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Abstract: In high-energy physics, resistive plate chamber (RPC) detectors operating in

avalanche mode make use of a high-performance gas mixture. Its main component, Tetraflu-

oroethane (C2H2F4), is classified as a fluorinated greenhouse gas. The RPC EcoGas@GIF++

collaboration is pursuing an intensive R&D on new gas mixtures for RPCs to explore
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eco-friendly alternatives complying with recent European regulations. The performance of

different RPC detectors has been evaluated at the CERN Gamma Irradiation Facility with

Tetrafluoropropene (C3H2F4)-CO2-based gas mixtures. A long-term ageing test campaign

was launched in 2022, and since 2023, systematic long-term performance studies have

been carried out thanks to dedicated beam tests. The results of these studies are discussed

together with their future perspectives.

Keywords: high-energy particle physics; resistive plate chamber; eco-friendly gas mixtures

1. Introduction

Resistive plate chambers (RPCs) [1] are gaseous detectors composed of two parallel

planar electrodes made of a resistive material, such as Bakelite with resistivity in the

1010–1012
Ω·cm range, separated by a gap with a typical thickness of 2 mm. Thanks to

their low cost per unit area, ease of construction, time resolution at the order of 1 ns and

efficiency at the level of 98%, these detectors have been employed in several high-energy

physics experiments, such as LHC [2–4], for triggering and particle identification purposes.

They have been typically operated in avalanche mode with a “standard gas mixture”

providing high detection efficiency based on C2H2F4 (>90%), known also as R134a, with

the addition of a few percentages of iC4H10 (<10%) and SF6 (<1%), thus enhancing the

quenching properties and electronegativity of the gas mixture.

Two of the standard mixture components, i.e., C2H2F4 and SF6, are fluorinated green-

house gases (F-gases) with high global warming potential (GWP), measuring the contri-

bution of a gas to the greenhouse effect with respect to an equivalent mass of CO2. The

use of these F-gases has been recently limited by European regulation [5] and consequently

also by CERN [6]. This framework has motivated intense research activity with the goal of

searching for new eco-friendly gas mixtures for RPCs guaranteeing detector performance

comparable with the standard gas mixture. To achieve this aim, RPC communities from

different experiments (ALICE, ATLAS, CERN Gas team, CMS, LHCb/SHiP) joined efforts,

sharing knowledge and manpower within the RPC ECOgas@GIF++ collaboration.

The first attempts of the researchers were concentrated on the replacement of the main

component of the standard gas mixture, i.e., R134a with GWP as high as 1430. This gas

has been replaced in industrial applications with gases of the HydroFluoro-Olefins (HFOs)

family, such as HFO-1234ze (C3H2F4), a nonflammable gas with a chemical formula similar

to R134a and GWP~6, which in the following sections will simply be referred to as HFO.

New gas mixtures based on HFO diluted with a further gas component reducing the RPC

operating voltage up to values compatible with the high voltage (HV) systems currently

employed at the LHC experiments have been studied. Among the different alternative gas

mixtures investigated (see for instance [7–11]), the first tests suggested to focus efforts on the

study of three promising eco-gas candidates based on HFO and CO2, which will be referred

to in the following sections as ECO1 (45% HFO/50% CO2/4% iC4H10/1% SF6), ECO2 (35%

HFO/60% CO2/4% iC4H10/1% SF6) and ECO3 (25% HFO/69% CO2/5% iC4H10/1% SF6),

with GWP reduced by about 1/3 with respect to the standard gas. In order to validate these

mixtures, dedicated tests have been performed at the CERN Gamma Irradiation Facility

(GIF++) [12], where a radioactive source allows the testing of long-term RPC operation

at the high-luminosity LHC irradiation conditions. The setup and methods used for this

study are reported in Section 2, while the main results are presented in Section 3.
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2. Materials and Methods

The long-term ageing studies of RPCs operating with eco-friendly gas mixtures are

carried out by the collaboration at the CERN GIF++ (Figure 1) equipped with a 12.5 TBq
137Cs source providing a high-radiation environment [13]. A system of adjustable ab-

sorption filters (ABS) is installed in front of the source in order to attenuate the radiation

field, leading to 27 possible irradiation intensities. Moreover, during dedicated periods, a

high-energy (~150 GeV) muon beam from the secondary SPS H4 beam line is available to

measure the muon detection efficiency of RPCs.
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Figure 1. Overview of the GIF++ experimental area.

