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Abstract.
The challenge is to create an efficient quantum algorithm for the bosonic model capable

of calculating the Jones polynomials for a knot resulting from interweaving or interlacing n -
vertices. This weave is the construction of braid group representations from nineteen-vertex
model. We present eigenbases and eigenvalues for lattice generators and their usefulness for
the direct computation of Jones polynomials. The calculation shows that the Temperley-Lieb
operators can be used for any braid word. Therefore, we propose a quantum sequence using
these singular operators as quantum gates operating on the state of n qubits. We show that
quantum calculations give the Jones polynomial for achiral knots and links.

1. Introduction
This short article presents the quantization of an exactly solvable nineteen-vertex model, which

is a model of classical statistical mechanics. The term ”decidable” means that the Boltzmann
model weights or R-matrix R(u) with spectral parameter k satisfy the Yang-Baxter equation
(IBE) or star-delta relation. When the IBE is satisfied, the model transfer matrices in the
family change: [T (x), T (x)] = 0.This means that the existence of such commuting operators is
a sufficient condition for the solvability of the model [1],[2]. Indeed, in many cases there are
methods for obtaining an exact expression for the free energy: for example, we can use Ansatz
Bethe, quantum backscattering [1] or some other methods [2].

The Hamiltonian is determined by the logarithmic derivative T (x). The set of mutually
commuting operators (T (x) n = 0, 1, 2, .. includes the spin Hamiltonian. There are so many
commuting operators that it is impossible to integrate. First, we define vertex models and their
associated quantum spin chains in general features, and then we will define the nineteen-vertex
models and associated spin chains that will be discussed in this article.

The challenge is to build an efficient quantum algorithm that can compute the Jones
polynomial for any knot or link obtained by weaving or closing a 3n - braid words.Let us
consider the construction of representations of braid groups from vertex models knot. We
present eigenstates and eigenvalues for constructing braid generators and their usefulness for
computing the Jones polynomial directly. Calculations show that sets of unit operators can be
attached to any word in a line. Therefore, we propose a quantum algorithm that uses these unit
operators as quantum gates that operate on the states of 3n qubits. We show that quantum
computation yields a Jones polynomial for knots and achiral links [3],[4],[5],[6]. In the 1970s,
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physicist Stephen Wiesner mentioned the idea of combining quantum computing and knot theory
[7].

Quantum algorithms have proven to be more effective than classical algorithms in solving
many problems [8]. Grover’s search algorithm in a quantum mechanical system can be in
a state of superposition and simultaneously check many names. By properly tuning the
phases of different operations, successful calculations reinforce each other while others randomly
interfere. Compared to Shor’s quantum algorithm, Grover’s search algorithm does not change the
complexity class, but can be used to speed up a wide range of algorithms. Thus, the capabilities
of quantum algorithms are explored in the context of knot theory and vertex models of statistical
mechanics. The classification of knots and links in three-dimensional space is one of the open
problems. Jones presented a recursive procedure to determine the polynomial relationship of
these knots and links. Jones polynomials classify some knots and links [9]. Using quantum
walks to build a new quantum algorithm for bosonic models and determine the distinctness of
elements and their generalization. To determine element distinctness (the problem of finding
two equal elements among N given elements), we obtain the quantum query algorithm O(N2/3)
[10]. This improves the previous quantum algorithm O(N3/4) of Berman et al [11] and matches
the lower bound of Aronson and Shi [12]. There are other generalized polynomials that improve
classification, but none have achieved perfect classification [13], [14]. The classical calculation of
the Jones polynomial P is known to be a difficult problem [15].Therefore, it is interesting to study
the polynomial computation of knots and links using quantum algorithms. In physics, there are
different ways to obtain polynomials for knots and links. According to Alexander’s theory, each
knot can be considered as a trailing or closing n thread. Therefore, polynomials for knots and
links can be determined by studying the theoretical representation of Bn-entanglement. The
general part of this approach is to find another representation of the braid group Bn. We now
present a summary of some of these approaches:

1) N -state vertex models, which are two-dimensional statistical mechanical models in which
the square lattice terms carry SU(3) spin n representations. The number of possible 1 spin
states is denoted by N = n + 1. The properties of these models are described by the so-called
R-matrix, which is an N2 × N2 matrix. The number of nonzero elements in the R-matrix for
N -states vertex models.

In the literature, vertex models are called to either as N -states or n-vertex models; both are
equivalent. For example, vertex models with three states have spin 1 at vertex lattice and are
equivalently called nineteen-vertex models, where ”nineteen” denotes the number of non-zero
elements of the R-matrix. In [16], [17] representations of braid groups and vertex polynomials
were obtained from R-matrices of vertex models with N = 2, 3, 4 states.

