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Abstract

Industrial applications of SRF technology would favor
< the use of cryocoolers to conductively cool SRF cavities
*E for particle accelerators, operating at or above 4.3 K. In or-
.S der to achieve a lower surface resistance than Nb at 4.3 K,
2 a superconductor with higher critical temperature should
E be used, whereas a metal with higher thermal conductivity
= than Nb should be used to conduct the heat to the cryocool-
s: ers. A standard 1.5 GHz bulk Nb single-cell cavity has been
£ coated with a ~2 pm thick layer of NbsSn on the inner sur-
Z face and with a 5 mm thick Cu layer on the outer surface
E for conduction cooled applications. The cavity perfor-
8 mance has been measured at 4.3 K and 2.0 K in liquid He.

» The cavity reached a peak surface magnetic field of
= E 40 mT with a quality factor of 6x10° and 3.5x10° at
° 4.3 K, before and after applying the thick Cu layer, respec-
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INTRODUCTION

The progress made over the last few years on the devel-
< opment of NbsSn for superconducting radio-frequency
& (SRF) accelerator cavities made it attractive for applica-
S tions in which the cavities operate at a moderate accelerat-
© ing gradient, Eyc ~ 10-15 MV/m, but at 4.3 K, instead of
8 the more typical temperature of 2 K [1].

One such application is for a possible industrial use of
= = SRF accelerators, in which the cavities are cooled by con-
< duction using cryocoolers [2, 3]. Modern crycoolers have
/M a cooling power of up to ~2 W at 4.3 K and either one or
8 multiple of them can be used to cool an SRF cavity in a
£ cost effective manner, compared to using a liquid helium
% refrigerator.

Since the area of the second stage of a typical cryocooler
is only a few square inches, and cooling of the inner cavity
surface where the RF power is dissipated can only occur
by conduction, it is important to have a layer with high
thermal conductivity at ~4 K between the cavity and the

cryocooler’s second stage.

Currently, the best performing NbsSn films have been
obtained by the vapour diffusion method developed at Uni-
versity of Wuppertal in the 1990s [1]. Such method re-
quires heating of a Nb cavity substrate to ~1200 °C, which

ny distribution

licen:

work may be used under the terms

.E * Authored by Jefferson Science Associates, LLC under U.S. DOE Con-
= tract No. DE-ACO05-060R23177. Some of the work was supported by the
g 2008 PECASE Award of G. Ciovati. I. Parajuli is supported by NSF Grant
EPHYS-100614-010
g & Tgciovati@jlab.org

 TUP0S0
© 540

©=2d Conte

SRF2019, Dresden, Germany

JACoW Publishing
doi:10.18429/JACoW-SRF2019-TUPO50

A MULTI-LAYERED SRF CAVITY FOR CONDUCTION
COOLING APPLICATIONS*

G. Ciovati', G. Cheng, E. Daly, G. Eremeev, J. Henry, R. Rimmer, Jefferson Lab,
Newport News, VA, USA
U. Pudasaini, The College of William and Mary, Williamsburg, VA, USA
L. Parajuli, Old Dominion University, Norfolk, VA, USA

is higher than the melting temperature of common high-
thermal conductivity metals such as copper and alumin-
ium. Therefore, the coating of the outer cavity surface with
either copper or aluminium would need to be done after the
Nb3Sn film has been deposited on the inner surface. The
outer coating should also be deposited near room tempera-
ture conditions, as temperatures above ~100 °C in air might
have deleterious effect on the performance of the NbsSn
film.

The processes used to fabricate the multi-layered cavity
and the cryogenic RF test results are described in this con-
tribution.

