined and contrasted behaviour of a tunnel coupled reser-
voir alongside an RF-SET. Secondly, in Section 4.3 using a double quantum dot device
with a tunnel-coupled reservoir, we demonstrate a reservoir tunnel-coupled to two donor
quantum dots.
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Figure 4.6: A single donor with capaciঞvely-coupled SET and tunnel-coupled reservoir. (a) An STM im-

age of the device, showing a hydrogen terminated silicon surface where hydrogen atoms have been re-

movedwith an STM tip to form the template for the creation of a single P donor capacitively coupled to

an SET and tunnel coupled to the source reservoir. Reservoir (S‘) source (S) and drain (D) are labelled,

as are two gates,G1 andG2 coupled respectively to the SET and donor. (b) Inner region imagedwith
atomic resolution. Single bright dots are non-reactive individual dangling bonds where one silicon atom

is not terminated by hydrogen. Single dark dots are single atom or single dimer vacancies in the surface

layer of the lattice, andwill be filled during overgrowth. (c) STM image of the single donor incorporation

site overlaid with the Si(2x1) surface atomic lattice grid, showing four clean adjacent dimers (green) be-

fore dosing and (d) afterPH3 dosing, showing twoPH2 fragments (blue). Red circles indicate single

non-reactive dangling bonds.

4.2 A hybrid single donor charge sensing de-
vice

To compare the operation of an RF-SET and tunnel coupled reservoir in a precision
donor defined device, we use a hybrid layout, where a single lead acts as both the source
terminal for an SET and also as a tunnel coupled reservoir for a single donor. The SET
is designed to indirectly sense the charge of the single donor via the capacitive coupling
between them, and the tunnel coupled reservoir is placed near enough to the donor to
be in the fast-tunnelling limit, permitting dispersive sensing of donor charge transitions
directly and independently of the SET. I fabricated the hybrid device with help from
Eldad Peretz. Together with Matthew House, I designed the reflectometry circuit and we
performed the following measurements together. The results of this section are published
in Applied Physics Letters1.

Figure 4.6(a) shows a scanning tunnelling microscope (STM) image of the hybrid
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device created by STM hydrogen resist lithography. The image is of the lithographic
pattern before phosphine dosing, and the inner region is shown in higher resolution in (b).
Bright areas indicate where hydrogen atoms have been removed from the lithographic
mask by the STM tip. We define a 75nm2 donor based SET island placed ∼ 18.5nm

away from the donor. We can operate this SET as a DC charge-sensor or as an RF-
SET, allowing a direct comparison of the two operating modes in one device. The upper
finger of the source terminal (S) of the SET is also tunnel coupled to the single donor
(positioned 11.5nm away) so that it can act as a tunnel coupled reservoir (S‘). We will
show later how we can independently resolve the RF-SET signal and the dispersive signal
despite sharing a single terminal and RF resonant circuit. The drain (D) lead completes
the SET channel and in-plane gates G1 and G2 tune the electrochemical potentials of the
SET and P donor, respectively. Figure 4.6(c) shows a close-up image of the lithographic
mask for the single donor site, where the bright area corresponds to twelve H atoms
removed from a hydrogen terminated surface.

After dosing this surface with phosphine, in Figure 4.6(d), we see two PH2 features
identifiable by their height profile (∼ 180pm). Annealing at 350◦C causes one fragment
to leave the surface and the remaining PH2 fragment transitions to an Si-P hetero-dimer.
The large exposed areas of the silicon surface that define the SET, reservoir, and gate
electrodes are also phosphorus doped and annealed, resulting in metallic conduction
with a carrier density91 n2D = 2.5× 1014 cm2. The planar device is then encapsulated
with 50nm of epitaxial silicon and contacted with aluminium as described in Chapter
Chapter 3. Based on the area of the SET and the 2D doping density, we know that the
SET contains ∼ 185 P donors.

4.2.1 Amplitude and phase sensitive measurement cir-
cuit

With the circuit shown in Figure 4.7(a), which is attached to the source (S&S′) we
measure the reflection coefficient Γ of an RF frequency signal. The RF signal is injected
through a directional coupler and the high pass side of a standard RC bias tee (RB, CB),
to the resonant circuit consisting of a surface mount chip inductor L = 1200nH and
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Figure 4.7: RF reflectometry setup, and tank circuit characterisaঞon. (a) Schematic of the RFmea-
surement circuit across different temperature stages, showing the applied RF signal injected through

a directional coupler, the STMdevice and resonant circuit at millikelvin (mK), followed by amplifiers

at the 3K stage and at room temperature (A1, A2) and a quadrature homodyne detection circuit. (b)

Themeasured amplitude and phase of the reflected signal around the LC resonance at 170.9MHz for
VSD = VG1 = VG2 = 0, where the SET is in Coulomb blockade.

the parasitic capacitance to ground CP due to the proximity of the signal carrying
wire beyond the inductor to the ground potential. The RF circuit path at this point
is wire-bonded to the source terminal of the device, represented in the circuit as the
parallel capacitance CQ and resistance RQ and coloured red. The reflected signal passes
back through the directional coupler and is routed to an amplifier at 4K (A1), and
another at room temperature (A2). The amplified signal is then fed to a quadrature
detector consisting of two mixers, using local oscillator signals offset by 90◦ to produce
DC voltage signals representing the in-phase (I) and quadrature (Q) components of the
reflection coefficient Γ. Further details of the hardware set-up and power levels are given
in Section A.1.

Figure 4.7(b) plots the measured reflected amplitude Vout = Vin|Γ| (blue) and phase
ϕ(Γ) (red) of the reflected signal as a function of drive frequency with the device in
Coulomb blockade, where its resistance is effectively infinite (Reff ≈ 0). The inflection
point of the phase response occurs at f0 = 1

2π
√
LC

= 170.9MHz. Knowing the value of
the inductance, L = 1.2µH allows us to determine the parasitic capacitance CP = 0.72pF

and the resonator quality-factor. The quality factor of the resonance is found by taking
the ratio of f0 to the FWHM of the amplitude peak Q = 1

R

√
L
C = 46 ± 10. For most

of the experiment, we fix the driving frequency f = 172.0MHz (chosen to be near the
peak of the amplitude signal) and observe variations in the phase and amplitude of the
reflection coefficient. We estimate the applied RF power at the reservoir/source of the
device is around −90dBm = 20 log10(VPP /632mV ), attenuated from +16 dBm at the
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signal generator. This corresponds to an AC voltage within the device on the order of
VPP ∼ 20µV.

4.2.2 A side-by-side comparison of DC and RF response

We now show a set of charge stability maps in Figure 4.8, simultaneously measuring
(a,b) the DC current through the SET, (c) the reflected RF amplitude, and (d) the
reflected RF phase signal, as a function of gate voltages VG1 and VG2 at a fixed VSD =

2mV. Diagonal lines of high current represent Coulomb peaks of the SET, separated by
∆V SET = 240±3mV, corresponding to the SET charging energy ESET

C = 10.2±0.5meV

(measured directly from the height of Coulomb diamonds in Figure 4.11).
From Figure 4.8(a), we can identify two lines of discontinuities having similar slopes

(marked with blue dotted lines as a guide to the eye in (b)) associated with the donor
D+ → D0 and D0 → D− transitions. There is another discontinuity (green dashed line
in (b)) which we attribute to a nearby charge trap ‘T’. By considering the displacement
of the SET conduction lines seen when crossing a transition, highlighted in the colour-
coded insets, we can see that the trap produces a shift consistent with a mutual charging
energy EM of only 0.5meV compared to the donor mutual energy EM = 1.6meV. This
smaller mutual energy indicates that the trap is more weakly coupled to the SET, and
thus farther away physically. This is confirmed by the lack of phase and amplitude
response along the ‘T’ line. Note that at zero gate voltage the single donor is ionised
due to the electrostatic presence of the surrounding gate electrodes, as seen in similar
single donor devices53,55. In particular Fuechsle et al. 53 have measured the source and
drain Fermi level in a similar device ∼ 80meV below the conduction band edge due to the
high doping density within the device leads and gates. Although within an asymmetric
potential landscape, the concept of a binding energy has little value, we see that in our
device the first electron loads only after applying ∼ 200mV to gate G2 in agreement
with previous results.

In the DC current map Figure 4.8(a), donor transition lines are only visible indi-
rectly, by connecting discontinuities in the Coulomb peaks. We have highlighted these
discontinuities in Figure 4.8(b) with blue dotted lines as a guide to the eye, yet without
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Figure 4.8: Comparison of DC charge sensing and RF reflectometry. Charge stability maps across the
three charge states (D+,D0,D−) of the donor comparing the different charge sensing signals: (a)
DC tunnel current through the SET, (b) annotated version labelling the charge states of the donor and

the transitions in blue. The green linemarked T is due to an unintended charge trap. Insets show the

charge offset at triple points, where the two discontinuities attributed to the donor have the samemu-

tual charging energy offsetting SET conduction lines, whilst the line T has a smaller mutual energy. (c)

Amplitude, and (d) phase of the reflected RF signal, as a function of the two gate voltagesVG1,VG2.

Features related to the dissipative (I) and dispersive (II) response of the resonant circuit are indicated.
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these markers only the charge offset discontinuities are visible. In such a simple de-
vice identifying charge transitions indirectly from the discontinuities is trivial, but it is
foreseeable that the feature identification of charge transitions between multiple donors
may not be so straightforward in a future device containing many donor qubits. The
RF measurements on the other hand are directly sensitive to the donor charge tran-
sitions, and continuous lines may be seen running (almost) vertically through Figures
Figure 4.8(c,d). Not only does the reflected signal allow direct observation of where
the charge transitions occur, but the response is different to that at the SET Coulomb
peaks, because there are two mechanisms through which the applied RF signal produces
a response within the device: a dissipative response, and a dispersive response.

Dissipative response (I) At the Coulomb peaks, an AC current flows through the
RF-SET in response to the AC bias voltage. Since electrons dissipate energy
in passing through the SET channel, this manifests as a finite resistance due
to the 2-stage quantum tunnelling (not present when the SET is in Coulomb
blockade). The presence of this finite parallel resistance RQ damps the resonant
circuit, generating a reduction in the reflected amplitude as seen in Figure 4.8(c).
Since we drive the circuit at f = 172.0MHz, slightly above the natural resonance
(located at f0 = 170.9MHz), this also translates to a positive shift in the phase
signal so that we observe green lines in Figure 4.8(d).

Dispersive response (II) Along the donor transition lines, an AC current flows be-
tween the source terminal and the P donor as electrons tunnel back and forth
without losing energy, manifesting as a quantum capacitance CQ. This has the
result of lowering the resonant frequency which generates a reduction in reflected
amplitude Figure 4.8(c), and a negative phase shift Figure 4.8(d), making the donor
transition lines not only visible in the RF stability maps but also distinguishable
from SET conduction lines.

Positive and negative shifts in the phase signal occur for the 172.0MHz drive frequency
used to obtain the data of Figure 4.8. We next examine the effect of the RF drive
frequency on each of the two AC tunnelling mechanisms.
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4.2.3 Effect of driving frequency on SET and donor
tunnelling processes

The dissipative (I) and dispersive (II) processes are illustrated schematically with arrows
on the device image of Figure 4.9(a). We now further investigate the effect of varying
the RF drive frequency f on these two processes, and the amplitude and phase response
they generate in the resonant circuit.

The dissipative response, due to electrons losing energy as they tunnel through the
SET, is to damp the resonance, and we sketch the effect in Figure 4.9(b). For frequencies
above f0 the phase of the reflected signal ϕ(Γ) increases (green arrow), and below f0 the
phase decreases (purple). In contrast, the dispersive response to tunnelling at a fixed
energy between reservoir S′ and the P donor is a shift of the resonance curve to lower
frequency, illustrated in Figure 4.9(c). This reduces the phase of the reflection at all
frequencies (purple arrow). The scale of the effects in these cartoons is exaggerated for
clarity.

The stability map, shown again in Figure 4.9(d), displays positive/negative phase
contrast between processes I and II because it is measured at a frequency above f0. But
the contrast changes as a function of frequency, as we show in Figure 4.9(e) by taking a
cut along the VG2 axis that passes 3 SET lines and one donor transition. As expected,
we observe a change in the sign of the response for the dissipative (I) RF-SET signal,
which becomes negative for lower drive frequency. On the other hand the dispersive (II)
response does not show this bi-modal behaviour, also as expected. In this plot the phase
difference ∆ϕ is referenced to the local background value which changes as a function of
frequency and gate voltage.

Figure 4.9(f) shows the corresponding change in reflected amplitude ∆|Γ|, normalized
for each frequency. The dissipative (I) process manifests as an amplitude reduction
across the entire responsive frequency band. The maximum change is only a 0.05%

reduction, and is limited by imperfect impedance matching between the resonant circuit
and transmission line. The amplitude response to the dispersive signal (II) is less, at
only ∼ 0.01%.

Being able to discriminate between distinct tunnelling processes is a clear advantage
of RF reflectometry over traditional transport current measurements, and will be of
high value in understanding more complex future multi-qubit devices where multiple
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Figure 4.9: Frequency dependent response of a donor tunnel coupled to a reservoir and a nearby RF-
SET. (a) STM image indicating the different AC tunnelling paths occurring (b) schematic representation

of the frequency-dependent response to reduced device resistance through the SET channel when

aligned to a Coulomb peak, and (c) equivalent schematic for increased quantum capacitance experi-

enced at donor charge state transitions (d) phase response gatemap (repeated from previous figure).

(e) Phase response to a one dimensional gate (G2) scan, now as a function of the tank circuit driving

frequency, showing the observed bipolar response to dissipative SET tunnelling (I), contrasted with a

uniform phase reduction for dispersive donor-reservoir tunnelling (II). (f) Simultaneously recorded am-

plitude response showing a uniform dissipative signal where energy is absorbed by the SET and only a

very weak response to dispersive resonance shift during donor tunnelling.
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dissipative and dispersive tunnelling paths may exist.

4.2.4 Determination of the single donor charging en-
ergy

The two charge transitions of the donor are separated in gate voltage VG2 by a distance
∆V P = 825 ± 3mV, as shown in Figure 4.10(a), and the separation between adjacent
SET Coulomb peaks is ∆V SET = 240 ± 3mV. At the triple points where the SET
and donor charge transition lines intersect (an example is shown at high resolution in
Figure 4.10(b)), there is a small offset in both lines, caused by the electrostatic interaction
between the two charge islands — their mutual capacitance. We define these offsets
schematically in Figure 4.10(c). The offset of δV SET = 38± 3mV in the SET peaks due
to donor charging events, and of δV P = 20± 3mV in the donor transition potential due
to SET charging lines can be used to calculate the mutual charging energy between the
SET and donor EM , and also the neutral donor charging energy EP

C .

EM =
δV SET

∆V SET
ESET

C = 1.6± 0.2meV (4.23)

EP
C =

∆V P

δV P
EM − 3EM = 61.7± 17meV (4.24)

Across the voltage span δV P , three electrons are added to the SET, hence we sub-
tract three times the mutual charging energy (3EM ) to give the single donor charging
energy for the D0 state EP

C = 61.7 ± 17meV. Despite the large uncertainty (due to
the small value of δV P ) this charging energy is consistent with 45 ± 7meV obtained
with measurements of electron transport through an isolated P donor53,69 and optical
spectroscopy69.

In calculating the donor charging energy we also obtain the lever arms αSET
G2 and αP

G2

relating gate voltage to SET and donor potentials. The full set of values are summarised
in Table 4.1.
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Figure 4.10: Determining the single donor charging energy from the observed charge transiঞons. (c)
Gatemap region indicating the voltage spans across one SET stability region δV SET , and theD0 donor

charge state δV P (b) Inset of a triple point, showing the charge offset due to themutual capacitance be-

tween donor and SET. (a) Schematic showing charge degeneracy conditions around such a triple point.

Red lines indicate SET transitions offset by δV SET , for the cases where the donor is singly or doubly

occupied, and blue donor transitions (offset by δV P ) for two SET charge occupancies. The donor charg-

ing energy is determined via measurements of the four voltage spans shown, as well as the SET charging

energy taken directly from a standard Coulomb diamondmeasurement (see next figure).

SET parameters donor parameters

ESET
C 10.2± 0.5meV EP

C 61.7± 16.5meV

∆V SET 240± 3mV ∆V P 825± 3mV

αSET
G2 0.0425± 0.00215 αP

G2 0.0807± 0.0216

δV SET 38± 3mV δV P 20± 5mV

EM 1.615± 0.151meV EM 1.615± 0.151meV

Table 4.1: Values of SET and donor charging energies, lever arms andmutual coupling energy

73



CHAPTER 4. SINGLE ELECTRON CHARGE SENSING BY RADIO FREQUENCY
REFLECTOMETRY

1.2

-0.2

G
S

E
T
 (

u
S

)

20

-20

0

20

-20

0

20

-20

0

20

-20

0

V
S

D
 (

m
V

)
V

S
D
 (

m
V

)

V
G2

 (V) 1.00.8V
G2

 (V) 0.20.0

1.00.8

1.5

-0.5

P
h

a
se

 (
˚)

0.20.0

E
C
SET

D+ D0
D0 D -

D0

D
-

N+1

N

N+1

N

N+1

N

1

4

2

3

P     S  SET  D

N

N-1

1
4

2
3

P     S  SET  D

P     S  SET  D P     S  SET  D

a)

b)

e)c)

d)

Figure 4.11: Coulomb diamond plots at theD+ → D0 andD0 → D− donor transiঞons. Compari-
son of (a) DC SET conductance dISD/dVSD , and (b) reflected phase shift signals atVG1 = 100mV
showing theD+ → D0 transition and (c,d) similar plots for theD0 → D− transition. (e) Energy level

diagrams for the 4 points marked in (b). Blue lines indicate electrochemical potentials of the SETwhen

the donor is unoccupied (D+), red lines indicate the electrochemical potentials of the SETwhen the

donor is occupied (D0), where the potential is increased by themutual charging energyEM . Likewise,

the green line for the donor represents the electrochemical potential of the donor with an additional

electron on the SET.

4.2.5 High bias interaction between donor and SET
states

We can further examine the interaction between the donor and its reservoir by changing
the reservoir voltage. Since the donor’s reservoir and the source of the SET are one
and the same in our device, this results in a Coulomb diamond scan. Figure 4.11(a,b)
show the differential conductance GSET = dISET /dVSD and reflected phase response,
respectively, as a function of bias VSD and donor-gate voltage VG2 for a region including
the D+ → D0 transition, whilst Figure 4.11(c, d) indicates the same for the D0 → D−

transition. From the height of the Coulomb diamonds (marked in Figure 4.11(c)) we
measure an average SET charging energy of ESET

C = 10.2± 1.0meV.
In both of these diagrams we observe a line passing diagonally through the diamond,

with a positive gradient given by the ratio of relevant lever arms, corresponding with
the D+ → D0 and D0 → D− charge transitions
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If we now consider the electronic configuration at four different source-drain bias
points, shown schematically in Figure 4.11(e), along the donor transition line as marked
in Figure 4.11(b) we can understand the differences between the DC SET conductance
and reflected phase response.

• At position 1, in the centre of the Coulomb diamond, there is no source-drain bias
and all SET transport is blockaded with an occupancy of N electrons. Here the
donor D+ → D0 transition is resonant with the source Fermi energy so tunnelling
is allowed on and off the donor, giving additional capacitance and hence a negative
phase response at this point in Figure 3(b), but no conductance response through
the SET in Figure 3(a).

• At position 2, the SET N ↔ N +1 potential comes into resonance with the drain
and current can flow through the SET, but only if the donor is in the D+ state.
Should the donor accept an electron, then the SET energy levels move up by the
mutual charging energy (shifting from the blue ladder of potentials to the red)
and current cannot flow until the donor bound electron tunnels away. This point
defines the onset of DC transport when the donor is unoccupied. Therefore, in
the region between positions 2 and 3, the conductance is non-zero only on the D+

side of the donor transition.

• At position 3, there is enough source-drain bias that the electrochemical potential
of the N ↔ N +1 transition, in both the ionized (blue) and occupied (red) donor
configurations, is within the bias window. As a consequence tunnelling through
the SET is allowed for both D+ and D0 donor states. Here, tunnelling to the
donor is however partially suppressed in the presence of SET transport because
the potential of the donor-source resonance is shifted up and down by EM when
there are respectively N + 1 and N electrons occupying the SET. The result is
that we do not observe a discrete jump in this resonance outside the Coulomb
diamond but instead a gradual shift. This shift appears as an altered slope of the
donor transition outside the Coulomb diamond, as highlighted by the guide-line
overlaid on Figure 3(a,b), suggesting that the time averaged charge occupation of
the SET is non-integer and varies with bias.

• At position 4 the N −1 ↔ N SET resonance, conditional on occupation of the D0

state, is aligned with the drain Fermi energy. Here blockade is initially lifted on the
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D0 side. With increasingly negative VSD, AC charge motion is again suppressed,
as the SET spends some time in both the N − 1 and N electron state, again
producing an apparent change in slope.

With a thorough understanding of the exact device geometry due to the precise nature
of STM lithography, we are able to interpret dissipative and non-dissipative RF response
mechanisms in this hybrid device, even when they occur simultaneously in the high bias
regime of Figure 4.11.

4.2.6 Large lever arm of the tunnel coupled reservoir
sensor

Purely capacitive coupling between a gate and a QD (such as our SET island, or donor)
is parameterised by the lever arm – the ratio of electrochemical potential energy change
to voltage change α = ∆µ/∆V . An increase in gate voltage decreases the QD potential
relative to a fixed Fermi energy, as illustrated in Figure 4.12(a) where an original ladder
of charge state transition potentials (green) is shifted lower (purple) by an increased gate
voltage ∆V , taking a potential µ→ µ−α∆V . With two gates acting in such a manner,
an increased voltage on the first can be compensated by an decreased voltage on the
second, keeping the QD potential constant. As is the case for gate G1, G2 and the SET
island, this compensation results in lines of negative slope in a stability map (such as
Figure 4.8), with a gradient given by the ratio of donor lever-arms −αSET

G1 /αSET
G2 .

For a tunnel coupled reservoir however, there is an additional effect – the reservoir
voltage also modifies the Fermi energy. As Figure 4.12(b) illustrates, the capacitive
coupling electrostatically lowers the donor transition potential, just as it does for a
standard gate, but the increase in voltage of the reservoir also directly lowers the Fermi
level of the reservoir, and by a greater amount – the lever arm of this effect is unity.
The overall response to an increase in voltage ∆V is then an increase in donor transition
potential relative to the Fermi energy of the reservoir, directly in the opposite sense to
a purely capacitive gate. This concept explains the positive slope of donor transitions
previously seen in the reservoir/gate stability maps of Figure 4.11, since to compensate
a positive change in reservoir voltage, a positive change in the gate voltage is needed to
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Figure 4.12: Large effecঞve lever arm of the source reservoir on the donor potenঞal. (a) Schematic of
the standard response to a capacitively coupled gate lowering a quantum dot potential proportionally

with the applied voltage. (b) Equivalent response to a tunnel coupled reservoir. Here the Fermi energy

of the reservoir changes with the applied voltage, in addition to the weaker capacitive shift which is

still present. The combinationmanifests as a large and negative effective lever armα′ = 1 − α (c)

STM image of a device with an independent reservoir tunnel coupled to amulti-donor cluster, which

is also capacitively sensed by an SET consisting of island, source, drain and gate. (d) Stability map of

the independent tunnel coupled reservoir device showing 6 parallel charge transitions, depleting 6

electrons from theQDwithin a reservoir voltage range of 400mV.

keep the donor potential fixed relative to the reservoir Fermi level. The average slope
we measure over the two donor transitions αSET

G2 (1 − αP
G2) ∼ 0.23 indicates that the

effective lever arm of the tunnel coupled reservoir is (1 − α)∼35%, considerably higher
than typical gate lever arm values of ∼ 5% for planar capacitive gates in donor-defined
nanostructures107,108.

Importantly, such a large lever arm would allow the three single donor charge states
(D+, D0, D−) to be accessible within a relatively small voltage range of <250mV on
the reservoir. Increasing the source voltage this much in the hybrid device is imprac-
tical, but such a large lever arm in an independently tunnel-coupled reservoir presents
opportunities to deplete multi-donor clusters to their last electron.

4.2.7 Depletion of a multi-donor quantum dot with an
independent reservoir

Next we demonstrate the utility of an independent tunnel coupled reservoir in another
precision donor device, where the reservoir is separated from the source terminal of
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the SET. Figure 4.12(c) shows an STM image of this device, including a larger multi-
donor quantum dot (circled in blue), directly and independently coupled to a reservoir
at a distance of 15nm. We sense the charge state of this multi-donor QD with an SET
∼ 30nm away. Despite a number of unintentional charge traps producing spurious offsets
in the gate/reservoir stability diagram, Figure 4.12(d) shows 6 parallel discontinuities,
with the expected positive slope, demonstrating the ability add or remove 6 electrons
from this multi-donor QD with a modest span of the reservoir voltage of ∆VRes = 400mV.
For comparison, depleting a few-donor quantum dot by 6 electrons using a capacitively
coupled gate requires a voltage span of over 1600mV65.

Note that increasing the reservoir voltage reduces the number of electrons, and that
beyond VRes = 200mV, no further lines are seen by the SET charge sensor, indicating
that the dot is fully ionised. This proof-of-principle demonstration highlights the benefit
of tunnel coupled reservoirs in terms of strong control over the charge state of the coupled
charge island.

The previous section has outlined the effective use of a reservoir with RF reflectometry
to sense the charge state of the coupled charge island. The principal shortcoming of this
device as a spin sensor is that the reservoir directly coupled to a donor qubit offers no
way of directly performing an energy dependent single-shot spin measurement. This is
because to establish the quantum capacitance, an electron must repeatedly tunnel to and
from the reservoir, losing its spin identity in the metallic sea of electrons of the reservoir.
One way around this is to use a pair of charge islands, and engineer the system so that
the electron to be read out only tunnels locally between the two. We describe such a
device in the following section.

4.3 A few donor double quantum dot device

RF reflectometry is particularly promising for spin readout in a double quantum dot
configuration109,110. In the single dot dispersive sensing case as demonstrated above
in Section 4.2, the localised electron from the donor is repeatedly made to tunnel to a
reservoir, and another electron (of random spin) may tunnel back to replace it. As such,
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it is not possible to detect the spin orientation – tunnelling will quickly become blocked
by a spin down electron within just a few periods of the RF drive frequency, regardless
of the initial spin state.

For a coupled double quantum dot system the two electron eigenstates in the (0,2)
charge configuration are the singlet s and triplet t−, t0, t+ states. If the double dot is
detuned into the (0,2) charge state, both electrons must share the same spatial wave-
function and the resulting exchange energy raises the energy of the t0 state relative to
s. An AC voltage can be used to attempt the charge state transition as sketched in
Figure 4.13(a). AC charge motion occurs for an electron pair with anti-parallel spins,
by tunnelling into the s state, but not for spin-parallel electrons as the t+ and t− states
are higher in energy. This situation is called Pauli spin blockade. The presence of the
AC current between the quantum dots appears as a modified quantum capacitance CQ

to an RF tank circuit. The moving electron remains localised in the double dot system
without ever tunnelling to the reservoir, and so the s/t readout mechanism illustrated in
Figure 4.13(a) is a non demolition measurement (simply meaning that the measurement
process leaves the state projected into the measured eigenstate), permitting a ’single
shot’ measurement of the combined two electron spin state.

In a double quantum dot device that was previously investigated using transport
spectroscopy56, we now use RF reflectometry to extract detailed information on the
electron tunnel rate for each charge state of the two quantum dots, beyond what is
possible with DC measurements. We then demonstrate the singlet/triplet spin parity
readout method and show that we have control over the exchange interaction between
the two electron spin states. The double dot device was initially fabricated by Bent
Weber. I worked with Matthew House to add a resonant circuit for RF measurements
and we conducted the following experiments together. Thse results have been published
in Nature Communications2.

Figure 4.13(b) shows an STM image of the lithographic mask used to define this
double quantum dot device. Source (S) and Drain (D) allow the passage of current
serially through the two QDs. Two gates (G1 and G2) control the electrostatic potentials
of the two quantum dots (D1 and D2). The inner region is shown at atomic resolution
in Figure 4.7(c), indicating the distances and the AC tunnelling paths examined in our
experiment, from reservoir to each individual dot (purple arrow) and interdot tunnelling
(blue arrow). The figure also shows the diagonal offset in the position of the two dots
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Figure 4.13: A double quantum dot device and RF measurement circuit. (a) Schematic energy level dia-
gram for a double quantum dot at the (1,1)↔ (0,2) charge transition. Tunnelling into the singlet ground

state is not possible for electrons with parallel spins, but if the spins are opposite, AC tunnelling be-

tween the potential wells is possible, generating a capacitanceCQ. (b) STM image showing leads (S,D)

and gates (G1,G2) surrounding the double quantum dot. An RF reflectometry circuit is attached to the

drain terminal. (c) Simplified tank circuit schematic, showing the lumped inductor and parasitic capac-

itance which form a resonance at 222.6MHz, and bias tee resistor and capacitor values. The external

reflectometry circuit is similar to that shown in Figure 4.7 (d) High resolution STM image of the inner

device region, showing the distances between source, D1, D2, and drain. The two dots are offset to

allow independent control of the twoQD potentials with the two gates.

with reference to the source and drain axis, which is optimised to provide independent
electrostatic control over each dot by its respective gate111. The resonant circuit is
connected to the drain, as shown in Figure 4.7(d), composed of a 560 nH inductor, which
together with a parasitic capacitance, CP = 0.9 pF, forms a resonance at f0 = 222.6MHz

with quality factor Q ∼ 35. These values are obtained by measuring the reflected RF
phase as a function of frequency in Figure 4.7(e). To allow DC biasing of the drain
along with application of the RF signal, a simple RC bias tee is employed. The external
measurement circuit is similar to that shown in Figure 4.7 in the previous section.

4.3.1 DC transport through the double quantum dot

When we consider electron transport through a serially coupled double quantum dot, a
DC current appears only near the triple points where three independent conditions that
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Figure 4.14: Electron transport spectroscopy in a double quantum dot. (a) Charge stability diagram dis-

playing DC current through the double quantum dot at a source-drain bias of 3mV. (b) double quantum

dot conductance as a function of bias voltageVD and gate voltage along the red dashed line of part (a).

The green dashed line at 0.86V on the gate axis, where Coulomb blockade fails, represents the con-

duction band energy and binding energies aremeasured relative to this point. White dashed lines with

negative slope represent resonances between source Fermi level and a D1 transition potential, and

black dotted lines resonances between drainEF andD2 transition potentials. Insets show schematic

energy level diagrams at the three locations indicated with triangle, diamond, and circle markers. (c)

Measured binding energies for the 2P and 3Pmolecules in electron-volts, computed using the gate off-

set fromECB scaled by the appropriate effective lever arm for the combined gate axis used. All parts of

figure reproduced fromWeber et al. 56

must be met:

ES
F ≥ µD1(N1) (4.25)

µD1(N1) = µD2(N2) (4.26)

µD2(N2) ≥ ED
F (4.27)

Here µDi(N) represents the electrochemical potential for a transition on dot Di between
the N and N − 1 electron charge state, and ES

F and ED
F the Fermi energy of source and

drain respectively.
When these conditions are satisfied, small triangular regions of non-zero current arise

as shown in the DC charge transport map obtained by Weber et al. 56 which we reproduce
in Figure 4.14(a). The locations of individual charge transitions can be inferred by
extending lines from the vertices of the bias triangles, to form the white lines displayed
in Figure 4.14(a). These lines are a guide to the eye, and we note that the location of the
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lowest two transitions are extrapolated by the following procedure: Figure 4.14(b) shows
the DC transport current through the double dot as a function of source-drain bias and
combined gate voltage taking a cut along the red line in (a). Here we see additional
charge transitions appearing as ‘shards’ at the edges of the blockaded regions. Black
dashed lines represent loading of an electron from the drain reservoir onto D2, and white
dashed lines represent electron loading from the source to D1. By extrapolating a black
line from the edge of the first shard, marked ◦ (where the energy level configuration is
illustrated in the lower inset) through the VD = 0 axis, we find the voltage where the
first electron is loaded onto D2. The point where Coulomb blockade at zero bias breaks
down (at the top of the plot) is taken to define the conduction band edge ECB. The
voltage distance to this point, converted to energy units by the appropriate lever arm,
gives the binding energy of the first electron on D2 EB,D2(1) = 261meV. The binding
energies of each charge state can be extracted in a similar way to produce the spectrum
shown in Figure 4.14(c). The electron numbers extracted are then mapped back onto
the gate-gate map of Figure 4.14(a).

This method provides an estimate of the donor transition locations, but it is indirect,
and so carries large uncertainties (EB,D2(1) = 261± 34meV).

4.3.2 Direct observation of single charge transitions
with RF reflectometry sensing

In contrast, individual charge transitions of each quantum dot are clearly and directly
visible with an RF reflectometry measurement, because AC tunnelling may occur when
any one of the three resonance conditions (Equations (4.25) to (4.27)) is met. Figure 4.15
shows a comparison of the transport current (a) and changes in the phase (b) and
amplitude (c) of the reflected RF signal as a function of the two gate voltages, all
measured simultaneously. Without the need for guidelines as in Figure 4.14(a), the RF
response directly shows the charge state transitions as bright lines. For example the
phase response in (b) displays a clear line separating the (0,1) and (0,2) regions. The
positions of these single dot charge transitions agree well with the positions estimated
previously from the high bias DC measurements of Figure 4.14(b).
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4.3.3 Analysis of tunnel rates for different electron
occupations

Variations in the dot-reservoir tunnelling rate can be distinguished with our RF reflec-
tometry measurement because the relationship between tunnel rate and RF excitation
frequency determines whether the response is dissipative (resistive) or dispersive (capac-
itive) in nature. Interestingly, in Figure 4.15, we see that most QD charge state tran-
sitions appear primarily in the phase response, except at the lower electron numbers,
where they appear more strongly in the amplitude channel. Analysing these comple-
mentary pieces of information allows us to estimate the tunnel rates, providing valuable
guidance on how to design future donor-based devices within a range of tunnel rates for
optimal detection sensitivity and qubit operations.

To examine the tunnel rates in detail, Figure 4.16 plots the phase (a) and amplitude
(b) responses of each of the five dot–lead transitions indicated with shape markers, as a
function of the chemical potential of the dot relative to the Fermi level of the lead, ∆µ.
Consider the first three of the transitions (hexagon, triangle, circle), one of D1 and the
two lowest transitions of D2. Each have different peak phase and amplitude response, but
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Figure 4.16: Tunnel rate determinaঞon by analysis of the reflected signal linewidths. Shapemarkers
correspond to those in Figure 4.15. (a) Phase shift while scanning across each charge transition (nor-

malised to a real energy detuning on the x-axis), each transition offset for clarity. Red curves on the

lower electron number lines are fit to a thermally broadenedmodel, green curves on the high electron

number lines to a lifetime broadenedmodel. (b) Amplitude response across the same transitions. Sig-

nificant signal is only seen in the low electron number cases, where tunnel rates are on the order of f0
(c) The extracted peak heights in the phase response for theD2 transitions plotted together, on a cali-
brated axis showing the expected quantum capacitance required to generate such a signal. (d) Equiva-

lent analysis for the amplitude signal, mapped to the quantum conductance added by the AC tunnelling

for each line in (b). The yellow shading represent the tunnel rate rangewhere the dispersive phase re-

sponse is greatest.

all three have the same width in ∆µ. This indicates that they are in the regime in which
the width of the transitions is determined by the electron temperature, ~γ ≪ kBT , and
the quantum capacitance and resistance are determined by Equations (4.21) and (4.22).
At ∆µ = 0:

CQ =
α′2e2

4kBT

(
1 +

ω2

γ2

)−1

(4.28)

RQ =
4kBT

γα′2e2

(
1 +

γ2

ω2

)
(4.29)

We fit the measured peak response to estimate the tunnel rate γ for each transition.

• For the D1 transition, N1 = 0 ↔ 1 (hexagon marker), the nonzero phase response
indicates that the tunnel rate is at least on the order of the drive frequency, but
it is still less than the thermal energy (as the peak is not thermally broadened).
The lack of amplitude response can be explained because the AC tunnelling is
occurring to and from the source lead, and reflectometry on the drain lead is
insensitive to energy dissipation in the other half of the device. Consequently we
estimate a tunnel rate γ ∼ 1× 109 − 1× 1010s−1.
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• The first transition of D2, N2 = 0 ↔ 1 (triangle), has a reduced phase response
but a significant amplitude response, an indication that the tunnel rate is close
to the drive frequency f0 = 222.6MHz. As such we estimate a tunnel rate of
γ ∼ 1× 108s−1.

• The second transition, N2 = 1 ↔ 2 (circle), is similar but with a larger phase
response, indicating a faster tunnel rate. We therefore estimate ∼ 2.5× 108s−1.

The peak phase response of the two transitions of D2 are plotted together against the
tunnel rate estimates as a red triangle and circle in Figure 4.16(c). The peak amplitude
responses are plotted in Figure 4.16(d) along with red and blue curves that are an
empirical fit to Equations (4.28) and (4.29) based on those two data points. Note that
we plot the inverse of the quantum tunnelling resistance 1/RQ, since the conductance
relates approximately linearly with the peak amplitude response.

In contrast, the two highest electron number transitions of D2, N2 = 2 ↔ 3 (square)
and N2 = 3 ↔ 4 (star), have responses that are broader than the others in ∆µ, an
indication that the tunnel rate is larger than the thermal energy, ~γ ≫ kBT . No
amplitude response is expected in this regime since the AC conductance is effectively
zero. Here the quantum capacitance can be defined as106:

CQ =
α′2e2

π

(
~γ

~2γ2 +∆µ2

)
(4.30)

(4.31)

By fitting this equation to these two transitions (green square and star), we estimate
tunnel rates of 2.2× 1010s−1 and 1.1× 1010s−1, and these points are also plotted on
Figure 4.16(c).

The tunnel rate analysis on the four D2 charge state transitions in particular demon-
strates that tunnel coupling changes significantly for each electron transition, from
∼ 100MHz for the first electron to ∼ 22GHz for the fourth. As electrons are added to
the few-donor quantum dot, the multi-electron wavefunction expands spatially65,112,113.
Since the tunnel coupling depends on the wavefunction overlap, this produces a larger
tunnel rate, exemplified in Figure 4.16(c,d). The yellow shading in the figure illustrates
the full range of tunnel rates over which reflectometry detection is most favourable.
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Frequency dependent response

We further examine the RF response at each of these five transitions, by measuring the
reflected phase and amplitude over a range of drive frequencies out to 4MHz either side
of the f0 = 222.6MHz resonance, as shown in Figure 4.17. There are qualitatively three
types of behaviour across the five transitions shown, and we show a schematic for each
case representing the qualitative change in the resonance curve alongside each subplot.

• In the high tunnel rate case γ ≫ f0 (square, hexagon, star markers), the AC
tunnelling between the dot and drain reservoir is non-dissipative, contributing
only a quantum capacitance which lowers the resonance frequency. As we saw in
Figure 4.9, a lower resonant frequency translates to a negative shift in the reflected
phase for frequencies either side of f0. This is observed in Figure 4.17(a,d,e). The
amplitude peak due to the resonance also shifts lower in frequency, meaning that
the amplitude increases below f0 and decreases above f0, which we observe as a
bi-modal response in Figure 4.17(f,i,j).

• For the case of intermediate tunnel rate γ & f0 (circle marker), there is both a
capacitive and resistive component to the response, but the capacitance domi-
nates. The outcome is a negative shift in resonance frequency combined with a
small damping of the resonance. We observe only a negative phase response in
Figure 4.17(c), slightly skewed to frequencies below f0. The amplitude response
in Figure 4.17(h) only exhibits a very weak positive signal below resonance and a
stronger positive shift at and above f0.

• With a slower tunnel rate γ . f0 (triangle marker), the resistive effect dominates
instead. The result is significant damping with only a slight shift in resonance
frequency. In Figure 4.17(b) we observe a weak bipolar signal confirming a damped
resonance, and the amplitude response in Figure 4.17(g) is negative across all
frequencies.

In summary, we have examined the relationship between electron tunnel rates and
the resulting RF reflectometry response. For tunnel rates below the resonant frequency
(< 2.2× 108s−1), electrons cannot tunnel fast enough to respond to the RF drive voltage,
and reflectometry is not an effective method. For large tunnel rates (> 1× 1010s−1, e.g.
N2 = 3 ↔ 4), the measured phase shift becomes broader and smaller in magnitude as the
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Figure 4.17: Frequency dependence of phase and amplitude response for different tunnel rates. (a-e)
Phase shift while scanning across each charge transition, as a function of detuning potential and RF

drive frequency. All but (b) show purely negative phase response. With a low tunnel rate, (b) shows a

bipolar response above and below δf = 0 as here the dissipative resonance damping effect becomes
significant. (f-j) Amplitude response across the same transitions. Significant asymmetric response is
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nance frequency. Blue indicates a negative shift, red a positive shift relative to the background value.
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quantum dot becomes less well confined, and the resonance becomes lifetime broadened.
Future donor-based devices should be designed to have tunnel rates in the middle range
for optimized RF detection. This optimal zone is shaded yellow in Figure 4.16(c,d)
representing the range 1× 108 to 1× 1010s−1 in the current setup. The optimal range
could however be broadened by reducing the electron temperature (which increases the
effective quantum capacitance and phase shift) or lowering the resonant frequency of the
reflectometry circuit (which allows for sensing of slower tunnelling events).

4.3.4 Pauli spin blockade and dispersive singlet triplet
state readout

In DC transport measurements of this double quantum dot device, Weber et al. 56 pre-
viously observed Pauli spin blockade at the (1, 3) to (0, 4) charge transition, visible as
a suppression of current at the triple point with bias voltage applied in one direction,
but not the other.

Figure 4.18(a) and (b) show the two bias directions. In Figure 4.18(a), electrons tunnel
from D2 → D1, and since the (0,4) state is filled from the metallic drain reservoir, an
electron with appropriate spin can form the (0,4)s singlet state. A strong DC current
flows at the base of the bias triangles where the dot potentials are equal. However, in
Figure 4.18(b), with the opposite bias, electrons must flow the other way D1 → D2. If,
in the (1,3) charge state, the single electron of D1 and the unpaired electron of D2 have
parallel spins, the system is said to be in Pauli blockade, since tunnelling to the singlet
ground state is forbidden by the Pauli exclusion principle. Only if the triplet excited
states t−, t0, t+ enter the bias window is the blockade lifted – as evidenced by the finite
current seen at the point of the bias triangles in Figure 4.18(b). The distance from this
point to the triangle’s base provides a measure of the singlet triplet exchange energy for
the (0,4) charge confiiguration ∆ST = 8± 1meV.

Just as Pauli blockade can suppress DC current, it will also suppress AC charge
motion, as has been observed by Schroer et al. 110 in an InAs nanowire device shown in
Figure 4.18(c). Gates VLP , VM , VRP are used to locally deplete the nanowire, confining
single electrons to two quantum dots. With a resonant circuit attached to one end of
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Figure 4.18: Pauli blockade and the singlet-triplet exchange energy in double quantum dots. (a) High
bias DC transport current through our double quantum dot at the (1, 3) ↔ (0, 4) charge transition.
Bias triangles exhibit current flow for the forward bias case where electrons tunnel from the (0,4) state

to (1,3) (b) Suppressed current within the bias triangles for the reverse bias, as tunnelling from (1,3) into

(0,4) is only allowed if the single electron onD1 is anti-parallel to the unpaired third electron of D2, so

that transport can proceed through the singlet ground state of D2. The system is Pauli blockaded by a

pair of parallel spins, preventing current flow, unless the bias exceeds the singlet-triplet energy differ-

ence. Reproduced fromWeber et al. 56 . (c) SEM image of a gated InAs nanowire double quantum dot

device, with reflectometry circuit. Reproduced from Schroer et al. 110 . (d) Reflected phase signal of the
InAs device at the (1,1)↔ (2,0) transition as a function of magnetic field. At zero field the groundstate

of the two isolated spins is the s singlet, such that tunnelling between the charge states is allowed. With

increasing field, the t− triplet state energy decreases, eventually becoming the ground state, at which

point the reflectometry signal disappears. Reproduced from Schroer et al. 110 .

the nanowire, an RF signal drives AC tunnelling between the two dots, producing a
quantum capacitance and associated phase shift signal as shown in Figure 4.18(d). Here
the reflected phase signal varies as a function of magnetic field and the electrochemical
potential detuning between the two dots ϵ = µ2−µ1. For zero magnetic field, the singlet
state s is the spin ground state for both the (1,1) and (2,0) charge configurations, and
when the potential of these states are equal, AC tunnelling is present – as evidenced by
the phase shift due to the added quantum capacitance in the double quantum dot. As
B increases, the energy of the t− state is reduced, eventually becoming the spin ground
state in the (1,1) configuration above ∼ 100mT, and beyond this point, AC tunnelling
is suppressed by Pauli blockade – the quantum capacitance, and hence the phase shift,
disappears.

In our planar donor defined double quantum dot, we operate with an additional 2
‘spectator’ electrons on D2, paired up with zero total spin, so the dynamics are the
same as for a simple two electron system. Inter-dot tunnelling is a distinct process from
dot-reservoir tunnelling, so we must now consider the relationship between quantum
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capacitance and the interaction strength of the two dots.
The quantum capacitance for the singlet state at the inter-dot transition109 obeys:

CQ = −α2
ϵe

2∂
2E(s)

∂ϵ2
(4.32)

= −α2
ϵe

2 ∂
2

∂ϵ2

(√
(
ϵ

2
)2 + t2c

)
(4.33)

= −α
2
ϵe

2t2c
4

(√
(
ϵ

2
)2 + t2c

)− 3
2

(4.34)

where the detuning ϵ is the difference in energy between the (0, 4) and (1, 3) charge
states, αϵ = αD1 − αD2 = 0.32meV/mV is the geometric factor that relates ϵ to the
voltage on lead D, αD1 (αD2) is the effective lever arm of the drain reservoir over D1

(D2), and E(s) = −
√

( ϵ2)
2 + t2c is the dispersion relation for the singlet state, illustrated

by the lower red line in the energy level diagram of Figure 4.19(a). In the diagram, an
anticrossing is seen between the (1, 3)s and (0, 4)s singlet states with a width of 2tc. The
tunnel coupling tc defines the intrinsic interaction energy at zero detuning. The triplet
states, which are all degenerate at zero magnetic field, do not anticross, since the (0, 4)t

states are separated by a large onsite exchange ∼ 8meV as established in Figure 4.18(b).

We see the effect of the interdot quantum capacitance CQ in Figure 4.19(b), showing
the reflected phase response at the (1,3) ↔ (0,4) transition. Taking a cut along the
axis marked ϵ, produces the resonance curve plotted in (c). Since the phase response is
proportional to CQ, we fit the width of this peak to Equation (4.34) (red curve), providing
a direct measure of the inter-dot tunnel coupling tc = 47± 5µeV. This improves on the
estimate of ∼ 200µeV given by Weber et al. 56 , which was based on a multi-parameter
fit to resonant tunnelling data.