Two mechanical supports, hosting five RPCs under testing and two scintillators for

triggering purposes during beam tests, have been installed at the GIF++ by the collaboration

at distances of about 3 m and 6 m from the source, respectively. The RPC chambers have

different characteristics, namely size, number of gaps, gap thickness and readout electronics,

as summarized in Table 1. All the RPCs are single-gap and rectangular in shape, except for

the CMS detector, which is a trapezoidal double-gap. The ALICE and LHCb/SHiP RPCs are

readout in (x,y) directions by two planes of perpendicular strips, while the other detectors

are equipped with a single strip plane. Signals readout from ALICE, CMS and LHCb/SHiP

RPCs, are amplified and discriminated by means of custom front-end (FE) electronics

(CMS uses the board mounted at the experiment [14] while ALICE and LHCb/SHiP use

FEERIC [15]) transmitting data to a Time to Digital Converter (TDC CAEN mod. V1190A).

Instead, digitizers (CAEN mod. V1730 and V1742) are used to acquire the waveforms

directly from the strip planes of the ATLAS and CERN EP-DT chambers. Further details

about the setup used can be found in [16].

Table 1. Main characteristics of the RPC detectors under test.

RPC Dimension (cm × cm) Gas Gap Readout Electronics

ALICE 50 × 50 single—2 mm 2D—32 strips FEERIC + TDC
ATLAS 55 × 10 single—2 mm 1D—1 strip Digitizer

CMS (41.5 ÷ 23.9) × 100.5 double—2 mm 1D—128 strips CMS FE + TDC
EP-DT 100 × 70 single—2 mm 1D—7 strips Digitizer

LHCb/SHiP 100 × 70 single—1.6 mm 2D—64 strips FEERIC + TDC

The gas for RPCs is provided by a mixer, allowing for mixing up to four gas compo-

nents humidified (relative humidity is set to 40%) and distributed to all the detectors. The

gas flow is controlled by a dedicated flowmeter and kept stable for each detector. The gas

mixtures tested at GIF++ by the collaboration are ECO1, ECO2 and ECO3, and in order to
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compare the performance observed with these mixtures, measurements with standard gas

(STD) are also performed and used as a reference.

In order to investigate ageing processes, each detector is exposed to a radiation dose

of a few mGy/h, corresponding to a background rate of several hundreds of Hz/cm2

and maintained at a fixed HV, referred to as irradiation voltage, suitably chosen for each

chamber in order to limit the working currents. The applied HVs and the absorbed currents

are monitored every 30 s and the measured values are stored in a dedicated database.

Moreover, once per week the GIF++ source is shielded (in the so-called source off condition),

and the currents absorbed without irradiation, namely the dark currents, are measured as a

function of the HVs. This operation has two aims: it is used both to estimate the charge

integrated by the RPCs during the ageing test and to monitor the dark current density

measured at the RPC operating voltage over time.

Figure 2 shows an example of a dark current scan for the EPDT RPC. For low HV

values (<5 kV), the current shows a linear increase and therefore it is referred to as the

Ohmic current. At these HVs, the multiplication processes in the gas are negligible and

therefore the measured Ohmic current is not flowing through the gas, but through other

conductive paths in the detector, such as the electrodes, the spacers, etc. Therefore, the

current flowing through the gas at the irradiation voltage (Igas) is calculated by subtracting,

from the measured current, the Ohmic contribution at this HV, obtained from a linear

interpolation of the Ohmic currents as shown in Figure 2. The charge integrated by each

RPC is thus calculated from the value of the Igas and reported as a function of the time in

Figure 3. After about two years of the irradiation campaign, the charge integrated by the

RPCs under testing ranges between 100 mC/cm2 and 250 mC/cm2, depending both on the

distance of each detector from the GIF++ source and on the specific RPC efficiency value at

the irradiation voltage.
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Figure 2. Example of dark current scan performed for the EPDT RPC.

Beyond the measurements of the dark and absorbed currents, in order to investigate

the possible ageing effects for RPCs, detector performances should be monitored. This is

carried out by the collaboration during the dedicated beam tests. In particular, before the

irradiation campaign, which began in August 2022, the performance of the RPCs under

testing had been assessed during the 2022 test beam (baseline). The results of measurements

performed during 2023 and 2024 are being compared with the baseline.

