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Abstract
The ACME collaboration has completed a measurement setting a new upper limit

on the size of the electron’s permanent electric dipole moment (EDM). The existence

of the EDM is well motivated by theories extending the standard model of particle

physics, with predicted sizes very close to the current experimental limit. The new

limit was set by measuring spin precession within the metastable H state of the polar

molecule thorium monoxide (ThO). A particular focus here is on the automated data

acquisition system developed to search for a precession phase odd under internal

and external reversal of the electric field. Automated switching of many different

experimental controls allowed a rapid diagnosis of major systematics, including the

dominant systematic caused by an imperfect reversal of electric fields coupled with

laser polarization gradients. Polarimetry measurements made it possible to quantify

and minimize the polarization gradients in our state preparation and probe lasers.

Three separate measurements were used to determine the non-reversing electric field

component which changes the field’s magnitude correlated with its direction. The

new bound of |de| < 8.7 × 10−29 e · cm is over an order of magnitude smaller than

previous limits, and strongly limits T-violating physics at TeV energy scales.
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Chapter 1

Introduction

Like a good friend with a dark past, the electron is a fundamental particle that is

simultaneously ubiquitous and familiar, but we suspect holds mysteries that keep us

digging for answers. Ever since the original suggestions of Ramsey and Purcell [1],

the electron’s permanent electric dipole moment (EDM) has been sought with in-

creasing precision over the years, but never found. The ACME (Advanced Cold

Molecule Electron EDM) Collaboration’s recent result [2] represents a jump forward

in the evolution of these experimental searches, but we rest on the shoulders of gi-

ants. Our experiment is heavily inspired by the extremely precise phase precession

measurements using thallium beams [3], and the ground-breaking work bringing the

peculiarities of molecular structure to bare in enhancing EDM experimental sensi-

tivity [4, 5, 6]. Using the polar molecule thorium monoxide (ThO), we measured

de = (−2.1 ± 3.7stat ± 2.5syst) × 10−29 e · cm. This corresponds to an upper limit

of |de| < 8.7 × 10−29 e · cm with 90% confidence, more than an order of magnitude

1



Chapter 1: Introduction

improvement in sensitivity relative to the previous best limit.1

Our ACME team moved from conception to debugging and analysis of a precise

EDM experiment in just over five years, a much shorter time scale than is usual for

such measurements. By combining a high flux molecular beam source [8] with classic

spin precession experiments adapted for ThO [9], we avoided the pitfalls of many

previous experiments by constructing one with experimental simplicity in mind [10].

The search for the electron EDM is motivated by particle physics but implemented

using atomic physics techniques. The results are significant, and in the context of

many theories beyond the Standard Model, our results constrain T-violating physics

at the TeV energy scale [11, 12], a comparable energy scale to those currently being

probed at the Large Hadron Collider.

This thesis provides an overview of the ACME EDM experiment with emphasis

on those aspects I worked on most closely. It is organized as follows:

• Chapter 1 provides the motivations for an electron EDM search and outlines

the benefits of using ThO.

• Chapter 2 details the experimental procedure and describes the major compo-

nents of the apparatus.

• Chapter 3 describes a measurement of the excited C state lifetime and calculates

the appropriate transition strengths.

• Chapter 4 describes properties of the state preparation and probe lasers, in-

cluding imperfections that contributed to the leading experimental systematic
1The previous best limits on de came from experiments with thallium (Tl) atoms [3] (|de| <

1.6× 10−27 e·cm) and ytterbium fluoride (YbF) molecules [4, 7] (|de| < 1.06× 10−27 e·cm).

2



Chapter 1: Introduction

error.

• Chapter 5 details the implementation of our data acquisition system.

• Chapter 6 discusses measurements of our electric fields using the ThO beam.

• Chapter 7 summarizes important features of the data interpretation and anal-

ysis.

• Chapeter 8 concludes with the present status of ACME generation II upgrades.

Portions of the text are adapted from [2], as I was one of the primary drafters and

editors of that paper.

1.1 EDMs and T-Violating Extensions to the Stan-

dard Model

The Standard Model of particle physics is known to be incomplete. One one hand,

this theory has had monumental success in encompassing all known fundamental

particles and interactions into one self-consistent framework. It has demonstrated

incredible breadth and precision, for example, in its ability to predict the electron’s

magnetic moment to one part in a trillion [13]. Recently, the theory has been further

bolstered by the discovery of the Higgs Boson at the Large Hadron Collider (LHC) [14,

15] as predicted by the Brout-Englert-Higgs mechanisms put forth half a century

ago [16, 17]. However, the Standard Model fails to account for a broad array of the

observed cosmological phenomena in our universe. Observations confirm that both

dark matter and dark energy account for 95% of the total content of the universe, but

3



Chapter 1: Introduction

neither is predicted by the Standard Model. Moreover, the model does not contain

a mechanism which explains the inherent asymmetries implied by the prevalence of

matter over antimatter in the observed universe. Indeed, the Standard Model predicts

many orders of magnitude less baryonic matter, which prevents the existence of the

matter dominated universe we live in today [18, 19].

Extensions to the Standard Model seek to solve some of these problems, while

still staying consistent with the model’s successful predictions. Both in theory and

experiment, identifying and testing possible Standard Model extensions is one of

the most active fields of fundamental physics research. For example, weak scale

supersymmetry posits the existence of new particles and interactions which serve as

candidates for weakly interacting dark matter particles [20]. One way of testing these

theories is through direct detection of the predicted particles. If these particles have

masses around the electroweak scale of ∼ 200 GeV, they could be created in collisions

at high energy TeV-scale particle accelerators like the LHC [21]. Or, assuming they

constitute dark matter particles, extremely sensitive and low background experiments

could observe their minuscule interactions with regular matter [22]. As of yet, such

experiments have shown no sign of these exotic particles, and therefore provide no

direct validation of theories like supersymmetry.

As an alternative approach, one can precisely measure how the structure of more

commonplace particles is modified by these standard model extension theories. Of

particular interest are those theories that include additional sources of time rever-

sal (T) violation beyond the mechanism present in the Standard Model [23]. An

enhanced amount of T-violation is required to generate the matter antimatter asym-

4



Chapter 1: Introduction

metry according to Sakharov’s conditions [24, 25]. Standard Model extensions that

are asymmetric under time reversal nearly always predict small yet potentially mea-

surable electric dipole moments of fundamental particles [26, 27]. The EDM of a

fundamental fermion is an asymmetric charge distribution along the particle’s spin ~S

that is also asymmetric under T (Figure 1.1).

Since their importance was first proposed by Purcell and Ramsey [1], permanent

EDMs have been sought in a wide array of systems, from bottles of ultracold neu-

trons [28] to muons in storage rings [29, 30]. So far, no permanent EDMs have been

detected for any of these fundamental particles, but experiments continue to improve

their precision and prescribe tighter upper limits. These searches are complimentary

to one another, as they probe different regions of the parameter space of theories

beyond the Standard Model. For instance, in the minimal supersymmetric standard

model (MSSM), the two complex phases which give rise to T-violation have different

behaviors in the leptonic and hadronic sectors. Limits on the neutron, electron, and

mercury atom EDMs together place stringent bounds on this parameter space [26].

By utilizing techniques for precision measurements of atomic structure, experi-

ments can be sensitive to these tiny T-violating effects in electrons and nucleons [33,

34]. Of particular interest are electron EDMs, de, which along with T-violating elec-

tron nucleon interactions, can generate detectable effects in paramagnetic atoms and

molecules. Many well motivated theories predict an electron electric dipole moment

in the range of 10−27 to 10−30 e·cm [12, 35]. The exceptionally high internal effective

electric field Eeff of heavy neutral atoms and molecules causes an interaction term

VE = −~de · ~Eeff which can be used to precisely probe for de via the associated energy
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Figure 1.1: P and T violation due an electron EDM. Assuming magnetic
(gµB) and electric (de) dipole moments are initially aligned, under either
symmetry transformation they become anti-aligned. The system is not be
invariant under either P or T transformations unless one of the moments is
zero [31]. The magnetic moment is clearly nonzero, being the most precisely
measured property of an elementary particle [32].

shifts. Valence electrons travel relativistically near the heavy nucleus, making Eeff up

to a million times the size of any static laboratory field [36, 37, 38].

The small T-violation in the Standard Model’s CKM mixing matrix predicts an

electron EDM which less then 10−38e·cm [39]. A measurably large EDM requires new

mechanisms of T-violation, which is equivalent to combined charge-conjugation and

parity (CP) violation, given the CPT invariance theorem. Nearly every extension to

the Standard Model [35, 11] introduces new CP-violating phases φCP. It is difficult to

construct mechanisms that systematically suppress φCP, so model builders typically

assume sin(φCP) ∼ 1 [27]. An EDM arising from new particles at energy Λ in an

6
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n-loop Feynman diagram will have size

de
e
∼ κ

(
αeff

4π

)n (mec
2

Λ2

)
sin(φCP)(~c) (1.1)

where αeff (about 4/137 for electroweak interactions) encodes the strength with which

the electron couples to the new particles, me is the electron mass, and κ ∼ 0.1 to

1 is a dimensionless prefactor [37, 26, 12]. In models where 1- or 2- loop diagrams

produce de, our result typically sets a bound on CP violation at energy scales Λ ∼ 3

TeV or 1 TeV, respectively [35, 11, 27, 12]. Hence, within the context of many models,

our EDM limit constrains CP violation up to energy scales similar to, or higher than,

those explored directly at the Large Hadron Collider.

1.2 An EDM Experiment in ThO

A wide array of atomic [40, 3, 41], molecular [42, 4, 6, 43, 2], and solid state [44]

systems have been used to search for EDMs in of the bound valence electrons (Fig-

ure 1.2). The basic protocol of all these experiments involves measuring the spin

dependent shifts associated with the interaction of the electron EDM with an exter-

nal field [37]. An electron with both magnetic moment µ and electric dipole moment

de experiences dipole interaction terms

VB = −~µ · ~B, (1.2)

VE = −~de · ~E (1.3)

under the influence of electric E and magnetic B fields. Energy levels with opposite

spin orientations relative to B and E experience energy level shifts linearly propor-

tional to the applied fields.
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Figure 1.2: Complete history of published electron EDM limits. Follow-
ing Purcell and Ramsey’s proposal [1], EDMs limits were first set using
the Lamb shift [45], electron g-factor measurements [46, 47], and scatter-
ing experiments [48]. Sandar’s calculation of the enhancement factors in
atoms [36], led to their measurement in the paramagnetic atoms Rb [49, 50],
Cs [51, 52, 53, 54, 55, 56, 40], and Tl [57, 58, 59, 3]. Extremely precise
measurements in diamagnetic atoms are also sensitive to electron EDMs,
including measurements in Xe [60, 61, 62] and 199Hg [63, 64, 65, 66, 41].
Measurements in molecules include those in TlF [67, 68, 69, 42], YbF [70, 4],
PbO [6], HfF+ [43], and ThO [2]. Some solid state systems have also been
used, including nickel-zinc ferrite [71], gadolinium-iron garnet [72], gadolin-
ium gallium garnet [73], and Eu0.5Ba0.5TiO3 [44]. Figure updated from Paul
Hamilton’s thesis to include recent results [74].
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A bare electron cannot have E fields applied to it without accelerating it into the

walls of the measurement apparatus. Electron EDM experiments measuring anoma-

lous Larmor precession frequency of free electron beams due to ~v × ~B electric fields

are over a trillion times less sensitive than our current limit [47]. In a molecule, the

electron experiences an effective electric field (Eeff) which is much greater than the

applied laboratory fields (Section 1.3.1). The well known Zeeman shifts sum with the

analogous EDM shifts, so measurement of the energy level splitting contains a term

proportional to de. These Zeeman shifts are much larger than EDM shifts, and there-

fore accurate measurement of de requires reversing the sign of ~E to extract the E field

correlated energy splitting. A Ramsey type phase precession measurement is typically

the most sensitive way of measuring these small correlated phases (Section 2.1).

1.2.1 Statistical Sensitivity

The statistical sensitivity of an ideal EDM experiment follows from the Heisen-

berg energy-time uncertainty principle ∆Edeτ = ~, where τ is the time allowed for

phase precession [37]. A single phase precession measurement has an EDM resolution

δde ∝ 1/(Eeffτ), which is limited by the energy shift enhancement factor Eeff and the

maximum achievable coherence time τ . Repetition of the experiment N times im-

proves the signal-to-noise by a factor of 1/
√
N , assuming a small detection efficiency

9
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and an experiment limited by photon detection shot noise.2 The EDM sensitivity can

therefore be cast into the form

δde = ~
2Eeffτ

√
ṄT

(1.4)

where Ṅ is rate of EDM measurements and T is the total integration time. Therefore,

the best EDM experiments have large effective electric field (Eeff), long coherence

times (τ), high measurement fluxes (Ṅ) and the potential for long integration times

(T ). The ACME experiment has achieved a statistical sensitivity of about δde ≈

4× 10−28 e · cm/
√

Day.

Of other electron EDM searches actively under pursuit, the HfF+ experiment at

JILA [77, 43] and the next generation of the YbF experiment at Imperial college [4, 7]

are the most competitive with our new limit. The YbF experiment uses the familiar

technique of measuring the spin resonance in a molecular beam. Unlike ThO, this

experiment is performed in the molecule’s ground state, and therefore the coherence

time can be extended well beyond the ∼ 600 µs used to set the previous best limit.

A laser cooled molecular fountain represents their ultimate goal, allowing precession

times of ∼ 250 ms, and ultimate projected sensitivities a the 1×10−30 e·cm level. The

HfF+ experiment can achieve similar precession times through an entirely different

technique, using an RF Paul trap to confine the molecules for arbitrary lengths of time.

Despite small numbers in the trap, these long coherence times make their statistical
2Because our photon detection efficiency is � 100%, we are limited by shot noise on the photon

detection, not on the number of molecules. Almost 100% of molecules that undergo phase precession
emit a photon, but only ∼ 10% of those photons are collected and sent to our photomultiplier tubes.
These tubes have a 10% quantum efficiency, so only ∼ 1% of emitted photons are detected as
photo electrons. Increasing the detection efficiency to 100% would make us limited by quantum
projection noise. The signal to noise could potentially be improved at this point by employing spin
squeezing to reach the Heisenberg limit for quantum measurements, and achieve sensitivity scaling
δde ∝ 1/N [75, 76].

10



Chapter 1: Introduction

sensitivity per root day competitive with ACME’s. This would represent the first

time a trapped ion would be used to measure an electron EDM, which warrants a

lengthy study of systematics for full confidence in a new result.

1.2.2 ThO Molecular Structure

As in atoms, electronic states in diatomic molecules can be characterized in terms

of their orbital (~L), spin (~S), and total (~Je) angular momentum. However, molecules

are complicated by the broken symmetry of their internuclear axis (n̂). This allows for

rotation of the molecule with a rotational angular momentum ~R, which contributes to

the total angular momentum ~J = ~Je + ~R. Moreover, in diatomic molecules electronic

angular momentum may be projected onto the internuclear axis, which defines an

extra set of quantum numbers. The projections of (~L, ~S, ~Je) are (Λ,Σ,Ω), and the

sum relation Ω = Λ + Σ holds between these scalar quantities. Therefore, the total

angular momentum must satisfy J ≥ |Ω| (Figure 1.3). Outside of the molecule fixed

frame, ~J has the usual (2J+1) projections along the ẑ axisM = (−J,−J+1, . . . , J).

ThO molecule is best described in a Hund’s case (c) basis where each state typ-

ically can be characterized with quantum numbers |J,M,Ω〉. For Hund’s case (c)

molecules, L, S, Λ, Σ, and Je are not good quantum numbers. General discussions

of diatomic molecular structure can be found in several textbooks [78, 79] and other

sources [80, 81], including summaries of molecular quantum number notation and

Hund’s cases for angular momentum coupling.

In an environment free of external E and B fields, the isotropy of electromagnetic

interactions dictates that the molecular eigenstates be simultaneous eigenvectors of

11



Chapter 1: Introduction

𝐽 𝑒 

O- Th+ 
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𝑆  

𝑅 𝐽  

𝑛   

Figure 1.3: Angular momentum coupling in Hund’s case (c), the best coupling
scheme for ThO. Adapted from [78].

both energy and parity. For states with |Ω| > 0, there are two possible projections±Ω.

Confusingly, pure rotational states |J,M,Ω〉 are not simultaneous eigenstates of the

parity operator P |J,M,Ω〉 = (−1)J−Ω |J,M,−Ω〉 [78, 80]. Good parity eigenstates

are linear combinations of |J,M,±Ω〉

|J,M,±〉 = 1√
2

(|J,M,+Ω〉 ± |J,M,−Ω〉). (1.5)

Molecular rotation lifts the degeneracy between these |J,M,±〉 states with a splitting

∆Ω = aJ(J + 1) [82].

The electronic energy levels relevant for the ACME experiment are shown in Fig-

ure 1.4, along with leading term symbols. ThO molecules are produced primarily in

the ground X 1Σ+ state, and the EDM experiment is performed in the lowest lying

metastable (τH ∼ 2 ms) H 3∆1 state. Higher electronic states are used for incoher-

ently populating the H state (via the A state) or transferring population out of H

12
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A 3P0 

H 3D1 

C 1P1 

943 nm 

pump 

1090 nm  

prep/probe 

690 nm  

detect 

ground state 
X 1S+ 

EDM state 

Figure 1.4: Electronic states of ThO relevant for the ACME experiment.
States are labeled with lettered names and the leading order Hund’s case (a)
term (2S+1ΛΩ).

(via the C state). The H state is |Ω| = 1 and we perform the EDM experiment in

the lowest rotational J = 1 state where there are a total of 2(2J + 1) = 6 sublevels.

When static electric fields (E) are applied, the opposite parity |J,M,±〉 omega

doublet sublevels of the H state are mixed by the dc Stark interaction Vdc = − ~D · ~E .

The interaction hamiltonian is

|J,M,+〉 |J,M,−〉

H =

 −
∆Ω(H)

2 −DHE

−DHE
∆Ω(H)

2

 ,
(1.6)
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𝒩 = −1 

𝒩 = +1 

Δ𝑠𝑡 

𝐻 State  

𝑃 = + 

𝑃 = − 

Figure 1.5: Level diagram of the H state in the limit of large electric field.
Opposite orientations of the molecule are split by the dc Stark Shift ∆st,
while theM = 0 states maintain good parity with a zero field omega doublet
splitting ∆Ω = 360 kHz. The upper M = 0 has parity P = −, as verified
using microwave spectroscopy [81].

where DH = D0MΩ
J(J+1) is the expectation value of the dipole moment operator in high

field (Section 3.2). This results in an E field dependent shift between the omega

doublet states

∆st =
√

∆2
Ω(H) + (2DHE)2. (1.7)

In the high field limit, the eigenstates have completely mixed parity and evolve to-

wards states with a single value of Ω. The polarization is defined as PH = 〈Ω〉 /|Ω| [74,

80, 7], which is explicitly

PH = DHE√
(DHE)2 + (∆Ω(H)/2)2

. (1.8)

For a fully saturated state, it is useful to define N = MΩÊ · ẑ, such that the

internuclear axis points along the molecule’s dipole n̂ = D̂ = NÊ . Then N = +1(−1)
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has been defined such that the molecule’s dipole is either aligned(anti-aligned) with

the laboratory E field and the doublet of spin states (M = ±1) is lower(higher)

in energy then the unshifted M = 0 state [10, 81] (Figure 1.5). Note that the

M = 0 states are unshifted to first order for the same reason that E1 transitions

with ∆J = 0, M ′′ = M ′ = 0 are forbidden, because the Clebsch-Gordan coefficient

is zero.

In this high electric field limit, the frequency shifts of H state sublevels with

quantum numbers M and N include (from left to right) the Zeeman interaction, the

EDM interaction, and the linear dc Stark shift

EH(M,N ) = −
[
(gHµB + η|Ez|N )Bz + deEeffNẼ

]
M −DH |Ez|N (1.9)

where η|Ez|N describes the E field dependent difference in g value between upper and

lower omega doublets [83]. The M dependent term will cause spin precession when a

superposition of M = ±1 states is created (Section 2.1).

1.3 Advantages of ThO

This result is the first time that ThO has been used for an EDM experiment.

The benefits of using a 3∆1 state in a heavy polar molecule have been understood

for some time [84, 5, 85, 86], inspiring a new class of EDM experiments in molecules

with similar structure, including PbO [6], HfF+ [43], and WC [87]. Each molecule

has slight differences requiring variations in experimental procedure. Currently, ThO

holds the edge over other EDM experiments thanks to the molecule’s high internal

electric field Eeff and our bright and robust molecular beam [8], in additional to unique
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features for the rejection of common systematics.

1.3.1 Large Effective Electric Field

A valence electron in an atom or molecule, when polarized in an electric field,

experiences an interaction VE = −~de · ~Eeff that shifts the energy levels proportional

to an effective electric field Eeff produced by the nucleus. The H 3∆1 electronic

state in the thorium monoxide (ThO) molecule provides an Eeff ≈ 84 GV/cm, larger

than those previously used in EDM measurements3 [88, 89]. As first pointed out by

Sandars [36], heavy atoms or molecules can have effective electric fields that greatly

exceed the polarizing laboratory field. The energy level shifts caused by an electron

EDM in state ψ0 are [90]

∆Ede = 〈ψ0| − de(γ0 − 1)Σ · Eeff |ψ0〉 . (1.10)

These matrix elements are only nonzero between atomic states with parity mixed by

a laboratory electric field E .

Useful reviews of these calculations can be found in [80, 38, 90, 91], and we find

that the energy level shifts can be parameterized using

∆Ede = −deEeffP, (1.11)

where 0 ≤ P ≤ 1 describes the amount of mixing between opposite parity sublevels.

Schiff’s theorem [92] claims that ∆Ede should be zero in the non-relativistic limit,

because an electron bound in a neutral molecule must experience electric fields that
3We use the value Eeff = 84 GV/cm value from [88] throughout this thesis. See Section 7.4 for

discussion.
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time average to zero 〈~Eeff〉t = 0. This energy level shift is only nonzero in the rela-

tivistic limit, where the electron’s EDM experiences length contraction close to the

nucleus, so 〈~de · ~Eeff〉t 6= 0 [90]. The relativistic component that contributes to Eeff

typically scales like Z3, and therefore heavy atoms or molecules (Tl, Yb, Th, ...) are

most useful for EDM searches.

Insofar as polar molecules can be fully polarized in laboratory-scale electric fields,

Pm ≈ 1, and then ∆Ede is only determined by Eeff and can be much greater than in

atoms. The polarization mixing of an atom according to perturbation theory is

Pa ≈ −E
D⊥

Ep − Es
, (1.12)

where D⊥ is the transition dipole moment between opposite parity states with energy

Es and Ep. Nearest opposite parity states in atoms are typically split by the fine

structure splitting (Ep−Es) ≈ 0.1(e2/a0) ∼ 10−100 THz, so for a large but achievable

laboratory field of 200 kV/cm, Pa ≈ 10−4. Rotational spacing in molecules provides

one source of closely spaced opposite parity sublevels not present in atoms. For

heavy molecules typically used for EDM searches, rotational splittings on the order

of 10 GHz allow the polarization to near saturation at electric fields of ∼ 10 kV/cm [7].

Polar diatomic molecules therefore can have as much as a 104 enhancement in their

sensitivity to de.

In particular, the |H, J = 1〉 state of ThO has closely spaced opposite parity levels

provided by the very small zero field omega doublet splitting ∆Ω = 360 kHz [93, 94]

(confirmed with our own microwave spectroscopy [81]). In this limit, it is best to

calculate the polarization non-perturbatively, and according to Equation 1.8, the H

state is almost completely polarized if E � ∆Ω(H)/(2DH) = 0.17 V/cm (Figure 1.6).
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Figure 1.6: Unpolarized fraction (1 − PH) of the H state wavefunction as a
function of electric field. We operate our experiment at 141 and 36 V/cm,
where the unpolarized fraction is less than a part in 105, and there is no
measurable difference in Eeff .

This provides very modest requirements on our electric field magnitudes, requiring

voltage supplies operate only up to a few hundred volts. The ACME experiment was

the first to achieve saturation of the EDM sensitivity. Moveover, because we could

easily apply ∼ 100 V/cm field, we had the freedom to run the experiment at multiple

electric field values without sacrificing EDM sensitivity. This is a powerful tool for

eliminating potential systematics related to high electric fields, such as leakage and

charging current correlated magnetic fields [3, 41].

1.3.2 Systematic Rejection through Omega Doublets

Improved systematic error rejection is possible because internal state selection

allows the reversal of ~Eeff with no change in the laboratory electric field [95, 5]. As

indicated in Figure 1.5, the large polarizability of the H state means oppositely ori-

ented omega doublet states can easily be spectroscopically resolved in E fields over a
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few V/cm. The spin doublets |M = ±1,N〉 used for a phase precession measurement

can be selected simply by detuning the state preparation and probe lasers. Tradi-

tionally, EDM experiments reverse the E field to separate out background phases,

but effects such as leakage currents create systematic phase shifts correlated with E ,

mimicing an EDM. There is a far smaller class of systematic effects that reverse with

both a laboratory electric field E and omega doublet state N , and therefore an EDM

correlated with both is more robust against such systematics [74, 10, 86, 6].

The large polarizability due to omega doublets also suppresses both the motional

magnetic fields and geometric phases that limited the Tl measurement [3]. Once

the H state is fully polarized with with E > 1 V/cm, the dc Stark shift splits the

M = ±1 states from the M = 0 states at a rate of DH ≈ 1 MHz/(V/cm). This

is much greater than the Zeeman interaction gHµB ≈ 5 Hz/G, so the molecules are

always electric field quantized. Motional magnetic fields ~Bmot ∝ ~v× ~E are necessarily

transverse to the ẑ quantization axis, and the resulting systematics are suppressed

to first order [60, 96], as first demonstrated with Xe atoms [60] and later applied

to alkali atoms [96]. The YbF experiment first demonstrated this suppression using

molecules [70].

1.3.3 Small Magnetic Moment

The H state’s unusually small magnetic moment of (4 × 10−3)µB reduces the

experiment’s sensitivity to spurious magnetic fields [10, 97]. As mentioned above,

many systematics are caused by magnetic phases that are electric field correlated,

as is the EDM. A smaller magnetic moment reduces the size of these phase shifts
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Figure 1.7: Angular momentum cancellations leading to a reduced magnetic
moment in the H state. Orbital and Spin projections (Λ and Σ) must oppose
each other such that Λ+Σ = Ω. Since the spin angular momentum has twice
the gyromagnetic ratio of orbital angular momentum, the total magnetic
moment µH ∝ 2(Σ) + Λ ≈ 0.

relative to those from the EDM itself. Moreover, magnetic Johnson noise [38, 98]

is a difficult to avoid noise source, which will dominate over photon shot noise if

signal sizes are large enough. The small magnetic moment in the H state makes the

magnetic Johnson noise nearly irrelevant. The small magnetic moment is the result

of the opposition of the spin and orbital angular momentum in the 3∆1 state, which

cancel a large fraction of the magnetic moment [83] (Figure 1.7).

1.3.4 Experimental Simplifications

Not to be understated are the experimental simplifications afforded by an EDM

experiment with ThO. All transitions necessary for the generation and detection of

spin precession in H are accessible via solid state diode lasers (Figure 1.4). Turnkey
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fiber amplifiers provide ample power to saturate the H → C transition, and have well

stabilized output powers. Moreover, we have demonstrated that ThO production via

ablation in a buffer gas cell is a remarkably efficient way to produce high flux beams

of molecules [8]. Using this technique, we have been able to produce a slow molecular

beam with vbeam ≈ 200 m/s. With the τ = 2 ms lifetime of the H state setting our

maximum coherence time, a precession length greater than L ≈ 22 cm currently used

would not significantly improve the sensitivity of the experiment [10]. This eliminates

much of the complication of generating interaction E and B fields that are uniform

over very long distances, as would be necessary with a faster molecular beam.
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The ACME Experiment:

Measurement Procedure and

Apparatus

Our experimental result of |de| < 8.7× 10−29 e · cm required us to search for EDM

correlated energy level shifts ωNE < 1.7×2π mHz. Directly measuring such minuscule

level shifts via Rabi flopping would require a narrow transition linewidth and well-

stabilized frequency reference [99]. By instead performing a measurement analogous

to the Ramsey technique of separated fields [100], we lift these requirements and can

achieve linewidths of ∆ω = π/τ , for separation time τ [33].

To measure de we perform a spin precession measurement [10, 101, 9] on pulses

of 232Th16O molecules from a cryogenic buffer gas beam source [102, 8, 103]. The

molecules pass between parallel plates that generate a laboratory electric field Ez ẑ.

A coherent superposition of two spin states, corresponding to a spin aligned in the
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xy plane, is prepared using optical pumping and state preparation lasers. Parallel

electric (~E) and magnetic ( ~B) fields exert torques on the electric and magnetic dipole

moments, causing the spin vector to precess in the xy plane. The precession angle is

measured with a probe laser and fluorescence detection. The change in this angle as

~Eeff is reversed is proportional to de.

Our phase precession time is τ = 1.1 ms, leading to a relatively wide fringe of width

∆ω ≈ 105 × 2π mHz � ωNE . Therefore, significant averaging and careful study

of statistical lineshapes and systematic errors was necessary to achieve the quoted

experimental precision. This required us to push the spin precession measurement to

the shot noise limit [9] and build a robust beam source [8] and data acquisition system

(Chapter 5) suited for long integration times. This chapter discusses the details of

the measurement procedure, the apparatus that allows us to perform that procedure,

and the fundamental data analysis steps from which we extract a measurement of de.

2.1 Spin Precession Measurement

In more detail, molecules in the ground X 1Σ+ state enter the electric field plates

with most population in the |X, J = 1〉 states due to the ground state rotational

cooling performed outside the shielded region (Section 2.3.2). A linearly polarized

943 nm laser beam tuned to the |X, J = 1〉 → |A, J = 0〉 transition optically pumps

molecules into the lowest rotational level, J = 1, of the metastable electronic H 3∆1

state. Our measurements of A → H branching ratio reveal that about 30% of the

population in a single |X, J = 1,M〉 sublevel is pumped into |H, J = 1〉manifold in an

incoherent mixture of the |N = ±1,M = ±1〉 and |M = 0, P = −1〉 states. The pump
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Figure 2.1: Relevant energy levels for the spin precession measurement. The
H state is populated via optical pumping from X → A (orange arrow) and
incoherent decay from A (dashed lines). The state preparation and readout
lasers (double-lined blue arrows) drive one molecule orientation N = ±1
(split be 2DHE ∼ 100 MHz) in the H state to C, with parity P = ±1 (split
by 50 MHz). Population in the C state decays via spontaneous emission, and
we detect the resulting fluorescence (red wiggly arrow). H state levels are
accompanied by cartoons displaying the orientation of ~Eeff (blue arrows) and
the spin of the electron (red arrows) that dominantly contributes to the de
shift.

laser is retroreflected after rotation of the polarization by 90◦, pumping all population

out of the M = ±1 magnetic sublevels (2/3 of the total |X, J = 1〉 population).

The spin state is polarized by a method similar to coherent population trap-

ping [104]. Just 5 mm downstream of optical pumping, the linearly polarized state

preparation laser’s frequency is resonant with the

|H, J = 1,M = ±1,N〉 ↔ |C, J = 1,M = 0,P〉

transition at 1090 nm (Figure 2.1). For a given spin precession measurement, the

laser frequency determines the N and P states that are addressed. Our 1 MHz laser
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linewidth is much larger than the ∼ 100 Hz Zeeman shift between |M = +1〉 and

|M = −1〉 states, so a single laser couples them via the |C〉 state and projects the

3-level system into a “bright” and “dark” state basis. The C state is short lived with

a lifetime of about 500 ns and has a negligible branching fraction for decay back to

the H state (Chapter 3). Therefore, the state preparation laser optically pumps the

bright superposition of the two resonantM = ±1 sublevels out of the H state, leaving

behind the orthogonal dark superposition that cannot absorb the laser light; we use

this dark state as our initial state. For a linearly polarized laser at angle θ, the bright

and dark states are

|D〉 = 1√
2
(
eiθ |M = +1,N〉+ e−iθ |M = −1,N〉

)
, (2.1)

|B〉 = 1√
2
|P〉+ 1

2
(
−eiθ |M = +1,N〉+ e−iθ |M = −1,N〉

)
. (2.2)

Consider a state preparation laser polarized along x̂ such that θ = 0, then the prepared

state

|ψ(τ = 0),N〉 = |M = +1,N〉+ |M = −1,N〉√
2

, (2.3)

is the dark state with the electron spin aligned along the ŷ axis.

Molecules then travel over the L ≈ 22 cm distance between state preparation

and probe regions, under the influence of ~E = Ez ẑ and ~B = Bz ẑ fields. The dipole

interactions VB = −~µH · ~B and VE = −~de · ~Eeff give rise to energy level shifts between

our spin states (Equation 1.9). This leads to spin precession in the xy plane by an

angle φ to

|ψ(τ),N〉 = eiφ |M = +1,N〉+ e−iφ |M = −1,N〉√
2

. (2.4)

Because ~E and ~B are aligned along ẑ, the phase φ is determined by |Bz| = | ~B · ẑ|, its
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sign, B̃ = sgn( ~B · ẑ), and the electron’s EDM, de:

φ ≈ (µBgHB̃|Bz|+ Ñ ẼdeEeff)τ
~

(2.5)

where Ẽ = sgn(~E · ẑ), τ ≈ 1.1 ms is the spin precession time, and µBgH is the

magnetic moment of the of the |H, J = 1〉 state, where gH = −0.0044± 0.0001 is the

gyromagnetic ratio and µB is the Bohr magneton [9, 80, 97]. The sign of the EDM

term, Ñ Ẽ , arises from the relative orientation between ~Eeff and the electron spin.

We measure φ by optically pumping on the same H → C transition with the

probe laser. The H state population is again projected into the bright and dark

basis, and the bright state is depleted by the laser coupling to the C state. Light

collection optics in the probe region allow us to measure the bright state population

through 690 nm fluorescence photons from the decay of C to the ground state. The

probe laser’s linear polarization rapidly alternates between orthogonal states X̂ and

Ŷ every 5 µs, which are defined such that X̂ is at an angle θ with respect to x̂ in

the xy plane, and Ŷ is at an angle θ + π/2. This procedure amounts to a projective

measurement of the spin onto X̂ and Ŷ with probabilities

PX = 1− cos(2(φ− θ)) (2.6)

PY = 1 + cos(2(φ− θ)). (2.7)

We record the modulated fluorescence signals SX = S0PX and SY = S0PY , where S0

is proportional to the total number of molecules, which fluctuates by 20% between

pulses of our molecular beam source [8]. We require the successive measurements of

SX and SY be made much faster than variations in S0 within the molecule pulse (see

Section 4.1).
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Therefore, we can normalize the spin precession signal and eliminate the noise

from these molecule number fluctuations by computing the asymmetry [10],

A = SX − SY
SX + SY

= −C cos(2(φ− θ)). (2.8)

The contrast C, which is 94 ± 2% on average, accounts for imperfect measurements

due to detector background counts, finite H → C excitation time, and dephasing

from the transverse velocity distribution of our molecules.

We set |Bz| and θ such that

φ− θ ≈ π

4 (2n+ 1) (2.9)

for integer n, so that the asymmetry is linearly proportional to small changes in φ and

is maximally sensitive to the EDM. Linearizing around these points, small changes in

phase can be computed using

δ(φ− θ) = (−1)n A2C (2.10)

given measurements of the asymmetry and contrast. We operate with either n even

or odd, depending on the magnitude of the B field. Notice that by dithering θ

between two nearby values that differ by ∆θ ≤ 0.1 rad, we can solve for the contrast

C = ∆A/(2∆θ). The state of this switch is denoted by θ̃ = ±1. In this linear

regime, the contrast is equivalent to our experiment’s sensitivity to small changes in

phase. Although many other EDM experiments measure C is a similar way by making

controlled changes in φ [4, 3], our technique of switching the measurement basis angle

θ has the benefit of straightforward control via a motorized waveplate and calibration

via polarimetry of the laser.
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2.2 Data Analysis: Notation and Procedure

We perform spin precession measurements repeatedly under varying experimental

conditions to (i) distinguish the EDM energy shift from background phases and (ii)

search for and monitor possible systematic errors. By reversing experimental quan-

tities that have a given parity relationship with de, we can isolate the EDM phase

(second term in Equation 2.5) from other terms by applying parity even/odd sums

between phase measurements.