4.3.5 Control over the inter-dot tunnel coupling strength

In Figure 4.19(d), we repeat the measurement of the inter-dot transition with a mag-
netic field B=2�T applied. Here we see that the inter-dot phase response disappears
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Figure 4.19: Readout of singlet and triplet spin parity states and inter-dot tunnel coupling measure-
ment. (a) Schematic showing the eigenstates of the effective two electron system (assuming the first

two electrons onD2 are non-interacting) as a function of the detuning energy ϵ (b) Phase response at
the inter-dot transition between (1,3) and (0,4) charge states, reflecting localised AC chargemotion. (c)

Line trace cutting the inter-dot resonance along the black arrow in (a). Red line is a fit to Equation (4.37).

(d) Suppressed phase signal in the same regions with the application of amagnetic fieldB = 2T (e)

Transition from singlet to triplet ground state with increasing B field. The dashed line represents the

degeneracy point ϵD .

completely. This can be understood because the magnetic field has lowered the (1, 3)t

state in energy so that it is the ground state at ϵ = 0. This state, shown by the blue
line in Figure 4.19(a) has a linear dispersion relation, hence ∂2/∂ϵ2 = 0 and there is no
quantum capacitance. In other words, Pauli blockade prevents tunnelling into (0,4) so
there is no AC charge motion and no measured phase response in this case.

Finally, we examine the onset of Pauli blockade as the magnetic field is increased in
Figure 4.19(e). The plot shows how the inter-dot phase response varies with respect to
detuning energy and applied magnetic field. We map out the singlet–triplet ground-state
transition, which occurs at a detuning ϵD as indicated in (a) at the intersection of the
s and t− lines. The phase response disappears at high B when the ground state of the
system becomes the t triplet state. This crossing point occurs at a different magnetic
field value for each point in detuning according to the equality:

E(t−) = E(s) (4.35)
ϵD − gµBB

2
= −

√
(
ϵD
2
)2 + t2c (4.36)

B =
2
√

( ϵD2 )2 + t2c + ϵD

gµB
(4.37)
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The dashed line overlaid on the phase data indicates this singlet–triplet degeneracy point
B(ϵD) and is plotted by setting tc = 47µeV as extracted above, and using the electron g-
factor in silicon g=2. We see that the disappearance of the phase response matches well
with the expected ground-state transition dependence on B and ϵ. The degeneracy line
is asymmetric with respect to detuning, which we expect because the exchange energy
J = E(t0)−E(s) is smaller when the electrons are separated in the (1, 3) configuration
and increases as the detuning field pushes them towards the (0, 4) transition. The
Zeeman energy at which the phase response disappears at each detuning point constitutes
a direct measurement of the exchange energy across the charge degeneracy line, which
changes from about 20µeV to 120µeV over the observed range in this measurement.
Since we have seen56 that the exchange energy is as high as 8meV at high detuning,
these results demonstrate that we can control the exchange energy by almost 3 orders of
magnitude in donor-based double quantum dots using monolayer-doped, in-plane gates.

These results show the promise of donor defined QDs towards the implementation of
a two qubit gate operation, where the exchange interaction must be switched by at least
2 orders of magnitude with precise control in both time and energy114. Future work
will develop precise time resolved control over J and address the competing effects of
unwanted co-tunnelling in and out of the dots, as well as nuclear spin interactions which
may impact coherent exchange coupling.

4.4 Conclusions and outlook

We have demonstrated complementary charge sensing methods in a deterministic single
donor device fabricated at the atomic scale by STM hydrogen resist lithography. DC
charge sensing with a capacitively coupled SET provides an indirect readout of the donor
charge state, only visible at a discrete number of charge triple-points. In contrast, RF
reflectometry provides fundamentally more information based on the quantum tunnelling
capacitance and resistance that accompanies lossless and dissipative AC charge motion.

We have shown that a single terminal can function as electron reservoir, gate, and
dispersive sensor. Using a hybrid device, we performed a direct comparison of the
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charge sensing behaviour of the dispersive reservoir sensor to a traditional SET. The
reflectometry signal provided clear distinguishability between our intentionally placed
single P donor and an accidental charge trap. One significant advantage of the RF
method is continuous sensitivity across the entire gate-space. Charging events can be
observed at all degenerate points in the gate-space, not just at specific triple-points.

We demonstrated that the electrostatic coupling of a tunnel coupled reservoir is many
times greater than that achievable with capacitively coupled gates. The large lever arm
(α ∼ 0.35) we observed is desirable in terms of addressability in multi-qubit devices, and
because it permits greater control over the charge state of a donor quantum dot within
a smaller voltage range.

We showed, by analysing the amplitude and phase response of charge transitions across
different electron numbers in a double quantum dot device, that RF reflectometry has
potential to probe the tunnel coupling strength between donors or other electrically
isolated structures.

We performed singlet-triplet state readout based on Pauli spin blockade using the
RF reflectometry technique, and also demonstrated control over the exchange copuling
from 20µeV to 120µev, an important first step toward achieving two qubit interactions
in donor devices.

These considerations, as well as the small footprint of the dispersive reservoir sensor,
position RF reflectometry as a crucial tool for scalable single electron charge sensing in
atomic scale donor based qubit devices.
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5
Addressable and coherent operations on
interacting donor electron spin qubits

Single electron spin states have been observed in numerous single donor and few
donor precision quantum dot devices in recent years, and in these devices extremely high
spin readout fidelity (> 99%) has been demonstrated using SET charge sensors55. The
localised electron cannot be properly described as a qubit however, without the ability to
control its spin state. This chapter details the achievement of qubit control using electron
spin resonance (ESR) techniques, and the first demonstration of single qubit gates in
an atomically precise donor nanostructure. With the long term goal of scalability in
mind we have performed single qubit operations in a device architecture consisting of
two qubits. This has allowed us to demonstrate a means of addressing individual qubit
operations although they are separated by less than 20nm, and to observe the onset of
interaction between two donor-defined qubits.

After a review of spin resonance experiments on phosphorus donor electron spins,
and a number of schemes for addressing individual qubits, the results presented in this
chapter concern two similar ‘two qubit’ devices, shown in Figure 5.1(a) and (g). In both,
we employ a DC-coupled SET charge sensor, for single shot spin readout.
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Figure 5.1: Overview of the devices and key results of this chapter. (a) STM image of the 1P/2P two

qubit device used for the first twomajor results of this chapter. (b) Schematic stability diagram indicat-

ing operating points for independent readout and initialisation of the two qubits, and (c) anti-correlated

spin states indicating the onset of a spin-spin interaction between them. (d) Fabrication of amicrowave

antenna registered to the location of the qubits. (e) Electron spin resonance spectrum of the 1P qubit

showing two peaks – due to the spin up and down nuclear states. (f) the 2Pmolecule spectrum, showing

three peaks – due to the four spin states of two nuclear spins (g) STM image of the second two-qubit

device used for the final set of results in this chapter. (f) Coherent rabi oscillations of an electron spin

state, and (g) the onset of decoherence as a function of time.

In the first part of the chapter we characterise the electron spin states of the device
pictured in Figure 5.1(a) which is a 1P/2P double quantum dot device. We quantify
the spin relaxation behaviour through independent initialisation and readout around
the (0, 2) ↔ (1, 1) charge state transition as indicated in Figure 5.1(b), and examine
the onset of the exchange interaction between the two qubits as shown in Figure 5.1(c),
critical in establishing a non-interacting regime in which to perform the following single
qubit experiments.

In the second part of the chapter we describe the integration of a broadband microwave
antenna, carefully registered to the atomic scale features, shown in figure Figure 5.1(d)
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to apply an oscillating magnetic field and drive resonant electron spin rotation. We
measure the electron spin resonance spectrum of the 1P and 2P qubits, characterising the
hyperfine interaction between the qubit electron and its 1P or 2P donor host nuclei. The
ability to selectively operate on a chosen qubit cannot be taken for granted, particularly
with a spatial separation of < 20nm. Here we demonstrate the effectiveness of qubit
addressability based on having a different number of donor atoms for each electron qubit,
giving a unique in-built hyperfine energy, where each electron responds to a unique set
of frequencies as illustrated in Figure 5.1(e,f).

The 1P/2P device was successfully characterised before an electrical discharge dam-
aged the antenna. As a consequence, a nominally similar device, shown in Figure 5.1(g)
was made. The latter part of this chapter demonstrates controlled spin rotations with
a maximum Rabi frequency ωR ≈ 1.18MHz, displayed in Figure 5.1(h). This coherent
control allows us to measure the electron dephasing time T ∗

2 ≈ 300ns and decoherence
time T2 ≈ 300µs, shown in Figure 5.1(i) for the first time in a planar, donor-defined
precision qubit device.

These results represent the first demonstration of full single qubit operation in a
wholly donor-defined precision nanostructure capable of high fidelity initialisation and
readout. Together with controllable interactions our results provide a major advance in
the development of a donor-based atomic-scale quantum computer.

5.1 Electron spin resonance and decoherence
in donor ensembles and single donors

To contextualise our results, we begin with a review of spin resonance measurements
made on phosphorus donor electron spins in bulk silicon and more recent observations of
electron spin qubit behaviour for single donors implanted within nanoelectronic devices.
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5.1.1 Donor bound electron ensembles in natural and
isotopically purified silicon

Electron spin resonance on an ensemble of donor-bound electron spins in bulk silicon is
not a new technique, the first measurements were made in the late 1950s115,116. These
earliest measurements provided values for the T1 relaxation time of greater than 10s

for temperatures below 4K and for the T2 decoherence time, 240µs in natural silicon
containing a phosphorus donor concentration of 3× 1016 cm−3 and at 1.4K. Indeed
these long (compared to other candidate qubit systems) relaxation and coherence times
was one of the key motivations behind the seminal proposal of Kane 45 in 1998. More
recent measurements with improved instrumentation and lower donor concentrations
have provided extensive information about the mechanisms causing decoherence and
relaxation at different temperature and donor concentration117, isotopic purity of the
silicon118, and the angle of the crystal axes119 relative to B0. The measurements, at the
simplest level, involve placing a sample containing a certain concentration of donors (in
modern experiments typically on the order of 1× 1015 cm−3) in a cryostat and within a
large external magnetic field B0. An AC magnetic field B1 is applied perpendicular to B0

in resonance with the Larmor precession of the electron spins, which in the rotating wave
approximation appears as an effectively static magnetic field, and so causes the spins to
rotate about the X axis in their rotating reference frame. Before an experiment begins
the electron spins are in an equilibrium distribution, with some thermal excitations across
the ensemble but the majority in the ground state, and so it is convenient to consider
the ensemble average spin state. The measured ‘echo intensity’ signal in the following
bulk ESR literature is due to the transverse component of the net magnetic moment
of the ensemble precessing about the B0 field and thereby inducing an AC current in a
sensor coil.

Spin resonance pulse sequences

We briefly describe two canonical pulse sequences used to measure relaxation T1 and
decoherence T2 timescales in bulk ESR experiments. These are shown in 5.2(a).

Hahn Spin Echo To measure the T2 decoherence time, the B1 field is pulsed on and
off in a spin echo sequence named after its inventor120 – shown in the top panel of
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Figure 5.2: Electron spin coherence in bulk ensembles of 31P donors. (a) schematic of the inversion
recovery sequence commonly used tomeasureT1 spin relaxation andHahn spin echo sequence tomea-
sureT2 spin decoherence. (b) Hahn echo data reproduced fromAbe et al. 118 showing extension of the
spin coherence out to beyond 1mswith reduced 29Si isotope concentration. (c)T1 andT2 data repro-
duced from Tyryshkin et al. 117 indicating the dependence on temperature and donor concentration.
Squares areT1 values bounding the circularT2 data points for high temperatures. At lower temper-
ature theT2 time saturates. Stars indicatemeasurements made to suppress residual dipole-dipole
mediated decoherence (see text) (d) spectral diffusion limitedT2 data reproduced from

119 showing

a dependence onmagnetic field orientation relative to the crystal axes of the characteristic spectral

diffusion time and decay exponent (see text)
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5.2(a). This begins with a π/2 pulse to place the magnetisation vector in the trans-
verse plane. Since each electron in the ensemble experiences a slightly different
local B0 field due to differing local nuclear spin environments and dipole interac-
tions with other electrons, they all precess at different frequencies, dephasing over
a wait time τSE . At this point a π pulse is applied to flip every spin, effectively
reversing the direction of dephasing. Provided that each individual electron has
remained independently phase coherent, after a second and equal wait time, all
electrons in the ensemble will have recovered their individual phase offsets and the
net magnetisation will produce a strong signal, the echo of the initial transverse
magnetisation following the π pulse. If the wait time τSE is beyond the coherence
time T2 of the electron spins, the second wait period will not undo the effect of
the first, and no clear echo will be observed. The initial echo intensity decays to
1/e the peak value when τ = 2τSE = T2.

Inversion Recovery To measure the T1 relaxation time, the B1 field is pulsed on and
off in an ‘inversion recovery’ sequence shown in the lower panel of 5.2(a). The se-
quence begins with a π rotation to invert the equilibrium ground state population,
leaving a majority of electrons in the excited state. After a variable delay time
τIR, a π/2 pulse projects any remaining excited spins onto the transverse plane
where the net magnetisation vector precesses, emitting a rotating dipole field that
excites a signal current in the sensor coil. For τIR < T1, the full inversion is seen
in the readout signal, while for larger delay times the signal decays as relaxation
processes recover the inversion before the second pulse occurs. A fraction 1/e of
the peak signal remains when τIR = T1.

Spectral diffusion in isotopically natural silicon

A dominant cause of decoherence for donor bound electrons is the presence of uncon-
trolled magnetic field fluctuations due to the bath of randomly fluctuating nuclear spins
surrounding the electron – termed the Overhauser field effect121. Silicon has three nat-
urally present isotopes, two of which are spin free: 28Si and 30Si; only 29Si, which has a
natural abundance of 4.7%, has a nuclear spin 1/2 and contributes to Overhauser field
fluctuations. Abe et al. 118 measured electron spin coherence in a series of samples – bulk
P doped silicon with varying concentration of the 29Si isotope, the result is reproduced
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in Figure 5.2(b) which shows an echo intensity as a function of the wait time τ in a Hahn
spin echo experiment. In 99.2% 29Si, the coherence is extremely short-lived (T2 ≈ 10µs

- red curve), natural isotopically abundant silicon (with around 5% 29Si - teal curve)
displays T2 ≈ 200µs, and when the 29Si concentration is reduced to less than 1% (purple
curve), the coherence is extended further to > 1ms. The inverse relationship between
29Si concentration and T2 is attributed to ‘spectral diffusion’ caused by the fluctuating
bath of 29Si nuclear spins. Temporal fluctuations in the local B0 field for each electron
in the ensemble are caused by random flip-flops of pairs of nuclear spins interacting via
the dipole-dipole interaction, in agreement with a theoretical model proposed by Witzel
et al. 122 123. They argue that this mechanism persists also in the case of a single electron
spin qubit in natural silicon124 since the nuclear spin bath environment remains the same
moving from an ensemble of many donor bound electrons to a single isolated electron.
Decoherence in the prescence of spectral diffusion is described by a non-exponential echo
intensity decay of the form119:

I =
I0

exp [2τSE/T2e + (2τSE/TSD)
n]

(5.1)

where a characteristic spectral diffusion time TSD and the exponent n describe the
spectral diffusion process, and the simple exponential term containing T2e encompasses
other residual decoherence effects. Both TSD and n are sensitive functions of the electron
wavefunction density at the flip-flopping nuclear spin sites. It was found by Tyryshkin
et al. 119 (in a natural silicon sample with P donor density 8× 1014 cm−3 and at 8K)
that the exponent n varies between 2 and 3, depending on the crystal orientation in the
magnetic field, as shown on the right hand axis (circles) of Figure 5.2(c). Here they also
observed that the associated characteristic spectral diffusion time (left axis; squares) is
maximised with the B0 field aligned to the [100] crystal axis, reflecting the anisotropy
of the underlying electron-nuclear dipole-dipole interaction as predicted by the theory.

Residual decoherence effects in isotopically purified silicon

Knowing that spectral diffusion is the dominant cause of decoherence in P donor electron
spins at low temperature in silicon of natural isotopic abundance, the results above have
motivated the use of isotopically purified 28Si, to significantly extend the coherence
time. Experiments by Tyryshkin et al. 117 have examined the remaining decoherence
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after removing the majority of 29Si – in samples with as little as 50ppm residual 29Si.
They measured the T1 relaxation rate using the inversion recovery sequence as a function
of temperature, observing variation by 8 orders of magnitude from ∼ 2000s at 1.2K to
∼ 20µs at 15K, as shown by the black squares in 5.2(d). Relaxation is understood to be
due to phonon mediated interactions between valley states – termed ‘valley repopulation’
at low temperatures116, and dominated by a so-called Orbach process above ∼ 7K125.

Figure 5.2(d) also displays T2 measurements of three samples with varying P donor
concentration (red: 1× 1014 cm−2, blue: 1× 1015 cm−2, green: 1× 1016 cm−2) as a func-
tion of temperature, showing that the coherence time is T1 limited above 10K. At increas-
ingly lower temperatures, T2 saturates at a value dependent on the P density. The red
curve, with lower donor density saturates at a higher value of T2. The inverse relation-
ship shows that in the absence of a nuclear spin bath, the now dominant decoherence
mechanism is an interaction with neighbouring donor electrons within the ensemble.
The effect becomes weaker as the distance between donor sites increases, and hence the
coherence time improves with reduced donor density, from the green circles, through
blue, to red with the lowest P concentration. The saturation arises because of small in-
stantaneous changes in one electron’s effective B0 field, due to the effect of other nearby
electron spins being flipped (by the applied ESR echo pulses). The total effect for each
spin is unique depending on the exact local arrangement of donors, and so is similar to
spectral diffusion, yet changes only occur at the moments ESR pulses are applied, and
so this effect is known as ‘instantaneous diffusion’126. It is evident that instantaneous
diffusion, unlike spectral diffusion, is not applicable in the case of a single donor spin –
since there is no bath of nearby dipolar coupled electrons.

The starred data-points in 5.2(d) represent the application of a strategy to mitigate
instantaneous diffusion by reducing the duration of the ESR pulses (replacing a 180◦

rotation with a 14◦ rotation), at the cost of a reduced overall signal intensity. The authors
extrapolate their result (toward zero angle rotations) to claim an effective T2 = 1s

with infinitely short ESR pulses. Of course this is not practical, but by removing the
effect of dipolar interactions with other donors, gives an idea of the timescale achievable
with a single electron qubit ESR experiment, as opposed to an ensemble. This effect
of instantaneous diffusion has been a motivating factor behind alternate strategies for
reading out ensemble spin resonance signals electrically127 or optically128 (rather than
detecting the magnetic moment directly), so that the density and total number of spins
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can be reduced while retaining a signal strong enough to measure. The optical strategy in
particular has been effective in achieving highly polarised initial states and consequently
strong signals even with very low P concentration (< 1× 1012 cm−2), extending the
current state of the art T2 time for electrons to over 3 minutes37.

5.1.2 Single electron spins in nano-structures

Performing a spin resonance experiment on a single electron requires the ability to mea-
sure the spin projection of the single electron. Although a single electron magnetic
moment is too small to easily observe directly, the measurement can be done by map-
ping the spin state to a charge state and then observing the charge state with a device
sensitive to single electron charges.

Single spin resonance pulse sequences

We now briefly describe three spin resonance experiments, using a single spin. These
are illustrated in 5.3(a). The principal difference here compared to the ensemble case
is that the readout relies on the longitudinal (Z) projection of the spin state, and not
the transverse (X-Y) component, and that being a single quantum state, a single mea-
surement can have only one of two outcomes. Hence the experiment must be repeated
numerous times to determine the probability of projecting into either eigenstate. The
set of repeated measurements forms a ‘temporal ensemble’, which can exhibit inhomo-
geneous broadening phenomena analogous to spatial spin ensembles, despite there being
only one real electron spin present.

Rabi Oscillation To calibrate the strength of the applied oscillating magnetic field
(Rabi field), cyclic rotations of the spin vector can be observed in two ways. A
B1 pulse is applied at a certain power level for a certain duration τpulse before
being measured, as shown in the left panel of 5.3(a). The angle of rotation of the
electron’s spin vector, away from its initial state, is proportional to the product
of the field magnitude and τpulse. Varying either one will change the Z-projection
of the final state in a periodic way, producing oscillations in the measured spin.
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Figure 5.3: Previous studies of electron spin resonance on single electron spins in nanostructures. (a)
Schematic diagrams outlining the Rabi driven spin rotation, spin echo linewidth, and Hahn echo se-

quences (see text). (b) Reproduced SEM image of the device used by Koppens et al. 30 showing the
microwave antenna encircling the gate defined quantum dot beneath it. (c) Rabi oscillation data re-

produced fromKoppens et al. 30 illustrating the duration and power dependence of coherent electron
spin rotations. (d) Reproduced SEM image of the device used by Pla et al. 49 showing how a single donor

from amoung∼ 30 implanted P atoms is tunnel coupled to a readout SET, and next to amicrowave an-
tenna. (e) Spin echo envelope and (f) spin echomeasurements reproduced from Pla et al. 49 , measuring
T ∗
2 = 55ns andT2 = 206µs timescales of a single donor electron qubit.
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Spin Echo Envelope To measure the T ∗
2 dephasing time, a spin echo sequence shown

in the top panel of 5.3(a) is used. This begins with a π/2 pulse to place the mag-
netisation vector in the transverse plane. The temporal ensemble then dephases
over an initial wait time τ1. At this point a π pulse is applied to reverse any phase
accumulation. By varying the secondary wait time τ2, the shape of the spin echo
can be observed. When τ1 = τ2, the phase accumulation will be fully cancelled
out, and a final π/2 pulse returns the spin to a proper eigenstate before being
read out. As the time difference |τ1− τ2| increases, the spin vector is not perfectly
returned to an eigenstate, the 1/e point revealing the timescale over which the
temporal ensemble dephases T ∗

2 .

Hahn Spin Echo To measure the T2 decoherence time, the three pulse sequence is
applied with equal wait times as shown in the top panel of 5.2(a). Although each
electron in the temporal ensemble experiences a slightly different local B0 field due
to differing instantaneous local nuclear spin environments, the spin echo ensures
that any phase accumulation is refocused. If the total wait time 2τ is beyond the
coherence time T2 of the electron spins, the second wait period will not undo the
effect of the first, and no clear echo will be observed. The initial spin projection
decays to 1/e the peak value when τ = 2τSE = T2.

Single electron spin resonance in nano-electronic devices

The earliest quantum electronics experiments on single electron states were performed
in gallium arsenide (GaAs), facilitated by the higher electron mobility achievable in
that material27,28. Coherent rotation of a single electron spin within a nano-structured
device was first achieved by Koppens et al. 30 in a GaAs quantum well, depleted locally
by surface gates to form a single electron quantum dot. Their experiment was performed
in a double quantum dot and Pauli spin blockade was used as a readout mechanism (a
DC version of the technique presented in Section 4.3.4). Here they initialise into a spin-
blockaded (1, 1) triplet state where the two electron spins are parallel, and readout the
combined spin state by attempting to move the system into the (0, 2) charge state. Since
the (0, 2) triplet state is much higher in energy than the (0, 2) singlet, in the absence
of any driven spin rotation, the charge state does not change, but if one spin is rotated
such that the two are antiparallel, the readout projects them into the (0,2) singlet and
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the associated charge motion is sensed as a net current flow through the double quantum
dot.

In this way, coherent rotation of the electron spin was observed by applying a mi-
crowave frequency signal, resonant with the Zeeman splitting, fed directly to an on-chip
antenna seen in Figure 5.3(b). The resulting AC current through the end of the antenna
generated an oscillating magnetic field B1 at the QD location inside the loop of the
antenna. The probability of projecting into the singlet state fluctuates as the rotation
angle varies, producing so called Rabi oscillations as a function of both pulse duration
and pulse power (illustrated in Figure 5.3(a)). Their Rabi oscillations as a function of
both microwave burst time and microwave power is reproduced in Figure 5.3(c), with the
inset plotting the Rabi frequency fR = γeB1 at each power setting by fitting a decaying
sine wave to the data based on a phenomenological numerical model taking into account
spectral diffusion by sampling from a Gaussian distribution of nuclear Overhauser field
values. At the highest power (−6dBm) a π rotation was achieved in 54ns, indicating an
effective B1 = 1.9mT.

The singlet-triplet double dot readout method benefits from the large exchange en-
ergy (410µeV in their device) producing Pauli spin blockade, much larger than thermal
excitations at 100mK, and allowing operation at small magnetic field and resonant mi-
crowave frequency (∼ 100mT,∼ 0.5GHz). The same method has also been been used
together with ESR in silicon quantum dots129, to investigate the interaction of spin and
valley states. The limitation of the Pauli blockade method is that a single shot measure-
ment is in general not possible, because the readout signal is the net current produced
by a train of repeated spin manipulation and readout sequences, and each sequence con-
tributes on average approximately one electron to the measured current. This limits
the maximum wait time during a spin echo experiment. Already at a repetition rate of
500kHz, the current contrast I = ef is around 80fA, and any spin manipulation or echo
sequence with a duration significantly greater than 1µs would reduce the current below
measurable levels.

Despite this limitation, Koppens et al. 130 determined the dephasing time with a spin
echo envelope sequence, finding T ∗

2 ≈ 30ns. Additionally a Hahn spin echo experiment
showed the T2 decoherence time to be ∼ 290ns, limited by spectral diffusion due to
nuclear spin fluctuations. Note that in GaAs, there are no spin-zero isotopes of either
atomic species, and hence spectral diffusion cannot be combated with isotopic purifi-
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cation. Techniques have been developed however to dynamically polarise nuclear spins
within the volume of a single electron quantum dot, suppressing spectral diffusion33,131.
With careful timing of refocusing spin echo pulses to take advantage of resonances in
the Larmor precession of the three nuclear isotope species (69Ga, 71Ga, 75As) they could
effectively rephase the nuclear spin bath, to extend the T2 time in GaAs quantum dots
to > 400µs132,133.

Single electron spin resonance in silicon devices

Pla et al. 49 achieved electron spin resonance on a single electron hosted by a single,
randomly positioned P donor in natural silicon. In this device, a small number of donors
(30 in an area 90nm × 90nm) donor were implanted using a 14keV ion beam, into the
substrate, prior to fabricating a MOSFET readout sensor above the donors. Here the
readout mechanism did not involve a second electron, rather the Zeeman splitting was
used directly to discriminate the spin states through spin dependent tunnelling to a many
electron quanrum dot formed below the oxide layer in the MOSFET device, operating
as a single electron transistor94 to allow single shot measurements.

The microwave frequency B1 signal was applied by a surface antenna, pictured in
Figure 5.3(d). This antenna geometry was optimised to efficiently produce a B1 field
without causing heating or oscillatory electric fields134. This consideration was critical
given the small Zeeman energy at 1.79T (∼ 200µeV) and moderate thermal energy at
300mK (∼ 25µeV), so as not to degrade the initialisation and readout operations. Being
a donor electron bound to a 31P nuclei, this experiment observed two resonance peaks
separated by the hyperfine interaction energy A, one peak associated with the nuclear
spin down state ⇓, one with the nuclear up ⇑. The maximum achievable B1 field strength
in their device, 0.12mT, was determined by extracting the rabi frequency from a Rabi
oscillation experiment. Note that although this is less than the value achieved in the
GaAs experiment outlined above, the microwave frequency here is on the order of 50GHz,
compared to < 1GHz used by Koppens et al. 30 . With a π rotation time of ∼ 75ns Pla
et al. 49 performed a spin echo envelope experiment on the donor bound electron, shown
in Figure 5.3(e). The negative peak is the maximum spin echo signal achieved when
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τ1 = τ2, and a fit of the data to a Gaussian form (red curve):

f↑ = C1 − C2e
−
(
τ2 − τ1
T ∗
2

)2

(5.2)

with fit parameters C1, C2 gives the dephasing time T ∗
2 = 55ns, beyond which the phase

accumulation in the two delay periods are no longer equal and opposite.
Being natural silicon, spectral diffusion due to 29Si nuclear spin fluctuations limits

the coherence time just as it does in spin ensembles. Circular points in Figure 5.3(f)
show the onset of decoherence in the spin echo signal following a Hahn echo sequence.
For short times, the nuclear Overhauser field is approximately static and the sequence
recovers any accumulated phase. For longer times, the echo becomes ineffective since
flipping 29Si nuclear spins result in unequal effective B0 in the two halves of the sequence
and coherence is lost. The decay (red curve) is fit to

f↑ = C1 − C2e
−
(
t

T2

)n

(5.3)

resulting in a T2 of ∼ 200s, and an exponent n = 2.1± 0.4, consistent with the spectral
diffusion model124.

The effect of fluctuating nuclear spins can be ‘dynamically decoupled’ from the elec-
tron spin by a series of additional echo pulses. These pulses correct for phase accumula-
tion within shorter windows of time, thereby combating slow changes in the Overhauser
contribution to B0. There exist a whole family of dynamical decoupling pulse sequences
to extend coherence in this way135–137 (a common technique in NMR science). Pla
et al. 49 demonstrate that T2 may be extended with an XYXY echo sequence138,139, re-
placing the single π rotation about the X-axis of the Bloch sphere used by the Hahn
echo sequence (Figure 5.3(a)), with four π rotation pulses, alternately about the X and Y
axes. As shown by the blue squares in Figure 5.3(f) this sequence extends the coherence
to around 410µs.

Muhonen et al. 38 repeated these measurements for similar devices (again with a re-
andomly positioned atom out of ∼ 30 in a 90×90nm area) but with the donor atom
embedded in isotopically enriched 28Si, with only 800ppm residual 29Si atoms. They
achieved a considerable improvement in the coherence time of a single donor within a
nano-device, similar to that previously observed for bulk donor ensembles by removing
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the nuclear spin bath36. In two similar 28Si devices Muhonen et al. 38 observed a five-
fold improvement in the electron coherence time, achieving T2 = 1ms in a Hahn echo
experiment, extending to over 0.5s with the so called ‘CPMG’ dynamical decoupling se-
quence136. Muhonen et al. 38 also examined the decohrence mechanisms in their devices.
Without numerous coupled electron spins (as there are in ensemble measurements) there
is no significant instantaneous diffusion mechanism. At low temperature and B-field the
T1 time is greater than seconds94, so the decoherence is not relaxation limited. The au-
thors attribute the remaining decoherence to magnetic field noise intrinsic to small losses
in the superconducting magnet and thermally generated noise producing kHz frequency
fluctuations in the antenna’s contribution to the B0 field.

5.2 Addressability of donor-bound electron
qubits

A critical requirement of any multi-qubit system is the addressability of each individual
qubit site, so that gate operations applied to one qubit do not affect its neighbours. This
selectivity cannot be taken for granted in donor systems where the spatial separation
of qubits may be as small as 10 − 20nm54. For spin qubits, addressability is achieved
by selective detuning – ensuring each qubit experiences a unique and/or controllable
effective Zeeman field B0, and thereby a unique and/or controllable Larmor resonance
frequency. Here we review several methods to achieve the required detuning proposed
in the recent literature before outline the strategy we employ in this chapter.

5.2.1 Externally applied magnetic field gradient

Micromagnets offer one solution to addressing electron spin qubits. Used in GaAs140–142

and SiGe41,143 quantum dot devices, ferromagnetic cobalt micromagnets produce a slant-
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(b)(a) (c) (d)

I
ESR

Figure 5.4: Detuning electron spin resonance with a micromagnet. (a) Schematic showing the slanting
B field of amicromagnet (yellow) across a quantum dot (blue), used to produce an oscillating field (red

arrows) when the electron is moved laterally by an AC voltage applied to a gate (green). Reproduced

from Pioro-Ladriere et al. 142 . (b) GaAs device of Noiri et al. 144 , displaying three gate defined quantum
dots (red, green, blue). The yellow overlay indicates the footprint of the 250nm layer of cobalt forming

themicromagnet. The upper white circle is a sensor quantum dot used to readout the triple dot charge

state, and the wire passing above the quantum dots carries an AC current IESR that produces aB1

field to rotate the electron spins. (c,d) Spin resonancemaps plotting the probability of returning to the

initial singlet state after an ESR pulse at frequency fMW and in an external fieldB0 = Bext. Here only

two dots are interacting at a time, so (c) shows resonance lines for the left and centre quantum dots, and

(d) shows resonances for the centre and right dots. (c,d) reproduced fromNoiri et al. 144 .

ing Zeeman field at the location of the quantum dots, as illustrated in Figure 5.4(a). The
technique was implemented first in quantum dots to facilitate electric dipole spin reso-
nance (EDSR), where an AC electric field applied to a gate (green), moves the quantum
dot (blue) wavefunction back and forth laterally within the slanting Zeeman field of the
micromagnet (yellow). A confined electron therefore experiences an effective oscillating
magnetic field as it is displaced, as indicated by the red arrows in Figure 5.4(a). The
EDSR effect has been used as an alternative to direct ESR control over the spin of an
electron, and is capable of driving extremely fast (tπ < 10ns) single qubit rotations42,141.

Aside from engineering a B0 gradient for the purpose of driving EDSR, Noiri et al. 144

employ a micromagnet, positioned on the surface of a GaAs triple quantum dot, to detune
the ESR resonances of the three quantum dots. Their device is shown in Figure 5.4(b),
and consists of three gate defined quantum dots, below a nanowire which carries a current
IESR used to produce an oscillating magnetic field to drive single spin rotations via ESR.
The upper white circle indicates the location of an RF-SET readout device, capable of
sensing the charge state of the triple quantum dot system. Spin to charge conversion
in their experiment is via Pauli spin blockade, and so a pair of electrons are initialised
in the left and centre QDs into the ground-state of the micromagnet field |↓, ↑⟩. After
an ESR pulse the spin pair is read out by trying to move the two electrons into one
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QD. If the initial state has remained, the anti-parallel spins will form the low energy
singlet, and the charge state change is detected by an RF-SET sensor, hence the high
level background of Figure 5.4(c). If either electron, left or centre, has been rotated by
resonant ESR excitation, there is a triplet component to the final state |T+⟩ = |↑, ↑⟩ for
example if the left spin has been rotated from down to up. In this case Pauli spin blockade
prevents the two electrons from occupying the same QD, and a reduced readout signal
is seen, producing two parallel lines, shifted by the detuning ∆B0 ≈ 50mT provided by
the micromagnet. Figure 5.4(c) shows a similar pair of resonances, for the centre and
right dots, who experience a greater Zeeman field difference, hence a larger separation.
The authors have developed the technique further, recently demonstrating scalability
of the scheme to four quantum dots145. The method may have limited applicability to
donor qubits however, since the typical inter-donor separation is at least one order of
magnitude less than that of electrostatically defined quantum dots. As a consequence,
the detuning achievable with such a micromagnet field gradient, ∆B0, may be less than
the resonant linewidth due to spectral diffusion in natural silicon.

5.2.2 Dynamic Stark tuning with a variable electric
field

The original donor based qubit proposal of Kane 45 posited the use of an ‘A-gate’ above
each donor, designed to attract the electron wavefunction toward the surface and thereby
reduce the wavefunction overlap at the donor site as sketched in the insets of Fig-
ure 5.5(a). The effect is to reduce the hyperfine coupling strength A, which modulates
the nuclear resonance frequency with changing gate voltage as indicated by the plot.
Although in Kane quantum computer the nuclear spins were designated as qubits and
the electrons merely a means of detuning nuclei, the same idea can be applied if the
electrons themselves are the qubits.

The mechanism, referred to as ‘Stark tuning’ (a general term for electric field in-
duced detuning) was first demonstrated experimentally in bulk silicon using an ensem-
ble of 121Sb donors147, observing a detuning of the hyperfine interaction A of 0.3% per
MV2/m2. Calculations for phosphorus148,149 have predicted a similarly strong effect of
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Figure 5.5: Stark tuning of the Hyperfine interacঞon. (a) Proposal for Stark tuning of the donor nuclear
spin resonance frequency as a function of the voltage applied to an A-gate above the donor. Repro-

duced fromKane 45 The frequency is detuned from theV = 0 value as the bound electron is pulled
further toward the silicon surface as pictured in the insets, reducing the strength of the hyperfine inter-

action. (b)Measured Stark shift of the resonance frequencies of a single electron bound to a P donor in
28Si. The two lines correspond to the nuclear spin up and down states. Linear fits provide the stark shift

coefficients for the hyperfine coupling (αA) and gyromagnetic ratio (αγe). (c) Scheme for pulsed ESR

via dynamic Stark detuning in a continuous ACmagnetic field. Spin control pulses are applied electri-

cally to the A-gate, switching the electron spin in and out of resonance with an always-on oscillatingB1

magnetic field. (b,c) reproduced from Laucht et al. 146

0.2 − 0.3% per MV2/m2. With a value of A ≈ 117 in bulk silicon71, at realistic device
electric fields ∼ 1MV/m, the achievable Stark shift was expected to be less than the
donor electron linewidth in natural silicon118 (∼ 6MHz), and so likely requiring 28Si for
the effect to be visible.

Laucht et al. 146 demonstrated Stark tuning with a single P donor in 28Si. The mea-
sured ESR resonances are shown in Figure 5.5(b), the two lines showing the Stark shift
of the two nuclear spin state resonances, labelled |⇑⟩ , |⇓⟩. The resonant frequencies are
given by:

νe1 = γeB0 +
A

2
(5.4)

νe2 = γeB0 −
A

2
(5.5)
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where both A = αAVA and γe = αγeVA are assumed to be linearly dependent on the
A-gate voltage VA. The fact that both resonances decrease with A-gate voltage indicates
that the Stark effect on the gyromagnetic ratio γe is dominant over the hyperfine shift
in their device. Fits to the data produce Stark shift coefficients αA ≈ 0.91MHzV−1

and αγeB0 ≈ −1.81MHzV−1. The authors relate these voltage dependent values to
electric field via finite-element modelling of electrostatic fields in the device geometry,
converting the hyperfine stark shift to ∼ 2.4MHz per MV/m, consistent with theoretical
expectations149.

Further to observing the Stark shift, Laucht et al. 146 demonstrated its use in address-
ing an individual qubit in a ‘global’ control field, by applying an always-on oscillating
magnetic field, so as to drive spin rotations, but detuned from the electron resonance.
The scheme is illustrated in Figure 5.5(c), Since the maximum achievable resonance
detuning is ∼ 200 times greater than the electron’s resonant linewidth of 0.5kHz in iso-
topically enriched 28Si, there is effectively no B1 field experienced by the qubit while
it remains outside of the excitation profile. A voltage pulse on the A-gate then Stark
tunes the electron into resonance with the driving field, for a duration tp before again
switching the electron out of resonance. Since the AC magnetic field may be left run-
ning continuously, it is easy to see that this method scales effectively to large numbers
of qubits47. Each simply requires a dedicated A-gate to address the electron in and out
of resonance with the global microwave B-field.

5.2.3 Intrinsic hyperfine detuning in donor molecules

An alternative to externally modulating the electric field to change the hyperfine inter-
action is to impart each qubit with an intrinsic hyperfine offset. Büch et al. 54 proposed
a multi-qubit addressable architecture in which neighbouring electron spin qubits are
hosted by small quantum dots where the confining potential for each is supplied by a
small donor ‘molecule’. Here the term ‘molecule’ refers simply to 1, or 2, or up to poten-
tially several donors in close proximity (within the Bohr radius of P in silicon: 2.5nm),
such that the electron wavefunction is spread over multiple nuclei. Single electron wave-
functions for example 1P, 2P, 3P and 4P molecules calculated by Wang et al. 150 using
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Figure 5.6: In-built hyperfine addressability of few donor molecules. (a) Simulated wavefunctions for
1P, 2P, 3P and 4P donormolecules, showing the probability density (innm−3) as a function of position.

Reproduced fromWang et al. 150 . (b) Calculated single electron spin resonance frequencies for the
4 configurations in (a), in a Zeeman fieldB0 = 2T. Nuclear spin states are labelled for the 1, 2 and
3 donor cases. Reproduced fromWang et al. 150 . (c) Calculated Stark shift of 1P and 2P electron spin
resonance frequencies. Insets at top indicate the particular atomic configuration, with white circles

indicating substitutional phosphorus in the square grid representing the silicon [100] crystal plane. The

plot highlights amuch larger intrinsic hyperfine difference between the twomolecules than Stark shift

in the single donor spectrum (grey shading). Reproduced fromBüch et al. 54 .

tight-binding model numerical simulations over a 30nm× 30nm multi-million atom do-
main151 are shown in Figure 5.6(a).

The colour-maps plot the probability density distribution (in nm−3), showing dense
regions centred at the positions of the nuclei, connected by regions of lower but finite
density. Based on the contact hyperfine interaction:

A =
2γeγNµ0

3

n∑
j

|Ψ(R⃗j)|2 (5.6)

proportional to the sum of the wavefunction densities Ψ over all n donor sites for each
configuration, Figure 5.6(b) indicates the expected electron resonance frequencies in a
magnetic field of 2T. Each donor molecule has a natural in-built ‘address’ in terms of
its resonant frequencies. In the absence of an electric field there are two resonances for
1P , three for 2P , six for 3P and 9 for 4P and the nuclear spin states are labelled for the
1, 2 and 3 donor cases. Degenerate pairs such as ⇑⇓ and ⇓⇑ are split by an electric field,
as indicated in Figure 5.6(c). Here we see the electron spin resonances expected for 1P
(red) and 2P (blue) molecules as a function of E field, showing separation of the degen-
erate anti-parallel nuclear states with increasing E. The figure highlights an important
limitation for single P-P addresability. The intrinsic hyperfine shift (separation between
blue and red lines) between 1P and 2P molecules of ∼50MHz is significantly larger than
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Figure 5.7: Long spin relaxaঞon ঞmes and tunable exchange in few donor molecules. (a) Calculated
electron spin relaxation rates 1/T1 for 1, 3 and 5 electron spin states in 1P, 2P, 3P and 4P donor

molecules. Crosses indicatemaximum andminimum values across various spatial configurations of the

fewP atoms. (b) The average relaxation rate in each set of configurations plotted as a function of the

average representative Bohr radius of themolecule. (a,b reproduced fromHsueh et al. 152 ) (c) Tunability
in the exchange couplingJ for qubits at a distance of 10nm or 15nm, in the case of symmetric single

donors 1P − 1P , and asymmetric 1P − 2P qubit pairs. The asymmetric cases display increased

tunability as a function of electric field, up to 5 orders of magnitude as the charge state is detuned from

(1,1) toward (2,0) in the 15nm separated 1P − 2P case.

the achievable extrinsic Stark shift of < 10MHz (δνStark – grey shading), particularly at
realistic electric fields ∼ 3MV/m.

The strength of the hyperfine interaction depends not only on the number of donors,
but also on the exact relative positions of the 2 (or more) donors confining the electron.
Wang et al. 150 predict a variation in just the 2P hyperfine energy from a maximum
of 387MHz – more than double the single donor value for a 2P cluster at the smallest
separation of 0.4nm, down to 57MHz, roughly half single donor value at separation
greater than ∼ 4nm between the two P atoms.

Single electrons hosted by multiple donors are also expected to benefit from extended
spin relaxation times T1 compared to that of a single donor, since the deeper potential
well provides stronger confinement and reduced interaction with the surrounding crys-
tal lattice and weaker electron-phonon coupling152. Figure 5.7(a) plots the relaxation
rate 1/T1 calculated by Hsueh et al. 152 by numerical simulation of the electron-phonon
Hamiltonian for the (odd numbered) m electron spin-1/2 state bound in a molecule of
n = 1, 2, 3 or 4 P donors (labelled nPme) in a B field of 2T. The exact values are sensi-
tive to the relative positioning of donors within a molecule, and so crosses represent the
extreme cases for molecules with small and large inter-donor separation. If we view the
average relaxation rate as a function of the average molecular Bohr radii in Figure 5.7(b),
we see that the rate is approximately proportional to the extent of the wavefunction,
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Spin state T1 Theory (min − max) T1 Experiment Reference

1P1e 2.5s 1.4s Watson et al. 55

2P1e (15s− 50s) 6.7s Watson 153

2P3e (0.5ms− 3ms) 20ms Watson 153

3P1e (20s− 50s) 10s Watson 153

4P3e (0.4s− 1s) 0.3s Büch et al. 54

Table 5.1: Comparison between calculated andmeasuredT1 spin relaxation times of few electron spin-

1/2 states bound to few-donormolecules in amagnetic fieldB = 2T. LabelsnPme represent them
electron state bound to an donor quantum dot

with a trend highlighted by the grey band. In general the single electron relaxation
time T1 is extended with increasing donor number, and for a fixed donor number, T1 in
extended with fewer electrons. Experimental values have been measured for several of
these states, as listed in Table 5.1.

Furthermore, Wang et al. 154 showed that the asymmetric combination of a single P
donor and a 2P quantum dot will provide greater tunability over the exchange interaction
J between the two electrons than is possible with two single P donors. Ideally, in order
to facilitate two qubit operations between donor electron spins, the exchange interaction
between them should be controllable by several orders of magnitude between ‘off’ and
‘on’ values114. Early proposals45,155 suggested to modify the tunnel barrier between
two electrons with a so-called ‘J-gate’. More recently schemes have been presented that
rely instead on detuning the energy of the two electron states to modify the strength
of exchange coupling32,114. To properly suppress interaction in the ‘off’ condition, at
least two orders of magnitude control over J are required114. Wang et al. 154 performed
atomistic tight-binding simulations of the J coupling between qubits as a function of
electric field for a symmetric pair of qubits 1P-1P, and an the asymmetric pair 1P-2P.
Figure 5.7(b) indicates the difference in tunability of J . In the 1P −1P situation, due to
Coulomb repulsion between the electrons the overlap of the two electron wavefunctions
remains small for realistic E-field values (< 2MV/m), tuning J by only a factor of
at most 2 at 15nm qubit separation (blue curve). Comparatively, the 1P − 2P case
displays substantially more tunability, particularly at 15nm qubit separation (purple
curve), where J varies over 5 orders of magnitude from 11.6MHz to 1.3THz. This
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enhancement in the tunability can be understood since the stronger confinement in the
doubly charged 2P quantum dot assists in pulling the two electrons largely into the same
potential well, significantly increasing the wavefunction overlap. A combination of 1P
and 2P qubits is therefore very attractive in moving toward two qubit operations based
on the exchange interaction, combined with an in-built hyperfine detuning of the single
qubit ESR frequencies.

We next turn to our experimental results on precision donor devices in silicon. Fol-
lowing spin readout, relaxation, and correlation experiments on a two qubit device pre-
sented in Section 5.3, we show in Section 5.4.3 the fabrication of a broadband microwave
antenna onto the same device. Section 5.5 outlines a series of robust measurement tech-
niques used in Section 5.6 to measure spin resonance spectra of the two qubits. Finally
Section 5.7 details coherent electron spin resonance measurements using a different two
qubit device.

5.3 Spin initialisation and measurement in a
double quantum dot device consisting of
a single donor and 2P molecule

The double dot device presented in this section was fabricated by Matthew Broome
and Sam Gorman. I was involved in the spin relaxation and correlation experiments
together with Sam Gorman, writing the code to allow dual spin read-out, and performing
the measurements. I then fabricated the ESR antenna and led all the spin resonance
experiments of Section 5.6.