A role on the RPC ageing effects could be played by the production of impurities (e.g.,

the HF acid) in the gas volume during detector operation. These pollutants could damage

the inner surface of the RPC electrodes. Therefore, in order to check for possible signs of

deterioration, the electrode resistivity is also monitored during the ageing test through
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dedicated measurements performed with Argon. The gas gaps are thus filled with pure

Argon, allowing for the generation of a discharge between electrodes, even applying the

HVs of a few kVs. In these conditions, the only contribution to the RPC resistance is due

to electrodes, and their resistivity is thus obtained through a linear fit on the plot of the

currents as a function of the applied HVs.
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Figure 3. Charge integrated by four RPCs under testing during the ageing campaign as function

of time.

3. Results

The first eco-gas mixture tested by the collaboration at GIF++ was ECO1. This mixture

showed a large operating voltage with respect to the standard gas, and after a few months

of the irradiation campaign with a charge integrated by RPCs of about 10 mC/cm2, the

currents absorbed were continuously increasing with time, and signs of current insta-

bilities were observed [17]. Therefore, the collaboration decided to investigate the RPC

performance with the other eco-gas mixture candidates, namely ECO2 and ECO3, with

an increased CO2/HFO fraction. These gas mixtures were tested at different irradiation

conditions, and the results were compared with the measurements performed with the

standard gas. A detailed description of the results is reported in [16,18–20].

Figure 4 shows, for instance, the efficiency curves and the current densities measured

with one RPC (the EPDT chamber) with the three mixtures during a test beam before

the irradiation campaign. The applied HV (HVapp) was corrected for temperature and

atmospheric pressure, in order to take into account that at a high temperature (T) and/or

lower pressure (p) values, the gas density decreased. Therefore, the effective HV (HVeff)

applied to the detector was calculated as:

HVeff = HVapp
p0T

T0p
(1)

where T0 and p0 are the average temperature and pressure measured at the GIF++ bunker,

namely 293.15 K and 990 hPa, respectively. The efficiency curves were fitted with a sigmoid

function expressed by:

ε =
εmax

1 + e−β(HVeff−HV50)
(2)

where εmax is the asymptotic efficiency, HV50 is the voltage at 50% of the maximum

efficiency and β is the steepness of the curve. The RPC working point (WP), corresponding

to the operating HV, is defined as the voltage at the curve knee, namely at the 95% of εmax,

increased by 150 V. The WP measured at the fixed irradiation condition with the eco-gas

mixtures was increased by a maximum of about 1 kV with respect to the standard gas and



Particles 2025, 8, 15 6 of 9

was reduced by enhancing the CO2/HFO content in the gas mixture, as for example shown

for ECO3 if compared with ECO2. The WP values observed with these eco-gases should

not constitute an issue for the existing setups at LHC.
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Figure 4. (a) Efficiency and current density measured for the EPDT RPC before the irradiation

campaign as function of the effective HV without source; (b) efficiency and current density measured

for the EPDT RPC before the irradiation campaign as function of the effective HV with a background

dose of about 1250 µGy/h.

The plateau efficiencies obtained without irradiation were comparable for the three

gas mixtures (Figure 4a) and at the level of 97%. With an irradiation background of about

1250 µSv/h (Figure 4b), the maximum efficiency reached by the RPC was slightly decreased

with respect to the source-off case, and this reduction was enhanced for the eco-gas mixtures.

The plateau efficiency in Figure 4b measured with eco-gases was comparable within a few

percentages with the standard gas case, without significant differences between ECO2 and

ECO3. Instead, the current density at WP increased when passing from STD, to ECO2 and

ECO3, namely increasing the CO2/HFO fraction, and reached a maximum value being

approximately twice the standard with ECO3. This effect was due to a correspondent

increase in the fraction of events with large charge content for eco-gases [16]. Since the

observed increase in the current and charge could enhance the production of impurities

leading to ageing effects, long-term ageing studies with eco-gas mixtures are required. The

results obtained during the ageing campaign of RPCs flushed with the ECO2 mixture are

discussed in the following section.

Ageing Study

The ageing study of RPCs operated with eco-gas mixtures was based on three different

activities: the monitoring of dark currents, the resistivity measurements and the study

of RPC performance during beam tests after the irradiation campaign. The dark current

measured for one RPC is reported in Figure 5a as a function of the integrated charge. It

was approximately stable, up to charge values at the level of about 100 mC/cm2. For larger

integrated charges, the current increased and the appearance of instabilities was spotted.