First a bit of notation useful for describing the data analysis. We define the switch

state for an experimental parameter u

ũ = sgn(u) = ±1. (2.11)

We denote the switch parity of a quantity G with a superscript, u, listing the switch

labels under which the quantity is odd; it is even under all unlabeled switches. Using

these definitions, we can decompose any quantity into switch correlated components

G = G0 +Gu1ũ1 +Gu2ũ2 + . . .+Gu1u2ũ1ũ2 + . . .+Gu1u2···uN ũ1ũ2 · · · ũN (2.12)

where there are 2N terms corresponding to all combinations of the N total binary

switches. After performing a series of measurements Gmeas(ũ1, ũ2, . . . , ũN) for all 2N

switch combinations, we can extract the “switch parity components” Gu which are

linear combinations of the Gmeas(ũ1, ũ2, . . . , ũN) that are odd or even under these

switch operations [6, 74].

For example, the switch parity component odd under two switches (i, j), out of

N total experimental switch parameters is formally

Guiuj = 1
N

∑
ũ1,ũ2,...,ũN=±1

Gmeas(ũ1, ũ2, . . . , ũN)ũiũj. (2.13)

28



Chapter 2: The ACME Experiment: Measurement Procedure and Apparatus

This formal definition can describe any switch parity component, and is useful because

of the large number of switches we implemented for the experiment (Section 5.1). It is

used to describe the parity of measured quantities such as asymmetries and contrasts,

and also the correlations of any experimental parameters. For the rest of the section

we restrict the discussion to the four switches needed to measure the EDM.

Particularly important switches are Ñ , Ẽ , B̃, and θ̃ because the four of these taken

together allow us to calculate the EDM. We perform sequential spin precession mea-

surements, grouped into a “block”, for all 28 = 256 combinations of these binary

switch parameters, and compute the asymmetry of each state from Equation 2.8.

Within each block, we extract the switch parity components of the asymmetries Au

using Equation 2.13, where asymmetries are always taken as even under the θ̃ switch.

As described previously, the θ̃ switch is used to measure our contrast, and for a

particular state (Ñ , Ẽ , B̃, θ̃), the contrast is

C(Ñ , Ẽ , B̃) = A(Ñ , Ẽ , B̃,+1)−A(Ñ , Ẽ , B̃,−1)
2∆θ . (2.14)

We can also define contrast correlations Cu = Auθ/(2∆θ). Armed with a contrast and

asymmetry for each state, we can calculate the phases

φ(Ñ , Ẽ , B̃) = A(Ñ , Ẽ , B̃)
2C(Ñ , Ẽ , B̃)

(2.15)

and the phase parity components φu using Equation 2.13.

For example, the EDM contributes to a phase component

φNE = −deEeffτ

~
. (2.16)

We extract the mean precession time τ from

φB = −µBgH |Bz|τ
~

(2.17)
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Figure 2.2: Schematic of the EDM apparatus. All major segments are shown,
including beam production in the cryogenic cell, rotational cooling in a room
temperature vacuum chamber, and the spin precession measurement in the
magnetically shielded region. This figure was originally produced by B.
O’Leary (unpublished).

and compute the frequencies

ωu = φu

τ
. (2.18)

The EDM value is obtained from ωNE using de = −~ωNE/Eeff . Mean values and

errors are calculated as EDM correlated precession frequencies up until the final

steps, so that the uncertainty in the theoretical determination of Eeff does not affect

our experimental results (only the interpretation).

2.3 Apparatus

The following is a more detailed description of the EDM apparatus, breaking up

the trajectory of the beam into stages (Figure 2.2). Other sources or sections within

this thesis contain specifics of the construction of the various components, and are

cited accordingly.
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2.3.1 Beam Source

We create a pulsed molecular beam of ThO using the buffer gas beam tech-

nique [102, 8, 103, 81]. Neon buffer gas was chosen (as opposed to helium) because

it can efficiently be cryopumped by the large surface area of our 4 K shields. This

allowed us to operate the molecular beam continuously for ∼ 24 hours before brief

(2 hour) warmup and pumpout cycles were required to regenerate the cyropump-

ing. Careful studies showed there was not a significant change in beam centerline

brightness for neon versus helium buffer gas. The rotational temperature has been

measured to be around 4 K with neon [8], and the ground state rotational population

distribution is peaked at J = 1 for that temperature. The rotational temperature

and transverse and longitudinal velocity temperature seem to depend on the position

of the ThO ablation target within the cell. Positioning it further from the cell exit

aperture produced colder beams, presumably because the ThO experienced more Ne

collisions before extraction.

Each packet of molecules leaving the source contains ∼ 1011 ThO molecules in the

J = 1 rotational level of the ground electronic and vibrational state and are produced

at a repetition rate of 50 Hz. The packet is 2-3 ms wide and has a center of mass

speed of vbeam ≈ 200 m/s. The chamber background pressure of < 10−6 Torr sug-

gests a ThO-background gas collision probability of . 1% during the spin precession

measurement which could cause a small decrease in fluorescence signal or contrast.

A set of field plates at 200 V/cm remove ions from the beam to prevent them from

coating the field plates in the interaction region.
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2.3.2 Ground State Rotational Enhancement

After leaving the cryogenic beam source chamber, the ground state molecules

are in a thermal distribution of rotational states at about 4 K with a rotational

constant of BRh/kB ≈ 0.5 K. Most of the population is distributed amongst the

lowest four rotational levels. We use a series of lasers and microwaves to enhance

the population of a single rotational state, |X, J = 1〉 [105]. The molecules travel

through a pair of optical pumping lasers resonant with the |X, J = 2〉 → |C, J = 1〉

and |X, J = 3〉 → |C, J = 2〉 transitions. Both lasers are multipassed to increase in-

teraction time with the ∼ 10 mW 690 nm laser beams, and the polarization is rotated

along each pass to prevent the creation of dark states. When driving the P-branch

transitions in the absence of electric fields, E1 selection rules conserve parity so only

P- and R-branch C  X decay is allowed. However, we found it increased the ulti-

mate |X, J = 1〉 population to apply a weak electric field while optical pumping, thus

mixing C state omega doublets, and allowing some Q-branch decay. This optical

pumping effectively depletes the population of the |X, J = 2, 3〉 states and concen-

trates it into the |X, J = 0, 1〉. The C  X branching ratio of ∼ 80% reduces the

efficiency of this process to below unity, depending on the magnitude of the applied

electric field.

The molecules then encounter a ẑ polarized microwave field resonant with the

|X, J = 0〉 ↔ |X, J = 1,M = 0〉 transition in a weak electric field. The microwave

transition is saturated, so it mixes the populations of |X, J = 0,M = 0〉 and

|X, J = 1,M = 0〉 resulting in a 50:50 redistribution of the original population of

those states. The quantization axis is not preserved between the microwave ground
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state enhancement region and the field plates surrounding the spin precession re-

gion. Therefore, the population of the three M sublevels of |X, J = 1〉 are mixed.1

The combined result of lasers and microwaves is an overall population increase in

|X, J = 1〉 by a factor of ∼ 2.

2.3.3 Interaction Region

The molecules then pass through adjustable and fixed collimating apertures be-

fore entering the magnetically shielded interaction region, were we perform the spin

precession measurement on H state molecules, as outlined in detail in Section 2.1.

The normalization scheme requires the laser’s k̂ ‖ ~E ‖ ẑ, which can be achieved if our

field plates are transparent at 1090 nm and 943 nm. The electric field is provided by

two 17” × 9” plates of 12.7 mm thick glass coated with a layer of indium tin oxide

(ITO) on one side, and an anti-reflection coating on the other. The ITO coated side

of the plates face each other with a gap of 25 mm, and a voltage is applied to the ITO

to create a uniform electric field. All lasers travel through the electric field plates,

so all stages of the spin precession measurement are performed inside the uniform

electric field.

Phase precession by π/4 requires applying |Bz| ∼ 20 mG, there therefore Earth’s

500 mG field must be shielded. The EDM measurement is performed in a vacuum

chamber surrounded by five layers of µ-metal shielding [106]. In principle they pro-

vide a shielding factor of 105, but so far we have only had the ability to measure their
1Other schemes for ground state enhancement use stronger electric fields and an additional optical

pumping laser tuned to |X,J = 1,M = ±1〉 → |C, J = 1,M = ±1〉 to spin polarize the population
into the |X, J = 1,M = 0〉 state. A quantization E field must be maintained to the interaction region
to avoid remixing of the magnetic sublevels. Since the current experiment lacked this feature, this
additional laser actually decreased the total signal due to the C  X branching ratio.
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shielding factor at DC to the 103 level. Degaussing is required to demagnetize the

shields after changing the magnetic field. The somewhat jarring process of assem-

bling the shields pins in magnetic domains which require an especially high current

degauss cycle to eliminate [107]. The applied magnetic field is supplied by a cosine-

theta coil [108], wound on high density plastic frame outside the vacuum chamber.

Shim coils, also wound on this frame, should be run with currents 4.4× those in the

cosine-theta coil to create a more uniform magnetic field, minimizing dBz/dx within

the precession region [80]. We apply transverse magnetic fields and gradients for

systematic checks using six independent coil windings. Two coils wound around the

cosine-coil frame provide Bx fields, while plates with four windings parallel to the

xz plane generate By fields. Changes in the magnetic field are monitored by four

3-axis fluxgate magnetometers inside the magnetic shields, and the magnetic fields

were mapped out before and after the experimental dataset was taken by sliding a

3-axis fluxgate down the beamline.

All laser light in the experiment originates from external cavity diode lasers

(ECDL), frequency stabilized via an Invar transfer cavity [109] to a CW Nd:YAG

laser locked to a molecular iodine transition [110, 111]. The scanning transfer cavi-

ties and software based locking program [112] provide robust laser locking stable to

∼ 1 MHz over several days [80]. To achieve stability against atmospheric pressure

changes, the Invar cavities were sealed in KF nipples at atmospheric pressure. Ad-

ditional software routines were used to relock the lasers to the ThO resonances and

therefore improve the short term (20 minute) stability (Section C.2).

The transparent electric field plates allow us to collect ∼ 40% of the solid angle
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of fluorescence from the molecules. Fluorescence travels through the field plates

into an eight-lens system (four behind each plate) which focuses the light into an

optical fiber bundle [81]. The four bundles on each side are coupled into a fused

quartz light pipe, which carriers the fluorescence to a PMT (outside the magnetic

shields). The net detection efficiency, including collection solid angle, transmission

loss, and detector quantum efficiency, is about 1% [105]. We typically register about

1000 photon counts per molecule pulse. The PMT photocurrents are read as analog

signals by a low-noise, high-bandwidth amplifier, and then sent to a 24-bit digitizer

operating at 5 megasamples per second. The control and timing for all experimental

prarameters is managed by a single computer, and the timing jitter is less than one

digitizer sampling period (0.2 µs). See Chapter 5 for further details regarding the

data acquisition.
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C State Lifetime and Linestrength

Calculations

The ACME Collaboration has now measured both the H and C state lifetimes

in ThO using separate techniques in different apparatus. The metastable H state

lifetime of τH limits the maximum spin coherence time and therefore the sensitivity

of an EDM measurement. The H state is the lowest lying excited state in ThO and

transtions to the ground state are mostly dipole forbidden, both of which contribute

to the states’s metastability. This lifetime dictates the appropriate range of molecular

beam velocities and interaction region lengths for maximum sensitivity. The H → C

transition is used as a probe of H state population via fluorescence back to the ground

state. Therefore, the C state lifetime τC determines the rate of decay and temporal

profile of our fluorescence signals (Section 4.2).

This chapter outlines a measurement of the C state lifetime and reviews calcula-

tions of transition dipole moments and other useful quantities for ThO spectroscopy.
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Other molecular constants were determined previously, including all required tran-

sition frequencies and state assignments [113, 114, 115, 80], electric and magnetic

dipole moments([97, 9], Section 6.5), and saturation intensities and branching ratios

for most relevant states and transitions [105].

Previous work measured the lifetime of the H state to be consistent with τH ≈

1.8 ms [10, 116]. These measurements were performed by probing H state population

in a cryogenic buffer gas cell of ThO, similar to those used to produce our molecu-

lar beams, but without the necessary exit aperture to form a beam [103]. Density

dependent effects had to be carefully controlled to separate the desired radiative life-

time from collisional decay of the H state. Radiative lifetime measurements made

in molecular beams have the potential for higher accuracy due to the low densities

and spatial fitering provided by the moving molecules [117, 118]. Because molecules

travel a distance of τHvbeam ≈ 36 cm while they decay, much larger than the diameter

of the probe laser which monitors the H state population, we cannot employ the

current method of monitoring fluorescence with a fixed detector. However, using a

system of separated probes on translation stages, it would be possible to improve our

measurement of τH using the molecular beam [119, 120].

3.1 Measurement of the C State Lifetime

In contrast to the metastable H state, ThO’s C state is strongly coupled to the

ground X state via an allowed E1 transition, and therefore has the much shorter

lifetime of τC = 490 ± 40 ns. This section describes a measurement of this lifetime

by time resolved photon counting of the C  X decay photons. The experiment
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was performed in a collisionless molecular beam, were the decay flight distance of

τCvbeam ∼ 0.1 mm is much smaller than the acceptance window of our photon collec-

tion, allowing lifetime measurements with a single static detector. The measurements

were made in the “mini-beam” dewars (MB1 and MB2), the precusors of our main

beam source. Sepecifics on their constructions are described in more detail else-

where [106, 105].

Fluorescence on the C  X transition (690 nm) was monitored using a photo-

multiplier tube (Hamamatsu R8900U-20), and single photons were counted using a

multichannel scaler (SR430) [121]. The observed photon counting signal is propor-

tional to the C state population NC . The decay rate γC = 1/τC describes a fractional

change in population per unit time, and a simple one component exponential decay

dNC

NC

= −γCdt → NC(t) = NC(0)e−t/τC . (3.1)

This total decay rate γC is equal to the sum of many decay paths over separate

electronic and vibrational branches to lower energy states.1

Molecules in the ThO beam are excited to the C state using a 690 nm diode

laser tuned to the Q(1) transition (14489.98 cm−1), driving |X, ν ′′ = 0, J ′′ = 1〉 →

|C, ν ′ = 0, J ′ = 1〉. The laser passes through an AOM, and the first order diffracted

beam is delivered to the experiment via an optical fiber. Using a TTL driven RF

switch (ZYSWA-2-50DR) this excitation laser can be extinguished in as little at 50
1It is perhaps counterintiutive that we aren’t measuring a partial decay rate, even though we are

only measuring fluorescence photons emitted by decay between a particular pair or states. If we
could measure radiation simultaneously from other decay channels (e.g. to |X, ν′′ = 1〉), the ratio of
signal sizes would give us information about the relative partial widths (branching ratios), but the
decay timescale of each signal would be identical. In practice such a measurement of branching ratios
requires careful calibration of photon collection and detection efficiency between the simultaneously
monitored channels.
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(a) Experiment Schematic

X State

C State

Excitation
@ 690 nm                          

Detection
@ 740 nm

ν = 0 
ν = 1 

ν = 0 

(b) Off-Diagonal Decay

Figure 3.1: (a) Schematic of the C state lifetime measurement apparatus.
Measurements were made in two different mini-beam dewars, but this dia-
gram represents the data taken from MB2. Fluorescence was collected via a
light pipe perpendicular to the excitation laser. (b) Relevant energy levels
for off-dagonal fluorescence detection.
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Figure 3.2: Example decay curves plotted on linear and log scales with lin-
ear/log fits.

ns. This is sufficiently fast that a convolution of the decay lineshape with the laser

extinction lineshape was not necessary for data analysis. The acquisition is triggered

with the RF switch, and we observe the fluorescence both before after the laser turns

off.

The PMTs are filtered so they are only sensitive to photons emitted from C  X

decay. By using 10 nm passband filters around either 690 nm (Thorlabs FB690-10)

or 740 nm (Thorlabs FB740-10), we can selectively detect either the ∆ν = 0 photons

at 690.1 nm, or the “off-diagonal” decay to |X, ν ′′ = 1〉 at 735.6 nm. The vibrational

branching ratios require that the off diagonal transition produces a factor of 5.6 fewer

photons, which combined with the reduced quantum efficiency of the PMT and rolloff

in transmission of the 740 nm filters at 735 nm, makes the off-diagonal signal ∼ 10

times smaller. However, scattered 690 nm excitation light adds backgrounds to signals

that makes fitting routines less straightforward, so detection at 740 nm was frequently

used. An apparatus schematic is shown in Figure 3.1, along with the relevant energy

levels for the excitation and detection scheme.
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The decaying fluorescence was fit to the function

S(t) = Ae−(t−t0)/τ +B (3.2)

with free parameters A, B, and τ . Non-linear fitting determined the three parameters,

using approximate linearized fitting to supply the initial guesses (see Appendix D).

Studies of fit sensitivity to t0 were used to select a start time suitably delayed from

the trigger such that all effects of the 50 ns laser shutoff were removed. These and

other potential “lineshape systematics” were evaluated using Monte Carlo simulated

data, testing fits under various regimes of A, B, and τ values. The fitting procedure

accurately reproduced the input parameters and uncertainties associated with the

Monte Carlo data.

The measurement was checked against the effects of numerous systematics. The

lifetime was shown to be independent of laser power and X → C saturation effects.

The background pressure was controlled by increasing the buffer gas flow rate or by

reducing the speed of the backing turbo, and no density dependence of the lifetime

was observed. Data collected in MB1 and MB2 also showed excellent agreement,

further ruling out effects due to pressure differences, laser powers, and fluorescence

collection geometries. The data was collected as a function of the photon counter’s

discriminator level, which confirmed the optimal setting between the noise and signal

peaks measured in a pulse height analysis (Figure A.3).

Careful studies of the effects of PMT supply voltage (G) reveled that above the

recommended operating value of 800 V, the measured lifetime was greatly exaggerated

(Figure 3.3). This effect was found to be dependent on the photon counting rates

> 1 MHz, indicating it might be related to pulse pile up [122]. By operating below
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Figure 3.3: The dependance of τC on the PMT supply voltage (G). The
lifetime is plotted as a function of the control voltage to the HV module
(G = 250 × Vctrl). A linear fit to measurements less than the recommended
supply voltage of 800 V yields the systematic sensitivity dτ/dG. The range
of acceptable settings is ∆G.

this 1 MHz threshold, the counting rate dependence of the lifetime was eliminated,

although a dependence on G remained. The gain of the PMT tubes is a function

of G, which modifies the shape of the pulse height spectrum. A voltage setting of

G = 650 V seemed to produce well behaved pulse spectra, and struck a balance

between signal loss due to low gain and high voltage after-pulsing effects. A range of

acceptable gain settings corresponding to G = 650± 50 V were deemed to be equally

valid for lifetime measurements, according to a pulse height analysis (Appendix A).

Even in the region below 800 V we observed a small dependence of the lifetime

on G. This was quantified by the residual slope dτ/dG of a linear fit to the data
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G < 800 V. A systematic error bar

∆τsyst = ∆G
(
dτ

dG

)
(3.3)

was assigned according to dτ/dG and the spread ∆G = ±50 V around 650 V (Fig-

ure 3.3). This analysis assigned a systematic uncertainty of

∆τsyst = 29 ns

to the measurement.

Lifetime measurements from 5 data sets acquired from Nov/2010 - Jan/2011 were

averaged together in an unweighted mean, and the statistical error bar is the standard

deviation of this mean

∆τstat = 25 ns.

Combing the statistical and systematic errors in quadrature, we arrive at the quoted

value of

τC = 490± 40 ns. (3.4)

3.2 Molecular Transition Matrix Elements

Full characterization of a state in ThO requires electronic, vibrational, and rota-

tional quantum numbers |α, ν, J,M,Ω〉, where α is a place holder for our state labels

(X, C, H, . . .). While ThO is best thought of as a Hund’s case (c) molecule, decom-

positions exist into a Hund’s case (a) basis states |Λ, S,Σ〉, giving us the ability to

perform calculations in that basis [115]. The definitions of these quantum numbers

may be found in Section 1.2.2, and general discussions of the preferred bases of the

various Hund’s cases may be found in [81, 78, 79].
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Figure 3.4: Notation diagram for state labels and rotational transition
branches.

The total state wavefunction can be factorized into uncoupled basis components

|el〉 |vib〉 |rot〉 = |Λ, S,Σ〉 |ν〉 |J,M,Ω〉 (3.5)

where the vibrational wavefunction |α, ν〉 is separable in the Born-Oppenheimer ap-

proximation [79]. In general, we are only considering spin allowed E1 transitions

(∆S = 0, ∆Σ = 0), so we neglect these quantum numbers in the following cal-

culations. As is common in rotational spectroscopy, we define state labels by the

convention in Figure 3.4. The lower (higher) energy state in a transition matrix ele-

ment is always labeled by α′′ (α′) quantum numbers. Angular momentum selection

rules for rotational transitions restrict (∆J = J ′ − J ′′ = 0, ±1), which are defined

using P (J ′′), Q(J ′′), R(J ′′) notation as indicated.

Observable operators exist in the lab fixed frame, while matrix elements of molec-

ular states must be performed in the molecular dipole fixed frame. Transformation

between these two frames can be performed with the rotation matrix D(k)
p,q (ω), where
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p, q = 0,± are the components of a rank-1 tensor in the lab and molecule frames

respectively [78]. Vector operators in the lab frame are specified with upper case

X, Y, Z spatial coordinates, while lower case x, y, z are used for the molecule frame.

Note that the electronic wavefunction component |Λ, S,Σ〉 contains molecule frame

quantum numbers (i.e. not good quantum numbers in the lab frame), while the total

angular momentum and rotational component |J,M,Ω〉 is represented by quantum

numbers that are good in both frames.

The electric dipole operator, µ̂ = er̂, operates upon the orbital part of our elec-

tronic wavefunctions ψ(~r). The operator defines the leading order interaction of

molecular wavefunctions with electromagnetic radiation, and is therefore at the heart

of many molecular calculations. The dipole moment µ̂ operates in the molecule frame,

and in this chapter we consider it in terms of the molecule-photon coupling that

drives transitions between ThO’s electronic states (〈Λ′′|µ̂|Λ′〉). In spherical tensor

form [79, 123]

µ̂+ = 1√
2

(µ̂x + iµ̂y), (3.6)

µ̂− = 1√
2

(µ̂x − iµ̂y), (3.7)

µ̂0 = µ̂z. (3.8)

This definition is extremely useful for simplifying notation when applied with the

Winger-Eckhart theorem. These spherical tensor operators raise and lower the values

of Λ in matrix elements between electronic states. We define electronic transition
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moments according to these matrix elements

D+
α′−α′′ = 〈α′′,Λ′ + 1|µ̂+|α′,Λ′〉 , (3.9)

D−α′−α′′ = 〈α′′,Λ′ − 1|µ̂−|α′,Λ′〉 , (3.10)

D0
α′−α′′ = 〈α′′,Λ′|µ̂+|α′,Λ′〉 . (3.11)

This definition preserves much of the symmetry between ∆Λ = 0 and ∆Λ = ±1

transitions, and is in close analogy to definition used for atomic linestrengths. Care

must be taken when referencing older sources such as [124, 125], where a factor of 2

difference in the defintions of D±α′−α′′ cause certain Hönl-London factors to change by

the same factor.

The lab-frame components of transition dipole moments are typically defined by

the polarization ε̂ of the absorbed or emitted radiation. The transition moments for

a given polarization of light are the matrix elements of the dot product ε̂ · µ̂. The

most general matrix elements can be simplified and separated into lab-frame and

molecule-frame components

Mα′′−α′ = 〈ν ′′| 〈Λ′′, S ′′,Σ′′| 〈J ′′,M ′′,Ω′′| ε̂ · µ̂ |ν ′〉 |Λ′, S ′,Σ′〉 |J ′,M ′,Ω′〉

=
∑
p,q

〈ν ′′|ν ′〉 〈S ′′|S ′〉 〈Σ′′|Σ′〉 〈Λ′′|µ̂q|Λ′〉︸ ︷︷ ︸
molecule-frame

× . . .

(−1)pε̂p 〈J ′′,M ′′,Ω′′| D(1)
−p,q(ω)∗ |J ′,M ′,Ω′〉︸ ︷︷ ︸

lab-frame

Mα′′−α′ =
√
|qν′−ν′′ |δS′,S′′δΣ′,Σ′′D

−∆Ω(−1)pε̂p 〈J ′′,M ′′,Ω′′| D(1)
−p,q(ω)∗ |J ′,M ′,Ω′〉 .

(3.12)

The vibrational wavefunction overlap is equal to the square root of the Franck-Condon

factor qν′−ν′′ between states α′ ↔ α′′. Here we have used the fact that the dipole ma-
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trix element only operates on the orbital part of the wavefunction. The orthogonality

of spin states then enforces the spin selection rules (δS′,S′′ , δΣ′,Σ′′) for electric dipole

transitions.

We can evaluate the rotational matrix element in terms of 3-j symbols and factors

of J , M , and Ω [81, 78, 80],

Mα′′−α′ =
√
|qν′−ν′′ |(−1)∆M(−1)M ′−Ω′ ε̂∆MD−∆Ω × . . .

√
(2J ′ + 1)(2J ′′ + 1)

 J ′′ 1 J ′

−Ω′′ −∆Ω Ω′


 J ′′ 1 J ′

−M ′′ −∆M M ′

 , (3.13)

The only terms for which the 3-j symbols are non-zero must satisfy

q = −∆Ω = −(Ω′ − Ω′′), (3.14)

p = ∆M = M ′ −M ′′. (3.15)

With Equation 3.13 and measurements of the transition dipole D±, we are able to

calculate many quantities useful for performing precision measurements with ThO.

3.3 Molecular Constants From C State Lifetime

Measurements of excited state lifetimes provide an excellent way of extracting

important experimental parameters, such as absorption cross sections, saturation in-

tensities, branching ratios, and Rabi frequencies. This is complicated in a species

where multiple decay channels contribute to the total state lifetime τ . Extracting

|D±|2 in diatomic molecules generally requires the measurement of multiple lifetimes

because their extra degrees of freedom (vibration and rotation) and hybridized elec-

tronic wavefunctions open up extra decay channels. In this section I will derive
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expressions for several “linestrength” related quantities as a function of our measure-

ment of τC . The ability to compare these values precisely is limited by our imprecise

estimates of electronic and vibrational branching ratios, but the formulas contained

here would be of use in these estimates are improved in the future.

3.3.1 Partial Decay Rates

The total decay rate γe = 1/τe, where |e〉 represents all relevant quantum numbers,

is directly measured for the C state as described in Section 3.1. For a given decay

channel from |e〉 |g〉, the Einstein A coefficient Ae,g ∝ |Me−g|2 represents its partial

decay rate. These sum to the total decay rate

γe =
∑
g

Ae,g =
∑
g

ξe,gγe, (3.16)

where we have defined the fractional branching ratios

ξe,g = Ae,g/γe, where

ξe,g < 1, ∑
g
ξe,g = 1.

(3.17)

The lack of closed cycling transitions in diatomic molecules such as ThO means a

single excited state lifetime depends on the branching ratio of all possible decay paths.

Both the lifetime and branching ratios (electronic, vibrational, and rotational) must

be known in order to extract each transition’s partial decay rate Ae,g.

A general expression for decay between non-degenerate states |e〉 |g〉, separated

by frequency ω0 = 2π× ν0, is given by Fermi’s Golden Rule. Per our case we assume

the density of photon states is that of free space and decay is via electric dipole

radiation [126, 79]. The following expression has already been integrated over solid
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angle and includes the necessary factor of 2 for the two-fold polarization degeneracy

of radiation emitted into each wavevector k̂

Ae,g = ω3
0

πε0~c3 |Me−g|2. (3.18)

Without quantizing E or B fields, as is the case in our measurement of τC , the

molecules are completely unpolarized. Due to the isotropy of space, molecules decay in

an unpolarized fashion back to the ground state, such that transitions with all values

of ∆M = 0,±1 are equally likely. Moreover, spatial isotropy dictates that the ex-

cited state population will be evenly distributed across all 2J ′+1 angular momentum

projections (M ′). This distribution of population effectively averages the individual

decay rates into the observed rate of decay for the entire degenerate manifold [79],

and the population decays according to

dNJ ′

dt
= −

∑
M ′,M ′′

A(J ′M ′,J ′′M ′′)
NJ ′

2J ′ + 1 . (3.19)

The effective decay constant for all degenerate magnetic sublevels will therefore be

summed over final states and averaged over initial states

AeJ ′Ω′,gJ ′′Ω′′ = ω3
0

πε0~c3

∑
M ′,M ′′

|〈e, J ′′,M ′′,Ω′′|ε̂ · µ̂|g, J ′,M ′,Ω′〉|2

2J ′ + 1 . (3.20)

All these decay paths between degenerate manifolds J ′  J ′′ are related to a

reduced matrix element via the Winger-Eckhart theorem [126], and the sum in Equa-

tion 3.20 can be written in an M independent form. The sum over the M dependent

3-j coefficients from Equation 3.13 can be evaluated using the orthogonality relation-

ships for the 3-j coefficients [79]

∑
M ′,M ′′

 J ′ 1 J ′′

−M ′ ∆M M ′′


2

= 1
3 . (3.21)

49



Chapter 3: C State Lifetime and Linestrength Calculations

Therefore, the expression for the unpolarized decay between two states (in the

Hund’s case (a) or (c) basis, in which Ω is a good quantum number) is

AeJ ′Ω′,gJ ′′Ω′′ = ω3
0

3πε0~c3 (2J ′′ + 1)

 J ′ 1 J ′′

−Ω′ −∆Ω Ω′′


2

qν′−ν′′
∣∣∣D−∆Ω

e−g

∣∣∣2 . (3.22)

We have arrived at an expression that relates the partial decay rate A to a dipole ma-

trix element for our unpolarized sample.2 We note that the remaining 3-j coefficients

are often written as the rotational branching ratios (Hönl-London factors) S∆J
J ′′ (∆Ω).

The proper form given our definitions for D± are tabulated in [79] and can also be

expressed symbolically

S∆J
J ′′ (∆Ω) ≡ (2J ′ + 1)(2J ′′ + 1)

 J ′ 1 J ′′

−Ω′ −∆Ω Ω′′


2

. (3.23)

If we explicitly write the rotational dependance back in, we can solve for the partial

width of an arbitrary transition

Ae,g = ξe,gτe = ω3
0

3πε0~c3
qν′−ν′′ |De−g|2

(2J ′ + 1) S∆J
J ′′ . (3.24)

3.3.2 Branching Ratios

A caveat to evaluating Equation 3.24 is that our zero-field eigenstates are sym-

metric or antisymmetric combinations of ±Ω for electronic states with |Ω| > 1 such

as (C, H, Q). The zero field rotational eigenstates must be eigenstates of the parity

operator P . If one considers the full molecular wavefunction in a Hund’s case (a)

basis, the parity transformations [78] are

P |Λ, S,Σ〉 |J,M,Ω〉 = (−1)J−S |−Λ, S,−Σ〉 |J,M,−Ω〉 (3.25)
2This should not be used if the initial state is polarized by an E-field and excited with a single

laser polarization ε̂, as the sum over M sublevels will not be valid.
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which are slightly different than the oft quoted parity relationships for only the rota-

tional part P |J,M,Ω〉 = (−1)J−Ω |J,M,−Ω〉 [78, 80]. The good eigenstates of parity

are then [79]

|2S+1ΛΩ,±〉 = |
2S+1ΛΩ〉 ± (−1)J−2Σ+S |2S+1Λ−Ω〉√

2
. (3.26)

One can check that this definition is correct according to the parity transformations

of Equation 3.25, or by explicitly showing that matrix elements from Equation 3.13

vanish when evaluated between states of the same parity.

When applying Equation 3.22, we must calculate the matrix elements in the good

parity basis, |2S+1ΛΩ,±〉. In particular, we consider transitions from |C, J = 1〉 to all

accessible states with ∆Ω = 0, ±1 and ∆J = 0, ±1. Evaluating the rotational part

of Equation 3.24, one can make the following substitutions in the parity basis for all

relevant rotational transitions

For (C → X) Q(1) : S0
1(1)

(2J ′ + 1) → 1, (3.27)

For (C → H) Q(1) : S0
1(0)

(2J ′ + 1) → 1/2, (3.28)

For (C → H) P (2) : S−1
2 (0)

(2J ′ + 1) → 1/2, (3.29)

For (C → Q) P (2) : S−1
2 (−1)

(2J ′ + 1) → 1. (3.30)

Notice that summing over all rotational branches, even in the parity basis, makes

the total rotational branching fractions equal. Applying the sum rule for 3-j symbols

over all final rotational states,

∑
J ′′

 J ′ 1 J ′′

−|Ω′| |∆Ω| |Ω′′|


2

= 1
2J ′′ + 1 , (3.31)
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|g〉 | 〈C|D̂|g〉 |2/|D|2 1/λC−g (cm−1) ξC,g

X 0.75 14490 0.82

H 0.15 9173.4 0.04

Q 0.61 8362 0.13

A 0.12 3890 0.002

B 0.60 3361 0.008

Table 3.1: Estimated electronic branching ratios. The ξC,g are normalized to
add to unity.

cancels the factor of (2J ′′ + 1) in Equation 3.22 when all rotational branches are

included. Therefore, the decay rate for each electronic and vibrational branch becomes

rotation independent in the limit that the difference in frequency between rotational

states is small compared to the transition frequency. An important consequence of

these sum rules over J ′′ and selection rules over Ω is that for unpolarized molecules

the rotational branching fraction does not depend on the rotational state. We can

understand this physically, because the excited state decay rate involves an electronic

transition within the molecule fixed frame. This rate cannot depend on the molecule

rotation, since there is no rotation in this fixed frame.

According to Equation 3.24, each partial decay rate can be expressed using sepa-

rate electronic and vibrational terms in addition and rotational dependance discussed

above. The C state can decay electronically to (X,H,Q,A,B), and estimates of

branching ratios are shown in Table 3.1. We assume Hund’s case (a) basis decompo-
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sitions listed in [127, 115] are equal to amplitudes squared, such that

|X〉 ≈ |1Σ+〉 , (3.32)

|H〉 ≈
√

0.985 |3∆1〉+
√

0.01 |3Π1〉+
√

0.005 |1Π1〉 , (3.33)

|Q〉 ≈
√

0.95 |3∆2〉+
√

0.05 |1∆2〉 , (3.34)

|A〉 ≈
√

0.95 |3Π0〉+
√

0.05 |1Σ+〉 , (3.35)

|B〉 ≈
√

0.75 |3Π1〉+
√

0.2 |1Π1〉+
√

0.05 |3Σ1〉 , (3.36)

|C〉 ≈
√

0.77 |1Π1〉+
√

0.2 |3Π1〉+
√

0.015 |3∆1〉+
√

0.015 |3Φ2〉 . (3.37)

We assume that any basis states that are connected by electric dipole selection rules

(∆S = 0, ∆Σ = 0, ∆Λ = ±1, 0, and ∆Ω = ±1, 0) have equal matrix elements.

Therefore, their contribution to the total maxtrix element | 〈C|D̂|g〉 |2 is weighted

by the product of the amplitude of each connected state. These weighting factors,

summed in quadrature, give the the relative state overlaps | 〈C|D̂|g〉 |2/|D|2. The

branching ratios follow from Equation 3.18 and depend on both these state overlaps

and the transition wavelength ξC,g ∝ 1/λ3| 〈C|D̂|g〉 |2/|D|2 (Table 3.1).