Figure 5.8(a) shows an STM image of a two qubit precision donor device, consisting
of a single donor (1P) on the right (R) and a two donor quantum dot (2P) on the left
(L), separated by 16nm, both coupled (at a distance of 19nm) to a larger quantum dot,
acting as the island of a charge sensing SET. Bright regions represent metallic donor-
defined conductive structures. The sensor dot is separated from source (S) and drain
(D) leads by two tunnel barriers, forming the current pathway of the single electron
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Figure 5.8: Atomic scale images of the 1P / 2P double quantum dot device. (a) STM image of the 1P-2P

double quantum dot. The two dots, L (2P) and R (1P) are separated by 16nm and are 19nm away from

the tip of a large single electron transistor charge sensor (SET). Source (S) and drain (D) leads allow the

application of a bias voltageVSD causing DC current to flow through the SET conditional upon the

charge state of the twoQDs. Voltages applied to gates GL, GM, and GR tune the relative and combined

potentials of the quantum dots and a fourth gate GS allows independent tuning of the SET potential. (b)

higher resolution image of the central region indicating where electron tunnelling is possible between

the donor quantum dots and the SET, if the appropriate electrochemical potentials are aligned. (c) Sili-

con lattice constant dimer grid overlaid on an optimised atomic scale STM image showing the layout of

exposed dimers andmonomers in the left and (d) right donor sites before phosphine dosing.

transistor (SET), used for spin state readout via spin to charge conversion. Voltages
applied to four gates (GL, GM , GR and GSET ) tune the electrochemical potentials of
the two donor qubits and the SET. The island of the SET additionally functions as an
electron reservoir for the two small donor-defined quantum dots, with electrons loading
via the SET as indicated by red and blue arrows in the higher resolution STM image of
Figure 5.8(b), the green arrow represents inter-dot tunnelling, which may occur when
the electrochemical potentials of the dots are aligned.

The number of donors incorporated at each of the two sites depends on the size of the
patch exposed to the phosphine precursor during fabrication. The lithographic patch of
the left dot is shown in Figure 5.8(c), overlaid with a grid representing the atomic lattice
of the [001] crystal plane. Each rectangular cell represents a dimer – a pair of silicon
atoms on the [001] surface that pull together to minimise their energy. The bright area
in the image indicates that the hydrogen mask has been desorbed from 5 consecutive
dimers along one row, with two separate desorbed dimers on the neighbouring row,
highlighted in green. The right dot image of Figure 5.8(c) indicates also 5 consecutive
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dimers desorbed, with two single atoms in the neighbouring row where the hydrogen
has been removed leaving single dangling bonds. While it is understood from density
functional theory models of the chemical process78,87 that 3 adjacent free dimers are
neccessary for the incorporation of a single phosphorus atom, with larger lithographic
patches, we rely on a probabilistic analysis81, indicating that the possible number of
incorporated P atoms for a 5 dimer chain is 1-2. Whilst the STM fabrication routine
does allow for deterministic verification of the exact number of incorporated donors53, it
involves an additional non-trivial imaging step which was not performed for this device.
Instead we determine the donor number for each quantum dot by electrical measurement
of the charging energy.

5.3.1 Donor number determination based on quantum
dot charging energies

By analysing the charge stability diagram we are able to confirm that the left dot contains
2 phosphorus donor atoms, and the right dot a single P donor.

Figure 5.9(a) shows a composite charge stability map of the 2P-1P device over the
full voltage range accessible. Each rectangular patch is a scan over left VGL and right
VGR gate voltages for fixed values of VG−SET = 0.5V and varying VGM as indicated.
Each patch is offset relative to the axes in order to align the charge transitions. Periodic
diagonal lines of high current represent Coulomb peaks of the SET, and two sets of
discontinuities in the SET lines are highlighted in red and blue, corresponding to electron
transitions of the L (1P) and R (2P) donor quantum dots respectively. Crossing each
of these lines from lower left to upper right adds an electron to the respective site.
The charge states are labeled (n1, n2). Two additional discontinuities, marked T (green
dashed lines) are due to an unintended charge trap in the vicinity of the SET. An avoided
crossing (white box) between the two qubit transitions indicates a region where electrons
can tunnel between L and R, in this case at the (1, 1)− (2, 0) charge transition.

From the separation in gate voltage between successive charge transition lines, as
indicated by the span ∆V D

g for the right dot, we can compute the charging energy
ED

C – the energy needed to add an electron to the donor quantum dot. Since ∆V D
g
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Figure 5.9: Charge stability diagram for a 1P/2P double quantum dot tunnel coupled to an SET. (a)
Large scale stability map of the device, showing SET current as a function of gate coordinates. Indi-

vidual tiles are scans inVGR andVGL as indicated by the axes. The three tiles from left to right have

VGM settings−0.2,−0.2, 0.2, 0.3V asmarked. Donor charge transitions aremarked in blue (red) for

the left (right) quantum dot. and the charge state assigned to each region is marked in blue. Discontinu-

ities marked T are attributed to an unintended charge trap. (b) Coulomb diamond stability map, showing

SET current as a function of gate voltageVGL and SET biasVSD . The height of the diamond provides
the SET charging energyES

C . (c) High resolution scan of the gate-space surrounding the (1,1) - (2,0) in-

ter=dot charge transition (white box in (a)), indicating the charge offsets δV S
g in SET and δV D

g right dot

lines corresponding to themutual charging energy between them. Alsomarked is the gate span corre-

sponding to the SET charging energy∆V S
g , and the equivalent span for the charging energy of the right

dot∆V D
g is shown in (a). From these 3 stability maps, and themeasured voltage spans, single electron

charging energies of 43± 5meV and 65± 8meV, are obtained for the 1P and 2P dots respectively.
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SET parameters 1P parameters 2P parameters

ESET
C 6.0± 0.1meV E1P

C 43.0± 5.0meV E2P
C 65.0± 8.0meV

∆V SET
GR 32.8± 2.0mV ∆V 1P

GR 505± 5mV ∆V 2P
GR 604± 5mV

αSET
GR 0.183± 0.011 α1P

G2 0.182± 0.012 α2P
G2 0.108± 0.013

δV SET
GR 17.1± 1.0mV δV 1P

GR 15.6± 1.0mV δV 2P
GR 12.4± 1.0mV

– – E1P
M 3.0± 0.2meV E2P

M 3.3± 0.2meV

Table 5.2: Values of SET, 1P (R), and 2P (L) charging energies, lever arms andmutual coupling energy

is measured as a voltage, to convert this to energy units, we begin by determining
the charging energy of the SET island ES

C , which may be measured directly from a
Coulomb diamond plot, shown in Figure 5.9(b). The height of the diamond gives ES

C =

6.0±0.1meV. Figure 5.9(c) shows a high resolution stability map of the area around the
(1, 1) − (2, 0) charge transition, and by considering the SET line spacing ∆V S

g , which
corresponds to the SET charging energy, along with charge offsets due to the mutual
charging energy between the SET and one of the dots (the right dot in this case) δV S

g

and δV D
g , it is straightforward to relate the SET charging energy ES

C to the donor-SET
mutual energy EM , and then to the donor quantum dot charging energy ED

C . Using the
method introduced in Section Section 4.2.4, we have:

EM =
δV S

g

∆V S
g

ES
C (5.7)

ED
C =

∆V D
g

δV D
g

EM − nEM (5.8)

where n describes the integer number of electrons added to the SET over the span
∆V D

g . The measured and computed values are shown in Table 5.2. We can apply the
same procedure to the left dot also, and in this way we determine the charging energy for
the 1 → 2 electron transition of the 2P and 1P qubit to be respectively 65± 8meV and
43±5meV. These values are consistent with previously measured values of 2P56,156 and
1P53 donor quantum dots, and also consistent with the size of the lithographic patch
based on the STM images of Figure 5.8. Therefore we can be confident that the left
donor is a 2P molecule, and the right dot a single P donor.
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5.3.2 Independent high fidelity spin readout of both
QDs

Having described the device and its characterisation, we now demonstrate initialisation
and independent readout of the spin states of the individual qubits. As an overview of
the charge and spin states involved, Figure 5.10(a) shows a schematic of the energies of
0, 1, and 2 electron states in a finite magnetic field. Black lines indicate the energies
of the available states, one of which is occupied at any one time. There is the trivial
zero-electron state; two single-electron spin states: |↑⟩ and |↓⟩; and four two-electron
spin states: S = 1/

√
2(|↓↑⟩ − |↑↓⟩), T+ = |↓↓⟩, T 0 = 1/

√
2(|↓↑⟩+ |↑↓⟩), T+ = |↓↓⟩.

We highlight four transitions between pairs of these states with green and pink arrows.
These are the relevant transitions for spin readout of our two qubits. We describe two
subtly different modes of spin to charge conversion, one to read out each qubit:

Single donor qubit readout via spin dependent unloading into the
zero electron state

To measure the spin of R, the single donor quantum dot, we employ an single-shot read-
out technique based on energy-selective tunnelling54,94. The electrochemical potential
of the single-electron transition between the 1e↔0e charge states is split by the Zeeman
energy in a static magnetic field of B0 = 2.5T, giving two transition potentials |↑⟩↔ |0⟩
and |↓⟩↔ |0⟩ separated by an energy γeB0. Whether an electron is able to tunnel from
the donor to the SET reservoir therefore depends on its spin state, i.e. the readout is
a spin-dependent unloading mechanism from R to SET. We perform a three level pulse
sequence as illustrated in Figure 5.10(b), where we keep the SET potential (yellow solid
line) aligned to the source and drain Fermi levels (grey lines at the right) during all three
steps.

L⃝ Load an electron of random spin onto the right dot (1P) by setting the potentials
for loading an electron of either Zeeman state (green and pink lines) below the
Fermi level of the SET (solid yellow line), such that an electron of either spin may
tunnel to the donor. Once this occurs, the SET transition potentials are increased
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Figure 5.10: Individual donor quantum dot spin readout via spin dependent unloading and loading.
(a) Schematic showing zero-, one- and two-electron charge and spin states, and the electrochemical

potentials of four relevant transitions between them: |↑⟩ ↔ |0⟩, |0⟩ ↔ |↓⟩, |↑⟩ ↔ |S⟩, |S⟩ ↔
|↓⟩. (b) Electrochemical potential diagrams for the three stages of the spin readout sequence for the R
qubit (1P). (c) small scale gatemap defining the pulse levels ( L⃝, R⃝, E⃝), relative to the SET conduction

background, used to readout the R electron by spin dependent unloading (d) 1P spin-tail measurement.

The averagemeasured current response over 200 repetitions to the 3 level readout pulse sequence in

amagnetic field of 2.5T highlighting the readout voltage range for successful spin discrimination δR.
(e) equivalent potential diagrams for the L qubit (2P), where the readout proceeds by spin dependent

loading into the two electron singlet stateS . (f) gatemap defining the levels for 2P spin readout. (g) 2P
spin-tail, showing a∼ 20-fold decrease in tunnelling times compared to the 1P qubit.

by the mutual energy, to the dashed yellow lines, and current can no longer flow
through the SET. This can be seen in the gate map of Figure 5.10(c) – there is no
SET current at position L⃝.

R⃝ Read the spin, by aligning the Fermi level of the SET below the potential for unload-
ing |↑⟩ → |0⟩ but above that for unloading of |↓⟩ → |0⟩. In such a configuration,
the bound electron is able to tunnel to the SET only if it is in the spin excited state.
This occurs probabilistically with a characteristic time τ↑,off , and if so, current is
then temporarily able to flow through the SET from source to drain as indicated
by the dashed pink arrows. There is now an unoccupied |↓⟩ state available on the
donor, and an electron will tunnel from the SET to fill the ground state within
a characteristic time τ↓,on, and at this point, the presence of the mutual energy
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switches off the SET current, as the SET potential is inaccessible (green arrow
with cross). At this point in the sequence, the spin is effectively initialised |↓⟩.

E⃝ Empty the donor, by raising both Zeeman transition potentials above the SET
Fermi level. This is to ensure the next repetition of the sequence is uncorrelated
with the previous one. At this point, current will flow through the SET, as its
potential is aligned with source and drain Fermi levels, and we correspondingly
observe current at position E⃝ in Figure 5.10(c).

During the Read phase, the presence of a transient current signal indicates the elec-
tron being measured was in the |↑⟩ state, however, the success of the readout sequence is
sensitive to the exact voltage conditions during the Read phase. We determine suitable
settings by performing an experiment where we scan the position of the R⃝ level along
an axis parallel to the SET lines (as indicated by the white arrow ‘ϵ’ in Figure 5.10(c)).
The outcome is shown in Figure 5.10(d), which plots the average current response over
200 repetitions of the three level pulse sequence L⃝- R⃝- E⃝, at each readout voltage in a
15mV range across the donor transition. The characteristic shape we refer to as a ‘spin-
tail’. For large positive values of the readout voltage, R⃝ ≈ E⃝, readout fails because
either spin state will tunnel to the SET. The current switches on, and remains on, as
evidenced by the blue band at the top of the plot. For large negative values, R⃝ ≈ L⃝,
readout fails because neither spin state may tunnel away from the donor. We observe
low current (red) throughout, until reaching E⃝. At intermediate settings within a range
marked δR = 10meV, a transient current is observed at around 0.15s on the time axis,
indicating successful spin to charge conversion and readout. There is some variation in
the duration of this transient current (white region), indicating that the tunnel rate τ↓,on
varies with the readout voltage. This is attributed to a non-uniform density of states
within the SET157. Around 6mV there is a region exhibiting random telegraph signal
(RTS) where resonant tunnelling occurs back and forth between the SET and the |↓⟩
ground-state for the duration of the Read phase. The green dotted line indicates the
readout voltage used in the following experiments (−1.2mV). We calibrate the lever
arm αR

ϵ relating the voltage along the detuning axis (or readout voltage on the y-axis
of Figure 5.10(d)) by relating the length of the spin tail, δR to the Zeeman energy γeB0
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(the range over which the spin-split potentials straddle the SET Fermi level)

αR
ϵ δR = γeB0 (5.9)

αR
ϵ = 0.030± 0.003 (5.10)

We use this value later to calibrate the energy axis in a two electron interaction experi-
ment.

2P donor qubit readout via spin dependent loading into the two
electron singlet state

For L, the 2P qubit, we use a slight variant of the readout method, first reported by
Watson et al. 55 . The relevant charge transition for this qubit is 1e↔2e, and as indicated
in Figure 5.10(a), this transition is Zeeman split also, with two transition potentials
|↑⟩↔ |S⟩ (pink) and |S⟩↔ |↓⟩ (green) separated again by the Zeeman energy γeB0. The
difference is that here we utilise a spin-dependent loading mechanism, by attempting to
add a second electron from the SET to L. Figure 5.10(e) illustrates the process for this
readout sequence, where the SET potential, shifted by the mutual charging energy with
the 2P qubit (yellow dashed line) remains aligned to the source and drain Fermi energy
(grey lines) throughout.

E⃝ ‘Empty’ one of two electrons from the 2P donor pair, by raising both transition
potentials above the SET Fermi level, such that the charge ground state becomes
(1,1) by randomly removing one of the anti-parallel spins which was part of the
singlet state, leaving a random initial state |↑⟩ or |↓⟩. Removing the electron lowers
the SET potential by an amount equal to the mutual charging energy, switching
off the SET, and we observe in Figure 5.10(f) that there is no current flow at
position E⃝.

R⃝ Read the spin state, by aligning the Fermi level of the SET above the potential
for the |↑⟩ → |S⟩ transition potential but below that for |↓⟩ → S. In such a
configuration, a second |↓⟩ electron can temporarily tunnel onto the donor pair
(pink arrow), joining an existing |↑⟩ and forming a singlet, and by raising the
SET potential by the mutual energy, switching on the SET current (pink dashed
arrows). After a time τ↑,off the original |↑⟩ electron tunnels over to the SET
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(blue arrow) leaving the spin ground state occupied, and switching off the flow of
current. At this point in the sequence, the spin is effectively initialised |↓⟩.

L⃝ ‘Load’ a second electron of the necessary spin to form a singlet state by setting
both singlet transition potentials below the Fermi level of the SET. In this state,
the SET current is on, as indicated by the non-zero current seen at position L⃝ in
Figure 5.10(f).

The same spin-tail experiment to calibrate a readout voltage is carried out in Fig-
ure 5.10(g) via this spin dependent unloading protocol, also referred to as ‘D− readout’
since it was first applied to a single donor where the two electron negatively charged
donor configuration is known as the D− state. Note that the values on the time axis
here are much smaller than in (d). The characteristic tunnel rates for the 2P dot’s
1e ↔ 2e transition are around a factor of ∼ 20 faster than in the 1P 0e ↔ 1e case,
understandable given the larger orbital extent of the 2 electron wavefunction at a com-
parable distance from the SET. The measured spin-tail length corresponding to the
Zeeman energy for the left donor dot is δL = 7meV, providing a measure of the left dot
lever arm along the detuning axis again by equating to the Zeeman energy at 2.5T:

αL
ϵ δL = γeB0 (5.11)

αL
ϵ = 0.041± 0.004 (5.12)

The readout voltage used for the following experiments, −1.2mV is marked by a green
dotted line.

A great advantage of using the combination of the standard unload-readout, and the
D− load-readout together in the following experiments is that we can perform single shot
spin readout of both qubits from the (1, 1) ↔ (2, 0) charge transition, without having
to pulse gate voltages over a large voltage range to reach the 1e ↔ 0e transition of the
left dot, a significant distance away (∆V 2P

GR ≈ 600mV). Our dual readout avoids large
voltage pulses which can generate significant cross-talk, reflections and charge instability
within a device. We determine the average readout fidelity for the left qubit (2P) to be
96.2± 1.1%, and for the right qubit (1P) we find 97.6± 2.1%. The full fidelity analysis
is presented in Section A.3.

126



5.3. SPIN INITIALISATION AND MEASUREMENT IN A DOUBLE QUANTUM DOT
DEVICE CONSISTING OF A SINGLE DONOR AND 2P MOLECULE

(a) (b) (c)

Figure 5.11: Gate pulse sequence for dual spin readout via spin dependent unloading and loading. (a)
Schematic showing the full 7-level sequence required to randomly initialise both qubits. (b) Diagrams

illustrating the effect of each of the 7 steps on the two qubit system – spin down states are indicated as

blue, and spin-up as pink, uncertain states as amixture. 1⃝ and 2⃝ initialise each qubit |↓⟩ as a conse-
quence of the projective spin readout. 3⃝ and 4⃝ re-initialise the R qubit by first unloading its electron,

then loading an electron of random spin. 5⃝ and 6⃝ re-initialise the L qubit by first loading a second

electron to form the singlet state |S⟩, then unloading one electron, leaving the other with random spin.

7⃝ simply parks the system in the (1,1) charge state where there is negligible spin interaction. (c) 40 rep-

resentative single-shot dual spin readout traces, with the full random initialisation sequence preparing

themixed state ρ↕↕, with highlighted examples for each potential product state assignment.

5.3.3 Dual spin readout by sequential spin-to-charge
conversion

The two readout sequences outlined above can be combined, as we show in Figure 5.11(a),
which is a schematic of the charge stability diagram near the (1, 1) ↔ (2, 0) charge state
transition. It shows a 7-level pulse sequence defining the dual spin readout protocol
used to measure both spins and then reinitialise them both into a random spin state.
We arrange the order of steps to place the two readout phases first – 1⃝ = Read-L
and 2⃝ = Read-R. We choose to read the qubit with the faster tunnel rate first, so as
to minimise the time each spin has in which to relax before measurement. Hence we
readout the faster 2P (L) qubit first, followed by 1P (R). As indicated by the cartoons
in Figure 5.11(b), this leaves each spin initialised in the spin ground state |↓⟩ after the
projective spin measurement (represented by blue down arrows).

After reading the states, the 1P qubit spin is randomised in steps 3⃝ = Empty-R and
4⃝ = Load-R. This process is shown in Figure 5.11(b) – first the electron is removed
from the right dot (temporarily taking the system to the (1,0) charge state as seen in
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Figure 5.11(a)), then an electron of random spin is re-loaded. Stages 5⃝ = ‘Load’-L
and 6⃝ = ‘Empty’-L randomise the spin state of the 2P qubit next. Also illustrated
in Figure 5.11(b), a second electron is loaded to the left dot, forming the singlet state
|S⟩ with anti-parallel spins (here the system is in the (2,1) charge configuration) before
one of the two electrons is unloaded, leaving behind a random spin state in the left dot.
Finally the 7⃝ phase has the effect of simply ‘parking’ the system within the (1, 1) charge
state region, where we expect there to be no spin-spin interaction.

We now describe four variations to this initialisation scheme, which we may use to
prepare four different initial state mixtures ρ:

ρ↕↕ = |↑↓⟩⟨↑↓|+|↓↑⟩⟨↓↑|+|↓↓⟩⟨↓↓|+|↑↑⟩⟨↑↑|
4 The fully mixed state, where both spins are ran-

domised after readout as described above, is generated by the sequence: 1⃝ (Read-
L); 2⃝ (Read-R); 3⃝ (Empty-R); 4⃝ (Load-R); 5⃝ (Load-L); 6⃝ (Empty-L);
7⃝ (Park). Stages 3⃝ & 4⃝ perform a random reinitialisation on the R qubit, by
removing the single electron and re-loading one with a random spin. Stages 5⃝ &
6⃝ perform a random reinitialisation on the L qubit, by forming the two electron
spin singlet state S, then removing one of the electrons at random.

ρ↓↓ = |↓↓⟩⟨↓↓| The simple sequence 1⃝ (Read-L); 2⃝ (Read-R); 7⃝ (Park) prepares the
two qubit system in the pure product state |↓↓⟩ by projectively measuring both
qubits, which at the end of each read phase leaves each spin in its ground-state,
and then deliberately not re-initialising either with a random state.

ρ↓↕ = |↓↑⟩⟨↓↑|+|↓↓⟩⟨↓↓|
2 the partially mixed state, with a random spin on the right qubit,

but always spin-down on the left, is prepared by including steps 3⃝ & 4⃝, but not
5⃝ & 6⃝.

ρ↕↓ = |↑↓⟩⟨↑↓|+|↓↓⟩⟨↓↓|
2 is prepared by excluding the right qubit randomising steps 3⃝ & 4⃝,

and only re-initialising random states on the left qubit with steps 5⃝ & 6⃝.

Note that there is no gate pulse sequence to deterministically initialise either spin in
the |↑⟩ spin excited state, doing so would require resonantly exciting the transition with
an ESR pulse (the subject of following sections). A set of 40 single shot time traces
using the first sequence, preparing ρ↕↕, are shown in Figure 5.11(c), with highlighted
example outcomes assigned to the four possible spin product states (|↑↑⟩ , |↓↑⟩ , |↑↓⟩ , |↓↓⟩)
by yellow boxes and labels. The presence of a transient current ‘blip’ (blue) in phase
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1⃝ indicates the left qubit was determined to be spin-up |↑⟩, and likewise a ‘blip’ in
phase 2⃝ denotes a spin up |↑⟩ outcome for the right qubit. The blips durin the first
readout phase (for the left qubit) are shorter due to the faster tunnel rate between the
2P molecule and the SET.

5.3.4 T1 Relaxation measurements and verification of
spin independence in the (1,1) charge regime

Importantly, the readout of electrons on each donor quantum dot should be independent
of the spin-state of the other. That is to say, the exchange interaction at the position
where readout is performed must be vanishingly small, such that no spin flip-flops occur
during the readout time. This can be verified by performing a T1 relaxation time mea-
surement for each qubit, as shown in Figure 5.12. For these measurements we prepare the
initial state ρ↕↓ (i.e. a random spin on the left qubit, |↓⟩ on the right) in order to observe
relaxation of the electron spin on dot L. The time delay in the ‘parked’ configuration 7⃝
between initialisation and readout is varied, in order to allow excited state spins to relax
to the ground state, and the remaining probability to measure each electron as |↑⟩, PL↑

and PR↑, is plotted in Figure 5.12(a). The left qubit spin-up probability PL↑ falls from
∼ 50% to zero with increasing wait time.

Figure 5.12(b) plots the outcome of the equivalent experiment on the other qubit,
beginning instead from the initial state ρ↓↕, to observe spin relaxation of dot R. In this
case also, we see the excited state probability for the target qubit decay to zero, and
we fit the data to simple exponential decay curves P (t) = P0 exp(t/T1). The initial
randomly oriented spin on the left dot (Figure 5.12(a)) decays to the ground state with
T
(2P )
1 = 2.9±0.5s, and we see T (1P )

1 = 9.3±2.4s for the right dot (Figure 5.12(b)). This
measurement was done at B0 = 2.5T with the magnetic field oriented parallel to the
device plane and aligned along the [110] crystal axis, as illustrated by the white arrow
B

(1)
z in Figure 5.12(c). Crucially, the spectator spin, which was initialised |↓⟩ remains so

for all delay times, verifying that the exchange energy at our readout points in the (1,1)
charge region is negligible and that there is no spin-spin interaction between the qubits
over a timescale ∼ 10s.
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Figure 5.12: Independent single-shot spin readout and spin relaxaঞon in 1P and 2P quantum dots. (a)
T1 spin relaxationmeasurement of the 2P electron, plotting individual spin up probability as a function
of wait time. Note that the 1P spectator electron is always found |↓⟩ (b)T1measurement of the 1P elec-
tron, with similarly unaffected 2P spectator, both at 2.5T andwithB

(1)
z field orientation. (c) schematic

indicating the two relative orientations of themagnetic field used in ourmeasurements. (d) Summary

plot of 1/T1 values for over amagnetic field range, illustrating theB
−5 scaling of the relaxation time.

The left dot (2P) relaxes around a factor of 3 faster than the right (1P). Multiple data-points indicate

the uncertainty range across repeatedmeasurements. Square data points at 2.5T correspond to (a)

and (b). (e,f) Field dependence of theT1 relaxation, for left and right qubits, withB
(2)
z field orientation.

With increasingmagnetic field, the electron relaxesmore quickly, and the probability falls toward zero

at shorter wait times. The decay is exponential, and the fitted slopes at each field setting provide theT1
values shown in (d).

We repeat the spin relaxation experiment at a range of magnetic field values from 3 to
5T, and on a second cool-down in the dilution refrigerator with an alternate orientation of
the magnetic field to the crystal axis. Figure 5.12(c) indicates the second field alignment
B

(2)
z , perpendicular to the device plane, along [001]. The measured relaxation rates as

a function of magnetic field, 1/T1, are shown in Figure 5.12(d). Squares denote the
B

(1)
z alignment, and circles the field dependence study at B(2)

z . We observe the expected
relation T1 = KB−5 for donors, where the 5th power dependence is consistent with the
theory of phonon mediated valley repopulation116,158. The exponential decay curves
used to obtain the circular data-points are presented in Figure 5.12(e,f), where it is
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easily observed that the spin relaxes to the ground state more rapidly at higher field,
the probability to measure |↑⟩ falling to zero much faster for the blue 5T line than for
the red 3T line.

We note that the B(2)
z trend-lines of Figure 5.12(d) pass well above the single data

points at 2.5T along B(1)
z for both qubits, indicating that a shorter relaxation time ap-

pears to apply for the [001] alignment, evidence of anisotropy in the donor spin relaxation
process159,160. An angular dependence of the T1 relaxation rate has been observed in
bulk samples161, and has recently been investigated further by Weber et al. 162 . The
black dotted line in Figure 5.12(d) shows the result obtained in previous single donor
(1P) electron T1 measurements55,94, with a coefficient K = 0.015s−1T−5, obtained with
a B0 field aligned along [110]. We extract coefficients K2P = 0.0026 ± 0.0001s−1T−5,
K1P = 0.006 ± 0.0010s−1T−5. Our lower coefficient reflects a longer T1 time than the
reference value.

Recent theoretical calculations by Hsueh et al. 152 using an atomistic tight binding
approach suggest that multi-donor clusters should enjoy a longer relaxation time relative
to a single donor, due to the single electron wavefunction being more tightly confined
by the stronger Coulomb potential well, as discussed in detail in Section 5.2.3. At first
glance, our results appear contrary to this understanding; we note that the 2P electron
relaxes faster than the 1P electron in this device: T (2P )

1 = 2.9± 0.5s, T (1P )
1 = 9.3± 2.4s

(for the B(1)
z configuration at 2.5 T). However, the measurements were preformed in a

different field orientation to the calculations of Hsueh et al. 152 . Since we know that there
is a magnetic field orientation dependence of T1 for single donors161,162, it is likely that
this is true for 2P molecules also. Our measured relaxation times are within around an
order of magnitude of the theoretical predictions T (2P )

1 ≈ 35± 15s, T
(1P )
1 ≈ 2.5s152, and

other recent experimental measurements T (2P )
1 = 6.7s153, T (1P )

1 = 1.4s55. Future work
in needed to fully understand the interplay between field orientation and the crystal axes
in 2P single electron quantum dots.
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5.3.5 Controllable exchange interaction between two
donor-bound electrons

The realisation of a two-qubit logic gate, and thus any sort of scalable qubit architecture,
requires the ability to controllably turn on and off interaction between spin states. We
now investigate the onset of the exchange interaction J as the double quantum dot
is detuned from the (1,1) charge state into (2,0), as indicated in Figure 5.13. The
experimental procedure is as follows:

• Initialise the two qubit system in one of the partially mixed state preparations ρ↓↕
[or ρ↕↓] as detailed in the preceding sections.

• Park the system in the (1,1) charge region, denoted by a green square in Fig-
ure 5.13(a).

• Pulse along the detuning axis ϵ toward (or beyond) the (1,1)-(2,0) charge transi-
tion, to a variable position marked by green circles in Figure 5.13(a).

• Wait at this location for 50ms, which is longer than both qubit tunnel rates, to
avoid any transient behaviour.

• Pulse back to the starting location (Park)

• Readout the independent single spin states

From the individual single shot spin outcomes for each qubit we determine the
joint probabilities Pij for finding the two spins in the four possible product states:
ij∈{↑↑, ↑↓, ↓↑, ↑↑}, and these probabilities are plotted in Figure 5.13(d-f) as a function
of the detuning energy ϵ – the position of the green circle in Figure 5.13(a) relative to
the (1,1) – (2,0) charge degeneracy point which defines epsion = 0. We convert the gate
voltage values of Figure 5.13(a) to energy units in via the combined effective lever arm
along the detuning axis parallel to SET conduction lines αϵ = αL

ϵ +αR
ϵ = 0.071± 0.007,

determined by the lengths of the spin-tail plots in Figure 5.10. Hence the horizontal
axes of Figure 5.13(d-f) are given in energyu units (meV).

In the case where ρ↓↕ is initialised (yellow circle markers), there are two randomly se-
lected initial states, as illustrated in the upper-left and lower-left panels of Figure 5.13(b):
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Figure 5.13: Tunable exchange interacঞon and independence of the two electron spins. (a) Pulse
scheme for determining the onset of exchange interaction between two qubits. After initialisation, from

the parked position in the (1,1) charge state (green&white square), a pulse is applied toward the (0,2)

charge region (green circles), mapping the response along the detuning axis (ϵ). The following repetition
of the sequence will involve reading out the individual spin states at positions marked by the red (L) and
blue (R) circles. (b) Schematic of the effect of the exchange interaction on the initial statemixture ρ↓↕
where the left dot is deterministically |↓⟩ after initialisation. The two randomly selected initial states
are shown in upper-left and lower-left panels. With both spins down (upper-left), detuning the system

cannot move the two electrons together into the (2,0) state, as theT− triplet state is much higher in en-

ergy than theS singlet. With anti-parallel spins, the S(0,2) state is accessible at positive detuning. With

both electrons on the left dot as shown in the lower-right panel, the exchange interaction causes the

spins to exchange rapidly, effectively randomising each individual electron spin, but always remaining

anti-parallel. Thus, on return to the (1,1) charge state either |↓↑⟩ or |↑↓⟩ outcomes are possible, as indi-
cated by the thick black arrows pointing into the upper-right and lower-left panels. (c) Similar schematic

based on initialisation into the ρ↓↕ mixture. (d) Yellow circles [purple crosses] show the joint probabil-

ityP↑↓ of measuring the |↑↓⟩ state after initialising in a ρ↓↕ [ρ↕↓] mixture and a 50ms exchange pulse,
as a function of the detuning energy ϵ, (e) the joint probabilityP↓↑ of measuring the |↓↑⟩ state, and (f)
likewise,P↓↓ andP↑↑ (labelled) under the same two initialisation conditions.
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• The |↓↓⟩ initial state (upper-left panel) is unaffected by the exchange interaction,
since Pauli spin blockade prohibits the right electron from moving to the left dot.
The state remains unchanged after the detuning voltage pulse. Since this state is
initialised 50% of the time, we find in Figure 5.13(f), an average P↓↓ value just
over 0.5, which remains insensitive to ϵ

• The |↓↑⟩ initial state (lower-left panel) on the other hand, is sensitive to the
exchange interaction when the electron wavefunctions are made to overlap by in-
creasing the detuning ϵ, and the spin anti-parallel (1,1) state hybridises with the
S(2,0)31,32.
i) For values ϵ < −0.5meV, there is no interaction and we observe in Fig-
ure 5.13(d), P↑↓ ≈ 0, and in (e) P↓↑ slightly less than 0.5
ii) For values ϵ > −0.5meV, the electron wavefunctions significantly overlap as
both reside primarily in the left dot (lower-right panel) and the presence of the ex-
change interaction rapidly exchanges the two spins |↓↑⟩ ↔ |↑↓⟩. The timescale for
this spin exchange has been observed in silicon quantum dot devices to be on the
order of MHz or faster163. Thus the effect over the comparatively long wait time
(50ms) in our experiment is to randomise the spins when the electrons are finally
separated again, leading to either final state |↓↑⟩ (lower-left) or |↑↓⟩ (upper-right
panel). Hence, for positive ϵ we see that the probabilities in Figure 5.13(d) and
(e), P↑↓ and P↑↓, are both around 0.25, representing a random outcome for each
qubit, yet a clear anti-correlation between the two.

• We have repeated the experiment starting from the other initial state mixture
ρ↕↓ (purple cross markers), and the equivalent state representation is shown in
Figure 5.13(c), where the evolution is completely analogous to that described
above for ρ↕↓, after switching the spin state labels for the two qubits.

The almost disctrete change in behaviour just below zero detuning energy is a clear
indication of a controllable exchange interaction in our device, and a step towards a
coherent two qubit gate. Additional quantum mechanical simulations based on the data
collected in our experiment has recently provided an indication of the strength of the
exchange coupling. Broome et al. 3 estimate a value of ∼ 200MHz at ϵ = 0. This value
is unfortunately too low to observe coherent exchange driven oscillations which would
form the basis of a

√
SWAP two qubit gate in this device.
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The readout of random yet anti-correlated single electron spin states when we in-
tentionally detune the double quantum dot system to positive detuning nevertheless
demonstrates control over the exchange coupling in our two qubit device architecture.
Having carefully verified the conditions under which our two spin qubits interact, we
are in a position to operate each of them independently, confident that their exchange
interaction is negligible around the single spin readout positions used in the remainder
of this chapter.

5.4 Integrating a broadband microwave an-
tenna onto an atomic-scale device

Following the spin relaxation and controllable exchange interaction experiments, the 1P-
2P device was un-bonded and removed from its measurement package. The device was
then reprocessed to integrate a broadband microwave antenna, to enable electron spin
resonance experiments. First it is important to understand the technical requirements of
the antenna, and for this we must consider the relevant energy scales and electromagnetic
field profiles to optimise the antenna layout. We then describe the process by which the
physical antenna is post-fabricated onto the existing device.

Measurements of the electron temperature in our dilution refrigerator set-up indicate a
thermal energy kB ·200mK ≈ 20µeV. As such, we require a Zeeman energy several times
larger than this, to ensure that spin-to-charge conversion based on Zeeman-state depen-
dant tunnelling remains effective. A magnetic field of 2.5T corresponds to a Zeeman
splitting of 290µeV and is therefore suitable for high fidelity spin readout, FM ≈ 97% as
we derive in Section A.3. However, given the gyromagnetic ratio for electrons in silicon
γe = 27.9GHz/T, working at a magnetic field B0 = 2.5T would require spin rotation
Rabi fields on the order of 70GHz. The electronic hardware to generate such high fre-
quency signals is not readily available, so we must lower our Zeeman field. Single shot
spin readout is not practical below 1T, as the Zeeman state splitting becomes comparable
to the thermal energy. With a ∼ 1.5T field, spin readout is possible, but with a reduced
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Figure 5.14: Microwave transmission geometries for exciঞng nanoscale devices. (a) Schematic of a
coplanar stripline transmission line, indicating the dimensions and dominant electromagnetic field

mode. (b) a similar schematic for a coplanar waveguide geometry, with amore tightly confined elec-

tromagnetic fieldmode. (c) Diagram indicating the tapered geometry of our antenna, transitioning from

a coplanar waveguide to coplanar stripline and terminating in a short-circuit. Numbered sections are

described in the text.

spin readout fidelity, in this device FM ∼ 85% . The reduction is primarily due to an
increased incidence of thermally excited spin-down states being mistakenly interpreted
as being spin-up. Measurements in other precision donor devices have achieved higher
measurement fidelity55 (99% at B = 1.6T) by virtue of a more conductive SET, and
therefore a higher signal to noise ratio than we have in the present device.

Therefore, for a viable electron spin resonance (ESR) experiment, we work in a B0

field in the range 1.2T – 1.5T, corresponding to a Larmor resonance frequency in the
microwave spectrum, around γeB0 ≈ 40GHz.

5.4.1 Microwave transmission line and broadband an-
tenna geometries

At 40GHz the wavelength of radiation is on the order of millimetres and therefore the
geometry of the transmission line used is critical for the effective coupling of the reso-
nant spin control signal into a device. We now briefly introduce several electromagnetic
transmission line structures relevant to transmitting microwaves in our experiment, be-
fore describing the optimised nanoscale broadband antenna used for our devices.
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Co-Planar Stripline

A coplanar stripline consists of a dielectric substrate over which sit two thin parallel
metal strips of width w separated by a distance s. This structure supports a guided TEM
(transverse electro-magnetic) mode in the long wavelength limit (λ ≫ w,s), where the
two conductors carry equal and opposite alternating currents (thus termed a ‘balanced’
signal). A conceptual diagram of the general shape of the fields for the dominant mode
in a coplanar stripline geometry is shown in Figure 5.14(a). The electric field is weaker
within the substrate due to polarisation of the dielectric. The direction of the fields
reverse every half-period along with the alternating current.

The characteristic impedance Z0 for a coplanar stripline with conductor widths w,
gap separation s on a dielectric substrate of height h and relative permittivity ϵr, as
shown in Figure 5.14(a), is approximated as164:

Z0 =
ηK(k)

√
ϵeffK(k′)

(5.13)

ϵeff = 1 +
(ϵr − 1)

2

K(k′)K(kr)

K(k)K(k′r)
(5.14)

here η is the vacuum impedance (120πΩ). K represents the complete elliptic integral
of the first kind:

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

(5.15)

and the k-parameters depend on the waveguide geometry:

k =
s

s+ 2w
kr =

sinh2 (πs/4h)

sinh2 (π(s+ 2w)/4h)
(5.16)

k′ =
√

1− k2 k′r =
√

1− k2r (5.17)

These expressions relate the geometry (w, s, h) to the stripline’s impedance.

Co-Planar Waveguide

The coplanar stripline’s magnetic and electric fields extend far from the conducting strips
(green and pink field lines in Figure 5.14(a)). A more effective confinement of the E
and B fields, and therefore a reduced loss per unit length is achieved with a so-called
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coplanar waveguide geometry. This is a three conductor structure: one narrow center
strip which alone carries an alternating current, and two wide ground planes either side,
again laid over a dielectric slab. The groundplanes significantly reduce the lateral spread
of the electric field, as illustrated in Figure 5.14(b).

Since this is the dual geometry to a coplanar stripline (two ‘slots’ as opposed to
two strips), the form of the characteristic impedance is similar. The following expres-
sion164, assuming infinitely extended ground planes, describes the coplanar waveguide
impedance:

Z0 =
ηK(k)

4
√
ϵeffK(k′)

(5.18)

in the limit of a thick substrate, ϵeff = (ϵr + 1)/2, so for silicon ϵeff ≈ 6.5.
Setting the impedance to 50Ω (to match the output impedance of the microwave

source) and solving Equations (5.13) and (5.18) for s and w gives a solution set for
the line widths w and separation s that will provide low loss transmission of microwave
signals. The phase velocity of the transmission mode in either of the two structures is
ν = c/

√
ϵeff = 1.2× 108ms−1, hence the wavelength at f = 40GHz is around 3mm. We

wish to avoid resonant behaviour of our transmission line, so an important consideration
is the λ/4 ≈ 750µm resonance length. By keeping the size of our antenna less than this
value we can avoid exciting standing waves, in order to produce an effectively broadband
microwave antenna.

Nanoscale broadband microwave antenna

The design of the microwave antenna we use is based on the work of Dehollain et al. 134 ,
and consists of a coplanar waveguide (CPW), transitioned gradually into a coplanar
stripline (CPS) which terminates in a short circuit wire near to the qubit location. The
layout is shown in Figure 5.14(c), defined by eight sections and Table 5.3 defines the
dimensions of each section. The transition from a coplanar waveguide mode where the
signal is unbalanced to a coplanar stripline mode where the signal is balanced, is referred
to as a ‘balun’, and the shape of the balun transition is designed to minimise signal loss
and reflection in several ways165:

• The shape in section I is large enough to allow wire-bonding to the centre conductor
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Section Transmission mode s w length
all dimensions in µm

I symmetric CPW 86 52 43
II tapered CPW – – 69

III symmetric CPW 43 26 43
IV tapered CPW 43 26 / – 43
V asymmetric CPW 43 26 / 6 86

VI tapered CPS 6 – 39
VII asymmetric CPS 6 78 / ∼100 160

VIII symmetric CPS 6→1 ∼40 7

Table 5.3: Nanoscale microwave antenna geometry: description of the eight successive stages forming
the unbalanced-to-balanced signal transition in themicrowave antenna design of Dehollain et al. 134

and the dimensions we have used.

• Section II tapers down to a smaller scale, condensing the electric and magnetic
field modes in section III

• The coplanar waveguide is made asymmetric in section IV, so that the field be-
comes concentrated in the right-hand side of the waveguide throughout section
V

• At section VI, the left ground-plane is discontinued, and the centre pin expands
to form the left stripline

• The strip width remains large for section VII, to keep the current density low and
therefore minimise resistive heating effects

• In section VIII, the antenna tapers toward the final short-circuit – a ∼ 100nm

wide nanowire connecting the two striplines 1µm apart. The purpose of the short-
circuit is to produce a large current density and thereby a large magnetic field at
the end of the antenna where the donor qubits will be located.
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Figure 5.15: Finite element microwave field simulaঞons. (a) Magnetic fieldBY and (b-d) electric field

|E|, EX , EZ simulations at 40GHz. The coloured panels plotting the fields are 2 × 2µm and lie 55nm

below the silicon surface. White dashed lines indicate the position of the antenna. Grey boxes denote a

500 × 500nm target region where the ratio of magnetic to electric field is optimised. (a-d) reproduced

fromHile 166 (e) Measured attenuation in the∼ 2.5m long stainless steel coaxial cable used to transmit
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5.4.2 Optimising antenna position by simulating the ra-
diated magnetic and electric fields

We performed finite element field simulations166∗ of the B1 oscillating magnetic field
produced by our antenna geometry, in order to determine the optimal position of the
antenna relative to the donor qubits so that the B1 magnetic field at the donors’ location
is maximised. The simulated magnetic field within a 2× 2µm area 55nm below the end
of the transmission line/antenna is shown in Figure 5.15(a), for an antenna driving
frequency of 40GHz. The plot indicates that the y-component (perpendicular to the
antenna surface plane) of the magnetic field BY is stronger inside the loop of the antenna
than outside, by a factor of ∼ 4. This is understandable since the magnetic flux on the
inside is concentrated into the limited area between the two coplanar stips and the
terminating nanowire, where on the outside (top left of Figure 5.15(a)) there is no such
flux confinement.

We aim not only to maximise the B field amplitude, but also to keep the E field small
at the donor location. Large electric field fluctuations may lead to unintended ionisation
of the donor during the spin resonance experiment, or adversely affect the SET charge
∗ These simulation results, obtained using CST Microwave Studio software, were presented as
part of the author’s Honours thesis166, accepted for the award of another degree
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sensor through photon-assisted tunnelling or charge pumping effects167,168. The associ-
ated electric field amplitude |E| simulated for our antenna is shown in Figure 5.15(b).
This plot indicates that within the antenna loop there is a region of minimal electric
field 500nm×500nm, as indicated by grey dotted lines – we take this as the target region
in which we aim to position the donor qubits. Figure 5.15(c) and (d) show the in-plane
E-field components EX , EZ , most critical for controlling unwanted tunnelling within
our planar donor-defined nanostructure (a perpendicular electric field EY is expected to
have a lesser effect since there are no metallic regions out of the plane for an electron to
tunnel to). We see in (c) that there are two lobes of strong EX below the edges of each
stripline, and in (d) that a significant EZ field component is projected beyond the end
of the transmission line, further motivating the placement of our donor qubits within
the antenna loop.

For the simulation, the transmission line’s TEM mode was excited with a nominal
input power of 1mW. To produce realistic field values in Figure 5.15, we scale the sim-
ulation results commensurate with realistic losses in the full transmission line between
the microwave signal generator and the on-chip antenna, which is dominated by ∼ 2.5m

of stainless steel 2.2mm diameter (UT85) coaxial cable. We have measured the signal
attenuation (at room temperature) in our coaxial cable up to 26GHz with a network
analyser, as shown in in Figure 5.15(e). Extrapolating the loss curve suggests we can
expect on the order of 50 ± 10dB of attenuation at 40GHz. The use of stainless steel
provides good thermalisation of the cable at the cost of significant signal loss. We in-
clude an additional 10dB to account for further attenuation at cryogenic temperature
and in the PCB launch adapter connecting coaxial cable to coplanar waveguide. Overall
this produces an estimate of 60dB total attenuation, which is the value we have used to
scale the simulation outputs to the values shown in the field plots of Figure 5.15(a-d).
Based on this estimate, the expected B1 field achievable within the target region is on
the order of 0.1mT with a nominal input power of 1mW = 0dBm. Importantly, the
electric fields we expect the antenna to generate are in the low kV/m range, orders of
magnitude lower than typical DC electric fields in planar donor-defined devices which
are on the order of several MV/m.