Nb3Sn COATING

A single-cell Nb cavity, labelled SC-IB, made of large-
grain Nb from CBMM, Brazil, with residual resistivity ra-
tio of ~280 was used for this study. The cell shape is that
of a High-Gradient cavity as was proposed for the CEBAF
12 GeV Upgrade (G = 266 Q, Ep/Ewc = 1.77, By/Eacc =
4.47 mT/(MV/m)) and the resonant frequency of the accel-
erating mode is at 1.49 GHz [4]. The cavity wall thickness
is ~2.9 mm and the end flanges are made of pure Nb.

The coating of the inner surface with Nb3;Sn was done as
follows: SC-IB was placed on top of another single-cell
cavity, RDT2, using niobium blanks and molybdenum fas-
teners. RDT2 was next to the Sn source. A crucible with
6 g of Sn (99.999% purity from Sigma Aldrich) and 3 g of
SnCl12 (99.99% purity from Sigma Aldrich), packaged in-
side two pieces of Nb foils were placed at the bottom
flange, covering the beam pipe of RDT2.The top beam pipe
of SC-IB was closed with a niobium cover. The coating
setup was assembled inside the clean room and then in-
stalled onto the furnace insert [5].

Once the insert pressure reached 2 x 107 Torr, the fur-
nace was heated by ramping up the temperature at a rate of
6 °C/min until it reached ~ 500 °C. This temperature was
then kept constant for one hour and subsequently ramped
up at a rate of 12 °C/min up to the coating temperature of
~1200 °C. The temperature was monitored with sheathed
type C thermocouples attached to the cavities at different
locations. After maintaining the coating temperature for
three hours, heating ceased, and the furnace was allowed
to cool down gradually. When the furnace temperature
reached below 45 °C, the insert was backfilled to 1 atm
with nitrogen, and the coated cavities were taken out from
the deposition system. Visual inspection from both end of
SC-IB indicated a uniform coating as shown in Fig. 1.
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The cavity was then degreased, high-pressure rinsed
with ultrapure water, assembled with stainless steel flanges
with pump-out port and RF feedthroughs and sealed to the
cavity with In wire. The cavity was evacuated on a vertical
test stand, three flux-gate magnetometers were attached at
the equator with their axis parallel to the vertical cavity
axis. Temperature sensors were also attached at the top and
bottom iris and at the equator.

Figure 1: A picture of SC-IB interior after Nb3Sn coating.

The cavity was inserted in a vertical cryostat at Jefferson
Lab’s Vertical Test Area and cooled to 4.3 K with liquid
helium. The resonant frequency was tracked with a vector
network analyzer during cool-down and the critical tem-
perature was T. ~ 17.8 K. The cavity was slow-cooled
through T, resulting in a temperature gradient of ~100 mK
between top and bottom iris.

The cavity was tested at 4.3 K and at 2 K and a plot of
the quality factor, Qo, as a function of the peak surface
magnetic field, By, is shown in Fig. 2. The cavity was lim-
ited at 4.3 K starting at B, ~ 40 mT and by quench at B, ~
66 mT at 2 K. No field emission was detected during the
test.
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Figure 2: Qo(B,) measured at 4.3 K and 2.0 K after the first

NbsSn coating!. The cavity was limited by anomalous heat-
ing at 4.3 K and by quench at 2.0 K.

! RF losses on the stainless steel flanges are estimated to be 14.3 mW/mT?
per flange and have been subtracted from the measured Q.
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The inner surface of the cavity was etched by buffered
chemical polishing (BCP) with HF:HNO3:H3PO,4 = 1:1:2
by volume, removing ~15 um. In order to evaluate the re-
producibility of the process, the NbsSn coating process was
repeated in the same way as the first coating except the po-
sitions of SC-IB and RDT2 were interchanged. Visual in-
spection of SC-IB showed uniform coating, but a few shiny
spots were present on the surface, as shown for example in
Fig. 3.

The cavity was then prepared as mentioned above for the
cryogenic RF test and cooled-down to 4.3 K following the
same process mentioned above for the first test. The test
results are shown in Fig. 4. The cavity was limited by a
quench at B, ~ 52 mT at 2 K. The quality factor decreased
by only ~5% after quenching.