We consider only the decay to X, H, and Q states, because the w3
0 factor in

the decay rates makes the branching ratio to the nearby A and B states contribute a

negligible amount to γC [81, 128]. Vibrational branching ratios qν′−ν′′ (Franck-Condon

factors) have been calculated for ThO using Morse potentials [129], and are in good

agreement with our own calculations using harmonic wavefunction overlap based on

measured rotational constants [81]. For decay from |C, ν ′ = 0〉, the Franck-Condon

factors q0−ν′′ . 1% for states ν ′′ ≥ 2, so a sum over vibrational decay channels can

typically be truncated after the first or second term.
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3.3.3 X → C Transition Dipole Moment

The branching ratios estimated in the previous section allow us to limit the partial

decay rates which dominantly contribute to the C state lifetime τC . In the measure-

ment of τC , the excitation laser drives the Q(1) line from X → C from the odd

parity |X, J = 1〉 ground state to the even parity excited state |C, J = 1, P = +〉.

The observed decay, following parity selection rules, is rotationally closed (only Q(1)

transitions) from C  X. Decay to either of the opposite parity superpositions of H

and C states allow rotational decays in the C  H and C  Q manifolds satisfying

∆J = 0,±1. The remaining non-zero terms in the C state decay are

γC,ν′=0,J ′=1 ≈
∑
ν′′

(
AC→X,Q(1) + AC→H,Q(1) + AC→H,P (1) + AC→Q,P (1)

)
. (3.38)

Applying the rotational branching ratios in our parity basis (Equations 3.27-3.30)

and summing over rotational branches, we are left with

γC,0 =
∑
ν′′

(AC0,Xν′′ + AC0,Hν′′ + AC0,Qν′′)

γC,0 = 8π3

3πε0~
∑
ν′′

(
qC0−Xν′′

|DX−C |2

λ3
C−X

+ qC0−Hν′′
|DH−C |2

λ3
C−H

+ qC0−Qν′′
|DQ−C |2

λ3
C−Q

)
. (3.39)

If apply the sum rules for the Franck-Condon factors ∑ν′′ qν′−ν′′ = 1, then we can

write the decay in a vibration independent form

γC = 8π2

3ε0~

(
|DX−C |2

λ3
C→X

+ |DH−C |2

λ3
C→H

+ |DQ−C |2

λ3
C→Q

)
. (3.40)

Note that here we assume the electronic and vibrational wavefunctions are completely

separable (i.e. Born-Oppenheimer is a good approximation).

We can use our estimates of electronic branching ratios to calculate the dominant
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transition moment that contributes to the C state decay, |DX−C |2,

|DX−C | =
√
ξC,X
τC

3ε0~λ3
C−X

8π2 . (3.41)

Using the branching ratios as defined in Equation 3.17 and listed in Table 3.1, and

our measurement of the lifetime, this dipole moment is

|DX−C | = 1.3± 0.2 D = 0.52± 0.08 ea0 (3.42)

Here we have included a ∼ 15% error bar which combines the quoted 10% uncertainty

in the lifetime measurement and a comparable uncertainty in the branching ratio

estimates.

Using estimated or measured branching ratios, various transition dipole moments

with the C state can be computed using |DX−C | derived above. Of particular interest

is the H → C transition used for H state spin preparation and probing,

|DH−C | =

√√√√ξC,H
ξC,X

λ3
C−H
λ3
C−X
|DX−C |. (3.43)

There is currently a discrepancy between a calculation of |DH−C |2 using our estimated

branching ratios and estimates from directly driving the H → C transition. This is

probably and indication that our estimation of ξC,H is inaccurate. The dipole allowed

overlap | 〈C|D̂|H〉 |2/|D|2 is computed as the sum of many terms in 3.1. We lack

the knowledge of wavefunction phases in Equations 3.32-3.37, so these terms could

just as easily cancel, suppressing the branching ratio and removing the discrepancy.

Equation 3.43 is useful if we have other measurement of the branching ratio, from

example from saturation measurements [105].
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3.3.4 Optical Absorption Cross Section

As mentioned above, the transition dipole matrix element can be related to mea-

surable quantities such as Rabi frequencies, saturation intensities, and absorption

cross sections. The literature varies greatly over the definitions of some of these quan-

tities and the assumptions that go into their derivations [126, 130]. Reference [79]

presents a self consistent set of rate equations in the context of diatomic molecules, is

well referenced, and is consistent with simpler results derived in the case of two level

atoms [131, 132].

The optical absorption cross section is defined as the rate of photon absorption

(Γe,g) per photon at a given frequency ω

σe,g(ω) = Γe,g(ω)
Φ(ω) (3.44)

where Φ(ω) = I(ω)/(~ω) is the photon flux [126]. If we consider that stimulated

emission from the upper state can actually amplify our signal3, then the the intensity

of a laser beam passing through this molecular medium with number density N =

Ng +Ne is

I(z) = I0e
−σe,g(Ng−Ne)z. (3.45)

We quote the result from [79], where the cross section is defined in terms of the

transition moments

σe,g(ω) = ω0

6ε0~c
qν′−ν′′ |De−g|2 S∆J

J ′′

(2J ′′ + 1) g(ω − ω0). (3.46)

3The effects of stimulated emission are negligible for weak excitations, so for weak probe beams
the eσe,gNez term in Equation 3.45 can be neglected. One significant acception is in a laser, where
a large population inversion is created by other pumping mechanisms.

56



Chapter 3: C State Lifetime and Linestrength Calculations

We express the cross section in a general form that includes a normalized linewidth

function
∫
g(ω − ω0) = 1, which can be representative of any linewidth broadening

mechanism [79]. For a homogenously broadened Lorentzian lineshape

gL(ω − ω0) = γ/2π
(γ/2)2 + (ω − ω0)2 (3.47)

where the FWHM of ∆ωL = 2π×∆νL = γ = 1/τ . Also useful are Doppler broadened

Gaussian lineshapes with FHWM ∆ωD

gD(ω − ω0) = 2
∆ωD

√
π ln(2)e−4 ln(2)((ω−ω0)/∆ωD). (3.48)

In general, we should integrate across our laser linewidth to compute the total atten-

uation of the beam. When our light source has a narrow linewidth compared to other

broadening mechanisms, g(ω − ω0) can just be evaluated at a single point, typically

on resonance. It is interesting to evaluate the cross section on resonance in the limit

that lifetime broadening is the dominant mechanism.4 Then Equation 3.46 can be

combined with Equations 3.24 and 3.47 to recover the formula from [126, 81] for the

resonant absorption cross section

σnat = λ2

2π
(2J ′ + 1)
(2J ′′ + 1)ξe,g. (3.49)

In the ACME experiment, we are typically in the limit of ∆ωD > ∆ωlaser, so equa-

tion so Equation 3.48 should be applied to Equation 3.46 to predict the amount of

optical absorption. Laser absorption can be used to measure atom number densities

in our molecular beam. If a probe laser frequency is scanned across an atomic res-

onance, the integrated absorption optical density will give a lineshape independent
4This is typically NOT the case in the ACME experiment, where our lineshapes are dominated

by the Doppler broadening of our molecular beam.
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measurement of the molecule number density. This technique is typically used on the

X → C transition as an accurate probe of molecules in the ground state.

3.3.5 Fluorescence Saturation Intensity

Saturation intensities, which can be related to transition dipole moments, are a

useful way of quantifying our ability to strong drive transitions. We have determined

the saturation intensity of various transitions in ThO by directly measuring molecule

fluorescence as a function of laser power [105]. Such measurements can be defined in

different ways for different transitions, depending on decay pathways and the relevant

broadening mechanisms [126]. The relevant saturation condition for ACME is that we

can power broaden the transition linewidth past our Doppler linewidth, so that our

laser interacts with all available molecules. In this section we will use the definition of

the saturation intensity as applied to a two level system to draw comparisons between

X → C saturation measurements and the lifetime measurement. In Section 4.2,

we consider the case of fluorescence when driving the highly off diagonal transition

H → C.

Typically one defines the saturation intensity for a closed two level system, in

which there is a steady state solution to the rate equations [126]. If we instead

consider the three level system shown in Figure 3.5, then the full set of rate equations

is
dNg

dt
= −ΓNg + (Ae,g + Γ)Ne + Ai,gNi

dNe

dt
= ΓNg − (Ae,g + Ae,i + Γ)Ne

dNi

dt
= Ae,iNe − Ai,gNi

(3.50)
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Figure 3.5: Diagram of the model used to consider saturation of the X → C
transition. Γ represents the optical excitation rate, and the decay rates are
assume to have the heirarchy Ae,g � Ae,i � Ai,g. The state |i〉 represents
other “off-diagonal” states to which C can decay, which is primarily the
higher vibrational state |X, ν = 1〉.

We consider the limit that Ae,g � Ae,i � Ai,g, and that the total time the molecule

interacts with the laser is T . 1/Ae,i. This is the case for theH → C transition, where

the fastest “off diagonal” decay rate from |C, ν ′ = 0〉  |X, ν ′′ = 1〉 is AC0,X1 ≈ 3µs

is about the same as the T ∼ 5µs time is takes a 200 m/s ThO molecule to traverse

the 1 mm laser beam. The population that has decayed into level |i〉 is very small,

so Ni(T ) ≈ 0. In this case, the rate equations reduce to those for a two level system,

and we recover the typical expression for the fluorescence intensity (IF ),

IF = Ae,gNe ∝
κ

1 + 2κ (3.51)

where

κ = I/Isat = Γ/Ae,g (3.52)

is the saturation parameter [126].
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Figure 3.6: Saturation of observed fluorescence intensity from the X → C
transition. The transition is driven with 690 nm light, and the intensity of
690 nm fluorescence is measured. The extracted Isat = 1 ± 0.5 mW/cm2.
This data was taken and fit to the functional form of Equation 3.55 by Ben
Spaun.

The physical interpretation of the saturation intensity is that κ = 1 represents

when optical excitation rate Γ equals the relaxation rate back to the ground state Ae,g.

The fluorescence curve turns over at I = Isat because the rapid Rabi flopping between

ground and excited state saturates the time averaged population in the excited state

to Ntot/2. We define the saturation intensity on resonance, such that Γ = σnatΦ(ω0).

The saturation intensity of |X, ν = 0〉 → |C, ν = 0〉 according to our definitions is

Isat = ~ω0AC0,X0

σnat
, (3.53)

Isat = 2πhc
λ3

(2J ′′ + 1)
(2J ′ + 1)

1
τC
. (3.54)

In the limit that Doppler broadening is much greater than the natural or power
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broadened linewidth, one can show the fluorescence saturates more slowly,

IF (I) ∝ I/Isat√
1 + I/Isat

(3.55)

as power broadening increases under the Doppler width, capturing more molecules and

creating more fluorescence [126]. Saturation data was acquired in this regime (Fig-

ure 3.6), making measurements in MBII with a large amount of Doppler broadening.

Fluorescence was monitored while driving the |X, ν ′′ = 0, J ′′ = 1〉 → |C, ν ′ = 0, J ′′ = 1〉,

while varying the power in the 690 nm laser beam. Fitting this data yields a satu-

ration parameter of Isat = 1 ± 0.5 mW/cm2, with a large error bar that takes into

account uncertainties in both fluorescence and intensity measurements. Using Equa-

tion 3.54 and applying Gaussian error propagation, the measured lifetime τC predicts

a saturation intensity of

Isat = 0.77± 0.06 mW/cm2, (3.56)

in excellent agreement with the directly measured saturation intensity.

3.3.6 Optical Excitation Rate

The excitation rate Γ as defined above is an intuitive indication of the strength

at which a transition is driven. We can write the excitation rate per laser intensity

Γ/I in terms of parameters already measured or extracted. The excitation rate for

the rotationally closed Q(1) X → C transition in zero field is

ΓX0−C0

I
= AX0,C0

Γ , (3.57)

= 2τC
3ε0~2c

q0−0|DX−C |2. (3.58)
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For this transition the optical excitation rate is

ΓX0−C0

I
≈ 2 MHz

(mW/cm2) . (3.59)

Note that the ratio of Γ/I for states with similar rotational branching ratios

depends on transition dipole moments and Franck-Condon factors. In particular

ΓH−C/I
ΓX−C/I

= qH0−C0|DH−C |2

qX0−C0|DX−C |2
, (3.60)

can be used to find the transition dipole |DH−C |2 of the H-state by comparing of

measurements of optical excitation rates.
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Properties of State Preparation

and Probe Lasers

The 1090 nm state preparation and probe lasers are a key element of the phase

precession measurement. In analogy to a Ramsey sequence, these lasers act as our

effective π/2 pulses, spatially separated regions where spin coherence is either created

or measured. Their properties must be carefully controlled to ensure our data is high

contrast, low noise, and free of systematics.

4.1 Optical Configuration

The state preparation and probe lasers are meant to strongly drive the H → C

transition for all molecules in the ThO beam. By driving with sufficient intensity

to power broaden past the Doppler width, molecules in all transverse velocity classes

participate in the experiment [105]. The lasers were shaped into elongated 2D profiles,
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generating light sheets that intersected the molecular beam and maximized both the

signal and contrast. The properties of both lasers were dynamic. For example, the

frequency was tuned to perform the Ñ and P̃ switches (Section 5.4.2). In addition,

the polarization of the probe laser was rapidly modulated to measure the two spin

quadratures used to compute a normalized asymmetry (Section 2.1). Two different

schemes for polarization switching, one using two AOMs and another with a single

EOM, were both rigorously tested. Ultimately we chose the former implementation,

as discussed below.

4.1.1 Laser Amplification and Shaping

The state preparation and probe lasers are separated by 22 cm, and each has

optical access to the molecule beam through separate window flanges in the vacuum

chamber and slits in the magnetic shields. They are launched off a breadboard table

(positioned next to the interaction region) that includes beam shaping and polariza-

tion control optics (Figure 4.2). On the far side of the interaction region there is

a smaller optics table for beam dumps, retroreflection optics, and space for setting

up auxiliary optical measurements (such as the Raman measurement described in

Section 6.2.4). At one point, the position of these two breadboards was reversed in

order to change the propagation direction k̂ · ẑ of these lasers (Section 7.1.3), which

required complete realignment of both sets of optics.

Light from state preparation and probe outputs of the Ñ and P̃ state switching

breadboards (Section 5.4.2) are seeded into two 10W fiber amplifiers (Nufern NUA-

1084-PB-0010-B3) with a maximum gain of 40 dB. These amplifiers are designed for
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Figure 4.1: Intensity profile of the state preparation beam with intentional
spherical abberation, including (a) the 2D image and (b) the profile along
the x̂ direction. In both cases the molecules propagate along the indicated x̂
direction, so the steep side of the profile is the “downstream” edge.

amplification of narrow linewidth, low power (1-15 mW) seed lasers, so are well suited

for generating 2-4 W of power from our ∼ 1 MHz linewidth diode lasers to drive the

weak H → C transition. After collimating the freespace output of the armored fiber

cable, each beam is sent though a 30 dB optical isolator (Thorlabs IO-5-1090-HP) to

protect the amplifier against back reflections.

The state preparation laser is first expanded using a pair of spherical lenses, which

are tilted to intentionally introduce spherical abberations into the beam. This tilt

angle is optimized to create a steep reduction in the laser intensity on the downstream

side of the laser profile (Figure 4.1). A chopper wheel (Terahertz Technologies C-

995) with 50% duty cycle at 50 Hz reduces the prep laser’s time averaged power

incident on the electric field plates (Section 4.3). Using the undiffracted output of an

additional AOM in both prep and probe beam paths allows us to fine tune our laser
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power for studies of power correlated systematics (Section 7.1.3). The isolators and

these power modulating AOMs have ∼ 85% transmission, while the AOMs used for

polarization switching of the probe beam have ∼ 50% transmission efficiency. The

Nufern amplifiers for prep and probe are typically turned up to 60% and 45% of

their max power setting, respectively1. Including the 85% transmission through the

field plates, we estimate about 2.5 W in the prep beam and 1 W of the probe beam

intersect the molecule beam.

The final stretching of the prep and probe lasers into an elongated ∼ 3 cm trans-

verse (ŷ) by 3-5 mm (x̂) Gaussian ellipse is done using cylindrical lenses. To minimize

the variation in intensity across the molecule beam, the ŷ transverse height of the

lasers is set to be twice as broad as the collimated diameter of the molecule beam.

This large laser beam height would be clipped by 1" optics such as mirrors or wave-

plates, so vertical beam expansion must happen immediately before the laser enters

the interaction region. To preserve arbitrary polarization states, the laser does not

reflect off any mirrors between the final half-wave plate and the interaction region

(Section 5.4.3), so the cylindrical lenses must be in-line with the final clean-up polar-

izer (Figure 4.2).

The global polarization of each laser is controlled using a pair of half-wave plates

mounted in rotation stages, allowing for slow switches of polarization orientation

as described in Section 5.4.3. The signal normalization scheme requires the linear

polarization of the probe laser to be switched rapidly between orthogonal directions,

which we call X̂ and Ŷ . Note that these polarization directions need not align with
1The power supply used in conjuction with the Nufern amplifiers cannot provide their maximum

required current for 10 W output. Therefore, the reported percentage settings are not out of 10 W,
but instead should be taken from a max power of ∼ 6 W.
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Figure 4.2: Layout of beam shaping and polarization control optics outside
the interaction region. Components include cylindrical lenses (Cyl Lens) for
stretching beams in the horizontal (x̂) or vertical (ŷ) directions, half-wave
plates (HWP), a chopper wheel (CW), Glan-Taylor polarizers (GT), optical
isolators (Iso), tilted lenses for creating spherical abberation, and AOMs for
polarization switching (X̂, Ŷ ) and power control (P-Prp, P-Prb). Spherical
and cylindrical lens focal lengths are labeled in millimeters. All output fiber
couplers are collimated with aspheric lenses of f = 9± 2 mm.

the absolute spatial axes (x̂, ŷ), with relative angle θ depending on the quarter-wave

plate angle.

4.1.2 Fast Polarization Switching

The probe polarization must be rapidly modulated between orthogonal linear

states to compute the asymmetry A = (SX − SY )/(SX + SY ). The duration of each
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polarization bin τchop was bounded from above and below by the following consider-

ations. Efficient normalization requires that the change in signal level (S0) be less

than the shot noise in between X̂ and Ŷ polarization bins. Pulses from the final

configuration of our molecular beam source can be approximated by a Gaussian with

width ∆tp ≈ 2 ms. The fourier transform of such a pulse is a Gaussian in frequency

space with typical width 1/∆tp ∼ 500 Hz, which sets a lower limit on our polariza-

tion switching rate. The molecule pulses can occasionally have a faster rising edges

than a Gaussian, so we conservatively set a lower limit of a 10 kHz chopping rate

(τchop ≤ 50 µs) for polarization modulation [9].

An upper limit on the switch rate is determined by the C state lifetime. The signals

from each time bin will decay exponentially at a rate of e−t/τC after the polarization is

switched. In order to remove signal correlations between opposite polarization bins,

we require that τchop ≥ 10τC . An additional 2.4×τC = 1.2 µs of “deadtime” is inserted

into the polarization switching waveform, such that both beams are simultaneously

extinguished (Figure 4.3). This allows the peak fluorescence signals, which occur

immediately after a polarization switch, to not be contaminated from the decay of

the previous state.

Switching at the maximum rate of 1/(2τchop) = 100 kHz is advantageous because it

allows us to double our fluorescence signal by probing 100% of the available molecules.

By requiring 2τchop < wprb/vbeam, then any given molecule will see both X̂ and Ŷ po-

larizations while crossing the probe beam of width wprb. Each molecule will always

emit a photon into one of the polarization bins, so long as the switch between polar-

ization states is fast enough to prevent adiabatic following of the spin [9]. Therefore,
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Figure 4.3: Trigger waveforms for polarization switching, plotted alongside
measured fluorescence signals. The polarization is switched at 100 kHz using
AOM shutters, corresponding to one full period of X̂ and Ŷ polarization, with
a 2.4 × τC = 1.2 µs “deadtime” inserted. Background levels are measured
for each pulse before the molecules enters the probe region. They subtracted
from the entire fluorescence trace to produce the background free signals
shown here.

we chose τchop = 5 µs, and a probe beam width of dprb ≈ 4.5 mm in order to satisfy

this condition for maximum signal.

Probe polarization switching is implemented by splitting the probe beam into

two orthogonal frequency components, passing them through AOM shutters, then

recombining them on a high extinction ratio Glan-Taylor polarizing beam splitter

(Thorlabs GT10-B) (Figure 4.2). Originally, an EOM configured for polarization

switching (Conoptics 360-120)2 was used to modulate the polarization, but the AOM
2This polarization switching EOM is configured with two stages of Lithium Tantalate (LTA)

crystals with crystal orientation and electric fields rotated by 90◦with respect to each other. This
cancels out all phase retardation aside from the electric field dependent term, greatly reducing the
temperature dependence of the output polarization. A polarizer on the input aligns the polariza-
tion at 45◦to the crystal axes, and a quarter-wave plate mounted on the output ensures that the
polarization is always linear, regardless of the voltage applied [133].
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𝑀𝐼 , 𝐶𝐼 , 𝑆𝐼 

Figure 4.4: Time resolved Stokes parameters while polarization switching
with an EOM, as measured with the Stokes polarimeter (Appendix B). Note
that for these tests, the EOM was being driven at 40 kHz, so switches occurs
at 0 µs and 12.5 µs. A time bin for EDM data would correspond to the first
5 µs of this waveform. The change in the sign of MI indicates rotation of
the polarization by 90◦after the switch. Ringing in the amount of circular
polarization SI is apparent.

configuration was ultimately chosen due to the following advantages:

• A much higher guaranteed level of polarization purity can be achieved with the

AOMs because the GT polarizer is the last optic in the polarization switching

system.

• The X̂ and Ŷ polarization components are guaranteed to be orthogonal by

the high extinction ratio of the GT polarizer (100,000:1). In contrast, the

EOM configuration requires careful tuning of the half-wave voltage to achieve

orthogonality, and this setting can drift over time. The maximum effective

“extinction ratio” of the EOM is 100:1.
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• Good spatial uniformity of the GT polarizer reduces spatial polarization gradi-

ents, to which our experiment is particularly sensitive. We observed that our

EOM generated a non-uniform electric fields across the retarder crystal, thus

creating a spatial polarization gradient across an extended laser beam.

• AOM beam shutters can be switched rapidly with rise time of (100 ns). An

EOM must be driven with high voltage (V1/2 ≈ 150V ), making the necessary

fast rise times of (5 ns with Conoptics 25D driver) the switching pulse hard

to generate cleanly. Observed ringing of the EOM driver voltage (Figure 4.4),

and therefore the polarization state, would have required special measures to

suppress, which were not necessary for the AOM.

A drawback of the AOM configuration is that the two polarization components

are derived from physically different beams. The power and alignment of these two

beams had to be carefully monitored and adjusted to equalize them. Although IPV

studies demonstrated no dependence of the EDM channel on probe X̂ or Ŷ pointing

or power offsets, it simplifies data analysis to have these parameters well matched.

In principle, the polarization rotation of the EOM should not affect the X̂, Ŷ power

or pointing, although this need to be tested rigorously if we ever elect to return to

EOM polarization switching.

4.2 Temporal Profile: Sub-Bin Signal Dependence

The fluorescence signal has a distinctive shape after each polarization switch. In

EDM data, we call each of these switches a “bin”, so this switching process leads to a
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Figure 4.5: Simplified level scheme relevant for optical pumping out of the H
state. Radiation at 1090 nm causes stimulated absorption/emission between
H ↔ C at a rate Γ. The C state decays only off diagonally to the ground
state at rate γ.

“sub-bin” dependence of the fluorescence. It is important to understand the shape of

this signal for purposes of data analysis and error bar estimation. If the background

in each subbin was flat, one would be able to calculate noise on a fluorescence mea-

surement by looking at the variance of the 25 points within a sub-bin. This error

then would get propagated into the measurement of the asymmetry, and through to

the final error bar.

With a time varying fluorescence signal, one cannot directly measure the variance

of the signal level using a single bin. Instead, we integrate under the sub-bin, and

calculate asymmetries with respect to neighboring bins Ai = (Si,x + Si,y)/(Si,x −

Si,y). To compute a fundamental error bar in this case we take the variance of

consecutive measurements of Ai [81, 105]. The statistical error calculated can be

somewhat sensitive to the bounds of the sub-bin under which we integrate, so we

must understand the temporal fluorescence profile for robust data analysis.
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4.2.1 Saturation and Fluorescence Model

I modeled the fluorescence saturation curve classically using a system of rate equa-

tions to describe the optical pumping of population out of the H state. The relevant

energy levels are H, C, and X, where H and C are coupled by the optical field of the

1090 nm probe laser, and the C state spontaneously decays at 690 nm (Figure 4.5).

We define Γ as the symmetric rate of stimulated absorption and emission, equivalent

to an Einstein B coefficient between H ↔ C (Section 3.3.6). The estimated branch-

ing ratio ξC,H is suitably small that decay back to the H state can be neglected, and

population is lost from the H ↔ C subsystem at rate γNC(t). Since this loss rate is

independent of the distribution of ground states into which C decays, the relaxation

rate is γ = 1/τC where the total lifetime of the C state τC = 490±40 nswas measured

as described in Section 3.1.

Given these assumptions, we can write down the rate equations for the population

of the three states in the standard way [126]

ṄC = ΓNH − (γ + Γ)NC , (4.1)

ṄH = −ΓNH + ΓNC , (4.2)

ṄX = γNC , (4.3)

whereNC(t)+NH(t)+NX(t) = Ntot preserves the total number density (molecules/volume).

The observed fluorescence intensity IF ∝ Nc(t)γ, so we must solve the third order

differential equation for NC ,

...
NC = γΓ2NC + 2Γ2ṄC − (γ + Γ)N̈C (4.4)

using initial conditions NC(0) = 0, ṄC(0) = Γ, and N̈C(0) = −Γ2 − (γ + Γ)Γ which
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Figure 4.6: Fluorescence decay curves from H → C optical pumping. These
are plots of Equation 4.5 under the conditions described in the text. A value
of γ = 1/τC = 2 MHz is used.

describe all the population initially in the H state when the laser is abruptly turned

on at t = 0.

This equation has an analytic solution,

NC(η, κ) = e−(1+2κ)η/2 sinh(η2
√

1 + 4κ2) 2κ√
1 + 4κ2

(4.5)

where we have defined a dimensionless variable for t in units of decay time η = tγ

and an effective saturation parameter κ = Γ/γ. We can examine this expression in a

few interesting limits, which are plotted in Figure 4.6.

If we have a very weak drive, κ � 1, we find that the signal initially increases

linearly with rate Γ as expected. Once there is sufficient population in the C state,

the fluorescence saturates, and a careful expansion for long times ηκ = Γt > 1 reveals

that the fluorescence decays at the excitation rate

lim
κ�1
t→∞

IF (t) ∝ κe−Γt. (4.6)

Operating in this limit would be interesting, because the slow decay of the fluores-

cence could let us make a measurement of Γ, although peak signals would be very

74



Chapter 4: Properties of State Preparation and Probe Lasers

small because the maximum intensity Imax ∝ κ. We understand this limit physically,

because the slow rate of optical excitation creates a bottleneck in the fluorescence de-

cay. As soon as the laser excites a molecule, it will immediately decay to the ground

state, so the signal’s rate of decay is limited to Γ.

The experiment operates in the opposite limit, of κ & 1, which is enforced in

order to power broadened past the Doppler width and maximize the total fluorescence

signal [105]. As expected the fluorescence initially increases with linear slope Γ to a

maximum intensity given by Imax = κ/
√

1 + 4κ2. After the maximum intensity, the

fluorescence decays at half the free space decay rate (γ/2)

lim
κ�1
t→∞

IF (t) ∝ κ√
1 + 4κ2

e−γt/2. (4.7)

In this limit, the large saturation parameter causes rapid Rabi flopping that time

averages to distribute the population evenly between H and C, and the population

is immediately equilibrated after every decay. If NHC = (NH + NC) = 2NH = 2NC ,

then the observed fluorescence decays with the total population IF ∝ NHC , but can

still only leave through the C state, so the simplified rate equation in this limit is

ṄHC = −γNC = −γ2NHC → IF (t) ∝ e−γt/2. (4.8)

Under conditions of strong saturation, the decay profile becomes less sensitive to our

laser intensity. Typically, the ACME data analysis averages over photons after the

peak in fluorescence. It is then convenient that we operate in saturation, where the

temporal fluorescence profile is insensitive to drifts in excitation rate from laser power

or frequency fluctuations.
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4.2.2 Fluorescence Profiles in a Molecular Beam

The discussion from the previous section describes fluorescence signals that always

decay to zero for arbitrary values of κ if we excite for long enough, assuming that

our total supply of molecules Ntot is fixed. This is not the case for a molecular beam,

where the flux of molecules entering the probe laser creates a fluorescence background,

such that our signals will not decay to zero even a long time after the excitation laser

is switched on. On the time scale of a polarization bin, we can consider the flux to

be a constant F = λvbeam, where λ = Ntot · A is the molecules per unit length in

the x̂ direction for a molecules beam with cross sectional area A. We assume that

the laser beam has a hard edge, so that a molecule moving into the laser beam sees

the intensity turn on abruptly. This assumption is not strictly true in the case for

Gaussian beams, although as mentioned in Section 4.1 our probe beam is intentionally

shaped to have a fast rising edge, so this assumption is not bad.

We note that because of the molecule’s linear velocity vbeam, the temporal profile

of fluorescence from Equation 4.5 is mapped into a spatial profile for molecules that

have entered the laser beam since it was turned on. As molecules move into the

laser after it has been switched on, this spatial profile gets “filled out” in time (Fig-

ure 4.7a: Top Case). Because our detection is not spatially resolved, the measured

fluorescence profile is the integral over this spatial distribution. The fluorescence for

these molecules initially outside of the laser IF,out as a function of time relative to the

laser switch (tbin = t− ts) is

IF,out(tbin) ∝ λvbeam

∫ tbin

0
NC(t′)dt′. (4.9)

This integral has a closed form solution plotted in Figure 4.7b, and for tbin � Γ, γ
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Figure 4.7: Diagram of two components that contribute to temporal shape of
observed H state probe fluorescence. (a) IF,in comes from the molecules that
are in the probe laser when it is switched on, while IF,out is from molecules
that enter the laser beam after the switch. (b) The two component fit
(Equation 4.11) to a sample of probe laser induced fluorescence in a typical
5 µs polarization switching bin. The IF,out component increases to a steady
state value for t2 > t1, while IF,in is a transient that decays as shown in
Figure 4.6. For this particular fit, γ = 2 MHz is fixed by the C state lifetime,
while the fit yields Γ = 0.8 MHz. The data is from a single molecule pulse,
averaged over the ∼ 200 polarization switches during the pulse.
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the signal asymptotes to a constant background fluorescence of λvbeam. For reference,

the full form of Nout(t) =
∫ t

0 NC(t′)dt′ is

Nout(t, γ, κ) = 1
γ
− e−γt(1+2κ)/2

γ
√

1 + 4κ2

[
(1 + 2κ) sinh

(
γt

2
√

1 + 4κ2
)

+
√

1 + 4κ2 cosh
(
γt

2
√

1 + 4κ2
)]
.

(4.10)

Therefore, our fluorescence signals can be approximated by two components,

IF,out(tbin) from Equation 4.9, and the molecules that were initially within the probe

beam of width wprb at time ts, which decay with a temporal profile IF,in(tbin) ∝

λwprbNC(tbin) (Figure 4.7a). We can fit polarization chopped fluorescence signals to

the functional form

S(tbin) = A1NC(tbin, γ,Γ) + A2Nout(tbin, γ,Γ) (4.11)

An example fit is seen in Figure 4.7b. The fit does not accurately capture the peak

of the excitation, which may be a consequence of not including the Gaussian pulse

shape.

Models that more carefully take into account the length of the probe region and

polarization switching rate can accurately predict the relative amplitudes A1/A2, but

for the purposes of fitting it is conceptually simpler to keep these as independent

fit parameters. The Gaussian shape of the probe beam can be included as a time

dependent Γ(t) ∝ e−(vt/wprb)2 when solving for NC in Equation 4.4. This differen-

tial equation no longer has a closed form solution, so its utility in fitting to EDM

data is limited. Numerical integration shows that including this Gaussian laser pro-

file introduces only small deviations from the approximate closed form solutions of

Equations 4.5 and 4.10.
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Figure 4.8: Measured linear relationship between optical excitation rate and
probe laser power. Relative probe power (P/P0) is monitored using photodi-
ode on an irised subregion of the laser after passing through in the interaction
region. The excitation rate Γ is extracted from a fit to Equation 4.11 by fix-
ing the decay constant γ = 2 MHz. Error bars on both measurements are
the standard deviation of the mean of measurements over ∼ 25,000 ablation
pulses.

By fixing the decay rate γ = 1/τC = 2 MHz, these fits can be used to extract

the rate of optical excitation from H → C. Since Γ ∝ Iprb|DH−C |2, these fits can be

used to either monitor the laser power or extract a measurement for the transition

dipole moment, given our knowledge about the laser intensity. Figure 4.8 compares

the extracted Γ against the probe power as monitored by a photodiode signal (taken

during a PNE superblock where the power was being intentionally modulated). The

fit reveals the expected linear dependence, although with an unexplained offset if the
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fits are extrapolated to zero power.3

Ultimately such data could be used to compensate for changes in molecule Rabi

frequency in future EDM data. Absolute measurements of probe laser power incident

on the molecules are imprecise because of scattering off the electric field plates. There

is of order 1 W/cm2 intensity in the laser beam, so the measurement of Γ ∼ 0.5 MHz

is consistent with our estimates of |DH−C | from Section 3.3.1 and from saturation

intensity measurements [105].

4.3 Spatial Profile: Polarization Gradients

We discovered that polarization gradients along the trajectory of our molecules

(x̂) were responsible for a major source of systematic error, as described in Section ??.

Careful studies of these gradients using the polarimeter described in Appendix B was

key for diagnosing and limiting these systematics. We discovered that birefringence

gradients in our glass electric field plates were created by thermally induced optic

stress [134] from the absorbed laser energy of our intense ∼ 2 W state preparation

and probe laser beams. They were minimized by reducing the time averaged energy

deposited in the field plates by inserting an optical chopper into the laser beam.
3This technique is limited in practice by the low pass filter at 2 MHz applied to the detection

circuitry. Values of Γ � γ could not be distinguished because they would all be smoothed to the
bandwidth of the filter. It is also possible that this filter could account for the imperfections in the
peak fit and the offset when Figure 4.8 is extrapolated to zero power.
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4.3.1 Thermally Induced Stress Birefringence

We consider our glass field plates of thickness tG, with a single side ITO coating of

thickness tC . Both the substrate and coating contribute to heating due to absorption

I(z) = IO exp(−(αGtG +αCtC)z) with respective absorption coefficients αG, αC [133].

In limit of small absorption αt � 1, the power deposited per unit volume averaged

over the substrate can be approximated as

Q(x) ≈ I(x, tG)− I0(x)
tG

= I0(x)
(
αG + αCtC

tG

)
(4.12)

For a stretched laser beam, in the limit of high aspect ratio (narrow in x̂, wide in ŷ) the

heat deposited by absorption will create a gradient of the principle stress component

σyy(x) [135, 81]. The resulting stress gradient will induce a birefrinegence gradient

according to the stress optic law [136], δn = K(σxx − σyy), where the stress optic

coefficient is K ≈ (3− 4)× 10−3 GPa−1 for commonly used optical glasses.

One arrives at a differential equation for the optical retardance gradient (δΓ(x) =

2πtG
λ
δn(x)) in relation to the laser intensity [81],

d2δΓ(x)
dx2 = βtG

λ
I(x). (4.13)

The factor β is almost entirely material specific,

β = 2πKEαv
κ

(
αG + αC

tC
tG

)
, (4.14)

and depends on the stress optic coefficient K, Young’s modulus E, coefficient of

thermal expansion αv, and thermal conductivity κ of the substrate, as well as the

absorption coefficients4 and thickness of the coating and substrate. For our 200 nm
4The absorption coefficient α is related to the extinction coefficient κ = Im(n) by α = 4πκ/λ [133].
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coating of ITO on Borosilicate glass5, substituting the appropriate numbers gives

β ≈ 7 × 10−5 W−1. Notice how the stress birefringence is a property of both the

substrate and the coating if there is a substantial amount of absorption in the coating.