Having determined the optimal placement of an antenna relative to our donor qubits,
we next describe the physical fabrication of such an antenna onto the surface of our
1P-2P double quantum dot device.
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5.4.3 Fabricating a microwave antenna aligned to a pre-
cision 1P-2P double quantum dot device

The antenna post-fabrication process requires additional electron beam lithography with
sufficient alignment accuracy to the buried atomic scale device to ensure the donor qubits
will lie within the 500nm× 500nm target region specified above. This is achieved by ref-
erence to ∼ 350nm deep registration markers, visible as small squares in the corners, and
long trenches around the edges of Figure 5.16(a). We know the relative position of our
donor defined qubits relative to these markers with ∼ 100nm accuracy76,92. In the opti-
cal image of Figure 5.16(a) we see aluminium ohmic contacts to the buried donor plane
fanning out to the top of the image, and the termination end of the microwave antenna,
also aluminium, which extends from the lower edge of the image. These metallic struc-
tures are able to extend continuously over the alignment markers, since the anisotropic
nature of the wet chemical etch producing the marker features leaves a smooth contour
at a maximum angle of 54.7◦ down into the ∼ 350nm deep trenches76.

Phosphorus donor defined nanowires extend from the gates and leads of the device,
beneath the antenna and out toward contact regions where etched contact vias connect
them to the aluminium structures. These phosphorus nanowires are false coloured (or-
ange) in the SEM image of Figure 5.16(b) to show their relationship to the active region
of the device (the STM image is reproduced here in Figure 5.16(c)), and the overlaid
antenna, false coloured in blue. The external static magnetic field B0 used in the follow-
ing spin resonance experiments is oriented perpendicular to the out of plane oscillating
magnetic field B1, generated by the antenna as indicated in Figure 5.16(b).

A vertical cross-section of the final device is sketched in Figure 5.16(d). The antenna
is separated from the phosphorus donor layer by a 55nm thick layer of epitaxial silicon,
grown over the device in the initial STM-fabrication process, and also the native oxide
layer which naturally forms on the surface when the chip is exposed to ambient atmo-
sphere. In fabricating the aluminium ohmic contacts, this thin oxide layer is removed
by etching in hydrofluoric (HF) acid prior to evaporation of the aluminium contacts,
so that low resistance contact vias are realised by aluminium filling deep etched holes
in the silicon. The HF etch process is omitted in the second metal evaporation process
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Figure 5.16: Broadband ESR antenna alignment to buried donors. (a) Optical image showing the rel-
ative position of themicrowave antenna to the ohmic contact wires tapering out to bond-pads at the

top of the image. Registrationmarkers are visible around the edges. (b) Higher resolution composite

image (white square from (a)). An SEM image shows the antenna – blue. The location of buried phos-

phorus leads aremarked in orange, overlaid with reference to the registrationmarkers. An STM image

showing the SET and planar gate structures is shown to scale andwith a positional accuracy relative

to the antenna of±100nm (c) STM image of the donor plane of the 1P/2P device – the same image

as in Figure 5.8 repeated here for convenience. (d) Vertical cross section of the device structure, indi-

cating dimensions of the substrate, encapsulation layer, and surface aluminium contacts to the buried

phosphorus donor structures as well as the aluminium antenna, which is electrically isolated from the

donor plane. (e) Leakage current measured in a similarly fabricated device, showing no leakage up to

more than 1.7V, and indicating that the leakage that does occur at this point is within the plane, and not

vertically to the antenna.
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when depositing aluminium for the antenna.

The combination of the silicon encapsulation layer and native oxide provides good
electrical isolation, evidenced by the gate leakage measurement shown in Figure 5.16(e).
This plot shows the onset of gate leakage current in a different but nominally similar
device, where the antenna is grounded. As the in-plane gate voltage is increased, we see
a series of Coulomb peaks in the SET current before the onset of some instability above
1.6V, and eventually electrical breakdown occurs beyond 1.7V. Critically, we see that
at this point both the SET current and the Gate current sharply increase to > 10nA,
evidence that the conduction pathway is from gate where the voltage is applied, to the
drain of the SET, and not from the gate into the antenna. Therefore for normal operation
of such devices at gate voltages below ∼ 1.5V we do not expect current leakage between
the donor plane and antenna.

5.5 A robust measurement scheme managing
electrical and magnetic instability

Planar phosphorus donor defined nanostructures typically display lower levels of noise
than many other material systems169,170 because they are fully contained within a crys-
talline environment, with the electronic states far removed from any surfaces or material
interfaces. However, in order to continuously measure over long periods of time (days),
we find we must still must manage the effects of residual 1/f charge noise. Since we
are working in natural isotopic abundance silicon, we must also manage the impact of
fluctuations in the bath of 29Si nuclear spins.
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5.5.1 Correcting for electrical instability with an au-
tomated 2D realignment procedure

To stabilise our device against any electrical noise that may affect the quality of spin
readout, we have developed an automated realignment algorithm capable of compensat-
ing for random shifts in the voltage coordinates of the donor and SET charge transition
potentials due to low frequency charge fluctuations. The importance of this ability is
highlighted in Figure 5.17(a), which displays a combined gate voltage scan where the
voltage of three gates are varied simultaneously VLMR = VGL = VGM = VGR, to sweep
over a single Coulomb peak, repeatedly over the course of ∼ 1hr (4000s). The resulting
time-stability plot shows the effect of charge fluctuations, shifting the SET potential by
around 2mV within this time-frame.

To perform spin readout we must operate at the intersection of the SET transition
potential (a Coulomb peak) and the donor transition potential (a discontinuity), as
indicated by the green dot marking the 2P qubit readout working point in Figure 5.17(b).
To ensure that we meet these two requirements, we regularly perform a two dimensional
(2D) realignment by scanning along the two axes marked: the tuning axis δ (blue arrow),
and the detuning axis ϵ (pink arrow), and based on the outcome, update the voltage
coordinates of our working point.

Peak Find A scan along the tuning axis δ, defined by the relation Vδ = ∆VGL = ∆VGR

produces the trace shown in Figure 5.17(c). We offset this scan from the work-
ing point (by around 20mV) as indicated in Figure 5.17(b) so that the recorded
Coulomb peak in this ‘peak-find’ scan is measured independently from the dis-
continuity at the donor transition. We filter the trace to smooth any noise and
fit the curve to a set of peaks∗, and take the peak position nearest to Vδ = 0 to
define the updated working point. This process ensures that the working point is
aligned to the centre of the Coulomb peak, providing the maximum possible SET
current IM and hence an optimal signal to noise ratio for high fidelity single shot
spin readout.

∗ using a continuous wavelet transform method171 implemented in the Python Scipy library as
scipy.signal.find_peaks_cwt()
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Figure 5.17: Two dimensional realignment procedure to stabilise against charge noise. (a) A low bias

VSD = 0.3mV combined gate voltage scan using three gates (L,M,R) repeated over the course of 4000

seconds, showing variation in the position of a Coulomb peak by 2mV due to low frequency charge

noise. (b) Stability diagram surrounding the operating point for spin readout of the 2P qubit, marked by

a green dot. Wemonitor the effect of charge noise shifting this operating point in 2 dimensions, along

the detuning axis ϵ parallel to SET peaks (pink), and across the tuning axis δ perpendicular to the SET
peaks (blue). (c) Peak-find realignment procedure. A trace is taken along the blue line in (b). The result-

ing curve is smoothed and searched for peaks, the peak position closest to the previous working point

is updated to be the newworking point. (d) Edge-find realignment procedure. A trace is taken along the
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Edge Find A scan along the detuning axis ϵ, defined by the relation Vϵ = −∆VGL =

β∆VGR produces the trace shown in Figure 5.17(d). Here the coefficient β =

αSET
GR /αSET

GL determines the slope of the detuning axis to be parallel to the SET
coulomb peaks as indicated in Figure 5.17(b), ensuring that the electrochemical
potential of the SET island remains static for this ‘edge-find’ scan, and only the
donor quantum dot transition potential is changed. Moving from negative to
positive Vϵ, an electron is added to the 2P quantum dot, switching on the SET
current. In order to obtain a smooth curve, this scan must occur slowly compared
to the electron tunnel time on and off the donor (which is ∼ 5ms for the 2P qubit
shown here). By scanning slowly we average over the random tunnelling of the
electron back and forth between the qubit site and the SET island over a 10mV

range. The oscillatory features remaining in the smoothed trace of Figure 5.17(d)
are not random fluctuations, but arise from the density of states of the SET, which
for donor-defined SETs, has been shown to be non-monotonic157. Hence for our
realignment protocol we must be sure to select a target current value It outside
of the non-monotonic regions so that the uncertainty in Vϵ is minimised. We then
take the Vϵ value where I = It to define the updated working point. This process
ensures that we maintain the electrochemical potential of the two Zeeman split
transition potentials at uniform values above and below the SET Fermi energy so
that the spin to charge transfer process remains consistent. Charge noise induced
drift generates fluctuations in the spin readout fidelity, which we can combat with
this ‘edge-find’ realignment protocol.

Prior to the development of the automated procedure, as for example with the spin
relaxation measurements of Section 5.3.4, data was collected in small subsets with man-
ual realignment of the working point several times per day. The combination of these
two alignment processes allow reliable operation of the qubit over the course of many
days with minimal manual input, a crucial development enabling the collection of the
spin resonance datasets that follow.

147



CHAPTER 5. ADDRESSABLE AND COHERENT OPERATIONS ON INTERACTING
DONOR ELECTRON SPIN QUBITS

5.5.2 Pulse sequence for spin resonance experiments in-
corporating continuous interleaved monitoring

In addition to performing our 2D realignment procedure at regular intervals (every ∼
15min), we are also able to continuously monitor two feedback signals, associated with
the tuning and detuning axes, that will indicate that either a ‘peak-find’ or ‘edge-find’
sequence is required. This monitoring effectively prevents systematic errors in the spin
readout process which would arise if the working point drifts by a significant fraction
of the Zeeman energy (∼ 0.2mV) in between realignments. This secondary feedback
protocol is integrated into the pulse protocol for spin initialisation, manipulation and
readout, forming a 6 stage pulse sequence. We present here the timing used for the 1P
qubit, optimised to the tunnel rate, but the operation of the sequence is equivalent up
to the pulse timings for the 2P qubit.

Figure 5.18(a) shows the input voltage offset along the detuning (ϵ) axis, and Fig-
ure 5.18(b) shows an exemplary output trace of the SET current during one repetition
of the sequence. Thirty additional example traces are shown in Figure 5.18(c). The
steps executed are as follows, and each configuration is illustrated in Figure 5.18(d).

1⃝ Plunge The donor potential is lowered far into Coulomb blockade as shown in Fig-
ure 5.18(d-1) for the application of an ESR microwave pulse, which occurs at a
time (∼ 40ms) midway through this stage.

2⃝ Read The donor Zeeman state potentials are raised to straddle the SET Fermi level,
enabling spin readout. The probability that a current ‘blip’ is due to a |↑⟩ electron
tunnelling to the SET (pink arrow in Figure 5.18(d-2)) decays exponentially with
increasing time. However, the probability for a thermally excited |↓⟩ to tunnel and
cause an erroneous blip remains constant in time, therefore although this phase
has a duration of 156ms, we restrict the spin readout discrimination routine so
that only blips occurring in the first 76ms are assigned as |↑⟩.

3⃝ RTS The donor potential is raised slightly above the read level such that the spin
down state is resonant with the SET Fermi level as indicated in Figure 5.18(d-3).
Here we observe a random telegraph signal (RTS) due to electrons tunnelling back
and forth between donor and SET. By measuring the average value of the SET
current ⟨I⟩3 during this phase, over many repetitions (typically> 200 single shots),

148



5.5. A ROBUST MEASUREMENT SCHEME MANAGING ELECTRICAL AND
MAGNETIC INSTABILITY

R
e

p
it

it
io

n
 (

#
)

0

10

20

30

0

150

S
E

T
 cu

rre
n

t (p
A

)

0

200

400

readout

threshold

readout
window

reference
window

S
E

T
 c

u
rr

e
n

t 
(p

A
)

20

0

-20

V
ε 

(m
V

)

0 100 200 300 400 500 600
Time (ms)

0 100 200 300 400 500 600
Time (ms)

1 2 3 4 5 6
Read

Donor SET Src/Drn

x

2

Initialise

Donor SET Src/Drn

x

6

Empty

Donor SET Src/Drn

4

Plunge

Donor SET Src/Drn

1

RTS

Donor SET Src/Drn

3

Load

Donor SET Src/Drn

5

(b)

(a) (d)

(c)

Figure 5.18: Pulse protocol incorporaঞng conঞnuous interleaved monitoring of charge stability. (a)
A six stage pulse sequence of voltages defined on the detuning axisVϵ, as a function of time for spin
resonancemeasurements of the 1P qubit, and (b) a sample SET current trace for a single-shot spinma-

nipulation, readout, and re-initialisation sequence. The spin is determined to be |↑⟩ if the current trace
exceeds the readout threshold level within the readout window as indicated. This sample shows a |↓⟩
outcome. (c) 30 single-shot current traces, 5 of which are |↑⟩ outcomes as indicated bywhite arrows. (d)
Electrochemical potential diagrams corresponding to each of the six stages: 1⃝ plunge, 2⃝ read, 3⃝RTS,

4⃝ empty, 5⃝ load, 6⃝ initialise.

we obtain a feedback signal equivalent to It (the target current for an ‘edge-find’
scan). Thus we are able to tell in real-time when the donor transition potential has
shifted in the gatespace along the detuning axis. If ⟨I⟩3 deviates from It by more
than a specified tolerance (typically 10%), we trigger an ‘edge-find’ procedure as
per Figure 5.17(d), to recover a proper working point.

4⃝ Empty The donor potential is raised far above the SET Fermi level, causing the
electron to tunnel to the SET. The SET current is expected to be high for this
phase, with the SET Fermi level resonant with source and drain Fermi levels as
shown in Figure 5.18(d-4). We monitor the average SET current value in this
phase ⟨I⟩4 as a feedback signal equivalent to IM (the peak current from a ‘peak-
find’ scan). If at any time ⟨I⟩4 falls significantly (typically 15%) below the IM
value recorded in the most recent ‘peak-find’, we determine that the SET peak
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has shifted in the gatespace along the tuning axis, and we trigger a ‘peak-find’
procedure shown as per Figure 5.17(c) to compensate.

5⃝ Load The donor potential is lowered far below the SET Fermi level, loading an
electron with random spin as shown in Figure 5.18(d-5)

6⃝ Initialise The donor potential is held at the same read position as for step 2⃝,
and the presence of current blips within a ‘reference window’ is used to produce
a reference spin-up probability. This reference value should remain consistent
throughout the course of a spin resonance experiment, because it is based on the
measurement of randomly loaded spins independent of the effect of any applied
ESR microwave pulse during phase 1⃝. At the end of this reference readout phase
the spin is deterministically initialised |↓⟩ with high probability, as indicated by
the blue arrow in Figure 5.18(d-6).

The continuous monitoring of the feedback signals ⟨I⟩3 and ⟨I⟩4 provide real-time
information allowing the automated system to determine when low frequency charge
noise causes the SET or donor potentials to drift. Execution of the two re-alignment
procedures ‘peak-find’ and ‘edge-find’ corrects for the random drift, keeping the system
fixed at a working point where high fidelity spin readout may be continuously carried
out.

5.5.3 Adiabatic passage for reliable spin inversion in a
fluctuating magnetic field

The electron tunnel rates are on the order of 100Hz (1kHz) for our 1P (2P) qubit,
and as Figure 5.18 indicates, one single-shot readout sequence of the 1P qubit takes
over 600ms. Over such timescales, greater than T2, the nuclear Overhauser field is
expected to fluctuate over the full inhomogeneous linewidth (∼ 5MHz) as a result of
spectral diffusion – the random evolution of the bath of 4.7% 29Si nuclear spins. With a
constantly fluctuating Larmor resonance frequency, performing electron spin resonance
measurements at a fixed frequency is ineffective. A common strategy developed for
both NMR and EPR is the adiabatic frequency sweep, or adiabatic passage pulse172,173.
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Figure 5.19: Adiabaঞc spin inversion. (a) Schematic showing the process of adiabatic spin inversion in a
rotating frame syncronised to the instantaneous driving frequencyω at all times. The vector sum ofB1

and the detuning ∆ω
γ , indicated in purple asBeff appears as the effectivemagnetic field experienced

by the electron. When the rate dα
dt is small, the electron remains in the instantaneous eigenstate of

H ≈ Beff and follows the path defined by the purple line from |↓⟩ to |↑⟩ as the angleα increases from

0 → π. (b) Cartoon traces indicating the qualitative behaviour of the four quantities ∆ω
γ , B1, α,Beff

as a function of time during the adiabatic inversion pulse. (c) Donor electron spin resonance spectrum

in natural siliconmeasured by Laucht et al. 174 . The FWHM is due to hyperfine coupling with the 29Si

nuclear spin bath. (d) 75 individual frequency scans which, averaged together produce (c). The narrow

peak in each scan shifts in frequency over∼ 20MHz due toOverhauser field fluctuations. (e) Imper-
fect spin inversion occurs with a low power adiabatic inversion pulse at short sweep times (high chirp

rate). Extending the sweep timemakes the operationmore adiabatic and thus the inversion occurs with

higher efficacy. (f) Effective spin inversion occurs even at short sweep times when the power (B1mag-

nitude) is increased. (c,d,e,f) reproduced from Laucht et al. 174 .

In the simplest sense, an adiabatic passage simply involves ‘slowly’ sweeping the drive
frequency of the B1 field, such that is passes through the expected range of possible
resonance frequencies. The result is an inversion of the spin state, from |↓⟩ to |↑⟩ or
vice-versa. The meaning of ‘slowly’ is defined algebraicly below.

The effect of an adiabatic passage pulse on the electron spin can be understood by con-
sidering the effective Hamiltonian in the rotating frame, as illustrated in Figure 5.19(e).
In the rotating frame, the Rabi field B1 is considered to have a constant orientation
along the X-axis, and we keep the amplitude fixed so that B1(t) = B1. Since the drive
frequency deviates from the Larmor frequency by ∆ω(t), there is an added effective mag-
netic field component along the Z-axis of magnitude ∆ω(t)/γ, the ratio of the frequency
offset to the gyromagnetic ratio. Therefore at any instant, the total effective magnetic
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field (shown by the purple arrow) seen by the electron spin is the vector sum of these
two components:

|B⃗eff (t)| =

√
B1

2 +

(
∆ω(t)

γ

)2

(5.19)

and the effective Hamiltonian can be written:

H(t) = γeB1σx +∆ω(t)σz (5.20)

The spin vector precesses, in the rotating frame, about the instantaneous ⃗Beff , and
the ⃗Beff vector itself rotates, over the course of the pulse, about the Y-axis at a rate
dα(t)/dt, where the angle α(t) (marked in green) changes according to:

tan(α(t)) =
∆ω(t)

γeB1
(5.21)

dα(t)

dt
=

d

dt
arctan

(
∆ω(t)

γeB1

)
(5.22)

The qualitative shape of ∆ω(t)/γ, |B1(t)|, α(t), and |B⃗eff (t)| is sketched in Fig-
ure 5.19(f). The choice of frequency modulation function is somewhat arbitrary. Dif-
ferent schemes exist employing various smoothly varying functions175 for both the fre-
quency offset ∆ω and B1 field amplitude as a function of time in order to tune the
effective bandwidth and minimum required power for successful inversion. For simplic-
ity we use a linear frequency chirp such that ∆ω(t) = −νt for a chirp rate of νHz/s, we
then have

dα(t)

dt
=

ν

γB1

1

1 +

(
νt

γB1

)2 (5.23)

The gradual rotation of ⃗Beff from the positive Z-axis to the negative Z-axis, smoothly
inverts the |↓⟩ and |↑⟩ eigenstates, since the electron will adiabatically follow the instan-
taneous groundstate – that is, with its spin parallel to Beff .

If the angle α changes rapidly, a further effective field component arises along the
Y-axis, with magnitude 1

γ
dα(t)
dt , which has the effect of tilting ⃗Beff out of the Z-X plane,

and producing ‘wiggles’ in the path of Beff as seen in Figure 5.19(e). The effect remains
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small if the rate of change of the angle is small relative to the magnitude of Beff

dα(t)

dt
≪ γ| ⃗Beff | (5.24)

ν

γB1

1(
1 + νt

γB1

2
) ≪ γ

√
B1

2 +

(
∆ω(t)

γ

)2

(5.25)

ν

γB1
≪ γB1 (5.26)

ν ≪ (γB1)
2 (5.27)

where in moving to Equation (5.26) we have taken the maximum value of the LHS and
minimum value of the RHS (both occurring at t = 0) in order to simplify the inequality.
So long as the chirp rate is small compared to the square of the Rabi frequency, such
a pulse executes an adiabatic passage, inverting the electron state, irrespective of the
pulse duration or precise Larmor resonance frequency.

Laucht et al. 174 recently employed the adiabatic passage technique to perform high
fidelity inversion of the electron spin of an implanted P donor within a silicon MOSFET
device, in the presence of a fluctuating nuclear Overhauser field. Figure 5.19(c) shows the
spin time averaged resonance spectrum they measured with conventional fixed-frequency
ESR. The FWHM of the resonance peak is 11.9MHz, and reflects inhomogenous broad-
eneding due to spectral diffusion from the 29Si nuclear spins. The double peak structure
(at 36.33 and 36.34GHz) is interpreted to be due to the parallel and anti-parallel nuclear
orientations of a single neighbouring 29Si atom with strong coupling to the electron, or a
second nearby 31P donor. The dashed line on the far right shows the expected location
of the other hyperfine resonance, but the 31P nuclear spin was observed predominantly
in the |⇓⟩ state. The peak in (c) is the sum of 75 individual frequency scans shown
separately in Figure 5.19(d). In these individual traces the electron resonance appears
with a much reduced linewidth of ∼ 1MHz on average, and with random fluctuations in
the peak position.

To unconditionally excite the electron spin, irrespective of the instantaneous Over-
hauser field, Laucht et al. 174 applied an adiabatic passage pulse with the characteristics
shown in Figure 5.19(b). The result is displayed in Figure 5.19(e). The plot shows the
measured |↑⟩ probability R↑ after initialising the electron |↓⟩ before applying an adia-
batic passage pulse. Here they use a nominal microwave power of −4dBm, and frequency
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modulate the microwave signal linearly over a range of ±12.5MHz within the variable
sweep time TS . For short sweep times, the frequency sweep is non-adiabatic and the
inversion ineffective, but as TS is increased to 25µs the process becomes adiabatic, and
the initially |↓⟩ electron spin state is inverted to |↑⟩ with probability approaching 1. As
indicated by Equation (5.27), the frequency chirp rate ν which marks the transition from
non-adiabatic to adiabatic depends on the square of the B1 field amplitude. This de-
pendence is demonstrated by the altered response seen in Figure 5.19(f). Here the same
experiemnt is performed but with a higher microwave power of +5dBm, corresponding
to a factor of ∼ 3.5 increase in B1, suggesting an increase in the limiting chirp rate by a
factor 3.52 ≈ 12. The plot shows that the inversion probabiliy is maximised already at
TS ≈ 2.5µs, reflecting a tenfold increase in ν consistent with the theory.

Building on the successful application of the strategy by Laucht et al. 174 , we use
similar adiabatic passage pulses to invert our electron spin in the following measurements.

5.6 Electron Spin Resonance of a single donor
and 2P molecule

Using the feedback procedure and pulse scheme outlined in Sections 5.5.1 and 5.5.2 and
the adiabatic passage technique of Section 5.5.3, we measure the electron spin resonance
spectrum of our 1P and 2P qubits.

5.6.1 Single donor qubit hyperfine spectrum

The spin resonance spectrum of the single donor is shown in Figure 5.20(a) for B0 =

1.35T. This data shows the fraction of |↑⟩ outcomes over 640 single-shot repetitions of the
6-stage pulse sequence of Figure 5.18 at each frequency value. During the Plunge phase,
a microwave pulse is applied with a nominal power of +5dBm, frequency modulated with
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a linear ramp of ±20MHz centred on the variable ESR frequency value plotted on the
x-axis. Technical details of the experimental equipment used to generate the ESR pulse
is given in Section A.4 The adiabatic passage is completed in a sweep time of 150µs,
and therefore with a chirp rate ν = 0.27THzs−1 = 0.27MHz2. Orange arrows signify the
frequency span of the adiabatic passage chirp relative to the frequency axis.

We observe two peaks in Figure 5.20(a) corresponding to the resonance conditions for
driving transitions between electron states |↓⟩ ↔ |↑⟩ when the single donor nuclear spin
state is either |⇓⟩ (left peak) or |⇑⟩ (right peak). The transition frequencies here are
separated by the hyperfine coupling strength A, given by:

ω⇓ = γeB0 −
A

2
(5.28)

ω⇑ = γeB0 +
A

2
(5.29)

as illustrated in Figure 5.20(b). The solid curve in Figure 5.20(a) is a fit to the sum of
two Gaussian peaks:

f↑ = f0 + f⇓e

−(ω − ω⇓)
2

2σ2 + f⇑e

−(ω − ω⇑)
2

2σ2 (5.30)

sharing a common peakshape parameter σ = 11.8 ± 0.8MHz corresponding to a width
ωFWHM = 2

√
2 ln 2σ = 27.8±2MHz and baseline f0 = 0.11±0.01, but independent peak

heights f⇓ = 0.18 and f⇑ = 0.46.

We measured a peak separation of A = 96.5 ± 2.5MHz. This value is less than the
117.5MHz hyperfine splitting measured in bulk ensembles of P donors71. Similarly low
values of A have been observed in ion-implanted samples146. The variation from the
bulk value can be attributed to the Stark shift due to the electric field within our device,
estimated to be ∼ 4.5MV/m at the 1P site (see Section A.5). For comparison, the
spectrum obtained by Pla et al. 49 with a single P donor within a MOSFET device
fabricated by high energy ion-implantation is shown in Figure 5.20(c), which shows two
scans over the frequency range ∼ 10 minutes apart. In between the scans the nuclear
spin has flipped, so that dark blue shows the |⇓⟩ state, light blue |⇑⟩. Due to the
slow measurement time in our experiment (limited by electron tunnel rates between the
donor qubits and the SET), it is not possible to record such a snapshot of each nuclear
state individually. Figure 5.20(a) contains data collected continuously over > 6 hours,
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Figure 5.20: Spin resonance spectrum of a single donor qubit. (a) Spin up probability calculated from
640 repeated single shot measurements at each frequency, following a 150µsmicrowave pulse with
an FM chirp depth of±20MHz and at+5dBm power. Measured atB0 = 1.35T. (b) Schematic in-
dicating the spin dependent unloading readout scheme as introduced in Section 5.3.2, and the driven

transitions between pairs of combined electron-nuclear spin states. (c) Spin resonance spectrum repro-

duced from Pla et al. 49 for comparison. (d) Comparison of the single shot measurement time for (a) –
green bars representing 624ms per single shot measurement and (c) – blue bars representing 1.1ms per

shot.

and therefore we necessarily average over both nuclear spin orientations. The disparate
measurement timescales are illustrated in Figure 5.20(d), the green segment representing
the single-shot time for our 1P qubit (limited by the electron tunnel rate), and the blue
band indicating that around 600 single-shot measurements were obtained by Pla et al. 49

in a comparable time.

Since no adiabatic passage frequency modulation is applied by Pla et al. 49 , the
linewidth of their peaks is considerably narrower in Figure 5.20(b) than for our ex-
periment, reflecting the intrinsic broadening due to spectral diffusion of ∼ 7.5MHz. The
hyperfine splitting in Figure 5.20(b) of A = 114MHz is also seen to be nearer to the
bulk value, although measurements in other implanted donor devices have shown values
of the hyperfine energy A ranging from 96.9− 116.6MHz38.

We now examine the nuclear spin dynamics observable in our measurement of the 1P
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hyperfine spectrum, and discuss possible mechanisms changing the nuclear spin state.
Figure 5.21(a) and (b) compare the 1P spectra observed at 1.35 and 1.55T. Solid dots
indicate the overall average spin-up fraction f↑, obtained by averaging over several re-
peated frequency sub-scans. In each scan the order of points is randomised to average
out any time dependent measurement artefacts. The individual sub-scan results are
shown here as square markers of different colour, each coloured square showing f↑ for
80 sequential single-shot measurements within a single time-bin (80 shots ×624ms ∼ 50
seconds). By binning in this way we reveal further information about the nuclear spin
dynamics.

Because f↑ is not consistent for data-points at the same frequency but in different time
bins, we infer that with the smaller time binning we approach the timescale of nuclear
spin flips. The smaller time bins preferentially sample either the nuclear |⇑⟩ or |⇓⟩ state
rather than averaging equally over the two with each time bin. We are unable to explore
the time dynamics on shorter timescales in this device, since the single-shot duration
is limited by the tunnel rate of electrons between donor and SET, ∼ 100Hz for the 1P
qubit, depending on the spin orientation and detuning voltage. A similar device with
orders of magnitude faster tunnel rate would permit a more detailed study of nuclear
spin switching dynamics.

We note that in Figure 5.21(a) the peak on the right (corresponding to the nuclear
|⇑⟩ state) is more than twice the amplitude of the left (nuclear |⇓⟩ state), and in Fig-
ure 5.21(b) the left peak is almost entirely masked by the noise floor of dark counts
(f0 =∼ 0.11), indicating that there is some polarisation of the nuclear spin – the |⇑⟩ state
is more likely to be seen than |⇓⟩. This polarisation is likely due to an inelastic electron-
nuclear flip-flop process, pumped by spin resonant excitation at the ω⇓ frequency176,177.
The flip-flop mechanism is illustrated in Figure 5.21(c), where the electron spin ‘flips’
from |↑⟩ to |↓⟩, and the nuclear spin simultaneously ‘flops’ from |⇓⟩ to |⇑⟩. The total
spin is thus conserved, and energy conservation is satisfied by the emission of a phonon
Λ. Since the energy difference between the states is much larger than the thermal energy
γeB0 ≫ kBT , the reverse transition involving absorption of a phonon is suppressed. Any
alternate cross-process involving the |↓⇓⟩ and |↑⇑⟩ states would require a change in total
spin of ±1 and so is forbidden by spin conservation.

This type of asymmetry in the occupation of nuclear spin states has been seen in
single donor spectra previously by Pla et al. 50 , where repopulation of the nuclear |⇓⟩
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Figure 5.21: Development of asymmetry in the 1P hyperfine spectrum with increasing magneঞc field
(a) Average spin up probability at 1.35T, and short time binning of the same data set into 80 shot bins for

each frequency. Coloured squares exhibit non-uniform scatter, departing from the average significantly

at the resonance conditions, and indicating observation of nuclear dynamics at the binning timescale

of∼ 50s (b) Similar data for 1.55T. The left peak is notably suppressed due to a nuclear-electron flip-
flop process, releasing the energy difference as a phonon. (c) Schematic of the flip-flop cross relaxation

mechanism, emitting energyΛ to the phonon bath while conserving spin. (d) Ionisation shockmay flip

the nuclear spin when its effectivemagnetic field is non-adiabatically altered by the addition or removal

of an electron. The anisotropic hyperfine interaction tilts the hyperfine field Â · S (e) Evolution of the

two resonance peak amplitudes (tan, purple) as defined by arrows in (a), along with their sum (green)

and ratio (red) as a function of magnetic field, displaying the gradual suppression of the low frequency

resonance as the nuclear spin pumping process becomesmore efficient.
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state was observed and attributed to a process described as ‘ionisation shock’. Here the
effect of projecting the nuclear spin onto a time varying quantisation axis when loading
and unloading electrons will result in a non-adiabatic change of eigenstate with some low
but non-zero probability. We illustrate the concept in Figure 5.21(d), where the upper
panel shows the nuclear spin I aligned (in this case anti-parallel) to the external field B0

in the absence of an electron. With a Hamiltonian consisting only of the nuclear Zeeman
term, |⇓⟩ and |⇑⟩ are perfect eigenstates. The lower panel shows the situation where the
donor is occupied by an electron of spin state S. Here, the states |↓⇑⟩ and |↑⇓⟩ are not
perfect eigenstates of the two spin Hamiltonian containing now a hyperfine interaction
term. As defined in Section 2.4.1, the eigenstates for these two spin anti-parallel states
evolve from the singlet and triplet states at zero field and are properly described as:∣∣∣↓̃⇑⟩ = cos(η/2) |↓⇑⟩ − sin(η/2) |↑⇓⟩ (5.31)∣∣∣↑̃⇓⟩ = cos(η/2) |↑⇓⟩+ sin(η/2) |↓⇑⟩ (5.32)

tan(η) =
A

(γe + γn)B0
(5.33)

While the mixing angle η, describing the degree of approximation in assuming the
simple product states as eigenstates (at a field of B0 = 1.55T and hyperfine coupling
A = 96.5MHz) is only ∼ 2.2× 10−9, the misalignment of eigenstates may be enhanced
by the presence of an anisotropic component to the hyperfine interaction, which is in
general defined by a tensor Â. The diagonal terms dominate, meaning that it is normally
sufficient to consider a scalar approximation of A in what is called the contact hyperfine
interaction. Small off diagonal tensor components, arising from anisotropy in the elec-
tron wavefunction for instance due to a non-zero electric field in the device, would allow
the nuclear spin to experience an effective magnetic field component (Â·S)/γn that is not
parallel to the external B0 field, although the electron spin S is. By a combination of the
two effects (non-zero mixing angle η, and anisotropic hyperfine Â) the quantisation axis
for the nuclear spin changes instantaneously as indicated in the sketch of Figure 5.21(d)
by B0 and Beff whenever the donor is ionised during the readout, feedback and initial-
isation sequence. Precession around these constantly switching axes allows the nuclear
spin to flip back to |⇓⟩, providing an explanation for why we do not observe permanent
occupation of the |⇑⟩ state, and complete supression of the lower frequency resonance
peak, since the nuclear T1 relaxation time for phosphorus donors is known to be on the
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order of thousands of seconds at low temperature178.
Further to the asymmetry in the amplitude of the two resonances, we observe a de-

crease in amplitude of both resonances at higher fields, as shown in Figure 5.21(e), which
plots the amplitudes of the two resonance peaks for |⇓⟩ and |⇑⟩ as a function of B0. Both
peaks lose intensity with increasing magnetic field, and the lower line disappears almost
completely within the noise floor at f0 at B0 = 1.55T. The reduction in overall spin-up
fraction (the sum of up and down amplitudes, shown as green crosses) may suggest that
the adiabatic passage is becoming non-adiabatic due to higher attenuation of the mi-
crowave signal at higher frequency, and consequently a reduced B1 field strength. The
change in relative peak intensity f⇑/f⇓ however, plotted with red ring markers and on
the right side axis of Figure 5.21(e), suggests a process that is Zeeman energy depen-
dent, such as the reverse of the ‘flip-flop’ cross-relaxation process discussed above. We
were unable to measure at fields below ∼ 1.3T, because the Zeeman energy becomes
comparable to the thermal energy of the system. If there are thermal phonons available
with energy equal to the difference in |↓⇑⟩ and |↑⇓⟩ states, as is evidently the case in our
device for the smaller magnetic field values, phonon absorption can mediate a ‘flop-flip’
transition, the reverse of the ‘flip-flop’ shown in Figure 5.21(c). As the field increases,
and the Zeeman energy becomes larger, the rates of the two phonon mediated transitions
diverge and the weighting of the two peaks becomes more asymmetric.

Understanding the nuclear spin dynamics is the first step toward utilising the nuclear
degree of freedom as an additional or alternative qubit50, or as a long lived quantum
memory37,179.

5.6.2 Hyperfine spectrum of the 2P qubit

The resonance spectrum measured for the electron bound to the 2P quantum dot displays
instead three resonant frequencies, as Figure 5.22(a) shows. This data is based on 2000
single shots (with a faster tunnel rate than the 1P, more repetitions are possible with
this qubit), and we indicate the fraction of these shots resulting in a spin-up outcome as
a result of an adiabatic passage pulse with a power of +8dBm. As for the single donor
qubit, the signal is frequency modulated over ±20MHz in a sweep time of 150µs, giving

160



5.6. ELECTRON SPIN RESONANCE OF A SINGLE DONOR AND 2P MOLECULE
S

p
in

 u
p

 f
ra

ct
io

n

0.2

0.3

0.4

0.5

38.137.3 37.737.5 37.9

B=1.35T 2P
A ≈ 262.2 MHz

ESR frequency (GHz)

⇓⇓

⇑⇓/⇓⇑

⇑⇑ ΔE
z

S

E
n
e
rg

y

N
=

1
N

=
2

 0N
=

0

↑⇓⇓
↑⇑⇓ ↑⇓⇑

↓⇓⇓
↓⇑⇓ ↓⇓⇑

↑⇑⇑

↓⇑⇑

a) b)

Figure 5.22: Spin resonance spectrum of the 2P molecule. (a) Spin up probability calculated from 2000

repeated single shot measurements at each frequency, following a 150smicrowave pulse with an FM
chirp depth of±20MHz and at+8dBm power cerntred at the frequency shown (B0 = 1.35T). (b)
Schematic energy level diagram indicating the readout scheme based on spin dependent loading into

the 2 electron singlet state used for 2P qubit spin readout process as introduced in Section 5.3.2, and

the driven transitions between pairs of combined electron-nuclear spin states.

a chirp rate of ν = 0.27THz/s. The solid curve is a fit to the sum of three Gaussian
peaks with common width:

f↑ = f0 + f⇓⇓e

−(ω − ω⇓⇓)
2

2σ2 + f⇑⇓/⇓⇑e

−(ω − ω⇑⇓/⇓⇑)
2

2σ2 + f⇑⇑e

−(ω − ω⇑⇑)
2

2σ2 (5.34)

from which we determine the parameter σ = 30.5± 2.0MHz, related to the peak width
ωFWHM = 72 ± 5MHz. We also extract the baseline f0 = 0.21, and peak heights:
f⇓⇓ = 0.072, f⇑⇓/⇓⇑ = 0.158 and f⇑⇑ = 0.067.

The three peaks reflect the transition frequencies, sketched in Figure 5.22(b)

ω⇓⇓ = γeB0 −
Aa

2
− Ab

2
(5.35)

ω⇓⇑ = γeB0 −
Aa

2
+
Ab

2
(5.36)

ω⇑⇓ = γeB0 +
Aa

2
− Ab

2
(5.37)

ω⇑⇑ = γeB0 +
Aa

2
+
Ab

2
(5.38)

where Aa and Ab are the contact hyperfine interaction coefficients representing the elec-
tron wavefunction density at the location of the two donor sites (labelled a and b) of
the 2P molecule. At zero electric field the 2P1e wavefunction is symmetric and the
hyperfine interaction at the two donor sites is expected to be equal Aa = Ab, producing
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two degenerate transition frequencies ω⇓⇑ = ω⇑⇓.

With a finite electric field the electron wavefunction may be more densely concentrated
at one site or the other, thereby breaking this degeneracy Aa ̸= Ab. We estimate the
E-field in our device (shown in Section A.5) for the operating point of the 2P qubit at
around 4.3MV/m. This must have only a small effect on the two hyperfine strengths
Aa and Ab, since we resolve only one central peak in the resonance spectrum. Therefore
the energy separation between the two nuclear spin antiparallel states |Aa − Ab| must
be less than the width of the observed peak ∼ 30.5MHz in order to produce the three
peak spectrum we observe.

The average peak separation, representing the hyperfine interaction energy A is 261±
10MHz, is over twice the single donor value, which is expected for a pair of donors with
small spatial separation150. We will return to analyse this value in depth in Section 5.6.4.

Interestingly, we note that asymmetry in the peak amplitude for different nuclear spin
configuration is absent in the 2P qubit’s ESR spectrum. In Figure 5.23(a) at 1.35T and
(b) at 1.55T we see an equal probability for each of the 4 nuclear spin subspaces, the
nuclear |⇓⇑⟩ and |⇑⇓⟩ states being degenerate and indistinguishable, thereby producing
a peak with approximately twice the amplitude of the |⇓⇓⟩ and |⇑⇑⟩ resonances. We
also observe no strong magnetic field dependence of the peak distribution, as shown
in Figure 5.23(c) which plots the three amplitudes as a function of B0. This implies
that either (i) the ‘flip-flop’ cross relaxation mechanism is suppressed, or (ii) that the
‘ionisation shock’ mechanism is enhanced, such that the nuclear state is randomised
faster than it is polarised.

In order to investigate which of the two conditions (i) or (ii) is more likely, we perform
an experiment where we repeatedly initialise an electron |↓⟩, excite the central resonance
peak with an adiabatic passage pulse, and measure the electron spin, 40 000 times. This
experiment allows us to determine whether the nuclear spin state is stable over the
timescale of a single shot measurement sequence, which for the 2P qubit is 42ms (the
time to complete the 6 level pulse sequence described in Section 5.5.2). The outcome is
shown in Figure 5.23(d), where we plot a histogram of the number of times we observe
N successive spin-up outcomes before the first spin-down reading. This is compared
with a calculated Markovian histogram produced by a series of completely independent
outcomes with the same overall probability of observing spin-up (the red dots). The inset
plots the same statistics on a logarithmic scale. Figure 5.23(e) uses the same data set to
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Figure 5.23: Populaঞons of the 2P nuclear states remain independent of the magneঞc field (a)Average
electron spin up probability taken from 2000 single shot measurements at 1.35T, with peak amplitudes

marked. (b) Similar data for 1.55T, with no significant shift in distribution of the peaks. (c) The three

extracted peak heights for magnetic field values from 1.3 to 1.55T, showing no significant trend in
the corresponding peak amplitudes. (d) Statistical analysis of the nuclear spin dynamics. We plot a his-

togram (in blue) of the number of times we observe N successive spin-up outcomes before the first

spin-down, using a set of 40 000 single shot measurements all taken at the central resonance peak after

an adiabatic inversion pulse. The redmarkers are the calculated distribution expected for a perfectly

Markovian system (with nomemory of the previous state). Inset plots the same histogram on a logarith-

mic scale for clarity. (e) a similar histogram of the count of N successive spin-down outcomes before the

first spin-up, using the same data set.

plot the equivalent histogram of N successive spin-downs. We see very good agreement
with the Markov model, showing that indeed the nuclear state has no long term memory
and is randomised on the timescale of a single shot. This therefore indicates that the lack
of state polarisation is likely due to an enhancement in the ‘ionisation shock’ mechanism
(ii). This can be understood in the context of a 2P donor molecule by noting that the
hyperfine tensor Â is likely to be more highly anisotropic than in the single donor case,
since the total electron wavefunction is not spherically symmetric.

We illustrate the effect of anisotropy in Figure 5.23(f). In the molecular frame, where
the z-axis is defined by a vector passing through the two donor atom sites (green dashed
line in Figure 5.23(f)), the full hyperfine tensor for each donor individually can be ex-
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pressed:

Â′ =


A− d 0 0

0 A− d 0

0 0 A+ 2d

 (5.39)

A =
2γeγNµ0

3
|Ψ(r = 0)|2 (5.40)

d =
γeγNµ0
10π

⟨
3 cos2 θ − 1

r3

⟩
(5.41)

Here the terms A and d represent respectively the contact and dipolar components of
the hyperfine interaction, where r is the distance from the atom to a position within the
extent of the assumed axially symmetric electron wavefunction. The right hand side of
Equation (5.41) averages over the entire wavefunction, and θ defines the angle between
the molecular axis and B0. When this tensor is transformed into the frame defined by the
B0 quantisation axis, for large angles θ there will be significant off-diagonal terms, tilting
the effective total magnetic field Beff experienced by each nuclear spin in the presence
of an electron. This tilt will (in general) be off-axis from the vector of B0 which is the
only magnetic field seen by the nucleus when ionised. This means the true eigenstates
for the two charge states are less alike, and we would therefore expect to see enhanced
nuclear spin randomisation by ‘ionisation shock’, consistent with our observations.

5.6.3 Gyromagnetic ratio and relative offset of the 1P
and 2P resonances

Figure 5.24(a) plots the field magnetic field, B0 dependence of the resonance frequen-
cies for all 6 nuclear spin states across the two qubits: ω↓ (brown), ω↑ (purple), ω⇓⇓

(green), ω⇑⇓/⇓⇑ (red), ω⇑⇑ (blue). The values plotted are obtained from Gaussian
peak fits to the recorded spectra at each magnetic field setting. The slope of the
lines in (a) reflect the electron gyromagnetic ratio γe = gµB/h. Planck’s constant
h = 4.1257× 10−15eV/Hz and the Bohr magneton µB = 5.7884× 10−5eV/T are known
constants70, allowing us to extract the electron’s g-factor. All lines give a mean gyromag-
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netic ratio of γe = 27.886 ± 0.030GHz/T corresponding to g = 1.987 ± 0.002. However
we note that due to experimental uncertainty in the calibration of our superconducting
magnet, our measurement of g has a larger systematic uncertainty of 0.02. The final
result – g = 1.987±0.020 is therefore consistent with the bulk g-factor of 1.998571. This
value confirms that we indeed see the resonance of our intentionally placed donors, since
electrons bound to most types of lattice defects and surface state traps180 are known to
have a g-factor larger than 2.0.

For clarity, the insets Figure 5.24(b) and (c) display the hyperfine splitting of the
1P and 2P qubits respectively, by plotting the resonant frequency with the Zeeman
term subtracted ω′ = ω − γeB0 , to show that the hyperfine splitting is independent
of magnetic field for both qubits. We extract an average hyperfine splitting of A =

∆ω′ = ω′
⇑ − ω′

⇓ = 97 ± 10MHz between the two single nuclear spin states of the 1P
qubit, with a mean frequency offset from γeB0 of ω̄′ ∼ 176MHz, corresponding to a
magnetic field at zero frequency of ∼ 6mT. For the 2P qubit, the average hyperfine
separation is A = ∆ω′ = (ω′

⇑⇑ − ω′
⇓⇓)/2 = 262± 20MHz, with a similar offset from γeB0

of ∼ 131MHz in the |⇑⇓⟩ / |⇓⇑⟩ resonance. The large uncertainties are a product of the
adiabatic passage strategy, which artificially broadens all resonances.

In Figure 5.24(c) we display also the 1P qubit resonances as faded dashed lines for
direct comparison of the two spectra. We note the presence of an offset of ω̄′−ω′

⇑⇓/⇓⇑ =∼
45MHz between the central frequency of the two qubits. In magnetic field terms this
corresponds to ∼ 1.6mT. The offset is constant for all magnetic fields measured, so
cannot be explained by drift in the superconducting magnet over time. The two qubits
are operated at different electric field configurations, 4.5 and 4.3MV/m for 1P and 2P
but oriented in different directions (as outlined in Section A.5). A Stark shift of the
hyperfine energy, A(E⃗) would affect the line separation δω′, but not the offset ω′ (A
terms cancel out in the definition of ω̄′ = (ω′

⇑ + ω′
⇓)/2). One possible explanation for

our observed offset is a Stark shift of the g-factor, where the gyromagnetic ratio itself is
modified by an electric field g(E⃗), and this hypothesis is consistent with the uncertainty
in our extracted g factors, as indicated in Figure 5.24(b) and (c), independently fitting
the slope of the lines for the two qubits produces g factors (1.988 and 1.986) that differ
by 0.2%. Although this difference is of the same size as the uncertainty in the extracted
values, it is enough to explain a 45MHz shift on top of a ∼ 40GHz resonance frequency.
Alternatively, the 1.6mT offset may be due to a small fixed local magnetic field gradient
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Figure 5.24: Comparison of resonance spectra for the 1P and 2P qubits as a funcঞon of magneঞc field.
(a) Gyromagnetic plot of the five resonant peaks of the two qubits measured from 1.25 to 1.55T. Inde-

pendent fits to both qubit resonances converge with at a g-factor of 1.987 ± 0.02. Insets show the

Hyperfine field offsets of the individual nuclear spin states of the 1P (purple & brown) and 2P (green,

red & blue) qubits. Insets (b) and (c) display the resonance frequencies with the linear Zeeman term sub-

tracted, showingmore clearly the variation in hyperfine splitting for the 1P and 2P states. ω̄′ indicates
the average offset for the 1P |⇑⟩ and |⇓⟩ lines.
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across the two qubit sites, perhaps due to some external magnetic component within the
dilution refrigerator.