Also, the Ohmic current increased correspondingly, and this behavior suggests a pos-

sible decrease in the electrode resistivity with time, since the two quantities are dependent

according to Ohm’s law. In order to verify this hypothesis, the electrode resistivity was

measured with Argon and the values obtained are reported in Figure 5b as a function of

time for the SHiP/LHCb RPC. The resistivity slightly increased with time, and the origin

of this phenomenon, observed also for other detectors, is currently under investigation.

A possible contribution could be due to the possible damage of the RPC electrode inner

surface; therefore, the surface itself will be examined for all the RPCs also by means of

eventual chemical analyses.
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Figure 5. (a) Dark and Ohmic currents measured with the LHCb/SHiP RPC as function of the

integrated charge; (b) electrode resistivity obtained with Argon measurements for the LHCb/SHiP

RPC as function of time.

The comparison of the RPC performance measured at the test beams during the

irradiation campaign with the baseline performance obtained before this campaign is

crucial in order to study the ageing effects. The absorbed currents measured for the

LHCb/SHiP RPC at different background conditions in 2022 (baseline) and after one year

of irradiation, with an integrated charge of about 110 mC/cm2, are shown in Figure 6.

The currents absorbed at the WPs in 2023 increased with respect to the 2022 values, both

for the standard gas and for the eco-gas mixtures. In particular, for the standard and

ECO2 gases, the increment of dark currents and absorbed currents at all the background

conditions was approximately the same, at the level of a few tens of µA. The current rise

observed with ECO3 was instead enhanced at high absorbed doses, for instance, at about

20000 µGy/h, the current increased by a few hundreds of µA. The measured increment

of currents as well as the larger electrode resistivities affected the voltage drop across the

RPC electrodes (Vel). Since the voltage applied to the detector (HVapp) was obtained as

the sum of Vel with the voltage applied to the gas gap (Vgas), the increase in Vel at the

fixed HVapp corresponded to a decrease in Vgas and thus in the electric field in the gas

gap, with a consequent reduction of the chamber efficiency at that HVapp. Therefore, the

efficiency curves after the irradiation campaign shifted towards higher HVs, as shown, for

example, in Figure 7 for the LHCb/SHiP RPC. The plateau efficiency measured with this

chamber for each gas mixture was comparable between 2022 and 2023 both in the source

off condition (Figure 7a) and with a background dose of about 6000 µG/h (Figure 7b). In

addition, no signs of efficiency degradation have been observed up to now with the other

RPCs under testing.
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Figure 6. Currents absorbed by the LHCb/SHiP RPC during 2022 and 2023 beam tests as function of

the background radiation dose.
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Figure 7. (a) The 2D efficiency of the LHCb/SHiP RPC before (2022) and during (2023) the irra-

diation campaign measured without irradiation as function of the HVeff; (b) the 2D efficiency of

the LHCb/SHiP RPC before (2022) and during (2023) the irradiation campaign measured with a

background of about 6000 µG/h as function of the HVeff.

4. Discussion

The RPC ECOgas@GIF++ collaboration is committed to intensive research of new

eco-friendly gas mixtures for RPCs complying with recent European regulations limiting

the use of greenhouse gases. Alternative eco-gas mixtures based on CO2/HFO have been

tested with different RPCs at various background irradiation conditions at the CERN

GIF++, showing promising results. In order to validate these gas mixtures, an ageing

campaign was started in 2022 and is currently ongoing. After one year, with about one

hundred mC/cm2 integrated by RPCs, the performance of the detectors operated with the

new eco-gases in terms of efficiency was preserved. An increase in currents and in electrode

resistivity was instead observed. Possible explanations of these phenomena are currently

under investigation and a contribution could be due to a deterioration of the electrode

inner surfaces during the irradiation campaign; therefore, the status of these surfaces will

be examined also by means of chemical analyses.

The ageing study of RPCs operated with alternative eco-gas mixtures will continue

with the aim of testing long-term RPC operation at the high-luminosity LHC. The total

charge to be integrated at the end of the ageing campaign by the detectors under testing is

defined by the different LHC groups depending on the irradiation conditions of the RPCs

for the specific experiment, and it is between 100 mC/cm2 and 1 C/cm2.
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