As long as the intensity profile is suitably elongated, Equation 4.13 can be inte-

grated to yield the optical retardance gradient Γ(x) for a laser beam with an arbi-

trary intensity profile I(x). A closed form solution exists for a 2D Gaussian beam

I(x, y) = Ptot/(2πwxwy) exp(−(x2/2w2
x + y2/2w2

y)) of the form [81]

∆Γ(x) = −β tGPtot

2πwxwyλ

[
w2
xe
−x2/2w2

x +
√
π

2wxxerf
(

x

wx
√

2

)]
(4.15)

This serves a reasonable fit function to optical retardance gradient data. Good agree-

ment between this function and polarimetry data supports this model for thermally-

generating birefringence gradients.

4.3.2 Polarization Effects of Thermal Birefringence

As discussed in Section 7.1.1, our ac Stark shift phases are sensitive to linear and

circular polarization gradients in different ways. Let’s analyze how the small changes

in retardance Γ described in the previous section can affect our laser polarization

parameters. We assume the linearly polarized input state is altered by the small

retardance gradient Γ(x). This section is an extension the analysis from [81] to

include arbitrary angles between the laser polarization and birefringent axes. Here we

assume familiarity with both the Jones calculus and the Stokes parameters (see [133]

or Appendix B.1).
5The optical thickness of our coating was specified to be λ/2 at 900 nm by Custom Scientific.

The index of refraction n ≈ 2.0, so the physical thickness is tC ≈ 450/2 = 225 nm.
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Assume our input light is propagating in the ẑ direction. We are free to choose a

linear polarization basis of Jones vectors aligned with the x̂ and ŷ axes,

X =

 1

0

 , Y =

 0

1

 . (4.16)

A linear polarization in an arbitrary direction φ with respect to the x̂ axis is then

P (φ) = cos(φ)X + sin(φ)Y =

 cosφ

sinφ

 . (4.17)

Consider the input linear polarization to be fixed and oriented along the φ = 0

direction. In the basis described above

Pin =

 1

0

 . (4.18)

The polarization state can be rotated between linear bases separated by an angle ψ

by applying the rotation matix R(ψ) ([133] Equation 1.9-9).

R(ψ) =

 cosψ sinψ

− sinψ cosψ

 . (4.19)

In the basis parallel to the fast axis of some linear retardation element with phase

retardation Γ = 2π
λ

(ns − nf )d, the Jones matrix is

U(Γ) =

 e−iΓ/2 0

0 eiΓ/2

 . (4.20)

The Jones matrix corresponding to a waveplate oriented at an angle ψ with respect
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to the input polarization follows from a simple basis transformation

U(Γ, ψ) = R(−ψ)U(Γ)R(ψ) (4.21)

=

 e−iΓ/2 cos2 ψ + eiΓ/2 sin2 ψ −i sin(Γ/2) sin(2ψ)

−i sin(Γ/2) sin(2ψ) e−iΓ/2 sin2 ψ + eiΓ/2 cos2 ψ

 .
The state of the output polarization is then Pout(Γ, ψ) = U(Γ, ψ)Pin. This formula-

tion is mathematically equivalent to the case where the input linear polarization is

rotated while the birefringent element is kept fixed. When looking for small changes

in polarization, it is advantageous to operate in this fixed polarization frame, so the

output state can easily be related to the static input. The output polarization is

Pout(Γ, ψ) =

 e−iΓ/2 cos2 ψ + eiΓ/2 sin2 ψ

−i sin(Γ/2) sin(2ψ)

 . (4.22)

Analysis of Pout in terms of Stokes parameters is a useful way to quantify small

polarization deviations and compare to our polarimetry measurements. By definition,

the normalized Stokes parameters can be computed as the differences in intensity in

the linear basis (MI), another linear basis at 45 degrees (CI), and a circular basis

(SI),

MI = |P · x̂|2 − |P · ŷ|2, (4.23)

CI = 1/2(|(P · x̂+ P · ŷ)|2 − |(P · x̂− P · ŷ)|2), (4.24)

SI = 1/2(|(P · x̂− iP · ŷ)|2 − |(P · x̂+ iP · ŷ)|2). (4.25)
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Solving explicitly for the Stokes parameters of Pout in Equation 4.22

MI = cos2(Γ/2) + cos(4ψ) sin2(Γ/2), (4.26)

CI = sin2(Γ/2) sin(4ψ) (4.27)

SI = − sin(Γ) sin(2ψ) (4.28)

The angle of the linear polarization is simply determined by the ratio of the two

linear stokes parameters, φ = 1/2 arctan (CI/MI). For a small retardance (Γ � 1),

one finds the linear polarization angle has been rotated to

δφ ≈ 1
8 sin(4ψ)Γ2 (4.29)

Likewise, the circular polarization is quantified in terms of the ellipticity angle θe =

1/2 arccos(SI). In the Γ, SI � 1 limit the ellipticity and circular stokes parameter

differ by a factor of 2, so for small changes in the ellipticity

δθe ≈ −
SI
2 ≈

1
2 sin(2ψ)Γ. (4.30)

With a small thermally induced birefringence gradient across the field plates,

the spatially varying Γ(x) will generate both linear and circular spatial polarization

gradients, δφ(x), θe(x). The circular polarization gradient has been directly observed,

both through gradient polarimetry (Figure 4.10) and its coupling to the molecule

phase through the Enr systematic (Figure 7.5). Noting a few interesting features

about the linear polarization gradients from Equation 4.29

• The linear gradient is always quadratic in Γ, suppressing it with respect to the

circular polarization gradient.
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• Where the circular gradient is maximized, at ψ = π/4, the linear gradient

vanishes.

• Both the linear and circular gradients vanish when the input polarization is

aligned with the fast or slow birefringence axes.

The linear gradient at various values of input polarization angle are

δφ(x) ≈


ψΓ(x)2

2 min at ψ ≈ 0, π/4

1
8Γ(x)2 max at ψ ≈ π/8

(4.31)

If we are actively rotating the angle between the birefringent axes and the input

linear polarization(ψ), we see that the induced circular and linear polarization gra-

dients have different angular dependencies. The linear polarization gradient should

exhibit half the period of the circular gradient. Our polarimetry measurements can

not currently resolve a linear gradient of . 10 mrad. In principle, the periodicity of

the ΩNEr systematic should have the same angular dependence as φ(x), as described

in Section 7.1.3. However, by the time we realized the significance of the ΩNEr system-

atic, we had already taken measures to suppress the Γ(x) gradient, so no statistically

significant polarization dependence was observed in the PNE IPV data. Future itera-

tions of the experiment should look closely for φ(x) gradients, either through higher

resolution gradient polarimetry or PNE data with intentionally exaggerated birefrin-

gence gradients.
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4.3.3 Measuring Circular Polarization Gradients

The predicted ellipticity gradients were directly observed using the polarimeter

described in Appendix B [137]. The polarimeter has a spatial resolution of 0.8 mm, the

size of the input aperture iris. The polarimeter was aligned perpendicular to the state

preparation and probe beams, and a translation state scanned it across each laser’s

wavefront to collect spatial polarization data. By using the automated waveplates to

control the input polarization, the effects of the relative angle ψ between the input

polarization and birefringence axes could be studied. Ellipticity gradient scans at

various angles for a single probe polarization component are shown in Figure 4.9.

Similar scans taken before the laser passed through the electric field plates show

no polarization gradient, regardless of input angle. As mentioned in the previous

section, there were never any linear polarization gradients observed, as they appear

to be beyond the resolution of the polarimeter.

For ellipticity gradients caused by a space fixed birefringence gradient, Equa-

tion 4.30 predicts these gradients to have a 2ψ periodicity. By measuring amplitudes

of curves like those in Figure 4.9, we can extract the angular dependence of our po-

larization gradients. Simply fitting each curve to a Gaussian or function in the form

of Equation 4.15 provides a very large uncertainty in measurements of the gradient.

The more robust and straightforward way to extract an amplitude is to take differ-

ences between points in the center and at the edges of the distribution. Figure 4.9

also shows that both the offset and amplitude of the ellipticity changes as a function

of angle. Using an IPV data set where a large amount of circular polarization was

added to the state preparation laser, we demonstrated that our EDM measurement
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Figure 4.9: Circular polarization gradients in the probe laser beam at various
input polarization angles. The y-axis is in terms of S/I = −2θe. Input angles
are relative to the home position on the rotating wave plate. Similar gradients
were seen in the state preparation laser.

is not sensitive to ellipticity offsets, only spatial gradients.

The results shown Figure 4.10, for both state preparation and X̂ and Ŷ compo-

nents of the probe laser, confirm the predicted periodicity. By measuring polarization

relative to the polarimeter’s fixed polarizer, we can compare the phase of this angu-

lar dependence of all lasers with respect to absolute spatial coordinates. Our theory

predicts that the orientation of the principle birefringent axes should depend only

on the orientation of the stretched laser profile, so the gradients should vanish at

(−90◦, 0◦, 90◦). This is true in the probe laser, but the comparison shows that the

prep laser gradient does not vanish as predicted, and does not have the same phase as

the Enr systematic’s angular dependence. We note that these gradient measurements

are performed after the laser has passed through two layers of electric field plates.

This could account for the discrepancy in these measurements. Future polarimetry

measurements should be made on a single substrate to confirm.
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Figure 4.10: Angular dependence of thermally induced polarization gradients
for both state preparation and X̂ and Ŷ components of the probe laser. The
absolute linear polarization angle (for which there is no spatial gradient)
was measured by the Stokes polarimeter, relative to the polarimeter’s fixed
polarizer. The ellipticities have been normalized to arbitrary units so the
periodicity of the various curves can be compared on the same scale.

The data presented in Figure 4.10 demonstrates that we have a birefringence

gradient, while the data from Figure 4.11 confirms that the gradients are thermally

induced from deposited laser power. Reducing the power of the input laser decreases

the amplitude of the gradient by a comparable amount. Moreover, inserting a chopper

wheel at 50 Hz with a 50% duty cycle has the same effect as turning down the

instantaneous laser power by a factor of 2. This confirms that the thermal time scale

in the field plates (10 s as calculated in [81]) is sufficiently long that in most cases

our measurements are only sensitive to the time averaged laser power. Therefore, we

were able to reduce the size of ellipticity gradients and the resulting Enr systematic

by inserting this chopper wheel into the state preparation laser’s beam path while

keeping the instantaneous power high enough to fully saturate the Doppler broadened

H → C transition. Because background levels from scattered light must be constant
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Figure 4.11: Power dependence of the thermally induced polarization gradi-
ents in the probe laser. Measured power levels are approximate, and corre-
spond to settings of 45%, 22%, 0% on the Nufern controller for approximately
4W, 2W and 0.4W of output power, respectively. The curve with a 50% duty
cycle indicates a chopper wheel was placed in the beam path. For all other
data points the chopper wheel was off.

across the 9 ms long digitizer trace captured every 20 ms, a 50% duty cycle synched

with our ablation pulses provided the greatest power reduction possible.

4.4 Contrast Lineshapes

By fully saturating the H → C transition, the state preparation laser will create a

completely pure spin state, therefore maximizing the experiment’s contrast and sen-

sitivity to the EDM. When the frequency is scanned across the resonance, the pump

beam will maximally deplete the bright state spin quadrature at zero detuning. A

measurement of the contrast reveals a power broadened and flat-topped lineshape

(Figure C.3b). Understanding this lineshape is important, for example, to determine

how the prep laser detuning will create correlated contrasts and EDM systemat-
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ics [81], or how to use the contrast to calibrate an E field measurement (see [105] and

Section 6.4).

The contrast lineshape can also be used as a means of retuning a drifting probe

laser back to the resonance frequency. This requires fitting to a simple analytic

contrast lineshape that determine the center frequency. The contrast lineshapes in [81,

105] include many experimental parameters, not ideal for robust nonlinear fitting with

minimal free parameters. I have found the following simplified model produces good

contrast fits. In the limit of a small saturation parameter κ = Γ/γ . 1, which

will be the case when the laser is off resonance, the H state population is given by

Equation 4.6,

NH(t) = N0e
−Γt, (4.32)

for interaction time t with the state preparation laser.

We treat NH and Γ as quantities averaged over the entire Doppler broadened

sample. Therefore, the resonance condition can be modeled as a Gaussian lineshape

for Γ

Γ(∆, σD) = Ae−∆2/(2σ2
D) (4.33)

where ∆ = ν−ν0 is the detuning from resonance, and σD is the Doppler width (about

2 MHz for our collimated ThO beam). Assume the probe laser polarization is aligned

with the spin state after precession, such that φ − θ = nπ/2 for integer n. In this

case,

A = C cos(2(φ− θ)) ≈ C, (4.34)

so the probe’s asymmetry measurement becomes a direct measurement of our state

contrast. The measurements in the X̂ and Ŷ spin quadratures are aligned with the
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Figure 4.12: Contrast lineshape models. The simple model is from Equa-
tion 4.36 and the full solution is from Equation 4.37.

bright and dark states created by the state preparation laser. The measured popula-

tions are therefore NX = N0e
−Γt and NY = N0, leading to a measured asymmetry

A = Cmax
NY −NX

NY +NX

= Cmax
1− e−Γt

1 + e−Γt

A = Cmax tanh(Γt/2). (4.35)

The factor Cmax has been added to account for the less than 100% maximum contrast

from dephasing, laser misalignment, and velocity dispersion [106].

This simple model provides us with a four parameter fit function

C(∆, σD, Cmax, A) = Cmax tanh(AeAe
−∆2/(2σ2

D
)
). (4.36)

As as alternative approach, we could have used the exact solution for the remaining

population of the bright state using Equation 4.1 (NH = γ+Γ
Γ NC + ṄC

Γ ), with NC(η, κ)
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from Equation 4.5. Solving for the asymmetry and using the excitation lineshape

Γ(∆, σD)

C(∆, σD, Cmax, η, κ) = Cmax
1−NH(∆, σD, η, κ)
1 +NH(∆, σD, η, κ) . (4.37)

This result contains an extra fit parameter, and the analytic form is also much more

complicated that the approximation from Equation 4.36. The two are compared in

Figure 4.12 for physically relevant parameters, with excellent agreement in lineshape.

The latter is therefore more useful as a fitting function when the most important

parameter is the linecenter.
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ACME Data Acquisition System

A major contribution of my thesis work was to develop the data acquisition (DAQ)

system that controls the experiment. This involved developing a robust and user

friendly software system that could easily interface with a wide variety of scientific

equipment. This system has been designed to be easily expandable and well doc-

umented so future generations of students can add to it. The design goal for the

ACME DAQ was to maximize the degree of automation, so the experiment could be

run from “a beach on Tahiti”, so to speak. The desire to perform daily checks of the

apparatus and maintain a constant human presence from a safety standpoint (high

power lasers), meant that it was never necessary to achieve 100% remote automation.

However, once a daily data run has commenced, the experiment can be run remotely,

and most common experiment glitches can be diagnosed and treated remotely as well.

The data acquisition system simultaneously performs the following three functions:

1. Controlled digital modulation of experimental parameters on time scales≥ 0.5 s,

necessary for acquiring the complete set of phase and contrast measurements
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required to extract the EDM.

2. Acquisition and storage of high bandwidth (5 MSa/s) fluorescence waveforms

for the near shot noise limited spin precession measurement [9].

3. Logging of experimental parameters necessary for computing correlated phases.

All functions were coordinated with a LabVIEW based software system. A laboratory

ethernet based local-area-network (LAN) was used to network the majority of the

hardware and allowed for a unified interface to the data acquisition and storage PC.

Some of the individual components were implemented by others, into the framework

I developed and maintained, as will be noted in the text.

5.1 Data Acquisition Structure

The experiment is controlled as a “state machine”, where each state is specified

by the configuration of a large number of binary switch parameters. Each parameter

“reversal” is controlled by commands set via the LabVIEW control system. The data

acquisition system was designed to allow flexible integration of additional devices and

switches. Parameters are switched between pulses of the molecular beam source, and

the data acquisition is paused while the switch is being actuated. Phase precession

measurements are repeated at every 20 ms, synchronous with the 50 Hz pulse rate of

our molecular beam source.

Four switches, (Ñ , Ẽ , θ̃, B̃), are necessary to deduce an EDM from measurements

of the correlated phase φNE , the precession time τ , and the contrast C, as discussed in

Section 2.2. These four switches are modulated as quickly as possible, and a group of
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phase measurements from all 24 switch state combinations are subdivided into a unit

called a “block”. In the absence of systematic errors, these four switches would be

sufficient to make an EDM measurement. Twenty five consecutive molecular beam

pulses are averaged for each switch state, so the minimum time between switches

is 0.5 s. Due to some repeat states (Section 5.2), a block length is typically 64

independent phase precession measurements (1600 total beam pulses), and is acquired

in about 45 seconds including switch transition times.

A number of other switches, (P̃ , L̃, R̃, G̃) were designed to suppress systematics

that vary slowly with time, and therefore were modulated only between blocks, at

multiples of the 45 s block acquisition period. A block of data is collected for each of

the 24 states of these less frequent switches, where the complete cycle has been dubbed

a “superblock”. The superblock length is extended past the minimum to 32 blocks

long, which allows additional parameters to be inserted into the superblock cycle

without altering its length (Section 5.1.2). Each superblock requires an acquisition

of 51,200 beam pulses, with an average acquisition time of 27 minutes.

5.1.1 Block and Superblock Switches

The switch parity component analysis (Section 2.2) was applied to the following

eight block and superblock switches to extract the EDM and analyze systematics.

Brief definitions are below, with details of each switch’s properties in following sec-

tions.

• The Ñ switch tunes the 1090 nm state preparation and probe lasers to address

either the N = +1 or N = −1 omega doublet spin state manifold in the H
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state. This is effectively a reversal of ThO’s internal electric field Eeff . The

AOMs used as frequency shifters and shutters have a very fast settling time, so

Ñ was reversed every 0.5 s during the experiment.

• The E-field switch (Ẽ) reverses the direction of the laboratory electric field by

inverting the voltage source’s set output to the two sides of the E-field plate

assembly. The EDM is odd under the combination of Ñ Ẽ , so this switch was

modulated every ∼ 2 seconds, the most frequently switched after Ñ .

• The θ̃ switch is a modulation of the probe laser polarization angle by 12◦ using

a half-wave plate mounted in an automated rotation stage. This changes the

measurement basis angle θ and the measured asymmetry signal A ∝ C cos(2(φ−

θ)). By stepping up and down the linear region of the Ramsey fringe, we

measure the slope dA/dθ = 2C, which allows us to convert asymmetry into

phase φ = A/2C. This is the third most frequent switch, modulated every 10

seconds in an ABBA sequence.

• The B-field switch (B̃) reverses the direction of the laboratory magnetic field

by inverting the polarity of our current source. Although the EDM is not

odd under a B̃ switch, it does allow us to extract our spin coherence time via a

measurement of the B-correlated phase (φB = gHµB|Bz|τ/~). A lengthy deguass

cycle is applied with each B-field change, so the B̃ switch is modulated only once

per block, every 45 seconds.

• The P̃ switch tunes the 1090 nm probe laser by 50.4 MHz to address either of the

excited state omega doublets (|C, J = 1,M = 0,P = ±1〉). These states have
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opposite parity, and therefore couple to orthogonal H state superpositions [80].

This allows us to reverse our measurement basis without rotating the laser

polarization. The P̃ state is randomly selected between blocks, every 45 s.1

• The L̃ switch is an alternate way of reversing the electric field direction. Using

a system of TTL controlled mercury whetted relays, it physically switches the

leads connecting the voltage supply channels to the field plates. This switch

has an even faster settling time than the Ẽ switch, but due to lifetime concerns

for the relays, the switch is modulated with a four block period, about every

200 s.

• The R̃ switch is a rotation of the probe laser’s polarization by 90◦ every eight

blocks or roughly 400 s.2 This rotates the measurement basis, interchanging

which of two overlapping probe laser beams (Section 4.1) measures in the X̂

or Ŷ direction. Along with the P̃ switch it helps to cancel drifts in laser beam

pointing or power [105].

• The G̃ switch is a synchronous ∼ 90◦ global polarization rotation of both the

state preparation and probe lasers. The relative angle between prep and probe,

and therefore the measured asymmetry, should be unaffected by this global

switch. The two angles were chosen to fall at the two locations that minimized

the Enr systematic slope, aligned with the induced birefringence axes of our field

plates (Section 4.3).
1The frequency detuning of the P̃ switch is performed using AOMs, and therefore is capable of

being modulated as fast as the Ñ switch. In practice, it was only switched between blocks to reduce
the total number of states required for a block cycle.

2This large polarization slew is slow, so this switch is rotated infrequently.
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5.1.2 Longer Switches and Interleaved Systematic Checks

A few other switches are modulated on even slower time scales. The switch parity

component analysis was not applied to the following switches, but instead the EDM

measurements from superblocks generated in each configuration were directly com-

pared, and shown to agree within experimental error bars (Figure 7.7). Because we

have no evidence that any of these switches caused an EDM shift, we averaged these

to determine the final result.

• The E-field magnitude was set once per day to a value of either 141 V/cm or

36 V/cm. Since the molecular polarization is saturated, this should not change

Eeff (Section 1.3.1). This unique saturation in ThO provides an additional means

of searching for systematics from leakage currents or ~v × ~E motional magnetic

fields [3, 41]. This switch required manual rerouting of fibers, switching BNC

cables, and retuning of the prep/probe laser lock point, which is why it was

performed so infrequently. These two configurations are referred to as “High-E”

and “Low-E” elsewhere in this thesis.

• The B field magnitude was switched between three values (1, 19, 38 mG) between

superblocks on an ∼ 1 hour time scale. As a probe of any B-field dependent

systematic effects, this confirmed their absence at our current level of statistical

precision. Switching the B-field magnitude changes the amount of magnetic

phase precession, and therefore requires rotating the probe laser polarization in

order to satisfy φ − θ ≈ π
4 (2n + 1). This basis rotation was fully automated

along with the change in the magnitude |Bz|. This data is often referred to as

0B, 1B,and 2B because the specific |Bz| values applied required daily adjustment
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to account for velocity drifts in the ThO beam. Acquiring at 0B and 2B require

the same probe angles, so those measurements were actually acquired in the

same superblock structure. We define the “B field parity” as either even (0B

and 2B) or odd (1B).

• An additional switch was performed only once, which revered the propagation

direction of our state preparation and probe lasers (k̂) with respect to our

laboratory axis (ẑ). The laser preparation breadboard (Figure 4.2) was moved to

the other side of the interaction region, where it then had to be realigned. This

so-called (k̂ · ẑ) switch confirmed the existence of the Ñ Ẽ odd Rabi frequency

ΩNEr (see Section 7.1.3), and allowed us to place model-dependent bounds on it

in our error budget. Although it is not strictly necessary to repeat this switch

now that we understand the systematic, future generations should consider

building two copies of the state preparation optics, and switching between them

with MEMS fiber switches.

Our approach to quantify systematic error involved acquiring “intentional pa-

rameter variation” (IPV) data sets, where the conditions were varied so as to be

inappropriate for an EDM measurement (e.g. a large magnetic field gradient). Most

of these IPV parameters were implemented as automated switches (for the full list

see Table ??) and inserted into the usual superblock structure. The IPV was inserted

as the most frequent superblock switch between every 45 s block, with a maximum

superblock length of 32 blocks.

Three IPV data superblocks were interleaved with the final data sets, and were

used to constrain the dominant Enr and ΩNEr systematics. Unlike the approach taken
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by the YbF experiment, where they chose to constantly interleave systematic moni-

toring switches within their data set [4, 7], we interrupted our “ideal conditions” data

acquisition with these IPV superblocks. This approach allowed us to greatly exagger-

ate the IPV parameter and rapidly acquire a statistically significant systematic error

limit (see Section 7.2), which minimized the time spent only limiting systematics.

A complete cycle of all IPV and 0B, 1B, 2B ideal data superblocks is affectionately

dubbed an “uberblock”. An uberblock has a typical period of ∼ 400 blocks (640,000

beam pulses over an average of 6.5 hours) and included the following IPV superblocks:

• A large Enr of up to 200 mV/cm was applied to the field plates by modifying the

Ẽ switch to include a |V |E component from the voltage source. Monitoring the

Enr sensitivity (SEnr = ∂ωNE/∂Enr) interleaved with final data was necessary to

apply a daily systematic correction. Because the Enr systematic depends on the

probe laser angles, which are different for the two B field parities, we acquired

two Enr IPV superblocks per uberblock, once for each B field parity.

• The frequency of the state preparation laser was detuned by ∆prp ± 2 MHz

from resonance in an IPV superblock repeated once per uberblock. This put

the phase measurement on the linear region of the contrast curve, where it is

sensitive to shifts in the resonance frequency. In particular, the CE contrast

channel provides a measurement of the Enr via the dc Stark shift (Section 6.4).

• In order to simulate a ΩNEr , which can cause a light shift induced EDM system-

atic, a prep and probe laser power correlation (PNE) was added by inserting an

extra AOM into each beam path (Section 4.1). The optical power in the un-

diffracted beam depends on the RF power to the AOM, which was modulated
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using commands to the DDS. In this way, we could monitor SΩNEr = ∂ωNE/∂ΩNEr

using two superblocks per uberblock, one for each B field parity, and determine

an shift associated with this systematic.

5.2 Switching Timescales

There are two relevant timescales for all of the switches in the ACME data sets.

The time required to perform some switch s̃ ∈
{
Ñ , Ẽ , θ̃, B̃, P̃ , L̃, R̃, G̃

}
, during which

the acquisition of spin precession data is paused, is the transition time ∆ts. The

characteristic period over which s̃ is reversed defines the switching period Ts. These

timescales together determine the duty cycle of the experiment, the percentage of

ablation pulses that are saved by the DAQ and useful for post-processing as EDM

data. The switching period is also important for determining the extent to which dif-

ferent phase parity sums will be susceptible to drifts and noise in measured precession

phases.

In order to understand these timescales, we introduce the waveform patterns used

to program the four switches within a block. The waveform generation algorithm is

input a fundamental switch cycle for each parameter, and the parameter switches are

ordered by relative switch frequency (see Section C.1). The full waveform is composed

by repeating these units, nesting them from fastest to slowest switch period, until all

switch state combinations are included in the waveform (Figure 5.1). For a switch with

binary states {A,B}, the fundamental switch cycles used are either AB or ABBA.

An AB sequence is the minimum required to form all 24 = 16 state permutations

within the block. The ABBA sequence has one fewer state transition as compared
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to an ABAB sequence, and therefore is applied for switches with long transition

times (∆ts) in order to minimize the reduction in duty cycle. It also allows for the

additional cancelation of certain linear drifts, as described in Section 5.2.2.

The Ẽ and θ̃ switches are programmed with an ABBA switch cycle. For switch

s̃, let ns equal the number of states per fundamental cycle, where ns = 2(4) for

AB(ABBA) configurations respectively. The total number of phase measurements

per block in ACME data is Ntot = 64, given by Ntot = nNnEnθnB. The number of

transitions of s̃ per block (Ns) depends on the type of fundamental cycle and the

switch ordering. For the ACME waveform generation algorithm

Ns =


2Ntot

(∏i=s̃
i=0 ni

)−1
− 1 s̃ ∈

{
Ñ , B̃

}
for (AB)

2Ntot
(∏i=s̃

i=0 ni
)−1

s̃ ∈
{
Ẽ , θ̃

}
for (ABBA)

(5.1)

where the index i = (0, 1, 2, 3) = (Ñ , Ẽ , θ̃, B̃) is the switch ordering.

5.2.1 Duty Cycle

The DAQ duty cycle per block (χ) is defined as the ratio of the minimum possible

acquisition time 0.5 × Ntot seconds, divided by the actual time required to measure

a block. This definition of the duty cycle does not take into account the time lost

between successive ablation pulses, the beam source duty cycle. An improvement in

either duty cycle would increase the measurement rate Ṅ and therefore our EDM

sensitivity per root day. The limits to either duty cycle are determined by separate

considerations, so it is useful to conceptually separate the two. Molecule pulses are

produced at a rate of νYAG = 50 Hz, and Navg = 25 sequential pulses are averaged

per state. Therefore, the time to collect a single phase precession measurement is
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Figure 5.1: An example of the digital switching waveform from a typical
block of EDM data. The Ñ and B̃ switches follow an AB pattern, while
Ẽ and θ̃ follow an ABBA pattern. The switch ordering (AB or BA) is
reversed or randomly selected for each block. Data is being acquired in
regions where all switch levels are horizontal, while a slanted line indicates
the data acquisition is paused during a switch transition time. This plot
is an accurate representation of switching timescales, generated from timing
information in the data header.

τavg = Navg/νYAG = 0.5 s. A lower bound on the DAQ duty cycle is

χ ≥ Ntotτtot

Ntotτtot +∑
s
Ns∆ts

. (5.2)

In practice, the measured duty cycle is always greater than that calculated us-

ing equation 5.2. The DAQ system enforces a fixed pause given by the measured

settling time for each parameter switch. When the control software performs multi-

ple switches, the data acquisition only needs to be paused for greatest ∆ts amongst

simultaneous switches, which is less than the sum of ∆ts for all switches.

Measured values of ∆ts for each block and superblock switch are shown in Fig-

ure 5.2. Using these values, the computed lower bound to the in-block duty cycle is

χlim ≈ 70%, while the actual in-block duty cycle is χbk ≈ 72 ± 0.5%. The timing of
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Figure 5.2: Dead-time required to actuate each block and superblock switch
(∆ts). The data is derived from the header of Run 401 in the published
data set. The switches are ordered in terms of increasing period Ts from left
to right. There are large uncertainties in the slew time for the polarization
rotation switches (θ̃, R̃, G̃) because their setpoints rely on open loop feedback.
The P̃ and L̃ switches should have transition times as fast as the Ñ and
Ẽ switches, respectively. The extra time recorded in the data is due to
interblock reinitialization code, which could be eliminated to improve the
duty cycle in the future.

block level switches is very stable, corresponding to a duty cycle and block length

with only small variations. However, the data acquisition is often manually paused

between blocks to either optimize the ablation yield or recenter the prep/probe laser

frequency. Therefore, the superblock duty cycle is reduced and has larger variation,

χsb = 63 ± 6%. These same manual parameter checks are performed between al-

most every superblock, which further reduces the duty cycle per day to χrun ≈ 55%.

In future ACME generations, automating these few remaining manual checks would

stabilize and increase the superblock duty cycle, therefore boosting our overall data
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acquisition rate.

5.2.2 Switch Rates and Noise Filtering

The frequency of a particular switch determines how effectively the parity sum

data analysis can cancel out noise and linear drifts in correlated phase channels. With

a short switching period, the noise or drift between successive phase measurement

will be more correlated, allowing a higher degree of rejection by the data analysis. As

shown in Figure 5.3, all block level switches have periods less than the block length

(45 s), while all superblock switches are switched only between blocks (> 45 s).

Although the switching frequencies contain several components, the waveforms are

composed in a periodic fashion so most frequent switching component will be

Ts = Ttot

Ns

= Ntotτavg

χ

1
Ns

. (5.3)

To demonstrate the beneficial effects of a fast switch, consider a model for our

measured phases (φm,(s1s2)) that includes both the ideally switched component and

some drifting component.

φm,(s1s2)(t) = φs1s2 + φ(t)

φm,(s1s2)(t ≈ φs1s2 + φ′t (5.4)

where s̃1, s̃2 ∈ {+,−} represent the signed states of the switch parameters. We

linearize the temporal phase dependence φ(t) around small drifts (φ′) and short times,

neglecting the constant component that will cancel out of interesting parity sums. For

the sake of discussion, let s̃1 = Ñ and s̃2 = B̃, respectively the fastest and slowest

block level switches, and we restrict ourselves to a two switch model, ignoring (Ẽ , θ̃)
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(a) Block Switch Periods
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(b) Superblock Switch Periods
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Figure 5.3: Histogram of switching periods for block (a) and superblock (b)
switches. Block switch {Ñ , Ẽ , θ̃, B̃} rates are sharply peaked near their ideal
fundamental switch timescales of {0.5, 2, 8, 32} seconds, with some variation
due to intervening switch times ∆ts. The superblock switches {P̃ , L̃, R̃, G̃}
show more variation, related to the frequent pausing of the experimental ac-
quisition between blocks. The heights of the bins in each series has been
normalized to their maximum to allow clear comparison between the fre-
quency components of each switch.
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Figure 5.4: Model waveform described in the text. The effect of phase drift
φ(t) on a measured phase components depends upon the correlated parameter
with the shortest switch period (Ts). For the discussion in the text s1 = N
and s2 = B.

for the time being. Assume the ordering of switch states and measurement times as

shown in Figure 5.4. The switching periods, TB > TN are therefore

TN = t2 − t1 = t4 − t3,

TB = t3 − t1 = t4 − t2.
(5.5)
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The relevant parity sums are then

φNB = 1
4 [(φm,++(t1)− φm,−+(t2))− (φm,+−(t3)− φm,−−(t4))]

= 1
4 (∆φN+ − φ′TN −∆φN− + φ′TN )

= ∆φNB
4 +O(t2) (5.6)

φN = 1
4 [(φm,++(t1)− φm,−+(t2)) + (φm,+−(t3)− φm,−−(t4))]

= 1
4 (∆φN+ − φ′TN + ∆φN− + φ′TN )

= ∆φN
4 − φ′TN

2 (5.7)

φB = 1
4 [(φm,++(t1) + φm,−+(t2))− (φm,+−(t3) + φm,−−(t4))]

= 1
4 ((φN+ + φ′(t1 + t2))− (φN− + φ′(t3 + t4)))

= ∆φB
4 − φ′TB

2 (5.8)

φ0 = 1
4 [(φm,++(t1) + φm,−+(t2)) + (φm,+−(t3) + φm,−−(t4))]

= 1
4 ((φN+ + φ′(t1 + t2)) + (φN− + φ′(t3 + t4)))

= ∆φ0

4 − φ′(t1 + t2 + t3 + t4)
4 (5.9)

Notice that the susceptibility of the measurement to the drift or noise parameter

φ′ is dependent on the timescale of the shortest switch. This means that important

parity sums such as φNB will be well behaved even though they contain a slow switch.

The fact that the drift canceled out entirely in the φNB parity sum is an artifact of our

noise model that was uncorrelated with any switch. In general, the φ′ dependence in

a parity sum will depend on the drift’s switch correlations, but the effect will always

be limited by the smallest switch timescale associated with that parity sum.

For example, there are large drifts in the precession time τ due to an unsta-
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ble beam velocity. This leads to a drifting B odd magnetic precession phase φB =

B̃gHµB|Bz|(τ + δτ(t))/~, which in the notation of this model creates a term with a

large B odd phase φm,(s1s2)(t) ≈ φs1s2 + B̃φ′t. In that case, the terms with dominant

noise sensitivity would be reversed with respect to their B symmetry.

φNB = ∆φNB
4 − φ′TN

2 , (5.10)

φN = ∆φN
4 +O(t2), (5.11)

φB = ∆φB
4 − φ′(t1 + t2 + t3 + t4)

4 , (5.12)

φ0 = ∆φ0

4 − φ′TB
2 . (5.13)

An ABBA switch pattern is also a useful method for canceling sources of linear

phase drift. In the example above, an ABAB switch pattern was employed for sim-

plicity. Consider an uncorrelated linear phase drift model with a single switch, such

that φm,s = φs + φ′t. The relevant parity sums are computed in the standard way,

ABAB

φs = ∆φs
2 + φ′

4 ((t1 − t2) + (t3 − t4))

= ∆φs
2 − φ′Ts

2 (5.14)

φ0 = ∆φ0

2 + φ′((t1 + t2 + t3 + t4))
4 (5.15)

ABBA

φs = ∆φs
2 + φ′

4 ((t1 − t2) + (t4 − t3))

= ∆φs
2 +O(t2) (5.16)

φ0 = ∆φ0

2 + φ′((t1 + t2 + t3 + t4))
4 (5.17)
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The ABBA pattern has canceled out linear phase drifts in the odd parity sums,

although the sequence does not improve the even parity sums. Therefore, a parity

sum that is solely odd under a slow switch and is modulated in an AB pattern will be

particularly sensitive to noise and drifts. We have found that the noisiest asymmetry

channels are AB and A0 [81], which satisfy both of these criteria.

5.3 Enr Suppression Through Lead Switching

As is discussed in Section 7.1.2, the presence of a non-reversing electric field (Enr)

causes systematic errors in the EDM measurement. The application of both Ẽ and

L̃ switches allows for the suppression of Enr effects from externally applied offset

voltages.