We presented in this section the first electron spin resonance measurements on a
precision donor device. The resonance spectra for our two qubits (1P and 2P) are
unique, demonstrating that a combination of single donor and donor molecule qubits
will permit addressable single qubit operations.

5.6.4 Determination of donor positions from the hyper-
fine spectrum

In Section 5.2.3 we summarised theoretical work by Wang et al. 150 , who have used
atomistic tight binding calculations to predict the hyperfine energies in 2P and larger
donor molecules. This section describes results developed in collaboration with those
authors, from the theoretical group of Rajib Rahman∗, to understand the impact of
both electric fields and the spatial configuration of donor atoms, on the spin resonance
spectrum seen for our 1P and 2P qubits.

The 1P hyperfine splitting of 97MHz observed in our 1P qubit differs by 17% from
the bulk value. This can be explained by the presence of a strong electric field within
the nanostructure which modifies the electron wavefunction density at the donor site.
The Stark shift for P donors in silicon is dominated by a quadratic term ∆A(E) =

ζAE
2A(0), and has been measured181 in bulk ensemble samples to have a value of ζA =

−2.5× 10−3m2/MV2. Under our experimental conditions the E-field due to gate voltage
settings is calculated to be 4.5MV/m (in Section A.5), which would translate to a ∆A of
only 5% with this simple phenomenological quadratic shift. It should however be noted
that our donor wavefunction is likely already perturbed by the electric field inherent to
the surrounding nanostructure even without voltages applied to the in-plane gates. The
background electrostatic potential has been seen to significantly modify single donor
binding energies and shift chemical potentials by up to ∼ 100meV in similar donor
defined devices53,113. It should also be noted that theoretical work on the Stark shift
of donor hyperfine coupling to date has considered only vertical electric fields ionising a
∗ Electrical and Computer Engineering Department, Purdue University
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Figure 5.25: Simulated hyperfine energies as a funcঞon of electric field and donor atom separaঞon.
(a) Electric field dependence of the hyperfine interaction energy between j = 1, 2 donor nuclei and
i = 1, 3 electrons, calculated numerically with an atomistic tight-bindingmethod. (b) Variation in
the ESR resonance frequencies as a result of the Stark shifted hyperfine energy in (a), illustrating the

smaller effect for a 2P1e state relative to the single donor Stark shift. (c) Simulated hyperfine energy for

a 2P1e state as a function of the spatial separation between the two donor atoms along two directions

in the cryatal lattice. All parts reproduced fromWang et al. 150

donor electron by drawing it toward a surface gate or reservoir, as found in MOSFET
type nanoelectronic devices or the original Kane 45 qubit architecture. In our device
however, the E field is primarily oriented in the plane parallel to the surface.

To illustrate the Stark shift effect, in Figure 5.25(a) we show numerical tight binding
simulations by Wang et al. 150 , computing the (vertical) electric field dependence of the
contact hyperfine coupling Aij between j = 1, 2 donor nuclei and i = 1, 3 electrons. The
reduction in Aij with increasing E field is on the order of ∼ 10MHz for the 1P1e case (blue
circles) before the donor in the simulation is ionised at 4MV/m. Figure 5.25(b) shows the
same data presented instead as the difference in electron spin resonance frequency ∆f

(for the cases where all donor spins are |⇑⟩). We note that this 1P1e simulation produces
a Stark shift of a similar order of magnitude to that measured in our experiment. These
calculations provide qualitative guidance, but we note that they do not capture fully
the physics of our planar device where the electron tunnels not vertically through a
2-dimensional tunnelling cross section, but instead within the device plane to a small
SET, through effectively a 1D tunnelling cross-section.

The 2P1e electron wavefunction is more tightly confined by the combined Coulomb
potential well of two donor atoms and therefore is not as easily displaced by an electric
field. Since the hyperfine energy depends on the wavefunction density, this results in
a suppressed Stark shift – an almost constant value of Aij up to the ionisation point
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as shown by the green squares in Figure 5.25(a). However, a simulation of Aij in a 2P
quantum dot, as a function of the spatial separation of the two donor atoms, shown
in Figure 5.25(c), indicates that we should expect the wavefunction distribution to be
very sensitive to the exact position of the two phosphorus atoms. We see here that the
hyperfine energy has a maximum of more than twice the 1P1e value, the enhancement
due to the stronger Coulomb confinement when the donors are close together, forming
a strongly hybridised molecular orbital with greater density at the donor cores. Aij

decreases as the donors are positioned farther apart, reaching ∼ 50MHz beyond a sepa-
ration distance of 4nm, where the electron wavefunction resembles a linear combination
of two non-interacting donor-bound states, in which each donor atom experiences ap-
proximately half the electron density as in the 1P1e situation. The exact calculated
values differ slightly for the circle and cross markers, but the overall trend is similar for
donors separated along [100] and [110] equivalent crystal axes.

In our 2P molecule the hyperfine splitting is 262MHz, suggesting (based on Fig-
ure 5.25(c)) that the two donor atoms of the 2P qubit are less than 1nm apart in our
device. We turn now to a detailed analysis of the hyperfine energy in a range 2P quantum
dots with different geometries of the two phosphorus atoms comprising the dot. Guided
by the results of Wang et al. 150 we restrict ourselves to pairs of lattice sites within a
distance of 1nm, but in a silicon lattice, a sphere of radius 1nm still encompasses around
200 atoms. Since our device is fabricated by STM lithography on the [001] plane, we
are able to exclude a large proportion of sites. The donor phosphorus atoms are incor-
porated into the silicon crystal at the surface layer at fabrication time, and are then
overgrown with epitaxial silicon after an incorporation anneal which prevents the donors
from segregating up toward the surface during the silicon growth. The growth is also
performed at low temperature, preventing thermal diffusion of the donors away from
their original positions. Therefore we are primarily interested in donor pair geometries
where both donor atoms lie in the fabrication plane. For completeness we have also
considered configurations deviating by 2 monolayers above and below the plane in our
simulations, and the full set of results can be seen in Section A.6.

Figure 5.26(a) shows the calculated hyperfine energy for a 2P quantum dot hosting a
single electron, where we vary the separation r between the two P atoms of the quantum
dot. Since the donors substitute for silicon within the crystal lattice, there are only
discrete values of r which are valid. Large circles indicate the A values for configurations
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Figure 5.26: Intrinsic hyperfine energies for different donor configuraঞons within a 2P molecule. (a)
Simulated hyperfine interaction energyA, for atomic configurations of a 2P quantum dot with donor

separation less than 1nm. Configurations with both donors in the fabrication plane are shown as large

circular markers, configurations with a donor outside of the fabrication plane are represented by small

grey dots. (b) Schematic showing the layout of the [001] crystal plane in which the device is fabricated.

Atoms in this plane are shown coloured according to their relationship to the central purple reference

site. Red rings denote 8 sites with a hyperfine coupling consistent with ourmeasurement (262MHz).

Grey circles represent atomswithin the crystal lying in layers above and below the fabrication plane.

(c,d,e) 3D images of the silicon crystal lattice, highlighting equivalent sites at three different separation

distances from a reference site (purple). Transparent hemispherical shells mark the distances r given
for each image. Green rings highlight atoms lying in the fabrication plane, and purple highlighted bonds

show that the brown atoms in (c) are 2nd nearest neighbours to the reference site, and the highlighted

atoms in (d) and (e) are 4th nearest neighbours. Site colouring corresponds to (a) and (b).
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b) c) d)a)
A=250MHz

A=285MHz

Figure 5.27: Donor configuraঞons consistent with the 2P lithographic patch. (a) Schematic showing the
layout of the [001] crystal plane in which the device is fabricated. Atoms in this plane are again coloured

according to the hyperfine strength produced in a 2Pmolecule together with the central purple atom, as

labelled. Grey circles represent atomswithin the crystal lying in planes above and below the fabrication

plane, and rectangles the surface dimer reconstruction present during fabrication. (b,c,d) Atomic reso-

lution STM image of the 2P qubit’s lithographic patch, interpreted as a total of 7 exposed silicon dimers

marked in green. Three potential donor configurations from (a) lying within the patch are shown.

where both donors lie in the fabrication plane (the [001] crystallographic plane), and the
colour of the circle denotes A according to the colour-scale on the right side of the plot.
Small grey dots indicate A values for donor configurations where one of the two atoms is
in a position lying above or below the fabrication plane, and the orange band represents
the hyperfine energy measured experimentally for our 2P qubit device. The geometrical
layout of the in-plane configurations of Figure 5.26(a) are displayed in Figure 5.26(b),
which shows that there are several equivalent sites at a particular distance from the
reference atom (coloured purple) due to the symmetry of the lattice. In fact there
are many more configurations satisfying these four values of the inter-donor separation,
where one atom lies far above or below the plane, as we show in Figure 5.26(c-e), three
images showing the full layout of atoms in the silicon lattice in 3D. Taking the first donor
of the 2P system as the purple reference atom, Figure 5.26(c) shows a hemispherical shell
marking a distance r = 0.384nm, and indicating that there are 4 atomic sites at this
distance which lie in the plane (marked by green rings) for which a second donor would
produce a total hyperfine energy of ∼ 360MHz. An additional 4 such sites are situated
2 monolayers below the plane (and there are 4 more above the plane – not shown).
These (brown coloured) atoms are all second nearest neighbours to the reference site,
as highlighted by the two purple shaded bonds. Figure 5.26(d) and (e) display similar
hemispherical shells for fourth nearest neighbour groups of donor sites at separations of
r = 0.543nm and r = 0.768nm respectively.

Provided our experimental value of A = 262 ± 20MHz, only the eight orange and
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yellow geometries in Figure 5.26(b) are possible representations of the configuration of
donors in our device. These are consistent with the size of the lithographic patch that
was fabricated. Figure 5.27(a) shows the planar configurations of Figure 5.26(b) which
are consistent with our measured value – with calculated hyperfine energies A = 250MHz

and 287MHz, along with a representation of the dimer reconstruction (grey rectangles),
characteristic of the silicon surface during fabrication. Pairs of adjacent surface layer
atoms move together forming dimers as the bond lengths near the surface change to
minimise the total energy, but once the device is encapsulated with the silicon capping
layer, the lattice returns to the fully symmetric diamond cubic structure.

The dimer pattern is overlaid on an STM image of the lithographic patch in Fig-
ure 5.27(b-d) – the bright areas in the image indicating the presence of dangling bonds
which allow the phosphine to adsorb and incorporate into the lattice at those positions.
We conclude from this image that five adjacent dimers in one row, and two single dimers
in the neighbouring row were exposed to the phosphine precursor gas. As described
in Section 3.1.3, the additional hydrogen atoms of the phosphine molecule (PH3) are
removed from the P atom by moving to occupy the surrounding dangling bond sites,
therefore 2-4 adjacent exposed dimers are needed for the incorporation of one P atom.
Dangling bonds are known to thermally migrate along the lattice rows at the ∼ 330◦C

incorporation anneal temperature, providing a means by which a P atom may incorpo-
rate at a single isolated dimer location, provided there are additional dangling bonds
nearby. We indicate one possible configuration of the two donor atoms (by the purple
and yellow dots) within the lithographic patch in Figure 5.27(b), where there is suffi-
cient space to permit the incorporation process. The potential configuration shown in
Figure 5.27(c) relies on thermal movement of dangling bonds to permit incorporation at
the initially isolated dimer in the lower row. Figure 5.27(d) indicates a third potential
layout.

There are a number of alternate arrangements within the seven dimer lithographic
patch consistent with our observed hyperfine spectrum. The guidance provided by the
atomistic modelling enhances our understanding of the configuration of atoms within
the 2P quantum dot, and has allowed us to reduce the number of possible atomic con-
figurations from several hundred down to around ten.
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5.6.5 Extracting the Rabi field strength from reso-
nance peak amplitudes

Having determined the likely locations and distance between the P donors of the 2P
qubit, and having measured the hyperfine spectra for both the 1P and 2P qubits, we
now investigate the Rabi field strength. The strength of the oscillating Rabi magnetic
field B1 achieved in our experiment is analysed by measuring the change in the amplitude
of a spin resonance peak as we vary the power of the microwave signal applied to the
antenna. The result is shown in Figure 5.28(a), which plots in red the amplitude, or
spin-up fraction relative to the background value, of the centre peak f⇑⇓/⇓⇑ of the 2P
qubit as a function of microwave power, specified in dBm at the signal generator. We
see that for powers between 0 and 10dBm, the amplitude is rather constant at around
0.15, falling toward zero below 0dBm and also falling slightly above 10dBm. Values are
obtained by fitting the measured spin resonance spectra using Equation (5.34). We note
that the baseline of the Gaussian peak f0 (shown in blue) remains constant within the
fitting uncertainty at around 0.23. This is a clear indication that exciting the antenna
even up to 15dBm does not change the spin up fraction off-resonance due to heating
effects on the SET or due to AC electric fields overcoming Coulomb blockade to eject
the trapped electron and reloading a random spin state. The high value of the baseline
(more than the signal amplitude f⇑⇓/⇓⇑) is due to poor initialisation and readout fidelity.

Also in Figure 5.28(a) we plot a simulation of the expected spin up fraction, normalised
to our maximum measured amplitude (dashed grey curve). The simulation takes the
adiabatic passage Hamiltonian of Equation (5.20), using parameters for the detuning
profile ∆ω(t) taken from the experiment: a frequency modulation span of ±20MHz and
sweep time TS = 150µs, and thus a chirp rate of ν = 2.67× 1011Hz2.

H(t) = γeB1σx +∆ω(t)σz (5.42)

We then integrate the time dependent Schrödinger equation:

i~
∂Ψ(t)

∂t
= HΨ(t) (5.43)
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Figure 5.28: Microwave power dependence of the ESR peak amplitude. (a) Plot of themeasured peak
amplitude of the central resonance of the 2P qubit f⇑⇓/⇓⇑ (red) and the baseline f0 due to initialisation
and readout errors (blue) as a function of the power of the appliedmicrowave signal in a B field of 1.45T.

Also shown in grey is a theoretical curve simulated using the adiabatic passage Hamiltonian and as-

suming aB1magnetic field of 75µT is achieved at 0dBm input power. (b) SEM image of the aluminium

antenna taken after themeasurements. Possible stress points are indicated

to determine the final state Ψ(TS), the z-projection of which describes the theoretical
spin up fraction. We find good agreement with the experimental data when we set the
oscillating Rabi magnetic field B1 = 75µT at 0dBm power. This produces the theoretical
plot shown (dashed grey curve), and associates the lower power axis with the upper B1

field axis. Remarkably, the 1mW = 0dBm value of B1 obtained in this way is only 30%

different from the prediction of the finite element predictive modelling of the microwave
frequency fields presented in Section 5.4.1.

Unfortunately, following the spin resonance spectrum measurements described in this
section, an accidental electrical discharge event occurred, which could not be linked to
any change in the hardware configuration or voltage settings. Indeed this shock occurred
in the middle of a typical measurement sequence, at a time when nobody was present in
the laboratory. Figure 5.28(b) shows an SEM image of the antenna after the event. We
note indications of stress at the corners of the terminating nanowire (marked by arrows).
Following the event, the device stability was reduced, and one of the in-plane gates (GR)
experienced large leakage currents when biased.

As a result, additional work toward coherent spin manipulation with the original
1P/2P qubit device was unsuccessful. Instead, a second two qubit device was produced,
which we describe in the next section.
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Figure 5.29: Integrated ESR antenna on a mulঞple quantum dot device. (a) STM image of the two in-

tended qubit sites, tunnel-coupled to each other and to the readout SET. Three arrows indicate that

after incorporation of the P donors, three quantum dots are formed,L,Rα andRβ . (b) STM image

of the complete nanostructure, showing gatesGL, GM , GR andGSET and the readout SET and its

source (S) and drain (D). (c) False colour SEM image showing the relative positioning of donor-defined

nanostructure (orange), ohmic contact patches (green) and ESR antenna (blue).

5.7 Coherent control of a few-electron spin
state in a precision few-donor device

To continue toward the aim of controlled coherent spin state control of a single electron
state, a second 2 qubit device, shown in Figure 5.29 was fabricated, nominally equivalent
to the original 1P/2P qubit device. I fabricated this second double dot device and
performed the spin resonance and control experiments detailed below, working together
with Lukas Fricke.

Figure 5.29(a) is an STM image of the two few donor quantum dots, nominally 13nm

apart, tunnel-coupled at a distance of 17nm to the readout SET. Three tunnelling path-
ways to the SET are shown, indicating that there are in fact three quantum dots present
in the device, which we determine and explain based on electrical and spin measurements
below. The lithographic patch for the site on the right (R) is eight dimers long, and
we show later that donor incorporation into the site R has resulted in two electrically
separate entities likely residing at opposite ends of the lithographic patch, which we
denote Rα and Rβ, with a strong tunnel coupling between them.

A larger-scale STM image in Figure 5.29(b) shows the four gates (GL, GM , GR and
GSET ) for tuning the quantum dot potentials, and the readout SET and its source (S)
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and drain (D) reservoirs. The false colour SEM image of Figure 5.29(c) shows the location
of the buried planar P doped metallic contact wires and patches (orange), contacted
to the overlapping surface aluminium contacts (green) through vertical contact vias
visible as circular structures in the overlapping areas, relative to the aluminium surface
antenna (blue). The antenna fabrication procedure is as described in Section 5.4.3, the
only significant difference in the layout of this new device being that the antenna is
positioned such that the qubit sites lay ∼ 300nm outside the loop of the antenna.

5.7.1 Determination of charge states in the presence of
an unintended third quantum dot

Figure 5.30(a) displays the full charge stability map for this new device, showing the SET
current as a function of left and right gate (GL, GR) voltages for this scan VM = 750mV

and VSET = 300mV. Diagonal lines of high current represent Coulomb peaks of the SET,
where resonant tunnelling from drain to SET island to source is allowed. Discontinuities
are seen in the Coulomb peaks when an electron tunnels to or from one of the donor
quantum dots, changing the charge state. We highlight 6 such charge transitions: 1 for
the left dot (L, blue); and 5 for the right dot. Of these 5, we identify 2 with the entity
Rα (green), and 3 with the entity Rβ (pink). Inter-dot charge transitions where the total
number of electrons on the three quantum dots does not change are marked in white.

This assignment was achieved by careful analysis of the spin parity of each tran-
sition. A high resolution gate-map of the area surrounding location C⃝ is shown in
Figure 5.30(b). We may determine the electron occupation numbers above and below
the dot transition (the dotted line) by attempting a spin readout experiment. In Sec-
tion 5.3.2 we introduced spin dependent loading and unloading sequences to enable spin
readout.

• Consider first the spin-dependent Load applied to the transition in Figure 5.30(b).
Starting in the N electron state at the red circle marker, we move along the
detuning axis to the position marked with a red diamond at the border of the
N + 1 electron region. If N is an odd number, then by doing so we should be
able to read out the spin of the un-paried electron as illustrated in the left panel
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Figure 5.30: Charge stability map and charge parity confirmaঞon with spin readout. (a) Charge stabil-
ity map, plotting the SET current ISET as a function of left and right gate voltages (withVM = 0.3V,
VSET = 0.75V). Diagonal lines represent Coulomb peaks of the SET sensor, which are shifted by
a charge state transition of one of the donor quantum dots. We highlight transition potentials forL,
Rα andRβ dots with blue, green and pink dashed lines respectively. Inter-dot transitions are shown

in white. Three-tuples indicate the assigned charge state for each stability region, giving the num-

ber of electrons on each of the three dots as [L,Rα, Rβ]. Yellow circles label discontinuities in SET

lines where spin readout measurements are performed. (b) Detail plot of one such discontinuity C⃝,

where we determine that the number of electrons onRβ changes from 2 to 3. (c) Two potential readout

strategies. A spin dependent load process, where a singlet state is formed conditional on the existing

un-paried spin state, if the addition of an electron brings the total to an even number. And a spin de-

pendent unload process, where a singlet state (or zero electron state) is reached conditional on the

existing un-paried state, if the unloading of an electron brings the total to an even number. (d) Result of

attempting the two readout strategies at C⃝ in a magnetic fieldB0 = 2.5T. The unload process shows
the characteristic ‘spin tail’ feature (circled in green), where the load does not, evidence that a singlet

state with an even number of electrons is found by unloading, and not by loading an electron toRβ at

location C⃝
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of Figure 5.30(c). Here, if the initial state is a |↑⟩ the loading of an additional
|↓⟩ electron will temporarily form a singlet state S, as indicated by the purple
arrow. This change of charge state produces a current through the SET until
the additional electron again unloads via the energetically accessible transition
S → |↓⟩, leaving the dot in the spin ground state. This transient behaviour cannot
occur if N is an even number – the additional electron will simply load directly
into the spin ground state, where it remains until the electrochemical potential is
changed.

• Alternatively, we can apply the spin-dependent Unload. Starting in the N + 1

electron region at the green circle marker, we attempt to unload one electron by
moving to the position indicated with the green diamond. If N + 1 is an odd
number, then this will allow readout of the un-paried electron as shown in the
right side panel of Figure 5.30(c). In this case, if the un-paried electron is |↑⟩ it
may unload from the dot as indicated by the purple arrow. This allows current
to flow through the SET, until a new electron tunnels onto the dot to occupy the
spin ground state. Similarly, the transient behaviour is impossible in the case that
N + 1 is an even number, thereby providing an indication of the charge parity.

Figure 5.30(d) shows the outcome of attempting the two readout types at C⃝, for a
range of values of the ‘read level’ (the exact position along the detuning axis of the dia-
mond marker). We observe that the characteristic spin tail feature displaying transient
current is present only when readout is performed using the Unload process, a direct
indication that the charge parity across this transition is N even, N + 1 odd. Applica-
tion of this spin readout parity test to the majority of the labelled locations A⃝ to N⃝ is
summarised in Table 5.4.

We note for instance that A⃝ and C⃝ display opposite parity, and therefore cannot
be due to the same entity. As we do not observe further charge transitions at lower
gate voltages, we determine that all three dots L, Rα and Rβ contain zero electrons at
VGL = VGR = 0, and the resulting assignment of charge states [L,Rα, Rβ] shown on
Figure 5.30(a) is consistent with the full set of parity measurements.
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readout
type

tunnel
time

dot
assigned

readout
type

tunnel
time

dot
assigned

A Load 100µs Rα H none 3ms Rβ

B none 100µs – J Load 800µs Rα

C Unload 2ms Rβ K Load 500µs Rα

D – – L – Rα

E Unload 2ms Rβ M Load 100µs L

F – Rβ N – L

G Unload 3ms Rβ

Table 5.4: Spin readout parity analysis for charge state determination in a triple quantum dot system:

showing the successful spin readout type andmeasured tunnel rate for each of 13 SET line discontinu-

ities, and the resulting assignment of each transition to one of the three quantum dots. ‘none’ indicates

that neither of the two readout methods produced a visible ‘spin tail’, and ‘–’ simply indicates that spin

readout measurements were not performed. The identity of G, L, N is unambiguous from the other mea-

surements, and D occurs at an inter-donor charge transition.

5.7.2 Spin resonance on a three electron donor bound
state

Using the spin-dependent unload scheme at location C⃝, which corresponds to the 3
electron state of the dot Rα, we perform a spin resonance experiment. In Figure 5.31(a)
we show the spin up fraction for 3750 single-shot spin resonance sequences where we apply
a microwave burst at the indicated frequency, in this case without any adiabatic passage
frequency chirp, but rather a single frequency pulse of duration Tp = 330ns. A magnetic
field of 1.45T is applied. Scanning the frequency over a 700MHz range, we observe only a
single resonance peak at ω1 = 40.394±0.002GHz. This is in contrast to the multiple lines
seen for the single electon 1P and 2P spectra in the preceeding section. This suggests
that the hyperfine coupling A is less than the peak width ωFWHM = 7.2± 2.0MHz from
the Overhauser field induced spectral diffusion.

We fit the data, which is shown on an expanded frequency axis in Figure 5.31(d) to a
Gaussian peak-shape:

f↑ = f0 + f1 exp

(
−(ω − ω1)

2

2σ2

)
(5.44)
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Figure 5.31: Spin resonance spectrum of the three electron state ofRα. (a) A scan over a 700MHz

range, exhibiting only one single spin resonance peak. The data was collected with a B field of 1.45T,

and a single frequency unmodulatedmicrowave pulse of durationTp = 300ns. (b) shows the central
grey box expanded along the frequency axis. The resonance has a Gaussian lineshape 7.2MHzwide.

On- and off-resonance frequenciesω1 andω2 aremarked. The spin up fraction at these frequencies are

used to define an ESR signal intensity. The 1 electron (c) and 3 electron (d) wavefunction around a 2P

molecule, expressed as the probability densityΨ2, shown in a 2D slice through both donor potential

wells. The 3 electron state is muchmore evenly distributed throughout the space between the nuclei

and surrounding them, and consequently a lower density at the atomic core. (c) and (d) reproduced

from150.

We then find a peak amplitude in the spin up fraction, f1 = 0.105 above a baseline
f0 = 0.266, and a peak width parameterised by σ = 3.1± 0.8MHz, corresponding to the
width ωFWHM = 2

√
2 ln 2σ = 7.2 ± 2.0MHz. Without the adiabatic passage frequency

modulation that was used in Section 5.6, this FWHM value represents the inhomogeneous
line-width of the time ensemble of single-shots – the effect of spectral diffusion due to
fluctuations in the nuclear Overhauser field.

Considering the Fourier transform of the resonance line-shape in Equation (5.44)
allows us to link ωFWHM to the dephasing time:

T ∗
2 =

1

π
√
2σ

(5.45)

=
2
√
ln 2

πωFWHM
(5.46)

This provides an indication that the three electron spin state bound to this small donor
quantum dot dephases on a timescale T ∗

2 ≈ 73ns, which is notably larger than the
dephasing time of the single electron P donor bound state of 55ns recently measured by
Pla et al. 49 . We return to discuss the reduced dephasing below, after first addressing
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the question of why there is only one visible peak.

Extent and concentration of the three electron bound state

Wang et al. 150 have considered the effect of the number of bound electrons on the
hyperfine energy A of few donor quantum dots. Using atomistic tight binding simulations
(see Section A.6) they predict a reduction in A by a factor of ∼ 10, for the three electron
bound state (with A ∼ 49MHz) compared to the single electron state (at A ∼ 370MHz).
The lower hyperfine energy of the 3e state is a direct result of the first two spin-paired
electrons partially screening the Coulomb potential of the donor nuclei such that the third
electron state is less tightly confined to the atomic cores. The difference is illustrated
in Figure 5.31(c) and (d) which show 1 electron and 3 electron states bound to a 2P
molecule with inter-atomic separation 1.58nm. The 2P1e state’s electron density is
concentrated mainly at the two donor sites, where it contributes to a strong contact
hyperfine interaction. The larger light blue area seen in between the donor atoms for
the 2P3e state is representative of the shallower potential well. The computed density
Ψ2 is on average around 3 orders of magnitude lower in Figure 5.31(b) relative to (a),
and therefore the Hyperfine interaction, which depends on the overlap of electron and
nuclear wavefunctions, is much weaker in the 3e case.

While the hyperfine coupling to the P donor nuclei typically determines discrete res-
onance splittings, broadening of resonances through the Overhauser field effect is ulti-
mately a hyperfine interaction as well. This can be understood by considering the RMS
average offset in Larmor resonance frequency σ = ω−ωL due to the electron’s hyperfine
coupling with the bath of N interacting 29Si nuclear spins122,182,183:

σ ∼

√√√√ N∑
j

A2
j

2
(5.47)

∼

√
A2

Si
2N

(5.48)

where the hyperfine coupling to the j-th 29Si nuclear spin Aj depends on the bound
electron wavefunction overlap at that j-th atomic site, but the average over a large
number N of such sites, can be approximated using the intrinsic hyperfine coupling
for 29Si atoms, ASi defined by the overlap of just the periodic Bloch-function U(R⃗)
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component of the total wavefunction Ψ(R⃗) = Φ(R⃗)U(R⃗)

Aj =
2γeγNµ0

3

∣∣∣Ψ(R⃗j)
∣∣∣2 (5.49)

ASi =
2γeγNµ0

3

∣∣∣U(R⃗j)
∣∣∣2 (5.50)

The approximation made for Equation (5.48) is asymptotically accurate in the limit
of large N , and for donor quantum dot wavefunctions with a radius of several nm in
natural silicon N is on the order of several thousand. The qualitative relation σ ∼ 1/

√
N

therefore explains our observation of a longer dephasing time than seen by Pla et al. 49 ,
since the three electron wavefunction of our quantum dot extends over a larger number of
nuclei than the single donor single electron state. The additional sites draw the average
total effect of the nuclear spin bath toward zero – although there is interaction with a
greater number of nuclei, the fluctuations in the Larmor resonance frequency actually
become less.

For use in the following sections we define an ESR signal intensity IESR = f↑(ω1) −
f↑(ω0), simply taking the difference in spin-up fraction measured on-resonance and off-
resonance as indicated by arrows at ω1 = 40.394GHz and ω0 = 40.374GHz in Fig-
ure 5.31(b). This provides a single number (IESR), encoding the effect that an applied
pulse has on the electron spin state.

5.7.3 Coherent electron spin rotation and Rabi oscil-
lations

By varying the duration of the microwave pulse Tp we control the rotation angle of
the electron spin from its initial |↓⟩ state. In Figure 5.32(a-d) we display coherent
Rabi oscillations in the ESR signal IESR, measured for four different values of the input
microwave power as indicated. We observe that the oscillation amplitude decays with
increasing pulse duration, and the oscillation frequency increases with the applied power.
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Figure 5.32: Coherent Rabi oscillaঞons of a 3 electron spin-1/2 state (a) Rabi oscillations with ami-
crowave power of 18dBm. There is a periodic recovery of spin-up probability with increasing pulse

duration, although the oscillation amplitude decays with a non-exponential envelope. (b-d)With lower

microwave power the frequency of Rabi oscillations is reduced, along with themaximum initial oscilla-

tion amplitude. (e) There is a square root dependence of the Rabi frequency on themicrowave power

P power, indicating that the Rabi frequency is proportional to theB1 field strength. Themaximum

B1 ∼ 50µT observed at P = -18dBm provides a Rabi frequency of 1.3MHz, which is limited by the

output power of the signal generator. (

We fit the data to a functional form184,185:

IESR = I0 −
I1√
Tp

cos
(
2πωRTp +

π

4

)
(5.51)

in order to extract the Rabi oscillation frequency ωR. I0 and I1 are free fitting parame-
ters.

We plot the resulting Rabi frequency ωR against the applied power P in Figure 5.32(e).
The Rabi frequency is linear in the oscillating Rabi magnetic field amplitude ωR =

γeBAC/2 = γeB1. Therefore B1 scales linearly with the current through the nanowire
at the end of our microwave antenna (by the well-known Biot-Savart law). The square
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of the antenna current is proportional to the input power, and so we expect a power
dependence, ωR = α

√
P . This relationship is confirmed by our measurements as shown in

Figure 5.32(e), with a coefficient α = 0.1694MHz/mW1/2. The highest Rabi frequency
we achieved (at the maximum output power of our signal generator – 18dBm) was
1.184±0.020MHz. Extrapolating this value to 0dBm = 1mW gives a value of B1 ≈ 12µT.
This B1 value is lower than we estimated for the previous 1P/2P device in Section 5.6.5,
by a factor of around 5. The outcome is remarkably consistent with the numerical
modelling we presented in Section 5.4.2 if we additionally consider the exact placement
of the antenna in this new device.

5.7.4 Understanding the electron spin dynamics in a
fluctuating Overhauser field

We now justify the expression used to fit our Rabi oscillations, which is distinct from the
well known Rabi formula. To do so, we consider the Rabi Hamiltonian for an electron
spin, in the rotating Larmor frame and subject to a microwave magnetic field pulse of
frequency ωp and duration Tp. Such a pulse drives Rabi oscillations about the X-axis of
the Bloch sphere at a frequency ωR. We also consider in this model a fluctuating nuclear
Overhauser field δ(t) = γeBN (t) detuning the electron away from the expected Larmor
frequency ωL.

HR = ωRSx +∆ωSz (5.52)

= γeB1Sx + (δ(t) + ωp − ωL)Sz (5.53)

We assume slow fluctuations of the Overhauser field, so that δ(t) is fixed for the duration
of a single pulse Tp, and that ωL ≫ ωR so that the rotating wave approximation is valid.
The expected z-projection of the spin (or fraction of spin up outcomes in a time ensemble)
after such a pulse may be written:

f↑(Tp,∆ω) =
ω2
R

2(ω2
R +∆ω2)

[
1− cos(Tp

√
ω2
R +∆ω2)

]
(5.54)
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Equation (5.54) is the standard Rabi formula∗. Integrating this expression over a Gaus-
sian distribution of Overhauser field detuning values δ (reflected in the lineshape of
Figure 5.31) with standard deviation σ produces:

f̄↑(Tp, ωp) =

∫ ∞

−∞

1√
2πσ

e

−δ2

2σ2 f↑(Tp, δ + ωp − ωL)dδ (5.55)

This general form can be applied to describe both a ‘strong driving’ regime – where the
detuning due to the Overhauser field is small relative to the Rabi frequency ωR ≫ σ.; and
a ‘weak driving’ regime – in the limit where the Rabi field strength is smaller than the
detuning due to Overhauser field fluctuations ωR ≪ σ The evolution from one regime to
the other has been studied at length theoretically123,124,182,184–186, and since the analysis
is not straightforward, we simply present the on resonance (ωp = ωL) outcomes in the
two limits141. To clearly illustrate the properties of the two regimes, we additionally
show a simple idealised numerical model of Equation (5.55) in Figure 5.33(a-c). The
figures sketch ideal Rabi oscillations for a system with perfect initialisation and readout.
Directly on-resonance (δ = 0), the black dashed line describes spin rotation with a Rabi
frequency ωR = 1MHz. Coloured lines show the effect of Overhauser field detuning with
a Gaussian distribution of standard deviation σ, varied over the three plots (0.3MHz
(a), 1MHz (b), 3MHz (c)). Detuning, positive or negative, always increases the Rabi
frequency because the effective nuclear field BN (t) = δ(t)/γe acts only in the Z direction,
perpendicular to B1.

‘strong driving’ produces a Gaussian decay envelope:

f̄↑(Tp) = f0 − f1e
−

 Tp

TRabi
2

2

[1− cos(ωRTp)] (5.56)

Here, dephasing follows a Gaussian decay profile (exponential with a power of 2)
parameterised by the Rabi dephasing time TRabi

2 , which is distinct from the T ∗
2

and T2 times because it applies only under the microwave driving field, which has
its own distinct noise properties. In this regime, the initial amplitude of oscil-
lations approaches 1, as sketched in Figure 5.33(a). In this simple model, each
green line plots the sinusoidal evolution of a single trial from a state initialised |↓⟩,

∗ sometimes the 1− cos(Θ) term is expressed instead as an equivalent 2 sin2(Θ/2).
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undergoing uniform Rabi oscillations with a small relative random detuning σ se-
lected randomly from a Gaussian distribution. A dashed black line shows the zero
detuning behaviour, and the solid black line the ensemble average. Figure 5.33(d)
displays the strongly driven spin rotation on the Bloch sphere and the process
approaches the ideal X operator, cycling almost circumferentially between |↓⟩ and
|up⟩.

‘weak driving’ results in a power-law decay envelope, bounding oscillations which are
shifted by a phase of π/4

f̄↑(Tp) = f0 − f1

√
ωR

2σ2Tp
cos
(
2πωRTp +

π

4

)
(5.57)

This behaviour is characterised by a fast initial damping within the first period,
followed by slow decay for longer pulse times, as we see in Figure 5.33(c) which is
the same randomised trial by trial model. Trials which are further detuned from
resonance travel a shorter cycle on the Bloch sphere (shown in Figure 5.33(f)),
and consequently oscillate faster in time – an effect visible in (c). Interestingly, no
detuned trial oscillates more slowly than the σ = 0 case (dashed sinusoid). The
ensemble average reflects the fast initial damping of a square root decay envelope,
and the onset of a π/4 phase shift is visible in the first few hundred nanoseconds in
Figure 5.33(c). Despite the rapid initial decay, small oscillations persist for many
cycles.

intermediate behaviour occurs when the detuning is approximately equal to the Rabi
frequency. Figure 5.33(b) and (e) display properties of both regimes.

Given that our maximum Rabi frequency ωR = 1.184MHz is less than the Larmor
frequency detuning due to spectral diffusion σ = 3.1MHz, we we expect that the ‘weak
driving’ description should most closely describe our data. To confirm this, we plot in
Figure 5.33(g) Rabi oscillation measurements extending out to Tp = 3.6µs. We have fit
the data to three candidate functions: the strong driving Equation (5.56) (green curve),
a modified version of Equation (5.56) with the square in the exponent replaced by a free-
parameter power n (orange curve), and the weak driving Equation (5.57) (red curve).
The green curve is a poor fit, decaying much faster than the data. The orange curve,
locked to zero phase at zero time, does not accurately fit the period of the oscillation,
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Figure 5.33: Rabi oscillaঞons in the presence of random detuning. (a,b,c) Simple numerical model of
Equation (5.55), plotting a number of detuned trials as coloured lines with intensity inversely propor-

tional to the detuning. Dashed lines are theσ = 0 case, and solid black curves plot the ensemble aver-
age. Parameters usedwere: (a)σ = 0.3ωR; (b)σ = ωR; (c)σ = 3ωR. (d,e,f) Schematic Bloch sphere

representations of the Rabi driving regimes. The red vector represents a frequency detuning, the blue

arrow an oscillatingB1magnetic field. The vector sum determines the axis of rotation. (g) Measured

Rabi oscillations with amicrowave power of 18dBm. Three fit functions are used: a sinusoid bounded

by a Gaussian envelope (blue); a sinusoid bounded by a non-Gaussian envelopewith exponentn (green);
and a sinusoid bounded by power law envelopewith a phase shift (red).
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and in particular is visibly lagging behind the data above TP = 3µs. The red curve is a
better fit across the time domain we measured, with the greatest deviation near TP = 0

where the approximations for Equation (5.57) are not fully met.

As a whole, Figure 5.33 illustrates the deleterious impact of Overhauser field induced
dephasing. Without significant averaging (each point in Figure 5.33(g) is based on the
average ESR signal over 750 single shot measurements), the coherent behaviour of our
qubit would not be visible.

Although our limited Rabi field strength in this device means we cannot attain the
strong driving regime which is far more preferable, since it partially overcomes dephas-
ing caused by spectral diffusion, we nevertheless have shown we can perform coherent
rotations of the electron spin. Reduced attenuation in the coaxial transmission line de-
livering the microwave signal, and adjustment to the antenna placement relative to the
qubits will allow us to reach the strong driving regime in future experiments using iso-
topically natural silicon. Another strategy to mitigate the effects of the random nuclear
spin bath is the spin echo, which we demonstrate in the following section.

5.7.5 Recovering electron spin dephasing using a spin
echo sequence

The Overhauser field BN not only affects the qubit during the application of a microwave
pulse as we considered in the previous section, but also dephases the qubit whilst it is
‘idle’. This dephasing can be overcome with a spin echo pulse sequence. We illustrate the
sequence in Figure 5.34(a), where the pulse durations to achieve a π and π/2 rotation
are determined from the first period of oscillation in Figure 5.33(a) by taking the time
tp at the peak value of IESR. The pulse sequence is:

Initialise by loading an electron |↓⟩ and then applying a microwave pulse of duration
tπ/2 (the first blue coloured block). This has the effect of rotating the spin on the
Bloch sphere, about the X-axis by an angle of π/2, into the X-Y plane. This is
also represented in Figure 5.34(b) as the light blue arrow in the lower right.

188



5.7. COHERENT CONTROL OF A FEW-ELECTRON SPIN STATE IN A PRECISION
FEW-DONOR DEVICE

Dephase for a wait time τ1, in the absence of a microwave signal. The spin precesses
about the Z-axis at a rate proportional to the instantaneous value of the Over-
hauser field ∆ω ∼ BN . Within the wait time the spin moves an angle described
by τ1∆ω around the Bloch sphere as indicated by the red arrow in Figure 5.34(b).
Depending on the orientation of BN , this rotation may occur in either direction.

Flip the spin by an angle π about the X-axis, by applying a microwave pulse of duration
tπ. This is indicated by the dark blue arrow in Figure 5.34(b).

Rephase for a second wait time τ2, again without a microwave field. Assuming that
the Overhauser field BN has the same size and direction as it had for the first wait
time, the phase angle accumulated in this second wait time τ2∆ω, will return the
spin to the Y-axis if τ2 = τ1, as is the case in Figure 5.34(b).

Project the qubit onto the Z-axis with a final π/2 pulse, as shown by the dashed blue
line in Figure 5.34(b). When τ2 = τ1, this returns the qubit state to |↓⟩.

Read the spin state by performing the spin dependent Unload procedure as discussed
in Section 5.3.2.

Note that the rotation angles described by the light blue and dark blue arrows in
Figure 5.34(b) are accurate only in the absence of the Overhauser field. BN alters the
path traced by the spin state, so the Bloch sphere diagrams presented represent the ideal
case only.

As τ2 and τ1 diverge, the spin echo becomes less effective at rephasing the spin, and
the final pulse projects the qubit to a point away from the ground state as shown by the
yellow star in Figure 5.34(c). The error relative to perfect recovery of the |↓⟩ state is
proportional to |τ2−τ1|∆ω. For an ensemble of such sequences with randomly distributed
∆ω, the average final state is approximately |↓⟩ for δτ = τ2 − τ1 = 0 and tends toward
the fully mixed state at large time differences. We perform such an experiment, with a
fixed τ1 = 3µs () and show the results in Figure 5.34(d). Each point represents 30 000

single shot spin echo sequences (15 000 on resonance, 15 000 off resonance). We observe a
clear envelope in the wait time difference δτ within which the ensemble of measurements
is rephased by the echo sequence. We fit the measured ESR signal data to the function:

IESR = I0 + I1e

(
δτ

T ∗
2

)2

(5.58)
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Figure 5.34: Rephasing the electron spin with an echo sequence. (a) Schematic of the spin echo enve-
lopemeasurement sequence, where the secondwait time, τ2 is varied. (b) Bloch sphere representation
of the effect of the sequence. The firstπ/2 pulse rotates the spin from |↓⟩ into the X-Y plane, initially
along the Y-axis, where it accumulates phase at a rate given by the detuning∆ω integrated over a delay

time τ1. At this point, the centralπ pulse inverts the Y-component, so that after a second delay of equal
time τ2 = τ1, the spin is refocused, arriving at the negative Y-axis regardless of the value of the detun-
ing, assuming the detuning has remained the same for both delay periods. Under such a conditions, the

finalπ/2 pulse rotates the spin back to the ground state. (c)When τ2 ̸= τ1, the spin is not correctly re-
focussed, and the degree of error is proportional to the time difference |τ2 − τ1| and also the detuning.
(d) By repeating the sequence for different wait time differences, we observe a spin echo peakwhich

has a width which describes the time it takes on average for the phase information to be lost due to the

static detuning caused byBN . This indicates the inhomogeneous dephasing timeT ∗
2 ∼ 200ns. (e) The

spin echo envelopemeasured over a range of tπ settings from 350ns to 500ns, to observe the impact of

rotation error. The largest peak amplitude is observed for tπ = 400ns, and the echo amplitude reduces
with increasing rotation error at the extreme values. Traces are offset by 0.05 on the x-axis for clarity.
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in order to extract a spin dephasing time T ∗
2 = 284± 22ns. The value is larger than the

∼ 73ns estimate obtained in Section 5.7.2 from the width of the spin resonance peak
in the frequency domain. We are uncertain of the origin of the discrepancy, though
it may be related to power broadening in the resonance spectrum experiment which is
suppressed in the spin echo as the pulse durations used are much shorter.

The angle of rotation achieved by a pulse of a certain duration depends on the in-
stantaneous value of the Overhauser induced detuning. We now repeat the spin echo
envelope experiment using different values for the microwave pulse duration tπ to obtain
a qualitative picture of this effect. The result is shown in Figure 5.34(e), each line fitted
also to Equation (5.58). Changing the pulse duration introduces additional rotation
angle error on top of that caused by the Overhauser field. For small variations in tp

(between 400 and 440ns), we do not see a measurable decrease in the amplitude of the
echo amplitude (I1 = 0.056), as the change is comparable to the uncertainty due to
the nuclear spin fluctuations. Modifying the time further does effect the final spin up
probability, and at tp = 500ns the amplitude is reduced to only I1 = 0.031.

We have shown that despite significant spectral diffusion, and associated imperfections
in the rotation angles achieved by our microwave pulses, a spin echo sequence allows us
to recover the random phase accumulated over time due to the nuclear spin bath. In
particular, we have found that the 3 electron state is more robust against dephasing
than a single donor-single electron in natural silicon, with a longer T ∗

2 time by virtue
of its greater overlap with nuclear spins in the substrate. In the section that follows we
employ the spin echo technique to demonstrate arbitrary control over the Bloch sphere
and measure the qubit decoherence time.

5.7.6 Applications of the spin echo: extending the co-
herence time and two-axis qubit control in a pre-
cision donor device

Having confirmed the effectiveness of the spin echo sequence in mitigating the dephasing
due to the unknown instantaneous Overhauser field, we now perform a standard Hahn
echo experiment, by fixing τ1 = τ2 and tp = 376ns and varying the total wait time τ =
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Figure 5.35: Recovering coherence with a Hahn spin echo sequence (b) Hahn spin echo experiment,
plotting the recovery of a spin echo ESR signal as a function of total wait time τ . The inset illustrates
the pulse sequence, with equal wait times. (c) Angular dependence of the echo recovery on the phase of

the finalπ/2 pulse, displaying a sinusoidal shape, which demonstrates two-axis control over the Bloch
sphere. The inset indicates the arbitrary phase of the final pulse, which is varied on the x-axis of the plot.

Datasets for three different wait times are offset by 0.05 for clariy.

τ1 + τ2. The sequence is depicted in the inset to Figure 5.35(a). It is clear that the spin
coherence extends well beyond T ∗

2 as the plotted echo signal intensity in Figure 5.35(a)
shows, only starting to decay to the long-time equilibrium value beyond 104−s. We fit
our data to the form:

IESR = I0 + I1e

 τ

THahn
2

n

(5.59)

where n, I0, I1 and THahn
2 are free parameters. In fitting the data we find that the

Hahn echo sequence preserves the qubit coherence for a time THahn
2 = 298± 30µs. The

exponent we extract n = 2.6 ± 1, is within the range found by Tyryshkin et al. 119 for
spectral diffusion induced decoherence in P donor electrons in natural silicon.