Figure 3: A picture of SC-IB interior after second NbsSn
coating. Note the shiny spot marked by red rectangle.
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Figure 4: Qo(B,) measured at 4.3 K and 2.0 K after the sec-
ond NbsSn coating!. The cavity was limited by quench at
2.0K.
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COPPER COATING

2 Samples Measurements

, publisher, and DO

Electroplating is a possible low-cost method to deposit
=< copper on the outer cavity surface at room temperature.
= However, it should be verified that both good adhesion and
£ high thermal conductivity of the electroplated copper onto
5 the Nb substrate can be achieved.

Six Nb samples, 3.175 x 3 mm? cross-section, 75 mm
_—~long and two Nb samples, 25 mm wide, 1 mm thick,
‘;’ 140 mm long were cut by wire electro-discharge machin-
£ ing (EDM) from a high-purity, fine-grain (ASTM > 5) Nb
< sheet used for SRF cavity fabrication. The samples were
= = chemically etched by BCP to remove ~100 pm from the
surface, annealed in a vacuum furnace at 600 °C/10 h, fol-
lowed by BCP removing ~25 um. The samples were Cu-
plated at A. J. Tuck Co. to deposit 3 mm thick copper on
one side. The surface to be plated was sand-blasted with
coarse grit on three of the samples, labelled No. 1-3.

The thermal conductivity, k, of one Nb sample and of
four Nb/Cu samples was measured as a function of temper-
ature, between 1.5 K — 6.5 K, along the samples and the
data are shown in Fig. 5. Samples 4 and 5 had poor adhe-
sion of the Cu on the Nb and this correlates with the lower
thermal conductivity. The thin, wide Nb strips were used to

try developing a process with improved, reliable adhesion
= of the Cu on the Nb. Different processes were tried without
success.
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Figure 5: Thermal conductivity as a function of tempera-
ture measured on a Nb strip and on four Nb/Cu strips.

Cavity Coating and Test Results

The samples study showed that k(4.3 K) ~ 1 kW/(m K)
5 could be achieved with electroplated copper onto Nb but
- without reliable strong bonding at the Nb/Cu interface.
é Cold-spray is a relatively new technique that allows spray-
E ing a metal powder on a substrate at very high speed. As
= the metal particles hit the surface, they undergo a plastic

O deformation and bond to the surface. Since the purity of the
O
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Cu powder is not as good as that of electroplated copper,
cold-spray was considered as a method to create a “seed”
layer onto the Nb surface, onto which one can build up the
thick Cu layer by electroplating.

Nb samples of the same size as those prepared for the
plating study were cold-sprayed with Cu at Concurrent
Technologies Corporation (CTC). The thin strips were then
plated with 1 mm thick Cu at A. J. Tuck Co. and good ad-
hesion was verified by a bend test.

The single-cell SC-IB was cold-sprayed with Cu powder
of purity 99.9% and ~40 um particle size at CTC. Helium
was used as the gas carrier and the distance between the
cavity surface and the spray gun was kept at ~1.3 cm using
a robotic controlled arm. The cavity rotated at 0.8 rev/sec
during the coating process and the coating thickness was
~76 um, as determined by a micrometer measurement on
the flat samples, coated with the same parameters as the
cavity. A picture of the cavity after cold-spray is shown in
Fig. 6. The cavity was sealed with stainless flanges and
Gore-Tex gaskets during the cold-spray.

Figure 6: Single-cell cavity after deposition of a thin layer
of copper on the outer surface by cold-spray.

The next step was to deposit the thick copper layer by
electroplating. The thickness of the layer was determined
to be 5 mm from a finite element thermal analysis with AN-
SYS®, considering the RF losses at the maximum field at
4.3 K shown in Fig. 4 and cooling with a single cryocooler.
A ring ~25 cm in diameter and ~1.3 cm thick had to be
grown at the equator as well, in order to provide a large
contacting surface for the thermal link between the cavity
and the cryocooler.