𝑉1 

𝑉2 

Lead Switch 
ℒ  

𝑉𝐸 

𝑉𝑊 

𝐷1 

𝐷2 

𝑅𝑠,1 

𝑅𝑠,2 

𝑅𝐿,1 

𝑅𝐿,2 

𝑉𝐸
′  

𝑉𝑊
′  

Figure 5.5: A wiring schematic of the voltage applied to the field plates with
two switches, to accompany the model presented in Section 5.3. Voltages
(V1, V2) from the source pass through a lead switching device. A combination
of lead and leakage resistances create voltage dividers (D1, D2) that reduce
the voltage on the field plates (VE, VW ).

Consider the following model, illustrated in Figure 5.5, which describes how the

voltage difference ∆V = VE − VW depends on offsets from the voltage source and
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lead wiring. The voltages from separate channels on the voltage source (V1, V2) can

be decomposed into an amplitude component (V E1 , V E2 ) that reverses with E , and a

constant offset component (V nr
1 , V nr

2 ),

V1 = V E1 Ẽ + V nr
1 ,

V2 = −V E2 Ẽ + V nr
2 .

(5.18)

We assume that V E1 ≈ V E2 > 0 and that the offsets are small, such that the potential

difference between the channels is V1 − V2 ≈ (V E1 + V E2 ) ≈ 2V E1 . These voltages are

applied on the inputs of the relay box which switches the input and output leads,

where the voltages at the output terminals (V ′E, V ′W ) are connected to the (East, West)

field plate respectively. The output of this lead switching box can be expressed in

terms of the L̃ = ±1 state as

V ′E =
(

(1 + L̃)
2 V1 + (1− L̃)

2 V2

)
,

V ′W =
(

(1 + L̃)
2 V2 + (1− L̃)

2 V1

)
.

(5.19)

We allow for an additional source of voltage offset due to finite series resistances

(Rs,1, Rs,1) in conjunction with leakage resistances to ground (RL,1, RL,2). These

resistances will act like voltage dividers D1/2 ≈ RL,1/2/(RL,1/2 +Rs,1/2), which reduce

the voltage applied to either field plate,

VE = D1V
′
E.

VW = D2V
′
W ,

(5.20)

Typically, series resistances, say from the mercury relays themselves, are Rs < 1 Ω,

while overall leakage resistances are very large, RL > 1 TΩ. Therefore, we expect

D1 ≈ D2 . 1, and the effects from these equivalent voltage dividers will be small.
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Putting all these elements together and grouping terms by switch parity, we arrive

at the following expression for the electric field across the field plates. Assuming a

fixed field plate spacing d, the electric field Ez = ∆V/d

Ez = (VE − VW )
d

+ Eint(x) (5.21)

= L̃Ẽ
[
D1 +D2

2 (V E1 + V E2 )
] 1
d

+ L̃
[
D1 +D2

2 (V nr
1 − V nr

2 )
] 1
d

+ Ẽ
[
D1 −D2

2 (V E1 − V E2 )
] 1
d

+
[
D1 −D2

2 (V nr
1 + V nr

2 )
] 1
d

+ Eint(x) (5.22)

Here we have included the effects from the position dependent internal patch po-

tentials which generate stray non-reversing electric fields Eint(x). These cannot be

controlled via the external supplies, and add as an offset to the electric field gener-

ated by the applied external voltages.

The Enr systematic is caused by Ñ Ẽ correlated changes in the dc Stark shift

∆st = 2DH |Ez| (Section 7.1.2). The systematic will therefore be caused by the EDM

correlated term in the magnitude |Ez|, in the switch parity notation

|Ez| = |E0
z |+ EEz Ẽ + ELz L̃+ EELz ẼL̃. (5.23)

In Equation 5.22, the term with the greatest magnitude is the L̃Ẽ-odd term propor-

tional to ∆V . When taking the absolute value this term will always be positive, and

we can find the signs of all other terms by multiplying the equation by L̃Ẽ . Therefore,

the parity of terms in Equation 5.22 are reversed with respec to L̃Ẽ , and as defined

113



Chapter 5: ACME Data Acquisition System

in Equation 5.23

|E0
z | =

[
D1 +D2

2
(V E1 + V E2 )

d

]
, (5.24)

EEz =
[
D1 +D2

2
(V nr

1 − V nr
2 )

d

]
, (5.25)

ELz =
[
D1 −D2

2
(V E1 − V E2 )

d

]
, (5.26)

EELz =
[
D1 −D2

2
(V nr

1 + V nr
2 )

d

]
+ Eint(x). (5.27)

We assume the voltage supply is operated in the linear regime, so that the offsets

are small and V1 ≈ V2. Given that we do not know the signs of V nr
1/2, we assume that

the sums and differences (V nr
1 ± V nr

2 ) are of approximately the same size. Therefore,

neglecting the contribution from Eint(x), the hierarchy of terms is

|E0
z | � EEz > (EELz − Eint) ≈ ELz . (5.28)

The reversal of the laboratory E-field direction is ẼL̃-odd, and therefore the term

Enr = EELz will cause an EDM correlated detuning and the associated ac Stark shift

systematic. The effect of voltage offsets is suppressed by the L̃ switch for the case

D1 ≈ D2, such that the term is dominated by the patch potentials Eint(x). If we

neglected the Ẽ or L̃ switches, respectively the ELz or EEz terms would contribute to

an Enr systematic. Turning off Ẽ is of little consequence due to the smallness of the

extra term, but disabling L̃ could be problematic if the supply’s offset voltages are not

carefully compensated. In practice, it is useful to modulate both switches on different

timescales. The finite lifetime of the mechanical L̃ switch restricts us from switching

it frequently. By configuring Ẽ as a rapid ABBA switch, it helps to eliminate phase

drifts in the Ẽ correlated phase channels (Section 5.2). The L̃ switch will then be
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effective at canceling out uncompensated offsets from the voltage source, so long as

those offsets are stable over the switch timescale (TL).

5.4 Experimental Switches

5.4.1 Electric Field Control

The electric field in the interaction region was controlled by the voltage applied

to the transparent indium tin oxide (ITO) coated electric field plates. The potential

difference is generated by a digitally controlled voltage source, which outputs up to

∼ ±200 V. Equal and opposite voltages (relative to instrument ground) were applied

to each side of the floating field plate assembly. The direction of the laboratory E-field

was reversed in two ways: on fast time scales (2 s) by reprogramming the output of

the DAC channels to reverse their polarity (the Ẽ switch), and less frequently (every

3.3 minutes) by reversing the electrical connections via a pair of mercury whetted

relays (the L̃ switch).

The voltage source was designed and built in-house by Jim MacArthur, based

around his 20-bit BabyDAC board. The BabyDAC output is amplified by a PA98A

Power OpAmp to operate at a maximum of ±200V, which provides a setpoint resolu-

tion of 0.4 mV. In practice, the output of the power supplies begins to sag at around

±180 V, and the output becomes non-linear with respect to the setpoint. The sup-

plies were designed to have a very good repeatability upon reversal, a key parameter

for avoiding non-reversing electric fields. Any DC offsets also need to be very stable,

as these will show up directly as a drifting Enr. Over the course of a run, we measured
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the voltage difference ∆V between opposite polarity channels to be stable to < 3 mV.

The voltage source is sent commands over a serial connection in the binary en-

coding common to all BabyDACs used in the Gabrielse lab. A fiber converter box

allows the electronic RS-232 signals to be connected to the fiberring over which all

the BabyDAC based devices in the ACME lab are connected.

The lead switch (L̃) is composed of several double pole, single throw (DPST)

mercury whetted relays switches (Pickering 101-2-A-12/6D). An single logic level plus

inverter can be used to perform a lead switch using the wiring show in Figure 5.6,

although in practice two separate computer controlled digital outputs with opposite

polarities are used. This allows the first relay to be opened before the second is

closed, ensuring that oppositely polarized outputs are never tied together. The mer-

cury whetted reeds reduce contact resistances, and decrease switching chatter while

increasing the lifetime of the switches. These relays are also magnetically shielded,

which helps to eliminate potential BL fields which could mimic an EDM. The circuitry

for the lead switching device was designed and built by Brendon O’Leary.

The full wiring diagram for the field plate assembly is shown in Figure 5.6. Volt-

age monitoring for all for E-field channels is performed on a 6.5 digit multiplexed

digital multimeter (Keithly 2701 with 7702 multiplexer module), specified to have an

accuracy of ±20 mV. The eight leads enter the interaction region vacuum chamber

through a vacuum feedthrough. A lead is mechanically attached with an indium pad

at both the bottom north and south corners of each field plate and guard ring. One

set of contact leads was wired to the voltage supply, while the other was left uncon-

nected. This backup connection was used occasionally for measurements of leakage
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Figure 5.6: The wiring diagram for the electric field plates. Two amplified
DAC channels apply voltages to the ITO coated glass field plates. The voltage
source and relay switch control the Ẽ and L̃ switches respectively (see text).
Not shown are two additional voltage source and relay channels with identical
wirings connected to the East and West guard rings. A common grounding
point across the entire system was not enforced, indicated by the unconnected
grounds in the diagram. The extra set of leads on each field plate and guard
ring was left unconnected in this experiment. Voltage taps after the relay
switch monitored all four voltages on a DMM. For reference, the molecular
beam’s velocity is in the x̂ direction, from South to North.

resistances and currents.

The ground of the voltage source is not directly connected to the interaction

region chassis or field plate assembly ground. It was found that doing so caused large

leakage currents to be driven through the interaction region due to dissimilar ground

potentials between the voltage source and powered vacuum equipment attached to

the interaction region. Consolidating and equalizing all ground potentials in the room

would have been difficult given the layout of our equipment and the lab’s electrical
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wiring. We instead isolated the grounds, thereby floating the field plates and guard

rings with respect to the interaction region. We exaggerated the ground offset in an

IPV run, which revealed no systemic caused by the floating field plates.

The programmability of the supply provided the means of applying E-field related

IPVs. For example, an Enr was applied by setting the applied voltage to have a

large non-reversing offset, so that its magnitude changes along with its sign (eg, for

Enr = 200 mV/cm, V+ = 2×177.25 V, and V− = 2×−176.75 V). The floating ground

offset IPV was performed by increasing the voltage on the east and west field plates

in common.

5.4.2 Frequency Switching for N and P State Selection

The internal molecule direction Ñ and the readout parity P̃ are selected by choos-

ing one of the four transitions in the

|H, J = 1, |M | = 1,N = ±1〉 → |C, J = 1,M = 0,P = ±1〉

manifold. A system of three cascaded AOMs acting as frequency shifters and shutters

selects the proper 1090 nm state preparation and probe laser frequency as required

by the H state Stark shift ∆st = 2DHE (74 MHz (292 MHz) for Low-E (High-E))

and the C state zero-field omega doublet splitting (50.4 MHz). The AOM states are

modulated using either digital logic controlled RF switches (Mini-Circuits ZYSWA-

2-50DR) or frequency tuning of the DDS synthesizer (Novatech 409B). Of these two

switch methods, the former has a shorter transition time ∆t, while the latter requires

fewer resources (DDS channels). The Ñ and P̃ states can be changed frequently with

little reduction in duty cycle, so the Ñ switch is reversed every 0.5 s. In practice, the
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Figure 5.7: Frequency switching layout for N and P state selection. This is
layout of essential components of both the high and low E-field breadboards.
Elements include: Fiber Ports (FP), Half-Wave Plates (HWP), Quarter-
Wave Plates (QWP), Polarizing Beam Splitters (PBS), Acousto Optic Mod-
ulators (H-Up, H-Dn, C-Prb, C-Prp), Direct Digital Synthesizer (DDS), and
TTL driven RF switch.

reversal of P̃ is randomized with a typical switch period of 45 s, much slower than Ñ

because it suppresses systematics with longer time scale drifts [105].

The optical system for frequency selection is shown in Figure 5.7, and is similar to

that described in [9]. The optical system was first designed and built by Emil Kirilov,

and later improved by Brendon O’Leary. The entire setup is on a single breadboard,

with light coupled in and out using polarization maintaining fibers. The two double-

passed AOMs H-Up and H-Dn shift the frequency by an amount 2(νH↑ − νH↓) =

2DHE , and therefore act as our Ñ switch. These AOMs are operated as shutters, 50%

of the input light goes into either AOM, and the output is extinguished by removing

the RF drive to either AOM. In practice, an AOM is switched off by shifting the

DDS output by ∼ 40 MHz, which alters the Bragg diffraction angle enough such that
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the 1st order beam becomes blocked. This technique is preferable to setting the RF

amplitude to zero, because keeping the AOM “warm” is necessary to eliminate the

long switch transients between infrequent Ñ switches. The fiber amplifiers will be

damaged if the seed power output of the breadboard falls below 1 mW. To avoid

a time when both H-Up and H-Dn are off (zero output power), the Ñ switch is

operated in the following sequence:

1. The current off-resonant AOM is switched on.

2. The on-resonant AOM is switched off.

This leads to a short period when both H-Up and H-Dn are on and the output from

the switching breadboard is doubled. We are well below the maximum seed power

threshold of the amplifiers, so a momentary increase does no damage.

The output of the Ñ shutter system is split for delivery to state preparation and

probe laser output couplers. The single-passed AOM C-Prp increases the frequency

of the state preparation laser to address the P = +1 state3. This AOM does not

perform any block or superblock switches, but it is used for the detuning ∆prp IPV,

interleaved with the final data set data. The probe laser frequency is shifted by a

double-passed AOM labeled C-Prb in Figure 5.7. This AOM is carefully tuned such

that its frequency can be switched between νC↑ and νC↓ without changing the fiber

coupling into the probe output port. The frequency shift 2(νC↑ − νC↓) = 50.4 MHz,

so this allows selection of the proper P state in C (the P̃ switch).

Drive frequencies νC↑ and νC↓ are fixed on two separate DDS channels, then the
3State preparation is always performed by pumping population out of this lower C state omega

doublet.
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𝜈𝑃𝑜𝑙 
𝜈𝐶−𝑃𝑟𝑝 

𝒫 = −1 

𝒫 = +1 
C 

𝑁 = −1 

𝑁 = +1 
H 

High ℰ = 141 V/cm  
Configuration 

Low ℰ = 36 V/cm  
Configuration 

1090 nm 
1090 nm 

νH↑/2 νH↓/2 νC↑/2 νC↓/2 νC−Prp νPol ∆νX→C

High E 73.015 73.015 110.7 85.5 91.05 80 0

Low E 78.005 115 92.7 67.5 55.005 80 -156.955

Table 5.1: The frequency shifts provided by AOMs for the High- and Low-E
field N and P state switching. Where the shift is divided by 2, the AOM is
double-passed.

output is chosen via a TTL driven RF switch. Actuating P̃ with an RF switch,

instead of reprogramming the DDS, allows a much faster switch rate (100 ns vs.

40 ms), at the cost of needing an extra DDS channel per AOM. A drawback of

this technique is if the RF amplitude is different between the νC↑ and νC↓ DDS

channels, this will lead to a P̃ odd laser power (PP). We measure both a PP and

PN on photodiode power monitors. We performed IPV studies where these effects

were greatly exaggerated, and found no resulting EDM systematics. Therefore, I

recommend that future generations implement all binary frequency switches using

this P̃ technique.
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Two versions of this AOM switching breadboard have been built for high and

low E-field run configurations, with drive frequencies appropriately adjusted for the

H state dc Stark shift (Table 5.1). The change in Stark shift by a factor of four

is beyond the tunable bandwidth of available AOMs, so each breadboard required

selecting AOMs with different center frequencies. Not shown in Figure 5.7 are the

probe polarization switching AOMs (Section 4.1), which impart an extra 90 MHz

frequency shift on the probe beam. Switching between the high and low E-field

breadboards was accomplished by manually swapping breadboard input and output

fibers and swapping DDS output channels. This process could be made more efficient

by using MEMS fiber optic multiplexers and additional dedicated DDS units to avoid

the physical switching of cables.

5.4.3 Polarization Control

Polarization control of the state preparation and probe lasers is accomplished via

λ/2 plates mounted in a high resolution rotation stage (Newport URS50BCC). Be-

cause our phase and contrast measurements are sensitive to the relative polarization

angle of these two lasers, rotation stages with closed-loop encoder feedback are re-

quired. Along each beam path, the lasers do not reflect off any mirrors between the

rotation stage and molecule beam, allowing us to prepare states with arbitrary linear

polarization angle 4. The waveplates control the state of the θ̃, R̃, and G̃ switches

with an accuracy of 0.04◦and a uni-repeatability of 0.002◦. Similar rotation stages
4Reflection off a mirrored surface can perturb a polarization state when S and P polarization

components have different reflection coefficients. Where a mirror must be inserted in a path requiring
critical polarization control, data from Thorlabs indicates protected silver mirrors should be used,
which have S and P reflection coefficients differing by only < 0.15% for AOI ≤ 45◦.
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(Newport SR50CC) were used to precisely set the position of a quarter-wave plate

used for an IPV in which circular polarization was inserted into the pump beam.

These stages must be accurate enough to be able to repeatedly nullify the zero

crossings in the polarization dependence of the Enr systematic. Measurements and

of the Enr zero-crossing were limited by our averaging time to a statistical precision

at the ∼ 1◦ level (Figure 7.5). In a future generation of the experiment, a 10x

better phase measurement may be required to limit the Enr systematic, assuming the

systematic slope remained constant. This means we could relax our requirements on

stage accuracy to 0.1◦ for a stable EDM measurement, which makes a large array of

faster rotation stages available for use.

The rotation stages are driven at their rotation speed limit of 20◦/s. The measured

transition times ∆tθ ≈ 1 s and ∆tR ≈ 3 s are longer than what one would expect

from the 6◦ and 45◦ waveplate slews required respectively for the θ̃ and R̃ switches.

Therefore, the closed loop encoder feedback must be contributing to the switch time.

While a faster rotation stage with similar accuracy (eg, Newport’s URS75BCC with

80◦/s) would in principle improve the duty cycle, the speed of the feedback would

also have to be increased. The more frequent ∆tθ might be dominated by encoder

feedback time, but the larger slews required for R̃ and G̃ could be significantly sped

up by a faster rotation stage.

5.4.4 Magnetic Field Control

The magnetic field is controlled via several remotely programmable current sup-

plies. A DC current calibration source (Krohn-Hite 521/522) drives the main cosine
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theta coil generating the ẑ bias field, while shim and gradient coils in the x̂, ŷ, ẑ

directions were powered by a Harvard-built current supply based on the BabyDAC

architecture. The reversal of the B field is always accompanied by a degauss cycle

to eliminate hysteresis from to magnetization of the magnetic shields. The current is

first reduced to zero, then the shields are demagnetized by applying up to ∼ 1 A of

current as an exponentially chirped 200 Hz sine wave, with an envelope duration of 1

second. To cycle through all layers of magnetic shields, the full degauss cycle requires

about 4.5 seconds. For this reason, we chose to switch B̃ every 25 or 45 seconds,

which limits the impact on the duty cycle while still allowing frequent measurements

of the B̃ correlated precession phases.

Careful flux gate magnetometery revealed that large magnetic field gradients of

0.4-0.7 mG in the ŷ direction were present while acquiring all of our EDM data [138].

We determined that the somewhat jarring process of assembling the shields pins in

magnetic domains which require an especially high current degauss cycle to elimi-

nate [2]. By doubling the current to 2-2.5 A, we were able to eliminate this mag-

netization. IPV studies revealed that transverse B fields and gradients do not cause

EDM systematics. However, a future generation of the experiment it might still be

necessary to implement a higher current degauss cycle, preventing this permanent

magnetization from developing over time.

5.5 Acquisition of Phase Precession Data

Within a single ablation pulse, data acquisition timing is controlled by a digital

delay generator (SRS DG645). Every 20 ms, the ablation YAG Q-switch is fired,
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creating a pulse of molecules. Molecule fluorescence signals, measured as a PMT

photocurrent, are captured on a 22-bit digital oscilloscope (National Instruments

PXI-5922), which is triggered 6-7 ms after the ablation pulse. The scope trigger delay

is adjusted to compensate for the drifting molecule velocity, allowing the detection

window to remain centered around the arrival of the molecule pulse at the probe

region. The sequence is triggered off the 100 kHz square wave synchronized to the

X̂ and Ŷ probe polarization switches (Section 4.1). The phase of the polarization

switching waveform is fixed relative to the scope trigger, which allows for reliable

digital demodulation of the captured fluorescence signal in post processing.

The scope acquires a point every 200 ns, which allows us to easily resolve the time

dependent structure within each 5 µs polarization bin. Data was stored and analyzed

as a function of time after ablation and time within a polarization switch state. Due

to the 10% longitudinal velocity dispersion of our molecule beam, the arrival time at

our detectors is correlated with different longitudinal velocity classes, and therefore

different precession times τ . Being able to temporally resolve these velocity classes

across the 1 ms wide molecule pulse allows us to calculate precession phases for each

velocity class. This improved the contrast C by effectively narrowing the velocity

distribution for the precession measurement performed in each polarization switch

(X̂, Ŷ ) polarization switch pair.

Signal waveforms captured on the oscilloscopes are transferred to the control PC

every ablation pulse (50 Hz). The waveforms from each PMT are digitally averaged

over 25 pulses (2 Hz), then stored on disk in a binary file format. This has the advan-

tage of significantly reducing the data storage requirements and the time necessary for
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post processing. It also allows a file containing a number of auxiliary measurements

to be recorded synchronously with the fluorescence waveforms. This “header” file

includes the programmed set values of all binary switches, as well as measurements

of these parameters, including E-field voltages, B-field currents, laser power and po-

larization, and magnetic field readings from flux gate magnetometers. We also log

(and record in the header) slowly drifting parameters such as molecular beam buffer

gas flow rates and cell temperatures, as well as temperature, pressure and humidity

in our lab. All of this data has proved useful in searching for systematics described

in Chapter 7.

In summary, the data acquisition system has been a flexible tool for acquiring

EDM data, and studying EDM systematics. The ability to apply various types of

switching waveforms for a wide variety of experimental parameters helps to suppress

unwanted effects. Simultaneously digitizing fast waveforms and measuring auxiliary

parameters created a richly structured data set for error detection and rejection. The

ability to rapidly integrate and program new switches, as described in Appendix C,

allowed us to isolate systematics and improve the EDM limit by an order of magnitude

in a first generation experiment.
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Measuring Electric Fields with

ThO

In order to compute shifts and uncertainties associated with the Enr systematic,

we had to set limits on the size of Enrẑ in the interaction region (Section 7.1.2).

Using our pulsed molecular beam source, we were able to adapt the apparatus to

perform several electric field measurements in our precession region, using ThO as an

electric field probe. Similar precision measurements with atomic or molecular beams

have used their species of interest to study the magnetic or electric fields in their

apparatus [139, 140]. States with large magnetic (µ) or electric (D) dipole moments

are used as sensitive field probes, measuring the shift in resonances from Zeeman or

Stark interactions.
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In ThO, the polarized electric dipole moment of the |H, J = 1〉 state

DH,1 = 1.0315± 0.0008 MHz/(V/cm)1 (6.1)

provides linear dc Stark shifts

∆st = 2DH,1|Ez| (6.2)

that are sufficiently sensitive to measure E fields at the mV/cm level when probing

narrow, ∼ 10 kHz wide resonances. We measured the electric field along the molecu-

lar beam path in three ways. The first used a stimulated Raman transition to directly

drive the between the Stark shifted H state omega doublets, |N = +1〉 ↔ |N = −1〉.

This transition had the narrowest linewidth and the best sensitivity, but could only

be measured near the state preparation and probe lasers, where we had optical access.

The second used microwaves to drive the Stark shift sensitive |H, J = 1〉 → |H, J = 2〉

rotational transition. Microwaves could be injected longitudinally down the beamline,

so this technique can map the electric field over the entire precession distance. It had

the drawback of less sensitivity in both frequency and position than the Raman mea-

surement. A third technique measured Enr only via contrast correlations in the state

preparation laser. It had the worst sensitivity and could not measure the absolute E

field, but it could be easily integrated in with other data acquisition to measure the

Enr at regular intervals.

The magnetic moment in the H state,

µH,1 = 0.0044µB = 6.2 Hz/mG,
1The value used for DH,1 differs slightly from that reported in [97]. It was determined through

a combination of measurements described in Section 6.5. Additional sources of uncertainty in the
frequency calibration of the previous measurement were discovered after publication.
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is too small to allow B field mapping using these same techniques. Maximum fields

achievable in our apparatus are ∼ 100 mG, which cannot split the spin states beyond

the ∼ 10 kHz linewidth of the Raman and microwave measurements. The metastable

Q state has both a large magnetic moment of ∼ 1µB and a long lifetime, and therefore

would be ideal for B field mapping. We have yet to directly observe the Q state,

and developing the necessary optical systems to locate the state would have been a

major disruption to our EDM experiments. We detected no statistically significant

EDM systematics under applied transverse ~B or ~Bnr fields, so it was not necessary to

measure these fields with a high degree of spatial or temporal precision. We measured

the magnetic field using a minimally invasive 3-axis flux gate magnetometer probe

inserted between our electric field plates upon completion of the data acquisition [138].

6.1 Relevant Field Components

Being able to fully characterize ~E and ~B fields is important for quantifying many

systematics common to electron EDM experiments. An ideal beam type eEDM exper-

iment would have perfectly uniform ~E and ~B fields along the entire phase precession

region [3, 4]. A variation in the magnitude of the quantizing field (e.g. ~E · ẑ) for

a single molecule with trajectory (~v = v̄x̂) is averaged out by the phase precession

measurement [10]

φ = −1
~

∫ x=L

x=0
(µBgB̃|Bz(x)|+ Ñ ẼdeEeff)dx/v̄. (6.3)

However, Maxwell’s equations in free space (~∇ × ~E = 0) imply that gradients in

the field strength along the beamline (∂Ez/∂x) must be accompanied by other non-
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zero gradients (∂Ex/∂z) and fields in other directions. Transverse E and B fields can

causes systematics such as geometric phases [141, 106, 142], so we desire the fields

to be completely uniform in all directions when the molecules are undergoing phase

precession.

Another idealized requirement is that fields reverse perfectly under switch oper-

ations Ẽ , B̃, and L̃. This means that when the E or B field direction is inverted,

its magnitude is preserved. For example, if ~E = (|E0
z |Ẽ + Enr)ẑ, ideally Enr = 0. A

non-reversing field in a transverse direction (e.g. Enrx̂) will cause the field vector to

tip because ~E ≈ |E0
z |Ẽ ẑ + Enrx̂. A wobble in the field direction is the classic example

of source of geometric phase, but an advantage of the ThO molecule is that such

systematics should be highly suppressed [10].

DC Stark or Zeeman shifts caused by non-reversing components Enr and Bnr can

cause correlated shifts of atomic resonances with Ñ , Ẽ , and B̃ switches. We have

demonstrated that our phase measurements are sensitive to the detuning of the state

preparation and probe lasers from resonance (Section 7.1.1), an effect which couples

energy level shifts to the preparation of the spin state. In particular, we discovered

Enrẑ causes a large EDM systematic by directly created an Ñ Ẽ correlated detuning

(Section 7.1.2).

Our measurement relies on sensitive cancellation of magnetic phase components

upon reversal, and having non-zero Bnr can also contribute an EDM systematic by

coupling to other experimental imperfections. For example, a combination of the

electric field dependence of the g factor (η), with an Enr and a Bnr will generate a
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systematic shift

~ωNE = −ηµBEnrBnr (6.4)

from the second term of Equation 1.9. The measured values of Enr and Bnr are

sufficiently small such that this higher order systematic is much less (∼ 10−36e·cm)

than our statistical uncertainty.

6.2 Raman Measurement

The first technique used to probe a Stark shift sensitive transition utilized a

two-photon stimulated Raman transition to directly drive population between the

H state’s N = ±1 omega doublets. These transitions are analogous to a direct

drive of ∆st using RF radiation. The two-photon resonance has a sensitivity of

dν/dE = 2DH,1/h and a less than 100 kHz linewidth limited by transit time broad-

ening. The scheme requires additional optical access for a ẑ propagating laser beam,

but otherwise utilizes the same optics setup as our normal EDM measurement. This

technique has the advantage of the greatest E field sensitivity and spatial resolution

(∼ 1 mm). Therefore, Enr can be determined very close to either prep or probe laser

positions, which are the only two locations where the measurement of de is sensitive

to the Enr coupling to the ac Stark shift systematic. The need for optical access was

the primary drawback of this technique, which restricted the spatial measurement

range.
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6.2.1 Stimulated Raman Transitions and Measurement Pro-

cedure

Stimulated Raman transitions can occur in a Λ-type 3 level system between

“ground states” |1〉 ↔ |2〉 via a virtual excitation to state |e〉 (Figure 6.1). In our

case, the “ground states” are omega doublet sublevels of the H state which are each

two fold degenerate. In a basis that is “bright” and “dark” with respect to our linearly

polarized laser beams, the relevant sublevels of |H, J = 1, |M | = 1〉 are

|X〉 = |M = +1,N〉+ |M = −1,N〉√
2

,

|Y 〉 = |M = +1,N〉 − |M = −1,N〉√
2

.

(6.5)

The states |X〉 , |Y 〉 couple to either the X̂ or Ŷ polarized light of the state prepara-

tion, probe, and Raman lasers.

Explicitly, the subspace of our “3-level system” is

|1, X/Y 〉 = |H, J = 1, X/Y,N = +1〉 , (6.6)

|2, X/Y 〉 = |H, J = 1, X/Y,N = −1〉 , (6.7)

|e〉 = |C, J = 1,M = 0,P = +1〉 , (6.8)

where |1, X/Y 〉 and |2, X/Y 〉 are each connected to |e〉 by optical radiation at 1090 nm

with one-photon Rabi frequencies Ω1 and Ω2, respectively. The detuning of the laser

frequencies ωL1 and ωL2 from the transition frequencies ω1 and ω2 can be written in

terms of one-photon (∆R) and two-photon (δR) components

∆R = ωL1 − ω1, (6.9)

δR = ωL1 − ωL2 −∆st. (6.10)
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Figure 6.1: Relevant energy levels for the Raman electric field measurment
scheme. In this examples, a stimulated Raman transition transfers popula-
tion from |2, X〉 → |1, X〉 after depletion of the population using the state
preparation laser. The probe laser measures both quadratures |1, X/Y 〉 by
rapidly switching polarizations between X̂ and Ŷ .

The individual Rabi frequencies

Ω1/2 = DH−CE1/2

~
= DH−C

~

√
2I1/2

ε0c
(6.11)

depend upon the H → C dipole matrix element DH−C and the laser intensities [130,

108, 143]

I1/2 =
ε0cE

2
1/2

2 . (6.12)

In the limit of a large one-photon detuning with respect to the Doppler broadened

one-photon linewidth (∆R & 1.5 MHz), we can adiabatically eliminate the excited
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state population, treating |e〉 as a virtual state. In the limit that |∆R| >> |δR|,

the dynamics become identical to those for a two level system, and the Raman beam

coherently couples states |1, X/Y 〉 to |2, X/Y 〉 [130, 144]. If we choose both frequency

components of our Raman beam to be polarized along the X̂ direction, then we can

restrict ourselves to transitions between |2, X〉 ↔ |1, X〉. The equivalent two level

dynamics have an effective Rabi frequency

Ωeff = Ω1Ω2

2∆R

, (6.13)

leading to oscillations of the atomic population

P2,X = Ω2
eff

Ω2
eff + δ2

R

sin2


√

Ω2
eff + δ2

R

2 t

 . (6.14)

The scheme for measuring E fields with this Raman resonance is as follows:

1. Transfer ground state population to all H state sublevels by optically pumping

through the A state.

2. Deplete the population from a single spin quadrature (e.g. |1, X〉) using the

state preparation laser (X → C transition).

3. Coherently transfer population from |2, X〉 → |1, X〉 using a “Raman beam”

with two frequency components separated by the Stark shift ∆st = 2DH,1|Ez|.

4. Measure the population transferred back into |1, X〉 using the probe laser and

collection optics. Due to polarization chopping of the probe beam, the popu-

lation of the |1, Y 〉 state is also measured. This state has not been affected by

the Raman laser, and therefore provides a means of normalizing out molecule

beam flux variations.

134



Chapter 6: Measuring Electric Fields with ThO

5. Change the two-photon detuning δR and repeat steps 1-4 on subsequent ablation

pulses, therefore building up a lineshape of transferred population as a function

of δR.

The ThO beam’s forward velocity maps the arrangement of lasers shown in Figure 6.2

into the time sequence described above. The stimulated Raman transfer of population

depends on |Ez(x)| locally at the position of the Raman beam, allowing us to gather

spatial measure the electric fields within our limits of optical access.

6.2.2 Experimental Configuration

The setup for this measurement was meant to minimally disturb the fully config-

ured ACME optics setup. A component of the 1090 nm seed laser for prep and probe

beams is picked off and sent to the breadboard shown in Figure 6.2b. Two AOMs split

the input, and create frequency components near the |1〉 ↔ |e〉 and |2〉 ↔ |e〉 transi-

tion frequencies. Only two 80 MHz AOMs were available for use, which meant that

only transitions to the P = +1 (lower) C state at High-E could be driven efficiently

given the required shifts (Table 5.1).

The two frequency components are recombined and fiber coupled into a Keopsys

amplifier (Keopsys KPS-BT2-YFA-1083-SLM-PM-05-FA) to pre-amplify the power

from 4 mW to ∼ 50 mW. The Keopsys output is sent to a homemade fiber am-

plifier [105], which is operated with the pre-amplifed seed safely above its 25 mW

minimum. The homemade amplifier had power output between 500 and 800 mW

after an isolator, which drifted due to thermal effects rotating the polarization in the

doped fiber. When coupled back into free space, the fiber amplifier output contains
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Figure 6.2: Optical configuration for Raman E field probe measurement. (a)
A flipper mirror allows optical access of the Raman beam to either a region
near the prep laser or probe laser. (b) Two cascaded AOMs create frequency
components to drive the stimulated Raman transition. Components include
Polarizing Beam Splitter (PBS), 50:50 Beam Splitter (BS), Fiber Ports, Half
Wave Plate (HWP), Quarter Wave Plate (QWP), and AOMs.

both Raman frequency components amplified into the same spatial mode.

The Raman beam is counter-propagating with the prep and probe lasers, allowing

it to be shaped on the less crowded optics table. The only available optical access is

at the prep and probe window ports, so the Raman beam was positioned either just to

the +x̂ (downstream) side of the prep laser, or the −x̂ (upstream) side of the probe.

A flipper mirror allowed rapid switching between these two positions (Figure 6.2a).

The Raman beam was shaped using cylindrical lenses into a stretched Gaussian with

1 mm width and 1 cm height.

The Raman beam’s two frequency components are generated by a double passed

AOM (AOM1) followed by a single passed AOM (AOM2), which shifts the 0th

order output of the AOM1 (Figure 6.2). If these AOMs have 1st order single pass
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Figure 6.3: Efficiency relationship of cascaded AOMs for balancing power
(solid blue line, left axis). The output power in each Raman beam P = P1 =
P2 is plotted on the right axis for several configurations (dashed curves):
Blue plots Equation 6.15 representing Figure 6.2(b); Red corresponds to the
single passed AOM (e2) coming first in the cascade; Black is if the power is
first split on a 50/50 beamsplitter, then sent to each AOM.

efficiencies of e1, e2 respectively, then for input power P0 the power in the two Raman

beams before recombination is P1 = P0e
2
1 and P2 = P0(1− e1)e2. In order to balance

the power of the two Raman beams, the following relationship between the AOM

efficiencies must be satisfied

e2 = e2
1

(1− e1) (6.15)

In a similar fashion, one can compute the power and efficiency requirements if the

cascade order of single and double passed AOMs is reversed.

As seen in Figure 6.3, the AOM with the lower intrinsic efficiency should be chosen

as the first in the cascade. For properly chosen cascade order, this configuration

will always outperform a simple 50/50 split of the input power, although the latter
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configuration is easier to align. The frequency settings for our AOMs must satisfy

∆ν1 = (νH↓ + νC−Prp + ∆R)/2 = 118.5 + ∆R/2 MHz (6.16)

∆ν2 = (−νH↑ + νC−Prp + ∆R) = −55 + ∆R MHz (6.17)

where the additional detunings must satisfy those from Table 5.1 because of the

common 1090 nm seed between prep, probe, and Raman lasers. The double passed

AOM must be driven with ∆ν1, far from the optimal drive frequency of 80 MHz, so

we chose the DP→SP cascaded configuration to maximize the output power.