Figure 5.35(b) demonstrates full control over the rotation angle on the Bloch sphere.
We use a vector signal generator, allowing full control over the relative phase of the
pulses within the spin echo sequence. By modulating the phase of the microwave pulse
in the laboratory reference frame, the effect in the Larmor rotating frame is a rotation of
the effective B1 Rabi field within the X-Y plane. Delaying the phase ϕ by π/2 converts
the final pulse into a Y-axis rotation. Delaying ϕ by π again rotates about the X-axis,
but in the opposite direction. Therefore with ϕ = π, the final state is (ideally) |↑⟩ at
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the end of the spin echo sequence, in contrast with the |↓⟩ final state produced by the
standard Hahn echo sequence used so far. The ESR signal amplitudes (I1) seen in the
spin echo experiments to this point have been approximately 0.053± 0.007, as shown in
Figure 5.35(a) as ∆Iτ . This value of ∆Iτ reflects the evolution of the final state after
the sequence from |↓⟩ at low wait time, to the fully mixed state at long times. We note
that the amplitude of the sinusoidally varying ESR signal as a function of final pusle
angle in Figure 5.35(b) is consistent with our expectations of a variable final state. The
amplitude ∆Iϕ = 0.122 ± 0.010 shown for the τ = 4ns dataset is approximately double
∆Iτ . This is only achievable if at ϕ = π the final state is indeed |↑⟩ as expected. This
larger amplitude, together with the sinusoidal transition from one extreme IESR value
to the other is strong evidence of arbitrary axis control of our electron spin state.

The ability to switch between X and Y rotations provides a basis for performing any
arbitrary single qubit operation. With a π rotation time of ∼ 400ns and decoherence
time of THahn

2 =∼ 300µs, many operations are possible before the qubit decoheres. The
biggest limitation is the random rotation error introduced by the nuclear Overhauser
field. Increasing the Rabi driving strength, which is possible by improving the mea-
surement set-up – in particular by reducing the loss in the microwave transmission line
will reduce the severity of the errors, possibly by several orders of magnitude. Further
improvement of the donor electron qubit ultimately relies on isotopic purification of the
substrate to largely remove the nuclear spin bath.

Experiments with this device are ongoing at the time of writing, with several clear
opportunities to explore, including electron spin resonance on one of the other donor
quantum dots (L or Rβ).

5.8 Conclusions and outlook

In this major results chapter we have demonstrated arbitrary axis coherent spin control
in precision placed donors in silicon. To achieve this we have demonstrated a series of
results:
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• We have performed spin readout and spin resonance experiments on an atomic-
precision donor-defined double quantum dot device, consisting of a single phospho-
rus donor and a 2P molecule – a pair of donors less than 1nm apart. Independent
single shot electron spin readout of both qubits has demonstrated long T1 relax-
ation times ∼ 10s. The combined spin readout scheme allowed an exploration of
the controllable onset of spin-spin correlations when the system is detuned such
that the exchange interaction between the two electrons becomes significant. This
result is a first step toward developing a two qubit gate operation using donor
bound single electron spins.

• We have detailed the integration of a broadband microwave antenna onto our
planar device architecture, including numerical modelling of the GHz frequency
electric and magnetic fields produced at the qubit sites. Combined with practical
considerations of our measurement apparatus, the model has been successful in
accurately predicting the oscillating magnetic field strength driving single qubit
operations (B1 ≈ 100µT) to within an order of magnitude. To combat electrical
noise and instability we developed an automated alignment procedure that tunes
the electrostatics of a device to the optimal working point for high fidelity single
shot readout, and monitors feedback signals to maintain stability over days, facil-
itating measurements over longer timescales. Magnetic field instability due to the
fluctuating nuclear spin bath was combated using an adiabatic passage technique
to permit clear electron spin resonance spectroscopy.

• We measured and analysed the spin resonance spectra of both single donor and
2P qubits, showing how the intrinsic hyperfine energy in donor molecules pro-
vides an in-built means of addressing multiple qubits. We measured values of
A(1P ) = 97MHz and A(2P ) = 262MHz. Using tight-binding calculations of the
wavefunctions, we were able to use the measured hyperfine spectrum to determine
not only the distance separating the two donors of the 2P qubit, but also deter-
mine a small class of configurations for the two donor atoms of our 2P molecule
consistent with our observations.

• We have additionally performed coherent spin resonance experiments with a sec-
ond two qubit device. Here we utilise a three electron, spin 1

2 state, believed to
be bound to a 2P molecule, which displays a strongly reduced hyperfine coupling
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to the donor nuclear spins, resulting in a single resonance peak at which which
we drive Rabi oscillations. We confirm the expected power dependence of the os-
cillations and quantify spectral diffusion in the device due to fluctuating nuclear
spins.

• We have used spin echo sequences to measure the pure dephasing time in this
3 electron system. We find T ∗

2 ∼ 300ns, and are able to recover the dephasing,
extending the qubit coherence time T2 to nearly 300µs. Finally, we have also
demonstrated full control over the Bloch sphere by modifying the phase of the
microwave signal applied, to drive spin rotations about an arbitrary axis.

In conclusion, we have demonstrated many of the requirements for a viable, scalable
qubit. We have identified the major limitation in our devices to be the 29Si nuclear spins
due to the use of a natural silicon substrate. These nuclear spins substantially degrade
the qubit operations. Their effect could be mitigated to a large extent by increasing the
strength of the oscillating magnetic field at the qubit by reducing loss in our microwave
transmission line. Future work will proceed toward combining isotopically purified silicon
with our fabrication procedure – which whilst challenging due to the incredibly small
quantities of 28Si material available is a subject of ongoing work within the research
group.
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6
Architecture for scalable error corrected

quantum computing with donors

Large-scale quantum computing remains an ambitious goal, hovering in the future
at a distance of one, or several decades depending on who you ask. Certainly the research
community and an increasing number of commercial businesses are confident in the scal-
ing prospects of several qubit implementations. At this point in the development of the
field, a number of detailed theoretical proposals have emerged, presenting architectural
designs for a large scale (> 1000 qubit) quantum computer187–192. The key requirement
at this scale is error correction, the ability to protect the quantum states from deco-
herence indefinitely, thereby facilitating computations with long run times. Conceiving
the details of how this goal can be achieved at this early stage of qubit development
is important, as it provides valuable guidance in the development of the fundamental
qubit elements and their interactivity.

This chapter presents a plan for an error-corrected quantum computer implemented
with precision donor qubits in silicon. First, we briefly outline the general error correc-
tion scheme we will use, known as the 2D surface code, along with a contextual survey of
related architectures proposed for alternate qubit types. We then describe our proposed
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physical layout realising the surface code topology, which consists of a two-dimensional
lattice of donor qubits sandwiched between two vertically separated control layers form-
ing a mutually perpendicular criss-cross gate array. We discuss the suitability of donor
nuclear spin qubits for synchronous and parallel quantum operations, and the utility of
the associated electron spin qubit in addressing subsets of the full quantum computer, as
well as mediating interactions. We describe the details of executing single and two qubit
gate operations, which we have designed to consist only of locally controlled electron
tunnelling and global spin resonance signals.

Since the tunnelling process is key to this architecture, we present detailed numerical
modelling of the charge state control possible with the geometry. Although electron
tunnelling is inherently a stochastic process, we show that a combination of Zeeman
and Coulomb energy splittings provide a latching mechanism which permits a ’phase
matched’ semi-deterministic tunnelling scheme which we have designed to preserve qubit
coherence during required donor ionisation events.

In the context of recent experimental developments, such as those presented in Chap-
ter 5 of this thesis, and with reference to the underlying theoretical literature193,194 we
have elucidated our surface code architecture to a level where it will be a useful guide in
the short term, both for experimental tests demonstrating basic error correction in small
numbers of qubits, and for higher level theoretical development concerning the operation
of logical qubits within the surface code. Thus our results establish a viable roadmap for
building a realistic quantum computer based on individual phosphorus donors in silicon.

6.1 Introduction to quantum error correc-
tion

Qubits, and even classical bits will experience errors during storage, transmission, or
manipulation, due to imperfections in the physical hardware implementation. Environ-
mental noise can change the state of a qubit or bit during computational operations,
or whilst being stored in memory. Therefore detecting and correcting for such uncon-
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trolled interactions with the bit or qubit’s environment is important for any scalable
system. We begin by looking at classical errors and error correction as an introduction
to quantum error protection with the surface code.

6.1.1 Classical error correction and Hamming codes

In order to protect against processes that may interfere with the state of a bit, the
simplest strategy is to store repeated copies of each bit. For instance, if we use three
physical bits to represent one logical bit, the system can be protected against a single
bit error. If the value is 1 (0), we store a ’codeword’ 1, 1, 1 (0, 0, 0), and later we read
the values of the three bits and if they are not all equal, say 1, 1, 0, we simply take a
majority vote and flip the dissenting bit back to its original value, recovering one of the
valid codewords. Note that this simple 3-bit repetition code cannot protect against two
or more errors. We could increase the number of copies, but doing so quickly becomes
very inefficient, using most of the bits to hold a lot of redundant data. Rather, error
correction schemes generally assume that errors occur with low probability, and will be
corrected by the system fast enough to avoid an error propagating from a physical bit
to a logical bit. This assumption gives rise to the concept of an error ‘threshold’. If
the rate of occurrence of single bit errors is below a certain value Pth, then the error
correction system will be able to run arbitrarily long computations even in the presence
of environmental interference. The value of Pth is normally specified as a probability per
operation time, and depends on the particular system and the noise.

If we consider the 3-bit repetition code, it is rather inefficient, with only 1 bit out of
three representing actual information. An optimally efficient extension of the repetition
concept is the family of Hamming codes195, where m data bits are interleaved with k

parity bits to form a codeword of n bits. Each parity bit records the parity (or sum
modulo 2) of a unique subset of bits in the codeword, allowing unambiguous determina-
tion of the erroneous bit or bits and therefore correction of the error. In general, a [n,m]

Hamming code is capable of correcting 1 bit flip error per codeword if the Hamming
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condition is met:

2k ≥ m+ k + 1 (6.1)

This inequality requires that there be enough parity bits to describe m+ k + 1 = n+ 1

different outcomes, that of a single bit flip in any bit position, or none.

As an example, we describe the [7,4] Hamming code which uses n = 7 physical bits
to protect m = 4 logical data bits against any single error. The code is specified by a
generator matrix G which produces the codeword w from a data-word d, and a Hamming
matrix H which produces a ‘syndrome’ s for any w.

w = Gd (mod 2) s = Hw (mod 2) (6.2)

G =



1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1


H =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 (6.3)

For a given data-word d, G establishes the parity bits such that Hw = (0, 0, 0) in
the absence of errors. A non-zero syndrome indicates an error has occurred, and since
s contains three bits of information, it is sufficient to determine which of the 7 bits
(or none) suffered the error. The canonical H matrix (which results in parity bits at
position indexes that are powers of 2) produces a syndrome which is directly a binary
representation of the position index of the erroneous bit.

An example codeword d = (1, 0, 0, 1) is shown in Figure 6.1(a). The codeword is com-
puted as w = Gd = (0, 0, 1, 1, 0, 0, 1), which without any error will produce a syndrome,
s = Hw of (0, 0, 0). We suppose an error occurs on the bit at position 5⃝, flipping its
value to 1 (shown in red) in the erroneous codeword w′, and corrupted data d′. If the
codeword is computed again from d′, a different codeword is obtained w′′. The syndrome
s = Hw′ = (1, 0, 1) corresponds to the difference between w′ and w′′, and is in fact the
binary representation of 5, providing the index of the erroneous bit, and hence allowing
the error to be unambiguously corrected to recover the original codeword w.
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Figure 6.1: Classical error correcঞon with the Hamming code. (a) Example of the classical Hamming[7,4]
code algorithm, correcting one error in a 7 bit codeword, containing 4 bits of data. Data bit values

shown in black, parity bit values blue. Top panel shows a starting codeword, with blue parity bits added

to for a codeword. In the second panel an error occurs on the 5⃝ bit (red). The third panel shows the

outcome of computing the codeword on the erroneous data, with the error appearing on the 1⃝ and 4⃝
parity bits; their changed values highlighted by orange arrows. The grey panel indicates that the syn-

drome encodes the error location: (1,0,1) is the binary representation of 5. And the final panel shows

that the data in bit 5⃝ can then be corrected (green). (b) Graphical representation of the Hamming[7,4]

code. Data bits are dark circles, parity bits light circles, with coloured shading indicating which three

data bits contribute to each parity check. (c) A single error on a data bit (red 5⃝) causes a change in the

value of two parity bits (orange). Here s = (1, 0, 1) → 5⃝. (d) A single error on a parity bit (red 2⃝)

changes only that one parity bit. Here s = (0, 1, 0) → 2⃝. (e) The special case of an error on bit 7⃝
(red) causes all parity bits to change (orange). Here s = (1, 1, 1) → 7⃝.

The action of the syndrome measurement performed by the Hamming matrix H is
displayed graphically in Figure 6.1(b), which shows data and parity bits as dark and
light circles respectively. Each of the coloured shapes represents one row of H, and
hence one bit of the syndrome. Note that each shape intersects with a unique subset of
bits. Figure 6.1(c) illustrates the example case in (a), showing that an error on bit 5⃝
affects two bits of the syndrome – the two shapes that intersect with bit 5⃝. Figure 6.1(d)
and (e) demonstrate the cases of an error occurring on a parity bit, which impacts only
one bit of the syndrome, and the unique case of an error on bit 7⃝, which intersects all
three shapes, and produces the syndrome (1, 1, 1).

Repeated application of the syndrome measurement followed by the appropriate cor-
rection to either data bit or parity bit ‘stabilises’ the code against single errors. Of
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course for classical bits, determining the syndrome is as simple as reading the value of
each bit and performing some matrix multiplication. With a quantum bit, this is not an
option – directly measuring any qubit containing quantum data will project it into an
eigenstate and collapse a superposition or destroy any entanglement it may share with
other qubits. Fortunately, there is an indirect way of measuring the quantum parity, by
instead only measuring an ‘ancilla’ qubit which has previously interacted with a set of
data qubits, in analogy with the parity bits from the Hamming code after application of
the G matrix to a set of data bits. Such a measurement is termed a ‘stabiliser’ operation.
The result is that the combined system of (data and ancilla) qubits is partially projected
into a certain subspace of the full Hilbert space, and we gain a measurement outcome
– a syndrome – reporting the occurrence of any error that may have occurred, thereby
allowing it to be corrected without needing to directly look at the qubit states196.

6.1.2 Discretisation of arbitrary quantum errors by
projective measurement

Calderbank, Shor & Steane197,198 introduced quantum error correction with a general
class of what are known, after the inventors names, as CSS codes, a close analogue
of classical Hamming codes, the principal distinction stemming from the fact that the
two-dimensional Hilbert space of a single qubit represents analog information that may
suffer an arbitrary analog error, and not merely a digital flip from 0 → 1 or 1 → 0 as for
a classical binary bit.

We illustrate a small analog error acting on a physical qubit state |Ψ⟩ on the Bloch
sphere in Figure 6.2(a). The combined effects of decoherence and relaxation may perturb
|Ψ⟩ by an arbitrarily small angle about an arbitrary axis. The key to quantum error
correction is that we may consider such arbitrary rotations as a weighted superposition
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X errorArbitrary error Z errora) b)

Figure 6.2: Discreঞsed errors by projecঞve stabiliser measurements. (a) Noise acting on a physical qubit
can rotate a state |Ψ⟩ (green arrow) on the Bloch sphere in an arbitrary way, as indicated by the small
purple arrows. (b) The effect of a quantised X error, or (c) Z error on a qubit state |Ψ⟩. Any state along
the purple line is projected to one of the endpoints by a projectivemeasurement following a stabiliser

operation; and so the surface code effectively digitises errors.

of a basis set of large errors, for which we define operators based on the Pauli matrices:

X̂ = σ̂x =

(
0 1

1 0

)
Ẑ = σ̂z =

(
1 0

0 −1

)
(6.4)

Ŷ = −iσ̂y = ẐX̂ =

(
0 1

−1 0

)
Î =

(
1 0

0 1

)
(6.5)

An X-error, analogous to a classical bit flip, is described by a rotation of angle π

about the X axis of the Bloch sphere, as we show in Figure 6.2(b). The second type we
consider is an Z-error, a π rotation about the Z axis of the Bloch sphere, often termed a
phase flip, as shown in Figure 6.2(c). Thus, relaxation effects normally quantified with
a T1 relaxation time can be considered as the source of X-errors, and dephasing effects
typically described with a T2 decoherence time can be similarly seen as generating Z-
errors. The Y-error is the product of both X- and Z-errors. The identity operator
describes the occurrence of no error.

Syndrome measurements made on ancilla qubits are designed to project small errors
onto the basis of (X̂, Ŷ , Ẑ, Î) error operators193. Under the assumption that the error
rate is small, and indeed less than some threshold Pth, the probability of projecting the
error to Î, and the qubit state back onto the original Ψ is almost unity. Conversely, the
probability of projecting the error onto one of the non-identity error operators is low.
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With this view of decoherence and relaxation as binary errors in the X- and Z-
projections of a quantum state, the CSS quantum codes can be viewed as two nested
Hamming codes, where one layer corrects X-errors and the other layer corrects Z-errors.
The threshold value for CSS codes are on the order of Pth ∼ 10−6 to 10−4 depending
on the details of the system: the operation and measurements times, and the number
of qubits in the entire quantum computer24,199. The 2D surface code described in the
following section is a special case of a CSS code. It is constructed on a two-dimensional
lattice200, where all the stabiliser operations are local, meaning that no interaction is
necessary between non-neighbouring qubits. Additionally, it takes advantage of topol-
ogy201 so that even clusters of multiple errors are efficiently corrected unless they form
an unbroken chain across an arbitrarily large region of the lattice. These properties, com-
bined with a high error threshold of Pth ∼ 10−3 to 10−2 makes the surface code the most
attractive known option for the implementation of fault-tolerant quantum computing.

6.1.3 Topological protection with the surface code

The surface code is constructed as an interleaved 2D array of data and ancilla qubits,
grouped into two sets of cross shaped ‘plaquettes’ as shown in Figure 6.3(a). Each
plaquette is centred on an ancilla qubit and includes its data qubit neighbour to the
north, south, east, and west. Half of the plaquettes are designated as Z-stabilisers, half
as X-stabilisers, as indicated in Figure 6.3(a) so that every data qubit is a member of two
Z-stabiliser plaquettes and two X-stabiliser plaquettes. Together the two subsets form a
set of stabiliser operations on plaquettes of qubits, that together define the ‘surface’ of
the surface code:

Ẑi = ẐN ẐW ẐEẐS (6.6)

X̂j = X̂NX̂W X̂EX̂S (6.7)

The execution of these operations require the standard Hadamard operation Ĥ to
transform between the Z-basis and the X-basis, and the two-qubit CNOT (controlled
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Figure 6.3: Syndrome extracঞon with projecঞve stabiliser measurements. (a) The 2D surface code qubit

layout. Ancilla qubits marked blue play a similar role to the parity check bits of the Hamming code,

each one determining the eigenstate of combined X or Z operators acting on sets of neighbouring data

qubits. (b) A Z-stabiliser operation on a single plaquette involves initialising the ancilla |0⟩, entangling
CNOT gates with each neighbouring data qubit (North,West, East and South) before projectively mea-

suring the ancilla in the Z basis. (c) An X-stabiliser operation on a single plaquette involves initialis-

ing the ancilla |+⟩, entangling CNOT gates with each neighbouring data qubit (North,West, East and

South) before projectively measuring the ancilla in the X basis.

X̂) operation Ĉ to entangle data qubits with ancillas:

Ĥ =
1√
2

(
1 1

1 −1

)
Ĉ =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (6.8)

Z-stabiliser syndrome measurement

Figure 6.3(b) displays step by step the procedure for a Z-stabiliser operation using the
i-th ancilla qubit:

• the ancilla is initialised in the ground-state |0⟩ = ( 10 )

• a CNOT gate is applied with the ancilla as the target and its north (N) neighbour
as the control, entangling them

• a CNOT gate is applied with the ancilla as the target and its west (W) neighbour
as the control, entangling them
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• a CNOT gate is applied with the ancilla as the target and its east (E) neighbour
as the control, entangling them

• a CNOT gate is applied with the ancilla as the target and its south (S) neighbour
as the control, entangling them

• the ancilla is measured in the Z-basis, projecting it to either |0⟩ or |1⟩ = ( 01 ).

The projective measurement of the ancilla indicates the parity of the four neighbour
qubits in the Z-basis, and at the same time, partially projects those data qubits into an
eigenstate of the combined operator Ẑi.

X-stabiliser syndrome measurement

Likewise Figure 6.3(c) displays the procedure for an X-stabiliser operation using the i-th
ancilla qubit:

• the ancilla is initialised in the ground-state |0⟩

• a Ĥ operation on the ancilla produces the state |+⟩ = 1√
2
( 11 )

• a CNOT gate is applied with the ancilla as the control and its north (N) neighbour
as the target, entangling them

• a CNOT gate is applied with the ancilla as the control and its west (W) neighbour
as the target, entangling them

• a CNOT gate is applied with the ancilla as the control and its east (E) neighbour
as the target, entangling them

• a CNOT gate is applied with the ancilla as the control and its south (S) neighbour
as the target, entangling them

• the ancilla is measured in the X-basis, by first performing a Ĥ operation, then
projecting it to either |0⟩ or |1⟩. This process indirectly achieves a projection onto
|+⟩ or |−⟩ = 1√

2

(
1
−1

)
.

In this case the final projection gives the parity of the four neighbours in the X-basis,
and projects them onto an eigenstate of X̂j . Repeated application of |Z⟩i and |X⟩j
across all plaquettes i, j maintains the surface in a simultaneous eigenstate of all the
combined stabiliser operators.
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Commutatativity of stabiliser operations

The protocol would be no good if the various stabilisers interfered with one another,
destroying superpositions in each others’ subspaces. Part of the cleverness of the surface
code is that this does not happen. Although for a single qubit, X̂ and Ẑ measurement
operators do not commute,[

Ẑ, X̂
]
= ẐX̂ − X̂Ẑ = 2ẐX̂ = 2Ŷ (6.9)

all of the combined stabiliser X̂NX̂W X̂EX̂S and ẐN ẐW ẐEẐS operators do commute
with each other. This comes about because of the connectivity built into the plaque-
tte geometry, stabilisers always share exactly two data qubits with any other stabiliser,
cancelling out negative signs when the two pairs are commuted. And of course individ-
ual operators on different qubits always commute with each other. Taking two of the
plaquettes labelled in Figure 6.3(a) as an example:

[Ẑi, X̂j ] =
[
ẐaẐcẐbẐd, X̂dX̂f X̂cX̂e

]
(6.10)

= ẐaẐb(ẐcX̂c)(ẐdX̂d)X̂eX̂f (6.11)

− ẐaẐb(X̂cẐc)(X̂dẐd)X̂eX̂f

= ẐaẐb(Ŷc)(Ŷd)X̂eX̂f (6.12)

− ẐaẐb(−Ŷc)(−Ŷd)X̂eX̂f

= 0 (6.13)

The resulting state after interacting and projecting every ancilla is called the quies-
cent state of the surface, a state with strong entanglement between local qubits, and
increasingly weak entanglement with distant qubits. With no errors, repeated stabiliser
operations do not change the state, or the measured syndrome outcomes. Errors are
detected by noting any change in syndrome measurements, and since each data qubit is
a member of two X-plaquettes and two Z-plaquettes, the location and type (X/Z) of a
single error can be unambiguously resolved.
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Figure 6.4: Effect of X, Y and Z errors on syndrome measurements. (a) A Ẑ error at data qubit d⃝ prop-

agates out to the two the X-stabiliser measurements labelledX1 andX5. (b) An X̂ error at data qubit

d⃝ propagates out to the two the Z-stabiliser measurements labelledZ2 andZ4. (c) A chain of two Ŷ
errors at data qubits c⃝ and d⃝, appear in the X- and Z-stabiliser measurements at the ends of the chain.

(d) An error occurring on any ancilla qubit appears as one isolated changed stabiliser measurement. It

may also propagate errors across to neighbouring data qubits, which will be corrected in the following

iteration of stabiliser measurements.

Some example error syndromes

We demonstrate a few examples in Figure 6.4 to give a sense of how the syndrome
analysis reveals the location and type of errors that have occurred:

• In Figure 6.4(a) we consider a Z error at data qubit d⃝. Ẑd commutes with both
Ẑ2 and Ẑ4 so the Z-stabilisers are unaffected. The effect on the two neighbouring
X-stabilisers (X̂1 and X̂5) is to change their parity in the X-basis. Hence the
interpretation of a syndrome consisting of two changed X-stabilisers either side
of a data qubit, is that a Z-error has occurred at that data qubit. Applying the
operator Ẑd will map the state back to what it was before the error.

• In Figure 6.4(b) we consider an X error at data qubit d⃝. X̂d commutes with both
X̂1 and X̂5 so the X-stabilisers are unaffected, and in this case the Z-stabilisers
(Ẑ2 and Ẑ4) change parity. Hence the interpretation of a syndrome consisting
of two changed Z-stabilisers either side of a data qubit, is that an X-error has
occurred at that data qubit. Applying the operator X̂d will map the state back
to what it was before the error. There is a less likely alternative (actually there
are many, of increasingly low probability) – indicated by the dashed pink line. A
chain of X-errors on several data qubits (such as e⃝, f⃝, c⃝), produces changed
Z-syndromes at the endpoints of the chain. However, the surface code protocol
always assumes the underlying error was caused by the most likely set of errors
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(the shortest chain) using a matching algorithm202, in line with the assumption of
a low error rate. In fact, incorrectly assuming the wrong chain of errors between
two endpoints also effectively corrects the error – the error operators combined
with the mis-correction operators form a closed loop which turns out to be a
product of stabiliser plaquette operators

∏loop
j X̂j surrounded by the loop203.

• In Figure 6.4(c) we consider the impact of a chain of two Y errors on the nearby
data qubits c⃝ and d⃝. Ŷc changes the parity of all four surrounding syndrome
plaquettes, as does Ŷd, but note that Ẑ2 and X̂5 both have their parity changed
twice, so these syndromes do not report any change. Only those syndromes at the
end of the chain of errors change parity: X̂1, X̂3, Ẑ4 and Ẑ6, and this outcome
can be traced back to the most probable source – two Y errors202.

• In Figure 6.4(d) we consider the impact of an error on an ancilla qubit X̂5. If the
error occurs after the CNOT gates, it will only change the measured value of that
ancilla (as shown). The other possibility is that the error occurs before one or
more CNOT interactions, in which case, it may propagate errors back to the data
qubits. These errors will simply be detected and corrected on the next iteration
of the stabiliser operations.

In this way, multiple errors are detectable and correctable on a large surface202,
provided the density of errors is lower than the threshold for the surface code25,204

Pth ∼ 1× 10−2.

In fact, it happens that detection of errors (type and location) is actually sufficient
in the surface code, correcting them as they occur is not required. Since all errors have
been discretised to full X̂ or Ẑ operations, which commute or anti-commute with all
valid physical qubit operations within the surface code architecture, their presence may
simply be tracked throughout the computation in classical software. If a second error of
the same type on the same qubit is detected, the two will have effectively cancelled one
another out (Ẑ2 = X̂2 = Î). Otherwise, the appropriate corrective operator can simply
be applied once to the physical qubit at the time of its eventual measurement whenever
that may occur within the computation.
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Qubits within the surface

Quantum information is encoded into the surface by constructing logical qubits – simply∗

’holes’ in the topological surface where stabiliser measurements are switched off in certain
plaquettes. Then the quantum information representing the computation is effectively
encoded into dimensions of the full surface’s Hilbert space that are orthogonal to all of
the active stabiliser operators.

We sketch an example of two such logical qubits in Figure 6.5(a), each one consists
of a pair of holes. As there are two types of stabiliser plaquette, so there are two types
of logical qubit. Omitting Z-stabiliser operations within two holes creates a ‘double Z-
cut’ type qubit (left side of figure), which we show as two red rings surrounding holes
within which all internal stabilisers are turned off completely, or modified to exclude
qubits within the hole from their parity count. The edge of the hole must be completely
defined by remaining X-plaquettes. The two holes are connected by a blue line marking
a chain of data qubits from the boundary of one hole to the boundary of the other. The
other type, the ‘double X-cut’ qubit, has an edge defined wholly by Z-plaquettes, but is
otherwise equivalent – we mark it in inverted colours to show the different types.

Logical operations X̂L and ẐL are related to chains of physical qubit operators encir-
cling or connecting the pair of holes. We show the double Z-cut example in Figure 6.5(b).
Executing a logical X̂L requires a physical X̂ operation on the full chain of data qubits
connecting the two holes. Executing a logical ẐL requires a physical Ẑ operation on the
full chain of data qubits encircling one of the two holes. Measurements in the X- and
Z- basis are similarly achieved by measuring the full chain of data qubits between or
around the holes. If the chain is not complete, the repeated stabiliser operations will
recover the initial logical state.

This is why the surface code is described as a topological protection scheme, large
holes that are well separated are not sensitive to small, local sets (or chains) of errors –
because the stabiliser protocol will counteract errors before a long-enough chain develops
to form a logical qubit error. The subject of creating and operating on logical qubits
within the surface is complex, and beyond the scope of this thesis. We have sketched
some of the core concepts in Figure 6.5, but the reader is directed to a thorough review
by Fowler et al. 194 for details. A crucial result in the literature concerning the surface

∗ it is not simple at all, aside from the realisation that one less stabiliser projection allows one
more degree of freedom in the system
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Figure 6.5: Creaঞng logical qubits within the surface code. (a) Two logical qubits encoded in a surface.
A pair of red rings marking areas of omitted Z-stabilisers joined by a blue line together form a ‘double

Z-cut’ qubit. The complementary arrangement of two regions of omitted X-stabilisers is known as a

‘double X-cut’ qubit. Each hole may be arbitrarily large, and the two holes arbitrarily distant, increasing

either size strengthens the fault tolerance. (b) Logical single qubit gatesXL andZL are achieved by

chains of physical data qubit operations, completely around the perimeter of one hole (ZaZbZcZd

for this Z-cut qubit example), or completely from the edge of one hole to the other (XdXeXf for this

Z-cut qubit example). Logical statemeasurement involves the same chains, where each data qubit is

measured in the appropriate Z- or X-basis rather than rotated about the Z- or X-axis.

code is that a complete and universal logical qubit gate set is achievable with only the
following physical qubit operations205: X̂, Ẑ, Ĥ, Ŝ =

√
Ẑ, T̂ =

√
Ŝ, Ĉ and projective

measurement in the Z-basis. The remainder of this chapter concerns the practicalities of
implementing these operators in a scalable and manufacturable 2D donor array so that
a surface code may be constructed using atomic scale qubits in silicon.
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6.2 A survey of surface code architectures
based on donor qubits

Compared to electrons in quantum dots, or even superconducting circuits, donor spin
qubits are inherently uniform in terms of their energy levels, electronic confinement
potential, spin-spin interactions45. Every 31P atom is alike and there is no intrinsic
variability from donor to donor. Thus, they permit a high degree of shared simultaneous
control without needing to independently fine tune, or ’trim’ each qubit into resonance.
They also have been shown to posses exceptionally long quantum coherence times37,38,
high single-qubit gate fidelities51 and in the long-term are expected to benefit from the
proven scalability of silicon-based classical nano-electronics34. All of this provides a
strong argument for the viability of donor qubits at scale. However, the two dimen-
sional geometry required by the surface code poses formidable fabrication and control
challenges, common to all solid-state semiconductor qubit types: The array must be
‘dense’ in the sense that each qubit must be able to interact with each of its neighbours,
but this interaction must also be switchable – so that there is control over which qubits
interact at each moment. However, the array must also be ‘addressable’, providing a
means to act on a chosen qubit, pair of qubits or a chosen set of many qubits – which
(at least naively) requires some dedicated control wiring or control field for every in-
dividual qubit. This would appear to be at odds with the dense nature of the array,
since space is needed throughout to accomodate all these control elements in order to
allow simultaneous operation of subsets of qubits in ‘parallel’, necessary to achieve the
high surface code threshold error rate of Pth ∼ 0.01. A number of proposals outlining
strategies to meet these three challenges have appeared recently, and we shall describe
three such approaches utilising donors in silicon below.

Mechanical re-positioning of qubits to control interactions

O’Gorman et al. 206 propose a mechanical system where matching arrays of data qubits
and ancilla (or “probe spin”) qubits are embedded as donor bound electron spins near
to the surface in two physically separated substrates as shown in Figure 6.6(a). The
two substrates are intended to be different types of spin qubits, for instance P donors in
silicon in the data array and NV defect centres in diamond for the probe array.
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The individual qubits in each substrate are far apart (D ∼ 400nm) and non-interacting
with their lateral neighbours, leaving sufficient surrounding space for individual control
and addressing gates and readout sensors in each array. To facilitate qubit-qubit inter-
actions, qubits in the ancilla substrate are mechanically aligned with the data qubits in
the fixed substrate, bringing the electrons within d ∼ 40nm of each other, where their
magnetic dipole-dipole interaction becomes significant:

Hdd(r = 40nm) =
µ0g

2µ2B
4π

S⃗1 · S⃗2 − 3(r⃗ · S⃗1)(r⃗ · S⃗2)
r3

(6.14)

≈ 0.8kHz (6.15)

Here the data and probe spin vectors S⃗1 and S⃗2 are separated in space by a vector r⃗,
and g represents the electron g-factor. The dipolar interaction facilitates a CPHASE
(controlled Ẑ) operation, which is be made addressable by initialising a certain probe
spin in either the |0⟩ or |+⟩ state, switching the interaction off or on respectively.

Constant motion of the ancilla array as indicated in Figure 6.6(b) means that the total
interaction is insensitive to the exact donor positioning, since the system integrates over
a range of positions. After an appropriate interaction time the ancilla layer is then
moved, shifting each ancilla over to the next data qubit it should interact with, and so
on to complete the stabiliser operations required by the surface code. O’Gorman et al. 206

suggest that such a 4-step physical cycle can be completed in ∼ 1.2ms for the dimensions
mentioned, within the coherence time of donor-bound electrons and NV-centre electrons.
There is a trade-off between the mechanical translation velocity, inter-substrate distance
and qubit grid spacing parameters, all of which contribute to the speed of the quantum
computer’s operation.

Electrical shuttling of mobile electron qubits

Another scalable implementation of the surface code by Pica et al. 207 uses a combination
of exchange and hyperfine interactions in a layout with widely-separated donor spin
qubits. Here the qubits are transferred to interact with their ‘distant’ neighbours not
mechanically but by electrically shuttling electrons around the processor. The layout is
shown in Figure 6.6(c), and consists of a grid of bismuth donors which act as ancilla
qubits, located beneath a mobile array of electrons confined to quantum dots at an
interface. Surface gates act in parallel to shuttle the quantum dot electrons in unison
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Figure 6.6: Review of donor-based surface code architectures. (a)Mechanical posiঞoning of qubits:
Two physically separate substrates, each containing an array of donor qubits. In this architecture the

qubit interaction occurs via a CPHASE operation. Reproduced fromO’Gorman et al. 206 . (b) Mechan-

ical actuation of the ancilla/probe substrate to overcome large qubit separation (D ≈ 400nm)

in the passive data qubit lattice. The vertical separationmay be as small as d ≈ 40nm. Repro-

duced fromO’Gorman et al. 206 . (c) Electrical shu�ling of mobile electron qubits: CCD inspired hy-

brid donor/quantum dot architecture using bismuth donors. Interaction is based on fast adiabatic

electron-electron SWAP operations and hyperfinemediated CNOT operations. Data qubits are elec-

trically transported around the circuit. Reproduced from207. (d) Potential landscape, reproduced

from207 illustrating the hybrid donor/quantum dot double well, electrons adiabatically SWAP from

onewell to the other in response to back gate voltage pulses. (e)Cavity coupling of qubits: Another hy-
brid donor/quantum dot proposal, utilising cavity quantum electrodynamics to establish long distance

coupling for two qubit gates, and fast electrical control to perform single qubit gates on a combined

electron-nuclear ‘flip-flop’ qubit. Reproduced from208.

(as in a standard charge coupled device – or CCD) between donors. Addressability is
provided by a set of back gates.

On arriving at a donor location, the electron, which acts as a data qubit, the back gate
voltage is changed to switch on an exchange interaction between the donor bound and
quantum dot electrons. At this point the two electrons undergo an adiabatic SWAP

operation, driven by a magnetic field sweep over a span of ∼ 10mT. Figure 6.6(d)
shows the transition frequencies between the spin 1/2 states of the dot electron (black
line) and the spin 9/2 states of the Bi donor electron (other colours). Pica et al. 207

propose bismuth donors since the presence of an ESR clock transition (the frequency
insensitive point on the red line around 200mT in Figure 6.6(d)) allows the adiabatic
SWAP (across the anti-crossing between the red and black states in the inset) to be
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achieved within a small magnetic field sweep range (∼ 1mT), and therefore quickly.
In particular, the adiabatic nature of the interaction makes the scheme insensitive to
variation in the precise donor placement.

With the data and ancilla qubits now encoded in the donor nuclear and electron spin
states, a CNOT operation as required for the surface code stabilisers is achieved by
simply exciting one of the four electron-nuclear transition frequencies with an NMR or
ESR pulse. The electron state is adiabatically swapped back into the quantum dot and
the surface gates shuttle it on to interact with the next donor as required to build the
plaquette operators.

Cavity coupling for long distance interactions

A third mechanism for achieving an interaction between distant qubits is the electric
dipole-dipole interaction, which has been proposed by Tosi et al. 209 . They describe
a ‘flip-flop’ qubit configuration, where the qubit basis states are the donor electron-
nuclear total spin zero states |⇑↓⟩ and |⇓↑⟩. Relying on the Stark effect which couples
the hyperfine energy to the electric field experienced by the donor, an electric dipole
spin resonance (EDSR) transition can be driven by an oscillating electric field Ez.

The EDSR effect is enhanced at the ionisation point, where the electron wavefunction
is partially displaced from the nucleus toward the interface due to the gate-induced
electric field (of around 4MV/m). This displacement generates a static electric dipole
which may be used to couple two such ‘flip-flop’ qubits. In essence, the combined spin
state is coupled to the electron orbital state by the Stark shift of the hyperfine energy,
so that the orbital state has a spin-state-dependent electric dipole moment µe = ed.
Here e is the electron charge and d the average displacement of the interface-confined
wavefunction away from the donor core, as shown on the left of Figure 6.6(e).

The electric dipole-dipole interaction permits an entangling
√

SWAP gate between
two ‘flip-flop’ qubits, either directly dipole-coupled at a distance between 100 to 500nm,
or via a quantum electrodynamics – coupling two dipoles indirectly through a resonator
cavity that supports coherent microwave frequency photons. This idea can be seen in
Figure 6.6(e), and Tosi et al. 209 estimate that the qubit to cavity coupling strength can
be as high as g = 3MHz with realistic device parameters, allowing two qubit operations
on the order of 1µs even over distances of up to several cm.
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Concept O’Gorman et al. 206 Pica et al. 207 Tosi et al. 209

Data Qubit Static array of P
donor electron states

Mobile electrons in
silicon quantum dots

P donor
electron-nuclear
‘flip-flop’ basis states

Ancilla Qubit Mobile array of a
different donor
species (or NV
cenres in diamond)

Fixed Bi donor
nuclear spins

P donor
electron-nuclear
‘flip-flop’ basis states

1 Qubit
Gates

Electron spin
resonance

Electron spin
resonance

Electric dipole spin
resonance (via Stark
and hyperfine)

2 Qubit
Interaction

Magnetic
dipole-dipole

Exchange and
hyperfine

Electric
dipole-dipole

Control of
Coupling

Mechanical motion Electron shuttling Cavity quantum
electro-dynamics

Area per
Qubit

0.16µm2 > 1µm2 0.01− 0.25µm2

Table 6.1: Scalable architectures using donor spins: a summary of the critical details of three scalable
qubit proposals utilising donor spins to implement the surface code.

The three designs discussed in this section, and summarised in Table 6.1, deliberately
avoid the challenge of dense donor placement, and conform to the required minimum
physical volume for the fanout of individual qubit control elements and readout wiring.
These schemes achieve qubit interactions not by proximity, but by mobilising electrons
(or their dipole fields) to cross the large distances between qubits. In the remainder
of this chapter we present our core result, taking the opposite strategy, and exploit-
ing the ability of STM lithography to fabricate atomic scale structures so that we can
place donors near to each other, greatly simplifying the layout of the qubit array, and
minimising the number of different control components that must be integrated.
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6.3 A dense surface code array based on local
interactions between donor qubits

We propose a surface code architecture6 consisting of three layers of precision donor-
defined nanostructures in isotopically purified 28Si. In the central layer, quantum in-
formation is encoded on the long-lived nuclear spin states of ionized phosphorus donors,
|⇑⟩ → |0⟩, |⇓⟩ → |1⟩, which are arranged in a 2D square array. Electron spins are used
only as a resource to enable addressable operation of the nuclear spin qubits, and to
enable two-qubit interactions.

The scheme is illustrated in Figure 6.7(a), which shows the correspondence between
the conceptual surface code topology of plaquettes (on the left), and the physical con-
struction (on the right). The proof-of-principle STM image (right of Figure 6.7(a))
demonstrates our ability∗ to perform atomic-scale lithography to place single P donors
at the appropriate positions on a 30nm grid, with a readout SET island a distance of
∼ 15nm from every donor, each SET multiplexed across 4 donor sites. Qubit inter-
actions are achieved by controlling the charge state of each donor in an addressable
way, and transferring the nuclear spin state to the donor-bound electron spin, allowing
neighbouring qubits to interact via direct magnetic dipole-dipole coupling.

In the upper plane, long continuous parallel control lines will alternate as source
(S) and gate A (GA) structures, and in the bottom plane, and perpendicular to those
above, additional control lines alternate as drain (D) and gate B (GB) wires, as indicated
in Figure 6.7(b). The computer operates at millikelvin temperatures in a background
static field of B0 ∼ 2T, and also within a homogeneous global AC magnetic field B1 ∼
1mT for ESR and NMR spin control, values based on recently achieved experimental
conditions38,134.

The lateral separation of control lines matches the donor grid spacing of (nominally)
30nm, and the layers are registered to one another so that a mono-layer SET is aligned
vertically to each intersection of S and D lines, as shown in Figure 6.7(c), forming a grid
of vertical single electron transistors, which facilitate electron loading/unloading as well
as electron spin readout. A single P donor is located at the centre of each unit cell defined
by the boundaries of GA,GB, S, and D lines, as indicated in Figure 6.7(d). Donors are

∗ image provided by Joris Keizer
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Figure 6.7: Implemenঞng the surface code with atomic precision donors in silicon. (a) Schematic la-
belling the required 2D array of alternating data (dark) and ancilla (light) qubits to implement the sur-

face code, with Z-stabiliser (orange) and X-stabiliser (blue) plaquettes shown, overlaid onto a real STM

image demonstrating atomic scale lithography defining the central layer. Bright orange diamonds indi-

cate areas to be phosphorus doped for the readout SET islands, and small patches (of 6 desorbed atoms

in the Hmask) to incorporate a single donor. (b) Representation of the layered 3D layout proposed. The

central layer contains the donor qubit array as well as a shared SET island for each set of 4 qubits. The

upper layer contains alternating parallel source and gate lines, and the lower layer alternating drain and

gate lines. Lines in the top and bottom layers run perpendicular to one another. The entire structure sits

in a static magnetic field at millikelvin temperatures, within a global ESR/NMR cavity. (c) Many-donor

diamond-shaped SET islands are aligned at the intersection of source and drain lines above and below,

forming a grid of vertical SETs, each indexed by a unique combination of source and drain line coordi-

nates. (d) Electrons aremade to tunnel to any selected donor qubit from the nearest SET islandwhen

activated by a unique combination of line voltages on the control lines (S, D,GA, GB, GA’, GB’) surround-

ing the qubit unit cell.
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tunnel-coupled to their nearest SET (yellow arrow indicates potential electron motion),
but only capacitively coupled to the nearby control lines.

With this geometry, an array of 25×106 physical qubits is realisable within an area of
150µm× 150µm. Such an array would require independent control over only 104 control
lines, far less than in a comparably sized processor with independent control gates for
each qubit, as is the case for the designs surveyed in Section 6.2. Thus we describe our
architecture as dense, and remarkably efficient in it’s control wiring.

Having described our motivation and the fundamental concept behind the plan, we
detail in the following sections how such an architecture can be fabricated, the single
qubit operations, initialisation and measurement, two-qubit interactions, and provide
an analysis of its expected performance in terms of timescales and error rates. A small
team of researchers actively worked on the development of the surface code architecture
presented. Charles Hill was in charge of the overall conceptual design of the array, CNOT
gate and phase matched loading mechanism. My role was in the determination of a viable
geometry, determination of the electrostatic conditions required for qubit activation and
to physically realise the operations needed for the CNOT and phase matched loading
scheme. The proposal was published in Science Advances6.

6.3.1 Fabrication of multi-planar atomic precision de-
vices

The ability to pattern multiple vertically separated layers of donor structures in silicon,
forming fully epitaxial, 3D devices, was recently demonstrated by McKibbin et al. 210 .
Their results, across two different dual-layer devices, showed that inter-layer vertical
electron transport, and also purely capacitive gating are both possible by careful 3D
design.

The first device demonstrated vertical transport from layer to layer. Figure 6.8(a) and
(b) show STM images of two donor defined nanowires ∼ 400nm long. These wires are
oriented perpendicularly in two lithographic planes separated vertically by 45nm. The
lower wire in (a) is 15nm wide and the upper wire of (b) 30nm wide at their crossover
point. A 3D schematic of their layout is shown in Figure 6.8(c), which also shows the
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Figure 6.8: 3D mulঞ-planar atomic scale device fabricaঞon by STM lithography. (a,b) STM images of the

lower and upper layers of a perpendicular nanowire device, bright regions indicating P dosed regions.

While the lower layer (a) is smooth, with clear visibility of the atomic terraces, the upper layer (b) is

fabricated on a low temperature overgrown surface, with roughness∼ 0.7nm. (c) 3D schematic of

the perpendicular nanowire device, alignedwith the aid of a circular etched registrationmarker. The

inset indicates the vertical separation of 45nm. (d) Resistancemeasurements of the upper and lower

nanowires, with the thicker upper layer wire displaying a lower resistance than the thin lower wire as

expected. (e) Resistancemeasurement of the vertical conduction pathway from onewire to the other,

providing a low bias resistance of 150MΩAll parts reproduced fromMcKibbin et al. 210 .

circular alignment marker which McKibbin et al. 210 used to align the two wires such
that their overlapping area is ∼ 15× 30nm.