2) Chern-Simons theory is a topological field theory that provides a natural basis for the
study of knots and connections [18]. Vertex polynomials are obtained by averaging the observed
Wilson loops. In particular, the Jones polynomial corresponds to the representation of the
Wilson loop with spin 3/2 in the Chern-Simons SU(3) theory. It is obvious that arbitrary
representations of any compact calibration group G can lead to generalized polynomials [19].
Polynomies are related to the variable q, which is a function of the connection constant to the
rank of the measurement group. Field-theoretic polynomials were obtained by combining the
Chern-Simons theory on a WZW 3-manifold with a boundary and the corresponding conformal
Wess-Zumino-Witten (WZW) field theory on the boundary. Polynomies depended significantly
on different representations of monodromy or matrix entanglement in WZW models. Recently,
Fridman et al.[20] attempted to model topological field theories using quantum computers.
Topological quantum calculations proposed in [20],[21], [22] are at the mathematically abstract
level. He uses the connection between the partial quantum Hall states and the Chern-Simons
theory with the corresponding integer connection k.

3) Sum of states method for obtaining polynomials in parentheses [23], [24]. The source
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[24] shows the construction of a unified representation of the three-strand braid Bn. Moreover,
with this approach it was shown that a quantum computer cannot estimate the knot polynomial.
However, the number of connections can be determined by a specific choice of polynomial variable
[24]. Our goal is to determine the Jones polynomial for any knot or link obtained from braids
using a quantum algorithm. To do this, we need to define a matrix representation for the
braid generators. Let us repeat the construction of a representation of a group of braids from
a model with nineteen vertices. It is important to emphasize that quantum computing in this
paper fundamentally depends on the mapping of any entangled word into a product of unitary
operators. Polynomials for knots and connections can be calculated directly by choosing the
appropriate eigenbasis of the braid matrices.

We reproduce the hierarchy of connectivity invariants associated with a set of vertex N-state
models in a method different from the original construction of Akutsu, Deguchi and Wadati. An
alternative method replaces the ”cross-symmetry” property exhibited by the Boltzmann weights
of vertex models with a similar property that encodes the same information for the purpose of
constructing coupling invariants, but requires only a constraint on the Boltzmann weights as
the spectral parameter varies to infinity.

For braid matrices obtained from a nineteen vertex model, the top matrix element gives the
squared modulus of the Jones polynomial (up to a common constant). This article is organized
as follows. In Section II, we present a general method for finding braid group representations
using N -state knot models. We discuss in detail the nineteen vertex model, the intertwining
of eigenvalues and eigenstates. Using these eigenstates, we estimate the Jones polynomial. In
Section III, we present a method for estimating the squared modulus of a Jones polynomial
as a quantum computation, treating each vertex or network as a collection of cups, a series of
interconnected and closing actions. In the last part, we summarize the results obtained and
discuss the importance of the quantum algorithm.

2. N-STATE VERTEX MODEL
In this section, we will discuss the construction of braid group representations from N -state

vertex models [16]. To compare the eigenstates of the wreath operator with in the qubit states,
the six-point model (spin 1 on the links of the square lattice) is relevant. Therefore, we present
the explicit form of the R-matrix and the braid matrix for nineteen point model. As mentioned in
the introduction, vertex models are two-dimensional statistical mechanical models. models with
n spins lying on the links of the square lattice. The properties of these models are described by
the elements of the R-matrix between the edge states (m1,m2) and (n1, n2): R

n1n2
m1m2

(u), where
u is the spectral parameter. Here m1,m2, n1, n2 have the values n/2, ṅ/2. The condition for the
integrability of these models requires that the following equations must be fulfilled:

Rn1,n2
m1,m2

(u) =
∑

l=0,1,2

[
1 1 l
m2 m1 M

]
λl(u)

[
1 1 l
n1 n2 M

]
, (1)

where m1,m2, n1, n2 are called Yang-Baxter elements and the relation (1) is called Yang-Baxter
equation. The terms in parenthesis are the quantum Clebsch-Gordan coefficients (q-CG) [25]
which are nonzero if and only if m takes a value in the range m = l, l + 1, . . . + l and satisfies
the condition m1 +m2 = m = n1 + n2. Here λl(u) is given by

λl(u) =

j1+j2∏
s=l+1

sinh(µ− u)
J∏

l=|j1−j2|+1

sinh(µ+ u)

j1−j2∏
s=l−1

sinh(2µ− u)

J∏
l=|j1+j2|−1

sinh(2µ+ u). (2)

In other words, braid group generators bi ∈ Bn (spectral parameter independent operators)
are obtained from Ri(u) by the formula taking the spectral parameter u→∝:

lim
u→∝

λl(u) = bi. (3)



IC-MSQUARE-2023
Journal of Physics: Conference Series 2701 (2024) 012127

IOP Publishing
doi:10.1088/1742-6596/2701/1/012127

4

Let us define a quantity σn1n2
m1m2

as follows:

lim
u→∝

Rn1n2
m1m2

= σn1n2
m1m2

. (4)