Detunings are chosen such that ∆R = −2.5 MHz is just outside of the Doppler

width of ∼ 1.5 MHz. This maximized the two-photon Rabi frequency Ωeff , but did

not cause noticeable loss in signal due to one-photon scattering. Because H → C

resonant excitations tend to decay back to the ground state, such events will appear

mainly as a loss in transfer efficiency, as opposed to a decrease in contrast. The

two-photon detuning was typically scanned around δR = ±150 kHz, which captures

the entire lineshape. Typically, ∆ν2 was scanned while ∆ν1 was kept fixed. ∆ν2 has

a larger effective tuning range because it is closer to the output fiber couple.

6.2.3 Raman Lineshape

In the procedure outlined above, the maximum transfer efficiency will occur when

the effective Rabi dynamics undergo a π oscillation on resonance. If the molecules

experience the Raman pulse for duration τR, then the π pulse is achieved for ΩeffτR ≈

π. The Raman pulse timescale τR is determined by the transit time of the molecules

through the Raman beam. For a time varying Rabi frequency Ωeff(t), the two state

dynamics can be solved exactly, and now depend on the complete history of the Rabi
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function. For complete population transfer, we require [145]

∫
ΩR(t′)dt′ = π. (6.18)

The Raman beam has a Gaussian spatial intensity profile in the x̂ direction, which

looks like a time dependent intensity in the molecule’s frame

I(t) = I0e
−2(vt)2/w2 = I0e

−8t2/τ2
R . (6.19)

For our v̄ ≈ 200 m/s ThO beam crossing a Raman laser with 1/e2 half width

w ∼ 1 mm, the characteristic interaction time is τR = 2w/v̄. For Raman frequency

components derived from the same laser such that they have a common spatial profile,

Equations 6.11 and 6.13 imply that Ωeff(t) ∝ I(t). Therefore, the Rabi frequency can

be written

Ωeff(t) = Ω0e
−8t2/τ2

R . (6.20)

There are several ways to demonstrate that Raman resonance is transit time

broadened to a Gaussian frequency profile. The approach taken in [126] is to Fourier

transform the sinusoidal time dependence of the laser’s electric field with the Gaussian

intensity envelope. This results in a Gaussian intensity spectrum for the laser I(ωL)

which can be composed with the lineshape of the Rabi resonance for monochromatic

radiation (Equation 6.14). This approach gives linewidths with the proper order of

magnitude, but the approach is unphysical in the limit of a single Rabi oscillation. As

an alternative, one can numerically integrate the two state Schrodinger equations of

motion in the rotating wave approximation under the influence of the time dependent
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Figure 6.4: Simulated and measured Raman lineshapes. (a) The simulations
predict lineshapes of very similar shape and width to those observed for
input τR and Ω0 within the uncertainty of experimental parameters. (b)
Measured resonances with fit centers λR = δR − ∆st and Gaussian widths
σR. Resonances for different Ẽ states illustrate the size of the line shifts being
resolved. This data has been normalized to the unperturbed quadrature P1,Y .
Error bars are given by the standard deviation in repeated measurements.

Rabi frequency

−iċ1(t) = c2(t)Ωeff(t)
2 eiδRt,

−iċ2(t) = c1(t)Ωeff(t)
2 e−iδRt.

(6.21)

Such an approach correctly reproduces the quasi-static prediction of Equation 6.18,

whereby integrating over Equation 6.20 correctly predicts

τR = 2
√

2π
Ω0

(6.22)

for a full π pulse.

The results for this simulation are shown in Figure 6.4a and compared with mea-

sured Raman resonance lineshapes of 6.4b. The smooth Gaussian excitation has

eliminated the additional oscillations expected from the sinc() shape of a sharper

edge boxcar excitation. The width of the lineshape depends as expected upon τR,

demonstrating that transit time broadening is defining the lineshape. The Fourier
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|E0
z | (mV/cm) EEz (mV/cm) EELz (mV/cm) ELz (mV/cm)

Avg Magnitude Supply Patch Leads

Prep 141, 573.± 0.2 1.6± 0.2 −6.5± 0.3 −0.14± 0.2

Probe 141, 585.± 0.2 1.6± 0.2 −5.5± 0.3 0.15± 0.2

Table 6.1: Enr components from Raman data set on 7/2/2013. Measure-
ment were alternated between the prep and probe regions using a flip-
per mirror. The error bars are purely statistical. Assumes 2DH,1 =
2.06315 kHz/(mV/cm), within the error bars of the measured value (Equa-
tion 6.38).

transform of Ωeff(t) yield an I(ω) with frequency width σR =
√

2/πτR, which agrees

with the width fit to the numerical simulations to within 10%. The height of the res-

onance curve depends upon Ω0 and the laser intensity. Some unexplained processes

create a background of residual population even when δR was far off resonance, and

also appears to be independent of ∆R. This background makes extracting an abso-

lute quantity for Ωeff from the resonances inaccurate, but does not adversely affect

line-center fits to a simple Gaussian, as is discussed in the following section.

6.2.4 Data Acquisition and Results

For each scan of the Raman laser across resonance, the line-center was extracted

from a Gaussian fit. Data collected under varying Ẽ and L̃ switch states allowed

measurement of all four components of the reversing and non-reversing E fields. The

difference in frequencies between the two AOMs is used to extract the electric field

|Ez| =
2∆ν1 −∆ν2

2DH,1
. (6.23)

The extracted E field parity components for measurements made on 7/2/2013 are
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shown in Table 6.1. This date was acquired between the two longer runs averaged

together into our final error bar (6/4/2013 - 6/11/2013 and 8/22/2013 - 9/3/2013). It

can therefore be compared to Enr measurements made with microwaves and contrast

measurements close in time to either of these runs.

Using Equation 5.23, the parity sums of |Ez| extracted from Equation 6.23 can

be related to the internal and external components of Enr. The ELz term is consistent

with zero, confirming that the Enr due to lead switching ((D1−D2)/2 in the model of

Section 5.3) is negligible. Therefore, EELz = Enr
int, and this term is a direct measurement

of the non-reversing patch potentials on the field plates themselves. The EEz term

represents the voltage offsets from the imperfectly set voltage supply.

This measurement was checked for several sources of systematics. There was no

effect from probing through either P = ±1 state, or from transferring population in

the opposite direction (depleting |2, X〉 then transferring from |1, X〉 with the Raman

laser). The spatial dependence |Ez(x)| was studied by translating the Raman beams

in the x̂ direction. The optical access was limited to a small range, but the maximum

translation of 5 mm revealed no statistically significant changes in the E field. An

interesting effect was discovered whereby the measured internal Eint was dependent on

a change in the adjustable collimator position. This collimator adjustment shifted the

spatial distribution of the molecule beam in the ẑ direction, thus sampling a slightly

different patch potential Enr on each field plate. While the effect did not cause a

systematic in the current generation, it is worth further exploration in the future.

This same setup was also used to take data in the “side of fringe” (SOF) mode.

By setting a fixed δR to sit on the steep slope of the Raman resonance, one can
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Raman Measurement (-E) 

Voltage Measurement (+E) 

Voltage Measurement (-E) 

Raman Measurement (+E) 

Raman Measured Drift (+/-) = 0.64/0.78 ± 0.25  mV/cm*sec-1 
Voltage Measured Drift (+/-) = 0.53/0.52 ± 0.04  mV/cm*sec-1 

Figure 6.5: Drifts in electric field measured with Raman side-of-fringe mea-
surements and voltage monitors. The latter were acquired with a 6.5 digit
multimeter with acquisition triggered to an Ẽ switch. The large Ẽ odd offset
in the Raman data absent from the voltage monitor is indicative of the Enr

int.

infer shifts in this narrow line-center (∆ν) from small correlated signal changes (∆S).

This technique has the advantage of much better temporal resolution than a full

frequency scan, allowing us to measured electric field changes with resolution better

than one second. A disadvantage of this technique is that Ẽ or L̃ correlated changes

in the amplitude or width of the lineshape cannot be distinguish from changes in the

line-center. This would cause a false Enr if, for example the Raman laser power was

correlated withe Ẽ or L̃. This is an unlikely scenario, and generally good agreement

between SOF data and full resonance scans proves that this systematic is not present.

In order to convert ∆S measurements into ∆ν, we must know the slope of the

curve ∆S/∆ν. The simplest way to do this is to step the laser frequency by a small

amount up and down the fluorescence curve. This provides a direct measurement of
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∆S/∆ν, and is conceptually similar to how we measure our EDM contrast. We did

not collect data with this additional frequency step, so we instead calibrate the slope

using a lineshape function.

In principle, the slope can be calculated from the Gaussian fits to frequency scans

acquired during the same run as the SOF data. However, the drifting laser power

meant the excitation efficiency could vary between frequency scans and SOF data.

We can normalize out the slope of the curve by assuming a drifting power affects only

the amplitude of our lineshape. Then if our analytic lineshape is well described by a

Gaussian plus background G(ν) +B,

S(ν) = A(G(ν) +B) (6.24)

The amplitude scaling factor A can be found by taking the ratio of the average signal

and calculated lineshape on the side (νs) of the fringe,

A = S̄(νs)
(G(νs) +B) (6.25)

Then a signal change can be related to the slope of this lineshape dG(ν)/dν

∆ν = ∆S
(
A
dG(ν)
dν

∣∣∣∣∣
νs

)−1

(6.26)

This lineshape calibration model was found to reproduce the Enr extracted from

full scans across resonance. The results of this technique are shown in Figure 6.5,

where we confirmed that the bandwidth of the voltage source creates a drift for many

seconds after an Ẽ switch. This drift of a few mV/cm over the ∆tE = 2 s between Ẽ

switches is another good motivation for the randomized ABBA or BAAB selection

of the Ẽ switch pattern (Section 5.2.2).
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6.3 Microwave Measurement

Using microwaves to drive the Stark shift sensitive |H, J = 1〉 → |H, J = 2〉 ro-

tational transition provides a second means of using ThO to probe the E field. Mi-

crowaves could be injected longitudinally down the beamline, so this technique maps

the electric field over the entire precession distance. An additional advantage is the

broad tunability of the microwave source frequency, so E field measurements can be

made in both High and Low E field configurations. A Low-E version of the Raman

measurement could not be performed because it would have required building a sec-

ond breadboard, as was required for the Ñ and P̃ state switching breadboard. The

microwave measurement has the drawback of less sensitivity in both frequency and

position compared to the the Raman measurement.

Diatomic molecules such as ThO have conveniently accessible microwave transi-

tions between neighboring rotational levels. With a rotational constant of BH,ν=0 =

9765 MHz [93], the rotational splitting between |H, ν = 0, J = 1〉 and |H, ν = 0, J = 2〉

in the H state is 4BH,ν=0 = 39.06 GHz. These transitions are accessible using the

doubled output of a 20 GHz microwave frequency generator. A high gain horn beams

microwave radiation through a window in the “dump region”, counter-propagating

against the ThO beam velocity (Figure 6.6a). Sufficient microwave power is accessi-

ble to penetrate into the field plate assembly and drive π pulses from |H, J = 1〉 →

|H, J = 2〉 for molecules previous transferred into the H state. The microwave source

configuration and power coupling studies were performed by AdamWest, and detailed

microwave spectroscopy and measurement of rotational constants were performed by

Adam West and Nick Hutzler.
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Figure 6.6: Apparatus and relevant energy levels for the microwave E
field measurement. (a) A ŷ polarized pulse of microwaves is broadcast
down the beamline with power and duration adjusted to drive π-pules
|H, J = 1, Y,N〉 → |H, J = 2,M = 0〉. Molecules are only in the H state
between the pump and probe beams. Therefore, the observed signal (inset)
shows depletion only for molecules between these lasers when the microwave
pulse arrives. (b) The relevant levels for the E field measurement scheme.
States in the (|X〉 , |Y 〉) basis couple to (x̂, ŷ) laser and microwave polariza-
tions.

The procedure to measure E fields is similar to that for the the Raman mea-

surement, using a Stark shift sensitive transition to deplete a single spin quadrature.

Again, we write the |H, J = 1, |M | = 1,N〉 states in the same |X〉 , |Y 〉 basis intro-

duced in Equation 6.5. The procedure is as follows:

1. Ground state population is transferred to the |H, J = 1〉 state by optically

pumping with 943 pump laser. An AOM is added to the beam path which

allows strobing the 943 laser, creating packets of H state molecules at precisely
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defined times.

2. A pulse of ŷ polarized microwaves transfers population from |H, J = 1, Y,N〉 to

the Stark shift insensitive |H, J = 2,M = 0〉 state if the microwave frequency

is near resonance (νµ ≈ 4B). These transitions exhibit E field dependence

dν/dE = DH,1/h due to the differential Stark shift between the states (Fig-

ure 6.6b).

3. The probe (with modulated polarization) measures population in both the |X〉

and |Y 〉 quadratures in the usual way. Therefore, the undisturbed population

in the |X〉 quadrature provides normalization for the depletion signal in |Y 〉

when we compute the asymmetry.

4. The microwave frequency is changed, and the experiment is repeated on suc-

cessive beam pules. An asymmetry versus frequency resonance is built up, and

repeated for different Ñ and L̃ states.

The molecule pulse is spatially about twice as long as the d = 23 cm distance be-

tween the pump and probe lasers, the only region where molecules are actually in the

H state. Therefore, the fluorescence trace exhibits a “burned out” hole, with a rising

edge at the microwave pulse trigger time and observed duration ∼ v̄d (Figure 6.6a).

The microwave pulse traverses the interaction region in a fraction of a millisecond, so

all molecules in the region are simultaneously excited to |J = 2〉. The local Stark shift

∆st(x) is imprinted on the transferred population, which is then temporally resolved

as the molecules transit the probe laser. The resulting scans of frequency and field

plates can be visualized as a contour plot (Figure 6.7).
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Figure 6.7: Measurements of asymmetry (color scale) versus microwave fre-
quency (νµ) and time after ablation. Grouping the data by arrival time at
the probe laser provides information about the spatial dependency of the E
field.

Prior knowledge of the molecule pulses’s velocity profile can be used to back out the

position dependence of each point. For a short excitation pulse, the spatial resolution

depends on the width σv of the velocity distribution, which is typically σv/v ≈ 10%.

For the slowest molecules excited close to the state preparation lasers, the resulting

spatial resolution is d(σv/v) ≈ 1 cm. We chose a microwave pulse width δtµ = 40 µs,

which sets a uniform spatial resolution of δtµv̄ ≈ 1 cm across the precession region.

By strobing the pump laser (Figure 6.8), more precise timing information could

be used as an independent determination of the excitation position of the molecules.

The time difference between creation and detection of a molecule packet is inversely

proportional to its velocity, which determines its relative position within the field

plates. This technique was also utilized for extracting precise precession timing for

the g-factor measurements in [9, 80]. By scanning the relative delay of the pump

laser and microwave pulses, we can excite the molecule packets at arbitrary positions
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Figure 6.8: Strobed fluorescence signal used for extracting molecule velocity
distributions. The first five pulses were fit to Gaussians, and line-centers
were extracted to precisely measure precession times and beam velocity.

within the field plates. This technique confirmed the data taken with continuous

pump lasers, but had worse signal to noise because many molecules were “thrown

away” between laser pulses. Therefore, the CW technique proved a more versatile for

mapping the E fields with minimal averaging.

A parity sum analysis allows us to all E field correlations of interest from microwave

resonance scans. The microwave transition frequencies are

νµ = f0 + DH,1

h
|E|Ñ . (6.27)

As the Raman data confirmed, EEz << |E0
z | and ELz ≈ 0, which requires that Enr

int = EELz .

If we are only interested in measuring patch potentials Enr
int(x) it is sufficient to only

use the L̃ switch. Eliminating the Ẽ switch from our data set, Equation 6.28 should

be rewritten as

|Ez| = |E0
z |+ Enr

intL̃. (6.28)

149



Chapter 6: Measuring Electric Fields with ThO

The parity sum components then yield the interesting quantities

ν0
µ = f0 = 4B (6.29)

νNµ = DH,1

h
|E0
z | (6.30)

νLµ = 0 (6.31)

νNLµ = DH,1

h
Enr

int (6.32)

The data confirmed that Equation 6.31 holds, and therefore the model of Equa-

tion 6.28 is consistent with the Raman data. The results from Equations 6.30 and

6.32 are discussed and plotted in Section 6.4.

6.4 A Comparison of E Field Maps

Ultimately, these various techniques allow us to generate self-consistent maps of

the E-field distribution. In addition to Raman and microwave measurements, addi-

tional data about the electric field distribution can be gleaned from interferometric

studies of the field plate spacing. A Michelson interferometer remote gauge (MIRG)

can determine the distance between partially reflective surfaces by detecting inter-

ference as one arm of the interferometer is scanned by a distance equal to the plate

spacing [146]. The linewidth of the measurement is roughly equal to the the coherence

length of the light source. Our light source was a diode (QPhotonics QSDM-620-2)

that produced ∼ 20 µm wide interference maxima, but with ample signal to noise to

allow line-center fitting to < 1 µm. The ultimate resolution is determined by the step

accuracy of the translation stage, which allowed us to make spacing measurements to

accuracies of ∼ 1 µm. This system was built by Ivan Kozyryev, and measurements of
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Figure 6.9: Map of E field magnitude in the interaction region. Errors bars
are not shown. Statistical error bars are a part in a million of ∆st, but the
0.1% uncertainty in DH,1 would make the error bars greater than the scale
of this plot.

the spacing between ACME’s ITO coated field plates were performed by Ben Spaun.

Reflection off the ITO coated surfaces provides a strong signal for measurement

of the absolute plate separation. By placing the interferometer and light source on

translation stages in the x̂, ŷ directions, scans of the field plate spacings allowed us

to optimize the parallelism of the electric field plates. It was discovered that there

was a permanent bow of ∼ 20 µm across the surface of one or both plates. The field

plates’s orientation was tuned such that a maximum in the plate spacing was centered

on the ThO beamline. This made the electric field at the prep and probe regions as

similar as possible, which was important for eliminating any potential systematics due

to omega doublet detunings (∆N ). These measurements were made before pumping

down the interaction region, with the assumption that the field plate assembly would

not be affected by the change in pressure [106].
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This map of the field plate spacing can then be converted to an electric field

magnitude by

|E0
z |(x) = |VE − VW |

d(x) = |∆V |
d(x) (6.33)

Figure 6.9 shows this |E0
z |(x) map as compared to the values extracted from the

microwave and Raman measurements in the High-E field configuration. The elec-

tric field values VE, VW are those recoreded by the data acquisition system, which

agreed for all data sets analyzed with ∆V = 353.635± 0.003 V. The bow in the field

plates is apparent, but the electric field at prep/probe regions (0 and 22 cm) does

agree to within ∼ 10 mV/cm. Raman and microwave frequency splitting measure-

ments are converted to E-field values by dividing by 2DH,1/h and DH,1/h respectively.

The value of 2DH,1/h = 2.06315 MHz/(V/cm) (within the statistical error of Equa-

tion 6.38) has been fine tuned to eliminate frequency shifts between the interferometric

and microwave data in Figure 6.9. The velocity profile was calibrated so the figure

reproduced the known 23 cm distance between pump and probe.

The Raman and microwave measurements of |E0
z |(x) agree to within ∼ 20 mV/cm,

or a part in 104. A potential systematic in this measurement could come from Ñ

odd ac Stark shifts from the microwaves or Raman lasers. The ac Stark shift for

upper/lower states coupled by a dipole radiation field with Rabi frequency Ω and

detuning ∆ is δνU/L = ±Ω2/(4∆) [126, 130]. Since the microwaves are driven on

resonance, there should be no related ac Stark shift. However, the non-zero one-

photon detuning ∆R of the Raman beams will cause a Stark shift for each H state

omega doublet, |1, X〉 and |2, X〉. This shift will be common mode, but different

intensities of each Raman frequency component will create an imbalance in Rabi
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Figure 6.10: Map of Enr in the interaction region. Identical calibrations are
applied to the data as the |E0

z |(x) map (Figure 6.9). The state preparation
and probe lasers are centered at 0 mm and 220 mm respectively.

frequencies ∆Ω = Ω1 − Ω2. Differential ac Stark shifts would contribute an offset to

the omega double frequency splitting

δ∆st = Ωavg∆Ω
∆R

. (6.34)

For sufficiently large Rabi frequencies of Ωavg ∼ 1 MHz and ∆R = 2.5 MHz, poor

power balance between our Raman AOMs would lead to shifts of order 100 kHz, com-

parable to the observed offset between Raman and microwave measurements. While

a measurement of δ∆st as a function of ∆R should have revealed such a systematic,

studies of this effect were inconclusive, perhaps because the output power of the fiber

amplifier and therefore Ωavg was poorly controlled. Future studies should be made

with a better stabilized Ωavg and ∆Ω in order to explore this systematic effect.

While the |E0
z |(x) map provides an important calibration of these measurements,

it is ultimately the Enr
int values at the prep and probe regions that will determine the
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Enr dependent systematics. Figure 6.10 compares these measurements with the CEL

contrast channel of the ∆prp IPV superblocks, acquired in an interleaved fashion with

the final data set (Section 5.1.2). An analysis similar to that discussed in Section 6.2.4

for side-of-fringe data was used to convert these measurements to contrast line-center

shifts, and the corresponding Enr was calculated using DH,1 [105]. The small mag-

nitude (Enr
int < 10 mV/cm) and small difference between the prep and probe regions

meant the shifts associated with Enr systematics were limited to the δde < 10−29 e·cm

level (see Table 7.1).

Ultimately, all these measurements provided a wide range of independent con-

sistency checks. The Raman technique has the advantage of having higher E field

sensitivity and spatial resolution (∼ 1 mm). On the other hand, the microwave map

of |Ez|(x) eliminates the possibility of large geometric phases caused by rapid changes

in Enr in regions that the Raman measurement cannot probe. Each measurement has

its own systematics; microwave resonances are sensitive to “ghost resonances” due to

Doppler shifted reflections of microwave pulses, while Raman measurements are more

sensitive to ac Stark shift systematics as discussed above. The fact that all these

measurements agree to within a few mV/cm gives us confidence in our prescribed Enr

error bar.

154



Chapter 6: Measuring Electric Fields with ThO

6.5 Measuring H and C State Molecule Fixed Dipole

Moments

The precise length determinations and careful monitoring of field plate voltages

allow us to extract the molecule fixed dipole moments for the H and C states much

more accurately than before [97]. We measure the dipole moment DJ = D‖
J(J+1) via

the dc Stark splitting between the omega doublet states

∆st =

√√√√∆2
Ω +

(
2D∆V

d

)2

(6.35)

for field plate voltage difference ∆V and spacing d. Stark splittings are measured

where there is optical access, in the state preparation and probe regions of the electric

field plates. Interferometer measurements indicate the field plate spacing d = 2.498±

0.001 cm is almost identical in these two areas, but I include a conservative uncertainty

estimate equal to the 10 µm amplitude of the plate spacing bow. The voltage is

measured by a 6.5 digit multimeter, but we assume a conservative error of δV = 0.1 V

because the DMM has not been recently calibrated.

The C state Stark splitting was measured by driving the |H, J = 1,M = 0〉 →

|C, J = 1,M = ±1〉 optical resonance over a wide range of electric fields. The shift

was monitored by taking scans across the Doppler broadened resonance as ∆V was

increased. The frequency shift was measured by the voltage to frequency conversion

of our laser locking transfer cavities [80], and agreed with the coarser measurement

from our WSU-30 wavelength meter (10 MHz resolution). By fitting to Equation 6.35

(Figure 6.11), we could extract both the ∆Ω and DJ for the C state. The extracted

value of ∆Ω differs from other measurements [147, 9] by 3%, so we apply a conservative
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Figure 6.11: Fit to determine the dipole moment of the |C, J = 1,M = ±1〉
states from dc Stark shift data.

error bar with the same relative uncertainty to DH,1. We find that

D‖,C = 2.53(7) D = 1.00(3) e · a0, (6.36)

so that in the J = 1 state

DC,1 = 0.63± 0.02 MHz/(V/cm). (6.37)

The H state Stark splittings were measured most accurately from the Raman

and microwave data discussed above. Both techniques restricted the probe laser’s

frequency to the normal values for either High-E or Low-E data acquisition. There-

fore, we measured Stark splittings only at E = 141, 36 V/cm, but the < 100 kHz

precision of these frequency measurements still allows us measure DH with 0.1% pre-

cision. Comparing Raman data taken in the state preparation and probe regions, and

microwave data taken at High-E and Low-E , all measurements are consistent with a

H state J = 1 dipole moment of

DH,1 = 1.0315± 0.0008 MHz/(V/cm) (6.38)
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or a molecule fixed dipole moment

D‖,H = 4.098(3) D = 1.612(1) e · a0. (6.39)

The measurement error includes the quadrature sum of the fractional uncertainty

on d and ∆V in addition to a conservative systematic measurement uncertainty of

δν = 100 kHz. This δν accounts for the systematics on the Raman and microwave

measurements discussed in Section 6.4. Note that this value is > 3σ from the mea-

surement reported in [97]. The error bar in the previous measurement was likely

underestimated for the several reasons. The laser frequency was calibrated with the

transfer cavity lock, and we now know that the calibration could be worse than the

1% quoted. Moreover, it is likely that the uncertainty in the measured field plate

spacing was greater than the quoted 0.05 mm given their lack of interferometric mea-

surements. Also, there is no uncertainty quoted for the applied voltage.
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Systematic and Statistical Limits

After completing assembly of the ACME apparatus and implementation of the

software control system, the following 20 month period was dedicated to the diag-

nosis of systematics in the experiment. Testing for systematics involved performing

“intentional parameter variations” (IPVs), where the measured values of ωNE were

correlated with controlled adjustment of various experimental “knobs”. Typically an

IPV study was run for one day’s worth of data, and only explored further if correla-

tions with the EDM measurement, or other interesting phase parity channels, were

observed. As a result of these studies, we were able to continually adjust the optical

system and data acquisition interface in order to reduce unwanted effects, without

ever being forced to open the vacuum chamber. Our blinded data analysis removed

the dangers of experimental bias during this process. All measured EDM systematics

were demonstrated to be consistent with the model described in this chapter, and

were reduced to below the final statistical precision.

The statistical error bar reported in our final result of de = (−2.1 ± 3.7stat ±
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2.5syst) × 10−29 e · cm was extracted from approximately 16 million ablation pulses1

measured over the course of 2 weeks of nearly round the clock operation of the ex-

periment. Data acquisition was subdivided into ∼ 104 “blocks” of independent EDM

measurements and ∼ 300 longer “superblock” cycles for systematic suppression, as

described in Chapter 5. The systematic error budget was a combination of the results

of selected IPV studies performed actively during this final data set, and uncertainty

upper bounds based on a longer list of IPV measurements acquired before the pub-

lished data set (Appendix E). Data taken during IPV superblocks was used only for

evaluating systematic shifts and uncertainties.

7.1 The Enr and ΩNEr Systematics

We identified two parameters that systematically shift the value of ωNE within

our experimental resolution, both of which couple to the ac Stark shift induced by

the lasers. AC Stark shifts are of course unavoidable in a system where a transition

is being strongly driven towards saturation, as is the case for our 1090 nm state

preparation and probe lasers on the H → C transition. However, the light shifts

must have some unique properties in order to mimic an EDM. There must be a

relative shift between the |M = +1〉 and |M = −1〉 sublevels in order to generate

a phase. Such an effect is not hard to imagine if the laser has a non-zero circular

polarization component, so that one M sublevel is light shifted more strongly than

another. Circular polarization gradients capable to generating a differential phase

have been observed in both state preparation and probe lasers (Section 4.3).
1About 8 billion detected photoelectrons.
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In order to appear like an EDM phase in our analysis, this differential shift must

reverse sign with changes in either the external electric field Ẽ or the optically selected

molecule orientation Ñ . The ac Stark shift for the H → C transition is the ratio of

the square of Ωr, the Rabi frequency for this transition, divided by ∆, the detuning

of the laser from resonance for this transition [126, 130]

δEac ∝
Ω2
r

∆ . (7.1)

Therefore either a detuning ∆ or Rabi frequency Ωr that switch with Ñ Ẽ are capable

of causing a systematic, and in fact we have observed both. We shall see that the

former can be caused by the dc Stark shifts from a non-reversing electric field Enr,

and the latter from a component of the Rabi frequency dependent on the molecule’s

orientation

Ωr = Ω0
r + ΩNEr Ñ Ẽ . (7.2)

The subtlety in these effects is that they are generated by coupling multiple exper-

imental imperfections (e.g. Enr and circular polarization gradient) into a “higher

order” EDM correlated systematic; a connection which took some time to deduce.

Modeling of these systematics was lead by B. O’Leary and N.R. Hutzler [81], and the

fundamental results are summarized below.

7.1.1 Modeling the AC Stark Shift Phases

As described above, the ac Stark shift phases are generated by differential coupling

of the |M = +1〉 and |M = −1〉 states to the C state, which is best analyzed in the
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circular basis (LHC = ε̂+, RHC = ε̂−)

ε̂± = x̂± iŷ√
2
. (7.3)

The general polarization state of our lasers is

ε̂ = − cos(ε)e−iθ ε̂+ + sin(ε)eiθ ε̂− (7.4)

where θ and ε are respectively the laser’s linear and circular polarization angles (see

Appendix B.1 for definitions). We consider the system of the |C, J = 1,M = 0〉 state

coupled to the |H, J = 1,M = ±1〉 states by the 1090 nm laser as in Figure 7.1,

which we will abbreviate to |C〉 , |+1〉, and |−1〉 respectively. The ε̂± polarization

component will drive the transition |C〉 ↔ |±1〉 with Rabi frequency Ωr,±. We then

parameterize in terms of the total Rabi frequency Ωr =
√

Ω2
r,+ + Ω2

r,−, and in the

proper rotating frame we can write the Hamiltonian for our 3 state system as

|C〉 |+1〉 |−1〉

H =


∆ −Ωr

2 e
−iθ cos ε Ωr

2 e
iθ sin ε

−Ωr
2 e

iθ cos ε κ 0

Ωr
2 e
−iθ sin ε 0 0

 , (7.5)

where ∆ is the detuning from resonance, and κ = 2µBgHBz/~ is the Zeeman shift.

Here we have ignored any tiny energy level shift associated with the EDM since it is

too small to affect our conclusion.

It is useful to operate in the dressed state picture, where we can diagonalize the

Hamiltonian into dark (|D〉) and bright (|B〉) state eigenvectors. By definition, the

laser does not connect the dark states to the C state 〈C|ε̂|D〉 = 0. Therefore, the dark
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Figure 7.1: Relevant energy levels for prep and probe laser ac Stark shifts
model, corresponding to the Hamiltonian in Equation 7.5. This diagram
shows the coupling between |C〉 and the upper N omega doublet manifold,
but the equation applies to either N state. Selecting the opposite P state in
C is equivalent to reversing our measurement basis θ → −θ.

state eigenvector has no admixed |C〉 state amplitude, and also experiences zero ac

Stark shift. For example, in the case of zero magnetic field κ = 0 and zero detuning

∆ = 0, the dark and bright states are

|D〉 =
(

0, eiθ sin ε, e−iθ cos ε
)
, (7.6)

|B±〉 = 1√
2

(
±1, −eiθ cos ε, e−iθ sin ε

)
, (7.7)

and the bright states have energy eigenvalues EB± = ±Ωr/2. The C state decays

off diagonally back down to the ground state at rate γ = 2 MHz, dumping popu-

lation out of the three state system. Then for optical excitation rate Γ ∝ Ω2
r, if a

molecule interacts with the laser for time δt� 1/Γ, the bright state population will

be completely depleted and we are left with a pure dark state.
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Figure 7.2: Diagram of intensity and polarization gradients in the state prepa-
ration laser beam. The intensity profile in our model is approximated as a
step function. The polarization experiences both a linear angle and ellipticity
angle gradient across the beam, depicted as a different polarization ellipse in
each region.

We consider the effects of the ac Stark shift given two discreet regions with different

laser intensities, and therefore different Rabi frequencies, as an approximation to our

Gaussian beam shapes (Figure 7.2). The molecules first pass through the higher

intensity region, where the laser has linear and circular polarization angles θ and ε.

The thermal birefringence in the field plates creates a polarization gradient across the

laser wave front, which rotates the polarization in the less intense region to θ + δθ

and ε+ δε. Notice that the polarization rotation δθ = (∂θ/∂x)δx and δε = (∂ε/∂x)δx

depends on both these gradients and the width of the less intense region δx. The

spatial intensity and polarization gradients in the state preparation and probe lasers

have been thoroughly characterized as discussed in Chapter 4.
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The first region has intensity large enough to saturate the H → C transition,

so the bright states decay away and we are left with a pure dark state as described

above. In the second region δtΓ � 1, so the intensity is not sufficient to prepare

a dark state. Since the polarization in this region is different, our initial dark state

will be projected into a new bright and dark state basis of |B′±〉 and |D′〉. The dark

state and bright state terms in the resulting superposition interact differently with

the light, the latter experiencing a ∆ and Ωr dependent ac Stark shift to its energy

(EB′± = δEac). Our initial dark state will evolve under the influence of these shifts

according to

|D(δt)〉 =
∑

j=D′,B′±
e−iEjδt 〈j|D〉 |D〉 . (7.8)

To calculate the evolution of |D(δt)〉, we must diagonalize the general Hamiltonian

in Equation 7.5 to find the bright energy eigenvalues and compute the overlap between

rotated bright and dark state eigenvectors. We emphasize that the evaluation of Equa-

tion 7.8 will depend on experimentally controllable parameters (∆,Ωr,Bz, δθ, δε, δt)2,

where δt = δx/vbeam is the fly-through interaction time with the weak laser field.

There will be no evolution of |D(δt)〉, and therefore no ac Stark shift systematics,

if all of these parameters are small. By reducing the size of polarization gradients

(∂θ/∂x, ∂ε/∂x) and by shaping the lasers to decrease the interaction time δt, we

are able to largely eliminate our sensitivity to light shift induced phases (see Chap-

ter 4). Likewise, our ability to measure the EDM correlated detuning ∆NE and Rabi

frequency ΩNEr allows us to place limits on phase evolution that contributes to sys-

tematic errors.
2The energy of the bright states largely depends on the first three parameters, EB′±(∆,Ωr,Bz)

while the overlap between the two polarization bases mostly depends upon of (δθ, δε).
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To determine the particular functional dependence on these parameters, we must

continue to evolve the state after it exits the state preparation laser. The phase φ

of the |M = ±1〉 states evolves through the interaction region according to Zeeman

and EDM interactions, and at the probe laser we measure in a π/4 rotated basis for

maximal sensitivity (Section 2.1). We then calculate the asymmetry A, and divide by

the contrast C = dA/dφ to compute the phase φ = A/2C, which yields the following

expression [81, 148, 107]

φac = cos
(

Ωeδt

2

)
(δθ cos (∆δt/2)− δε sin(∆δt/2)) + δε∆

Ωe

cos(δδt/2) sin(Ωeδt/2)

− κ

Ωe

[(
1 + 2∆2

Ω2
e

)
cos(∆δt/2) sin(Ωeδt/2)− 2∆Ωe

Ω2
r

cos(Ωeδt/2) sin(∆δt/2)
]
,

(7.9)

where Ωe =
√

∆2 + Ω2
r.

This result can be analyzed in a few limits relevant for the systematics observed

in the ACME experiment. In particular, we are interested in how the measured

phase changes with respect to the detuning ∆ and deviations in the Rabi frequency

Ωr = Ω0
r + δΩr. Expanding around small ∆ � Ωr and δΩr � Ω0

r, we find the ac

Stark shift induced phase shifts can be parameterized as

φac = α∆ + αBBz∆2 + βδΩr + βBBzδΩr. (7.10)

The first and third terms are what cause the Enr and ΩNEr systematics. We separate

the B odd components into separate terms because they will not appear as EDM

systematics, except at higher order [81].