The plating was done in multiple steps, with intermedi-
ate masking to allow growing the minimum thickness in
regions of low current density, such as the irises, and of the
thick center ring. Sanding of lumps was done as well be-
tween plating cycles. It took 90 days of plating to grow the
whole layer.

At the end of the plating process, it was found that some
of the CuSOy solution had leaked into the cavity. Inspec-
tion of the inner surface with a boroscope showed one
~1 mm size Cu particle on the surface. Such particle was
removed by degreasing the cavity. As a precaution, the cav-
ity was filled with HNO3(35%) at room temperature for 1
h to dissolve any possible CuSOj residue.

Afterwards, the cavity was machined on a lathe to re-

move the excess copper. Flood cooling was used and the
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peak temperature during machining did not exceed 35 °C.
Pictures of the cavity after plating and after machining are
shown in Fig. 7.

Figure 7: Single-cell cavity after Cu-plating (a) and ma-
chining (b).

The cavity was then degreased, high-pressure rinsed
with ultra-pure water, dried in an ISO 5 clean room, assem-
bled with a variable input coupler [6], a pump-out port and
a pick-up probe. The cavity was evacuated on the vertical
test stand. Cernox temperature sensors were attached at the
iris and equator. The cavity was cooled from 295 K to
~20 K at a rate of ~10 K/min, whereas cooling was slowed
at ~18 K to achieve a temperature difference of ~100 mK
between the top and bottom irises. The cryostat was then
filled with liquid He at 4.3 K followed by pumping on the
He bath until achieving 2.0 K.

The frequency shift from 295 K, 1 atm, to 4.3 K, ultra-
high-vacuum, increased from ~2.4 MHz to ~6.3 MHz after
the Cu layer was added. This is due to the larger thermal
contraction of Cu compared to that of Nb. The pressure
sensitivity decreased from ~180 Hz/Torr to ~27 Hz/Torr
because of the thicker walls after the Cu layer was added.

The results from the cryogenic RF tests of the multi-lay-
ered cavity at 4.3 K and 2.0 K are shown in Fig. 8. The
cavity was limited at 4.3 K by “Q-switches” at ~36 mT,
whereas it quenched at ~54 mT at 2.0 K. The Qo at 2 K
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decreased by ~40% after ~10 quenches. No field emission
was detected. The power dissipated in the cavity at 4.3 K
is ~1.5 W at B, = 34 mT, just before the occurrence of the
Q-switch. The resonant frequency was tracked during
warm-up and 7. was found to be ~17.8 K.

The data in Fig. 8 show that the performance degraded
after the addition of the copper layer, above ~15 mT. One
possible reasons is strain in the NbsSn film resulting from
the differential thermal contraction between Nb and Cu. It
is well known that the superconducting properties of
NbsSn are very sensitive to strain [7]. A finite element anal-
ysis with ANSYS® shows that stresses as high as
~275 MPa at the irises and ~185 MPa elsewhere on the cell
may be applied to the NbsSn-coated Nb, due to the larger
thermal contraction of Cu.
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Figure 8: Qo(B,) measured at 4.3 K and 2.0 K after depos-
iting a ~5 mm thick Cu layer on the cavity outer surface!'.

The cavity was limited by quench at 2.0 K.

CONCLUSION

A multi-layered cavity with a thin Nb3Sn coating formed
on the inner surface of a Nb cavity and a thick Cu coating
on the outer surface was built and tested at 4.3 K and 2.0 K.
The cavity reached ~40 mT at 4.3 K and ~50 mT at 2.0 K.
The Qo degraded at high-field after applying the thick Cu
layer, possibly due to strain of the film resulting from the
differential thermal contraction between Cu and Nb.

The cavity will be attached to a test setup with a cry-
ocooler to measure its performance using conduction cool-
ing instead of a liquid helium bath.
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