The lower (upper) nanowire exhibits Ohmic conduction with a resistance of 576kΩ

(81kΩ) as indicated in Figure 6.8(d) – the difference in resistance being due to the greater
cross-sectional width of the upper wire. In Figure 6.8(e) we observe that although the two
wires are electrically separated, the application of a bias voltage between them will cause
a current to flow vertically between the layers, with a resistance of 150MΩ, substantially
higher than the wires themselves, but comparable to the resistance of typical single-plane
SETs107.

In the second two-layer device with a considerably larger inter-layer vertical separation
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of 120nm, McKibbin et al. 210 showed that the current flow between layers becomes
negligible (with resistance > 640GΩ) up to a breakdown voltage of ∼ 1V. This result
indicates that it is possible to create electrically isolated wires in separate vertical planes,
which, if the separation is small, will permit vertical current flow, or which, with larger
separation can provide capacitive coupling only, in order to act as a gate for a donor or
SET island below or above.

One key limitation identified by McKibbin et al. 210 is that the second layer of lithogra-
phy must be performed on a low temperature grown silicon surface. The low temperature
requirement is to minimise vertical segregation of donors out of the lower layer. As shown
in Figure 6.8(b), such surfaces have a roughness of ∼ 0.7nm, larger than the dangling
bond height of ∼ 0.14nm which defines the contrast of the patterned features. As a
consequence, the upper nanowire was patterned in a high voltage field emission mode85,
which does not allow atomic resolution lithography.

Recent developments by Keizer et al. 211 provide a solution to create a flat second
surface for atomic precision lithography, using a rapid thermal anneal procedure. The
optimal procedure consists of two steps: growth of a room temperature ‘locking layer’
to prevent dopant segregation out of the first lithographic layer, followed by heating to
reduce surface roughness and anneal out crystal growth defects.

Figure 6.9(a) shows secondary ion mass spectrometry measurements of the donor
concentration as a function of depth for four different locking layers. The sharpness
of the green curve indicates that a ‘locking layer’ of only 9 monolayers (∼ 3nm) of
room-temperature grown silicon is already effective in suppressing dopant segregation,
with > 75% of the P atoms of a full 2D delta-layer confined within a layer 1.0nm thick.
Room temperature silicon growth is known to introduce vacancy defects which can result
in lower electrical activation of the donor layer. To investigate the effectiveness of a
rapid thermal anneal to heal such defects, Keizer et al. 211 performed magneto-transport
measurements of the active carrier density in samples which were annealed differently.
In Figure 6.9(b) we see the measured 2D carrier density nS is maximised for an anneal
at 500◦C for 14s, but reduces for longer or higher temperature anneal conditions. This
can be understood as increased lateral diffusion of donors occurs with additional thermal
energy, producing electrically inactive P–P dimers.

Figure 6.9(c) displays STM images of the resulting surfaces corresponding to a number
of the data-points in (b). We note the that the electrically optimal settings (500◦C, 14s)
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Figure 6.9: Surface preparaঞon for mulঞ-layer STM lithography. (a) Secondary ionmass spectroscopy,
measuring the P donor concentration as a function of depth below the surface for 4 different 2D delta-

doped samples, each encapsulated by a room-temperature ‘locking layer’ of varying thickness (from 0

to 12monolayers). Thicker layers suppress dopant segregation, as shown by the higher peak and less

uniform distribution in the green and blue curves. (b) Themeasured active carrier density is sensitive

to the parameters of a rapid thermal anneal, and is maximised for 500◦C and 14s. (g) STM images of

the resulting surfaces after low temperature growth of silicon followed by a rapid thermal anneal, with

differing temperature and duration as indicated in each panel. Without the rapid thermal anneal the

surface is rough on the scale of individual atoms, but a 14s anneal at 550◦C recovers a planar surface

suitable for performing atomic scale lithography. All parts reproduced fromKeizer et al. 211
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do not correspond to the smoothest surface (centre panel). However, these measurements
from Keizer et al. 211 are all based on a thin (∼ 3nm) layer. We expect that by growing a
substantially thicker locking-layer, and separating the lithographic planes by ∼ 40nm, a
higher temperature anneal of ∼ 550◦C, will produce an acceptable surface flatness as in
the right-most panel of Figure 6.9(c), without diffusion processes limiting the electrical
activation of donors.

For our surface code architecture, we envisage an extension of this multi-layer fabri-
cation technique to three planes: two control layers above and below a central layer of
donor qubits. With the basic geometry and fabrication strategy laid out we now pro-
ceed to a physical description of the surface code’s qubit operations: single-qubit gates,
initialisation and readout, and two-qubit gates.

6.3.2 Qubit activation and single qubit gate operations

We make a distinction between ‘Memory’, and ‘Active’ operational modes of the indi-
vidual physical qubits, with distinct definitions of the qubit basis states in each mode.
In the non-interacting ‘Memory’ mode, both data and ancilla qubit states are encoded
on the long-lived |0⟩ = |⇑⟩ and |1⟩ = |⇓⟩ spin states of the ionised spin-12 31P nucleus, a
configuration illustrated in Figure 6.10(a). The qubit Hamiltonian in the memory state
simply describes the Zeeman energy of the nuclear spin in a magnetic field:

Hmemory = −gNµN B⃗0 · I⃗ (6.16)

= γNB0IZ (6.17)

where gN = 1.13 is the nuclear g-factor for phosphorus212, µN is the nuclear magneton,
gN = 17.3MHz/T the resulting nuclear gyromagnetic ratio, B0 the static magnetic field
defining the Z-axis, and IZ the Pauli Z-operator acting on the nuclear spin. The NMR
transition frequency between the eigenstates ν0 = γNB0, is indicated in Figure 6.10(b).
Driving an oscillating magnetic field B1 (perpendicular to B0) at this frequency would
cause single qubit rotations of all the ‘Memory’ qubits in parallel, but we do not intend to
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Figure 6.10: Qubit acঞvaঞon via the hyperfine interacঞon. (a) A cross-sectional view showing one donor

next to a vertical SET. Ionised donors are idle, non-interacting qubits which we say are in the ‘Memory’

mode. With no bound electron, interactions with the environment are weak. (b) The ionised ‘Mem-

ory’ states are separated by the nuclear Zeeman splitting, with a resonant frequency ν0 (c) Loading an
electron from an SET onto a donor, switches on the hyperfine interaction, producing four two-particle

states across which the quantum information can bemanipulated. (d) The two particle spin product

states, with conditional state transitions driven by resonancesω1,ω2 at microwave frequency (GHz)

and ν1, ν2 at radio frequency (MHz).

drive such rotations∗. Instead, the long T2 coherence time of the ionised donor, ∼ 1.8s38

simply provides long-lived storage of the quantum information for timescales beyond the
operational timescale of the architecture. Whilst qubits are idle – that is, when they are
not being operated on during the course of the computation or surface code stabiliser
cycles, the are left in the ‘Memory’ state.

Qubit activation

A specific qubit is ‘activated’ (deactivated) by loading (or unloading) an electron, which
tunnels to a donor from the nearest SET as illustrated in Figure 6.10(c). This process
switches on a hyperfine interaction that serves to shift the qubit energy levels, making
them distinct from the ‘Memory’ qubit states. The modified Hamiltonian now consists
of an additional electron-Zeeman term and a hyperfine interaction term:

Hactive = −gNµNB0B⃗0 · I⃗ + geµBB0B⃗0 · S⃗ +AI⃗ · S⃗ (6.18)

= γNB0IZ + γeB0SZ +AI⃗ · S⃗ (6.19)

where ge ≈ 2 is the electron g-factor in silicon71, µB is the Bohr magneton, ge =

27.9GHz/T the resulting electron gyromagnetic ratio, A is the hyperfine interaction
∗ Although we note that operations on memory qubits could be utilised to universally apply
dynamical decoupling pulses to all the nuclear spins, and extend the coherence time further.
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energy related to the electron wavefunction density at the donor core, and SZ the Pauli
Z-operator acting on the electron spin. I⃗ and S⃗ are the full spin vectors for nuclear and
electron spins respectively.

With a finite magnetic field (∼ 2T) the Zeeman energy is greater than the thermal
energy (γeB0 > kBT ) and electron loading is always into the |↓⟩ ground state. The
finite field also permits a large field approximation (such that the eigenstates are well
approximated by the spin product states – see Section 2.4.1) so for the ‘Active’ mode,
the qubit basis becomes initially |0⟩ = |↓⇓⟩ and |1⟩ = |↓⇑⟩∗.

The four distinct resonance frequencies between eigenstates displayed in Figure 6.10(d)
correspond to:

ω1 = γBB0 +
A
2 ω2 = γBB0 − A

2 (6.20)

ν1 =
A
2 + γNB0 ν2 =

A
2 − γNB0 (6.21)

Coherently driving only ν1 or ν2 (ω1 or ω2) allows for conditional rotations of the nuclear
(electron) spin, dependent on the state of electron (nucleus), and so these resonances are
used to implement two qubit interactions in the form of electron-nuclear CNOT gates.
Alternatively, simultaneously exciting a pair of transitions allows the implementation of
an unconditional rotation of one of the spins.

A global spin control field may be applied to electron and nuclear spins of all donor
qubits currently in the ‘Active’ mode by a combined ESR (electron spin resonance)
and NMR (nuclear magnetic resonance) pulse producing an oscillating magnetic field of
amplitude Bω/Bν , described by the generalised Hamiltonian:

Hglobal(t) =
∑

ν=ν1,ν2

γNBν [Xν(t) cos(νt)IX + Yν(t) sin(νt)IY ] (6.22)

+
∑

ω=ω1,ω2

γeBω [Xω(t) cos(ωt)SX + Yω(t) sin(ωt)SY ] (6.23)

Where the in-phase X and quadrature Y components of the four resonant signals may
vary with time to execute rotations of arbitrary angle about arbitrary axes.

∗ single arrows represent the electron spin, double-beamed arrows the nuclear spin
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Single qubit gates

For a nominal field strength of B1 = 1mT, the corresponding nuclear spin π rotation time
is tπ = π

2π
1

γnB1
= 21µs, so we define the standard single qubit gate set required (in addi-

tion to a two-qubit CNOT) for universal computation in the surface code formalism194

as follows:

X gate: A π rotation of the nuclear spin about the X-axis of the Bloch sphere in the
usual rotating frame is defined by the operator X̂ = ( 0 1

1 0 ). With the electron spin
in the |↓⟩ state, the pulse to achieve this is simply:

Xν2(t) = 0

Yν1(t) = 0

Yν2(t) = 0

Xν1(t) =


0 t < 0

1 0 < t < tπ

0 t > tπ

(6.24)

Z gate: A π rotation about the Z-axis of the Bloch sphere is achieved indirectly with a
combination of X- and Y-rotations Ẑ = Ŷ X̂ =

(
1 0
0 −1

)
. The pulse to achieve this

(with Xν2 = Yν2 = 0) is:

Xν1(t) =


0 t < 0

1 0 < t < tπ

0 t > tπ

Yν1(t) =


0 t < tπ

1 tπ < t < 2tπ

0 t > 2tπ

(6.25)

H gate: A π rotation about the tilted Hadamard axis (in the X-Z plane, tilted by an
angle π/4 from the Z-axis) of the Bloch sphere is also achievable with a combination
of X- and Y-rotations Ĥ = 1√

2
(Ŷ + X̂) = 1√

2

(
1 1
1 −1

)
. One decomposition of this

operator into X and Y rotations is specified by:

Xν1(t) =


0 t < 0

1 0 < t < tπ

0 t > tπ

Yν1(t) =


0 t < tπ

−1 tπ < t < 3
2 tπ

0 t > 3
2 tπ

(6.26)

S gate: A π/2 rotation about the Z-axis Ŝ =
√
Ẑ =

(
1 0
0 −i

)
. This can be achieved with
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the sequence:

Xν1(t) =


0 t < 12tπ

1 12tπ < t < tπ

0 t > tπ

Yν1(t) =



0 t < 0

1 0 < t < 1
2 tπ

0 1
2 tπ < t < tπ

−1 tπ < t < 3
2 tπ

0 t > 3
2 tπ

(6.27)

T gate: A π/4 rotation about the Z-axis T̂ =
√
Ŝ =

(
1 0
0 eiπ/4

)
. We pulse the NMR field

according to:

Xν1(t) =


0 t < 12tπ

1 12tπ < t < tπ

0 t > tπ

Yν1(t) =



0 t < 0

1 0 < t < 1
2 tπ

0 1
2 tπ < t < tπ

−1 tπ < t < 3
2 tπ

0 t > 3
2 tπ

(6.28)

For exactness we’ve specified particular decompositions of these physical gate opera-
tors – other alternatives exist and may be used instead. We note that the flexibility of
Hglobal in our implementation allows for additional pulse optimisation and other robust
control sequences213 as required by the noise specifics of the real system.

The single qubit rotations specified above can operate simultaneously and in parallel
for any and all qubits across the array that are in the ‘Active’ mode. Importantly,
driving any of these ‘Active’ transitions does not affect any ‘Memory’ mode qubits due
to the detuning provided by the hyperfine interaction (ν0 ̸= ν1 = ν0 +

A
2 ). Since the

binary shift in hyperfine energy due to the presence of an electron on the donor toggles a
nuclear spin in and out of the set of qubits addressed at any one time for the application
of a global single qubit gate, it simply remains to addressably activate the desired qubits
prior to the application of Hglobal.
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6.3.3 Addressable activation and readout of the nu-
clear spin qubit

A fuller treatment of the exact procedure in terms of timing and control line voltages are
provided in Section 6.3.6 and Section 6.3.5 below, but here we provide an overview of the
process by which qubit activation (electron loading), deactivation (unloading) and qubit
readout is addressed to a target donor. Although the number of control lines is always
less than the number of donors in our 2D array, it is possible with a novel combination
of control line voltages to load an electron to one target donor only, while leaving all its
neighbours ionised and in the ‘Memory’ mode.

Activation and deactivation

Figure 6.11(a) shows a small section of the array surrounding an individual activation op-
eration which is achieved by applying voltages to the proximal gates (S,D,GA, GB, G

′
A,

and G′
B) to create a local electrochemical potential variation to move an electron from

SET to donor. A small negative bias is applied to both S and D, raising the Fermi
energy of the SET island at their intersection (the dark grey diamond) relative to all
other surrounding SETs (faded grey diamonds). At the same time, a combination of
positive voltages applied to gates GA and GB (dark grey), and negative voltages on G′

A

and G′
B (light grey), tilts the potential landscape surrounding the SET, lowering furthest

the electrochemical potential of the target donor to exactly meet the Fermi energy of
the SET. At this point the electron Zeeman ground state is accessible and a spin down
electron tunnels from the SET to the donor – and now the targeted nuclear spin qubit
is in the ‘Active’ mode.

Deactivation is simply the opposite process, where the electron is made to tunnel off
the donor, returning the nuclear spin qubit to the ionised ‘Memory’ mode. Both the
activation and deactivation processes are designed so they can be applied in parallel to
a large number of qubits across the 2D array, by simultaneously adjusting the voltages
on multiple sets of control lines. The parallelism of gate operations is discussed in more
detail later in the chapter (Section 6.3.7).
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Figure 6.11: Addressable qubit acঞvaঞon and readout. (a) Top view of the criss-cross layout, showing

intended dimensions of the structure, and highlighting the selective activation of a single targeted qubit.

An electron is made to tunnel from an SET island to the intended donor by combined and unequal volt-

age pulses on the set of surrounding gates and source/drain lines (S,D,GA, GB, G
′
A, G

′
B ). (Details

of the voltages and the full electrostatic response are shown later) (b) Qubit readout is conducted by

first mapping nuclear spin onto electron spin, then reading the electron state with spin to charge con-

version. The repeatedCNOTN−e gate is achieved by a simpleπ-pulse at theω2 frequency, and the

subsequent electron readout is by Zeeman energy selective tunnelling of the electron to the SET island,

generating a current flow through the vertical SET channel. Time correlating transient current pulses

on each pair of source/drain lines allows addressable readout, even in parallel across the qubit array.

The non-demolition nature of the repeated readout sequence overcomes individual readout errors.

Nuclear state measurement via electron state readout

Nuclear spin readout is achieved by mapping the nuclear spin state onto the electron
spin state. Here a simple excitation of the ω2 transition frequency flips the electron spin
conditional on the nuclear spin being |1⟩ = |⇓⟩ (effectively an nuclear-electron controlled-
X gate CNOTN−e). By subsequently projectively measuring the electron spin state, we
perform a quantum non-demolition measurement on the nuclear spin qubit, meaning
that the nuclear eigenstate measured as the outcome remains a good description of
the system after the measurement, and so the sequence can be repeated many times,
increasing the measurement fidelity. The full procedure is shown in standard quantum
circuit notation on the right side of Figure 6.11(b).

Electron spin readout itself (represented by the red measurement icon in Fig-
ure 6.11(b)) is achieved in exactly the opposite way to activation of the donor. For
readout we bring the control voltages (of lines S,D,GA, GB, G

′
A, and G′

B) back to the
point where the SET island’s Fermi energy is resonant with the donor’s charge state
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transition potential, where only the Zeeman excited state has sufficient energy to tunnel
away from the donor. With the SET configured as a charge sensor, this charge motion is
observed as a transient current flowing through the vertical SET channel, present until
another electron tunnels back onto the donor, occupying the spin ground state.

Since the architecture is designed to perform operations in parallel on multiple qubits
within the 2D array, this readout procedure can take place at many SET locations across
the array simultaneously. Thus each source line, and each drain line involved in the group
of simultaneous qubit readout operations will carry a time dependent current which is
the sum of time dependent current signals from a number of SETs along the length
of that particular line. However, the electron tunnelling process (from donor to SET)
is stochastic and so each SET will switch on and off at slightly different times within
the full duration of the readout phase. Therefore by time-correlating discrete changes
in the current between a pair of source and drain lines, the (x, y) coordinates of the
SET involved and therefore the individual donor responsible for each transient current
‘blip’ among many qubit being read-out at once, can be inferred. This is illustrated in
Figure 6.11(b), where example current traces of a particular pair of source and drain
lines are shown. Only the ‘blip’ circled in yellow is present in both traces, indicating
its origin as the SET highlighted in yellow at the intersection of Sx and Dy. This
time-correlation process has some chance of failure, if for example multiple SET signals
are indistinguishable within the measurement bandwidth. Ambiguity can be resolved
through repetition because the nuclear readout is a non-demolition measurement and
can be repeated many (m) times, and the probability of such time collisions decreases
exponentially with m.

6.3.4 Two qubit gate operation mediated by the electron-
electron dipole interaction

The interaction underpinning the two-qubit Control-NOT (CNOT) gate between neigh-
bouring qubits is based on natural electron-electron spin interactions and controlled by
the timing of electron load/unload operations. Here, we explicitly consider the case of
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dipole-mediated gates, which is the dominant interaction at a separation of 30 nm. At
smaller spacings, the faster exchange interaction would dominate.

In the absence of bound electrons, the spin-dipole interaction between the nuclear spins
of memory qubits is negligible. However, when electrons are loaded on adjacent sites, the
spin-spin interaction between activated donor pairs increases by more than six orders of
magnitude because of the larger magnetic moment of the electron (γe ∼ 2× 103γN ). The
dipole-dipole Hamiltonian describing the interaction between two electon spin vectors
S1 and S2 can be written:

Hdd(r = 30nm) =
µ0g

2µ2B
4π

S⃗1 · S⃗2 − 3(r⃗ · S⃗1)(r⃗ · S⃗2)
r3

(6.29)

∼ 1.9kHz (6.30)

Where the maximum value of the dot-products (unity), provides the interaction
timescale of 1.9kHz, the frequency at which the target spin rotates about the Z-axis
conditional on the control spin being in the excited state. The CNOT gate executes
a conditional rotation of angle π, so we can estimate the required CNOT duration as
π
2π

1
1.9kHz ∼ 260µs.

The CNOT gate

The sequence of operations involved in the CNOT gate between any pair of neighbouring
nuclear spin qubits (typically one data qubit and one ancilla within a surface code
plaquette) is described in Figure 6.12. Our CNOT gate can be understood at the highest
level as two Hadamard gates directly applied to the target qubit through global control
on the nuclear spin, sandwiching a controlled Ẑ operation, which occurs in the electron
spin subspace. We now examine each step of the gate procedure in detail:

• The target qubit n1, which may begin in an arbitrary (potentially entangled su-
perposition) state, is activated by loading a |↓⟩ electron e1 from the nearest SET
island(Figure 6.12(a)).

• A pair of simultaneous ESR pulses at ω1 and ω2 achieve a X̂(e1) operation un-
conditional on the spin of n1, flipping the target electron e1 spin to the |↑⟩ state
(Figure 6.12(b) – pink arrows). This has the effect of addressing the target qubit
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Figure 6.12: Procedure for a two qubit gate via electron-electron interacঞon. (centre strip) Overview
of the physicalCNOTn−n 2 qubit gate between a target nuclear spinn1 and control nuclear spinn2,
with time running from left to right. (a) activation of the target qubit, by electron tunnelling (b) detun-

ing of the nuclear qubitn1 by unconditional excitation of the electron spin e1 (drivingω1 andω2) (c)

Hadamard gate on the nuclear qubitn1 (driving ν2), as required tomap the CPHASE operation to the
desired CNOT (d) activation of the control qubit by electron loading. At this point, electron-electron

decoupling begins, to suppress interaction until the electron and nuclear states are swapped. (e) swap-

ping of qubit states onto the electron spins for both control and target qubits (by drivingω2 then ν2
thenω2 again) (f) dipole (or exchange) mediated electron-electron CPHASE interaction. During this

time (comprising the bulk of the gate duration), a spin echo sequence is applied to constantly re-phase

the electron spin states (drivingω1, ω2). This rephasing operation commutes with the interaction op-

erator so does not interfere with the two qubit gate. (g) deactivation of the two qubits following re-

swapping electron and nuclear spins and a final Hadamard gate for the target nuclear qubit to complete

the CPHASE to CNOTmapping.
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nuclear spin independently from the control qubit nuclear spin by shifting its res-
onant frequency from ν1 to ν2.

• The control qubit nuclear spin undergoes a Hadamard gate Ĥ, driven at its new
resonant frequency ν2 (Figure 6.12(c) – brown arrow). This exchanges the X- and
Z- projections of the n1 qubit state.

• The control qubit n2 is activated by loading an electron e2 (Figure 6.12(d)). To
suppress electron-electron spin interaction until it is desired, a continuous magic
angle spin-spin decoupling pulse sequence214∗ may be applied during the loading
time.

• Electron and nuclear spin states are swapped, transferring the qubit coherences
from nuclei to electrons. This is done with a sequence of three electron-nuclear
CNOT gates178 (between n1 and e1 and between n2 and e2 as indicated in the
yellow shaded regions in the centre strip of Figure 6.12), consisting of 3 pulses
timed to execute π rotations, driven at resonance frequencies ν2, ω2, ν2 in that
order (Figure 6.12(e) – blue, green, purple arrows)

• At this point the quantum information is transferred onto the electron spin states
and the interaction between qubits has begun. By virtue of the initial inversion of
the control electron e1, the two nuclear spins now occupy orthogonal eigenstates
(n1 : |⇑⟩ ;n2 : |⇓⟩) which means the two electron spins’ resonant frequencies are
detuned from one another (e1 : ω1; e2 : ω2). This detuning effectively suppresses
electron flip-flops (as would occur in the case of a SWAP-type gate), and only
phase is accumulated via the dipole interaction. The accumulation of phase on
the target qubit depends on the Z-projection of the control qubit, which appears
as an effective magnetic field component adding to or subtracting from B0 (Fig-

∗ magic angle decoupling is a well-known NMR technique using a pulse sequence to achieve a
time-averaged interaction Hamiltonian of zero ⟨Hdd⟩ = 0. There are numerous families215 of
pulse sequences capable of averaging the dipole-dipole interaction of the two electrons to zero.
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ure 6.12(f)). Thus the interaction achieves a controlled-Z rotation:

̂CPHASE =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (6.31)

accumulating a relative phase of π after a time TCPHASE ∼ 250µs. During the in-
teraction period, the dephasing effect of any inhomogeneity in B0 can be corrected
by applying a Carr-Purcell spin echo sequence of refocusing electron X rotations∗.
This is possible because the X-gate commutes with the Control-Z interaction, and
so we ensure that the electron qubit dephasing is limited by the longer T2 time
(> 1ms) in preference to the bare T ∗

2 ≈ 270µs dephasing time38.

• after the interaction period the electron-nuclear states are swapped back with a
repeated ν2, ω2, ν2 sequence of conditional π pulses, storing the computational
qubit states back into the nuclear spins.

• the final Hadamard gate Ĥ is applied to the target nuclear spin n1, addressed by
ν2 which only excites the control qubit.

• the target and control qubits are de-activated by sequentially removing the two
electrons (Figure 6.12(g))

As spin control is carried out by global RF and MW fields, the CNOT gate can be
carried out on many pairs of qubits in parallel through the multiplexed control lines.
The activation of the target qubit followed by the control qubit occurs in sequential steps
and hence can be carried out on neighbouring qubit cells.

Provided the overall electron-electron interaction strength J is much smaller than the
hyperfine interaction A, the same pulse sequence applies to a CNOT gate mediated by
exchange interactions. With the control qubit and target qubit having distinct transi-
tion frequencies, this CNOT gate design also allows for the inclusion of an interaction
correction protocol, for example, BB1-based schemes138,216, or other optimised control
sequences217,218 which can provide robustness to unknown variations in the spin-spin
∗ The CP refocusing sequence is a simple extension of the Hahn echo, consisting of X̂ operations
repeated at times (2k − 1)τCP for a chosen integer k, where τCP satisfies (2k)tCP = TCPHASE
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interaction (dipole or exchange), and provide additional protection against any resid-
ual uncertainty in donor placement precision. These are optimisations, and beyond the
scope of this thesis.

We have described the full sequence required to perform a CNOT gate between two
physical qubits encoded in the nuclear spins of donors in our 2D array. We now discuss
the details of the operating points in terms of realistic gate voltages.

6.3.5 Electrostatic requirements of the one and two
qubit gates

To understand the level of gate control required for the selective activation/deactivation
of individual donor qubits and pairs of adjacent donor qubits, we carried out 3D simu-
lations of the electrostatics of our proposed control structures. As a starting point, it is
known that the built-in electric field due to the presence of highly doped donor-defined
gates modifies the bound state wavefunction within the donor Coulomb potential wells,
raising its ionization energy ∼ 80meV above the conduction band edge at equilibrium
as has been observed in a single atom transistor53,113. Hence, we assume that at zero
gate bias all qubits are expected to be in the ionised memory state.

From this starting point we calculate the shift in energy of every charge state in
response to variations of the voltages on the control lines. The process consists of two
stages: first, computing a capacitance matrix by solving the Poisson equation numerically
over the array geometry; and second, simulating a charge stability map with the constant
interaction model to give a sense of realistic voltage levels needed to activate qubits and
operate the array as we intend. This is a fully classical model, and does not account
for the true quantum mechanical binding energies. The method has proved to be an
accurate way of predicting device characteristics in donor defined nanostructures107,111.
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Figure 6.13: Modelling the capaciঞve coupling between elements of the donor array. (a) A limited

model of the full 2D array consisting of 36 unit cells, and 59 electrical elements in total. We compute

the strength of capacitive interactions on the full set of elements shown, and then using the result-

ing capacitances, model the electrochemical potential of the coloured (non-faded) set of control lines,

donors and SETs. (b) A representation of the panellised geometry used as input to the FastCap2 capac-

itance solver. Dimensions are shown, andwe expand the lithographic dimensions to account for the

∼ 2nmBohr radius of electrons in silicon.

Computing the capacitance matrix of a small array

The Maxwell capacitance matrix:

C =


CΣ1 −C12 . . . −C1m

−C21 CΣ2

... . . .
−Cm1 CΣm

 (6.32)

may be calculated for any physical arrangement of m electrically independent conductors
within a dielectric medium. The general algorithm for determining the full set of coupling
capacitances Cij and self capacitances CΣi involves solving the Poisson equation ∇2V =
ρ
ϵ in order to compute the total charge induced on each conductor i (Qi =

∫
i ρ) in

response to a change in the electrostatic potential of each conductor, Vj . We use the
FastCap2 solver219 to numerically evaluate C. The software decomposes the surface of
each conductor into discrete 2D panels, and uses a multi-pole expansion to efficiently
compute the total electrostatic potential at each panel.

Consider, as shown in a Figure 6.13(a) a single SET island (yellow) and its four

236



6.3. A DENSE SURFACE CODE ARRAY BASED ON LOCAL INTERACTIONS
BETWEEN DONOR QUBITS

Elements Cij Value (aF) Cij Value (aF)

donor-SET Cακ 0.625 Cαλ 0.095

donor-SET Cβκ 0.625 Cβλ 0.013

source-SET CSκ 1.01 CSλ 0.211

gate-SET CA′κ 0.66 CA′λ 0.080

donor-source CSα 0.235 CSβ 0.235

donor-source CS′α 0.093 CS′β 0.024

donor-gate CAα 0.256 CAβ 0.085

donor-donor Cαβ 0.064 Cγβ 0.018

donor-donor Cδα 0.005 Cδβ 0.001

Table 6.2: Electrostatic capacitances in the surface code array. Simulated capacitances in attofarads
(10−18F), between selected pairs of elements as marked in Figure 6.13. Donors: α, β, γ, δ; SET islands:
κ, λ; control lines: S, S′, A,A′.

surrounding donors (red, blue, green and orange). To be sure we capture all relevant
interactions and avoid boundary effects, we also include qubit unit cells surrounding the
four central cells, out to next-nearest neighbours – 36 cells in total. We build a geometric
model of this small sample of the 2D array, composed of a number of 2D panels defining
the boundaries of conducting elements. A representation of the panellised input geometry
is shown in Figure 6.13(b), where we extend the size of the STM patterned structures by
the Bohr radius of an electron in silicon, to represent the extent of the electronic wave
function. Here the geometric parameters used are: Bohr radius = 2 nm, mono-layer gate
width = 5 nm, SET island = 13 x 13 nm2, donor-SET distance = 15 nm, planar gate
pitch = 30 nm, and gate layer separation in the vertical direction = 40 nm. Then using
FastCap2 we generate the full capacitance matrix considering such an array of 36 unit
cells, comprising 36 donors, 9 SET islands, and 14 control lines – 59 elements in total.
Representative capacitance values are provided in Table 6.2.

Current STM lithography techniques allow P donor placement with an accuracy to
within 1-2 lattice sites (< 1nm)53, so ultimately we must consider the effect of the
positional uncertainty on electrostatic gate coupling. We varied the individual donor
positions by ±1nm in the x- and y-directions and find that only a small variation occurs
in the coupling capacitances: ∼ 5% in CP−SET the SET to donor coupling; ∼ 1% in
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CP−S/D the source/drain line to donor coupling; and ∼ 0.5% in CP−G the gate line to
donor coupling.

In the output C matrix, there are many vanishingly small entries, since nearby ele-
ments screen the electric field of more distant ones, and thus interactions with nearby
elements dominate the electrostatics. This allows us to make a simplification and use
a smaller sub-matrix for the second part of our analysis. We retain all 14 control lines
but only the single central SET and 4 surrounding donors for the subsequent constant
interaction model ground-state mapping, reducing the matrix size to 19× 19.

Simulation of the charge stability diagram with realistic gate volt-
ages

A breakdown electric field threshold of ∼ 10MV/m has been observed in experiments
using mono-layer Si:P nanostructures56,65. Therefore, we anticipate a gate pitch between
parallel nanowires in each plane of 30 nm will safely allow an operational voltage bias
range of ±250mV. We show in this section that one-qubit and two qubit gates can be
achieved well within this limitation, opening the possibility for closer qubit placement.
This is done by identifying the combinations of the bias voltages applied to source,
drain, and gate control lines at which electrons can be selectively loaded/unloaded from
an SET island to activate/deactivate single qubits at a targeted position, without acti-
vating/deactivating neighbouring qubits, as well as bias points for activation of a second
adjacent qubit as required for the CNOT gate.

We consider the electrostatic energy in a particular charge state represented by an
integer vector n⃗ listing the number of electrons on each of the 4 donors and the central
SET (which we collectively term charge-islands), and under gate voltage conditions rep-
resented by a vector V⃗ listing the voltages on all the 14 control-lines. The total energy
can be written67 as:

E =
1

2
Q⃗TC−1

nn Q⃗ (6.33)

Q⃗ = CnV V⃗ − qen⃗ (6.34)

where the vector Q⃗ describes the total induced charge on each of the charge islands, com-
posed of an integer number of electrons of charge qe, plus capacitively induced charges
due to voltages on each of the control-lines (and Q⃗T is the transposed vector). The ma-
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trices CnV and Cnn are sub-blocks of the complete capacitance matrix C. CnV = CT
V n

describes charge-island to control-line capacitances, Cnn charge-island to charge-island
mutual capacitances, and CV V the cross capacitances between control lines.

C =

(
Cnn CnV

CV n CV V

)
(6.35)

The expression in Equation (6.33) does not consider the effect of tunnel coupling
within the system of charge islands, so we make one a modification to the CnV matrix.
Additional electrons are provided to the system of 5 charge-islands (SET and 4 donors)
from the source and drain nanowires, and this means these control lines l = S,D have a
strong effective lever-arm α′

il = 1−Cil/Cσi over the islands i they are indirectly tunnel-
coupled to. To include the effect of tunnel coupling into our model we replace each
Cil → C̄il = Cσi − Cil.

The Cnn sub-block must be inverted to compute the total energy, then given the
inverse C−1

nn we simply iterate through the set of possible charge states n⃗ to find the
lowest energy charge state at every point in a set of gate voltage coordinates V⃗ . By
marking the boundaries between different charge ground states we produce a simulated
gate-space map.

Figure 6.14(a) shows a schematic of the area surrounding an SET and its four tunnel-
coupled donors, each colour-coded to the simulated gate-maps in the other sub-figures.
We define plunge and tilt voltage axes representing the following combinations of bias
voltages on the control lines:

Vplunge = VS − VSD = VD (6.36)

Vtilt = 2VGA
= −2VG′

A
= VGB

= −VG′
B

(6.37)

The effect of these two voltage combinations can be seen in the simulated gate-space
map of Figure 6.14(b).

As we reduce Vplunge, moving down along the left edge from 0, we observe a series of
yellow lines (I, II), each indicating an additional electron being added to the SET. With
Vtilt = 0, the equal capacitive coupling of each of the four donors (red, blue, green and
orange) to the lines S and D means that at a point around Vplunge = 15 (marked III)
the four donors are activated essentially all at once, with no addressability. In order
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Figure 6.14: Gate voltage condiঞons for one and two qubit gates. (a) Colour-coded diagram indicating

the four donors surrounding a single SET island, and an additional donor (purple) in the neighbouring

SET-cell. Two types of 2-qubit gates aremarked, ‘Type I’ where both donors share an SET island, and

‘Type II’ where each donor gains its electron from distinct SET islands. (b) Simulated charge stability

map. DecreasingVplunge adds electrons to the yellow SET (on crossing lines I and II). IncreasingVtilt
preferentially loads an electron to one of the four donors. In this case the red donor is activated first (on

crossing the red line at IV), followed by the blue donor (on crossing the blue line at V). (c) The gate-space

region where the red qubit is activated, and all others ionised is shown shaded red. The blue hashed

area denotes that both red and blue qubits are activated, and it is in this region that a CNOT gate (of

‘Type I’) would take place. (d) The purple line shows the loading condition for the purple donor to gain

an electron from its local SET island (greyed out on the left of (a)), and thus the hashed purple area is

suitable for the ‘Type II’ CNOT gate.
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to select a particular single donor to load an electron to, we increase Vtilt, tiliting the
electric potential so that the charge transition potential for the red donor is lower than
the other three. We see that as we move to the right, the loading lines for the four
donors separate so that we can preferentially load an electron onto any individual donor
using voltages well inside the ±250mV limit discussed above. In this case, an electron
loads from the SET to the red donor moving to the right across the red line at IV, and
a second electron is loaded onto the blue donor at position V.

Loading, unloading and electron spin readout will always be carried out at the so-
called triple-points, where the electrochemical potentials of donor, SET, and source and
drain lines are equal. These are the intersection of yellow and red, or yellow and blue
lines in Figure 6.14(b). The order of the separated load potentials can be modified to
select whichever donor we choose by permuting the polarity and strength of each gate
in the definition of Vtilt

∗

Figure 6.14(c) indicates the operating region for a single qubit gate on the red donor.
The requirement is simply that the red donor is occupied (in the ‘Active’ mode) and
all other surrounding donors remain ionized (in the ‘Memory’ mode) – this Coulomb
blockaded configuration corresponds to the red shaded area. Beyond the blue line the
neighbouring donor marked as blue in (a) will also load, and within the grey regions
multiple other unwanted donors become activated.

From an electrostatic perspective there are two classes of two-qubit gate configura-
tions. We label these: ‘Type-I’, for pairs of donors who share a single SET (blue and red
in Figure 6.14(a)); and ‘Type-II’, for pairs of donors that do not share an SET (purple
and red in Figure 6.14(a)).

• In the ‘Type-I’ case (shown in Figure 6.14(c)), the requirements for the CNOT
gate can be met by loading the red donor at its triple point (marked IV), moving
into Coulomb blockade in the red shaded area to apply ESR on the CNOT-target
electron, loading the blue CNOT-control qubit at its triple point (marked V),
and then moving into the blue shaded blockade region, where the dipole-dipole
interaction is present, for all remaining ESR and NMR pulses. Importantly our
simulation shows that the CNOT-target donor is not ionised at any point during
the CNOT operation sequence.

∗ For example, instead defining Vtilt = −VGA = VG′
A
= 2VGB = −2VG′

B
would load first green,

then red, orange, and finally blue.
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• To achieve the same stability for the ‘Type-II’ class of interacting qubit pairs, we
must adjust the definition of Vplunge. To access the purple qubit loading poten-
tial, we additionally plunge the potential of the western neighbour SET with the
neighbouring source line (marked S′ in (a)), but by a lesser amount than for the
first source (S). We plot in Figure 6.14(d) the effect of this dual plunge with
Vdual plunge = VS − VSD = VD = 2.2V ′

S , where the factor 2.2 is selected such that
the purple donor readout triple point (marked VI) falls between the red and blue
qubit loading lines. This facilitates the two-qubit CNOT gate on the red/purple
pair, without loading the blue donor or any other. Here the dipole interaction is
present within the red/purple hashed shaded region.

We anticipate that further optimisations to this basic biasing scheme are possible;
however, the current simulation results indicate that our gate pulsing scheme, with
modest voltages and robustness against small variations in donor positioning, is suitable
for implementing the surface code on our multi-layer architecture

6.3.6 Preserving phase coherence during ionisation events

Having established the process for activating/deactivating qubits, we now consider these
operations from the standpoint of the quantum information encoded on the donor nuclear
spin. This is critical, as the addition and removal of an electron subjects our physical
qubit to a time-varying Hamiltonian. The activation (and deactivation) process, gov-
erned by donor ↔ SET island electron tunnelling, is key to qubit addressability and
therefore the operation of the array to implement the surface code. With donor place-
ment to near single atomic site precision53, the mean tunnelling time between donor
and SET island, τ , can be engineered from nanoseconds at ∼ 10nm1 to tens of millisec-
onds at ∼ 20nm55. However, in addition to variations in the characteristic tunnel rate
due to donor placement, quantum tunnelling is a naturally stochastic and non-adiabatic
process. As soon as the electron is present on the donor (in the ‘Active’ mode), the
qubit nuclear spin begins to acquire phase (at a well defined rate) due to the hyperfine
interaction A. If the time at which the electron tunnels to the donor is not known,
because of the stochastic nature of the tunnelling process, the abrupt change in A gives
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rise to an unknown phase accumulation on the donor qubit state and can be a source of
dephasing.

It is possible to engineer tunnelling rates to be faster than the hyperfine interac-
tion; however, this could be problematic for achieving high-fidelity readout, as the
same tunnel rate would apply to the readout signal, and state-of-the-art SET mea-
surement bandwidth220 is at the level of ∼ 20MHz, an order of magnitude lower than
the hyperfine interaction at A ∼ 117MHz. Instead, we propose using a more modest
(1/τ = 1− 10MHz) tunnel rate, and we introduce the concept of a phase matched (PM)
pulsed loading/unloading sequence.

Timing considerations

Within a time t, a qubit in the ‘Memory’ mode (an ionised donor nuclei) will acquire
(in the laboratory frame) a phase

φ(t) = 2πν0t (6.38)

An ‘Active’ qubit on the other hand will accumulate

φ′(t) = 2πν1t (6.39)

= 2π(ν0 +
A

2
)t (6.40)

= φ+ πAt (6.41)

Then we define a phase matching condition:

φ′(t) = φ(t) + 2nπ (6.42)

for integers n. Then for values of t when Equation (6.42) is satisfied, the phase of a
neutral or ionised nuclear spin differ by a multiple of 2π. If we only allow electrons
to tunnel when this condition is satisfied, the issue of phase accumulation is resolved.
Solving Equation (6.42) gives tA = 2/A ≈ 17.1ns.

Thus we must only permit electrons to tunnel during a small time window around t =
ntA, defined by ∆t, a duration short compared to tA. We indicate in Table 6.3 realistic
values for the various timescales referred to in this section. Since ∆t << τ , the electron
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Timescale Description Nominal Value Notes

tA PM period 17.1ns fixed at 2/A

∆t tunnelling window 0.1− 1.0ns pulse parameter
τ electron tunnel time 0.1− 1.0µs set by physical distance

TPM total PM sequence 50− 200µs pulse parameter
tread readout time 2− 10µs pulse parameter

tunload unload time 2− 10µs pulse parameter
M number of cycles 50− 1000 pulse parameter

Table 6.3: Phasematched loading and unloading timescales. Nominal values are provided, althoughmost
variables are parameters that may bemodified as required tomeet a desired error rate.

must be presented many short opportunities to tunnel, and must be effectively frozen for
the intervening time. The PM scheme thereby restricts the stochastic tunnelling events
to be synchronous with the natural phase cycle of the qubit. The activation/deactivation
process is now semi-deterministic — one does not need to know exactly when the electron
tunnelled, only that the PM sequence is long enough for the probability of tunnelling,
integrated over many, M , short ∆t windows, to be high. This requires a total duration
for the PM sequence of TPM = Mta, where the condition M∆t >> τ ensures that the
total time allowed for tunnelling exceeds the characteristic tunnel time τ . A second
requirement is that the residual phase error:

ϵφ =

∫ M∆t

0
e

t

τ Ξ(t)dt (6.43)

∼ π2

3

(
∆t

tA

)2

(6.44)

should be low with respect to the surface code error threshold. Here the exponentially
decaying tunnelling probability is multiplied by the phase error function Ξ which is a
sawtooth of period ∆t:

Ξ(t) =
2π∆t

tA

(
t

∆t
−
⌊
t

∆t

⌋
− 1

2

)
(6.45)

Qubits being activated/deactivated in parallel may individually load/unload at dif-
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ferent times within the PM sequence; nevertheless, the phase matching condition is
maintained for every qubit, so by timing all pulses with respect to a common clock,
qubit phases will remain synchronous across the entire array. This property provides a
high degree of robustness to variations in the characteristic tunnelling time for electrons
to move to and from each donor. The exact time τ is not important so long as TPM is
long enough to allow electrons to move at the donors with slowest τ times.

Phase matched load sequence

In order to maintain control of the phase of our physical qubits (encoded in the nuclear
spins) during ionisation events, we define two additional intermediate modes in addi-
tion to ‘Memory’ and ‘Active’, a ‘Load/Read’ mode and an ‘Unload’ mode. We add
and remove electrons by carefully switching between these modes following the timing
sequences shown in Figure 6.15(a). The gate voltages required for each mode are indi-
cated in Figure 6.15(b), and the electrochemical potential configurations in each mode
are represented in Figure 6.15(c-f).

Coloured dots indicate the relevant gate bias conditions on the charge stability map
of Figure 6.15(b) around the donor-SET inter-dot transition (a small region of the gate-
space around the point IV from Figure 6.14(b)). Charge state labels (in grey) indicate
the electron occupancy of the donor and SET in each region. Solid teal and pink lines
represent the loading potentials for |↓⟩ and |↑⟩ electrons respectively, and yellow lines the
condition for current to flow through the vertical SET at the degeneracy point between
N and N + 1 electron occupancy states of the SET island. Positions of the 4 modes of
operation are marked ‘Memory’,‘Load/Read’,‘Active’, and ‘Unload’ and colour-coded to
Figure 6.15(a). We now describe the procedure:

Memory Between operations, donors are kept idle in the ‘Memory’ mode (Fig-
ure 6.15(c)). Here the SET is occupied by n electrons; the source and drain
Fermi levels (grey continuum of states, right of the figure) are offset by a small
bias VSD and they lie between the n − 1 ↔ n SET charge transition (lower solid
yellow line) and n ↔ n + 1 SET charge transition (upper solid yellow line), and
also below the donor loading potential, for both Zeeman states (teal and pink).
The stable charge configuration in this mode is (0, N).
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Figure 6.15: Phase Matched tunnelling scheme, facilitated by the interplay of Coulomb and Zeeman en-
ergies. (a) Sequence of events defining phasematched (PM) load and unload operations, as well as phase

agnostic qubit readout. (b) shows schematically the location of the required bias points on a charge

stability diagram corresponding to ‘Memory’, ‘Active’, ‘Load/Read’, ‘Unload’ modes. (c-f) energy level di-

agrams for the 4 configurations, schematically showing the electrochemical potentials for transitions

involving donor Zeeman states, SET island charge states and the Fermi energy of source and drain lines

(Src/Drn) for each case. Dotted yellow lines indicate the SET charge transition potentials when an elec-

tron is present on the donor, and solid lines indicate transition potentials when the donor is ionized. The

hashed region in (e) represents constant switching of the charge state while current flows through the

SET. Allowed electronmotion is indicated by small arrows, coloured if the tunnelling is spin dependent,

grey otherwise. Energetically forbidden electronmotion is indicated with red crosses.
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Load The PM load sequence begins by moving to the ‘Load’ configuration (Fig-
ure 6.15(e)) for a time ∆t. In this arrangement of energy levels an electron may
move from source to SET island to drain and so SET current flows (pink dashed
arrows), since the N ↔ N + 1 potential lies within the source-drain bias win-
dow. We assume a strongly coupled vertical SET, where the timescale for this
source/island/drain tunnelling is fast compared to ∆t, so the N + 1 SET state
is occupied with high probability as indicated by hashed yellow shading up to
the resonant transition. The characteristic tunnel time from SET to donor is,
however, slow compared to ∆t, so although filling of the spin-down donor state is
energetically allowed (blue arrow), it is improbable during the first load pulse.

Active The system is next pulsed to the ‘Active’ configuration (Figure 6.15(f)), and held
there for a time ta−∆t until the next phase-matched time window. Assuming the
donor has not yet loaded, the additional SET electron will quickly tunnel out to
source or drain since it is positioned above the Fermi energy (grey arrow).