The coefficients α and β we leave as parameters to measure in experimental IPV

data sets. The model predicts them to have to following dependence on ∆, Ω0
r, δε,
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Figure 7.3: AC Stark shift induced phase as a function of detuning. For this
particular set of experimental parameters, the laser polarization is aligned
to maximize the circular gradients ∂ε/∂x, generating a light shift phase pa-
rameter α = 10 mrad/MHz. Considering our Enr ≈ 5 mV/cm induces a
∆NE ≈ 5 kHz, this would have led to a systematic 10× greater than our final
error bar.

and δθ to leading order in δt

α ∝ δε (Ω0
rδt)2δt, (7.11)

αB ∝ gHµB
~

δt3

(Ω0
rδt)2 , (7.12)

β ∝ δθ (Ω0
rδt)δt+ δε ∆(Ω0

rδt)δt2, (7.13)

βB ∝ gHµB
~

(Ω0
rδt)δt2. (7.14)

We have observed all of these terms in the experiment. For example, in Figure 7.3

we observe the linear dependence of the measured phase on detuning near resonance,

from which we can determine α. In addition, the ellipticity dependence of α(δε) has

been carefully measured (Figure 7.5). Under our experimental conditions we expect

δε� δθ (Section 4.3.2), from which the model correctly predicts α� β and that the
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ΩNEr systematic is suppressed with respect to the Enr systematic. It is worth noting

the strong dependence of all terms on the weak field interaction time δt. Specialized

optics such as diffractive “flat-toppers” could potentially make the edge of our laser

very sharp, thereby reducing the δt, and might prove very useful in reducing these ac

Stark shift systematics.

7.1.2 Measurement of Enr Correlations

The first term of Equation 7.10 gives the detuning dependence of the ac Stark shift

phase φac. If this term is dominant, then a detuning correlated with Ñ Ẽ switches

(∆NE) would lead directly to a EDM-mimicking systematic,

ωNE = α∆NE
τ

. (7.15)

Such a detuning can arise from a non-reversing electric field Enr due to patch po-

tentials or voltage offsets (see Section 5.3), as illustrated in Figure 7.4. Our electric

field measurements (Section 6.2.4)3 indicate that we can express the electric field

magnitude as the sum of the average field magnitude |E0
z | and the Enr

|Ez| = |E0
z |+ EnrẼ . (7.16)

Expressing the detuning in terms of the laser frequency (ωl) and the molecular

transition frequency (ωm)

∆ = ωl(Ñ )− ωm(Ñ ) = (ωH−C −∆AOMÑ )− (ωH−C −DH |Ez|Ñ )

= (DH |E0
z | −∆AOM)Ñ +DHEnrÑ Ẽ ,

(7.17)

3The most general expression for the electric field is given by Equation 5.23. For the discussion
in this chapter, the odd parity under the L̃ switch will be implied and our notation modified such
that EELẼL̃ → EnrẼ . We adopt this notation because L̃ is a superblock switch.
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Figure 7.4: Diagram depicting how a non-reversing electric field Enr can
generate an EDM correlated detuning ∆NE . At left we show how patch
potentials Enr add to an ideally reversing field component |E0

z |Ẽ to produce
state dependent electric field magnitudes |E+| > |E−|. At right, an energy
level diagram of H and C states shows how the detuning reverses sign when
either the Ẽ switch changes the dc Stark shift, or when the Ñ switch tunes
the state preparation or probe laser to the opposite omega doublet state.

and we see that ∆NE = DHEnr. Note that the ∆NE in Equation 7.17, could be

corrected if we allow the frequency of the AOMs setting the Ñ switch to be Ñ Ẽ

correlated. This is in some sense equivalent to subtracting the known systematic shift

from the EDM data, which was the approach we adopted in our data analysis [2, 105].

The “smoking gun” evidence supporting our model for the φac = α∆ term was that

it matched the functional dependence on laser power and polarization predicted by the

thermal polarization gradients in the E field plates. Our light shift model predicts

that α will be linearly proportional the circular polarization gradient according to

Equation 7.11. The results of Section 4.3 demonstrate that the magnitude of circular
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polarization gradients ∂ε/∂x should be proportional to the laser power (Pl) and have

a sinusoidal dependence on the input polarization angle

∂ε

∂x
∝ Pl sin(2θ). (7.18)

By measuring detuning scans as in Figure 7.3, the phase sensitivity dφ/d∆ as a func-

tion of detuning was extracted from linear fits. The state preparation laser detuning

(∆prp) and the probe laser detuning (∆prb) could be independently controlled, allow-

ing us to measure dφ/d∆ for either laser. Assuming this slope is caused entirely from

ac Stark shift induced phases, then dφ/d∆ = α(θprp) ∝ ∂ε/∂x. The proper angular

dependence is clear, as is the dependence on the prep power in the red and blue curves

in Figure 7.5.

To first order, the φac induced by the probe laser should cancel out in our calcu-

lation of the asymmetry.

A = SX − SY
SX + SY

= sin2(φ0 + φac,X)− cos2(φ0 + φac,Y )

≈ φ0 + φac,X + φ0 + φac,Y

A = 2φ0, (7.19)

where we have expanded the phase about φ0 ≈ π/4, and used the fact that φac,Y ∝

sin(2(θX + π/2)) = −φac,X . However, as shown in the black curve in Figure 7.5, we

observed that the probe’s detuning slope dφ/d∆prb depends sinusoidally on the angle

of the state preparation laser, but with a smaller amplitude and opposite sign than

dφ/d∆prp. This was confirmed by tuning the |Bz| field magnitude and acquiring data

with different amounts of magnetic phase precession φ. Our measurement always has

a fixed relationship between the prep and probe angles such that φ− (θprb − θprp) ≈
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Figure 7.5: Sensitivity of ac Stark shift phases to prep laser angle. By rotating
the polarization of the state preparation laser (θprp), the thermal birefringence
generates polarization gradients with periodicity as predicted in Section 4.3.2.
The sensitivity of φac is measured with respect to detuning of either the prep
laser (∆prp) or probe laser (∆prb).

π/4(2n+1). For any value of θprb−θprp, the slope dφ/d∆prb could always be predicted

by θprp alone.

This effect is likely caused by a residual prep detuning phase imprinted on the

Doppler distribution of our molecule beam. The molecule beam’s transverse velocity

distribution δvz creates a transverse (ẑ) gradient of φac(vz) because each velocity class

vz sees a Doppler shifted prep laser detuning ∆(vz). Depending on the detuning of the

probe laser, subsets of the full distribution φac(δvz) are sampled, shifting the values

of φ̄ac and generating the observed dφ̄/d∆prb effect. Measurements of dφ/d∆prb were

much noisier than dφ/d∆prp, which supports this hypothesis because the molecule
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beam velocity distribution drifts by ∼ 10% over the times scales necessary for these

measurements. Additional details may be found in [105, 107].

7.1.3 Measurement of ΩNEr Correlations

The third term of Equation 7.10 can generate an EDM systematic correlated with

a ΩNEr if the β coefficient is non-zero. The Rabi frequency for the H → C transition

is defined as

Ωr = DH−C

~

√
2I
ε0c

(7.20)

for laser intensity I = P/A = ε0cE
2/2 and transition dipole moment DH−C . The

Rabi frequency Ωr is proportional to DH−C
√
P , so either an EDM correlated laser

power PNE or transition dipole momentDNEH−C could lead to a systematic. Photodiode

monitors measured the PNE during the final data set, and the result was consistent

with zero to within 1% of P 0, small enough to not contribute to the systematic error

bar at a significant level.

There is evidence that our molecule exhibits an inherent DNEH−C large enough

to cause an EDM systematic. Physically, this means the transition dipole moment

depends on the orientation of the molecule, n̂ = Ñ Ẽ ẑ, relative to the propagation

direction of the laser k̂. Measurements of a nonzero Ñ Ẽ-correlated fluorescence signal,

SNE , and an Ñ ẼB̃-correlated phase, φNEB, both of which changed sign when we

reversed k̂, provided evidence for a nonzero k̂ · ẑ dependent ΩNEr (see details below).

We hypothesize that this n̂ odd Rabi frequency is generated by interference between

the electric and magnetic (E1 and M1) dipole transition amplitudes.

We can make a qualitative argument for the origin of DNEH−C based on the form of
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the operators [149, 150, 151]

ÔE1 = kE(ε̂ · ~r), (7.21)

ÔM1 = kM(k̂ × ε̂) · ~L. (7.22)

The E1 operator describes the coupling of the laser’s electric field with polarization ε̂

to the electron’s position ~r (electric dipole moment), while the M1 operator couples

the laser’s magnetic field with polarization (k̂ × ε̂) to the orbital angular momentum

~L (magnetic dipole moment). The E1 and M1 operators have odd and even parity,

respectively.

Both theH and C states have mixed parities in an electric field, so it plausible that

the matrix elements 〈C|Ô|H,N = +1〉 and 〈C|Ô|H,N = −1〉 might have opposite

sign, dependent on the parity of the operators. The transition dipole matrix element

DH−C = 〈C|ÔE1 + ÔM1|H,N〉 (7.23)

will have a cross term that depends on this relative N sign. This matrix element has

been calculated in detail in [81, 148], and the authors conclude that this effect can

generate a DNEH−C given the proper phases between the E1 and M1 transition matrix

elements. The ratio of the size of allowed E1 and M2 matrix elements is the fine

structure constant, α ≈ 1/137, so a DNEH−C generated by their interference is expected

to be small [150].

We studied this effect directly by applying a PNE component to each of our laser

beams, such that

P = P 0 + PNEÑ Ẽ . (7.24)

The EDM correlated phase sensitivity dφNE/dPNE ∝ β was generally consistent with
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zero. The coefficient β is non-zero in the presence of a linear polarization gradient

(∂θ/∂x) or combined detuning and circular gradient ∆(∂ε/∂x) according to Equa-

tion 7.13. Both effects are small, and we expect that β � α, so the ΩNEr systematic is

suppressed compared to Enr. It was difficult to measure this effect because we could

only modulate the state preparation or probe laser’s power by up to ±20% without

degrading the signal or contrast. For comparison, in measurements of the Enr system-

atic the intentionally applied Enr was ∼ 100 times the 5 mV/cm background value,

which allowed us to quickly measure non-zero EDM sensitivity slopes dφNE/dEnr.

Regardless of the mechanism that generated the DNEH−C , we were able to measure

it using auxiliary measurements. The φNEB phase will be correlated with a ΩNEr in

a non-zero magnetic field (fourth term in Equation 7.10). Because βB � β we could

clearly observe an orientation dependent Rabi frequency in the φNEB channel even

when dφNE/dPNE was consistent with zero. When applying a PNE with no detuning

∆ and negligible amounts of Enr, the ac Stark shift dependence is

φac = (β + βB|Bz|B̃)
(
D0
H−C +DNEH−CÑ Ẽ

)√
P 0 + PNEÑ Ẽ

φac ≈ (β + βB|Bz|B̃)
√
P 0

(
D0
H−C +DNEH−CÑ Ẽ

)(
1 + 1

2
PNE

P 0 Ñ Ẽ
)
, (7.25)

such that

φNEBac = βB|Bz|
√
P 0

(
DNEH−C + D0

H−C
2

PNE

P 0

)
, (7.26)

φNEac = β
√
P 0

(
DNEH−C + D0

H−C
2

PNE

P 0

)
. (7.27)

By using a fit to measurements of φNEB as a function of PNE , we can measure the

value of PNE where φNEBac = 0, which is occurs when

PNEeff

P 0 = −2D
NE
H−C

D0
H−C

. (7.28)
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The sensitivity slope of the EDM channel (SP ) is

SP = dφNE

(dPNE/P 0) = βD0
H−C
√
P 0

2 (7.29)

Using these two measurements, we can calculate the shift to the EDM caused by the

ΩNEr using

∆φNE = SPP
NE
eff = −βDNEH−C

√
P0. (7.30)

Using a measured value of PNEeff /P
0 = −0.0158 ± 0.002, we were able to limit the

systematic uncertainty in de from the ΩNEr systematic to the 10−29 e·cm level.4

7.2 Systematic Error Budget

To search for possible sources of systematic error, we varied more than 40 separate

parameters and observed their effects on ωNE and many other components of the phase

correlated with Ñ , Ẽ , or B̃. These parameters were intentionally applied tunable

imperfections, such as transverse magnetic fields or laser detunings (for a complete

list see Appendix E). These tuned imperfections were applied concurrently with the

8 block and superblock switches, so that all the parity components were measured as

a function of the imperfection. We typically weren’t satisfied until we understood the

behavior of ωN , ωE , ωNEB, ωNB and ωEB with the varied parameter.

We assume that ωNE depends linearly on each parameter Q, such that we may

calculate the slope SQ = ∂ωNE/∂Q and uncertainty δSQ using a linear regression

fit. Using auxiliary measurements we obtain the mean Q0 and uncertainty δQ0 of
4According to Equation 7.20, PNEeff /P

0 = 2ΩNEr /Ω0
r, which is how the result was quoted in [2]:

ΩNEr /Ω0
r = (−8.0± 0.8)× 10−3(k̂ · ẑ).
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Figure 7.6: Eliminating the Enr systematic (Ref [2] Figure 3A). Red and
black data points were taken with the prep laser polarization misaligned
and aligned, respectively, with the birefringence axes of the electric field
plates. This figure illustrates how we performed general IPV searches for
systematics, applying an exaggerated parameter imperfection and assuming
a linear response to ωNE . The slope of these curves SEnr = ∂ωNE/∂Enr

represent the sensitivity of our EDM measurement to Enr imperfections.

this parameter under ideal operating conditions. The systematic shift in ωNE is

∆ωNE = SQQ0 and the uncertainty follows from Gaussian error propagation.

Figure 7.6 shows an example of the linearized fitting to determine the slope SEnr in

the case of the Enr systematic. We chose to apply the systematic shift for a parameter

if; (i) the slope SQ was monitored throughout the data set, (ii) at some point there

was an observed non-zero slope SQ, and (iii) we have a physical model describing the

systematic shift. If any of these conditions do not apply, we instead include an upper

limit uncertainty

δωNE = Q0

√
(δSQ)2 + S2

Q (7.31)

in our systematic error budget.

Given these assumptions, if we have good control over our IPV parameter, then
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for maximum parameter imperfection ∆Q

δSQ ≈
δωNEstat
∆Q . (7.32)

When there is no observed correlation with ωNE , it is advantageous to increase the

size of the imperfection as much as possible to drive down δSQ and therefore de-

crease δωNEsyst. Therefore, there were a broad class of parameters that we could check

at the 10−29 e·cm level after only one day of averaging by applying ∆Q > 10Q0.

Other parameters we could not tune as broadly, and the uncertainty as calculated

by Equation 7.31 would have been larger than the final statistical error bar. With-

out a justifiable model, observed correlation, or historical precedent for inclusion in

our error budget, all of these less careful systematic studies were excluded. I note

that uncertainty on the measurement of a slope parameter depends our our statistical

precision per root day. Therefore, adopting these same systematic error analysis tech-

niques in future ACME generations, we expect most systematic error limits should

be decreased by improved statistics alone.

7.2.1 Observed EDM Correlated Systematics

There were only three IPV studies for which we observed a systematic slope SQ

that was greater than zero to statistical significance 3σ. For all three, we have a well

understood model for the existence of the EDM correlation. Two are due to the ac

Stark shifts, discussed in detail in Section 7.1. By intentionally exaggerating these

parameters, we verified that both Enr and ΩNEr couple to ac Stark shift effects to

produce a false EDM. For the published data set, we tuned the laser polarization for

each G̃ state to minimize the magnitude of the systematic slope SEnr = ∂ωNE/∂Enr
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Figure 7.7: Comparison of EDM values under changing field magnitudes
|Ez|, |Bz|, and laser pointing k̂ · ẑ. The same data set is represented in each
category, it has just been grouped and averaged according to the labeled
switch.

(Figure 7.6).

The EDM correlated phase sensitivities SEnr and SΩNEr were monitored at regular

intervals throughout data collection. The values for (Enr)0 in the prep and probe lasers

are extracted from the measurements described in Chapter 6, and (ΩNEr )0 intrinsic

to the molecules was measured using the φNEB channel as described in Section 7.1.3.

The resulting systematic corrections to ωNE were all < 1 mrad/s. Only for the

Enr systematic did we apply a correction term that was larger than the associated

systematic uncertainty (Table 7.1). The steps taken to eliminate these systematics

made the SΩNEr consistent with zero for the final data sets.

The third observed EDM correlation was caused by an Ẽ-correlated magnetic

phase, φE , which leaks into the EDM channel because the N states have slightly

different g factors [83, 86]. If the molecules experience an effective magnetic field BE

177



Chapter 7: Systematic and Statistical Limits

correlated with Ẽ , the magnetic phase will be

φ = µB(g + ∆gÑ )BE Ẽ . (7.33)

This gives rise to the EDM correlated term φNE = µB∆gBE . Notice that the same

imperfections cause phases to appear in the φE channel as well, and that φNE/φE =

∆g/g ≈ 0.3% [83]. Comparison of these two phase channels provides us with a

method to detect the presence of systematic errors due to a wide range of physical

sources for BE .

The ratio ∆g/g represents the limits of the ability of the N states to act as an in-

ternal comagnetometer [5]. We experimentally simulated the effects that contribute to

φE by deliberately correlating |Bz| with Ẽ , which allowed us to place a ∼ 10−2 mrad/s

limit on their combined effect. The suppression factor ∆g/g ≈ 0.07% is improved at

Low-E fields, so the good agreement between High- and Low-E EDM measurements

(left panel in Figure 7.7) also demonstrates our insensitivity to BE effects.

Although the φE channel was used to directly put systematic limits on Ẽ-correlated

magnetic phases, it is useful to consider the sources and sizes of possible effects.

In order to keep BE systematics below the 10−29 e·cm level, we require |Bz|E <

3 µG. Leakage currents can create |Bz|E fields, and were a limiting systematic for

the 199Hg EDM experiment [41]. A limit was set on our leakage currents by quickly

disconnecting the field plates when fully charged, and monitoring the drift in the

Stark shift sensitive H → C transition frequency by taking Doppler scans across the

resonance.5

Considering the field plate capacitance C and leakage resistance RL, for times
5Rapid Doppler scans were taken using the “Doppler Scan VI” described in Appendix C.2.
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Figure 7.8: Measurement of leakage currents by monitoring the dc Stark
Shift dependent |H,N = −1〉 → |C,M = 0〉 transition frequency. This plot
represents a decaying electric field; as charge drains off the field plates the
|H,N = −1〉 state decreases in energy and the transition frequency will in-
crease. The dipole moment DH ≈ 1 MHz/(V/cm) allows conversion to a
linear voltage decrease of dV/dt = 0.03 V/s.

t � RLC the voltage should decrease linearly V (t) ≈ V0 − tV0/RLC. Fitting to

the slope dV/dt = −IL/C allow us to measure the leakage current Il = V0/RL

under normal operating conditions. The field plates form a parallel plate capacitor of

35 pF, although using a commercial impedance meter (ESI 252) plate capacitances

including vacuum feedthrough were typically C ∼ 350 pF. This data put a limit of

IL < 10 pA at High-E field, where leakage currents are largest. The closest realistic

leakage current path we could imagine that would generate a |Bz|E would come from

a loop around the edges of the 17”×9” field plates. This would result in a completely

inconsequential |Bz|E < 1 pG.

Motional magnetic fields and geometric phase effects were the limiting systematic

for other beam type EDM experiments, such as the thallium EDM [3]. In a moving
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reference frame the ThO molecules experience a motional magnetic field ~BE ≈ ~vbeam×

~E/c2 [108]. Although | ~B|E ≈ 0.3 µG, a |Bz|E field is additionally suppressed because

~vbeam ≈ |vbeam|x̂ and ~E = |E|ẑ, so we predominately have a transverse field |By|E ŷ.

Systematics due to transverse B fields are suppressed by the large dc Stark shift [10],

which was directly checked with a transverse |Bx,y|E IPV study.

Geometric phases due to magnetic fields are generated in a similar fashion as

motional magnetic fields [141, 10]. They are also suppressed by the Stark splitting,

and would appear in the φE term if present. Geometric phases due to electric fields

will not have this same behavior [106], but should scale with the E field magnitude.

The agreement between data at High- and Low-E field therefore excludes the presence

of these effects at our current level of sensitivity.

7.2.2 Systematic Errors without Observed Correlations

The rest of the IPV studies revealed no correlations with the EDM. To be cautious,

we included in our systematic error budget possible contributions from the following

parameters that caused a nonzero EDM shift in experiments similar to ours, with di-

rect ωNE systematic limits of . 1 mrad/s for each. Stray B fields and B field gradients

were the dominant source of systematic error in the final result of the PbO experi-

ment [6]. We applied transverse fields Bnr
x,y,z and gradients

(
∂Bx
∂x
, ∂By
∂x
, ∂By
∂y
, ∂By
∂z
, ∂Bz
∂x
, ∂Bz
∂z

)
to demonstrate that we were not susceptible to the same effect. Although there are

only 5 independent gradients (from ∇ · ~B = 0 and ∇× ~B = 0), these extra gradients

define a more conservative error bar.

The YbF experiment discovered the detuning of their rf pulses were a leading
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source of systematic error [4, 7]. In analogy, our state preparation and probe lasers

cause phase shifts when detuned from resonance, but EDM systematics are only

observed in the presence of an Enr, already accounted for above. Nevertheless, we

included a systematic uncertainty due to uncorrelated laser detunings in prep and

probe ∆0
prp and ∆0

prb, in addition to the Ñ correlated detunings ∆N and (∆N ×∆0),

which cause offsets to the ωN or ωNB parity correlations if α or αB are non-zero

(see Equation 7.10). Finally, the YbF experiment also suffered from an unexplained

systematic due to E field ground offsets [4]. We measured the ground offset to be

5 mV using a handheld mutlimeter, and an applied ground offset a hundred times

larger revealed no ωNE correlation.

For a subset of our data, the Ñ -correlated phase φN was nonzero and drifted with

time. We determined that the cause of this behavior was an Ñ -correlated laser point-

ing k̂N · x̂ = 5 µrad present in our optical frequency switching setup (Section 5.4.2).

If not well aligned, the beams exiting the AOMs for Ñ switching would have different

coupling angles into the output fiber coupler. After amplification by the fiber ampli-

fier and coupling back into free space, this pointing dependence seemed to persist, as

monitored on a beam profiler. We eliminated the effect with improved alignment of

the Ñ P̃ switching breadboard, although the observed effect is not well understood.

In addition, we were not able to determine the precise mechanism by which k̂N cou-

pled to φN , and so we chose to include φN variations in our systematic error budget.

The slope ∂ωNE/∂φN (consistent with zero) and the mean value of φN established a

systematic uncertainty limit of ∼ 1 mrad/s on ωNE .

181



Chapter 7: Systematic and Statistical Limits

7.3 Statistical Analysis

A careful statistical analysis and series of well motivated cuts were performed on

the EDM measurements in our final data set [81, 105]. This resulted in a distribution

of EDM measurements that were extremely Gaussian, as can be seen in a histogram

of all final data set measurements (Figure 7.9). In parallel, the statistical uncertainty

was computed using standard Gaussian error propagation of the 1σ standard-error-

in-the-mean of groups of individual EDM measurements. The asymmetry A obeys a

ratio distribution, which has large non-Gaussian tails in the limit of low-signal-noise

ratio [152, 81]. We applied a photon count rate threshold cut so that we included

only data with a large signal-to-noise ratio, resulting in a statistical distribution that

closely approximates a Gaussian. When the EDM measurements are fit to a constant

value, the reduced χ2 is 0.996 ± 0.006. In this case, a χ2 ≈ 1 indicates that our

EDM uncertainty extracted from Gaussian error propagation agrees with that from a

Guassian fit to the histogram of Figure 7.9. The result was a statistical uncertainty of

δωNEstat = 4.80 mrad/sec. On the basis of the total number of detected photoelectrons

(∼ 1000 per pulse) that contributed to the measurement, the statistical uncertainty

is 1.15 times that from shot noise [9].

The reported upper limit was computed using the Feldman-Cousins prescrip-

tion [153] applied to a folded normal distribution. The folded normal distribution

for |x|

P (|x||µ) = 1
σ
√

2π

(
e
−(|x|−µ)2

2σ2 + e
−(|x|+µ)2

2σ2

)
(7.34)

assumes Gaussian distributed measurements of x with variance σ2 about a central

value µ, where values of µ < 0 are physically valid. This is appropriate for calculating
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k̂ · ẑ =− 1

k̂ · ẑ =+ 1

P̃ =− 1

P̃ =+ 1

G̃ =− 1

G̃ =+ 1

R̃ =− 1

R̃ =+ 1

L̃ =− 1

L̃ =+ 1

de
(
10−28 e cm

)

|Ez| (V/cm)

|Bz| (mG)

k̂ · ẑ
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k̂ · ẑ =− 1

k̂ · ẑ =+ 1
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Figure 7.9: Histogram of ωNE measurements from published data set (Ref [2]
Figure 2A). There are several ωNE measurements per block, divided up as
a function of time across the molecule pulse. We did not see any variation
in ωNE as a function of time after ablation. Error bars represent expected
Poissonian fluctuations in each histogram bin.

EDM upper limits, where the EDM itself may be negative, but an upper limit should

only reflect the magnitude of de. In reporting our result, for |de| � σ we wish to

report a traditional upper limit, but for |de| � σ a double sided confidence interval is

appropriate to announce the discovery of an EDM. The Feldman-Cousins maximum

likelihood prescription avoids the misquoting of confidence intervals in the region

between these limits by algorithmically handling the crossover from single to double

sided confidence intervals [107]. Note that this prescription differs from those used to

set previous EDM limits. For the Tl experiment, Regan et. al. [3] applied a standard

90% confidence level upper limit for the mean of a half Gaussian distribution (see [153]

Figure 2). For the YbF result Hudson et. al. [4] applied the 90% confidence bound

for the folded normal distribution CL =
∫ de,lim

0 P (x, de)dx. If we applied the same

prescription as [4], our EDM upper limit would be lowered to |de| < 8.12×10−29e· cm.

To prevent any experimental bias, we preformed a blind analysis by adding an un-

known offset to ωNE . The mean, statistical error, systematics shifts, and procedure
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Parameter Shift Uncertainty
Enr correction −0.81 0.66
ΩNEr correction −0.03 1.58
φE correlated effects −0.01 0.01
φN correlation 1.25
Non-Reversing B-field (Bnr

z ) 0.86
Transverse B-fields

(
Bnr
x ,Bnr

y

)
0.85

B-Field Gradients 1.24
Prep./Read Laser Detunings 1.31
Ñ Correlated Detuning 0.90
E-field Ground Offset 0.16
Total Systematic −0.85 3.24
Statistical 4.80
Total Uncertainty 5.79

Table 7.1: Systematic and statistical errors for ωNE , in units of mrad/s. All
errors are added in quadrature, and are derived from Gaussian 1σ (68%)
confidence intervals. In EDM units, 1.3 mrad/s ≈ 10−29 e cm.

for calculating the systematic error were determined before unblinding. Such hid-

den offset blinding techniques are inspired by those used in the nuclear and particle

physics community [154]. Previous EDM searches in atomic and molecular systems

have employed blinds with varying degrees of complexity [41, 4]. We chose a simple

approach of adding a single offset value to the value of ωNE as the last step in data

analysis.6

7.4 Results and Interpretation

The result of this first-generation ThO measurement,

de = (−2.1± 3.7stat ± 2.5syst)× 10−29 e · cm (7.35)
6The goal of blinding was not to produce an “uncrackable” blind, but one that could be easily

applied by any member of the collaboration wishing to perform data analysis. It was assumed that
there were no adversaries trying to reveal the unblinded value before the appropriate time.
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comes from de = −~ωNE/Eeff using Eeff = 84 GV/cm [88] and ωNE = (2.6± 4.8stat ±

3.2syst) mrad/s. This sets a 90% confidence limit,

|de| < 8.7× 10−29 e · cm (7.36)

that is smaller than the previous limit by a factor of 12 [3, 4] - an improvement made

possible by the use the ThO molecule and of a cryogenic source of cold molecules for

this purpose. In addition to the included systematic error bars, the result is robust

under large changes of |Ez| and |Bz| (Figure 7.7).

A recent calculation of Eeff has been performed by another group yielding 75.2 GV/cm

with an estimated uncertainty of 3% [155]. A useful experimental check for Eeff cal-

culations is the hyperfine structure constant A‖, which depends on the same wave-

functions of valence electrons near the nucleus [156]. 232Th16O has zero nuclear spin,

so we are unable to observe any hyperfine structure. Calculating observables such

as transitions energies (Te) and magnetic [83] and electric dipole moments depend

less sensitively on these short range wavefunctions, but can serve as reasonable proxy

measurements. The calculations by Fleig et. al. [155] show better agreement with Te,

but those of Skripnikov et. al. [88] have calculated a wider variety of parameters to

within 15%. We chose the 84 GV/cm result because it has a more conservative error

bar, and lies in between the 75 GV/cm calculation and the 104 GV/cm semi-empirical

estimate [89]. If we were to take into account the roughly estimated 15% uncertainty

on the calculated Eeff [88] and assume that this represents a 1σ Gaussian distribution

width, the de limit stated above would increase by about 5%. We hope that the

recent interest in 229Th spectroscopy [157, 158, 159] will make new measurements of

A‖ feasible in 229ThO for verification of Eeff calculations.
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Because paramagnetic molecules are sensitive to multiple T-violating effects [160,

38], our measurement should be interpreted as ~ωNE = −deEeff −WSCS, where CS

is a T-violating electron-nucleon coupling and WS is a molecule-specific constant

determined by the molecular calculations [88, 161]. For the de limit above, we assume

CS = 0. Assuming instead that de = 0 yields Cs = (−1.3±3.0)×10−9, corresponding

to a 90% confidence limit |CS| < 5.9 × 10−9 that is smaller than the previous limit

by a factor of 9 [41].
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Conclusion and Future Steps

The first generation of the ACME experiment has improved the limit on the

electron EDM by over an order of magnitude. Despite our much higher sensitivity,

an electron EDM has not materialized, consistent with the prediction of the Standard

Model. Our result further emphasises the unnaturalness of certain supersymmetric

models that must be fine tuned to predict electron EDMs close to zero [25]. However,

some models predict de to be just below our current sensitivity [162]. Therefore, more

sensitive searches for an electron EDM continue to be useful for testing Standard

Model extensions, while the discovery of a nonzero eEDM would be a clear indication

of physics beyond the Standard Model.

Many of the extensions to the Standard Model that predict an electron EDM

could be within the sensitivity range of our second generation experiment. Moreover,

many major systematics will only enter our measurement at the 10−32 e·cm level [10],

so improvements in ACME’s statistical precision will likewise improve our limit on

the electron EDM. The experiment was operated in the regime of saturated Eeff , and
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the lifetime of the metastable H state limits improvements from increased interac-

tion length to 15% of the current sensitivity(Figure 5 from [10]). Therefore, future

improvements rely upon the increase in beam flux (Ṅ) improving the measurement’s

signal to noise and reducing the statistical uncertainty by 1/
√
Ṅ . Several upgrades,

already demonstrated in proof-of-principle experiments, could increase our fluores-

cence by a total factor of ∼ 100, therefore improving the statistical sensitivity by an

order of magnitude. All entries in our systematic error budget were limited by the

precision with which we could measure the phase offsets. Therefore, improvement of

statistical sensitivity should also improve the systematic error estimate as well, and

increase the speed at which we can diagnose and eliminate new systematics.

Currently, observe the spin precession of only a small fraction of the molecules

produced by our beam source. Molecules emerge from the beam source with a wide

divergence half angle of ∼ 40◦ [8], but the final collimator has an acceptance angle

of only ∼ 0.6◦. Using an electrostatic lens to “focus” the divergent molecular beam

would increase the fraction of molecules which travel through the interaction region.

In a separate apparatus we have demonstrated that the M = 0 ground states can

be guided by an magnetic quadrupole field. Simulations of a new electrostatic lens

indicate that the beam flux can be increased by up to a factor of 40 without depositing

ThO on the field plates. This will modify the velocity profile of the molecule beam in

the interaction region. Therefore, the Enr systematic, which couples to the velocity

dependent Doppler profile, should be carefully reexamined.

The EDM state preparation efficiency could be increased by up to a factor of 10 by

utilizing Stimulated Raman Adiabatic Passage (STIRAP) [163] on the X → C → H
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Lambda transition. Currently, only 12% of available ground state molecules are

prepared in an H state spin superposition. This is a combination of the A  H

branching ratio and the incoherent decay leading to population distributed across

5 sublevels in the H state. STIRAP could directly move population from a single

ground state sublevel to a spin superposition with transfer efficiency of up to 100%.

The narrow two-photon linewidth [164] requires the 690 nm and 1090 nm lasers be

stabilized to within ∼ 100 kHz. Both lasers have already been locked to a high finesse

ultra-low expansion (ULE) glass cavity (Advanced Thin Films) within a thermally

stabilized vacuum chamber [165].1

In addition, a thermochemical beam source may increase our molecule flux by a

factor of ∼ 10. ThO can be produced chemically by heating samples of Th and ThO2

metal powder to temperatures of ∼ 1600◦ K [166]. We have already demonstrated

that a focused laser can locally heat a pressed Th + ThO2 target to produce buffer

gas beams of ThO with higher peak fluxes than ablation. However, this technique

produced larger heat loads than the cooling power provided by our current cryogenic

beam source, and the thermochemical beams were not stable. A beam source is being

constructed with improved cooling power, which should allow for the continued de-

velopment of this new beam technology in parallel with other experimental upgrades.

The dominant ac Stark shift systematic errors can further be suppressed by im-

plementing electric field plates with improved thermal and optical properties. As

derived in Equation 4.14, the size of our thermal birefringence gradients depends on

both the optical properties of the field plates substrates and ITO coatings. The cur-
1Transfer efficiencies of up to 70% have been demonstrated previously by E. Kirilov, but we are

actively trying to improve this figure.

189



Chapter 8: Conclusion and Future Steps

rent field plates are made of borosilicate float glass, which can be manufactured into

large flat sheets rather inexpensively, but doesn’t have ideal optical properties. Fused

silica (such as Corning 7980) has optical properties that minimize thermal stress in

the material and reduce gradients by a factor of 10. Moreover, a thinner coating of

ITO will decrease the ∼ 4% absorption of laser light linearly with the reduction in

thickness. Coatings down to 100Å seem feasible, and would reduce the heat deposited

by a factor of 10.

The aforementioned statistical improvements have all been previously demon-

strated to increase the useful molecule flux in auxiliary experiments. Their combined

effect should increase the number of molecules participating in a second generation

experiment by a factor of 100 or more, resulting in an improved statistical precision

of at least an order of magnitude. The improved electric field plates should decrease

the polarization gradients and resulting ac Stark shift systematics by more than a

factor of 10. Therefore, the next generation of ACME is poised to strike out yet

again in search of the elusive electron EDM. Regardless of the result, a discovery of

a tiny EDM or an improved upper bound, this data will help steer us towards the

extensions to the Standard Model which best describe our universe.
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ACME PMTs

The ACME experiment required a low noise detector in order to perform spin

precession measurements at the shot noise limit [9, 2]. For detection of C  X

fluorescence photons at 690 nm, we chose a multi-anode photomultiplier (PMT) with

a multialkali photocathode (Hamamatsu R8900U-20) [167, 168]. This PMT model

was selected because of the large effective area of 23.5 × 23.5 mm2 and its extended

sensitivity into the near infrared (∼ 10% quantum efficiency at 690 nm). Although

silicon photodiodes or avalanche photodiodes have much higher quantum efficiencies,

they lack the noise-free gain of PMTs [169]. Signal levels must be ∼ 10 times greater

than those in the current generation ACME experiment for shot noise to dominate

over photodiode and amplifier noise [105]. A cooled avalanche photodiode [170] would

be the best choice for a next generation photodetector.
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A.1 PMT Enclosure Assembly and Operation

The degradation of PMT performance caused by a slow increase of the pressure

inside the vacuum tube is well documented [171, 122]. In particular, helium gas

permeates through the glass surface on the front of the PMT, causing afterpulsing

and a reduction in tube lifetime. This problem could be exacerbated in a setting such

as the LISE laboratory, where there is higher partial pressure of helium in the air.