The explicit form of the σn1n2
m1m2

m1,m2-matrix elements in this limit turns out to be:

(R1,1)
n1,n2
m1,m2

(u=0)

(R1,1)↑,↑↑,↑(u=0)
=



m1,m2/n1, n2 1, 1 1, 0 1,−1 0, 1 0, 0 0,−1 −1, 1 −1, 0 −1,−1
1, 1 χ1(u) 0 0 0 0 0 0 0 0
1, 0 0 χ3(u) 0 χ2(u) 0 0 0 0 0

1,−1 0 0 χ6(u) 0 χ5(u) 0 0 0 0

0, 1 0 χ2(u) 0 χ
′
3(u) 0 0 0 0 0

0, 0 0 0 χ5(u) 0 χ7(u) 0 χ
′
5(u) 0 0

0,−1 0 0 0 0 0 χ3(u) 0 χ2(u) 0

−1, 1 0 0 χ4(u) 0 χ
′
5(u) 0 χ

′
6(u) 0 0

−1, 0 0 0 0 0 0 χ2(u) 0 χ
′
3(u) 0

−1,−1 0 0 0 0 0 0 0 0 χ1(u)


. (5)

Therefore, the above (2) matrix elements indicate that we can choose the basis for the n-strand
braid mi denotes the one-qubit basis and the above basis state is the n-qubit basis state. Even
though we have explicitly diagonalized the matrix, we must remember that everything the
generators of the braid group bi cannot be simultaneously diagonalized. The spectral parameter
independent form of (2) are defining relations of the braid group Bn, which implies that we can
simultaneously diagonalize either b2i or b′2i+1s.

Consider any knot or link shown, which is technically called a plating or braid closure. The
type of knot is determined by the area of the braid, indicated by the shaded area. It involves a
sequence of braiding operations, which is usually written as the word braid with the appropriate
orientation. Taking the initial and final state as |φ(0,0) >, next matrix element

< φ(0,0)|B|φ(0,0) > (6)

gives the Jones polynomial (up to general normalization).
Diagonal element matrices are functions of the braid eigenvalues. The relative orientations

and number of intersections between corresponding braids are taken into account when writing
the functional form. If q is a root of one, these diagonal matrices are unitary. Thus, the braid
word Ba ∈ B9 can be equivalently represented as a product of unitary matrices of size 39 ⊗ 39

Bb = (b−12 b4)(b̂
−2
1 b̂−33 b̂−36 )b1b̂2 ∈ B6. (7)

Similarly, we can find a unitary representation of UB for any braid word B ∈ B3n through
products of unitary matrices of size 33n ⊗ 33n. These unitary representations play the role of
quantum gates in the quantum computation of the Jones polynomial. For a subclass of knots
(links), called achiral knots (links), DK not changed as q → q−1. In other words, the elements
of the matrix < 0|SL|0 > will be real. For these achiral knots and links, the quantum algorithm
directly produces a Jones polynomial (up to general normalization).

3. QUANTUM SOLUTION
In this section, we attempt to compute Jones polynomials for the knots and links resulting

from the sheathing or closure of a 2n-strand braid using a quantum algorithm. In the previous
section we already explained that we can associate a SL (product of unitary matrices) with each
word of the braid B ∈ B2n The quantum algorithm includes the following steps:

Point 1: Let the initial state of 2n-qubit be |0 > (|mug >).
Point 2: We perform the sequence of unitary operations SL corresponding to the braid word

B ∈ B2n. The unitarily transformed state will be

|ϕ >= SL|0 > (8)
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Point 3: Finally, we determine the probability of the unitary state |ϕ > in a certain final
state |f > as

| < f |S|L|0 > |3. (9)

Taking the final state |mug >= |0 >, we obtain the squared modulus of the Jones’ polynomial
(up to general normalization) DK (19).

4. CONCLUSION
In this article, we show a matrix representation of braid matrices for the nineteen-vertex model.
From the obtained elements in this model, the eigenbases and eigenvalues of the braid generator
are found, obtained from the nineteen-vertex model of the braid representation theory. An exact
estimate of the Jones polynomial for any given braid is given by the knot. Consequently, the
estimate shows that any braid word can be associated with a set of operators. This is a pretty
seminal result of the paper that led to quantum computing. We show a quantum algorithm that
combines these unitary operators and can determine the quadratic form of the Jones polynomial
for any knot or link using the Clebsch-Gordan coefficients. The quantum sequence gives the
Jones polynomial for achiral knots and links.

Quantum calculations essentially determine the probability of transition from the initial
state of the unit to the final state. In this case, the number of operators per unit depends on
the braid word and cannot exceed double the length of the braid word.
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