Toggle The ‘Load’ and ‘Active’ phases repeat M times and at some point during a
‘Load’ phase (Figure 6.15(e)), an electron will move from SET island to donor
(blue arrow). Note that only the spin-down state can load onto the donor due to
the Zeeman splitting. The SET size we propose (13 × 13nm) is in the regime of
small orbital energy separation (∆E ∼ 250µeV∗), providing a quasi-continuum of
electron states at the SET’s Fermi level. Solid yellow lines in the electrochemical
potential diagram of Figure 6.15(e) represent only the electrostatic charging energy
EC >> ∆E. Once the donor is loaded with one electron, the repulsive Coulomb
potential adds as additional mutual charging energy EM , which raises the SET
potential to the dotted line, which sits above the level of the source and drain
Fermi energy, so that a second electron cannot load onto the SET. Importantly,
the ‘Active’ configuration of Figure 6.15(f) is stable also once the donor is loaded.
This bi-stable behaviour, critical to our PM sequence, relies on the large charging
energy of the SET EC , which prevents the donor electron from being able to tunnel
back through the SET to the source or drain.

∗ using a simple particle in a box approximation: ∆E ∼ π~2

gm∗L2 with spin and valley degeneracy
g = 12, electron effective mass m∗ = 0.28me and box length L = 17nm
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Active (ESR/NMR control) At the completion of the PM load operation, the qubit
is kept in the ‘Active’ configuration for all ESR or NMR driven spin manipulations
required to execute the desired single- or two-qubit gates.

Phase matched unload sequence

The PM unload proceeds in an analogous way, switching between ‘Unload’ Fig-
ure 6.15(d)) and ‘Memory’ (Figure 6.15(c)) modes as indicated in the timeline of Fig-
ure 6.15(a), in order to preserve the nuclear spin phase. In a similar way to the ‘Active’
mode, the ‘Memory’ mode is stable both when the donor is occupied and when it is not,
so we are not concerned that probabilistically it takes many cycles before the electron
will tunnel out to the SET.

Phase agnostic spin readout

Electron spin readout occurs with the same state configuration as for ‘Load’ as shown
in Figure 6.15(e). For a ‘Read’ operation however, we do not require phase matching,
since the electron readout is part of a projective measurement of the nuclear qubit in
the Z-basis, and therefore its phase information is no-longer meaningful. We perform a
simple continuous readout step with a duration tread longer than the tunnel rate τ . A |↑⟩
electron will tunnel to the SET (pink arrow in Figure 6.15(e)), lowering the SET potential
by the mutual charging energy so that it lies inside the source-drain bias window, and
thereby switching on the SET current for some time (pink dashed arrows), before a |↓⟩
electron re-occupies the donor switching the SET back off (blue arrow). This short-lived
current response is the signal indicating measurement of a |↑⟩ state, and does not occur
if the electron is projected as |↓⟩. The electron spin readout mechanism is identical to
the ‘spin dependent unload’ presented in detail in Section 5.3.2 of Chapter 5. Since the
equilibrium groundstate of the ‘Load’ mode is a donor occupied by a |↓⟩ electron, the
electron spin readout step is followed by a single ‘Unload’ step of duration tunload ≫ τ

to ensure the donor is ionised before returning to the ‘Memory’ mode. The full timing
sequence is shown on the right-side of Figure 6.15(a).
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6.3.7 Naturally parallel surface code stabiliser oper-
ations

We now move on to a demonstration of the parallel operation of X- and Z-stabiliser
operations, the bread and butter of the surface code. These operations must occur
with a high degree of parallelism over the array to capture the high threshold of the
surface code. Our physical layout and shared control lines mean that our design is
naturally suited to such parallel operation. Because the ‘Type II’ CNOT gates involve
two neighbouring SET islands, we cannot act on every Z-plaquette (or X-plaquette) at
once – the gate voltages would interfere with one another. Therefore we work with one
in every 4 plaquettes simultaneously, as highlighted by red borders in Figure 6.16(a),
which shows a schematic of the surface code plaquette operators. To carry out the
complete set of all Z-stabilizer measurements across the entire lattice, we therefore need
only four stages, independent of the number of qubits. With four more stages the full
set of X-stabilisers can also be completed.

A local Z-stabilizer measurement in the syndrome extraction process involves a se-
quence of four CNOT gates between any given ancilla qubit (CNOT target) and its four
neighbouring data qubits (CNOT controls), sequentially cycling north, west, east, and
south, followed by measurement of the ancilla. In terms of the basic operations within our
architecture: phase-matched electron loading/unloading, global electron/nuclear con-
trol, electron dipole-dipole mediated CNOT interactions, and ancilla readout; we show
in Figure 6.16(b) the sequence of steps for a Z-stabilizer measurement, with time run-
ning left to right. The X-stabilizer case is similar in the essentials, and only differs in
that the control and target qubits are switched for the data-ancilla CNOT gates, and
the interactions are sandwiched by Hadamard operators on the ancilla, as we showed in
Section 6.1.3.

Figure 6.16(c-g) shows how the individual steps within one stage of Z-stabilizer oper-
ators proceeds in a parallel fashion:

• Based on the outcome of the previous round of stabiliser measurements, all ancilla
qubits are initialised to |0⟩. This can be done in parallel by deterministically
loading electrons |↓⟩, swapping the electron and nuclear states, and using a global
rotation to leave the ancilla nuclear qubit |⇑⟩ = |0⟩ (not shown in figure).
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Figure 6.16: Parallel applictaion of stabiliser operaঞons. (a) Schematic of the surface code stabiliser
plaquette layout for X and Z error correction. Stabiliser operations on the highlighted plaquettes are

performed in parallel in one stage. This density of parallelism covers the entire set of plaquettes in only

eight stages. (b) Single stage Z-stabiliser circuit diagram, indicating the steps required to execute the

Z-stabiliser operation: interacting an ancilla qubit with its north, west, east and south data qubit neigh-

bours, followedmy ancilla measurement in the Z-basis. Solid lines denote nuclear spins, dotted lines

electron spins. Green and red boxes represent phasematched loading and unloading sequences. CNOT

and SWAP gates are shown by their standard quantum circuit representations. (c) Simultaneous PM

activation of multiple X syndrome qubits (d) simultaneous activation of north neighbour data qubits,

global electron and nuclear resonance pulses achieve the required CNOT gate, before parallel deactiva-

tion of the data qubits (e,f,g) equivalent simultaneous CNOT gates for west, east and south data qubits

surrounding the X syndrome ancilla

• The set of ancilla qubits for one stage of plaquette operations (here one quarter of
all Z-plaquettes) is first activated (Figure 6.16(c)). This is done using the phase-
matched loading pulse sequence to preserve the initialised nuclear qubit state.

• The north neighbouring data qubits are also activated (Figure 6.16(d)), and the
CNOT procedure detailed in Section 6.3.4 is performed. To summarise, the CNOT
consists of: a nuclear-electron spin SWAP on both donors, the CPHASE inter-
action (with dynamical decoupling pulses interleaved), transformed into a CNOT
operation by Hadamard transforms on the target qubit (the ancilla in this case),
a SWAP back between electron and nuclear spins before the north data qubits are
de-activated by unloading the electron (with PM pulsing).
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• The west neighbouring data qubits are then activated (Figure 6.16(e)). As was
the case for north neighbours, this is a ‘Type II’ configuration. The full CNOT
sequence is repeated once more, and the west qubits deactivated.

• The east data qubit set is activated, the CNOT applied, and then east qubits are
deactivated. Note that this configuration is an example of many parallel ‘Type I’
two-qubit gates.

• South neighbouring data qubits are activated, entangled with the CNOT gate,
and deactivated once again.

• Finally, the ancilla qubit is deactivated. At this point, its nuclear spin is measured,
by repeated electron-nuclear entanglement and electron readout as described in
Section 6.3.3. This measurement is also carried out in parallel across the array

The sequence of steps is then repeated 3 more times for the other groups of Z-
plaquettes in the four stage system, and an additional 4 times for the X-plaquettes.
Ancilla state measurements are collated, and form the syndrome measurement used to
detect the location and type of errors occurring within the array.

The analysis so far has focused on the stabilizer measurements required for one round
of quantum error correction across the entire lattice and sets the basis for higher-order
protocols on the surface code. Logical qubit operations are topologically more complex;
however, the physical operations required of the architecture are in essence particular
geometric patterns of stabilizer measurements. As we have seen, the geometric layout
places some constraint on which donors can be activated in parallel; hence, not every
geometric pattern can be created in a single step. For example, it would not be possible
to operate on three of the four highlighted plaquettes in Figure 6.16(a) simultaneously,
it would need to be done in two or three stages. This is the trade-off for multiplexing
every control line across many qubits. However, simple geometric patterns, such as lines
and rectangles, can generally be created in a small number of stages. More complex
patterns can be created by sequentially combining these simple geometric patterns to
load electrons and construct more complex regions and patterns. The required geomet-
ric patterns for the implementation of the surface code paradigm can thus be created in
parallel using a finite number of steps, independent of the number of qubits. The intru-
sion into the error threshold, due to the reduction in parallelism for complex patterns is
minimal owing to the extremely long qubit memory time of donor nuclei.
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6.3.8 Gate errors and threshold analysis

To validate the operation of our architecture below the surface code error threshold,
we performed numerical simulations∗ of each of the quantum gates within the Lind-
blad super-operator formalism (see Section A.7), including in the model the following
potential sources of error:

Nuclear spin dephasing This is expected to be negligible on the operational timescale
of our stabiliser operations. Nuclear T2 times longer than 30s have been mea-
sured37,38 for donors in isotopically purified 28Si.

Electron spin dephasing We use an electron T2 of 2s in the simulation, based on the
extrapolated dephasing time for a single donor in a bulk environment (away from
interfaces) measured in donor ensembles117 in 28Si.

Phase error in PM sequence We expect the dominant source of qubit error to be
due to non-perfect phase matching during electron load and unload actions. To
load the electron within a finite time, the loading window ∆t cannot be infinitely
short, the small random phase consequently accumulated by the nuclear spin con-
tributes to the probability of a Z-error appearing.

We initially set aside the phase matched loading process, and analyse the ‘bare’
CNOT operation consisting of only the electron-nuclear SWAP, and dipole-dipole in-
teraction time. Single-qubit operation times are TX̂,N ∼ 21µs for nuclei and TX̂,e ∼ 10ns

for electrons. The error in these single spin rotations from electron spin dephasing is
ϵX̂ ∼ 5× 10−5. We estimated above in Section 6.3.4 the required CPHASE interaction
duration as 260µs with 30nm donor separation

Combining these times we obtain a (bare – without loading) CNOT operation time
T̄CNOT = 2TX̂,N + 4TX̂,e + TCPHASE ∼ 300µs and over this longer time, the electron
dephasing leads to an increased (bare) error rate ϵ̄CNOT ∼ 1× 10−3, which is still an
order of magnitude lower than Pth.

∗ these simulations were performed by Charles Hill
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Figure 6.17: Error analysis of the PM load sequence and CNOT gate. (a) Error rate in the PhaseMatched

(PM) loading sequence ϵLOAD, as a function of tunnel rate τ , loading window time∆t, and total load
sequence durationTPM . There are regions of this parameter space with an error below the surface

code error correction threshold at ϵLOAD = Pth = 1%which is marked by a green plane. (b) Overall

physical CNOT gate error ϵCNOT as a function of total time taken for the two-qubit gateTCNOT, and
calculated for different values of the tunnelling window duration∆t. Here we take a tunnel rate τ =
500ns. A lower error is achievable with shorter∆t, but at the expense of a slower overall CNOT time.
The threshold error rate for topological error correction,Pth = 1%, can be reached forTCNOT >
600µs.

To show the error due to the phase-matched (PM) load/unload process, we plot in
Figure 6.17(a) the simulated error ϵPM due to imperfect phase matching, as a function
of the pulse parameters ∆t (the tunnelling window duration in each phase cycle), TPM

(the total load sequence time), and τ (the characteristic electron tunnelling time). The
same error rate is expected for a PM unload sequence.

The results show that there is a region of parameter space, that is, values of τ , ∆t, and
TPM , where the loading error is below the surface code’s error correction threshold of 1%.
Improved performance (lower error) is seen with faster tunnel rate, shorter tunnelling
window, and longer total pulse sequence duration. In particular ϵPM < 10−3 can be
achieved with τ ∼ 500ns, ∆t ∼ 0.3ns, and TPM ∼ 150µs. In comparison to the bare gate
operation times, we see that the total single-qubit gate operation time and error rate
will be dominated by the qubit activation/deactivation processes and timescales. The
results also show that as long as the PM pulse train is sufficiently long, the scheme is
robust against variations in the tunnelling time τ resulting from fabrication and voltage
control variations.

The complete CNOT gate incorporating the PM sequences was simulated, and the
resulting total error ϵCNOT is shown in Figure 6.17(b). For an SET-donor tunnel time
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of τ ∼ 500ns, commensurate with achievable readout bandwidth on the order of tens of
MHz, we have ϵCNOT < Pth for a range of parameters in the region TCNOT = T̄CNOT +

2TPM ∼ 600µs and ∆t ∼ 0.6ns.

Residual uncertainties and optimisations

The CNOT gate could be made significantly faster through improvements to: charge
sensitivity and readout bandwidth, donor placement precision, and any additional minia-
turisation that may become possible with optimised fabrication techniques. This could
allow closer placement of the donors and hence faster loading sequences and shorter
interaction times, both of which will drive down the total error rate.

Potential sources of error not accounted for in our analysis include variations in the
hyperfine strength A or g-factor ge due to non-uniform electric fields from donor to donor.
Up to ∼ 20% variation in A has been observed in experiments146 on single donor qubits.
Any non-uniformity here may be alleviated with dynamical decoupling sequences218,221

to refocus any uncontrolled phase accumulation due to variations in the electron and
nuclear spin resonance frequencies.

A final consideration in terms of potential errors is the impact of a fabrication defect.
The lack of a qubit where one is expected is a common problem faced in photonic
quantum computing, and there has been much effort in developing schemes to cope
with so-called loss-errors222,223. Importantly, any defect locations can be identified, and
the topology of the code’s surface modified around defective sites by a strategy termed
lattice-surgery224.

Nevertheless, with the realistic and achievable parameters presented, we have shown
in this section that our architecture indeed does allow for error corrected quantum com-
putation in a large 2D array.
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6.4 Conclusions and outlook

We have proposed a scalable quantum computing architecture using a dense two-
dimensional array of donor nuclear spin qubits in entirely crystalline isotopically pure
28Si. In contrast to other current blueprints for scalable donor-based qubit arrays, we
embrace the small size of a donor atom, and build upon recent improvements in STM-
based atomic precision fabrication to position neighbouring qubits in close proximity,
proposing a dense surface code array of donors placed 30nm away from one another.
This permits fast (∼ 100µs) qubit interactions without the need for any long-distance
coupling.

We have described how to utilise the removable electron spin as a resource to facilitate
addressable single qubit nuclear spin operations, and to mediate two qubit interactions
between neighbouring qubits. Relative to an ionised donor, the addition of the hyperfine
coupling energy when an electron is loaded into the donor potential well shifts the qubit
resonance frequency in a binary fashion, providing a means to addressably execute a
particular nuclear spin operation which will act on a desired subset of all qubits in
parallel across the array. When two neighbouring qubits are ‘activated’, with bound
electrons, the dipole-dipole interaction naturally implements a controlled phase gate
between the two electron spin states.

We have analysed the gate voltage requirements for one and two qubit gates, and
verified that with an efficient gate design consisting of two sets of long parallel nanowires,
oriented perpendicular to one-another in vertically separated layers above and below the
qubit array, we are able to selectively and simultaneously operate large numbers of qubits
in parallel, owing to the uniformity inherent to donor atoms. This is a remarkable result
considering our design requires only ∼ 2

√
N control nanowires for N qubits.

In particular we have developed a novel ‘phase-matched’ electron tunnelling scheme,
which overcomes the natural randomness in quantum mechanical tunnelling. By locking
to a phase cycle with frequency proportional to the hyperfine interaction strength, the
phase acquired by a nuclear spin can be made independent of the exact time at which
an electron tunnels onto that donor. We have performed quantum-mechanical simula-
tions indicating that the phase matching is a critical requirement in attaining the error
threshold of 1% where the topological protection of the surface code formalism becomes
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effective.
The essence of the design presented in this chapter is that the key challenges to

implementing a surface code-compatible qubit array have been reduced to two basic
requirements: high fidelity global ESR and NMR control pulses, and precise timing
control over locally addressable electron loading and unloading processes. Our shared-
control donor-based architecture thus presents a well-defined route to large-scale error-
corrected quantum computing.
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This is not just a great position to be in, this is
truly a superposition!

Malcolm Turnbull

7
Conclusions

Atomic precision donor devices provide a promising framework for quantum com-
putation. Building on the successes of recent years in miniaturising delta-doped quantum
dots65 to the limit of a single atom53, the integration of charge-sensing single electron
transistors (SETs)107 to enable high fidelity spin readout54,55, and the first steps in
scaling up to multiple interacting donors56,57, in this thesis we have made significant
developments along the path toward implementing a donor-based quantum processor.

7.0.1 Summary of results

There are four themes running through the three major results chapters (Chapters 4
to 6), which we summarise below. The key concepts uniting the various results are
addressability and scalability.
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Radio frequency reflectometry

In Chapter 4 we investigated the benefits of alternate charge sensing methods using ra-
dio frequency (RF) signals, in particular utilising an RF-SET, and also a tunnel-coupled
reservoir. We presented a hybrid device combining an RF-SET with a tunnel-coupled
reservoir, and demonstrated the clear discrimination between elastic and inelastic tun-
nelling processes. The additional information available from the phase and amplitude of
a reflected RF signal, relative to the DC conductance signal historically used to monitor
electron tunnelling events, allows us to unambiguously differentiate intentionally placed
donors from randomly occurring electronic trap states due to crystal defects. We showed
how the effective lever arm of a tunnel coupled reservoir can be significantly greater than
that possible with capacitively coupled gates, and discussed why this, combined with the
much smaller spatial footprint of a single terminal makes the tunnel-coupled reservoir an
attractive charge sensing tool compared to the single electron transistor in increasingly
complex devices. In a double quantum dot device, we explored how using a reflected RF
signal provides an accurate measure of the tunnel rates for electrons moving between a
reservoir and a quantum dot. In particular we measured rates spanning over two orders
of magnitude (from 1× 108 to 1× 1010s−1) as the number of electrons bound by a 3P
donor quantum dot increases from 1 to 4.

RF reflectometry facilitates the use of a single terminal readout device, providing
a promising solution to scale up our technology to the many qubit regime because it
consumes significantly less physical area than traditional three terminal readout SETs
or other alternatives. Furthermore, the strong coupling that we have demonstrated
suggests that this can be done while retaining clear addressability over each individual
qubit.

Two donor interactions

Having established the RF technique we then applied this to a two donor system to
determine if we could more accurately measure the exchange interaction between two
donor based quantum dots. At the end of Chapter 4 we demonstrated Pauli spin blockade
within a 2P-3P double quantum dot system, where we measured the strength of the
tunnel coupling between the two potential wells to be ∼ 47 ± 5µeV, significantly more
accurate that direct transport measurements where the error was found to be ∼ 150µeV.
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We also showed that the electron exchange energy could be varied from 20µeV to 120µeV

as the potentials of the two quantum dots are detuned. A controllable exchange energy
is one way of constructing a two qubit gate, and in Chapter 5 we introduced a different
two qubit double quantum dot device, now with an integrated SET charge sensor. After
careful analysis of the charging energies, we identified one qubit as a single P donor, and
the other as a 2P molecule. Using the SET tunnel coupled to the qubits, we demonstrated
initialisation and high fidelity (> 96%) single shot readout of the electron spin states
of both qubits. We measured the electron spin relaxation time T1 independently for
the two qubits and verified that the two spin states can be isolated from one another.
Importantly we were able to show that by detuning the potentials we were able to
controllably switch on a strong exchange interaction between the two electrons, resulting
in anti-correlated spin states. The ability to switch on and off the interaction between
qubits is a fundamental starting requirement for a scalable quantum processor.

Single electron spin control

Following careful theoretical consideration of the transmission of a microwave frequency
signal to the donor atoms within a precision donor qubit device, we fabricated a broad-
band microwave antenna on the surface of the 1P-2P two qubit device. We developed
an automated alignment scheme to compensate for long term charge noise within the
device, permitting reliable spin readout over timescales of days without manual inter-
vention to tune the gate voltages. Utilising an adiabatic passage technique to overcome
magnetic field noise due to the bath of fluctuating 29Si nuclear spins within the silicon
substrate, we performed spin resonance experiments on both the 1P and 2P qubits. The
spin resonance spectra obtained validated the assigned donor number for each qubit. For
the single donor we observed two resonance peaks, associated with the nuclear spin-up
and -down states, separated by a hyperfine splitting of 97MHz. For the 2P molecule
the three observed peaks correspond with the expected resonances of the four two-donor
spin product states with a hyperfine splitting of of 262MHz. The hyperfine interaction
strength in the 2P case was more than double the single donor value, reflecting the
more tightly confined wavefunction within the donor molecule. Comparison with tight-
binding theoretical simulations allowed us to determine the inter-donor separation of the
two atoms comprising the 2P molecule and also provided an indication of their exact
geometric configuration within the silicon crystal lattice.
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In a second two qubit device we achieved coherent rotation of a spin 1/2 electron spin
state, observing Rabi oscillations in the measured spin-up probability. In analysing the
damping envelope of the observed oscillations, we determined that our spin rotation is
hampered by fluctuations of the Overhauser magnetic field caused by interacting 29Si
nuclear spins in the substrate. Using spin echo sequences, we partially compensate for the
effect of nuclear spins, in order to measure an electron spin decoherence time T2 = 298µs,
three orders of magnitude larger than the observed pure dephasing time T ∗

2 = 284ns. We
also demonstrated full control over the Bloch sphere, by effecting spin rotations about
an arbitrary axis, achieved by modifying the phase of the applied microwave frequency
field. Thus, we showed in Chapter 5, the full set of operations needed to define a qubit –
initialisation, projective state read-out and arbitrary control of the qubit state over the
full Hilbert space.

The unique hyperfine coupling of donor molecules provides an effective means of ad-
dressing qubits within a small scale system, and the spin control techniques we have
demonstrated are the critical development translating our established scalable quantum
dot technology into a true scalable qubit.

Scalable surface code architecture

In Chapter 6, we have laid out the concept for a large-scale array of donor qubits capable
of correcting errors arising as a result of environmental decoherence and relaxation. In
developing an implementation of the surface code error correction protocol, we have
embraced the characteristics of donors, in particular their small size, and their uniformity.
We outlined a three-layer geometry, with a 2D lattice of single P donors spaced 30nm
apart, along with readout SETs in a central layer, with parallel sets of control wires 40nm
above and below, all within a solid crystal of isotopically purified 28Si. We described
the qubit basis states, taking advantage of the long decoherence time of an ionised
phosphorus atom’s nuclear spin as a memory qubit, and digitally detuning the resonant
frequency by loading an electron in order to addressably activate a chosen set of qubits.
We specified the universal set of one and two qubit quantum gates required to implement
the surface code protocol. In particular we focussed on the two qubit CNOT gate which
is achieved by transferring the quantum information from nuclear spins to electron spins,
and then allowing the electrons to evolve under the dipole-dipole interaction between
their magnetic moments. The complexities of qubit control in our proposed architecture
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are largely distilled into controlled electron tunnelling. Thus we outlined a non-trivial
method to load or remove an electron whilst preserving the phase information encoded
in the nuclear spin. We carefully analysed both the electrostatic control requirements,
concluding that all the required operations can be executed with gate voltages on the
order of only 100mV. Furthermore, we determined that the overall error rate achievable in
our design, based on current technological limitations is below the 1% threshold required
for error corrected quantum computing.

The architecture presented is scalable by design, and even using a remarkably small
number of control gates, each qubit is individually addressable.

7.0.2 Future work

The results summarised above suggest a number of directions for continued research,
some of which are already in progress. Here we describe briefly our expectations for the
future evolution of the research program.

Precision fabrication

Understanding the relationship between the geometry of lithographically defined phos-
phorus incorporation regions and the resulting electron tunnel rates is critical in design-
ing a qubit device. These tunnel rates ultimately determine the timescale of inter-qubit
interactions and also the timescale of initialisation and readout processes. Whilst we have
some guidance from theoretical modelling, from the various devices we have measured,
it appears that not only the distance is important, but also the size and shape of the
two features an electron is tunnelling to and from. For instance, a single donor and a 2P
molecule may have different tunnel rates to a large SET even if the separation distance
is the same. Investigating the sensitivity to various geometric parameters, including the
importance of the various axes of the crystal structure will be important in progressing
to more complex multi-qubit devices. Additionally, whilst our current understanding of
the phosphorus incorporation pathway allows the prediction of the final donor location
to within 1nm accuracy, there is scope for reducing this residual uncertainty.

261



CHAPTER 7. CONCLUSIONS

Improved measurement and control speed

In combating decoherence, a faster operation speed is desirable, since a greater number
of operations can be performed before the onset of decoherence. Ongoing work aims
to increase the oscillating B1 field strength by reducing microwave signal loss in our
measurement set-up. This is a simple technical enhancement, which we expect will
reduce the time required to rotate the electron spin substantially, potentially increasing
the Rabi frequency by two orders of magnitude from the current value of ∼ 1MHz.

Faster tunnel rates and higher bandwith gates and sensors will permit more rapid
single shot readout, also desirable. Recent experiments by Tettamanzi et al. 13∗ looking
into the bandwidth of our phosphorus doped nanowires have shown that signals up
to at least 10GHz can be applied to donor defined in-plane gates without significant
degradation of the signal due to the impedance of the nanowires. Current results from
House et al. 220 show that RF reflectometry does allow for high bandwidth charge sensing,
with usable bandwidth beyond the 1MHz level for an RF-SET, and above 100kHz for a
single terminal sensor. Of course to capture the benefits of these fast gate and sensor
speeds, the electron tunnel rates must be increased accordingly by reducing the physical
dimensions of the relevant tunnel gaps.

Coherent two qubit coupling

Our success with controlling the strength of the exchange interactions between electrons
in donor quantum dots will have to be extended to achieve coherent control in the
singlet-triplet basis. Broome et al. 3 have recently developed additional analysis and
modelling relating to our 1P-2P two qubit device, indicating that the tunnel coupling
required to observe coherent swapping of the spin states via the exchange interaction is
on the order of several GHz, an order of magnitude stronger than was present in our two
qubit device. Thus, ongoing work continues to realise a two qubit device with a stronger
tunnel coupling suitable for observing exchange oscillations.

Removal of nuclear spin noise

An active area of development over the next years will be the integration of isotopically
purified 28Si into our fabrication scheme. This requires not only purified wafer stock,
∗ work that I was substantially involved in, but which is not included in this thesis
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but also a significant quantity (cubic centimetres) of bulk material as a source for the
epitaxial encapsulation layer to be grown over the donor layer. Thus the prospect is
technically challenging. Based on results from Muhonen et al. 38 , who have shown that
electron spin coherence can be extended to over half a second in a device fabricated in
28Si, we expect to achieve several orders of magnitude enhancement of the coherence
time of our electron qubits, and also long coherence times for nuclear spins in purified
28Si. Isotopic purification has also been shown to dramatically improve quantum gate
fidelity, with Muhonen et al. 51 measuring an electron spin rotation fidelity above 99.9%,
well within the surface code’s error correction threshold.

Entanglement between nuclear and electron spins

One of the key advantages of donors is that each atom naturally provides two qubits.
Dehollain et al. 225 utilised entanglement between the nuclear and electron spins of a
donor to perform a Bell test, and observed verifiably non-classical correlations. An
exciting near term goal following our electron spin resonance results, it to use nuclear
magnetic resonance to coherently control the nuclear spin state of a donor, or potentially
multi-donor molecules. This is promising, not only for the addition of a second qubit
and expanded Hilbert space, but also because the nuclear spin can be used as a resource
to increase the fidelity of electron spin readout, by mapping the electron state to the
nucleus and repeatedly and non-destructively measuring the nuclear spin state50.

Demonstrating surface code fragments

A natural set of goals following from our surface code architecture proposal is the exper-
imental realisation of individual elements of the design. Notably: (i) a demonstration
of the phase matched loading process, showing that nuclear phase can be preserved by
a pulse train of carefully timed windows for electron tunnelling; (ii) simultaneous and
parallel application of nuclear qubit gates addressed by the presence of an electron on
the donor; and (iii) the controlled phase gate mediated by dipolar coupling. All of these
can be achieved with a simple two donor device, built in a single plane, but of course
the continued development of three dimensional devices is also a priority for the near
future, with tunnelling through a vertically oriented SET being one clear goal. Moving
beyond two qubits, the next challenges will be to demonstrate successful operation of
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the error correcting protocol on a group of several qubits – as has been achieved recently
with superconducting quantum circuits226,227.

It is an exciting time for the solid-state quantum computing community, as the tech-
nology matures to the point where few-qubit devices become possible. Superconduct-
ing228,229, photonic230,231 and trapped ion232,233 based qubits are already producing
fascinating demonstrations of the usefulness of even small sets of interacting qubits.
There are many ‘competing’ implementations, and it is fiendishly difficult to predict the
trajectory of any one of them towards so-called quantum supremacy – the point at which
a large-enough quantum computer outperforms a classical processor. The transistor was
invented in 1947234 with the express purpose of amplifying telephone signals – and no
clue of the role it has since played in facilitating the information age. Whilst there are
many proposed algorithms and applications for a quantum computer already at this
early stage, one has to wonder just what its total impact on the world will be.

264



A
Supplementary details

A.1 RF reflectometry: hardware setup

The RF reflectometry experiments were performed in a cryogen free dilution refrigera-
tor∗.

The RF signal is generated† with a power of 16dBm at room temperature, then split
with a 6 dB power splitter‡, one half providing the excitation signal to the device, the
other providing the local oscillator signal for mixing with the output. The incoming RF
signal is attenuated at each thermal stage of the dilution refrigerator (60 dB at RT; 10
dB at 3 K; 3 dB at 800 mK; and 3 dB at 50 mK) to reduce thermal noise.

A directional coupler§ at the mixing chamber plate then routes the signal into the
resonant circuit via the CPL port (with 15dB attenuation) and back out to an amplifierℵ

(18 dB gain) at 3 K. We note that this is not an engineered cryogenic amplifier, but was

∗ Leiden Cryogenics CF500 † SRS SG386 ‡ Minicircuits ZFRSC-42-S § Minicircuits
ZEDC-15-28 ℵ Minicircuits ZX60-P103LN+
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found to work satisfactorily after modification to remove a power supply protection
capacitor.

At room temperature, two cascaded amplifiers∗ (40 dB total gain) precede the homo-
dyne detector, which is composed of a 6 dB power splitter† to distribute the RF signal,
a hybrid phase splitter‡ to offset the two local oscillator signals by 90◦, and two mixers§

outputting the baseband signals I and Q to digitising multimetersℵ.
DC bias voltages are provided by low noise voltage sources⊕.

A.2 Spin readout experiments: Hardware setup

The dual spin readout and spin correlation experiments were performed in a cryogen
free dilution refrigerator♯, within a superconducting magnet⋄.

Voltage pulses to perform spin readout are produced by an arbitrary waveform gen-
erator♭, and added to DC bias voltages∗∗ with active summing amplifiers††.

The time dependent SET current signal is digitised by a real-time sampling oscillo-
scope‡‡ after being amplified with a low noise transimpedance amplifier§§, electrically
decoupledℵℵ and filtered⊕⊕.

A.3 Spin readout experiments: Fidelity

In this appendix we analyse the fidelity of our dual spin readout protocol. The as-
signment of a spin-up or -down electron from each SET current trace comprises of two

∗ Minicircuits ZFL-1000LN+ † Minicircuits ZFRSC-42-S ‡ Minicircuits ZX10Q-2-13-s
§ Minicircuits ZEM-2B ℵ Keithley 2001 ⊕ Yokogawa 7561 ♯ Leiden Cryogenics CF500
⋄ Cryogenic Limited - custom make ♭ Tektronix AFG3052C ∗∗ SRS SIM-928 †† SRS SIM-980
‡‡ Keysight MSOX3024A §§ Femto DLPCA-200 ℵℵ SRS SIM-910 ⊕⊕ SRS SIM-965
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separate parts, (i) spin-to-charge conversion and (ii) electrical readout. For clarity, we
describe the mechanisms as for the 1P spin-dependent unloading readout mode. Equiv-
alent mechanisms apply for the D− spin-dependent loading readout mode.

(i) Spin-to-charge conversion

We optimise the spin-to-charge conversion fidelity by determining the optimum length
of time for each read phase of the readout sequence. During spin-to-charge conversion,
errors are introduced from three main sources: T1 relaxation of spin-up electrons; spin-
up electrons failing to tunnel to the SET during the designated read time; and spin-down
electrons tunnelling to the SET due to thermal excitation.

We use a rate equation model54,55 to determine the optimum readout time, ∆t, by
maximising the probability that an electron will tunnel when expected to, or not tunnel
as expected to, given its spin state – α and β respectively. As an input to the model,
the tunnelling times of |↑⟩ → |0⟩, τ↑out and |0⟩ → |↓⟩, τ↓in are shown in Figure A.1(a,b),
obtained by analysis of single-shot readout data - the start and end times of single blips
describe τ↑out and τ↓in. In addition, the spin-down tunnelling time from the qubit site
to the SET, τ↓out was also measured experimentally to be and 0.61±0.06s and 25±5s
for qubit-L and -R respectively. We refer the reader to Büch et al. 54 for details of the
derivation of the following terms using a rate equation model.

β(t) = exp

(
−t
τ↓,out

)
(A.1)

α(t) =
1

T ′

[
T ′ −

τ↑,outτ↓,out

exp( t
τ↓,out

)
−

T1(τ↓,out − τ↑,out)

exp( t
T1
)exp( t

τ↑,out
)

]
(A.2)

T ′ = T1(τ↓,out − τ↑,out) + τ↑,outτ↓,out (A.3)

The fidelities α and β are shown in Figure A.1(c,d) as a function of readout time, ∆t.
The visibility of spin-to-charge conversion is calculated as VSTC=α+β−1. The optimum
readout time is chosen where VSTC is maximised.

(ii) Electrical readout

The electrical readout involves determining whether a given SET current trace can be
assigned as having a ‘blip’ during the read phase i.e. whether during the readout time
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(a)

(b)
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1P (R)

2P (L)

1P (R)

2P (L)

1P (R)

2P (L)

1P (R)

2P (L)

Figure A.1: Spin readout fidelity characterisaঞon. (a,b) L, and R qubit histograms of spin dependent tun-
nelling times, with characteristic values τ↓in,τ↑out. (c,d) L, and R qubit spin-to-charge conversion visibil-
ityVSTC = α+ β − 1; probability of a spin-up state tunnelling within the readout timeα; probability
of a spin down state not tunnelling within the readout timeβ. Readout time is selected based on the
maxima ofVSTC . (e,f) L, and R qubit experimental datasets (black curve), and simulated histograms

(blue/red dots) based on emperically determined noise and filter characteristics, of the distribution of

observed peak values in a single readout current trace during the optimised readout time. (g,h) L, and

R qubit electrical readout visibilityVER = F↑ + F↓ − 1; probability of correctly assigning spin-
downmeasurements using a particular voltage threshold,F↓; probability of correctly assigning spin-up
measurements using a particular voltage threshold,F↑. Voltgate threshold for state discrimination is
selected based on themaxima ofVER.

(optimised in step i) the current surpasses a threshold value It. We optimise the threshold
by simulating single-shot traces with statistical properties matching the experimental
dataset, and assessing the level of erroneous state assignments.

From a simulation of 10,000 SET traces with characteristic tunnel times based on
those determined in (a,b), 50% of which contain a ‘blip’, with added white Gaussian
noise equivalent the signal-to-noise ratio observed in the experiment (an average of
SNR=17dB for readout of both qubits), histograms of peak voltages Vp are generated,
proportional to the SET current. The histograms are shown in Figure A.1(e,f) for L
and R respectively. Note the use of peak voltage not current due to the use of a current
amplifier on the drain of the SET charge sensor.

From these histograms the probability of correctly assigning either spin-up or -down
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Parameter Left qubit (2P) Right qubit (1P)

∆t (ms) 10.5±0.1 209.0±30.0

α (%) 99.6±0.1 99.5±0.1

β (%) 98.2±0.1 99.1±0.1

VSTC (%) 97.9±0.1 98.7±0.2

Vt (V) 0.022±0.001 0.016±0.002

F↑ (%) 94.9±0.8 96.8±1.6

F↓ (%) 99.7±0.2 99.8±0.2

VER (%) 94.6±1.0 96.5±2.0

FM (%) 96.2±1.1 97.6±2.1

Table A.1: Fidelity analysis of the 2P and 1P qubit spin readout atB0 = 2.5T: optimal values of read-
out time∆t and voltage thresholdVtmaximising the spin-to-charge and electrical-readout visibility
parameters, producing an overall readout fidelityFM

(F↑ or F↓) to each current trace is calculated using the following set of equations,

F↑ = 1−
∫ Vt

−∞
N↑(VP )dVp (A.4)

F↓ = 1−
∫ ∞

Vt

N↓(VP )dVp (A.5)

where Vt is the equivalent voltage threshold for It after the current amplifier and Ni is
the fraction of spin state i. The results are shown in Figure A.1(g,h) with the addition of
the calculated electrical readout visibility VER=F↑+F↓−1. From this we can determine
the optimum voltage threshold, Vt, where VER is maximised.

Table A.1 gives a summary of the fidelity calculations for both qubits, where the final
measurement fidelity is given by, FM = (αF↑+βF↓) /2.

Experiments with the second two qubit device are ongoing at the time of writing and
an optimised fidelity assessment has not yet been performed at the time of writing.
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A.4 ESR experiments: Hardware setup

The electron spin resonance experiments were performed in a liquid helium bath dilution
refrigerator∗ containing a superconducting magnet.

ESR signals upto 44GHz were produced with a microwave generator† and fed from
room temperature through a double DC-block‡ into a UT-85 stainless steel cable within
the dilution refrigerator insert. In addition to the significant thermalisation from the
cable, we use a 1dB attenuator§ at the 4K stage. The signal is launchedℵ from the cable
to a custom PCB with a low loss substrate and impedance matched coplanar waveguide,
and finally wire-bonded (1 wire for the signal pin, and 3 for the ground connection on
either side) to the on-chip waveguide/antenna described in Section 5.4.1.

Modulation was applied for the adiabatic passage experiments using an external multi-
channel arbitrary waveform generator (AWG)⊕, providing both frequency and pulse
modulation signals to the FM and pulse-gating functionalities of the microwave gener-
ator. In the coherent control experiments the same AWG was used to provide I and Q
signals used as inputs to the microwave generator’s vector modulation functionality.

Instruments were triggered by a multi-channel digital-to-analog/analog-to-digital de-
vice♯ which also provides the pulsed gate voltage signals, and digitises the SET current
readout signal after it has been amplified by a low noise transimpedance amplifier⋄,
electrically decoupled♭ and filtered∗∗.

A.5 ESR experiments: Electric fields

We have estimated the electric field present at each donor site in a simple finite-element
field solver. The simulation was performed using Comsol Multiphysics software, mod-
elling the P doped conducting structures as perfect conducting sheets within an infinite
∗ Oxford Instruments Kelvinox400 † Keysight E8267D ‡ Pasternack PE8227 § Huber &
Suhner 6601_SMA-50-1 ℵ Southwest Microwave 1092-04A-5 ⊕ Tektronix 5014C ♯ National
Instruments USB-6363 ⋄ Femto DLPCA-200 ♭ SRS SIM-910 ∗∗ SRS SIM-965
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block of silicon. Real gate voltages were applied to each of the conducting regions cor-
responding to their values in the experiment, and as provided in Table A.2. The results
of the simulation are shown in Figure A.2.
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Figure A.2: Electric fields at the 1P and 2P qubit operaঞng points. (a,b,c) Electric fieldmagnitude, y-
component, and x-component as simulated for the gate voltage configuration corresponding to the

working point for the 1P qubit (d,e,f) Electric fieldmagnitude, y-component, and x-component as sim-

ulated for the gate voltage configuration corresponding to the working point for the 2P qubit. Colour-

bars are provided separately for the fieldmagnitude (0 − 8MV/m) and in-plane field components

(−8 − 8MV/m), the qubit positions aremarked as black dots, and applied voltage labels are shown in

(b).

A.6 Hyperfine energy simulations: NEM0-3D

Simulations to determine the hyperfine interaction energy based on donor configuration
and electric field were carried out by collaborators∗ using a software framework called
∗ Yu Wang, Chin-Yi Chen, and Rajib Rahman at Purdue University
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Parameter Right qubit (1P) Left qubit (12P)

VS (mV) 2 2

VD (mV) 0 0

VL (mV) 730 43

VM (mV) 800 800

VR (mV) −50 650

VSET (mV) 600 600

|E| (MV/m) 4.5±0.1 4.3±0.1

Ex (MV/m) 0.9±0.2 −0.5±0.2

Ey (MV/m) −4.4±0.1 −4.3±0.1

Table A.2: Gate settings and resultant E-field estimates at the two qubit working points: the E-field is
numerically computed by solving the Poisson equation with boundary conditions derived from the gate

settings. The uncertainty in field values are based on a positional uncertainty for the qubits of∼ 1nm.

NEMO-3D (NanoElectronic MOdelling tool - in 3 Dimensions)151,235. The sophisticated
framework encompasses numerical computation of electronic bandstructure, potential,
charge density and other physical properties based on benchmarking by self-consistently
solving the Schrödinger and Poisson equations in a domain encompassing several million
atoms, where the wavefunction for each atom is described in a sp3d5s∗ spin-resolved
(therefore 20 states) tight-binding orbital basis. NEMO-3D has been successfully ap-
plied to reproduce measured values in precision donor defined devices fabricated by
STM lithography, including: the binding energies of single donor53,113 and few donor56

quantum dots, transport currents though atomic scale nanowires66 and delta-doped lay-
ers112, T1 spin relaxation times in single donors and few donor quantum dots152; as
well as providing predictions of hyperfine energies54,150 and tunnel coupling strengths
between donor quantum dots154.

The simulation process starts with a Hamiltonian H comprising terms describing:

• the full silicon lattice HSi, describing ∼ millions of atoms

• the Coulomb potential wells of any P donors HD, truncated at the donor site to a
value UD benchmarked to produce accurate bound state binding energies.

• electron-electron interactions He-e, in a Hartree mean-field approximation ob-
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tained by iteratively and self-consistently computing the electron density via the
Shcrodinger equation, and mean-field potential via the Poisson equation after
assuming that electrons fill the lowest available states according to the Pauli ex-
clusion principle

• electric fields HE , as a simple position dependent potential of the form E⃗ · r⃗

• magnetic fields HB, as a simple spin dependent Zeeman energy of the form B⃗ · σ⃗
for all unpaired electrons and donor nuclei spins σ⃗

• Hyperfine interaction HA, comprising contact and dipolar hyperfine components,
although the dipolar term is in most cases omitted from calculations after verifying
that the dipolar contribution is negligible.

The complete Hamiltonian is input into the time independent Schrödinger equation

HΨm = εmΨm (A.6)

and the solutions for the eigenfunctions Ψm and eigenenergies εm are computed in the
sp3d5s∗ basis using a parallel block Lanczoz algorithm, and the few lowest energy eigen-
states (i.e. Ψm for small m) are taken and used to calculate the relevant properties of
the system.

Full set of computed hyperfine energies for 2P molecules

The geometrical layout for the full set of out-of-plane configurations are displayed in
Figure A.3, considering up to 2 monolayers of vertical diffusion or segregation of one
of the two donors. Figure A.3 plots the full set as coloured markers based on the A
value, with out-of-plane geometries indicated by dashed circles. The point shown with
a red cross corresponds to nearest neighbour pairs, which are electrically inactive and
therefore not relevant in our analysis. The layout of these points in the [001] plane is
shown in Figure A.3(b), with fill-colours corresponding to their A values and line-styles
denoting the vertical offset from the plane of the reference atom as indicated in the inset.
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Figure A.3: Intrinsic hyperfine energies for different donor configuraঞons of a 2P molecule. (a) Sim-
ulated Hyperfine interaction energyA, for atomic configurations of a 2P quantum dot with donor

separation less than 1nm, andwith upto a 2monolayer vertical offset between the two donor atoms.

(b) Schematic showing the layout of the [001] crystal plane and several monolayers above and below.

Atoms are shown coloured according to their relationship to the central purple reference site, andwith

a line-style indicating their vertical offset in monolayers (ML). The dimer structure present at the sur-

face during fabrication is indicated by grey rectangles.

A.7 Surface code architecture simulations:
Super-operator formalism

Simulations to compute the error rate associated with our proposed Phase-Matched
tunnelling sequence, and were carried out by collaborators∗ using the Lindblad super-
operator formalism236. The technique is a commonly used to model so-called open
quantum systems237. It is a master equation approach which encompasses the coherent
quantum dynamics as well as classical evolution due to decoherence and loss.

Non-unitary dynamics are captured by the density matrix, an operator describing a
probabilistic mixture of quantum states:

ρ =
∑
n

pn |ψn⟩ ⟨ψn| (A.7)

where pn is the classical probability that the quantum system may be found in a state
|ψn⟩

By including a description of the system’s environment in the von Neumann equa-
tion, and making some approximations, the standard time-dependent Lindblad master

∗ Charles Hill and Lloyd Hollenberg at the University of Melbourne
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equation is obtained:

∂ρ(t)

∂t
=

−i
~

[H(t), ρ(t)] +
∑
n

1

2

[
2L̂nρ(t)L̂

†
n − ρ(t)L̂nL̂

†
n − L̂†

nL̂nρ(t)
]

(A.8)

where H(t) is the time dependent Hamiltonian of the internal system dynamics, and
L̂n =

√
γnΛ̂n are collapse operators describing interactions Λ̂n between the system and

environment, acting with a characteristic timescale 1/γn. The sum in Equation (A.8)
represents a set of operators that act on the density matrix operator – hence the name
super-operator.

The core assumptions in deriving Equation (A.8) are:

• That the system and environment are separable, and there are no correlations
between them at t = 0.

• That the environment influences the system, but the back action onto the envi-
ronment due to the system dynamics is negligible.

• The environment has effectively no memory, or that time correlations in the en-
vironment decay much faster than the timescale of the system dynamics

• Oscillating terms describing the system-environment interaction with frequencies
faster than internal system dynamics are assumed to average to zero, and are
neglected.

The master equation Equation (A.8) can be integrated in time to produce the system
dynamics – the probabilities pn of occupation for a chosen set of basis states |ψn⟩ as a
function of time, according to a time dependent Hamiltonian reflecting the pulse sequence
we intend to apply. A part of the full CNOT sequence is displayed in Figure A.4(a),
indicating the operators applied to electron and nuclear spins of the target and control
qubits.

An example of the computed time evolution is shown in Figure A.4(b), with colour-
coded basis state labels describing each curve. This plot shows the state preparation
up to the start of the electron dipole-dipole mediated CPHASE operation, for an initial
nuclear spin state of |⇑,⇑⟩ – both qubits in their ground state.

The error analysis of Section 6.3.8 involves repeatedly simulating the dynamics for
various pulse parameters and initial conditions, and determining the departure from the
ideal unitary behaviour in the absence of collapse operators.
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√
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