Care was taken to house our PMTs in an enclosure that could be constantly

purged with dry nitrogen gas, thus increasing the lifetime of the detectors. Two

Swagelock bulkhead feedthroughs allow nitrogen to be continually flowed in and out

of the enclosure, so multiple PMTs can be daisy chained on one nitrogen line. The

air-tight enclosures and hermetically sealed electrical feedthroughs provide a low leak

rate when pressurized. A thin AR coated window was epoxied in place to provide a

good seal. All joints were leak tested using a pressure test appropriate for gas fittings;

the enclosure was pressurized and no gas bubbles were observed when “liquid Snoop”

was applied to the joints. The parts list for these inclosures is recorded in Table A.1,

and the assembly is shown in Figure A.1a.

The high voltage (HV) is supplied from an external source to the voltage divider

socket through a SHV connector, and the PMT output signals are on a BNC connec-

tor. The input HV was filtered by a 0.22 µF capacitor in parallel with three surface

mount 220 pF capacitors, all rated to 1 kV. These smaller capacitors from ATC have

a self resonance frequency above the 100 MHz maximum frequency component in the

fourier transform of the ∼ 10 ns single photon pulses. Three in parallel have a total

capacitance that matches the ideal impedance of a 0.22 µF capacitor at 100 MHz.
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(a) Assembled PMT Enclosure
SolidWorks Student License
Academic Use Only

(b) Solidworks model of
PMT mounting rails

Figure A.1: PMT Enclosure Assembly

The four capacitors in parallel therefore provide filtering from DC to 100 MHz, up to

frequencies where the large capacitor behaves inductively.

Light diverges rapidly after exiting the light pipes abutted to the front face of these

PMT enclosures [81]. Therefore, the enclosure was designed to position the PMT’s

photocathode as close to the exterior surface as possible. The PMT itself is mounted

inside a cage mount type enclosure, shown as a Solidworks model in Figure A.1b.

The rails are glued into the cage base plate with 5 minute epoxy. The cage mount

is centered on the window aperture using an alignment tool, then attached to the

inside of the enclosure with epoxy. The PMT can slide all the way to be flush with

the inside surface, and is fixed in place with the clamp and screws on top of the rail

assembly. In practice, a few turns of electrical tape are applied to the base of the

PMT to ensure a snug fit. The window on the front face is as thin as possible (1 mm),

and filters are mounted flush with this window in a 1" diameter lens tube epoxied to

the exterior of the assembly.
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Component Part No. Comment
PMT Hamamatsu R8900U-20
Voltage Divider and
Socket

Hamamatsu E10411

Enclosure Hammond 1550Z113 Hermetically Sealed
BNC Feedthrough Amphenol 31-102 O-Ring Sealed (Grounding

Tab on Inside)
SHV Feedthrough Pasternack 4500 O-Ring Sealed (Grounding

Tab on Inside)
Nitrogen
Feedthrough

Swagelock SS-400-R1-4 Seal with #110 O-Ring on
inside surface

Filtering Capacitor Digi-Key 399-3514-ND 0.22 µF with 1 kV limit
High Frequency Fil-
tering Capacitor

ATC 100B221JT1000 X 10 220 pF @ 1 kV (×3 wired in
parallel)

1" Diameter Window Edmund Optics 48924 1 mm thick, AR Coated 425-
700 nm

Filter Holder Thorlabs SM1M10 Epoxy lens tube to exterior
Angle Bracket Stock McMaster 4630T12 Clear Anodized Aluminium
Epoxy 5-Minute Epoxy

Table A.1: Components for sealed ACME PMT enclosure

In order to make the assembly as compact as possible, all electronics besides

a few filtering capacitors were housed in a separate rack mountable power supply,

designed and assembled by the MacArthur electronics lab. This supply contains 8

channels, each of which has an independently tunable output voltage between 0 −

900 V, produced by a compact high voltage power module (Hamamatsu C4900). Each

channel has a display of the HV setting, and a monitor port for logging the control

voltage (VHV = 250 × Vctrl). The max output of the power module is −1250 V, but

the control voltage has been limited to 3.6 V so they cannot supply more than the

-900 V recommended maximum supply voltage to the R8900U-20 PMT modules.

The PMTs are typically operated at −675 V, where they were observed to have

well behaved noise spectra in both current and photon counting mode. The gain of
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theses PMTs depends on the voltage as a power law [122]

G = kV α
HV, (A.1)

where k = 9.5 × 10−17 and α = 7.75, as extracted from gain curves on the PMT

datasheet. This corresponds to a gain of G ≈ 8 × 105 at our operating voltage, al-

though there is some indication that this underestimates the real gain (see 3/27/2012

EDM Experiment lablog). The gain has never been carefully measured over a wide

range of supply voltages. In principle, measurements of average photocurrent (I)

and noise (σI) can be used to calculate the gain (G = σ2
I/I), since the photoelectron

emissions are a Poissonian process [172, 173]. This measurement should be made in

the future, especially when characterizing new PMT modules.

A.2 Setting Discriminator Level for Photon Count-

ing

Single photon counting is an excellent technique for recording very low noise flu-

orescence signals at low light levels [121]. For example, in the lifetime measurement

described in Section 3.1, we counted n̄ ≤ 0.1 photons per time bin. The SR430

multicannel scaler (MCS) used in the measurement contains an amplifier, discrimina-

tor, and time bin clock necessary for a time resolved photon counting measurement.

The MCS rapidly identifies single photon pulses with heights above the discriminator

threshold, and counts them in time bins relative to a trigger signal, averaging over

multiple triggered acquisitions to build up statistics when counting rates are low.

In order to optimize signal to noise, we must set the discriminator level based
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Figure A.2: Integrating a sweep of the MCS discriminator level to measure
a pulse height spectrum. Some smoothing is applied to the I(pD) curve at
left to reduce the noise it its numerical derivative.

on the pulse height spectrum of our PMTs. The pulse height spectrum contains two

peaks; the signal peak and dark current peak, each of which have a width character-

ized by gain fluctuations at the dynodes [122]. The dark peak is caused by thermal

electron emission from both the photocathode and later dynode stages, and therefore

doesn’t experience as much gain and is shifted towards the low end of the pulse height

spectrum. The discriminator level should be set at the minimum between these two

curves, in order to reject the most dark pulses without cutting out significant signal

pulses (Figure A.3).

Many applications of single photon counting, for example monitoring scintillation

signals in nuclear physics, have very low counting rates of < 1 MHz. In these cases,

a class of devices called Multi-channel Analyzers (MCA) are available, which can

rapidly measure pulse heights and bin them into histograms to produce pulse height

spectra. Ideally, a pulse height spectrum should be measured using signal levels that

are comparable to those in the experiment. Lowering(Raising) the signal level would

196



Appendix A: ACME PMTs

Figure A.3: Discriminator level settings and associated lifetime measure-
ments.

decrease(increase) the height of the signal peak and shift the spectrum’s minimum

towards larger(smaller) pulse heights. In our measurement, count rates were typically

in the range of 1− 5 MHz,1 so a MCA could not be used to measure the pulse height

spectrum.

Here I describe the technique used to measure the pulse height spectrum using

only the MCS. The MCS counts the number of photon pulses below the discriminator

level pD, and by sweeping this level we can measure the integrated spectrum I(pD).
1The MCS response was found to become non-linear at count rates of ∼ 10 MHz (see Section 3.1).
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We can apply the second fundamental theorem of calculus to recover the pulse height

spectrum S(p),

I(pD) =
∫ pD

0
S(p)dp (A.2)

I ′(pD) = S(pD) (A.3)

Figure A.2 shows the results of applying numerical differentiation to an integrated

pulse height spectrum measured with the MCS. The signal and dark pulse distribu-

tions become immediately apparent. The signal is generated with a 690 nm laser light

source attenuated to mimic the light levels measured in the lifetime experiment. To

minimize the noise on the spectrum, the discriminator sweep should be made faster

than intensity drifts in this signal laser. It helps to increase the MCS bin size and

record length to collect more total photons per discriminator setpoint.

In the comparison to lifetime data taken as a function of discriminator level (Fig-

ure A.3), it is clear that setting the discriminator around the minimum yields measure-

ments with the fastest decay rate and smallest uncertainty. Setting the discriminator

level too low will cause issues of pulse pile up, where overlapping pulses are counted as

one, suppressing the measured count rates at the highest signal levels. This non-linear

signal suppression will make the decay appear slower, and therefore exponential fits

produce a longer fit lifetime, in agreement with the data. The uncertainty increases

if the discriminator is set too low because the rejection of signal photons produces

very low measurement statistics.
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Stokes Polarimeter System

In order to fully characterize the polarization state of our lasers, a polarimeter was

constructed based on the Rotatable Retarder Fixed Polarizer (RRFP) design [137].

This polarimeter uses a movable retardation plate to modulate the light polarization,

which is measured in a fixed polarization basis by a static polarizer. Many variations

exist on this basic design, and it is possible to optimize the retarder’s measurement

angles and retardance value [174, 175] given imperfections in calibration [176] or

various noise models of the light being measured [177, 178]. Many RRFP based

commercial polarimeter systems(e.g. Thorlabs PAX5720) are now available, with

state of polarization (SOP) accuracies of up to ∼ 0.25◦ on the Poincaré sphere. An

advantage of our system is that it allows us to measure both polarization components

of the probe beam simultaneously by digitally demodulating the signals. This has

proved important in measuring the degree of orthogonality of the X̂ and Ŷ probe

polarization components.
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B.1 Useful Definitions in Polarimetry

The Stokes parameters (I,M,C, S)1 can be fully defined using six intensity mea-

surements

I = I(0◦) + I(90◦) (B.1)

M = I(0◦)− I(90◦) (B.2)

C = I(45◦)− I(135◦) (B.3)

S = IRHC − ILHC (B.4)

For the coherent laser light we wish to characterize, complete polarization requires

that the equality

M2 + C2 + S2 = I2 (B.5)

is strictly true. The relative Stokes parameters, MI = M/I, CI = C/I, and SI = S/I

completely define the polarization state of the laser. Physically, SI represents the

degree of circular polarization, and we define LI =
√
M2

I + C2
I as the analogous degree

of linear polarization. Using Equation B.5, the polarization state can be written in

terms of two variables, making the Stokes formulation equivalent to the Jones calculus

for laser polarization [133].

Two very useful concepts for graphically representing polarization states are the

polarization ellipse and the Poincaré sphere (Figure B.1). The polarization ellipse is

defined with an inclination angle φ,

tan(2φ) = CI
MI

, (B.6)

1Here we use the notation consistent with [137] for the Stokes parameters. A common alternate
notation is (S0, S1, S2, S3) [133].
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Figure B.1: The polarization ellipse and Poincaré sphere. (A) The polariza-
tion ellipse is drawn with major and minor axes a and b respectively. The
inclination angle φ is with respect to the x̂ axis, and ellipticity e = +1(−1)
for RHC(LHC) polarized light, respectively. (B) The Poincaré sphere, with
a few representative polarization ellipses drawn on for reference.

which represents the angle of linear polarization, and an ellipticity e, which defines

the degree of circular polarization. The Poincaré sphere is a unit sphere in 3D space

where the (x, y, z) coordinates on the sphere correspond to the (MI , CI , SI) Stokes

parameter values. Each meridian line represents polarization states with the same

inclination angle φ, but with ellipticity increasing towards e = ±1 at the poles.

Likewise, circles parallel to the equator have constant ellipticity but a rotating linear

polarization angle. In a spherical polar basis, the position on the Poincaré sphere is

given by the azimuth and polar coordinates (2φ, 2θe), where

θe = π

4 − arctan(e) (B.7)

is the ellipticity angle.

People often cavalierly use the term “ellipticity” when they truly mean SI . These
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quantities are not the same,

SI = 2e
e2 + 1 and SI = cos(2θe). (B.8)

In the limit of small amounts of circular polarization, SI ≈ π/2 − 2θe ≈ 2e, so I

encourage people to either the correct terms, or mind their factors of 2. For sim-

plicity, I will use the term “ellipticity” to refer to θe, since it is more useful than e

for describing molecule/photon interaction (Equation 7.4). Note, our definition of

the ellipticity angle differs from that in [133]. We chose this convention to be consis-

tent with generalized formula for polarization used in the analysis of ac Stark shift

systematics (Section 7.1.1 and [81, 179]).

An often quoted property of real linear polarizers or other optical elements is an

extinction ratio Re = Imin/Imax < 1. Here we have defined Re in terms of measured

intensities, Imin and Imax, when an ideal polarizer is used to analyze the light after

passing through the optical element under test. Measurements of Imin and Imax occur

when the analysis polarizer is aligned with the major and minor axes of the polariza-

tion ellipse. We are free to define these directions to be vertical (l) and horizontal

(↔) so that CI = 0 and

|MI | =
|Il − I↔|
Il + I ↔

' Imax − Imin

Imax
,

|MI | = 1−Re, (B.9)

where we have assumed the extinction ratio is high Imax � Imin. From the summation

rule for Stokes parameters, we know the remaining circular polarization must be

|SI | =
√

1− (1−Re)2. (B.10)
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Figure B.2: Residual SI for polarization optics with extinction ratio Re, ac-
cording to Equation B.10. Here the polarization switching EOM (Conoptics
360-120) and the frequently used Glan Taylor polarizer (GT) are marked for
comparison.

Figure B.2 shows what limits certain polarization optics, such as a Glan-Taylor

polarizer (Re = 10−5) or polarization rotating EOM (Re = 10−2), would place on the

amount of remaining circular polarization. It is interesting to note that according

to Equation B.10, there is still SI = 0.5% circular polarization even for the highest

extinction ratio polarizers. This also sets a limit on how well our Stokes polarimeter

can perform, meaning it will always measure a small offset in SI at this level.

B.2 Polarimeter Fundamentals of Operation

The polarimeter consists of a rotatable quarter-wave plate with retardation δ ≈

π/2 and fast axis angle β relative to the fixed polarizer transmission axis. The
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transmitted intensity of a source laser with Stokes parameters (I,M,C, S) is [137]

IT (β, δ) = 1
2

[
I + M

2 (1 + cos(δ))
]
− 1

2S sin(δ) sin(2β)

+1
4 [M cos(4β) + C sin(4β)] (1− cos(δ)).

(B.11)

The waveplate is rotated by a discreet set of angles over 360◦, and an intensity mea-

surement IT (β̃) is made at each step. Let β̃ be the angle recorded by the rotation

stage’s encoder, relative to the polarizer transmission axis. The measured intensity

is fit to a linear combination of sine and cosine functions

IT (β̃) = C0 + C2 cos(2β̃) + C4 cos(4β̃) + S2 sin(2β̃) + S4 sin(4β̃) (B.12)

where the linear fit coefficients (C0, C2, C4, S2, S4) determine the amplitude and phase

of the frequency components in our signal.

We define all our measurements relative to the polarizer transmission axis. When

mounting the quarter-wave plate in the rotation stage, its fast axis cannot be perfectly

aligned with the home position of the encoder, β̃ = 0. The offset angle is β0 = β− β̃.

Then we can solve for the Stokes parameters2 substituting β = β̃+β0 and comparing

equations B.11 and B.12,

M = 2
1− cos(δ) [C4 cos(4β0)− S4 sin(4β0)] , (B.13)

C = 2
1− cos(δ) [S4 cos(4β0) + C4 sin(4β0)] , (B.14)

S = −C2

sin(δ) sin(2β0) = −S2

sin(δ) cos(2β0) , (B.15)

I = C0 −
1 + cos(δ)
1− cos(δ) [C4 cos(4β0)− S4 sin(4β0)] . (B.16)

2These solutions are adapted from [137] equation (16), with α = 0, β0 → −β0. Note that [137]
contains an error in the denominator of the S equations (it should be 2β0, not 4β0) which is corrected
here.
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Prior knowledge of δ, β0 (through calibration techniques discussed in Section B.4)

allows one to extract all the Stokes parameters. Uncertainties in calibration measure-

ments σδ, σβ0 and in the linear fit coefficients σC0 , σC2 , . . . contribute to the uncertainty

of the extracted Stokes parameters according to the standard equations for Gaussian

error propagation [180, 181]. Typically, β̃ is rotated over a single 360◦rotation, in

increments of 8◦(45 points). This proves to be a good compromise between the speed

of acquisition and measurement precision.

B.3 Assembly and Alignment

The fully assembled polarimeter, as used for gradient polarimetry tests is shown in

Figure B.3. For a full list of parts, see Table B.1. The retardation plate and polarizer

are the highest quality optics that could be easily acquired. In particular, the retar-

dation plate, designed for 1090 nm, has very close to π/2 phase retardance. CVI no

longer manufactures this model of zero-order quarter-wave plates at 1090 nm. The

best available off-the-shelf alternatives are broadband achromatic waveplates (e.g.

Thorlabs AQWP05M-980). So long as the waveplate’s retardation is properly mea-

sured, variation in retardance values is acceptable, and more non-standard retardation

plates may even optimize the polarimeter’s performance [174].

Unlike polaroid disks, a polarizing beam splitter cube, such as a high extinction

ratio Glan-Taylor polarizer (GT10), will have a transmission axis that can be pre-

cisely referenced mechanically to its exterior geometry. Currently, the GT10 analysis

polarizer is in a rotatable mount and the transmission axis has been aligned to the

horizontal by eye. This should be replaced with a mount that fixes the polarizer
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Component Part No. Comment
Irises Thorlabs SM12D12 0.8 mm min aperture,

Ring-Activated best in cage
mount system

Rotation Stage Newport URS50BCC 20◦/s rotation rate
Quarter-Wave Plate CVI QWPO-1090-08-4-R10 No longer available
Linear Polarizer Thorlabs GT10-B 100,000:1 extinction ratio
Polarizer Mount Thorlabs SM1PM10 Replace with non-rotatable

mount
Photodetector Thorlabs PDA10A Si Transimpedance Am-

plified Photodetector, 150
MHz Bandwidth

Translation Stage Zaber TSB28E 28mm Stage with 1/4-20
tapped holes

Translation Stage
Actuator

Zaber T-NA08A25 25 mm travel, 15 µm accu-
racy

Table B.1: Components for ACME Stokes Polarimeter

orientation to the polarimeter’s cage system.

A spatial non-uniformity in the retardance or transmission across the waveplate

face can cause systematic errors in the measurement of IT (β̃) if the polarimeter is

not properly aligned. Two apertures spaced by ∼ 4” ensure that the light is well

centered on the rotating quarter-wave plate so that the laser samples the same region

of the waveplate regardless of its rotation angle β̃. A silicon transimpedance amplified

photodetector with a fast bandwidth is used to measure both polarization components

of our 100 kHz polarization chopped probe beam. High bandwidths necessitate small

sensor areas (0.78 mm) in such detectors. An F = 1” focal length lens focuses the

light onto the detector area, which both improves the signal size and makes the IT (β̃)

measurements less susceptible to laser pointing wobble from the rotation stage.

The polarimeter has three positional degrees of freedom; horizontal and vertical
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translation and horizontal (azimuth) angle. The laser beam must be parallel to the

polarimeter’s horizontal transmission axis, which is satisfied if it is also parallel to

the optics table. Alignment should proceed as follows:

1. Position the polarimeter in front of the laser beam to measure, with both aper-

tures fully open. Make sure you can see the beam with an IR card between

the second aperture and the detector. Close the front aperture until the sig-

nal starts to disappear, then adjust the stage positioning (or laser pointing if

possible) such that it continues to pass through all components. Repeat until

the front iris is completely closed. If the laser beam is much larger than the

aperture, this step is unnecessary.

2. Begin closing the second aperture, and optimize the signal as before. At this

point, only the horizontal position and angle need to be adjusted. If the laser

is much larger than the aperture, tilting the azimuth angle of the stage should

be sufficient.

3. With the apertures fully closed, fine tune the alignment by maximizing the

photodiode signal.

B.4 Calibration

Extracting the Stokes parameters from Equations B.13-B.16 requires a calibration

of the quarter-wave plate’s retardation δ and offset β0. In the design presented above,

the polarizer transmission axis (α in [137]) is parallel to our lab x̂ axis, so all polariza-

tions are defined relative to this fixed polarizer. Analyzing linearly polarized light at
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known angles allows elimination of terms from Equations B.13-B.16, and solutions for

δ and β0 can be found. Linearly polarized light is generated by a calibration polarizer

with transmission axis at angle γ. Several calibration techniques that are variations

on this theme are listed below, in order of preference.

B.4.1 Fixed Calibration and Analysis Polarizer

Using another GT10 polarizer, the polarization axis can be mechanically fixed

relative to horizontal using a beamsplitter mount. Therefore γ = α = 0 and the light

being analyzed has Stokes parameters (1, 1, 0, 0). If we define the fringe amplitude

|η| to be

|η| = 1
C0

√
S2

4 + C2
4 (B.17)

then one can show that the retardation in this case is equal to

cos(δ) = 1− 3|η|
1 + |η| . (B.18)

By taking normal IT (β̃) curves under these conditions, Equation B.18 can be used to

solve for δ. Taking the standard deviation of many measurements of δ, one usually

arrives at a retardation angle uncertainty of σδ < 1◦ using this method.

The peak of the IT (β̃) curve from the same data set occurs at angle β̃ = −β0, when

the input polarization is aligned through either the fast or slow waveplate axis. The

polarization is unchanged by the waveplate, and we observe maximum transmission

as the light passes through both aligned polarizers. From the same data set as above,

one can calibrate the waveplate offset angle using

β0 = 1/4 arctan(−S4/C4). (B.19)
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Repeating this measurement multiple times the scatter reveals an uncertainty of σβ0 <

0.1◦. One does not know if this axis is the fast or slow axis (and one cannot figure

this out without using a circularly polarized calibration laser), but such an ambiguity

is generally irrelevant for our experiment.

B.4.2 Removing the Quarter-Wave Plate

If one is not confident that the calibration and analysis polarizers have the same

angle, as is required for calibration B.4.1, the offset can be determined by rotating

the input polarization state. Remove the quarter-wave plate and its rotation mount

from the polarimeter assembly. This can be achieved without disturbing the analysis

polarizer’s orientation or the polarimeter’s alignment. Place your calibration polarizer

in a rotation stage, and acquire transmission data through the two polarizers as a

function of γ̃ = γ − γ0. The intensity follows Malus’s Law for crossed polarizers,

IT (γ̃) = I0 cos2(γ̃ + γ0)

IT (γ̃) = I0 (1 + cos(2γ0) cos(2γ̃)− sin(2γ0) sin(2γ̃)) . (B.20)

By fitting to a sum of sine and cosines as normal, the peak intensity signal, when the

two polarizers are aligned occurs at γ̃ = −γ0, and can be calculated using

γ0 = 1
2 arcsin(−S2/C2). (B.21)

After the calibration polarizer is aligned, mount the quarter-wave plate’s rotation

stage back into the polarimeter. Proceed as described in calibration B.4.1 to deter-

mine δ and β0 for the waveplate.
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B.4.3 Full 2D Fit

If we don’t trust that we can remove the waveplate to recalibrate γ0 without

disturbing our system (as is required in calibration B.4.2), we can rotate both γ̃

and β̃ to acquire a 2D dataset and fit to all parameters simultaneously. The Stokes

parameters of the calibration light will be M = I cos(2(γ̃ − γ0)) and C = I sin(2(γ̃ −

γ0)), so the full form of Equation B.11 will become

IT (γ̃, β̃, γ0, β0, δ) = I

2

[
1 + cos(2(γ̃ − γ0))

2 (1 + cos δ)

+1
4
(
cos(2(γ̃ − γ0)) cos(4(β̃ − β0)) + sin(2(γ̃ − γ0)) sin(4(β̃ − β0))

)
(1− cos δ)

]
.

(B.22)

If we acquire a data set with an equal number of points γ̃, β̃, then we can write

IT (γ̃, β̃, γ0, β0, δ) as a linear sum of sines and cosines, and fit to extract γ0, β0 and δ.

In fits to data sets acquired over 8 hours, convergence of the linear fit never failed,

but reproducibility of results was worse when compared to the calibration techniques

in Sections B.4.1 or B.4.2. This is because all of these techniques required a stable

laser intensity over the course of a rotation scan. Methods B.4.1 and B.4.2 require

only a single rotation of n steps, while method B.4.3 will take n2 steps to gather

the required data set. It seems that the laser power drift on these longer time scales

makes the 2D fits noisier than quicker calibration techniques. Normalization of laser

power via some other means, or a reduction in the total acquisition time, could make

this technique competitive with the other two.
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Figure B.3: Stokes polarimeter photograph with annotated components. Es-
sential polarimeter components include irises with 0.8 mm minimum aper-
ture, rotation stage with mounted quarter-wave plate, fixed linear polarizer,
F = 1” lens, and high bandwidth amplified photodetector. The whole assem-
bly is placed on an automated translation stage when acquiring polarization
gradient data. Component part numbers are listed in Table B.1.
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Running the ACME Experiment:

VI Operation Specifics

The suite of LabVIEW VIs used to control the ACME experiment has become

quite extensive during my tenure. It was founded upon a library of VIs originally

written for antihydrogen experiments in our group. Andrew Speck, who wrote much

of the code for logging and database access, provided great assistance in initially

getting the system underway. The library interfaces LabVIEW based device control

with a Microsoft SQL server database structure. There are two fundamental types

of databases; a device configuration database and a logging storage database. At

the heart of almost every low-level VI, the generic communication VI retrieves device

configuration data from the database, and sends commands to devices in a protocol

independent way1. VIs with more complexity are built upon these generic device
1Specific devices with RS-232, RS-485, or GPIB interfaces are converted to ethernet using dedi-

cated adapter devices. The generic communication VI “GPIB Send+Recieve” automatically parses
commands in the format required for each communication protocol.
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calls. Some of the most important of these are described in further detail below.

C.1 Programming a Run

The creating of switching waveforms and the flow of EDM data acquisition is

controlled via two VIs. At the block and superblock level, the state waveforms are

programmed using the “Generated Block Sequence” (GBS) VI, shown in Figure C.1.

Each entry in the configuration arrays correspond to a particular switch parameter.

Switches performed within a block should be input from least frequent (B̃) at the

top of the array to most frequent (Ñ ) at the bottom. State values are input into the

Possible Parameter Sets array, where each row consists of blocks level switches, and

multiple rows can be used to change this configuration between blocks, thus creating

a superblock. When multiple rows are used, the How Many Blocks Before Cycling

to Next Set? field indicates the number of blocks per row, while a value of 0 will

randomly chose one of the rows, with probability given by the corresponding value

in the Probability to Select array. The Counter Offset field allows superblock switch

phases to be offset with respect to each other. Using the Random Permute Chosen

Set? boolean, a random permutation of switch states will be generated, as shown in

the Ñ switch configuration on the top of Figure C.1b.

Blocks where one parameter is correlated with another (BE or PNE) can be gen-

erated in multiple ways. Figure C.1a shows an older format of configuration array

where unique values of some parameter are correlated one-to-one with the Parameter

to Correlate With state, which means both parameters must have the same num-

ber of elements. For example, this structure was used to program a pump detuning
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Ñ
Ẽ
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scan correlated with a change in the E-field magnitude, allowing us to identify our

φac(∆) ac Stark shift systematic (Figure 7.3). For generating parity correlations with

multiple parameters, the format shown in Figure C.1b should be used. The state of

the parameter is correlated with product of the sign of all parameters listed in the

Parameter Parity to Correlate array. For example, here the probe power AOM is

correlated with Ñ and Ẽ switches, generating the PNE necessary for one of our IPV

superblocks. Because the switch’s parity is defined as sign(s), so this format cannot

correlate with parameters that do not switch signs, or have more than two states. All

final data set superblocks could have been programmed using the latter format, but

for historical reasons some were programmed using the latter.

Once a superblock is programmed in GBS, it can be exported to a LabVIEW

specific text file. The “Master Run VI” (MRVI) processes these waveforms and deter-

mines the locations where parameter states should be switched, as show in Figure 5.1.

It executes the necessary subroutines for performing switches and saves phase pre-

cession traces and header files after switches are complete. The structure of the

uberblocks used in the final data sets is configured in the MRVI. Several saved GBS

sequences can be loaded sequentially, and executed for a duration input to the Num-

ber of Blocks per Configuration field. The current superblock is referenced to the

Current Block # index, so the uberblock cycle can be manually reset by starting

a New Run. The data acquisition is paused automatically after Pause After # of

Blocks, or manually after acquisition of the current block using the Pause button.

The location within a superblock is referenced to the Block Cnt index, which is reset

after the automatic cycle pause, so the Pause After # of Blocks field should always
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be longer than the superblock length in order to measure all superblock states. The

current experimental state, a summary of the block, and the most recent switches

are indicated at right, along with diagnostic timing measurements and photon counts

downloaded from signal monitor VI (Demodulate and Plot).

C.2 Doppler Scans of Pump and Probe Lasers

The experimental lasers were locked using the transfer cavity stabilization system

constructed by Yulia Gurevich [80]. This locking system is able to stabilize the lasers

to ∼ 1 MHz over several hours, and has proven to be extremely robust, allowing lasers

with good temperature regulation and low drift to stay locked for a week or longer.

The full Doppler width of the molecular beam at the probe region is ∼ 2 MHz, so

lasers will stay on resonance despite the drift. A drift in the probe laser frequency will

be translated into a reduction of the fluorescence signal sizes, while a drifting state

preparation laser will likewise reduce the contrast. By optimizing contrast/signal on

can manually recenter the prep/probe lasers onto the H → C resonance. Because our

experiment is sensitive to detuning dependent phases (φac(∆)), we decided to auto-

mate this process and remove operator bias from the frequent recentering procedure.

Two VIs were developed to tackle this problem, one that fit a signal curve to

a Gaussian, and other other that fit the contrast to a flat topped Gaussian line-

shape [105, 81]. The software chooses a random array of frequency detunings, paus-

ing to measure an averaged molecular fluorescence signal for each detuning point.

The signal monitoring “Doppler Scan VI” (DSVI), is the most general and can be

configured to monitor either fluorescence or absorption signals. It tunes the probe
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frequency by sending lock point step commands to the laser locking VI, and is capa-

ble of broadly tuning the laser over the EDCL’s peizo over the entire mode hop free

tuning range. The downside of this approach is that it detunes both prep and probe

lasers, which are derived from the same seed laser (see Section 5.4.2). Therefore,

the prep laser is first blocked using an automated beam block so the measurement is

sensitive only to the probe’s detuning. This VI is also used to center the 943 nm and

690 nm lasers using the same procedure.

A complementary VI, the “Contrast Scan VI” (CSVI) tunes only the state prepa-

ration laser by means of the C-Prp AOM (Figure 5.7). Monitoring depletion of the

bright state quadrature will allow tuning this laser onto resonance using only the flu-

orescence in the probe region. Since both quadratures are constantly being measured

by the polarization modulated probe, the contrast provides a noise-free resonance

curve. For our laser parameters, the contrast lineshape is described the by the flat

top shape described in Section 4.4. The CSVI fits to the simplest lineshape (least fit

parameters), which provides a good fit to the center of the contrast scan.

Given typical signal to noise levels, the center of the signal or contrast lineshapes

can typically be determined to within 0.1 MHz. The probe laser detuning is typically

recentered at least once per superblock, which also compensates for the prep laser

offsets from laser lock drift. Therefore, we only need to be able center the pump

resonance with respect to the probe, which may experience differential Doppler shifts

due to small beam misalignments. The CSVI is is used to center the pump/probe

detuning only after events that have significantly altered the pointing of either beam.
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Figure C.3: The scan VIs used to center the pump and probe laser frequen-
cies on resonance. (a) The DSVI steps through a range of input values, and
at each point: 1) adjusts the appropriate lock point, 2) captures a waveform
off a Cleverscope, 3) integrates between the selected bounds. The series of
measurements is fit to a Gaussian, and the central value is manually fed back
into the laser lock VI to correct the detuning. (b) The CSVI captures a wave-
form in a similar way, fitting to a flat top contrast curve to extract the center.
The computed contrast at each point is calculated by the “Demodulate and
Plot” VI, from which it is fed into the CSVI.
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Linearized Decay Fitting

Traditionally, a preferred way of fitting exponential decay S = A exp(−t/τ) was

by taking S ′ = ln(S). If there is no background S ′ exhibits a linear decay with

slope −1/τ , and can be fit using linear regression with no dependance on any initial

guesses. The photon counting is Poissonian distributed, so the standard deviation

of a measurement Si in time bin i is σi =
√
Si. For S ′i = ln(Si), according to error

propagation formulas, the uncertainty becomes σ′i = 1/
√
Si. Weighted linear fits

weight by the inverse of the standard deviation, and therefore our weighting function

to S ′i data should be w′i = eS
′
i/2 [180, 181].

The presence of background B makes the log of

S = A exp(−t/τ) +B (D.1)

nonlinear in τ . Expanding in orders of B/A

ln(S) ≈ lnA− t

τ
+ B

A
et/τ + . . . (D.2)

which is valid out until t/τ ≈ − ln(B/A). Linear fitting can no longer be used when
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a decay curve decays into a background. A solution to this problem is to measure

and subtract a background from each curve, then linearize and fit. This requires

careful treatment of noise in the background, because the ln() function cannot be

applied to any differences Si − B ≤ 0. These values are set to zero in order to avoid

divergences in the data, and the linear fit is performed only on the subset of data

before these noisy values begin to appear. Non-linear fitting routines that directly

perform a there parameter fit to Equation D.1 converge to values with comparable

uncertainties to linearize fits, but don’t suffer from the systematic shifts associated

with the uncertainty in background subtraction.
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Complete List of Systematic

Checks
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Category I Parameters
Magnetic Fields
- Non-Reversing B-Field: Bnr

z

- Transverse B-Fields: Bx,By (even and odd under B̃)
- Magnetic B-Field Gradients:
∂Bx
∂x
, ∂By
∂x
, ∂By
∂y
, ∂By
∂z
, ∂Bz
∂x
, ∂Bz
∂z

(even and odd under B̃)
- Ẽ correlated B-field: BE (to simulate
~v × ~E/geometric phase/leakage current effects)
Electric Fields
- Non-Reversing E-Field: Enr

- E-Field Ground Offset
Laser Detunings
- Detuning of the Prep/Read Lasers: ∆prep, ∆read
- P̃ correlated Detuning: ∆P
- Ñ correlated Detunings: ∆N , ∆∆N
Laser Pointings along x̂
- Change in Pointing of Prep/Read Lasers
- Readout laser X̂/Ŷ dependent pointing
- Ñ correlated laser pointing
- Ñ and X̂/Ŷ dependent laser pointing
Laser Powers
- Power of Prep/Read Lasers: Pprep, Pread
- Ñ Ẽ correlated power, PNE (simulating ΩNEr )
- Ñ correlated power, PN
- X̂/Ŷ dependent Readout laser power
Laser Polarization
- Preparation Laser Ellipticity
Molecular Beam Clipping
- Molecule Beam Clipping along the ŷ and ẑ
(changes 〈vy〉,〈vz〉,〈y〉,〈z〉 for molecule ensemble)

Table E.1: Category 1 IPVs: Parameters that were varied far from their
values under normal conditions of the experiment. For each of these parame-
ters, direct measurements or limits were placed on possible systematic errors
that could couple linearly to each by the method described in the main text.
From [2].
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Category II Parameters
Experiment Timing
- X̂/Ŷ Polarization Switching Rate
- Number of Molecule Pulse Averages
contributing to an Experiment State
Analysis
- Signal size cuts, Asymmetry magnitude
cuts, Contrast cuts
- Difference between two PMT detectors
(checking spatial fluorescence region dependence)
- Variation with time within molecule pulse
(serves to check vx dependence)
- Variation with time within polarization
switching cycle
- Variation with time throughout the
full dataset (autocorrelation)
- Search for correlations with all φ, C, and S
switch-parity components
- Search for correlations with auxiliary measurements
of B-fields, laser powers, and vacuum pressure
- 3 individuals performed independent
analyses of the data

Table E.2: Category 2 IPVs: Parameters for which all values are considered
consistent with normal conditions of the experiment. Although direct limits
on systematic errors cannot be derived, these served as checks for the presence
of unanticipated systematic errors. From [2].
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